
SIAM J. APPLIED DYNAMICAL SYSTEMS © 2024 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 982–1016
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Abstract. Quadratization of polynomial and nonpolynomial systems of ordinary differential equations (ODEs)
is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reac-
tion modeling, and mathematical analysis. A quadratization reveals new variables and structures
of a model, which may be easier to analyze, simulate, and control, and provides a convenient pa-
rametrization for learning. This paper presents novel theory, algorithms, and software capabilities
for quadratization of nonautonomous ODEs. We provide existence results, depending on the reg-
ularity of the input function, for cases when a quadratic-bilinear system can be obtained through
quadratization. We further develop existence results and an algorithm that generalizes the process
of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the
dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is
semidiscretized PDEs, where the nonlinear terms remain symbolically identical when the discretiza-
tion size increases. As an important aspect for practical adoption of this research, we extended
the capabilities of the QBee software towards both nonautonomous systems of ODEs and ODEs
with arbitrary dimension. We present several examples of ODEs that were previously reported in
the literature, and where our new algorithms find quadratized ODE systems with lower dimension
than the previously reported lifting transformations. We further highlight an important area of
quadratization: reduced-order model learning. This area can benefit significantly from working in
the optimal lifting variables, where quadratic models provide a direct parametrization of the model
that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights
these advantages.
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transformation
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1. Introduction. Evolutionary processes in engineering and science are often modeled with
nonlinear nonautonomous ordinary differential equations (ODEs) that describe the time evolu-
tion of the states of the system, i.e., the physically necessary and relevant variables. However,
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 983

these models are not unique: the same evolutionary process can be modeled with different
variables, which can have a tremendous impact on computational modeling and analysis. This
idea of variable transformation (referred to as lifting when extra variables are added) to pro-
mote model structure is found across different communities, with literature spanning half a
century. We first review general variable transformations and then focus on the appealing
quadratic form.

In fluid dynamics, variable transformations have long been recognized as providing useful
alternative representations. While the Euler and Navier–Stokes equations are most commonly
derived in conservative variables, where each state is a conserved quantity (mass, momentum,
energy), symmetric variables have been exploited to guarantee stable models [34]. Addition-
ally, recent work in [27] shows that the fluid and plasma equations can be reformulated via
an antisymmetric variable transformation to retain robust conservation properties in numeri-
cal simulations. Stability-preserving inner products for projection-based reduced-order models
(ROMs) hint at variable transformations as a proper choice to increase stability for nonlinear
fluid models; see [38, 55]. As another classic example, the well-known Cole–Hopf transfor-
mation turns the nonlinear Burgers’ partial differential equation (PDE) into a linear PDE
[20, 32]. In the dynamical systems field, the Koopman operator is a linear infinite-dimensional
operator that describes the dynamics of observables of nonlinear systems. Dynamic mode
decomposition [57, 60] approximates the spectrum of the Koopman operator, and the choice
of observables has a significant impact on the quality of the learned model, which led to
the extended dynamic mode decomposition algorithm [62, 50]. For control design, the idea of
transforming a general nonlinear system into a system with more structure is also common
practice: the concept of feedback linearization transforms a general nonlinear system into a
structured linear model [37, 40]. This is done via a nonlinear state transformation, where the
transformed state might be augmented, i.e., have increased dimension relative to the original
state. The lifting transformations known in feedback linearization are specific to the desired
target model form. A change of variables can also ensure that physical constraints are more
easily met in a simulation; see [49, 28]. Bringing nonlinear systems into canonical and abstract
forms can then improve analysis, as seen in [45, 12]. The authors in [58] showed that all ODE
systems with (nested) elementary functions can be recast in a special polynomial system form,
which is then faster to solve numerically.

Quadratic model structure, as a special case, has seen broad interest due to the ease of
working with quadratic models. In the context of optimization, McCormick [46] is credited
with first introducing variable substitutions to achieve quadratic structure so that nonconvex
optimization problems can be recast as convex problems in the new variables. In fluid me-
chanics, the quadratic model structure of the specific volume variable representation has been
exploited in [6] to allow for model stabilization. To analyze equilibrium branches of geometri-
cally nonlinear finite element models, the authors of [25] recast the model into a quadratic form,
for which the Jacobian and a specific Taylor series can be easily obtained. They then use the
Asymptotic Numerical Method to find the equilibrium branches. In the area of analog comput-
ing with chemical reaction networks, quadratic forms correspond to the notion of elementary
chemical reactions. Transforming an arbitrary polynomial ODE system into a quadratic one
can be used to establish the Turing completeness of elementary chemical reactions [11, 22, 30].
Lifted models in quadratic and quadratic-bilinear (QB) form have seen great interest in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

6/
24

 to
 7

0.
95

.2
13

.1
23

 b
y 

B
or

is
 K

ra
m

er
 (b

m
kr

am
er

@
uc

sd
.e

du
). 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



984 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

systems and control community in the past decade, as the QB structure is appealing for in-
trusive model reduction [24, 8, 9, 42, 43]. Those methods project the quadratic operators of a
high-dimensional lifted model onto a reduced space to obtain a quadratic reduced model. The
quadratic model structure eliminates the need for additional hyperreduction/interpolation to
reduce the expense of evaluating the nonlinear term [19, 5, 7, 15, 51], where in some cases the
number of interpolation points required for accuracy eliminates computational gains [10, 33].
Moreover, the quadratic model structure has fewer degrees of freedom in the ROM than a
cubic or high-order polynomial model, making quadratic models the most desired lifted form.
The Lift & Learn method [54, 53] and related work [61, 23, 36, 47] leverage lifting transforma-
tions to learn low-order polynomial ROMs of complex nonlinear systems, such as combustion
dynamics, from lifted data. For quadratic and cubic model structures, one can equip these
learned ROMs with stability guarantees; see [41, 59].

With such great appeal and interest in quadratic and polynomial dynamical system struc-
ture, it is natural to ask: Which systems can be brought into polynomial (via polynomializa-
tion) and further into quadratic (via quadratization) form? Which algorithms and methods
exist to perform such transformations? The theoretical results that any system written us-
ing (nested) elementary functions can be polynomialized and every polynomial system can be
quadratized have been discovered and established in different communities and contexts; see
[4, 44, 39, 16, 24, 17, 18]. The proofs of these theorems are constructive and can be turned
into algorithms. However, a straightforward approach would require introducing an excessively
large number of variables and thus making the resulting dynamical system hard to use and/or
analyze. The resulting quadratic systems can be pruned using constrained programming tech-
niques, and designed algorithms and methods are presented for polynomialization in [31] and
quadratization in [30]. Both algorithms are implemented in the Biocham software [2]. We
take a different approach in [13] where the quadratization problem for a polynomial system is
framed as a tree exploration. The quadratization is obtained by building up the tree structure
rather than pruning it as in [30]. Attractive features of the resulting algorithm QBee [14]
include optimality guarantees for the dimension of the lifted system and good performance in
practice [13, Table 3]. Although the previous version of QBee performed well on a selection of
benchmark models from synthetic biology and some academic examples (see [13]), we found its
applicability to engineering problems quite limited. In particular, dynamical systems models of
engineering systems share common features that the previous version of QBee cannot handle:

1. Engineering models are often driven by time-dependent inputs or controls, i.e., they
are nonautonomous. Currently, there is no suitable theory for quadratization of such
systems, and the previous version of QBee could not handle this.

2. Semidiscretization of PDEs produces a system of ODEs with n unknowns in the dis-
cretization. For such models, it would be computationally advantageous to find a
uniform quadratization scheme valid for any n.

3. Many models are not polynomial (e.g., involve fractions or exponential functions), so
a polynomialization procedure as in Biocham [31] is missing in QBee.

There are four main contributions of this paper that address these challenges. First, we provide
new theorems (with constructive proofs) of existence of quadratizations for different classes
of models. These theorems lead us to develop practical algorithms. Second, we extend the
algorithms and implementation in the previous version of QBee with extra functionality to
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 985

(i) optimally quadratize polynomial systems with time-dependent inputs, (ii) find dimension-
agnostic quadratizations for systems with variable dimension (e.g., semidiscretized PDEs), and
(iii) polynomialize and then quadratize nonpolynomial terms. This functionality is available in
QBee version 0.8 [14]. Third, we demonstrate how this new functionality addresses the three
challenges above on models from chemical engineering, rocket combustion, and space weather.
These novel quadratizations from QBee outperform reported results in the literature, as we
show in the corresponding sections. Fourth, we present a numerical study that shows how
these lifting transformations can create better coordinate systems to learn ROMs from data,
a key use case of quadratization.

This paper is organized as follows. Section 2 provides background on quadratization of
autonomous polynomial ODEs of fixed dimension. Section 3 presents new existence results
and constructive proofs for quadratization of nonautonomous polynomial models. Section 4
then presents new results for uniform quadratizations of families of ODEs arising from semidis-
cretization of PDEs. Section 5 outlines the QBee algorithm and its new capabilities. In sec-
tion 6, we showcase the results of our algorithm on models from chemical engineering and rocket
combustion. Section 7 demonstrates the advantages of quadratization for learning ROMs on
a problem from solar wind velocity prediction. Finally, section 8 offers conclusions and an
outlook towards future work.

2. Notation and background. We start in subsection 2.1 with defining notation and then
review known results about the existence of quadratizations in subsection 2.2. These results
also provide an upper bound for the order of quadratization, i.e., the maximum required
number of variables needed for achieving a lifted quadratic model.

2.1. Notation and definitions. We denote by \bfx = [x1, x2, . . . , xN ]
\top an N -dimensional col-

umn vector (in either RN or CN ), which generically represents the state of a dynamical system
(we use different notation for the application problems where states have physical meaning).
We denote with \.\bfx its derivative (usually with respect to time, t, where t > 0). Moreover, we
denote by \bfu = \bfu (t)\in Rr a generic input vector. We often omit the explicit dependence of t for
ease of notation. The symbol \odot denotes the componentwise product of vectors (the Hadamard
product), and \bfx \ell denotes the \ell th power of \bfx , also understood componentwise. Moreover, \otimes 
denotes the Kronecker product of vectors, e.g., [x1 x2]\top \otimes [y1 y2]

\top = [x1y1 x1y2 x2y1 x2y2]
\top ,

and \otimes \prime is the compact Kronecker product, which removes redundant terms (only one term here,
x1x2 = x2x1) in the standard Kronecker product, e.g., [x1 x2]\top \otimes \prime [y1 y2]

\top = [x1y1 x1y2 x2y2]
\top .

For a matrix \bfA \in RN\times N , its (i, j)th entry is Aij . The set of nonnegative integers is denoted
by Z\geqslant 0.

A product of positive-integer powers of variables is referred to as monomial (e.g., x5y)
and the total degree of a monomial is the sum of the powers of the variables appearing in it.
A polynomial is a sum of monomials, e.g., x + y2. By C[\bfx ] and C[\bfx ,\bfw ] we denote the sets
of all polynomials with (possibly complex) coefficients in \bfx and \bfx ,\bfw , respectively. The sets
C[\bfx ,\bfw ,\bfu ] and C[\bfx ,\bfw ,\bfu , \.\bfu ] are sets of polynomials defined similarly. Let p(\bfx ) be a polynomial;
then \mathrm{d}\mathrm{e}\mathrm{g}xi

p(\bfx ) denotes the degree of p with respect to xi, that is, the maximal power of xi
appearing in p(\bfx ). Similarly, \mathrm{d}\mathrm{e}\mathrm{g} p(\bfx ) denotes the total degree of p, that is, the maximum
of the total degrees of the monomials appearing in p(\bfx ). For example, \mathrm{d}\mathrm{e}\mathrm{g}x(x

5y) = 5 and
\mathrm{d}\mathrm{e}\mathrm{g}(x5y) = 6. The degree of a vector or a matrix is defined as the maximum of the degrees of
its entries.
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986 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

2.2. Quadratization of autonomous polynomial ODEs. We begin with a definition.

Definition 2.1 (quadratization). Consider a polynomial system of ODEs

\.\bfx = \bfp (\bfx ),(2.1)

where \bfx = \bfx (t) = [x1(t), . . . , xN (t)]
\top and \bfp (\bfx ) = [p1(\bfx ), . . . , pN (\bfx )]

\top with p1, . . . , pN \in C[\bfx ].
Then an \ell -dimensional vector of new variables

\bfw =\bfw (\bfx ) \in C[\bfx ]\ell (2.2)

is said to be a quadratization of (2.1) if there exist vectors \bfq 1(\bfx ,\bfw ) and \bfq 2(\bfx ,\bfw ) of dimensions
N and \ell , respectively, with the entries being polynomials of total degree at most two such that

\.\bfx = \bfq 1(\bfx ,\bfw ) and \.\bfw = \bfq 2(\bfx ,\bfw )(2.3)

for every \bfx solving (2.1). The dimension \ell of the vector \bfw is called the order of quadratization.
A quadratization of the smallest possible order is called an optimal quadratization.

