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C O L L E C T I V E  B E H A V I O R

A self-organizing robotic aggregate using solid  
and liquid-like collective states
Baudouin Saintyves1*, Matthew Spenko2, Heinrich M. Jaeger1,3

Designing robotic systems that can change their physical form factor as well as their compliance to adapt to environ-
mental constraints remains a major conceptual and technical challenge. To address this, we introduce the Granulobot, a 
modular system that blurs the distinction between soft, modular, and swarm robotics. The system consists of gear-
like units that each contain a single actuator such that units can self-assemble into larger, granular aggregates using 
magnetic coupling. These aggregates can reconfigure dynamically and also split into subsystems that might later 
recombine. Aggregates can self-organize into collective states with solid- and liquid-like properties, thus displaying 
widely differing compliance. These states can be perturbed locally via actuators or externally via mechanical feed-
back from the environment to produce adaptive shape-shifting in a decentralized manner. This, in turn, can gener-
ate locomotion strategies adapted to different conditions. Aggregates can move over obstacles without using 
external sensors or coordinates to maintain a steady gait over different surfaces without electronic communication 
among units. The modular design highlights a physical, morphological form of control that advances the develop-
ment of resilient robotic systems with the ability to morph and adapt to different functions and conditions.

INTRODUCTION
The development of autonomous and efficient agents that can adapt 
to a variety of environments and perform different functions by re-
configuring their bodies is one of the frontiers in the field of robotics. 
There is an increasing need for systems that offer multifunctional, 
self-assembling, highly compliant capabilities in concert with resil-
ience and robustness (1). To this end, although traditional robotic 
design tends to distinguish and separate components dealing with 
sensing, actuation, computation, and communication, an alterna-
tive strategy distributes components that each integrate these func-
tions (2). For instance, modular design approaches replace a single 
mechanical body with an aggregate of subunits that can couple to-
gether and rearrange (3–6). However, this coupling often leads to 
rigid connections between docked units, which then implies that 
changes in the overall aggregate shape require an iterative reconfig-
uration process whereby units need to disconnect, move, and then 
reconnect at another location. This is incompatible with variable 
mechanical compliance of the overall structure and limits adaptabil-
ity to changing tasks or environments.

Soft robotics may overcome some of these limitations (7–15). 
Still, although robotic systems with a single soft body are able to 
achieve highly variable and adaptive behaviors (16), the inherent 
need to model materials in the large deformation limit makes the 
design difficult. Furthermore, inspired by flocking observed in na-
ture (17, 18), multi-agent swarm approaches have been successful in 
generating autonomous, as well as resilient, robotic systems by using 
a large number of individual robotic units where large-scale collec-
tive behaviors emerge through local rules between neighboring 
units (19–23). Such noncentralized control is able to absorb local 
perturbations in the inherent noise of the collective organization, 
and the failure of a few in a swarm of similar units does not neces-
sarily affect the capabilities at the collective scale (23, 24). However, 

robotic swarms have so far been limited to low-density, fluid-like 
systems with very little overall rigidity of the system as a whole.

The system described in this paper, Granulobots, combines sev-
eral desirable features of modular, soft, and multi-agent swarm ro-
botics. The Granulobot design is inspired by granular matter’s highly 
strain-adaptive behavior and ability to transform between rigid and 
fluid-like states via a jamming transition (25). The remarkable fea-
tures of granular matter arise from collective effects in assemblies 
made of simple building blocks and depend on interparticle contact 
properties. Expanding beyond jamming-based granular actuator 
systems (7, 26–31) and gear-based metamaterials (32–34), replacing 
passive grains with motorized particles adds new options for loco-
motion (35–39). In granular systems, overall malleable behavior can 
be achieved even with individually rigid subunits by designing loose 
and detachable coupling (36). With the Granulobots, we introduce 
an original coupling design that enables continuous deformations 
and dynamical coupling in aggregates of self-assembling motorized 
units. In dense assemblies of multiple Granulobots, this allows for 
both solid- and liquid-like collective behaviors under a gravity field, 
which then can be exploited for a range of locomotion strategies. 
The result is a form of active granular material that can, at the same 
time, form the building blocks of a soft robot.

