
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024 141

PiPSim: A Behavior-Level Modeling Tool for
CNN Processing-in-Pixel Accelerators
Arman Roohi , Senior Member, IEEE, Sepehr Tabrizchi, Student Member, IEEE,

Mehrdad Morsali, Student Member, IEEE, David Z. Pan , Fellow, IEEE,
and Shaahin Angizi , Senior Member, IEEE

Abstract—Convolutional neural networks (CNNs) have been
gaining popularity in recent years, and researchers have designed
specialized architectures to speed up the inference process.
However, despite the promising potential of processing near-
/in- sensor architectures actively explored in the visual Internet
of Things, there is still a need to develop a behavior-level
simulator to model performance and facilitate early design explo-
ration. This article proposes a stand-alone simulation platform
for processing-in-pixel (PiP) systems, namely, PiPSim. It offers
a flexible interface and a wide range of design options for cus-
tomizing the efficiency and accuracy of PiP-based accelerators
using a hierarchical structure. Its organization spans from the
device level, e.g., memory technology, upward to the circuit level,
e.g., compute-add on architecture, and then to the algorithm level,
e.g., DNN workloads. PiPSim realizes instruction-accurate eval-
uation of circuit-level performance metrics as well as learning
accuracy at run-time. Compared to SPICE simulation, PiPSim
achieves over 25 000× speed-up with less than a 2.5% error rate
on average. Furthermore, PiPSim can optimize the design and
estimate the tradeoff relationships among different performance
metrics.

Index Terms—Design optimization, energy efficiency, neural
network, numerical simulation, processing-in-sensor (PiS).

I. INTRODUCTION

CURRENTLY, nearly 90% of the data generated by the
Internet of Things (IoT) is not analyzed or processed,

mainly due to the insufficient computing ability of state-of-the-
art processors/memory of small area and power-restricted IoT
devices and memory/compute-intensive convolutional neural
network (CNN) algorithms [1], [2]. In order to resolve these
issues, computing architectures must shift from a cloud-centric
approach to a thing-centric (data-centric) approach, where the
IoT node processes the sensed data. processing-in-pixel (PiP)

Manuscript received 10 April 2023; revised 24 June 2023; accepted
2 August 2023. Date of publication 15 August 2023; date of current ver-
sion 26 December 2023. This work was supported in part by the National
Science Foundation under Grant 2216772 and Grant 2216773. This article
was recommended by Associate Editor C. Bolchini. (Corresponding author:
Arman Roohi.)

Arman Roohi and Sepehr Tabrizchi are with the School of Computing,
University of Nebraska–Lincoln, Lincoln, NE 68588 USA (e-mail: aroohi@
unl.edu).

Mehrdad Morsali and Shaahin Angizi are with the Department of Electrical
and Computer Engineering, New Jersey Institute of Technology, Newark, NJ
07103 USA (e-mail: shaahin.angizi@njit.edu).

David Z. Pan is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX 78712 USA
(e-mail: dpan@mail.utexas.edu).

Digital Object Identifier 10.1109/TCAD.2023.3305574

(a)

(b)

(c)

(d)

Fig. 1. Different visual systems: (a) conventional architecture, (b) PnS archi-
tecture [8], [11], [12], [13], [14], alongside DLA, (c) PiS architecture [10],
[15], [16], [17], and (d) PiP architecture [4], [18], [19], [20], where black
and dotted orange boxes indicate the pixel and the sensors, respectively, and
green boxes represent where the computing is performed.

paradigm has been recently set forth as a new class in rapidly
developing near-/in-sensor and in-memory computing plat-
forms to process pre-analog-to-digital converter (pre-ADC)
data before converting and transmitting it to the on/off-chip
processor [3], [4], [5], [6]. Due to PiP’s limited resources,
it is inefficient to deploy all neural network layers into the
pixel array. Thus, almost all studies accelerated the first
layers in an analog domain and submitted the rest to the
digital neural network accelerator. Block diagrams of dif-
ferent visual architectures are shown in Fig. 1. The PiP
paradigm 1) significantly reduces the power consumption of
converting photo-currents into pixel values used for image
processing; 2) accelerates data processing allowing simulta-
neous sensing and computing; and 3) alleviates the memory
bottleneck problem [7], [8]. RedEye [9] implemented con-
volution operation using charge-sharing tunable capacitors.
Compared to a CPU/GPU, this design sacrifices accuracy in
favor of energy savings. Nevertheless, the energy required
per frame increases dramatically by 100× for high-accuracy
computation. MACSen [10], as a PiP platform, processes
the 1st-convolutional layer of binary-weight neural networks
(BWNNs) using the correlated double sampling method at a
speed of 1000 fps. However, it suffers from a considerable
area overhead and high power consumption due to the SRAM-
based PiP. In [4], a PiP-based architecture has been proposed
that operates convolution in an analog domain to reduce power
consumption. Nevertheless, this design requires four photodi-
odes and four capacitors per pixel, resulting in an overall area
and power overhead.

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0900-8768
https://orcid.org/0000-0002-5705-2501
https://orcid.org/0000-0003-2289-6381


142 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

As various image processing applications with distinct
workload sizes and memory access patterns are expected to
benefit from PiP at the edge devices, selecting the right design
for a particular application is vital but challenging. Moreover,
it is imperative to establish uniform evaluation conditions to
make an impartial choice between available design options.
To enable design space exploration and the cross-technology
comparison of various PiP designs, we have developed a
bottom-up behavior-level modeling tool for PiP accelerators
named PiPSim. The extensible PiPSim enables IC designers
to develop a configurable PiP design to emulate components,
such as sensing units, shared data bus, etc., and operations like
parallel in-sensor multiply–accumulate (MAC) to evaluate var-
ious performance metrics and accuracy. This article makes the
following contributions.
1) Assessment of the sensing/processing time, power con-

sumption, and throughput of PiP chips considering var-
ious pixel structures and specific design features before
moving toward the fabrication stage.

