

View

Online


Export
Citation

RESEARCH ARTICLE |  MARCH 20 2024

Effect of shape anisotropy in nanocrystals of
semiconductors with small spin–orbit splitting 
S. V. Goupalov  

J. Chem. Phys. 160, 114703 (2024)
https://doi.org/10.1063/5.0187728

 18 April 2024 20:09:28

https://pubs.aip.org/aip/jcp/article/160/11/114703/3277925/Effect-of-shape-anisotropy-in-nanocrystals-of
https://pubs.aip.org/aip/jcp/article/160/11/114703/3277925/Effect-of-shape-anisotropy-in-nanocrystals-of?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-4913-0792
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0187728&domain=pdf&date_stamp=2024-03-20
https://doi.org/10.1063/5.0187728
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2372063&setID=592934&channelID=0&CID=872267&banID=521836446&PID=0&textadID=0&tc=1&scheduleID=2290748&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1713470968609241&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0187728%2F19834940%2F114703_1_5.0187728.pdf&hc=898c1080581e302b3b534af6ba3721d9cd238c3b&location=


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Effect of shape anisotropy in nanocrystals
of semiconductors with small spin–orbit splitting

Cite as: J. Chem. Phys. 160, 114703 (2024); doi: 10.1063/5.0187728
Submitted: 15 November 2023 • Accepted: 3 March 2024 •
Published Online: 20 March 2024

S. V. Goupalova)

AFFILIATIONS
Department of Physics, Jackson State University, Jackson, Mississippi 39217, USA and Ioffe Institute, 194021 St. Petersburg, Russia

a)Author to whom correspondence should be addressed: serguei.goupalov@jsums.edu

ABSTRACT
We derive an effective spin-Hamiltonian accounting for the shape anisotropy of the zinc blende semiconductor nanocrystals within the
k ⋅ p formalism explicitly taking into account the spin–orbit split-off valence band. It is shown that, for small InP nanocrystals, neglect of
the spin–orbit split-off band can lead to significant underestimation of one of the two parameters determining the exciton fine-structure
splittings. This parameter is only important for nanocrystals with shape anisotropy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0187728

I. INTRODUCTION
Colloidal semiconductor nanocrystals are finding more and

more applications. Their importance has been acknowledged with
the 2023Nobel Prize in Chemistry. Single quantumdot spectroscopy
reveals that the symmetry of the nanocrystal shape, manifesting itself
in the exciton fine structure splittings, is usually significantly lower
than the symmetry of the underlying crystal lattice.1,2 The simplest
model accounting for the splittings is the model assuming that the
nanocrystal has the shape of a triaxial ellipsoid.3 The observed small
energy scale of the splittings allows one to consider such an ellip-
soidal nanocrystal as a slightly deformed sphere. Since deformations
are small, they are linear, which allows one to first consider a uniaxial
deformation and then add up the results of the deformations along
the three axes.1–3 Uniform uniaxial deformations of the nanocrys-
tal spherical shape were considered by Efros and Rodina in the
model neglecting the spin–orbit split-off valence band.4 Recently,
it has been shown5 that taking into account the admixture of the
spin–orbit split-off band is crucial for calculating the effective g fac-
tor of top hole levels in CdSe and InP nanocrystals. The dark exciton
states resulting from the fine-structure splitting can only be revealed
in external magnetic fields mixing bright and dark zero-field states
and leading to the brightening of the latter.1,2 Thus, a consistent
description of the exciton fine structure in CdSe and InP nanocrys-
tals within the k ⋅ p approximation should use the three-band model.
The electron–hole exchange interaction, responsible for the exciton
fine structure in quasi-spherical nanocrystals, has recently been con-
sidered within this model.6 In this paper, we elucidate the role of

the spin–orbit split-off band in the evaluation of the effect of the
nanocrystal shape anisotropy.