Example 2.2. Consider a two-dimensional system

\.x1 = (x1 + 1)3 + x2, \.x2 = x1 + x2.(2.4)

We claim that a new variable w(\bfx ) = (x1 + 1)2 is a (polynomial) quadratization. Indeed, for
the original states x1 and x2 we have

\.x1 = (x1 + 1)w+ x2, \.x2 = x1 + x2,

so we take \bfq 1(\bfx ,w) = [(x1 + 1)w+ x2, x1 + x2]
\top . Furthermore,

\.w= 2(x1 + 1) \.x1 = 2(x1 + 1)4 + 2(x1 + 1)x2 = 2w2 + 2(x1 + 1)x2,

so q2(\bfx ,w) = 2w2 + 2(x1 + 1)x2. Since this quadratization is of order one, it is optimal.

2.2.1. Monomial quadratization. This section considers the case where the new variables
are restricted to be of monomial form. Those are useful in applications in synthetic biology [30]
and are comparatively easier to find than polynomial terms because the search space is discrete
and the problem of finding an optimal quadratization can be phrased as a combinatorial
optimization problem.

Definition 2.3 (monomial quadratization). If all the polynomials w1(\bfx ), . . . ,w\ell (\bfx ) are mono-
mials, the quadratization is called a monomial quadratization. If a monomial quadratization of
a system has the smallest possible order among all the monomial quadratizations of the system,
it is called an optimal monomial quadratization.

Example 2.4 (continuation of Example 2.2). The quadratization w(\bfx ) = (x1 + 1)2 in-
troduced in Example 2.2 is not monomial. We next show that w(\bfx ) = x21 is a monomial
quadratization for the same system (2.4). For x1 and x2, we have

\.x1 = x31 + 3x21 + 3x1 + 1+ x2 = x1w+ 3w+ 3x1 + 1+ x2, \.x2 = x1 + x2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 987

so \bfq 1(\bfx ,w) = [x1w+ 3w+ 3x1 + 1+ x2, x1 + x2]
\top . Furthermore,

\.w= 2(x1 + 1) \.x1 = 2x41 + 8x31 + 12x21 + 8x1 + 2 + (x1 + 1)x2

= 2w2 + 8x1w + 12w + 8x1 + 2 + (x1 + 1)x2,

so q2(\bfx ,w) = 2w2 + 8x1w + 12w + 8x1 + 2 + (x1 + 1)x2. Therefore, w(\bfx ) = x21 is an optimal
monomial quadratization of (2.4). Here, both the monomial quadratization and the polynomial
quadratization (cf. Examples 2.6 and 2.7) are optimal, yet the dynamics of the auxiliary state
w are a bit more involved in the monomial case.

The next theorem ensures that systems of polynomial ODEs are always guaranteed to have
an exact quadratic representation in a different, possibly augmented, set of variables.

Theorem 2.5 ([16, Theorem 1]). For every ODE system of the form (2.1), there exists
a monomial quadratization. Furthermore, if di := \mathrm{d}\mathrm{e}\mathrm{g}xi

\bfp (\bfx ), then the order of an optimal
monomial quadratization does not exceed \Pi Ni=1(di + 1).

Monomial quadratizations have been actively studied in the literature. We summarize a
few known results about the optimality, e.g., minimal order, of such quadratizations:

1. In [30, Theorem 2] it is shown that finding an optimal monomial quadratization is an
NP-hard problem even if the polynomials are represented using dense encoding (that
is, by all the coefficients up to certain degree).

2. One natural approach (used, e.g., in [30]) to finding an optimal monomial quadra-
tization is to take an explicit but large monomial quadratization constructed in the
standard proof of Theorem 2.5 and search for the smallest subset of it which is a
quadratization itself. However, this approach can lead to a nonoptimal quadratization,
as illustrated in [13, Example 3].

3. If one allows the new variables to be Laurent monomials (that is, have negative integer
degrees), one can obtain a better upper bound for the number of new variables: it is
always sufficient to take as many new variables as there are monomials on the right-
hand side of the system [13, Proposition 1]. However, we are not aware of any algorithm
for finding an optimal Laurent monomial quadratization.

2.2.2. Polynomial quadratization. Despite the appeal of monomial quadratizations in
certain communities, it is natural to ask whether one may be able to obtain a substantially
more concise quadratization if arbitrary polynomials are allowed for the new variables (as in
Definition 2.1). Although, in the examples above, allowing arbitrary polynomials did not result
in a lower-order quadratization, the following example from [3, section 4] shows that this is not
always the case, and the difference between optimal monomial and arbitrary quadratizations
may be significant.

Example 2.6 (lower-order quadratization using arbitrary polynomials). Consider the scalar
ODE

\.x= (x+ 1)k,

where k is a positive integer. A simple combinatorial argument [3, section 4] shows that
at least

\surd 
8k+9 - 5

2 monomial (that is, powers of x) variables are required for a monomial

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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988 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

quadratization. Since k can be arbitrarily large, this is concerning. In contrast, it is always
possible to quadratize the ODE by adding one new variable w(x) := (x+ 1)k - 1 so that

\.x= (x+ 1)w,

\.w= \.x(k - 1)(x+ 1)k - 2 = (k - 1)(x+ 1)2k - 2 = (k - 1)w2.

Although the new variable w above is per definition not a monomial, it can be thought
of as a “shifted monomial.” In [3, Theorem 3.1], the authors state that if it is possible to
quadratize a scalar ODE by a single new variable, then the new variable can always be taken
to be such a shifted monomial. However, if more new variables are added, the set of potentially
useful new variables becomes richer, as the next example [3, Theorem 3.2] shows.

Example 2.7 (lower-order quadratization using arbitrary polynomials, continued). Consider
the scalar ODE of degree six:

\.x= x6 + x4 + x3.(2.5)

One can show using [3, Theorem 3.1] that (2.5) cannot be quadratized using a single new
variable. In fact, if monomial new variables are used, at least three of them are needed
[3, Lemma 5.7]. However, one can quadratize (2.5) using just two new polynomial variables
w1(x) := x3 and w2(x) := x5 + 5

8x
2 as follows:

\.x=w2
1 + xw1 +w1,

\.w1 = 3

\biggl( 
w1w2 + xw2 +

3

8
w2  - 

5

8
w1  - 

15

64
x2

\biggr) 
,

\.w2 = 5

\biggl( 
w2
2 +w1w2  - 

9

64
xw1  - 

3

8
w2 +

15

64
x2

\biggr) 
.

The previous examples show that there is merit in searching for polynomial quadratizations
to limit the growth of additional variables needed to achieve quadratic form.

3. Quadratization of polynomial ODEs with inputs. Many engineering systems are
forced with external inputs or disturbances. This section presents new theoretical results for
quadratization of polynomial ODEs with external forcing, which then lay the foundation for
efficient algorithms. We are interested in bringing polynomial ODEs into quadratic-bilinear1

(QB) form, where

\.\bfx =\bfA \bfx +\bfH (\bfx \otimes \bfx ) +

r\sum 
i=1

\bfN i\bfx ui +\bfB \bfu ,(3.1)

and \bfA \in RN\times N ,\bfH \in RN\times N2 , \bfN i \in RN\times N for 1 \leqslant i \leqslant r, and \bfB \in RN\times r. QB systems
have seen great interest in the systems and control community and are therefore an appealing
target structure for the proposed quadratization methods; see the introduction for further
discussion. We separate two cases for quadratization: subsection 3.1 covers polynomial ODEs
with differentiable inputs, and subsection 3.2 presents quadratization results for systems where
the inputs \bfu (t) are not differentiable.

1In the systems and control literature, the terms \bfN i\bfx ui above are called bilinear—a subclass of control-affine
systems—as they are linear in the state \bfx and linear in the input/control \bfu .
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 989

3.1. Systems with differentiable inputs. We begin this section with a definition that ex-
tends Definition 2.1 to the nonautonomous polynomial case where the inputs are differentiable.
Since we aim at the QB form (3.1), our definitions are different from the ones in [18], where
the input variables are ignored when counting the degree.

Definition 3.1 (quadratization of nonautonomous polynomial ODEs). Consider the system

\.\bfx = \bfp (\bfx ,\bfu ),(3.2)

where \bfx = \bfx (t) = [x1(t), . . . , xN (t)]
\top are the states, \bfu = \bfu (t) = [u1(t), . . . , ur(t)]

\top denote the
inputs, and p1, . . . , pN \in C[\bfx ,\bfu ]. Then an \ell -dimensional vector of new variables

\bfw =\bfw (\bfx ,\bfu ) \in C[\bfx ,\bfu ]\ell (3.3)

is said to be a quadratization of (3.2) if there exist vectors \bfq 1(\bfx ,\bfw ,\bfu , \.\bfu ) and \bfq 2(\bfx ,\bfw ,\bfu , \.\bfu ) of
dimensions N and \ell , respectively, with the entries being polynomials of total degree at most
two such that

\.\bfx = \bfq 1(\bfx ,\bfw ,\bfu , \.\bfu ) and \.\bfw = \bfq 2(\bfx ,\bfw ,\bfu , \.\bfu )(3.4)

for every \bfx solving (3.2). The number \ell is called the order of quadratization. A quadratization
of the smallest possible order is called an optimal quadratization. A monomial quadratization
of nonautonomous systems is defined similarly as in Definition 2.3.

Example 3.2. Consider a nonautonomous scalar ODE \.x= x+x2u. We claim that w(x,u) =
xu is a quadratization. Indeed, the corresponding quadratic system is

\.x= x+ xw, \.w= xu\prime + (x+ x2u)u= xu\prime + xu+w2,

so q1(x,w,u, \.u) = x+ xw and q2(x,w,u, \.u) = xu\prime + xu+ w2. This quadratization is optimal
and monomial.

The next theorem addresses the existence of a quadratization for nonautonomous polyno-
mial nonlinear ODEs.

Theorem 3.3. Every polynomial ODE system of the form (3.2) has a monomial quadratiza-
tion assuming that the inputs are differentiable. Moreover, the order of the optimal monomial
quadratization does not exceed \Pi N+r

i=1 (di + 1), where

di := \mathrm{d}\mathrm{e}\mathrm{g}xi
\bfp (\bfx ,\bfu ) for 1\leqslant i\leqslant N and dN+i := \mathrm{d}\mathrm{e}\mathrm{g}ui

\bfp (\bfx ,\bfu ) for 1\leqslant i\leqslant r

are the maximal degrees of the polynomials in the state and inputs, respectively.

Proof. We consider the system (3.2) and construct a quadratization for it. We consider
the set of monomials

\scrM := \{ m(\bfx ,\bfu ) | m(\bfx ,\bfu ) is a monomial in \bfx ,\bfu s.t.
\forall 1\leqslant i\leqslant N : \mathrm{d}\mathrm{e}\mathrm{g}xi

m(\bfx ,\bfu )\leqslant di and \forall 1\leqslant i\leqslant r : \mathrm{d}\mathrm{e}\mathrm{g}ui
m(\bfx ,\bfu )\leqslant dN+i\} 
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990 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

and claim that \scrM is a quadratization of the original system (3.2). To prove this, we consider
an arbitrary m(\bfx ,\bfu )\in \scrM and examine the monomials on the right-hand side of its derivative
\.m(\bfx ,\bfu ), where

\.m(\bfx ,\bfu ) =

N\sum 
i=1

pi(\bfx ,\bfu )
\partial m(\bfx ,\bfu )

\partial xi
+

r\sum 
j=1

\.uj
\partial m(\bfx ,\bfu )

\partial ui
,

which follows by the chain rule. By construction of \scrM , every monomial in pi(\bfx ,\bfu ) for 1\leqslant i\leqslant N

belongs to \scrM , so every monomial in the first sum can be written as m0(\bfx ,\bfu )
m(\bfx ,\bfu )
xi

, where
xi appears in m and m0 \in \scrM . Since m

xi
\in \scrM , this product is a quadratic expression in \scrM .

Furthermore, every monomial in the second sum is of the form \.ui
m(\bfx ,\bfu )
ui

, where ui appears in m.
Since m(\bfx ,\bfu )

ui
\in \scrM , this monomial can also be written as a quadratic expression in \scrM . The claim

about the size of the optimal quadratization follows from the fact that | \scrM | =\Pi N+r
i=1 (di+1).

The external inputs \bfu (t) may not always be differentiable, as step inputs, ramp inputs,
pulses, and many other nondifferentiable inputs are used in engineering. While those can often
be smoothed, the next section considers the case where the inputs are not differentiable.

3.2. Systems with nondifferentiable inputs. We consider systems with nondifferentiable
inputs \bfu (t) for which we define a new quadratization. While it is not always possible to
relax the differentiability condition on the inputs in Theorem 3.3 (see Example 3.10 and sub-
section 6.2 for examples), we characterize the cases when it is possible. We start with a
corresponding definition.