2) Design space exploration of PiP platforms to attain
an optimized device/circuit/architecture combination to
improve the performance parameters.

3) Consolidation of circuit-architecture methods realizing
a fully stand-alone and automatic simulator, not relying
on multiple separate simulators.

The remainder of this article is organized as follows. In
Section II, a brief review of different simulators, especially
processing near/in memory simulators, is provided. Section III
introduces our PiPSim framework, highlighting its key features
and design principles. The simulation results and the detailed
analysis are summarized in Section IV, where we argue that
the PiPSim Framework represents an important step forward
in the development of computational tools for simulating com-
plex processing in sensors, especially for CNN networks.
Finally, Section V concludes this article by emphasizing the
advantages and features of the proposed architecture.

II. BACKGROUND

Although there is no prior behavior-/system-level
performance and energy evaluation framework for PiP
architectures, researchers have developed a myriad of in-
house memory evaluation and processing-in-memory (PIM)
tools, including circuit simulators, RTL-based and behavioral
simulation frameworks. These efforts can be categorized into
three groups.
1) Memory evaluation tools such as HP-Lab’s Cacti [21],

which was originally designed to evaluate the DRAM or
SRAM-based memory and cache. Nonvolatile memory
simulator (NVSIM) [22] is a circuit-level simulator
that has been developed on top of Cacti to per-
form performance, energy, and area estimations for
nonvolatile memories (NVMs), such as STT-RAM,
PCRAM, ReRAM, and legacy NAND Flash. It facil-
itates design space exploration for PIM architectures
and helps optimize memory systems by analyzing trade-
offs between energy, latency, and area. Nonvolatile main
memory (NVmain) [23] models the main memory based

on DRAM and emerging NVM NPSabbrpl, such as
PCRAM, STT-RAM, and hybrid designs. NVmain can
be integrated with various microarchitecture simula-
tors, such as gem5, Sniper, and McSimA+. It provides
a detailed and flexible framework for simulating the
timing, power, and energy characteristics of NVM tech-
nologies, making it an important tool for researchers to
study and understand the potential benefits and draw-
backs of using these memory systems. Ramulator [24]
was proposed as an open-source, cycle-level, and exten-
sible DRAM simulator to evaluate different currently
used DRAM standards as well as those of the future.
It has become a widely used tool for modeling and
evaluating the performance of a wide range of DRAM
technologies, including DDRx, LPDDRx, GDDRx, and
HBMx.

2) Analog PIM accelerator simulators such as MNSIM
(memristor-based neuromorphic computing system sim-
ulator) [25] as a fast behavior level simulation plat-
form to estimate and optimize the performance of a
memristor-based neuromorphic accelerator. It enables
designers to evaluate the performance, energy con-
sumption, and area of neuromorphic systems, such as
memristive crossbar arrays, to develop more efficient
PIM architectures for artificial intelligence (AI) and
machine learning applications. As a circuit-level macro
model, NeuroSim [26] has been developed to be inte-
grated with the learning algorithm also supporting a
wide variety of emerging memory technologies. IBM
Analog Hardware Acceleration Kit (AIHWKIT) [27]
is an open-source analog AI simulation toolkit with a
convenient PYTORCH interface presented to simulate
analog crossbar arrays.

3) Digital PIM accelerator simulators, such as evaluating
cache-in-memory (Eva-CiM) [28] that leverages sev-
eral existing memory and micro-architecture modeling
tools, with GEM5 as the backbone [29], to reli-
ably predict performance and energy consumption of
digital PIM modules. PIM simulator (PIMSim) [30],
simulator-to-processing in memory (Sim2PIM) [31], and
computing-in-memory simulator (CIM-SIM) [32] have
been designed as a full-system and configurable PIM
simulator to ease research from abstract to system-level.
SIM2PIM translates general-purpose processor simula-
tion models into PIM models. It enables the evaluation
of PIM architectures for a wide range of applications
and helps optimize the performance and energy effi-
ciency of these systems. In the CIM-SIM framework,
processing elements are integrated within memory cells
or arrays, which supports various emerging memory
technologies and provides insights into the performance,
energy consumption, and area tradeoffs for different
CIM designs.

III. PIPSIM FRAMEWORK

The PiPSim framework takes users’ needs and inputs,
including target energy, hardware constraints, etc., and

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 



ROOHI et al.: PiPSim: A BEHAVIOR-LEVEL MODELING TOOL FOR CNN PROCESSING-IN-PIXEL ACCELERATORS 143

(a) (b)

Fig. 2. (a) Overview of the proposed PiPSim. (b) High-level and circuit block diagram of a PiP architecture w.r.t. the input configuration file.

TABLE I
CONFIGURATION INPUTS OF PIPSIM

generates a close approximation of performance metrics, as
depicted in Fig. 2(a). PiPSim is composed of three primary
components: 1) prestored dictionaries (Dicts.); 2) processing-
in-pixel architecture (PiPA) module; and 3) processing-in-pixel
examiner (PiPE), consisting of two procedures, PiPE(I) and
PiPE(II) to assess accuracy and energy/delay parameters, as
shown in Fig. 2(b). First, device/circuit features are analyzed
offline and stored in the Dicts. 1 This step can be coordinated
with Cacti and NVSIM. The PiPA module takes both work-
loads and system parameters 2 listed in Table I, to form a
PiP structure. The PiPE (I) 3 component takes the workload
parameters and quantizes the first layer’s weights of the neu-
ral network. Then the quantized weights are fed to PiPA 2 .
Meanwhile, PiPE(I) modifies the neural network with the new
first layer and performs the accuracy test. Herein, PiP architec-
tures only target the first layer, and the remaining layers will be
calculated by analog/digital deep-learning accelerators. Within
PiPA, the Generate procedure 2a determines buffer sizes and
the number of compute add-ons (CAs) based on the applied
parameters. If any input is missing, the default value is lever-
aged. After having all the required components, e.g., pixel
array size, etc., the Generate module creates the proper Control
(Ctrl.) Unit, including row and column decoders, places all
the components together. To minimize the error possibility
or/and design violation, the generated architecture’s function-
ality is validated by the Check procedure 2b through several
if/else conditions, detailed in Algorithm 1. Since this step is an
iterative process, it continues till the desired error-free design
is achieved. It is worth mentioning that the achieved PiP design

is not the best-optimized design, and additional optimization
steps could be considered by the users. If all the design criteria
are satisfied, the generated high-level parameters are taken by
PiPE(II) 4 . Moreover, it takes the user’s and low-level (LL)
parameters and evaluates the overall system’s performance,
including latency, power consumption, and framerate.