II. HOLE STATES IN THE THREE-BAND MODEL
The isotropic three-band model describing the valence band

structure of II–VI and III–V semiconductors utilizes the generalized
Luttinger Hamiltonian,9–11

Ĥ(k) = −
h̵2k2

2m0
(γ1 + 4γ) +

3h̵2γ
m0
(kÎ)2 +

Δ
3
(σ̂Î) −

Δ
3
, (1)

where h is Planck’s constant, m0 is the free electron mass, γ1 and
γ ≡ (2γ2 + 3γ3)/5 are the Luttinger parameters, Îα (α = x, y, z) are
the matrices of angular momenta I = 1, Δ is the spin–orbit splitting,
and σ̂α are the Pauli matrices. The bands in a bulk semiconductor
resulting from this Hamiltonian are shown in Fig. 1 for the case
of zinc blende CdSe (the parameters are taken from Ref. 5). The
most intuitive method of constructing states of a particle described
by such a Hamiltonian and confined in a spherically symmetric
potential was developed by Sercel and Vahala12 for the two-band
model and applied to the three-band model by Richard et al.8 It
has also been demonstrated that the same method proves to be
very efficient in describing the vibrational Lamb modes of spherical
particles.13 The formalism is based on the fact that the differential
operator Ĥ(−i∇) commutes with the operator of the total angu-
lar momentum F̂ = L̂ + Ĵ, where L̂ = −ih̵ r ×∇ and Ĵα (α = x, y, z)
are the matrices of angular momenta, which can refer to both
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FIG. 1. In the two-band model, levels of size quantization of the valence-band
hole originate from the parabolic bands of light (blue dashed line) and heavy (red
solid line) holes. In the three-band model, the parabolic band of heavy holes is
complemented by non-parabolic bands of the light (blue solid line) and spin–orbit
split-off (green solid line) bands. The isotropic energy dispersion is shown in a
vicinity of the Γ point of the Brillouin zone as a function of the dimensionless wave
number ka0, where a0 is the lattice constant. The Bloch functions at the Γ point
transform under the Γ8 (J = 3/2) and Γ7 (J = 1/2) irreducible representations
of the point group Td . Within the two-band (three-band) model, to each energy
correspond two (three) wave numbers from different bands.

J = 3/2 and J = 1/2. In what follows, however, we will only use the
notation Ĵα for J = 3/2 and use the Pauli matrices for the case of
J = 1/2. The orbital angular momentum L̂ does not commute with
Ĥ(−i∇). Thus, while the total angular momentum F serves as a
good quantum number along with its projection Fz onto the z axis
and the parity, several values of L, determined by the summation
rules for angular momenta, usually contribute to each state of the
confined hole. The lowest optically active exciton state is composed
of the even hole state with total angular momentum F = 3/2 and
the ground electron state. The hole state is contributed by L = 0, 2
for J = 3/2 and by L = 2 for J = 1/2. Therefore, this state is labeled
1SDD3/2.8 In this paper, we will be concerned with only this hole
state. It can be written as

∣1SDD3/2,Fz⟩ =∑
J,ν

RJ,ν;Fz(r)∣J, ν⟩, (2)

where ∣J, ν⟩ is the Bloch state at the top of the band Γ8 when J = 3/2
or at the top of the band Γ7 when J = 1/2 (cf. Fig. 1),

RJ,ν;Fz(r) =∑
L
(−1)J−L+FzRJ

L(r)

× 2 ∑
M

⎛
⎜
⎝

J L
3
2

ν M −Fz

⎞
⎟
⎠
iLYLM(

r
r
), (3)

where
⎛
⎜
⎝

J L
3
2

ν M −Fz

⎞
⎟
⎠
is the Wigner 3jm symbol that restricts possi-

ble values of L andM, YLM(
r
r ) are the spherical harmonics satisfying

Y∗LM( rr ) = (−1)
M YL−M(

r
r ), and R

J
L(r) are the hole radial wave func-

tions satisfying zero boundary conditions at the nanocrystal surface
and defined as follows:6

R3/2
L (r) = C [jL(khhr)

+
(−1)L/2 k2lh(ρso + χso)

k2lh(ρso + χso) + k
2
so(ρlh − χlh)

j2(khha)
j2(klha)

jL(klhr)