Definition 3.4 (input-free quadratization of nonautonomous polynomial ODEs). In the nota-
tion of Definition 3.1, an \ell -dimensional vector of new variables

\bfw =\bfw (\bfx ) \in C[\bfx ]\ell (3.5)

is said to be an input-free quadratization of (3.2) if there exist vectors \bfq 1(\bfx ,\bfw ,\bfu ) and \bfq 2(\bfx ,\bfw ,\bfu )
of dimensions N and \ell , respectively, with the entries being polynomials of total degree at most
two such that

\.\bfx = \bfq 1(\bfx ,\bfw ,\bfu ) and \.\bfw = \bfq 2(\bfx ,\bfw ,\bfu ).(3.6)

The number \ell is called the order of quadratization. A quadratization of the smallest possible
order is called an optimal quadratization.

Remark 3.5. The key difference between Definition 3.1 and Definition 3.4 is that \.\bfu does
not appear in the right-hand side terms of the resulting system (that is, in the vectors \bfq 1 and
\bfq 2 of quadratic polynomials). This, in turn, implies that \bfw cannot depend on \bfu . For example,
the quadratization from Example 3.2 is not input-free (and in fact the model does not admit
an input-free quadratization; see also Example 3.10).

Example 3.6. Consider a two-dimensional system describing the Duffing oscillator:

\.x1 = x2, \.x2 = - \alpha x1  - \delta x2  - \beta x31 + u.
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 991

We claim that w(\bfx ) = x21 is an input-free (monomial and optimal) quadratization. Indeed, the
corresponding quadratic system is

\.x1 = x2, \.x2 = - \alpha x1  - \delta x2  - \beta x1w+ u, \.w= 2x1x2,

so \bfq 1(\bfx ,w,u) = [x2, - \alpha x1  - \delta x2  - \beta x1w+ u]\top and q2(\bfx ,w,u) = 2x1x2. The quadratic system
above does not involve any derivatives of u and, thus, does not add any additional constraints
on the input function.

One nice feature of input-free quadratizations is that they produce the QB structure, as
the following lemma shows.

Lemma 3.7. Assume that the original system (3.2) is input-affine, that is, of the form

\.\bfx = \bfp 0(\bfx ) +

r\sum 
i=1

\bfp i(\bfx )ui.(3.7)

If there exists an input-free quadratization (3.6) with variables \bfw , then this quadratization is
quadratic-bilinear.

Proof. Since every \.xi is input-affine, the same is true for every \.wj . Since the inputs do
not appear in the new variables and w1, . . . ,w\ell is a quadratization of the original system, the
system (3.6) has at most a quadratic right-hand side which does not involve products of inputs.
This shows that it is quadratic-bilinear.

Unlike general quadratizations of nonautonomous systems, an input-affine quadratization
may not always exist for a given input-affine polynomial system (see Example 3.10). In the
remainder of this section, we present additional theoretical results on the existence of an input-
free quadratization for input-affine systems. We start with a simple class of systems admitting
an input-free quadratization.

Lemma 3.8. Assume that the system (3.7) is polynomial-bilinear, that is, the total degree
of \bfp i(\bfx ) in (3.7) is at most one for every 1\leqslant i\leqslant r. Then there is an input-free quadratization
for (3.7).

Proof. Let d := \mathrm{d}\mathrm{e}\mathrm{g}\bfp 0(\bfx ) and assume that the total degree of \bfp i(\bfx ) in (3.7) is at most one
for every 1\leqslant i\leqslant r. We consider the set of monomials

\scrM = \{ m(\bfx ) | m(\bfx ) is a monomial in \bfx and \mathrm{d}\mathrm{e}\mathrm{g}m(\bfx )\leqslant d\} 

and claim that \scrM is an input-free quadratization of the polynomial-bilinear system (3.7). To
prove this, consider any m(\bfx )\in \scrM , which has derivative

\.m(\bfx ) =

N\sum 
i=1

p0,i(\bfx )
\partial m(\bfx )

\partial xi
+

r\sum 
j=1

uj

N\sum 
i=1

pj,i(\bfx )
\partial m(\bfx )

\partial xi
.

We separately consider the terms in the first and second sums:
1. In the first sum, every monomial is the form m(\bfx )

xi
m0(\bfx ), where m0(\bfx ) is a monomial

of p0,i(\bfx ). It is the product of two elements of \scrM : m(\bfx )
xi

and m0(\bfx ).
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992 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

2. In the second sum, every monomial is of the form m(\bfx )
xi

m0(\bfx )uj , where m0(\bfx ) is a
monomial from pi,j(\bfx ). Since \mathrm{d}\mathrm{e}\mathrm{g} pj,i(\bfx )\leqslant 1, we have \mathrm{d}\mathrm{e}\mathrm{g}m0 \leqslant 1, so m(\bfx )

xi
m0(\bfx )\in \scrM .

Together, this shows that every monomial on the right-hand side of the equation for m(\bfx ) is
at most quadratic in \scrM , so \scrM is indeed an input-free quadratization.

More generally, it turns out that the existence of an input-free quadratization can be
characterized via the properties of certain linear differential operators associated with the
inputs \bfu (t). This characterization turns out to be a generalization of the classical concept of
locally finite derivation, as explained in Remark 3.12 below. The next proposition provides
this existence result.

Proposition 3.9. Consider an input-affine system of the form (3.7). We introduce r differ-
ential operators:

Di := \bfp i(\bfx )
\top \cdot \partial 

\partial \bfx 
, 1\leqslant i\leqslant r,

where \partial 
\partial \bfx =

\Bigl[ 
\partial 
\partial x1

, . . . , \partial 
\partial xN

\Bigr] \top 
. Let \scrA be a subalgebra generated by D1, . . . ,Dr in the algebra

C
\bigl[ 
\bfx , \partial \partial \bfx 

\bigr] 
of all polynomial differential operators in \bfx . Then there is an input-free quadratiza-

tion for (3.7) if and only if

\mathrm{d}\mathrm{i}\mathrm{m}\{ A(xi) | A\in \scrA \} <\infty for every 1\leqslant i\leqslant N.(3.8)

Before proving the proposition, let us illustrate it with two examples.

Example 3.10 (infinite dimension). Consider the scalar input-affine ODE with a single
input:

\.x= x2u.

In the notation of Proposition 3.9, we have D1 = x2 \partial 
\partial x . Then the algebra \scrA is spanned by

D1,D
2
1, . . . and its application to x yields

D1(x) = x2, D2
1(x) = 2x3, D3

1(x) = 6x4, . . . .

Thus, \mathrm{d}\mathrm{i}\mathrm{m}\{ A(x) | A\in \scrA \} =\infty and the proposition implies that there is no input-free quadra-
tization for this ODE.

Example 3.11 (finite dimension). We consider a modification of the previous example:

\.x1 = x1 + x1u, \.x2 = x21u.(3.9)

In this case D1 = x1
\partial 
\partial x1

+ x21
\partial 
\partial x2

. We have D1(x1) = x1 and D1(x2) = x21. Therefore, \{ A(x1) | 
A \in \scrA \} = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ x1\} and \{ A(x2) | A \in \scrA \} = \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ x2, x21\} . Therefore, Proposition 3.9 implies
that (3.9) admits an input-free quadratization.

The condition in Proposition 3.9 is related to locally finite derivations, as we explain next.

Remark 3.12 (algorithmic decidability of condition (3.8)). For the special case r = 1,
condition (3.8) is equivalent to saying that the operator D1 is locally finite. A differential

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 993

operator D on a polynomial ring in variables x1, . . . , xN is called locally finite if the dimension
of \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ xi,D(xi),D

2(xi), . . .\} is finite for every i. Locally finite derivations appear in different
contexts [21], but the problem of determining algorithmically whether a given derivation is
locally finite has been solved only for the bivariate case [21, section 4] and remains an open
problem in the general case.

Proof of Proposition 3.9. \Leftarrow : Assume that \{ A(xi) | A \in \scrA \} is finite-dimensional for every
1\leqslant i\leqslant N . For each of these spaces we choose a basis, and let \scrM be the union of these bases.
Consider any p(\bfx )\in \scrM \cup \{ x1, . . . , xN\} . Then

\.p(\bfx ) =

N\sum 
j=1

p0,j(\bfx )
\partial p

\partial xi
+

r\sum 
i=1

uiDi(p(\bfx )).(3.10)

Since p(\bfx ) is of the form A(xj) for some A \in \scrA and 1 \leqslant j \leqslant N , Di(p(\bfx )) is also of this
form. Thus, Di(p(\bfx )) can be written as a linear combination of elements of \scrM \cup \{ x1, . . . , xN\} .
Therefore, if we collect equations (3.10) for p(\bfx ) ranging over \scrM \cup \{ x1, . . . , xN\} , we obtain an
ODE system in the variables \{ x1, . . . , xN\} \cup \scrM , and this system satisfies the requirements of
Lemma 3.8. Therefore, this system has an input-free quadratization, and, thus, the same is
true for the original system.

\Rightarrow : Assume that (3.7) has an input-free quadratization with the \ell -dimensional vector of
new variables \bfw (\bfx ). Let \scrX := \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{ x1, . . . , xN ,w1, . . . ,w\ell \} . We prove by induction on an
integer h \in Z\geqslant 0 that, for every 1 \leqslant i1, . . . , ih \leqslant r and 1 \leqslant j \leqslant N , the element [Di1 . . .Dih ](xj)
belongs to \scrX . The base case h = 0 is true. Assume that the statement has been proven for
h, and consider any 1 \leqslant i1, . . . , ih \leqslant r and 1 \leqslant j \leqslant N and let p(\bfx ) = [Di1 . . .Dih ](xj). Since
p(\bfx )\in \scrX by the induction hypothesis, \.p(\bfx ) can be written as at most quadratic polynomial in
\scrX and \bfu . From the expression (3.10) one can observe that this implies that, for every 1\leqslant s\leqslant r,
Ds(p(\bfx )) = [DsDi1 . . .Dih ](xj) \in \scrX . Since this holds for any 1\leqslant i1, . . . , ih \leqslant r and 1\leqslant j \leqslant N ,
this proves the induction step. Since \scrX is finite-dimensional, the dimension of \{ A(xi) | A\in \scrA \} 
must be finite for every 1\leqslant i\leqslant N .

Although it may be complicated to verify the general condition (3.8) from Proposition 3.9,
there is an important special case when it can be easily verified.

Lemma 3.13. In the notation of Proposition 3.9, if, for every 1\leqslant i\leqslant r and 1\leqslant j \leqslant N ,

Di(xj)\in C[x1, . . . , xj - 1]

holds, then the condition \mathrm{d}\mathrm{i}\mathrm{m}\{ A(xi) | A\in \scrA \} <\infty is fulfilled.

Proof. The assumption that, for every 1 \leqslant i \leqslant r and 1 \leqslant j \leqslant N , Di(xj) depends only
on xk with k > j implies that, for every 1 \leqslant i1, . . . , iN \leqslant N , the product Di1 . . .DiN sends
each of x1, . . . , xN to zero. Therefore, the dimension of each \{ A(xi) | A \in \scrA \} does not exceed
1 + r+ . . .+ rN - 1.

4. Dimension-agnostic quadratizations of families of ODE systems. This section
presents a new quadratization method that is applicable to families of ODE systems of variable
dimension, for which it produces a dimension-agnostic quadratization. The most natural use
case is ODEs that are derived via semidiscretization of PDEs, i.e., where the symbolic form
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994 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

of the nonlinear terms stays the same but the discretization dimension n of the system can
be varied. The current way to do this is to compute a quadratization for every n separately.
However, this is time-consuming for large n and appears unnecessary. The methods derived in
this section improve upon this by exploiting similar structures in these systems. We note that
while semidiscretized PDEs are presented in the first example, the methods herein apply to
a wider class of problems than that, as we see below. To motivate the setup and subsequent
definitions, let us start with an example.

Example 4.1. Consider a special case of a dimensionless scalar PDE used in traffic flow
modeling [26, section 12.6]:

\partial \rho 

\partial t
(t, \xi ) = \rho (t, \xi ) + \rho 2(t, \xi )

\partial \rho (t, \xi )

\partial \xi 
, \rho (t,0) = 0, \rho (t,1) = 1,

where \rho (t, \xi ) is the traffic density, t denotes times, and \xi \in [0,1] is the spatial variable. Let
the initial condition be a square-integrable function \rho (0, \xi ) = \varphi (\xi ). We discretize the spatial
domain uniformly and denote the density at the nodal values as x[n]i (t) = \rho (t, i/(n + 1)) for
1 \leq i \leq n. This defines the n-dimensional state vector \bfx [n](t) = [x

[n]
1 (t), . . . , x

[n]
n (t)]\top . We

approximate the spatial derivative by a backward first-order differencing formula as

\partial \rho 

\partial \xi 
(t, i/(n+ 1))\approx \rho (t, i/(n+ 1)) - \rho (t, (i - 1)/(n+ 1))

\Delta \xi 
,

where \Delta \xi = 1/(n+ 1), which then yields the n-dimensional system of ODEs

\.\bfx [n] = \bfx [n] + (\bfx [n])2 \odot (\bfD \bfx [n]),(4.1)

where \odot denotes the Hadamard (or elementwise) product and where

\bfD =
1

\Delta \xi 

\left[         

1 0
 - 1 1 0
0  - 1 1

. . .
. . .