A. Hierarchical Bottom-Up Methodology

PiPSim includes several predefined libraries and compo-
nents to support different possible PiP architectures. However,
users can also integrate the power, latency, and other param-
eters of customized components into PiPSim. The proposed
PiPSim is versatile and can be readily exposed to the well-
developed Cacti [21] and NVSim [22] C++ libraries to add
new components.
1) Device Model: In order to determine process parame-

ters, PiPSim uses device data from the international tech-
nology roadmap for semiconductor (ITRS) report. It supports
three types of transistors, including high performance, low
power, and low standby power, which cover process nodes
∈ {180, 90, 65, 45, 32, 22} nanometers.
2) Memory Technology: The device-level model of the

supported memory technologies is developed/extracted from
various models and assessments. For spin-transfer torque
magnetic RAM (STT-MRAM) and spin-orbit torque mag-
netic RAM (SOT-MRAM) as shown in Fig. 3(a) and (b),
we jointly use the nonequilibrium green’s function (NEGF)
and Landau–Lifshitz–Gilbert (LLG) equations to model the
bit-cell, developed in preliminary works [33]. We lever-
age the 1T1R ReRAM model developed in our experimen-
tal TiN/Ti/HfO2/TiN bit-cell [18] as shown in Fig. 3(c).
The default 6T SRAM cell configuration is adopted from
NVSim [22]. The eDRAM cell parameters are adopted and
scaled from Rambus [34]. The FEFET model is inevitability
skipped in this work due to the immaturity of the experimen-
tally benchmarked data.
3) Pixel Type: The PiPSim simulator supports two highly

used pixel types, 3- and 4-transistors (3T and 4T), including
one photodiode, as shown in Fig. 4(a) and (b), respectively.
These pixels can generate only positive currents on bit-line
(BL); therefore, we modified them to generate both nega-
tive and positive currents. The modified structure is shown

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 



144 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

Fig. 3. (a) STT-MRAM, (b) SOT-MRAM, and (c) ReRAM models.

Fig. 4. Widely used pixels (a) 3T and (b) 4T pixels, and (c) and (d) are two
modified pixel structures that support negative and positive currents.

Fig. 5. (a) Global buffer and a weight buffer with down and right shift
capabilities. (b) 2-bit weights to represent ternary weights using two WBs.

in Fig. 4(c), where the row selector transistor (R) is moved
to another new building block, i.e., CA, explained in the fol-
lowing. It should be mentioned in standard PiP designs, there
is no dedicated memory to store the pixel values. Hence, to
ensure proper functionality regarding networks with a large
number of filters, e.g., 32, designers limit to the 4T-pixel or
similar but customized pixel designs. The reason is that in the
4T-pixel, the stored value in a capacitor remains unchanged
long enough after evaluation.
4) Storage Component: PiPSim has two different reconfig-

urable memory banks named Global Buffer (GB) and Weight
Buffer (WB), shown in Fig. 5(a). The GB is responsible for
storing all the weights concerning the quantization level. The
size of GB directly relates to the number of filters (K) in
the first layer, the spatial dimension of filters (R × S), and
the weights’ precision. The second memory element, WB,
stores only one filter; thus, its size is much smaller than
GB storage and is determined by the filter size, quantization,
and parallelism levels. In addition, WB is capable of shift-
ing right and down to implement stride behavior, depicted in
Fig. 5(a). The stride window can be defined by a designer
or set to one as the default value. Herein, the connections
between the weight buffer and pixels are hardwired, which

Fig. 6. Three different compute-add on (CAs) architectures regarding the
(a) binary, (b) ternary, and (c) quinary quantization levels.

provides an efficient convolution-in-pixel scheme. The desired
PiP accelerator reuses both input feature map (ifmap) and
weights data types to form input stationery and weight sta-
tionary dataflows, which reduces the overall data transfer
significantly. We need one-to-several WB components to real-
ize different quantization and parallelism levels. For instance,
to map ternary weights, ∈ {−1, 0, 1}, into the memory, we
need two WBs, each of which output functions as a control
signal for transistors in the CA. The WB storage is directly
connected to the pixel array and CA, shown in Fig. 5(b).
5) Compute Add-On: The CA is utilized to support the

computation, i.e., multiplication and addition, required for
event detection and object classification tasks. Every CA is
controlled by the pixel’s voltage (VPD), shown in Fig. 4, and
generates positive or negative current flow on the shared BL
regarding the value stored in the WB. Although PiPSim sup-
ports three possible quantization levels, i.e., binary [Fig. 6(a)],
ternary [Fig. 6(b)], and quinary [Fig. 6(c)], users can perform
a design space exploration by adopting other quantization
approaches and implementations. The blue line in this fig-
ure indicates the positive current, while the red line represents
the negative current, both of which are controlled by a multi-
plexer. In both (b) and (c), there is a transistor included for the
purpose of interrupting the current flow in order to produce
zero current (weight) that reduces power consumption as well.
Furthermore, in (c), a resistor memory (ReRAM) is utilized
to produce two distinct levels of output current. To this end,
PiPSim readily takes the circuit-level performance parameters
such as power and delay of new modified CAs in the Dicts.
block. from user.
6) Enabling Binary/Ternay/Quinary Weight Neural