+
(−1)L/2 k2so(ρlh − χlh)

k2lh(ρso + χso) + k
2
so(ρlh − χlh)

j2(khha)
j2(ksoa)

jL(ksor)], (4)

R1/2
2 (r) = C m0

γh̵2
(ρlh − χlh) (ρso + χso)

k2lh(ρso + χso) + k
2
so(ρlh − χlh)

× j2(khha) [
j2(klhr)
j2(klha)

−
j2(ksor)
j2(ksoa)

]. (5)

Here, a is the nanocrystal radius, jL(x) is the spherical Bessel
function of the order L, and we adapted notations of Ref. 8,

ρ(k) =
1

2m0

√

9γ2h̵4k4 − 2γm0Δh̵2k2 +m2
0Δ

2,

χ(k) =
Δ
2
−
γh̵2k2

2m0
,

ρη ≡ ρ(kη), χη ≡ χ(kη), η = lh, so. The wave number of the heavy
holes is related to the hole energy through

k2hh =
2m0∣E∣

h̵2(γ1 − 2γ)
,

while those of the light and spin–orbit split-off holes satisfy the
following equation:

h̵4k4

4m2
0
(γ1 − 2γ)(γ1 + 4γ) +

h̵2k2(γ1 + 2γ)
2m0

Δ

−
h̵2k2(γ1 + γ)

m0
∣E∣ + ∣E∣(∣E∣ − Δ) = 0. (6)

One can see from Fig. 1 that, for E < 0, k2lh is always positive, while,
from Eq. (6),

k2so =
∣E∣(∣E∣ − Δ) 4m2

0

h̵4k2lh(γ1 − 2γ)(γ1 + 4γ)

and becomes negative for ∣E∣ < Δ, as shown in Fig. 1. In this
case, one should make the following substitutions in Eqs. (4) and
(5): kso → iκso, jL(ksor)→ iLi(1)L (κsor), and jL(ksoa)→ iL i(1)L (κsoa),
where i(1)L (x) is the modified spherical Bessel function.
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The energy of the confined hole state is determined from the
following dispersion equation:8

j0(khha)j2(klha)j2(ksoa)[k
2
lh(ρso + χso) + k

2
so(ρlh − χlh)]

+ j2(khha)[k
2
lh(ρso + χso)j0(klha)j2(ksoa)

+ k2so(ρlh − χlh)j0(ksoa)j2(klha)] = 0 (7)

for ∣E∣ > Δ, and

j0(khha)j2(klha)i
(1)
2 (κsoa)[k

2
lh(ρso + χso) − κ

2
so(ρlh − χlh)]

+ j2(khha)[k
2
lh(ρso + χso)j0(klha)i

(1)
2 (κsoa)

+ κ2so(ρlh − χlh)i
(1)
0 (κsoa)j2(klha)] = 0 (8)

for ∣E∣ < Δ. The normalization constant C in Eqs. (4) and (5) is found
from the condition,

∑
J,L

a

∫

0

dr r2[RJ
L(r)]

2
= 1.

The results of the two-band model can be regained in the
limit Δ→∞. In particular, in this limit, ρso + χso ∼ Δ, ρlh − χlh
∼ 2γ2h̵4k4lh/Δm

2
0. Therefore, Eq. (7) yields

7,12

j0(khha)j2(klha) + j2(khha)j0(klha) = 0,

while from Eq. (4), we obtain7

R3/2
L (r)→ C [jL(khhr) + (−1)L/2

j2(khha)
j2(klha)

jL(klhr)]. (9)

III. SHAPE ANISOTROPY
In order to account for the nanocrystal shape anisotropy, we

will adapt an approach pioneered by Migdal14,15 who used it to find
energy levels of a deformed nucleus. For nanocrystals, this approach
was applied by Efros and Rodina within the two-band model.4,16

Consider a spheroidal nanocrystal with the surface,

x2 + y2

b2
+
z2

c2
= 1. (10)

Substituting x → bx/a, y → by/a, and z → cz/a transforms it into a
sphere x2 + y2 + z2 = a2. Introducing the ellipsoidality parameter,

μz = 2
c − b
c + b

, (11)

and assuming ∣μz ∣≪ 1, from the condition c b2 = a3, one obtains

b ≈ a(1 −
μz
3
), c ≈ a(1 +

2μz
3
).