. . .

 - 1 1 0
0  - 1 1

\right]         
\in Rn\times n.(4.2)

Our goal is to quadratize (4.1) for arbitrary n; for brevity we drop the superscript [n] in what
follows. Consider the vectors \bfw 1 = \bfx 2 and \bfw 2 = \bfx \odot (\bfS \bfx ), where \bfS is the lower shift matrix
(with ones on the subdiagonal and zeros elsewhere), i.e., \bfS \bfx = [0, x1, . . . , xn - 1]

\top . We claim
that the nonzero entries of \bfw 1 and \bfw 2 are a quadratization of (4.1) for any n. The original
system can be now written as

\.\bfx = \bfx +\bfw 1 \odot (\bfD \bfx ).(4.3)
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 995

Furthermore, using \bfD \bfx = 1
\Delta \xi (\bfx  - \bfS \bfx ) we have

\.\bfw 1 = 2\bfx (\bfx + \bfx 2 \odot (\bfD \bfx )) = 2\bfw 1 +
2

\Delta \xi 
\bfw 1(\bfw 1  - \bfw 2),

\.\bfw 2 =

\biggl( 
\bfx + \bfx 2 \odot 1

\Delta \xi 
(\bfx  - \bfS \bfx )

\biggr) 
(\bfS \bfx ) + \bfx 

\biggl( 
\bfS \bfx + (\bfS \bfx )2 \odot 1

\Delta \xi 
(\bfS \bfx  - \bfS 2\bfx )

\biggr) 
= 2\bfw 2 +

1

\Delta \xi 
(\bfw 1 \odot \bfw 2  - \bfw 2

2 +\bfw 2 \odot (\bfS \bfw 1) - \bfw 2 \odot (\bfS \bfw 2)).

(4.4)

Therefore, \bfw 1 = \bfw 
[n]
1 and \bfw 2 = \bfw 

[n]
2 is a quadratization of (4.1) for every n, which we refer

to as a dimension-agnostic quadratization (see Definition 4.4 for a formal definition). Note
that here we can solve for \bfw 1 and \bfw 2 and then recover \bfx =

\surd 
\bfw 1, so the state equations are

decoupled and we do not need to solve the equation for \.\bfx .

We highlight that there are two types of quadratizing variables in the above example:
uncoupled variables \bfw 1, where each variable depends only on one of the xi’s, and coupled
variables \bfw 2, where each variable involves two different xi and xj so that the ith and jth
equations are coupled, which is the case when | i - j| = 1.

We next provide a formal definition for the class of systems we consider. If those are
derived from PDEs, then nd is the number of dependent variables in the polynomial PDE
system. For example, nd = 1 for Example 4.1 and nd = 2 for the solar wind example (7.3) in
section 7 which was lifted with one additional variable to polynomial form. Moreover, n is the
dimension of spatial discretization.

Definition 4.2 (family of linearly coupled polynomial ODEs). Let \bfp 0(\bfx ), . . . ,\bfp nd
(\bfx ) \in C[\bfx ]nd

be nd + 1 vectors with entries polynomial in \bfx = [x1, . . . , xnd
]\top . For such \bfp 0(\bfx ), . . . ,\bfp nd

(\bfx )
we assign a family of linearly coupled ODE systems as follows. Consider a positive integer
n and matrices \bfD 1, . . . ,\bfD nd

\in Cn\times n. We construct an ODE system for N = nd \cdot n variables
x
[n]
i,j with 1 \leqslant i \leqslant n and 1 \leqslant j \leqslant nd. A vector of these variables is denoted by \bfx [n], and we

define \bfx 
[n]
i = [x

[n]
i,1, . . . , x

[n]
i,nd

]\top and \bfx 
[n]
\ast ,j = [x

[n]
1,j , . . . , x

[n]
n,j ]

\top . Then the ODE system defined by the
polynomial vectors \bfp 0(\bfx ), . . . ,\bfp nd

(\bfx ) and constant matrices \bfD 1, . . . ,\bfD nd
is

\.\bfx 
[n]
i = \bfp 0(\bfx 

[n]
i ) +

nd\sum 
j=1

\bfp j(\bfx 
[n]
i )(\bfD j\bfx 

[n]
\ast ,j)i, i= 1,2, . . . , n.(4.5)

We refer to the ODE system (4.5) as \scrF [n](\bfp 0, . . . ,\bfp n,\bfD 1, . . . ,\bfD nd
).

Example 4.3 (vectors \bfp 0, . . . ,\bfp nd
for (4.1)). Recall the system (4.1) where nd = 1. We can

rewrite this system into the form of (4.5) with \bfp 0(x) = [x] and \bfp 1(x) = [x2] and as well as the
matrix \bfD 1 =\bfD from (4.2).

Since the infinite family of ODE systems (4.5) is defined by a finite number of variables,
that is, by nd+1 polynomial vectors \bfp 0(\bfx ), . . . ,\bfp nd

(\bfx ), it is natural to define an entire family
of quadratizations also by some finite amount of variables.

Definition 4.4 (dimension-agnostic quadratization). Consider a family of linearly coupled
ODEs defined by nd + 1 polynomial vectors \bfp 0(\bfx ), . . . ,\bfp nd

(\bfx ) in \bfx = [x1, . . . , xnd
]\top , and con-

sider an \ell -dimensional vector \bfw 1(\bfx )\in C[\bfx ]\ell together with an L-dimensional vector \bfw 2(\bfx , \~\bfx )\in 
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996 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

C[\bfx , \~\bfx ]L, where \~\bfx = [\~x1, . . . , \~xnd
]\top are formal variables used as placeholders for the coupled

variables (to be made precise below). For every integer n and matrices \bfD 1, . . . ,\bfD nd
\in Cn\times n,

we define a set

\scrM (\bfw 1,\bfw 2;\bfD 1, . . . ,\bfD nd
) := \{ \bfw 1(\bfx 

[n]
i ) | 1\leqslant i\leqslant n\} (4.6)

\cup \{ \bfw 2(\bfx 
[n]
i0
,\bfx 

[n]
i1
) | 1\leqslant i0 \not = i1 \leqslant n, and \exists k : (\bfD k)i0,i1 \not = 0\} .

Then we say that \bfw 1 and \bfw 2 are a dimension-agnostic quadratization of the family if, for
every integer n and matrices \bfD 1, . . . ,\bfD nd

\in Cn\times n, \scrM (\bfw 1,\bfw 2;\bfD 1, . . . ,\bfD nd
) is a quadratization

of \scrF [n](\bfp 0, . . . ,\bfp nd
,\bfD 1, . . . ,\bfD nd

).

Example 4.5 (vectors \bfw 1 and \bfw 2 for (4.1)). Recall that in Example 4.1 we obtained a
quadratization with the vectors

\bfw 
[n]
1 = [(x

[n]
1 )2, . . . , (x[n]n )2]\top and \bfw 

[n]
2 = [0, x

[n]
1 x

[n]
2 , x

[n]
2 x

[n]
3 , . . . , x

[n]
n - 1x

[n]
n ]\top .

We claim that these new variables are \scrM (\bfw 1,\bfw 2;\bfD ), where \bfw 1 = x2 and \bfw 2 = x\cdot \~x in this case
are scalars. Indeed, \bfw 1 = x2 gives rise to \bfw 

[n]
1 by (4.6). Since the off-diagonal nonzero entries

of \bfD (4.2) are at the (i, i  - 1) locations for 2 \leqslant i \leqslant n, so the new variables in (4.6) coming
from \bfw 2 = x \cdot \~x are obtained by setting x= x

[n]
i and \~x= x

[n]
i - 1 for every 2\leqslant i\leqslant n yielding the

nonzero entries of \bfw [n]
2 . Assume, for example, that we had periodic boundary conditions, and

thus (using \Delta \xi = 1
n)

\bfD \mathrm{p}\mathrm{e}\mathrm{r} =
1

\Delta \xi 

\left[         

1 0  - 1
 - 1 1 0
0  - 1 1

. . .
. . .

. . .

 - 1 1 0
0  - 1 1

\right]         
\in Rn\times n,

which has an additional nonzero off-diagonal entry (the (1, n)th entry). This results in

\scrM (\bfw 1,\bfw 2;\bfD \mathrm{p}\mathrm{e}\mathrm{r}) =\scrM (\bfw 1,\bfw 2;\bfD )\cup \{ x[n]1 x[n]n \} .

Furthermore, it is possible to show that \scrM (\bfw 1,\bfw 2;\bfD ) is a quadratization of (4.1) for any
complex-valued matrix \bfD (see Example 5.4).

Although the requirements on the dimension-agnostic quadratization—that is, having the
same “shape” of new variables for all dimensions and matrices—may appear restrictive, we
show that such a quadratization always exists.

Theorem 4.6. Every family of linearly coupled ODEs admits a monomial dimension-agnostic
quadratization; this can be chosen such that \mathrm{d}\mathrm{e}\mathrm{g}\~\bfx \bfw 2(\bfx , \~\bfx ) = 1.

Furthermore, if the family is defined by nd + 1 polynomial vectors \bfp 0(\bfx ), . . . ,\bfp nd
(\bfx )

with d := \mathrm{m}\mathrm{a}\mathrm{x}0\leqslant j\leqslant nd
\mathrm{d}\mathrm{e}\mathrm{g}\bfp j(\bfx ), then there exists a dimension-agnostic quadratization with

\ell \leqslant 
\bigl( 
nd+d
d

\bigr) 
and L\leqslant nd

\bigl( 
nd+d
d

\bigr) 
(in the notation of Definition 4.4).

Proof. We construct such a quadratization explicitly. Let w1,1(\bfx ), . . . ,w1,\ell (\bfx ) be the set
of all monomials of degree at most d in \bfx , and let w2,1(\bfx , \~\bfx ), . . . ,w2,L(\bfx , \~\bfx ) be the set of
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 997

all 2n-variate monomials of degree at most one in \~\bfx degree at most d in \bfx . Then
\ell =

\bigl( 
nd+d
d

\bigr) 
and L = nd

\bigl( 
nd+d
d

\bigr) 
. We next show that these \bfw 1 = [w1,1(\bfx ), . . . ,w1,\ell (\bfx )]

\top and
\bfw 2 = [w2,1(\bfx , \~\bfx ), . . . ,w2,L(\bfx , \~\bfx )]

\top provide a dimension-agnostic quadratization for the family
defined by \bfp 0(\bfx ), . . . ,\bfp nd

(\bfx ).
In order to prove this, consider arbitrary n and matrices \bfD 1, . . . ,\bfD nd

\in Cn\times n. We consider
the corresponding set \scrM :=\scrM (\bfw 1,\bfw 2;\bfD 1, . . . ,\bfD nd

) as in (4.6). First we observe that every
monomial on the right-hand side of \scrF [n](\bfp 0, . . . ,\bfp nd

,\bfD 1, . . . ,\bfD nd
) (see (4.5)) belongs to \scrM .

Indeed, consider \.\bfx 
[n]
i for some 1\leqslant i\leqslant n. If a monomial in \.\bfx 

[n]
i comes from the \bfp 0(\bfx 

[n]
i ), then it

is the form m(\bfx 
[n]
i ) with \mathrm{d}\mathrm{e}\mathrm{g}m\leqslant d and, thus, can be written as w1,k(\bfx 

[n]
i ) for some 1\leqslant k\leqslant \ell .

Otherwise, it is of the form m(\bfx 
[n]
i )xi0,j for some 1 \leqslant j \leqslant nd and 1 \leqslant i0 \leqslant n such that \.\bfx 

[n]
i

depends on \bfx 
[n]
i0

and \mathrm{d}\mathrm{e}\mathrm{g}m \leqslant d, and therefore can be presented as w2,k(\bfx 
[n]
i ,\bfx 

[n]
i0
) for some

1 \leqslant k \leqslant L. Now we consider any element of m(\bfx [n]) \in \scrM . It belongs to either \bfw 1(\bfx 
[n]
i ) for

some i or to \bfw 2(\bfx 
[n]
i0
,\bfx 

[n]
i1
) for some i0, i1. Consider the case of \bfw 1(\bfx 

[n]
i ):

\.\bfw 1(\bfx 
[n]
i ) =

nd\sum 
k=1

\.x
[n]
i,k

\partial \bfw 1(\bfx 
[n]
i )

\partial x
[n]
i,k

.