Network: As previously mentioned, every pixel connects
to one-to-several WBs, consisting of different coefficient
matrices, e.g., α, β, and φ, responsible for generating appro-
priate weights summarized in tables in Fig. 7. For ternary
and quinary weights, the value α is specified to generate a
current flow in a pixel or not. If α is zero, it disables the
pixel, and other coefficients are unimportant. The current
direction, i.e., negative or positive [in Fig. 7(b) and (c)], and
the current magnitude [in Fig. 7(c)] are determined by β

and φ, respectively. With respect to the weights, the power
consumption, and all the functionalities are collected and held
in the Dict. blocks.
In addition to validating the functionality of the pixel and

CA, we analyzed the proposed pixel under various conditions.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 



ROOHI et al.: PiPSim: A BEHAVIOR-LEVEL MODELING TOOL FOR CNN PROCESSING-IN-PIXEL ACCELERATORS 145

Fig. 7. Illustration of (a) binary, (b) ternary, and (c) quinary weights, regarding the stored α, β, and φ.

Fig. 8. Relationship between the power consumption and three metrics, including (a) illuminance, (b) temperature, and (c) mismatch.

The outcomes of this analysis are presented in Fig. 8. In
Fig. 8(a), the power consumption of the pixel is compared to
the illuminance. The results indicate that, in general, ternary
weight consumes less power than other weight precisions. This
is because, in one-third of instances, there is no current in the
output. As the light intensity increases, all pixels consume
less power in some cases, such as 10 000 lux. This is due to
the increase in the reverse current of the photodiode, lead-
ing to the complete discharge of the pixel’s capacitor during
the evaluation phase. As a result, the pixel is unable to gen-
erate any current, regardless of weight values. In Fig. 8(b),
the power and temperature have a direct relationship, with
temperature varying from −40 ◦C to 140 ◦C. Finally, in
Fig. 8(c), the correctness of the pixel operations is demon-
strated by the results obtained under the presence of 15%
process variation in transistor sizing over 1000 simulation
runs.
7) Readout and ADC Components: To consider both effi-

ciency and accuracy, the analog-to-digital conversion (ADC)
and readout circuitry are customized and redesigned based on
the user’s parameters. One optimization here is that an ADC
is shared and utilized for several columns, which is deter-
mined by the filter’s width. For a filter size of R × S, the
number of required ADCs reduces to �W/S�, where W is
the width of the input feature map (ifmap). Herein, all the
MACs for the first layer are performed in the analog domain
and the ADC precision can be directly configured according
to the user’s needs. Due to the fact that most CNNs can be
quantized into 8-bit fixed-point and provide acceptable accu-
racy [35], PiPSim limits the precision of ADC to 8 bits, which
can vary between 1 and 8 bit. The performance models of
several popular ADC designs [36] have been integrated into
PiPSim. It should be noted that to implement the correct shift,
in addition to shifting WB, the order of connections among

columns should change. To do so, X switches are positioned
between every two columns, where X = W − 2. Another
optimization is achieved by changing the row-wise output fea-
ture map (ofmap) processing to column-wise, reducing the
required number of switch operations.
PiPSim takes into account the activation functions using the

readout peripheral circuitry. Specifically, two activation func-
tions are considered: rectified linear unit (ReLU) and Sign
functions. Depending on the designer’s preference, either of
these activation functions can be used. If the Sign activation
function is chosen, there is no need for ADC because it works
directly with digital signals. This can simplify the design pro-
cess and potentially reduce the system’s complexity at the
cost of accuracy loss. Conversely, if the designer decides to
use the ReLU activation function, some additional steps may
be required for implementation. In order to achieve higher
accuracy, the reference voltage of the ADC may need to be
adjusted. Alternatively, a 2n−1 bit ADC can be used instead of
a 2n bit ADC to reduce power consumption. A simple reconfig-
urable ADC with sign and ReLU activation function is shown
in Fig. 9. Careful consideration should be given to calculating
the power consumption of such devices. For instance, if the
user uses the sign function 80% of the time and the ReLU
function for the remaining 20%, the reported power should
adhere to the same usage.
8) Control Units: The control unit consists of several

components, including a row decoder, column and memory
controllers, and switches for ADCs. Row Decoder: This com-
ponent enables each row within the pixel array. The required
number of decoders increases with the increase in filter height
(R), whereas the I/O ports of the decoders are reduced.
Column Controller: In the implemented PiP architecture, each
column is connected to a separate VDD. The column con-
troller can turn each column ON/OFF individually, realizing a

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 



146 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

Fig. 9. Structure realizing ternary weight neural network that converts every input pixel value to a weighted current according to the stored weight that is
interpreted as the multiplication; thus, convolution is readily calculated by measuring the voltage across a sensing resistor and proper signaling of the switches.

power-efficient event-detection technique. Switches for ADCs:
With these switches, PiPSim can connect an n number of
columns together to perform convolution-in-pixel by sliding
weights over the input feature map (ifmap), where n is deter-
mined by the widths of the filters and the stride, as shown in
Fig. 9. The switches are controlled by the config_switch sig-
nal. Memory Controller: This unit controls the shift, read, and
write operations, which can vary depending on the memory
technology (e.g., DRAM) and the level of parallelism. Besides,
it enables row-wise parallel read/write operations correspond-
ing to the background update step in the event-detection
technique.