In this article, a swarm of Granulobot units, each with a single 
actuated degree of freedom that enables it to roll like a wheel on the 
ground, can self-assemble into larger granular aggregates (see Fig. 1A 
and movie S1). Units can then shift their positions simultaneously to 
generate arbitrary overall shapes. An individual Granulobot unit 
consists of a cylindrical body with an embedded control circuit and 
two permanent magnets that can rotate about the cylinder’s axis. 
One magnet rotates freely, whereas the other one is actuated with a 
motor. This design allows individual units to move autonomously, 
mechanically connect with neighbors via magnets, form a continu-
ously deformable aggregate, and apply torque to a neighbor (Fig. 1B). 
The aggregate’s ability to reorganize its global torque state dynami-
cally allows for collective shape-shifting into the vertical plane and 
against gravity.

Two modes of controlling the behavior of individual units provide 
access to a rich set of aggregate behaviors, with responses ranging 
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from rigid and solid to viscous and liquid-like (Fig. 1C). Coupled with 
feedback control, an onboard encoder sensor helps each Granulobot 
unit maintain the angular position of its actuated rotor, which leads 
to a solid-like, stiff elastic response of the aggregate. Feedback con-
trol can also be used to generate spontaneous, self-organized oscil-
lations. This makes it possible to implement locomotion strategies 
based on collective rolling or rhythmic undulation (40–42). In con-
trast, when using open-loop control, the angular position of the ro-
tors is not maintained, allowing for irreversible deformation of the 
aggregate in response to mechanical load. This can be exploited to 
create a wide range of fluid-like behaviors of the aggregate, includ-
ing locomotion, which causes the robot to act like a soft system that 
yields and conforms to external forces. Without applied power, a 
state with structural resistance can be maintained because of a static 
friction threshold. This is in contrast to other state-changing materi-
als, such as electro- and magnetorheological fluids, that require 
large power consumption to maintain a rigid state, which limits 
their use in autonomous robotics (43).

RESULTS
Granulobot design principle
An individual Granulobot unit is itself an autonomous robot, cylin-
drical in shape with an internal actuator that controls a single rotary 
degree of freedom. It can magnetically couple to other units to form 
more complex aggregates that can change their shape (Fig. 1A). The 
actuator, a brushed direct current (DC) motor, rotates a permanent 
magnet, referred to as the actuated magnet, around a central axis 
(Fig. 1B). A second permanent magnet, referred to as the free mag-
net, is attached to a passive, freely rotating shaft that can move at the 

same fixed radius around the cylinder’s 
central axis. When units come into close 
proximity, the magnetic attraction cou-
ples an actuated magnet with a free mag-
net, which allows the units to transmit 
torque between themselves. When the mo-
tor drives the actuated magnet to rotate 
(Fig.  1B), the magnetic coupling forces 
the free magnet to follow by rotating 
around the robot’s central axis. Because 
Granulobots are designed with frictional, 
smooth gear-like surfaces, the produced 
torques can thus be transferred from the 
neighbor’s free magnet to its robot body. 
This results in one unit rotating around 
the other.

The actuated magnet also acts as an 
eccentric weight that, when rotated, shifts 
the unit’s center of gravity and causes an 
isolated Granulobot to roll. This enables 
the locomotion of individual units and 
makes it possible for them to autono-
mously assemble into an aggregate once 
they come within the range of the mag-
netic coupling force (Fig. 1A). Docking 
is ensured by using opposite polarities 
for the magnets. Two possibilities arise: 
Either both magnets have the same po-
larity in a given unit, in which case units 

with one polarity dock with units of the other polarity, or all units 
are identical with one polarity for the actuated magnet and the op-
posite polarity for the free magnet, as shown in Fig. 1B. All results 
presented here are valid for both cases. Because the free magnet is 
not attached to any other structure, it slides freely along a circular 
track. Although we limited the present study to the connectivity of 
two units, where each unit is magnetically coupled to no more than 
two neighbors, in principle, this design allows for the possibility of 
adding additional free magnets to enable more complex aggre-
gate configurations (see fig.  S1 for units that can couple to three 
neighbors).