Since every monomial of \.x
[n]
i,k belongs to \scrM and every monomial in \partial \bfw 1(\bfx 

[n]
i )

\partial x
[n]
i,k

belongs to \scrM ,

the right-hand side of the equation above is quadratic in \scrM . The case of m(\bfx [n]) belonging to
\bfw 2(\bfx 

[n]
i0
,\bfx 

[n]
i1
) is completely analogous.

While this existence result is encouraging and yields a dimension-agnostic quadratization,
the quadratization from the proof of Theorem 4.6 is large. To find a more compact quadra-
tization, one would need to check if arbitrary \bfw 1(\bfx ) and \bfw 2(\bfx , \~\bfx ) yield a dimension-agnostic
quadratization. Checking this directly from Definition 4.4 is not possible since the definition
involves a universal quantifier. The next proposition gives a simple way of checking this. It
turns out that it is sufficient to consider the case n = 4 with particular matrices \bfD i. Note
that, although the matrices \bfD i corresponding to a particular difference scheme of interest
will be likely different from the ones given in the proposition below, it is guaranteed that a
dimension-agnostic quadratization which works for the matrices in the proposition will work
for any other matrices as well (for the way this works in practice, see subsection 5.3). The
intuition behind this is that n= 4 is sufficient to exhibit all important combinatorial types of
coupling, and, thus, a general matrix will always look locally as one of the fragments of the
4\times 4 matrix from the proposition. The proof of the next proposition formalizes this.

Proposition 4.7. Consider a family of linearly coupled ODEs defined by nd + 1 polynomial
vectors \bfp 0(\bfx ), . . . ,\bfp nd

(\bfx ). Then polynomial vectors \bfw 1(\bfx ) and \bfw 2(\bfx , \~\bfx ) yield a monomial
dimension-agnostic quadratization of the family if and only if \scrM (\bfw 1,\bfw 2;\bfD 

\ast 
1, . . . ,\bfD 

\ast 
nd
) from

(4.6) is a quadratization for \scrF [n](\bfp 0, . . . ,\bfp nd
,\bfD \ast 

1, . . . ,\bfD 
\ast 
nd
), where n = 4 and \bfD \ast 

1, . . . ,\bfD 
\ast 
nd

are
defined as follows:

\bfD \ast 
i =

\left(    
ai bi 0 ci
0 di ei 0
0 0 fi 0
0 0 0 gi

\right)    ,

where 1\leqslant i\leqslant nd and ai, bi, ci, di, ei, fi, gi are scalar parameters.
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998 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

Proof. Assume that \scrM 0 := \scrM (\bfw 1,\bfw 2;\bfD 
\ast 
1, . . . ,\bfD 

\ast 
nd
) is a quadratization for \scrF 4 := \scrF [4]

(\bfp 0, . . . ,\bfp nd
,\bfD \ast 

1, . . . ,\bfD 
\ast 
nd
) and consider arbitrary n and matrices \bfD 1, . . . ,\bfD nd

\in Cn\times n. We
set \scrM 1 := \scrM (\bfw 1,\bfw 2;\bfD 1, . . . ,\bfD nd

). We show that \scrM 1 is a quadratization for \scrF n := \scrF [n]

(\bfp 0, . . . ,\bfp nd
,\bfD 1, . . . ,\bfD nd

). Consider 1 \leqslant i0 \not = i1 \leqslant n such that (\bfD k)j0,j1 \not = 0 for some k. We
show that \.\bfw 2(\bfx 

[n]
i0
,\bfx 

[n]
i1
) is quadratic in \scrM 1. For every monomial m(\bfx [n]) in \.\bfw 2(\bfx 

[n]
i0
,\bfx 

[n]
i1
),

there are the following two options:
1. m depends only on \bfx 

[n]
i0

and \bfx 
[n]
i1

. Then m(\bfx 
[4]
1 ,\bfx 

[4]
2 ) is present in \scrF 4 on the right-

hand side of \.\bfw 2(\bfx 
[4]
1 ,\bfx 

[4]
2 ). Hence, m(\bfx 

[4]
1 ,\bfx 

[4]
2 ) is quadratic in \bfw 1(\bfx 

[4]
1 ),\bfw 1(\bfx 

[4]
2 ), and

\bfw 2(\bfx 
[4]
1 ,\bfx 

[4]
2 ). Since \bfw 1(\bfx 

[n]
i0
),\bfw 1(\bfx 

[n]
i1
),\bfw 2(\bfx 

[n]
i0
,\bfx 

[n]
i1
) \in \scrM 1, we have that m(\bfx 

[n]
i0
,\bfx 

[n]
i1
)

is quadratic in \scrM 1 as well.
2. m depends on \bfx 

[n]
i0
,\bfx 

[n]
i1

, and \bfx 
[n]
i2

for some i2 \not = i0, i1.
\bullet If m comes from \partial \bfw 2(\bfx 

[n]
i0
,\bfx 

[n]
i1

)

\partial x
[n]
i0,s

\.x
[n]
i0,s

for some s, we have that (\bfD k)i0,i2 \not = 0 for some k.

Then m(\bfx 
[4]
1 ,\bfx 

[4]
2 ,\bfx 

[4]
4 ) appears in \scrF 4 on the right-hand side of \.\bfw 2(\bfx 

[4]
1 ,\bfx 

[4]
2 ). Hence,

m(\bfx 
[4]
1 ,\bfx 

[4]
2 ,\bfx 

[4]
4 ) is quadratic in

\bfw 1(\bfx 
[4]
1 ), \bfw 1(\bfx 

[4]
2 ), \bfw 1(\bfx 

[4]
4 ), \bfw 2(\bfx 

[4]
1 , \bfx 

[4]
2 ), \bfw 2(\bfx 

[4]
1 , \bfx 

[4]
4 ).

Getting back to \scrF n, since

\bfw 1(\bfx 
[n]
i0
), \bfw 1(\bfx 

[n]
i1
), \bfw 1(\bfx 

[n]
i2
), \bfw 2(\bfx 

[n]
i0
, \bfx 

[n]
i1
), \bfw 2(\bfx 

[n]
i0
, \bfx 

[n]
i2
)\in \scrM 1,

we have that m(\bfx 
[n]
i0
,\bfx 

[n]
i1
,\bfx 

[n]
i2
) is quadratic in \scrM 1.

\bullet If m comes from \partial \bfw 2(\bfx 
[n]
i0
,\bfx 

[n]
i1

)

\partial x
[n]
j1,s

\.x
[n]
i1,s

for some s, we have that (\bfD k)i1,i2 \not = 0 for some k.

The argument is the same as in the previous case but using m(\bfx 
[4]
1 ,\bfx 

[4]
2 ,\bfx 3) instead

of m(\bfx 
[4]
1 ,\bfx 

[4]
2 ,\bfx 

[4]
4 ).

The proof that \.\bfx [n] and \.\bfw 1(\bfx 
[n]
i ) are quadratic in \scrM 1 is analogous but simpler because only

the first case (i.e., m depends on \bfx 
[n]
i0

and \bfx 
[n]
i1

for some i0, i1) is possible. Thus, \scrM 1 is a
quadratization for \scrF n. Since N and \bfD 1, . . . ,\bfD n were chosen arbitrarily, \bfw 1 and \bfw 2 yield a
dimension-agnostic quadratization for the family defined by \bfp 0, . . . ,\bfp nd

.

5. The QBee algorithm and software for quadratization. To the best of our knowledge,
there are two software tools that generate quadratizations of different kind: Biocham [2] and
QBee [14]. We focus on QBee because of its performance, stricter optimality guarantees [13,
Table 3], and flexible algorithm design. In this work, we extend the capability of QBee accord-
ing to the theory from the preceding sections. A Jupyter notebook with the examples from
sections 5 to 7 is available online.2

5.1. Review of the original QBee algorithm. The QBee algorithm from [14] takes as
an input a system of polynomial ODEs and produces as an output an optimal monomial
quadratization (in the sense of Definition 2.3). The QBee software is implemented in Python.

2Jupyter notebook: https://github.com/AndreyBychkov/QBee/blob/master/examples/Examples_
BOPK2023.ipynb.
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At the code level, QBee can be loaded by . After
that, for example, the system

\.x1 = x31 + x22, \.x2 = x1 + x2

can be quadratized by

where system defines a polynomial ODE system \.\bfx = \bfp (\bfx ) as a list of pairs (xi, pi(\bfx )). QBee
prints the quadratic symbolic form of the system and a list of auxiliary variables needed to do
that. The list is guaranteed to be as short as possible. For the code above, QBee produces

The algorithms implemented in QBee are described in detail in [13]. To keep this paper
self-contained, we briefly summarize the key ideas of the algorithm, which we build upon later.
The algorithm follows the general branch-and-bound paradigm [48], and the computation of
a quadratization is organized as a tree of recursive iterations. Each recursive iteration takes
as input the original system, current set \scrS of new variables (\scrS = ∅ at the first iteration),
and the smallest order \ell 0 of quadratization found so far, where initially we set \ell 0 to be the
size of quadratization from Theorem 2.5. If \scrS is a quadratization, it is returned. If | \scrS | \geqslant \ell 0,
this means that extending \scrS does not lead to a better quadratization than already found,
this branch is skipped. Furthermore, to keep the computation manageable, QBee implements
additional pruning rules that allow the algorithm to decide that the branch can be safely
skipped even if | \scrS | < \ell 0 [13, section 5]. Otherwise, the algorithm generates possible useful
extensions of \scrS by looking at not-yet-quadratized monomials in the derivatives of the original
variables and elements of \scrS . It runs recursively on these extensions and updates \ell 0 if any
of these recursive iterations finds a better quadratization. The bound \ell 0 forces the tree of
recursive calls to be finite and thus implies that the algorithm terminates. The recursive step
of the algorithm is summarized in Algorithm 5.1.
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1000 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

Algorithm 5.1. Outline of the original QBee algorithm from [13].
Inputs

\bullet Symbolic form of the polynomial ODE system \.\bfx = \bfp (\bfx );
\bullet A set of potential new variables \scrS \subset C[\bfx ]. If not specified, \scrS =∅;
\bullet The smallest order \ell 0 of quadratization found so far. If not specified, we set
\ell 0 =

\prod N
i=1(di + 1), where di =\mathrm{d}\mathrm{e}\mathrm{g}xi

\bfp (\bfx ) (see Theorem 2.5).
Output Optimal quadratization of \.\bfx = \bfp (\bfx ) extending \scrS with | \scrS | < \ell 0 or nothing if there is

no such quadratization.
(Step 1) If \scrS is a quadratization and | \scrS | < \ell 0, return \scrS .
(Step 2) If | \scrS | \geqslant \ell 0 or any pruning rule indicates that \scrS cannot be extended to a

quadratization of size < \ell 0, return nothing.
(Step 3) Generate a list \scrS 1, . . . ,\scrS r of possible extensions of \scrS .
(Step 4) Set \scrQ 0 := nothing, \ell := \ell 0.
(Step 5) For i= 1, . . . , r

(a) Run the algorithm recursively on \scrS i and \ell .
(b) If the recursive call returns a quadratization \scrQ with | \scrQ | < \ell , set \scrQ 0 :=\scrQ 

and \ell := | \scrQ | .
(Step 6) Return \scrQ 0.

Remark 5.1 (on Laurent polynomials in QBee). We have extended the original QBee
algorithm outlined above to allow the input system to be defined not only by polynomials
but also by Laurent polynomials, that is, polynomials with possible negative degrees. This is
done by allowing negative degrees at (Step 3). In this case, we do not give termination and
optimality guarantees but in practical examples (see subsubsection 6.1.2 and section 7) this
approach works well. Therefore, all extensions of QBee presented here, such as Algorithms 5.2
and 5.3, can take Laurent polynomials as input but do not provide termination and optimality
guarantees for this case.

We could instead first polynomialize the model using our polynomialization algorithm from
subsection 5.4, but this may result in a quadratization of larger dimension, as the following
example shows. Consider a Laurent polynomial model

\.x1 = x22, \.x2 = x1x
 - 1
2 .(5.1)

If we first polynomialize the model by introducing x3 = x - 1
2 , we obtain

\.x1 = x22, \.x2 = x1x3, \.x3 = - x1x33.(5.2)

Computation with QBee shows that at least two new variables are required to quadratize (5.2).
On the other hand, QBee applied directly to (5.1) quadratizes the model with only two new
variables, w1 = x - 1

2 and w2 = x1x
 - 2
2 :

\.x1 = x22, \.x2 = x1w1, \.w1 = - w1w2, \.w2 = 1 - 2w2
2.