B. Behavior-Level Accuracy Model

To validate the correctness of modified neural networks and
ensure acceptable accuracy, we developed a Python script that
runs above the PyTorch library and allows users to apply their
modifications (PiPE(I)). This script can be run parallel with
PiPA, as shown in Fig. 2(b). The script takes three inputs: 1) a
pretrained model; 2) a target dataset; and 3) user-specified
parameters. The key parameters affecting accuracy are the
quantization level, filter size, channel pruning, pixel array size,
and stride. Since the PiPSim framework focuses on the first
layer, this script can operate in parallel, and it only adjusts the
first layer using the defined inputs, while the rest layers remain
unchanged. Regarding filters of the first layer, the quantization
level variable forces the script to quantize the weights properly.
Moreover, the script makes necessary adjustments according
to the ifmap. For example, if the user wants to use Channel
Pruning= 2, the script converts a colorful input image with
three channels (red, green, and blue) to grayscale (one chan-
nel) based on the unpruned channel; or/and if the input size
is incompatible with the defined pixel array size, the image
should be reshaped to the same height and width. For exam-
ple, as depicted in Fig. 10, targeting the CIFAR-10 dataset and
simple/shallow LeNet network, PiPE(I) mapped one 32 × 32
input to the pixel array and uploaded all six filters with the
size of 5 × 5. This module evaluates the desired workloads
by modifying LeNet’s first layer based on the obtained PiP
architecture and user inputs. While the original full-precision

Fig. 10. PiPE(I) module takes the pretrained model and user’s parameters,
modifies the network, and examines the accuracy.

network could not provide good accuracy due to its simple
architecture, after pruning channels and applying quantiza-
tion, our implementation demonstrated a small accuracy loss
occurred (∼ 7%).

C. Putting All the Components Together

After integrating all components to meet the user’s demands,
the generated PiP structure resembles the schematic shown
in Fig. 11, consisting of an n × m, e.g., 32 × 32, com-
pute focal plane array, row and column controllers, command
decoder, sensor timing Ctrl., global and weight buffers, and
switch/ADC circuitry. The CFP is designed to co-integrate
sensing and processing for low-power but high classification
accuracy applications. The output, i.e., 1st-layer of DNN, is
transmitted to an on-chip deep learning accelerator (DLA) to
accelerate further. Algorithm 1 illustrates the primary steps
used by PiPSim, where in addition to ensuring the design cor-
rectness, some optimization steps are considered to make it
more efficient.
1) Event-Detection Procedure: Since always-on edge

devices usually have limited resources, this mode is developed
to save power, specified by Box_Size and precision.1 Here,
all pixels are grouped by the size of box_size, and in each
box, only the central pixel is ON. It means by choosing a

1This is different from the ADC precision parameter.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 



ROOHI et al.: PiPSim: A BEHAVIOR-LEVEL MODELING TOOL FOR CNN PROCESSING-IN-PIXEL ACCELERATORS 147

Fig. 11. Possible produced PiP architecture after determining each component
by PiPA and PiPE(I) procedures.

larger box_size, and more power saving is achieved. Another
effective parameter is precision, which indicates how many
bits of the central pixel should compare with the previous
value of the pixel. PiPSim uses the first frame as a static
image for the background and performs the background
subtraction process to detect moving objects. There are
two more important parameters, namely, thresholdpixels and
timeτ , that are related to the maximum number of differences
in each row and the number of continuous switching to
Pixels_Enable mode, respectively. Herein, every row contain-
ing central pixels becomes active (line 5), and all the central
pixels’ values compare with their previous ones in parallel.
After comparison, the number of unequal pixels is stored in
num_changes (line 7). If this value is higher than the defined
thresholdpixels, this row is marked to turn ON in the pixels
enable mode. Whenever the system switches to this mode,
the value of the timer will be increased by one, which helps
the system to detect an added object in the background and
updates the previous values of central pixels with the new
ones (line 3).
2) Pixels-Enable Procedure: This procedure takes the

marked rows from the previous step. Its other input is the
power_mode parameter with a range of [1, box_size]. If the
power_mode is set to 1, only the specific pixels within the
turn_on_list are enabled, while by increasing the power_mode
value, more adjacent pixels are turned ON (lines 23 and 24).
By decreasing the power_mode value, power consumption
reduces at the cost of accuracy degradation.
3) Convolution-in-Pixel: The obtained PiP design using

PiPA performs 1st-layer’s convolution operations in the analog
domain instantly after capturing an image that increases MACs
throughput and decreases the ADC overheads. It implements
the input stationary dataflow to minimize the reuse distance
of ifmaps, maximizing the convolutional and ifmap data reuse.
All capacitors within the n× n pixel array are written regard-
ing the light intensity of a target image. The stored values
remain almost constant for a specific time interval, which is
determined by the capacitance of the capacitors. Moreover,
the WB supports the weight stationary dataflow for specific

Algorithm 1 Three Primary Procedures Deployed in PiPA and
Used by PiPE(II) Modules
1: procedure EVENT-DETECTION
2: if time � timeτ : � Merge steady objects with the

background.
3: update (background)
4: for i = 	 box_size2 
 + 1 to H with step= box_size
5: activate (rowi)
6: pixel_values ← parallel_read (columni,j)

� j ∈ {	 box_size2 
 + 1, . . . ,W}, with step= box_size
7: num_changes ← parallel_comp (precision,

pixel_values, old_values)
8: if num_changes � thresholdpixels:
9: turn_on_list.push (i) � i is row index.
10: if (length (turn_on_list) !=0)
11: time += 1 � Use it to update the background.
12: enable PIXELS_ENABLE
13: else:
14: time = 0
15: end procedure
16:
17: procedure PIXELS_ENABLE
18: if (power_mode == box_size)
19: Enable_pixel (All)
20: else
21: while (length (turn_on_list) !=0)
22: row = turn_on_list.pop
23: margin = 	 box_size2 
 + power_mode − 1
24: Enable_pixel (row − margin to row + margin)
25: enable CIP
26: end procedure
27:
28: procedure CONVOLUTION-IN-PIXEL (CIP)
29: parallel_for k ← 1 to K � number of parallelism
30: for s ← 0 to S step= stride � left to right
31: config_switch (s)
32: for r ← 0 to R step= stride � top to bottom
33: for h ← 	R/2
 + 1 + r to (H − 	R/2
) with step= R
34: Active_Row (h − 	R/2
 to h − 	R/2
)
35: Calculate_CONV ()
36: Shift_Down (WB↓, stride)
37: Shift_Right (WB→, stride)
38: Load_New_Weight (GB ⇒ WB)
39: end procedure