Once aggregates are formed, the system is able to reconfigure 
and control its behaviors using decentralized algorithms enabled 
through robot-robot interactions. Each Granulobot contains a 
battery-powered circuit with Wi-Fi capabilities (see Materials and 
Methods) that can be used for real-time robot-robot communica-
tion. For the work discussed here, Wi-Fi communication with a cen-
tral computer was only used to gather data for post-analysis and for 
sending initialization commands to all robots. All control strategies 
were autonomously and decentrally implemented by the units 
through their interactions.

Control of individual units and 
aggregate formation/disassembly
In each individual Granulobot unit i, torque balance with respect 
to its actuated rotor leads to the following relation among the ro-
tor’s angular speed θ̇i ; the torque Γl,i produced by an external load 
(from a neighboring unit or external perturbation); the voltage Ui 
applied to the motor, which produces a torque kUi; and the fric-
tional torque from the motor’s and unit’s moving parts, which 

A B

C

Fig. 1. Granulobots: A modular platform bridging soft robotics and active granular materials. (A) Time-lapse of 
a swarm of Granulobot units self-assembling into an aggregate and then reconfiguring simultaneously. (B) Coupling 
and actuation mechanism inside the Granulobot units. Each two-wheeled unit uses magnetic coupling to connect to 
its neighbors. Inside a given unit, a single, rotary degree of freedom can be activated to generate torque, which en-
ables this unit to roll along the frictional contact with its neighbor, as indicated by the arrows. (C) Granulobot aggre-
gate behaviors, ranging from active liquid to active solid, depending on the type of control. Controlling in an open 
loop enables behaviors resembling an active liquid with tunable viscosity and the ability to move and morph. In 
closed-loop individuals, units use local, onboard feedback, and the aggregate can exhibit a range of solid-like behav-
iors with locomotion gaits that include collective rolling and synchronized undulation. For sufficiently small applied 
mechanical loads and voltages to the units, friction maintains the aggregate in a passive state that can resemble 
jammed granular matter or an elastic solid, depending on the units’ spatial arrangement.
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resists rotation and has magnitude Γf > 0 (taken to be the same for 
all units)

where η0θ̇i is the torque produced by the motor’s back electromotive 
force (EMF) and k > 0 and η0 > 0 are parameters characterizing the 
motor’s load response (see Materials and Methods for the derivation 
of Eq. 1 and the sign convention for the torques).

As long as ∣Γl, i + kUi∣ < Γf, a Granulobot is effectively in a passive 
state and does not move. For initially unconnected units in a swarm 
with Γl = 0, a voltage Ui ≥ Γf/k is required to start autonomous roll-
ing and enable units to connect with each other. Once the units have 
self-assembled, a change in the torque that a given unit exerts with 
its active rotor on its neighbor can lead the whole assembly to reor-
ganize. As soon as an aggregate comprises three or more units, 
shape-shifting can enable collective locomotion. For example, in 
Fig. 2A, the middle unit lifted off the ground, which allowed the ag-
gregate to move (here to the left) by having all wheels that touch the 
ground rotate in the same direction.

In larger aggregates, applying torque can physically move units 
on top of others and deform the assembly into an arbitrary configu-
ration within the vertical plane (Fig. 2B and movie S1). At the points 
where units contact each other, magnetic attraction provides a normal 
force strong enough to ensure no-slip gear-like coupling, whereas 
units that touch in the absence of magnetic attraction can slide as 
long as forces exceed the static friction arising from the units’ 
smooth gear surface. These two frictional behaviors prevent seizing 
when three consecutive units are in contact with each other.

During such reconfiguration, geometrical constraints that pre-
vent a unit from rotating about its neighbor’s central axis can still 
arise. If further rotation is nevertheless forced and the actuation 
torque applied becomes stronger than the magnetic coupling, then 
the actuated magnet will separate from its counterpart in the neigh-
boring unit. An ability for individual units to detach thus emerges 
from the collective properties of the assembly, without the use of any 
additional actuator. This allows the reorganization of neighbors in 

aggregates and the creation of separate entities that can function as 
autonomous robots (Fig. 2C and movie S1).