This discrepancy arises because, when quadratizing (5.2), QBee cannot take into account the
fact that x2x3 = 1 as it is not a part of its input.
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 1001

5.2. QBee for quadratization of polynomial ODEs with inputs. Herein, we describe
how the results of section 3 can be used to add capabilities to Algorithm 5.1 for computing
quadratizations for systems with inputs. This requires modifying the initial upper bound \ell 0
and the procedure for computing the sets of variables for the recursive iterations at (Step 3).
Consider the ODE system

\.\bfx = \bfp (\bfx ,\bfu ),(5.3)

where \bfx = \bfx (t) \in RN are the states and \bfu = \bfu (t) \in Rr are inputs and \bfp (\bfx ,\bfu ) = [p1(\bfx ,\bfu ), . . . ,
pN (\bfx ,\bfu )]

\top is a vector of polynomials.
Theorem 3.3 guarantees that it is always possible to find a quadratization with the new

variables involving the inputs in at most zero order and, thus, the quadratized equations in-
volving the inputs in at most first order (as in Definition 3.1). Since only zeroth- and first-order
derivatives of inputs are involved in the quadratization process, we can impose an additional
restriction that the inputs are linear,3 that is, \"\bfu (t) = 0. With this additional restriction, the
system can be written as an autonomous ODE system to which the original QBee algorithm
can now be applied with two amendments: the bound \ell 0 on the size of quadratization is now
taken from Theorem 3.3, not from Theorem 2.5, and (Step 3) of Algorithm 5.1 is restricted
to monomials in \bfx and \bfu (that is, using \.\bfu is not allowed). Theorem 3.3 guarantees that even
under this restriction a quadratization exists, and QBee will find an optimal one.

To compute an input-free quadratization (for cases when \bfu (t) is not differentiable), the
approach above is modified as follows. First, we set \ell 0 =\infty . Second, we further restrict (Step
3) of Algorithm 5.1 by allowing only the extensions not involving either \bfu or \.\bfu . We note that,
in general, the search for input-free quadratizations is not guaranteed to terminate, as there
may not be input-free quadratizations. We refer the reader to subsection 3.2 for the criterion
(Proposition 3.9) and special cases (Lemmas 3.8 and 3.13) where we expect the algorithm to
terminate. We summarize the algorithm explained above in Algorithm 5.2.

Example 5.2 (use of QBee for systems with inputs). Consider again the polynomial model
with input from Example 3.10. The QBee software finds a quadratization for that example
with the following code:

3Formally, this can be justified as follows. We introduce the new “state” variables: \bfu (0) = \bfu and \bfu (1) = \.\bfu , as
the zeroth and first derivatives of \bfu , respectively. This allows us to formally write an autonomous ODE system
\.\bfx = \bfp (\bfx ,\bfu (0)), \.\bfu (0) = \bfu (1), \.\bfu (1) = \bfzero , where the last equation acts as a dummy equation. Since by Definition 3.1
the quadratizations of the nonautonomous system (5.3) involve only \bfx and \bfu but not derivatives of \bfu , there
is a bijection between the quadratizations of (5.3) and the quadratizations of the autonomous system above
involving \bfx and \bfu (0) but not \bfu (1).
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1002 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

Algorithm 5.2. Extension of QBee to nonautonomous systems.
Input Nonautonomous polynomial ODE system \.\bfx = \bfp (\bfx ,\bfu ) with N states and r inputs and

a Boolean flag input-free.
Output Optimal quadratization as defined in Definition 3.1 if input-free= False and

optimal input-free quadratization as in Definition 3.4 if input-free= True and
such quadratization exists.

(Step 1) Build an autonomous ODE system by restricting inputs to the linear ones, that is,
adding \"u= 0 to the original system.

(Step 2) Run Algorithm 5.2 on the autonomous ODE system constructed in the previous
step.
\bullet If input-free= False, use \ell 0 computed as in Theorem 3.3 and ensure that

(Step 3) only selects the extensions not involving \.\bfu .
\bullet If input-free= True, use \ell 0 =\infty and ensure that (Step 3) only selects the

extensions not involving \bfu , \.\bfu .
(Step 3) Return the quadratization found at the previous step.

The code produces

Example 5.3 (use of QBee for input-free quadratizations). Consider again the polynomial
model from Example 3.11. The QBee software finds an input-free quadratization for that
example with the following code:

In the code above, means that we are looking for an input-free quadra-
tization. The code produces
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 1003

5.3. QBee for finding dimension-agnostic quadratizations. In section 4 we presented
the theory for quadratizing families of linearly coupled ODE systems. By this, we mean that
while the ODE dimension could be arbitrary, the equations have the same structure—so, in
essence, we can find a quadratization for a lower-dimensional ODE, and this generalizes to
adding more (similarly structured) equations.

We revisit Example 4.1, where we found a quadratization of a family of ODE systems of
the form (4.3):

\.\bfx [n] = \bfx [n] + (\bfx [n])2 \odot (\bfD \bfx [n]).

To provide such a family as an input to our algorithm, we formally write this ODE system as
a scalar equation,

\.x= x+ x2x\bfD ,(5.4)

where x\bfD is a formal variable that we use as a placeholder for the linear coupling \bfD \bfx [n]. We
extend this notation to the general case of a family of linearly coupled ODE systems as in
Definition 4.2. We represent the family symbolically as

\.\bfx = \bfp (\bfx ,\bfx \bfD ),(5.5)

where \bfx = [x1, . . . , xnd
]\top , \bfx \bfD = [x\bfD ,1, . . . , x\bfD ,nd

]\top are again formal variables which are place-
holders for the coupling expressions (\bfD j\bfx 

[n]
\ast ,j)i, and \bfp (\bfx ,\bfx \bfD ) is affine in \bfx \bfD , i.e.,

\bfp (\bfx ,\bfx \bfD ) = \bfp 0(\bfx ) +

nd\sum 
i=1

\bfp i(\bfx )x\bfD ,i.(5.6)

The vectors \bfp 0(\bfx ), . . . ,\bfp nd
(\bfx ) define the family of linearly coupled models as in Definition 4.2.

Given a family of linearly coupled ODE systems written in the form (5.5), Proposition 4.7
provides an effective condition to check whether given polynomial vectors \bfw 1(\bfx ) and \bfw 2(\bfx , \~\bfx )
provide a dimension-agnostic quadratization (see Definition 4.4) of the family: it is sufficient
to take a particular member of the family, \scrF [4]

\bfP (\bfp 0, . . . ,\bfp nd
,\bfD \ast 

1, . . . ,\bfD 
\ast 
nd
), and check whether

\scrM (\bfw 1,\bfw 2;\bfD 
\ast 
1, . . . ,\bfD 

\ast 
nd
) is a quadratization of this specific ODE system. Moreover, we can

use Proposition 4.7 to find a dimension-agnostic quadratization for the family by running
Algorithm 5.1 on the discretization but restricting the extensions at (Step 3) to ones of the
form \scrM (\bfw 1,\bfw 2;\bfD 

\ast 
1, . . . ,\bfD 

\ast 
nd
). Success and termination of this search can be ensured by using

the bounds for \ell and L from Theorem 4.6 to provide the starting bound \ell 0 in Algorithm 5.1:
since there are three off-diagonal elements in the Di’s and n = 4, we take \ell 0 = 4\ell + 3L =
(3nd + 4)

\bigl( 
nd+d
d

\bigr) 
. This approach is summarized in Algorithm 5.3.

Example 5.4 (use of QBee for dimension agnostic quadratization). Consider the family from
Example 4.1. We have already written the corresponding family of ODE systems in the form
(5.4) required by the algorithm. QBee can be used to find a dimension-agnostic quadratization
by writing the following code:
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1004 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

Then QBee produces

The quadratized system like (4.4) in general depends on the shape of the \bfD matrices used (see
Example 4.5), and it is not produced automatically but has to be derived by hand using the
knowledge of the quadratizing variables. The function has
a keyword parameter ; if the value is set to be , the quadratization
for the ODE system from Proposition 4.7 is printed, which can be helpful when producing the
quadratized system.

Algorithm 5.3. Extension of QBee to dimension-agnostic quadratizations.
Input A family of linearly coupled ODE systems (4.5) presented as

\.\bfx = \bfp (\bfx ,\bfx \bfD ),

where \bfx = [x1, . . . , xnd
]\top , \bfx \bfD = [x\bfD ,1, . . . , x\bfD ,nd

] are formal variables which are
placeholders for the coupling, and \bfp (\bfx ,\bfx \bfD ) is affine in \bfx \bfD .

Output A dimension-agnostic quadratization of the family (see Definition 4.4).
(Step 1) Set d := \mathrm{d}\mathrm{e}\mathrm{g}\bfx \bfp (\bfx ,\bfx \bfD ).
(Step 2) Write \bfp (\bfx ,\bfx \bfD ) in the form (5.6) and extract the vectors \bfp 0,\bfp 1, . . . ,\bfp nd

.
(Step 3) Construct an ODE system \scrF [4]

\bfP (\bfp 0, . . . ,\bfp nd
,\bfD \ast 

1, . . . ,\bfD 
\ast 
nd
) from Proposition 4.7.

(Step 4) Apply Algorithm 5.1 to the produced ODE system with \ell 0 = (3nd + 4)
\bigl( 
nd+d
d

\bigr) 
and

(Step 3) selecting extensions of the form \scrM (\bfw 1,\bfw 2;\bfD 
\ast 
1, . . . ,\bfD 

\ast 
nd
).

(Step 5) From the produced quadratization, derive the polynomial vectors \bfw 1(\bfx ) and
\bfw 2(\bfx , \~\bfx ) and return them.

Since (Step 4) of Algorithm 5.3 applies QBee to \scrF [4](\bfp 0, . . . ,\bfp nd
,\bfD \ast 

1, . . . ,\bfD 
\ast 
nd
), the resulting

dimension-agnostic quadratization is not guaranteed to be optimal for all choices of n and
\bfD 1, . . . ,\bfD nd

. In all the examples we have considered so far, and the forthcoming examples in
sections 6 and 7, the dimension-agnostic quadratization produced by the algorithm was always
of the same or lower dimension as the ones found by hand.

5.4. Polynomialization as a preprocessing step for quadratization. This work focuses
on the task of quadratizing polynomial ODEs. However, many models in engineering and
science are nonpolynomial. The problem of optimal quadratization of nonpolynomial systems
remains open, but practical polynomialization algorithms can nevertheless be devised. We
design and implement a polynomialization algorithm that can be used as a preprocessing step
before quadratization with Algorithms 5.1 and 5.2. The algorithm follows the general approach
described in [24, 31]: at each step the algorithm finds a nonpolynomial term and adds a new
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 1005

variable corresponding to it. The main difference of our approach from the prior algorithms
is that we again employ the branch-and-bound approach as in Algorithm 5.1, that is, the
algorithm does not perform a fixed sequence of substitutions but explores different sequences
in a recursive fashion. While this may require more iterations, the resulting system can be of
smaller dimensions, as the next example shows.

Example 5.5. Consider the scalar nonpolynomial equation \.x = e - x + e - 2x. Here, the
Biocham [2] software introduces two new variables, e - x and e - 2x, by using the algorithm from
[31]. In contrast, our QBee algorithm finds that only one new variable, w := e - x, is sufficient
to make the system polynomial:

\.x=w+w2,

\.w= - w2  - w3.

The following QBee code produces the above polynomialization of order one:

The QBee output is

5.5. On optimality guarantees of the presented algorithms. We summarize the opti-
mality guarantees which are available for the algorithms we presented herein.

\bullet If the input is a polynomial ODE system of the form (2.1) or (3.2), then the original
QBee (Algorithm 5.1) and its extension to the nonautonomous systems (Algorithm 5.2)
are guaranteed to produce an optimal monomial quadratization.

\bullet For the polynomialization algorithm (subsection 5.4), the algorithm for computing
dimension-agnostic quadratizations (Algorithm 5.3), as well as Algorithms 5.1 and 5.2
when allowing for Laurent polynomials in the model form, we do not guarantee opti-
mality. However, our algorithms always reduce the number of new variables by apply-
ing the branch-and-bound approach from QBee and, in particular, manage to produce
quadratizations of smaller dimensions than was possible before (see sections 6 and 7)

6. Applications of quadratization. This section applies the QBee algorithm to quadratize
a wide range of nonlinear systems of ODEs. Here, we revisit examples from the literature and
demonstrate that we can improve the order of quadratization (i.e., we need fewer variables
to do so). Subsection 6.1 considers two different tubular reactor models, both with variable
dimension and external inputs In subsection 6.2 we consider a two-step rocket combustion
process which is nonpolynomial.

6.1. Tubular reactor model. We consider a nonadiabatic tubular reactor model with
a single reaction as in [29] and follow the discretization and setup in [63, 43]. The spa-
tially discretized model describes the evolution of the species concentration vector \bfitpsi (t) and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

6/
24

 to
 7

0.
95

.2
13

.1
23

 b
y 

B
or

is
 K

ra
m

er
 (b

m
kr

am
er

@
uc

sd
.e

du
). 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



1006 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

temperature vector \bfittheta (t) over time t > 0. We consider two cases of different complexity. Both
cases are nonautonomous and of variable dimension (depending on the size of discretization).