timeframes. The loop with variable K, which denotes the num-
ber of filters, is placed in the outermost loop (line 29). It
activates R rows (line 34) and performs convolutions for all
selected columns. Then shifts the same filter down (line 36)
and continues the previous steps. After considering all possible
movements based on the stride window, weights are shifted to
the right (line 37), and so on. Since the connections between
WB’s blocks and pixels are hardwired, different weights of a
R×S filter are unicast to a group of pixels, while the same filter
is broadcast to other groups of pixels in different columns. The
spatial dimensions of a filter are represented by R and S, height
and width, respectively. Thus, PiPSim can compute R× S× n
MAC operations in only one clock cycle, where n = 	W/S

and W is the input’s width. However, applying the same fil-
ter to other R input rows needs an extra cycle. Therefore, in
the worst-case scenario and to maximize weight data reuse, H
cycles are required before shifting the filter’s values, where H
is the input’s height.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 



148 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

Fig. 12. Example of the proposed event-detection, and convolution-in-pixel methods with 3 × 3 filter size and 9 × 9 pixel array as inputs. Due to the
lower number of changes in the last three rows than the threshold, these part is disabled, which reduces the number of convolutions and consequently, data
communication. Twelve cycles are required to compute 28 MAC operations and generate the 7 × 7 of map.

Fig. 13. Detecting object timeframes supported in the PiPSim platform. (a) −→ (b) Detects a car and a person leveraging different precision (1–4 bits), (a) −→
(c) calculates differences in the images based on different box sizes, (c) −→ (d) detects light variation as a new object, and (d) −→(e) detects background
updated and the new car detected.

Fig. 12 depicts a simple example of the procedures within
Algorithm 1. In 1 one 3 × 3 filter is loaded to the WB, and
the image is captured by a 9 × 9 pixel array. In the Event-
Detection step 2 , only the central pixels are enabled and
chosen for comparison. Once the differences between the cur-
rent frame and the previous (stored) one are greater than the
defined threshold, based on the user’s inputs, all the rows con-
taining the pixels (the first six rows) are turned ON, as shown
in Fig. 12, 3 . Thus, the convolution-in-pixel operations are
only performed on these rows. Several steps of convolution-
in-pixel using stored weights are shown in steps 4 , and 5 .
Each block of WB is hardwired to multiple pixels, which offers
highly parallel convolution-in-pixel (CiP). In Cycle 1, three
output feature maps (ofmaps) are produced. In the next cycle,
three other ofmaps are generated without any weights update.
To implement stride, all the weights are shifted down one bit in
Cycle 3 4 . After four cycles, three ofmap’s columns are cal-
culated. To slide the weights over the input, WB shifts weights
to the right (Cycle 5) and continues this process to compute
all the ofmap’s columns 5 . To verify Algorithm 1, a Python
script is written and executed under the conditions specified

in Fig. 13, including light intensity and event occurrence. For
example, in Fig. 13(a) and (b), the system finds differences
between two consecutive frames, ti and ti+n, and detects an
event, a car, and a person, with varied resolutions 1–4 bits.
The results indicate that the algorithm works correctly without
any issues. Additionally, PiPSim can calculate the total power
of the system across various parameters for the algorithm, as
demonstrated in the figure.

IV. RESULTS

A. Validation Results

To validate the PiPSim model accuracy for reporting power
and latency parameters, we replicated the whole architecture
with peripherals in Synopsys HSPICE simulator on a computer
having system configuration 128-GB RAM with AMD EPYC
7302P 16-Core Processor in SUSE Linux operating system.
The state-of-the-art PiP designs are not suitable for valida-
tion as they need to provide detailed simulation parameters
and configurations. Therefore, we implemented PiPA with the
box size of 3 × 3 in PiPSim and SPICE at the 45-nm PTM

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 



ROOHI et al.: PiPSim: A BEHAVIOR-LEVEL MODELING TOOL FOR CNN PROCESSING-IN-PIXEL ACCELERATORS 149

TABLE II
VALIDATION RESULTS FOR PIP OPERATIONS AT 45 NM

TABLE III
SIMULATION TIME AND MEMORY UTILIZATION OF

PIPE(II) VERSUS SPICE

technology library [37] with the nominal VDD = 1 V. The
breakdown of results into sense and compute components are
listed in Table II. We observe that all the error rates for latency
and power consumption are lower than 2.4% compared with
the SPICE results except for the sensing power with ∼6.6%.
Notably, the delay for components is measured as FO4 (Fan-
out of 4), where each component drives at most four similar
elements. Therefore, it is the user’s responsibility to enter
a reasonable delay for additional parts. On average, PiPSim
offers a model accuracy loss of 2.7%. SPICE circuit simula-
tors provide better accuracy with higher flexibility, whereas
PiPSim limits to validation of PiP-based designs. However, it
offers a user-friendly platform with higher speed.
We further implement the whole architecture in SPICE and

report the simulation time and memory utilization of PiPSim
compared with SPICE in Table III. To investigate the impact
of PiPA array size (i.e., 32 × 32, 64 × 64, 128 × 128, and
256× 256) on the overall simulation time, we ran the simula-
tion multiple times with a box size of 3×3. After running the
application, results, including peak memory (total memory)
use and total CPU time, are listed. On the other hand, the
PiPE(II) procedure obtains results by estimating performance
metrics rapidly using analytical models or/and predefined val-
ues provided by the user. HSPICE solves various equations,
whereas, PiPSim uses precalculated components’ features to
compute the performance metrics, such as power consumption.
We observe that PiPSim offers, on average 25 000× speed-up
compared with SPICE. We can see that the larger the array
size, the more speed-ups are achievable compared with SPICE.
As for memory utilization, PiPSim requires, on average 158×
lower memory to store and generate the results.