Choosing a functional form for the voltage Ui in Eq. 1 makes it 
possible to generate different behaviors for the individual Granulobot 
units and therefore to design a rich set of collective mechanical 
behaviors for the aggregate. In the following equation, we use a general 
form for each unit i that combines constant torque and position 
control by setting a voltage bias ui and monitoring the angular posi-
tion θi from an encoder embedded in each unit’s circuitry

The parameters G/k > 0 and αη0/k, with α ∈ [−1, ∞], determine how 
the drive voltage responds to changes in the rotor’s movement and 
can be thought of as the coefficients of a proportional-derivative 
feedback loop [Kp and Kd, respectively (44)]. Using such active con-
trol, a unit’s electromechanical behavior for ∣Γl, i + kUi∣ ≥ Γf in Eq. 1, 
beyond the passive state, is then described by

Here, G tunes the Granulobot’s ability to maintain its rotor at a tar-
geted position under load, thus acting analogous to a torsion spring 
constant, and (1 + α)η0 tunes the rotor’s damping, analogous to vis-
cous dissipation; α > 0 increases the damping generated by the back 
emf η0θ̇i , and α = −1 actively cancels it. Last, kui corresponds to a 
torque bias produced by the motor.

Within this framework, driving Granulobots in an “open loop” in 
Fig. 1C corresponds to setting parameters α = G = 0, ignoring on-
board sensor information about θ and θ̇ , and controlling the system 
only via the bias voltages ui. By contrast, a “closed loop” refers to 
α ≥ −1 and G > 0 so that the sensor data inform the response. In the 
next section, we describe how choices for these parameters control 
the aggregate behavior indicated in Fig. 1C. In a subsequent section, 
we then demonstrate how collective states can be leveraged for dif-
ferent aggregate locomotion control strategies that can be used in 
different environmental conditions.

Granulobot aggregate behavior
Figure 3 shows the different states of a Granulobot aggregate as a 
function of the average applied torque load 〈∣Γl∣〉 to the aggregate 
and two of the control parameters, the voltage bias magnitude ∣u∣ 
and the gain G of the feedback for the angular rotor position. Each 
unit within the aggregate experiences a typical torque load of mag-
nitude 〈∣Γl∣〉 because both ∣u∣ and G are set equal for all Granulobots 
(the sign of Γl,i and ui can vary from unit to unit). The dissipation 
parameter α scales the effective viscosity and the relaxation time, 
respectively, in the liquid and the solid state of the aggregate but for 
α ≥−1 does not change the behaviors qualitatively. The load re-
sponses of individual units corresponding to the different aggregate 
states are sketched in the boxes (see Materials and Methods for ex-
perimental data and modeling). In the following parts, we describe 
the different behaviors that correspond to the states colored blue, 
green, red, and yellow in Fig. 3 and provide experimental data for 
closed-chain aggregates of N = 8 to 10 in Figs. 4 to 6 (see Materials 
and Methods for discussion on variability among units and its effect 
on crossing between states).
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C

Fig. 2. Self-assembly, shape-shifting, and dynamic reconfiguration. Red ar-
rows represent the actuated magnets’ direction of rotation. Blue arrows represent 
Granulobots in the process of reconfiguration. (A) Individual Granulobot units can 
roll and attach magnetically into larger assemblies, which then can move using a 
subset of units as wheels. (B) Exerting torque onto their neighbors, individual units, 
and groups of units can simultaneously reposition themselves and thus rearrange 
the assembly’s shape. (C) By exerting torque larger than the magnetic binding be-
tween neighbors, units can split off and form autonomous robots on their own.
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Passive state
If all biases ui = ∣u∣ are sufficiently small, the aggregate remains stat-
ic until the frictional torque Γf in a unit can be overcome. This is the 
passive state shaded blue in Fig. 3. When contacts among the units 
in the aggregate involve only magnetic linkages, the passive aggre-
gate has some degree of elasticity reflecting the stiffness of the mag-
netic coupling. When both magnetic and nonmagnetic contacts are 
involved, as in densely packed configurations where a given unit can 
also be in frictional contact by touching other units, this can create 
geometric constraints and lead to a granular jammed state with po-
tentially very little elastic behavior (Fig.  1C). Such jammed state’s 
response to load will depend strongly on the specific overall config-
uration of units within the aggregate.