6.1.1. Polynomial reaction model. We consider the polynomial ODE in 2n (i.e., nd = 2)
dimensions:

\.\bfitpsi =\bfA \psi \bfitpsi + \bfb \psi  - \scrD \bfitpsi \odot (\bfc 0 + \bfc 1 \odot \bfittheta + \bfc 2 \odot \bfittheta 2 + \bfc 3 \odot \bfittheta 3),
\.\bfittheta =\bfA \theta \bfittheta + \bfb \theta + \bfb u+\scrB \scrD \bfitpsi \odot (\bfc 0 + \bfc 1 \odot \bfittheta + \bfc 2 \odot \bfittheta 2 + \bfc 3 \odot \bfittheta 3),

(6.1)

where u= u(t) is a scalar input function, \bfA \psi and \bfA \theta are n\times n constant matrices, and \bfb ,\bfb \psi ,
and \bfb \theta are n-dimensional constant vectors. The Damköhler number \scrD and \scrB are the known
constants. This ODE system has a polynomial reaction model, i.e., the chemical reaction term
is f(\bfitpsi ,\bfittheta ;\gamma ) = \psi (c0+ c1\bfittheta + c2\bfittheta 

2+ c3\bfittheta 
3) following [43, equations (17)–(18)]. In [43] this model

was quadratized with 5n additional variables, so the lifted system dimension was 7n.
In order to use QBee, we rewrite (6.1) in the form (5.5), that is, as a formal three-

dimensional ODE system with additional variables \psi \bfD and \theta \bfD instead of \bfA \psi \bfitpsi and \bfA \theta \bfittheta :

\.\psi =\psi \bfD + b\psi  - \scrD \psi (c0 + c1\theta + c2\theta 
2 + c3\theta 

3),

\.\theta = \theta \bfD + b\theta + bu+\scrB \scrD \psi (c0 + c1\theta + c2\theta 
2 + c3\theta 

3).
(6.2)

Then we use QBee to search for a discretization-agnostic quadratization as described in sub-
section 5.3. QBee finds that for every n and for all matrices \bfA \psi and \bfA \theta , the system can be
quadratized using the following 4n additional variables:

\bfw 1 := \bfittheta 
2, \bfw 2 := \bfittheta 

3, \bfw 3 :=\bfitpsi \odot \bfittheta , \bfw 4 :=\bfitpsi \odot \bfittheta 2.(6.3)

One can use these new variables to write the quadratized system:

\.\bfitpsi =\bfA \psi \bfitpsi + \bfitb \psi  - \scrD (\bfc 0 \odot \bfitpsi + \bfc 1 \odot \bfw 3 + \bfc 2 \odot \bfw 4 + \bfc 3 \odot \bfw 1 \odot \bfw 3),

\.\bfittheta =\bfA \theta \bfittheta + \bfitb \theta + \bfitb u+\scrB \scrD (\bfc 0 \odot \bfitpsi + \bfc 1 \odot \bfw 3 + \bfc 2 \odot \bfw 4 + \bfc 3 \odot \bfw 1 \odot \bfw 3),

\.\bfw 1 = 2\bfittheta (\bfA \theta \bfittheta + \bfitb \theta + \bfitb u) + 2\scrB \scrD (\bfc 1 \odot \bfw 4 +\bfw 3 \odot (\bfc 0 + \bfc 2 \odot \bfw 1 + \bfc 3 \odot \bfw 2)),

\.\bfw 2 = 3\bfittheta (\bfA \theta \bfittheta + \bfitb \theta + \bfitb u) + 3\scrB \scrD (\bfw 4 \odot (\bfc 0 + \bfc 3 \odot \bfw 2) +\bfw 3 \odot (\bfc 1 \odot \bfw 1 + \bfc 2 \odot \bfw 2)),

\.\bfw 3 =\bfitpsi (\bfA \theta \bfittheta + \bfitb \theta + \bfitb u) + \bfittheta (\bfA \psi \bfitpsi + \bfitb \psi ) - \scrD (\bfc 1 \odot \bfw 4 +\bfw 3 \odot (\bfc 0 + \bfc 2 \odot \bfw 1 + \bfc 3 \odot \bfw 2))

+\scrB \scrD (\bfc 0 \odot \bfitpsi 2 +\bfw 3 \odot (\bfc 1 \odot \bfitpsi + \bfc 2 \odot \bfw 3 + \bfc 3 \odot \bfw 4)),

\.\bfw 4 =\bfw 1(\bfA \psi \bfitpsi + \bfitb \psi ) + 2\bfw 3(\bfA \theta \bfittheta + \bfitb \theta + \bfitb u)

 - \scrD (\bfc 0 \odot \bfw 4 + \bfc 1 \odot \bfw 1 \odot \bfw 3 +\bfw 2 \odot (\bfc 2 \odot \bfw 3 + \bfc 3 \odot \bfw 4))

+ 2\scrB \scrD (\bfc 0 \odot \bfitpsi \odot \bfw 3 + \bfc 1 \odot \bfw 2
3 + \bfc 2 \odot \bfw 3 \odot \bfw 4 + \bfc 3 \odot \bfw 2

4).

(6.4)

Thus, QBee produced a lower-dimensional quadratization (4n extra variables) than has been
previously reported in the literature (5n extra variables).

6.1.2. Exponential reaction terms. We now consider a nonpolynomial nonautonomous
ODE system. The model is taken from [42, sect. V] and includes an Arrhenius reaction term
that is of exponential kind, i.e., the system of nonpolynomial nonautonomous ODEs is
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 1007

\.\bfitpsi =\bfA \psi \bfitpsi + \bfb \psi  - \scrD \bfitpsi \odot e\gamma  - \gamma /\bfittheta ,

\.\bfittheta =\bfA \theta \bfittheta + \bfb \theta + \bfb u(t) + \scrB \scrD \bfitpsi \odot e\gamma  - \gamma /\bfittheta .
(6.5)

In [42] two lifting transformations are derived: (i) the system is polynomialized with 3n extra
variables, \bfw 1 := \bfittheta 

 - 1,\bfw 2 := \bfittheta 
 - 2, and \bfw 3 := e\gamma  - \gamma /\bfittheta ; (ii) the system is further transformed into a

quadratic system of differential-algebraic equations (DAEs) by adding 3n additional variables,
thus, adding 6n variables in total.

With QBee, we improve on these results. First, we manually introduce only one variable
\bfw 1 := e\gamma  - \gamma /\bfittheta and obtain a 3n-dimensional system with Laurent polynomials on the right-hand
side:

\.\bfitpsi =\bfA \psi \bfitpsi + \bfb \psi  - \scrD \bfitpsi \odot \bfw 1,

\.\bfittheta =\bfA \theta \bfittheta + \bfb \theta + \bfb u(t) + \scrB \scrD \bfitpsi \odot \bfw 1,

\.\bfw 1 = \gamma \.\bfittheta \odot 1

\bfittheta 2
\odot \bfitw 1.

(6.6)

In order to use QBee, we rewrite (6.6) in the form (5.5), that is, as a formal three-dimensional
ODE system with additional variables \psi \bfD and \theta \bfD instead of \bfA \psi \bfitpsi and \bfA \theta \bfittheta :

\.\psi =\psi \bfD + b\psi  - \scrD \psi w1,

\.\theta = \theta \bfD + b\theta u+\scrB \scrD \psi w1,

\.w1 = \gamma 
w1

\theta 2
(\theta \bfD + b\theta + bu+\scrB \scrD \psi w1).

Then we use QBee to search for a discretization-agnostic quadratization as described in sub-
section 5.3. As explained in Remark 5.1, this can be done even though (6.6) is a Laurent
polynomial system. QBee finds that for every n and for all matrices \bfA \psi and \bfA \theta , a quadrati-
zation requires the additional variables

\bfw 2 :=
1

\bfittheta 
, \bfw 4 :=

u(t)

\bfittheta 
, \bfw 8 :=

\bfitpsi \odot \bfw 1

\bfittheta 2
,

\bfw 3 :=
1

\bfittheta 2
, \bfw 5 :=

u(t)

\bfittheta 2
, \bfw 7 :=

\bfitpsi \odot \bfw 1

\bfittheta 
,

and we additionally require for every 1\leqslant i \not = j \leqslant n, where (\bfA \psi )i,j \not = 0 or (\bfA \theta )i,j \not = 0:

w8,i,j :=
\psi j
\theta i
, w9,i,j :=

\psi j
\theta 2i
, w10,i,j :=

\theta j
\theta i
, w11,i,j :=

\theta j
\theta 2i
.

Therefore, if we denote by M the number of nonzero off-diagonal elements in \bfitA \theta and \bfA \psi , we
add 7n+4M new variables. While these are more additional variables than the aforementioned
6n new variables from [42], our transformation yields an ODE (not a DAE) which is generally
much more advantageous to work with for analysis, simulation, and control.
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1008 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

6.2. Species’ reaction model for combustion. We consider the rocket engine combus-
tion model from [61, equations (A1a)–(A1d)]. At each spatial grid point, the species’ molar
concentrations x1, x2, x3, and x4 are determined by the following equations:

\.x1 = - A \mathrm{e}\mathrm{x}\mathrm{p}
\Bigl( 
 - E

Ru(t)

\Bigr) 
x0.21 x1.32 ,

\.x2 = 2 \.x1,

\.x3 = - \.x1,

\.x4 = - 2 \.x1,

(6.7)

where u(t) is a time-dependent input standing for the temperature, and A, E, and R are known
parameters. Our goal is to compute a polynomialization and a quadratization via QBee and
compare the results to [61], where this was done by hand. QBee performs polynomialization
and quadratization of the model automatically. It first finds three variables with which the
system can be lifted using Laurent polynomials:

w1 = x1.32 , w2 = x0.21 , w3 = e - E/(Ru(t))

The lifted system will be

\.x1 = - Aw1w2w3, \.x2 = - 2Aw1w2w3, \.x3 =Aw1w2w3, \.x4 = 2Aw1w2w3,

\.w1 = - 2.6Aw2
1w2w3x

 - 1
2 , \.w2 = - 0.2Aw1w

2
2w3x

 - 1
1 , \.w3 =

E \.u(t)w3

Ru2(t)
.

Then this system is quadratized using seven more variables:

w4 =w1w2, w5 =
\.u(t)

u(t)2
, w6 =

1

u(t)2
, w7 =

\.u(t)

u(t)
,

w8 =
1

u(t)
, w9 =w1w2w3x

 - 1
1 , w10 =w1w2w3x

 - 1
2 .

The resulting quadratic system is

\.x1 = - Aw1w4, \.w2 = - 0.2Aw2w9, \.w7 = \"u(t)w8  - w2
7,

\.x2 = - 2Aw1w4, \.w3 =
Ew3w5

R
, \.w8 = - w7w8,

\.x3 =Aw1w4, \.w4 = - 0.2Aw4w9 +
Ew4w5

R
, \.w9 =Aw9

\biggl( 
0.8w9  - 2.6w10 +

Ew5

AR

\biggr) 
,

\.x4 = 2Aw1w4, \.w5 = \"u(t)w6  - 2w5w7, \.w10 = - Aw10

\biggl( 
0.2w9 + 0.6w10  - 

Ew5

AR

\biggr) 
,

\.w1 = - 2.6Aw1w10, \.w6 = - 2w6w7.

In total, we need to add ten new variables to the original system (6.7) to obtain a quadratic
ODE system. The authors in [61] did not find a quadratized form for this system by hand due
to the complexity of finding such quadratizations. This illustrates a significant advantage of
the automated polynomialization and quadratization implemented in QBee. Furthermore, one
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 1009

can observe that the equations for the new variables do not involve x1 and x2, and x1 and x2
can be expressed as w1w2w3w

 - 1
9 and w1w2w3w

 - 1
10 , respectively. Thus, one can omit x1 and x2

and work with only 12-dimensional systems.
This example exhibits the same subtlety as noted in Remark 5.1: if we first transformed

the system to a polynomial (not Laurent polynomial) one and then quadratized, then we would
add eleven variables. We also note that it is not possible to find a quadratization without the
appearance of \"u(t) in the resulting system; this can be deduced by applying Proposition 3.9
to the polynomialized system.

7. Model learning for solar wind prediction with quadratized variables. In this section,
we illustrate the advantages of quadratization in the use case of data-driven reduced-order
modeling for solar wind prediction. The benefit of a quadratization of the dynamical system is
that it provides a direct parametrization of the model and avoids hyperreduction, as discussed
in the introduction. Thus, the free parameters (the coefficients matrices for the polynomial
terms) can be learned from trajectory data; see [61, 53, 54, 36, 59] for a variety of applications
of this approach. Subsection 7.1 briefly introduces the model, subsection 7.3 gives implementa-
tion details, subsection 7.2 presents the results of the QBee quadratization, and subsection 7.4
presents the numerical result on the simulated quadratized model.