B. Case Studies

As a proof of concept of PiPSim, we consider the
following parameters as a given configuration file, 4-D
filter size = 16 × 1 × 3 × 3, Stride= 1, and
Channel Pruning= 2, where only the green channel
is considered, Quantization Level= Quinary, Memory
Technology= MRAM, Pixel Array Size= 32 × 32,
Pixel Type= 2T, ADC Precision= varies between 4

TABLE IV
PERFORMANCE COMPARISON OF VARIOUS SENSOR UNITS

TABLE V
ACCURACY (%) COMPARISON ON CBCL FACE, SVHN, AND CIFAR-10

and 8, and Parallelism Level= 3, which means three
3 × 3 filters are read, simultaneously.
Table IV compares the structural and performance charac-

teristics of recent processing-in-sensor (PiS)/processing-near-
sensor (PnS)/PiP designs. While the target application and
purpose behind developing each design is different as tab-
ulated, for an impartial comparison, the power consumption
of PIS units executing the similar task of processing the 1st-
layer of CNN is estimated: 1) our obtained design (from now
on Ours) and the presented accelerators in [4], [10], and [15]
are the only designs supporting an entire-array computation
scheme; 2) ours and the designs in [10], [11], and [15] have
integrated memory components, where our design is the only
design exploiting the NVMs for normally off and instant com-
puting; 3) ours achieves a frame rate of 3000 and stands as
the second fastest design supporting 1st-layer CNN computa-
tion after the design in [4] (with 3840 fps); 4) ours reduces
the power consumption by 3 orders of magnitude compared
to the design in [4] (i.e., the fastest 1st-layer CNN acceler-
ator) and stands as one of the most power-efficient designs;
and 5) the 1st-layer BNN accelerator in [15] shows the highest
efficiency, where ours achieves 4.12 TOp/s/W. The comparison
of classification accuracy between Ours and the state-of-the-
art is summarized in Table V, where except the floating point
(FP), all the designs quantized the 1st-layer convolution. The
results show that our architecture provides higher accuracy
than binary and ternary weight neural networks based on 1T
and 2T-pixels. This improvement is because of five values real-
ized by the proposed PiP design. It is worth noting that ours
shows an accuracy loss of less than 1% on average compared
to the FP baseline. We initially implemented and simulated
our design in SPICE at the 45-nm PTM technology library.
Although we did not have access to all technical configurations
of the counterpart implementations, for ease of understanding,
we reimplemented Ours in 180-nm technology and reported
the numbers in Table IV.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 



150 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 1, JANUARY 2024

V. CONCLUSION

In this article, we presented the first behavior-level sim-
ulation platform for the PiP system, titled PiPSim. This
hierarchical structure provides flexible interfaces to customize
the design at multiple levels, from device to system. In addi-
tion, a behavior-level accuracy model is proposed to estimate
the accuracy of the implemented PiP architecture, which is
integrated into PiPSim. PiPSim also offers several optimization
steps to further accelerate the convolution step within a pixel
array leveraging several procedures. The experimental results
show that PiPSim reaches more than 25 000× speed-up with
less than 2.5% error rate on average compared with SPICE.
In the future, PiPSim will be extended to a closed-loop
design exploration tool to provide the tradeoff between differ-
ent designs and their estimated performance and generate the
most optimized architecture concerning efficiency, throughput,
accuracy, and hardware constraints.

REFERENCES

[1] H. Johnson. “Digging up dark data: What puts IBM at the forefront of
insight economy.” 2015. [Online]. Available: https://siliconangle.com/
2015/10/30/ibm-is-at-forefront-of-insight-economy-ibminsight

[2] K.-T. Tang et al., “Considerations of integrating computing-in-memory
and processing-in-sensor into convolutional neural network accelera-
tors for low-power edge devices,” in Proc. Symp. VLSI Technol., 2019,
pp. T166–T167.

[3] A. El Gamal, D. X. Yang, and B. A. Fowler, “Pixel-level processing:
Why, what, and how?” in Proc. Sens., Cameras, Appl. Digit. Photogr.,
1999, pp. 2–13.

[4] R. Song, K. Huang, Z. Wang, and H. Shen, “A reconfigurable
convolution-in-pixel CMOS image sensor architecture,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 10, pp. 7212–7225, Oct. 2022.

[5] G. Datta et al., “A processing-in-pixel-in-memory paradigm for resource-
constrained TinyML applications,” Sci. Rep., vol. 12, no. 1, 2022,
Art. no. 14396.

[6] G. Datta et al., “P2M-DeTrack: Processing-in-pixel-in-memory for
energy-efficient and real-time multi-object detection and tracking,” in
Proc. IFIP/IEEE 30th Int. Conf. Very Large Scale Integr. (VLSI-SoC),
2022, pp. 1–6.

[7] T.-H. Hsu et al., “AI edge devices using computing-in-memory and
processing-in-sensor: From system to device,” in Proc. IEEE Int.
Electron Devices Meeting IEDM, 2019, pp. 22.5.1–22.5.4.

[8] T. Yamazaki et al., “4.9 A 1ms high-speed vision chip with 3D-stacked
140GOPS column-parallel PEs for spatio-temporal image processing,” in
Proc. IEEE Int. Solid-State Circuits Conf. ISSCC, 2017, pp. 82–83.

[9] R. LiKamWa, Y. Hou, Y. Gao, M. Polansky, and L. Zhong, “RedEye:
Analog ConvNet image sensor architecture for continuous mobile
vision,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
ISCA, 2016, pp. 255–266.

[10] H. Xu et al., “MACSen: A processing-in-sensor architecture integrat-
ing MAC operations into image sensor for ultra-low-power BNN-based
intelligent visual perception,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 68, no. 2, pp. 627–631, Feb. 2021.