The above-mentioned change of variables also implies kx,y
→ kx,y (1 + μz/3) and kz → kz (1 − 2μz/3). When applied to the
Hamiltonian (1), the latter receives the following addition:

ΔĤ(k) = −
μzh̵2(γ1 + 4γ)

m0
(
k2

3
− k2z) +

2μzh̵2γ
m0

(kÎ)2

−
3μzh̵2γ
m0

[(kÎ)kz Îz + kz Îz(kÎ)]. (12)

Using explicit expressions for the Bloch wave functions,10–12

one can write this Hamiltonian in the following basis,

∣k, J, ν⟩ =
eikr

(2π)3/2
∣J, ν⟩. (13)

The Fourier transform of the matrix (3) can be formally considered
as the following change of basis:

⟨k, J, ν∣1SDD3/2,Fz⟩ =
1

(2π)3/2 ∫
dre−ikr RJ,ν;Fz(r)

≡
1

(2π)3/2
RJ,ν;Fz(k). (14)

The anisotropy-induced correction to the hole energy can be
calculated in the first order of the perturbation theory as matrix ele-
ments of the operator (12) on the functions (2). Inserting the unit
operator expanded over the functions (13) and taking into account
that matrix elements of the operator (12) on these functions are
diagonal in k, we obtain

⟨1SDD3/2,F
′

z ∣ΔĤ∣1SDD3/2,Fz⟩ =
1
(2π)3

∑
J′ ,ν′ ,J,ν

× ∫ dk R†
F′z ;J

′ ,ν′(k)⟨k, J
′, ν′∣ΔĤ(k)∣k, J, ν⟩ RJ,ν;Fz(k) (15)

or performing the angular integrations and summations,

ΔĤ =
μzΔsh

2
(Ĵ2z −

5
4
), (16)

where

Δsh = −
h̵2

6π3m0

∞

∫

0

dk k4{γ ([I3/20 (k)]
2
−
1
5
[I3/22 (k)]

2

+
7
5
I3/20 (k) I

1/2
2 (k) +

1
5
I3/22 (k) I

1/2
2 (k))

+
γ1
5
(2 I3/20 (k) I

3/2
2 (k) + [I

1/2
2 (k)]

2
)}, (17)

IJL(k) = 4π(−1)
L/2

a

∫

0

dr r2 RJ
L(r)jL(kr). (18)

The form of Eq. (16) means that the shape anisotropy leads to
splitting between the sublevels of the confined hole with ∣Fz ∣ = 3/2
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FIG. 2. Ratio of the characteristic energy Δsh to the unperturbed energy of the
confined hole in the state 1SDD3/2 as a function of the zinc blende-CdSe nanocrys-
tal radius calculated within the three-band (solid line) and two-band (dashed line)
models. The two-band result corresponds to 2v(β) in terms of Ref. 4.

and ∣Fz ∣ = 1/2. The splitting amounts to ∣μz Δsh∣. To avoid confusion,
we note that both the Hamiltonians (1) and (16) refer to the valence-
band electron rather than the hole states (cf. Fig. 1).

When Δ→∞, then I1/22 (k)→ 0, while R3/2
L (r) approach their

two-band model limits according to Eq. (9). In this case, we
obtain the two-band model result, which was given in Ref. 16 in a
slightly different analytical form. In the two-band model, R3/2

L (r)
= a−3/2 fL(r/a), where fL(r/a) is the function depending on the
ratio r/a. For this reason, as it follows from Eqs. (17) and (18), in
the two-band model, IJL(k)∝ a3/2 and Δsh ∝ a−2 ∝ Eh(a), where
Eh(a) > 0 is the unperturbed energy of the confined hole in the

FIG. 3. Same as Fig. 2 but for InP nanocrystals.