In the following, to simplify the presentation, we consider ag-
gregates where all nonmagnetic contacts slip easily and their contri-
bution to friction can be neglected. In this case, the boundaries of 
the passive state in Fig. 3 are defined by the weakest coupling be-
tween units in the aggregate, which corresponds to Granulobots 
where the bias ui has the same sign as the load, thus effectively re-
ducing the frictional resistance. This leads to a yield torque

which vanishes once ∣u∣ exceeds a threshold bias

 and gives rise to the wedge shape of the passive state in Fig. 3.

Liquid-like states
These states occupy the green (∣u∣, Γl) 
plane in Fig.  3, where G =  0. The bias 
voltage threshold u* delineates behavior 
akin to a yield stress fluid for u < u* and 
corresponding to an active fluid for 
u > u*. For a highly deformable, steady 
liquid-like load response to emerge, 
neighboring magnetically coupled units 
ideally all need to rotate in opposite di-
rections. In an aggregate comprising a 
closed chain of an even number of units 
N, this translates into

Such a regime is reached autonomously 
by setting

in each of the individual units (in this case, 
onboard sensing of the rotor’s direction 
of rotation is required). The mechanical 
coupling then drives a self-organization 
process that, after a brief transient regime, 
converges to a state with bias voltages of 
opposite sign on neighboring units,

(Fig.  4A and movie S2). Alternatively, 
the liquid state can be achieved in a fully 
open loop, with no sensing of sgn(θ̇i) , by 

initializing neighboring units via a global command to use ∣u∣ of 
opposite signs (see Materials and Methods), and with α = 0.

From Eq. 3, for G = 0, the load response of all individual units is 
described by an equation of the form

written here for positive Γl,i and therefore θ̇i > 0 and sgn(θ̇i) = 1 . If 
∣u∣ < u*, this relationship between applied load and resulting rota-
tion speed has the same functional form as the relationship between 
applied stress and shear rate for a yield stress fluid (see sketch of 
Γl(θ̇) in Fig. 3). For such fluid an effective, rate-dependent viscosity 
ηeff is defined by the ratio of stress to shear rate. By analogy, we here 
define a unit’s viscous damping as

To compare this with the viscous behavior of a multiunit Granulobot 
aggregate in its liquid state, we characterize the collective viscous 
flow by performing experiments where we time the collapse of cir-
cular chain units (Fig. 4B and movie S2). We choose an initial con-
figuration such that before the collapse, for u = 0, the load for all 
units in the aggregate is slightly below their frictional yield torque, 
and therefore the chain’s circular shape is maintained. We then 
switch on the bias ∣u∣ to drive the system into the liquid state and 

Γ
∗

l
= Γf − k ∣u ∣ (4)

u
∗
= Γf ∕k (5)

N
∑

i

θ̇
i
≈ 0 (6)

ui =∣u ∣ sgn(θ̇i) (7)

ui = − ui−1 = (−1)i ∣u ∣ (8)

Γl,i = (1 + α)η0θ̇i + k(u∗ − ∣u ∣ ) (9)

ηeff = Γl,i ∕θ̇i = η0 + k(u∗ − ∣u ∣ )θ̇i
−1

(10)