[11] S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek, “A
100,000 fps vision sensor with embedded 535GOPS/W 256×256 SIMD
processor array,” in Proc. Symp. VLSI Circuits, 2013, pp. C182–C183.

[12] T.-H. Hsu et al., “A 0.5-V real-time computational CMOS image sensor
with programmable kernel for feature extraction,” IEEE J. Solid-State
Circuits, vol. 56, no. 5, pp. 1588–1596, May 2021.

[13] L. Bose, J. Chen, S. J. Carey, P. Dudek, and W. Mayol-Cuevas, “A
camera that CNNs: Towards embedded neural networks on pixel pro-
cessor arrays,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 1335–1344.

[14] S. Angizi, M. Morsali, S. Tabrizchi, and A. Roohi, “A near-
sensor processing accelerator for approximate local binary pattern
networks,” IEEE Trans. Emerg. Topics Comput., early access, Jun. 16,
2023, doi: 10.1109/TETC.2023.3285493.

[15] H. Xu et al., “Senputing: An ultra-low-power always-on vision percep-
tion chip featuring the deep fusion of sensing and computing,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 1, pp. 232–243, Jan. 022.

[16] S. Tabrizchi, R. Gaire, S. Angizi, and A. Roohi, “SenTer: A recon-
figurable processing-in-sensor architecture enabling efficient ternary
MLP,” in Proc. Great Lakes Symp. VLSI, 2023, pp. 497–502.

[17] S. Angizi, S. Tabrizchi, D. Z. Pan, and A. Roohi, “PISA: A non-
volatile processing-in-sensor accelerator for imaging systems,” IEEE
Trans. Emerg. Topics Comput., early access, Jul. 11, 2023,
doi: 10.1109/TETC.2023.3292251.

[18] M. Abedin, A. Roohi, M. Liehr, N. Cady, and S. Angizi, “MR-PIPA: An
integrated multilevel RRAM (HfOx)-based processing-in-pixel acceler-
ator,” IEEE J. Explor. Solid-State Computat. Devices Circuits, vol. 8,
no. 2, pp. 59–67, Dec. 2022.

[19] S. Tabrizchi, A. Nezhadi, S. Angizi, and A. Roohi, “AppCiP: Energy-
efficient approximate convolution-in-pixel scheme for neural network
acceleration,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 13, no. 1,
pp. 225–236, Mar. 2023.

[20] S. Tabrizchi, S. Angizi, and A. Roohi, “TizBin: A low-power image
sensor with event and object detection using efficient processing-in-pixel
schemes,” in Proc. IEEE 40th Int. Conf. Comput. Design ICCD, 2022,
pp. 770–777.

[21] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, Cacti 6.0:
A Tool to Model Large Caches, HP Lab., Palo Alto, CA, USA,
Jan. 2009.

[22] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-
level performance, energy, and area model for emerging nonvolatile
memory,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 31, no. 7, pp. 994–1007, Jul. 2012.

[23] M. Poremba, T. Zhang, and Y. Xie, “NVMain 2.0: A user-friendly
memory simulator to model (non-)volatile memory systems,” IEEE
Comput. Archit. Lett., vol. 14, no. 2, pp. 140–143, Jul.–Dec. 2015.

[24] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensi-
ble DRAM simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1,
pp. 45–49, Jan.–Jun. 2016.

[25] L. Xia et al., “MNSIM: Simulation platform for memristor-based neuro-
morphic computing system,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 5, pp. 1009–1022, May 2018.

[26] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro model
for benchmarking neuro-inspired architectures in online learning,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 12,
pp. 3067–3080, Dec. 2018.

[27] M. J. Rasch et al., “A flexible and fast PyTorch toolkit for sim-
ulating training and inference on analog crossbar arrays,” 2021,
arXiv:2104.02184.

[28] D. Gao, D. Reis, X. S. Hu, and C. Zhuo, “Eva-CiM: A system-
level performance and energy evaluation framework for computing-
in-memory architectures,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 12, pp. 5011–5024, Dec. 2020.

[29] N. Binkert et al., “The Gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available: https://
doi.org/10.1145/2024716.2024718

[30] S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li, “PIMSim: A
flexible and detailed processing-in-memory simulator,” IEEE Comput.
Archit. Lett., vol. 18, no. 1, pp. 6–9, Jan.–Jun. 2019.

[31] B. E. Forlin, P. Santos, A. Becker, M. Alves, and L. Carro, “Sim2PIM:
A complete simulation framework for processing-in-memory,” J. Syst.
Archit., vol. 128, Apr. 2022, Art. no. 102528.

[32] A. Banagozar et al., “CIM-SIM: Computation in memory SIMulator,” in
Proc. SCOPES, May 2019, pp. 1–4.

[33] X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 1, pp. 1–22, Jan. 2016.

[34] “DRAM power model.” 2010. [Online]. Available: https://www.rambus.
com/energy/

[35] J. Qiu et al., “Going deeper with embedded FPGA platform for
convolutional neural network,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2016, pp. 26–35.

[36] B. Murmann. “ADC performance survey 1997–2016.” 2018. [Online].
Available: http://web.stanford.edu/ murmann/adcsurvey.html

[37] W. Zhao and Y. Cao, “Predictive technology model for NANO-CMOS
design exploration,” ACM J. Emerg. Technol. Comput. Syst., vol. 3, no. 1,
pp. 1–17, 2007.

[38] S. Park, J. Cho, K. Lee, and E. Yoon, “7.2 243.3pJ/pixel bio-inspired
time-stamp-based 2D optic flow sensor for artificial compound eyes,” in
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers ISSCC, 2014,
pp. 126–127.

[39] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or −1,” 2016, arXiv:1602.02830.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 16,2024 at 19:26:57 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TETC.2023.3285493
http://dx.doi.org/10.1109/TETC.2023.3292251