7.1. Model. The Heliospheric Upwind Extrapolation (HUX) model [56] is a two-
dimensional nonlinear scalar homogeneous time-stationary PDE of the solar wind radial veloc-
ity in the heliospheric domain, where the independent variables are the radial distance from
the Sun r and Carrington longitude \phi and the dependent variable is the solar wind veloc-
ity in the radial direction v(r,\phi ). The angular frequency of the Sun’s rotation is evaluated
at a constant Carrington latitude \^\theta ; if we consider the Sun’s equatorial plane (\^\theta = 0), then
\Omega rot(0) =

2\pi 
25.381/days at the solar equator. The initial condition v(r0, \phi ) = v0(\phi ) is defined on

the periodic domain 0\leq \phi \leq 2\pi and r\geq 0.14AU.
After semidiscretization via the upwind scheme, and an r-dependent linear shift of the lon-

gitude to account for advection (see [35] for details), the finite-dimensional nonlinear model is

d\bfv (r)
dr

=\bfD \mathrm{l}\mathrm{n} [\bfv (r)] - \xi 

\Omega rot(\^\theta )
\bfD \bfv (r),(7.1)

where \bfv (r) = [v(r,\phi 1), v(r,\phi 2), . . . , v(r,\phi n)]
\top \in Rn is the state vector discretized over N points

in longitude at heliocentric distance r, \xi is the shift velocity which is fixed for a given Carrington
rotation, and the sparse matrix \bfD \in Rn\times n is

\bfD =
\Omega rot(\^\theta )

\Delta \phi 

\left[         

 - 1 1 0
0  - 1 1

. . .
. . .

. . .
. . .

 - 1 1 0
 - 1 1

1 0  - 1

\right]         
\in Rn\times n.(7.2)
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1010 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

7.2. Quadratization of the model. To obtain a system of quadratic ODEs, we start with
the original model (7.1) and eliminate the logarithmic function by adding a new variable
\bfw 0 := \mathrm{l}\mathrm{n}(\bfv ). Let C1 :=

\xi 

\Omega rot(\^\theta )
, so that in the variables \bfv and \bfw 0, the system (7.1) becomes

d\bfv 
dr

=\bfD \bfw 0  - C1\bfD \bfv ,

d\bfw 0

dr
=

1

\bfv 
\bfD \bfw 0  - 

C1

\bfv 
\bfD \bfv .

(7.3)

In order to use QBee, we rewrite (7.3) in the form (5.5), that is, as a formal two-dimensional
(nd = 2) ODE system with additional variables v\bfD and w0,\bfD instead of \bfD \bfv and \bfD \bfw 0:

\.v=w0,\bfD  - C1v\bfD ,

\.w0 =
w0,\bfD 

v
 - C1

v\bfD 
v
.

Then we use QBee to search for a discretization-agnostic quadratization of (7.3) as described
in section 4. As explained in Remark 5.1, this can be done even though (7.3) is a Laurent
polynomial system. The dimension-agnostic quadratization returned by Algorithm 5.3 is

\bfw 1 =

\biggl[ 
1

v
,
w0

v

\biggr] \top 
and \bfw 2 =

\biggl[ 
\~v

v
,
\~w0

v

\biggr] \top 
.

We can now specialize this dimension-agnostic quadratization to the matrix \bfD from (7.2).
Since the off-diagonal entries of \bfD are on the shifted diagonal, \~v and \~w0 will be replaced
with \bfS \bfv and \bfS \bfw 0, respectively, where \bfS denotes the cyclic shift operator sending any vector
[a1, . . . , an]

\top to [an, a1, . . . , an - 1]
\top . Thus, we will obtain the following 4n variables:

\bfw 1,1 =
1

\bfv 
, \bfw 1,2 =

\bfw 0

\bfv 
, \bfw 2,1 =

\bfS \bfv 

\bfv 
, \bfw 2,2 =

\bfS \bfw 0

\bfv 
.

Let C2 :=
\Omega rot(\^\theta )
\Delta \phi ; then the quadratic system in these new variables is

d\bfw 1,1

dr
= - C2\bfw 1,1 \odot \bfW ,

d\bfw 1,2

dr
=C2\bfW \odot (\bfw 1,1  - \bfw 1,2),

d\bfw 2,1

dr
=C2\bfw 2,1 \odot (\bfS \bfW  - \bfW ),

d\bfw 2,2

dr
=C2\bfw 1,1 \odot \bfS \bfW  - C2\bfw 2,2 \odot \bfW ,

(7.4)

where we denote \bfW = \bfw 2,2  - \bfw 1,2 + C1\bfone  - C1\bfw 2,1 and \bfone = [1, . . . ,1]\top \in Rn. Furthermore,
we see that the equations (7.4) do not involve \bfv and \bfw 0. Since the values of both \bfv and
\bfw 0 = \mathrm{l}\mathrm{n}(\bfv ) can be computed from \bfw 1,1 =

1
\bfv , we henceforth only work with equations (7.4) in
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 1011

variables \bfw 1,1,\bfw 1,2,\bfw 2,1,\bfw 2,2. We observe that system (7.4) can be further reduced by hand
via introducing \bfw 3 =\bfw 2,2  - \bfw 1,2. Then \bfW can be written as \bfw 3 +C1\bfone  - C1\bfw 2,1 and

d\bfw 3

dr
=C2\bfw 1,1 \odot \bfS \bfW  - C2\bfw 2,2 \odot \bfW  - C2\bfW \odot (\bfw 1,1  - \bfw 1,2)

=C2\bfw 1,1 \odot (\bfS \bfW  - \bfW ) - C2\bfw 3 \odot \bfW .

Therefore, we can replace the 4n-dimensional system (7.4) with a 3n-dimensional

d\bfw 1,1

dr
= - C2\bfw 1,1 \odot \bfW ,

d\bfw 2,1

dr
=C2\bfw 2,1 \odot (\bfS \bfW  - \bfW ),

d\bfw 3

dr
=C2\bfw 1,1(\bfS \bfW  - \bfW ) - C2\bfw 3 \odot \bfW ,

(7.5)

where \bfW =\bfw 3 +C1\bfone  - C1\bfw 2,1. Note that this system still contains \bfw 1,1 =
1
\bfv , so the original

trajectory for v can be reconstructed once (7.5) is solved. We can rewrite this system compactly
in quadratic form as

\.\bfx =\bfA \bfx +\bfH 
\bigl( 
\bfx \otimes \prime \bfx 

\bigr) 
,(7.6)

where \otimes \prime denotes the compact Kronecker product, \bfx = \bfx (r) =
\bigl[ 
\bfw \top 

1,1(r) \bfw \top 
2,1(r) \bfw \top 

3 (r)
\bigr] \top \in 

R3n, \bfA \in R3n\times 3n is the linear operator, and \bfH \in R3n\times 1

2
(3n)(3n+1) is the quadratic operator. In

sum, we started with an n-dimensional nonpolynomial (with logarithmic terms) system (7.1)
and through QBee are able to replace it with a 3n-dimensional quadratic system (7.5).

7.3. Data-driven reduced-order model implementation details. We derived the lifted
system in (7.5) with the goal to learn a reduced-order model (ROM) from simulated trajectory
data—we do not simulate the lifted system. We learn a ROM via the Operator Inference [52]
framework and use Python package version 1.2.1 [1] to implement the model learning and
prediction. The numerical results in this section are shown for Carrington Rotation 2210,
which occurred from 26 October to 23 November 2018, during solar minimum. For more
details of the ROM method for this solar wind application, see [35].

We next provide some numerical details. The state vector of the full-order model which
we simulate to generate data is \bfv \in R129. We take nr = 400 uniform steps in the r variables for
discretization. We simulate the full-order model via the forward-Euler scheme and the ROM
via an implicit multistep variable method based on a backward differentiation formula using
the scipy.integrate.solve_ivp() Python function. The implemented method is based on a
shift of the independent variable to account for advection. We compute the shift function c(r)
and its derivative \xi via the cross-correlation extrapolation method; see [35] for more details.
Note that the training data is obtained by shifting \bfv (r) instead of directly solving the shifted-
lifted equations. Note that the nonlifted ROM is trained on velocity data in units of km/s,
and the lifted ROM is trained on data in units of AU/days. We choose to change the units
in order to avoid very large or small scales of the lifted variables. The change in units also
indicates the change in the scales of the regularization coefficients.
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1012 A. BYCHKOV, O. ISSAN, G. POGUDIN, AND B. KRAMER

7.4. Numerical results. Here, we seek to provide data to answer the following question:
“Does lifting the nonlinear system (7.1) to quadratic form, i.e., (7.5), improve the ROM learn-
ing?” We set to answer this question by comparing the numerical results of a quadratic ROM
learned from trajectories of the original states, \bfv from (7.1), to a quadratic ROM learned from
the lifted state variables, \bfw 1,1,\bfw 2,1,\bfw 3 in (7.5).

We use 70% of our total snapshots (280 snapshots) for training to compute the basis
of the low-dimensional model and 30% for testing (120 snapshots). Therefore, the training
domain is [0.14AU,0.813AU] and the testing domain is [0.813AU,1.1AU]. We choose the
reduced dimension to be \ell = 6 for all learned ROMs. The ROM learning framework requires
regularization for each of the learned matrices/tensors, i.e., \bfA and \bfH require regularization
coefficients \lambda 1, \lambda 2. We choose those from the logarithmically spaced set, i.e., \{ 100,101, . . . ,109\} ,
such that the best coefficients minimize the mean relative error over the training regime. The
optimal coefficients for the shifted ROM in the training regime are \{ \lambda 1 = 1, \lambda 2 = 104\} and the
optimal coefficients for the shifted lifted ROM in the training regime are \{ \lambda 1 = 1, \lambda 2 = 10\} .

Figure 7.1 shows the solutions obtained from both quadratic ROMs, the one learned from
nonlifted data and the one from lifted data. In both cases, the numerical results show that
overall both methods are accurate in the training data (less than 1% relative error). However,
the ROM learned from the original data becomes unstable and produces spurious solutions
(note the different error bars). We compare the relative error in the training and testing regime
in Figure 7.2. While both methods are almost equally accurate in the training domain, the

Figure 7.1. (Top) Solution of the quadratic ROM in the lifted variables, of the form \.\bfx (r) = \bfA \bfx (r) +
\bfH [\bfx (r) \otimes \prime \bfx (r)] from (7.6). (Bottom) Solution of the quadratic ROM in the original variables, of the form
\.\bfv (r) =\bfA \bfv (r) +\bfH [\bfv (r)\otimes \prime \bfv (r)].
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EXACT AND OPTIMAL QUADRATIZATION OF NONLINEAR ODES 1013

Figure 7.2. Relative error of the learned quadratic ROMs in both lifted variables and original variables.

quadratic ROM learned from the original variables produces unstable results in the testing
data—it is apparent that lifting the dynamics improves the ROM’s accuracy in the testing
regime. In conclusion, for predictive computation, the variable lifting makes a significant
difference.

8. Conclusions and outlook. We presented novel theory for quadratization of nonau-
tonomous ODEs and ODEs with arbitrary dimension. In particular, we provided existence
results, depending on the regularity of the input function, for cases when a polynomial control-
affine system can be rewritten as a quadratic-bilinear system. In another thrust, we also de-
veloped an algorithm that generalizes the process of quadratization for systems with arbitrary
dimension that retain the nonlinear structure when the dimension grows. A specific example
is semidiscretized PDEs, where the nonlinear terms remain identical when the discretization
size increases. As an important aspect of this research, we extended the QBee software with
capabilities for nonautonomous systems of ODEs as well as for ODEs with arbitrary dimension,
with rigorous optimality guarantees in the former case. We presented a suite of ODEs that were
previously reported in the literature, and where our new algorithms outperform previously re-
ported lifting transformations. We also highlight an important area of lifting transformations:
reduced-order model learning can benefit significantly in working in the correct and optimal
lifting variables, where learning quadratic models is relatively straightforward.

We anticipate that this research will influence various disciplines and different use cases
that rely on quadratization, as mentioned in the introduction. Particularly, the research will
spur new directions in data-driven modeling, as novel quadratizations of nonlinear dynamical
systems are discovered, which can then be used for model learning. Moreover, this research
will make feasible system-theoretic model reduction for a larger class of nonlinear systems, as
the optimal quadratizations are the starting point for quadratic-bilinear model reduction.

Despite this progress, there remain several open challenges. First, there is a need for
more theory (existence and optimality) of quadratization of nonpolynomial systems of ODEs,
alongside with practical and fast algorithms to find those. Second, an interesting question
that we currently investigate is whether the symbolic computing tools used for ODEs can be
carried over to the PDE setting. Third, since an optimal quadratization is typically not unique,
a natural question to ask is how to find optimal quadratizations with attractive numerical
properties (stable, preserves equilibria, etc.).
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