FIG. 4. Ratio of the characteristic energy Δsh to the unperturbed energy of the
confined hole in the state 1SDD3/2 as a function of the ratio of the spin–orbit split-
ting to the same energy for InP (red lines) and zinc blende CdSe nanocrystals
(blue lines). The dashed lines represent the corresponding two-band model limits
[2v(β) in terms of Ref. 4].

ground state.4In Figs. 2 and 3, we compare the results of the three-
band and two-band models for the zinc blende CdSe and InP
nanocrystals, respectively. We used the parameters in Refs. 5 and
8 for CdSe and InP nanocrystals, respectively. One can see that the
ratio Δsh/Eh(a) in the three-band model becomes size-dependent.
While for CdSe nanocrystals with relatively large spin–orbit splitting
(Δ = 470meV), this dependence is not that strong, for InP nanocrys-
tals (Δ = 108 meV), the difference of the ratio from its two-band
limit reaches 30% for small nanocrystals. Provided that the confine-
ment energy scales as a−2, the role of the shape anisotropy can be
significantly underestimated by the two-band model for small InP
nanocrystals.

Another illustration is shown in Fig. 4. Here, we plot the ratio
of the characteristic energy Δsh to the unperturbed energy of the
confined hole in the state 1SDD3/2 as a function of the ratio of the
spin–orbit splitting to the same energy for InP and zinc blende CdSe
nanocrystals. When Eh(a) < Δ, the contribution of the spin–orbit
split-off band to the hole wave function is associated with the
purely imaginary wave number (cf. Fig. 1) and the ratio Δsh/Eh(a)
asymptotically approaches the limit of Δ→∞. When Eh(a) > Δ, the
spin–orbit split-off band contributes a real wave number and the
difference from the two-band model becomes significant.

IV. EXCITON FINE STRUCTURE FOR A NANOCRYSTAL
IN THE SHAPE OF A TRIAXIAL ELLIPSOID

Now, let us suppose that a spheroidal nanocrystal with the sur-
face given by Eq. (10) is further stretched along the x direction and
simultaneously squeezed along the y direction while preserving its
elongation along the z axis. This yields a nanocrystal in the shape of
a triaxial ellipsoid,

x2

b2x
+
y2

b2y
+
z2

c2
= 1. (19)
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One can introduce the in-plane anisotropy parameter

μxy = 2
bx − by
bx + by

and assume that ∣μxy∣≪ ∣μz ∣. This model3 allows one to describe the
fine structure of the lowest optically active exciton state 1Se1SDD3/2
in realistic colloidal quantum dots with zinc blende crystal lat-
tice and strong carrier confinement.1,2 The resulting exciton fine
structure is given by the following spin-Hamiltonian:1–3

ĤX = −ηexch(σ̂Ĵ) −
μzΔsh

2
(Ĵ2z −

5
4
)

−
μxyΔsh

2
(Ĵ2x − Ĵ

2
y), (20)

where ηexch is the electron–hole exchange energy, and we have
neglected a small contribution due to the anisotropy of the
long-range part of the electron–hole exchange interaction. The
electron–hole exchange energy within the three-band model has
recently been evaluated in Ref. 6, while the parameter Δsh is given
by Eq. (17). The spin-Hamiltonian (20) leads to the splitting of the
otherwise eightfold degenerate exciton level 1Se1SDD3/2 into eight
distinct sublevels1–3 even at zero external magnetic field. Analytic
expressions for their energies may be found in Ref. 3.

V. CONCLUSIONS
We have studied how a uniform uniaxial deformation chang-

ing the spherical shape of a semiconductor nanocrystal to that of
a prolate (μz > 0) or oblate (μz < 0) spheroid affects confined hole
states. Ananalytical expression for the splitting of the confined hole
state, contributing to the lowest optically active exciton, has been
derived within the three-band model explicitly taking into account
the spin–orbit split-off valence band. It is shown that, for small InP
nanocrystals, neglect of the spin–orbit split-off band can lead to
a significant underestimation of one of the two parameters deter-
mining the exciton fine-structure splitting. This parameter is only
important for nanocrystals with shape anisotropy. Our results can
be used to describe nanocrystals in the shape of triaxial ellipsoids,
which provide an adequate model for realistic nanocrystal shapes.1–3
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