Fig. 3. Dynamical states of a Granulobot aggregate. Different states a Granulobot aggregate can exhibit as a func-
tion of open-loop voltage bias ∣u∣, closed-loop proportional gain G, and the average applied torque load 〈∣Γl∣〉. The 
exploded view shows in more detail the parameter dependence of the different states. Schematic diagrams in the 
boxes indicate the associated load responses of individual units. Our experiments on closed-chain Granulobot ag-
gregates reproduce qualitatively the behavior shown in the sketches. In the liquid-like regime (G = 0; green), this in-
cludes the linear increase of the torque load response with angular speed θ̇ , where the slope corresponds to an 
effective viscosity ηeff. With decreasing voltage bias ∣u∣, the behavior changes from an active liquid that flows even 
without applied load to a yield stress fluid that only flows if 〈∣Γl∣〉 ≥ Γf − k∣u∣. In the active viscoplastic regime (G > 0 
and ∣u∣ < u*; red), the torque load increases linearly with angular displacement θ and with a hysteresis Δθ = k(u* − 
∣u∣)/G when unloading. In the active, self-oscillating solid-like regime (G > 0 and ∣u∣ ≥ u*; yellow), the torque load in-
creases linearly and reversibly with average angular displacement, as for an ideal elastic response. Increasing the 
rotor damping from α = −1 changes the self-oscillation of individual units from sinusoidal form to alternating expo-
nential decay, and the aggregate behavior transitions from undamped, purely elastic to viscoelastic solid.
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measure the relaxation time, τ, needed for the aggregate to reach its 
minimum potential energy and thus its equilibrium state. To bypass 
the transient phase of the self-organizing process and ensure the 
system behaves as a liquid as soon as the voltage bias is applied, 
we enforce

Note how adjacent units rotate in oppo-
site directions and how this complex 
sequence of interdependent rotations 
emerges simply in response to external 
forcing. Hence, it can accommodate ar-
bitrary starting configurations and will 
always proceed in a liquid-like manner 
toward the equilibrium configuration that 
minimizes gravitational potential energy.

Figure  4C shows measurements of 
ηeff (red circles) and τ (blue circles) as a 
function of the voltage bias ∣u∣. The plot-
ted ηeff is for an individual unit, obtained 
by applying a fixed torque Γl,i and mea-
suring the resulting angular speed θ̇i as a 
function of ∣u∣. For comparison with the 
collapse experiments, the torque load is 
chosen slightly lower than the friction 
torque, such that the rotor is also static at 
u = 0. The experimental data are well de-
scribed by the analytical form of Eq. 10 
(black dotted line) using Eq. 9 to obtain 
θ̇
i and taking as a typical load Γl,i = mgr, 

the torque applied to a unit’s active rotor 
of radius r by the weight of a neighbor-
ing unit at right angle with respect 
to gravity

We observe that the aggregate collapse 
time τ reproduces this behavior, consistent 
with a collective viscosity that scales 
with bias ∣u∣ in the same way as ηeff. This 
demonstrates how the collective viscosi-
ty can be tuned by setting the viscous 
load response of the individual units via 
∣u∣. Changing the damping via α, which is 
set to zero in all data shown in this section, 
only scales the behavior with a prefactor.

For vanishing voltage bias ∣u∣, the pas-
sive state is approached, and τ and ηeff 
diverge. Conversely, as ∣u∣ is increased to 
the point that it reaches u*, the yield 
stress vanishes and the aggregate viscos-
ity attains a load-independent value that 
scales as2).

Effectively, the system now behaves like 
a Newtonian liquid. If ∣u∣ is increased above u*, then individual 
units rotate with a finite speed

already in the absence of any substantial load (see the final equilib-
rium state in Fig.  4B and movie S2). In this state, the aggregate ui = (−1)

i
∣u ∣ (11)

ηeff = (1 + α)η0
mgr

mgr − k(u∗ − ∣u ∣ )
(12)

ηeff ∼ (1 + α)η0 (13)

θ̇
i
=

k( ∣u ∣ − u∗)

(1 + α)η
0

(14)
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Fig. 4. Active liquid-like state in a closed-chain aggregate. N = 10 units with rotor damping α = 0 and torsion 
spring constant G = 0. (A) Rotation speeds of individual units as a function of time for an aggregate placed horizon-
tally with ui =∣u ∣ sgn(θ̇) . Here, ∣u∣ = 1 V. The different traces show the rotation speeds of individual units, and the 
black line shows their sum. After a transient self-organization period, indicated by the interval between the vertical 
dashed lines, the individual units have autonomously reached a configuration where neighbors rotate in opposite 
directions and the net rotation is zero. (B) Rotation speed of individual units as a function of time during a vertical 
collapse experiment with ∣u∣ = 1 V. The inset shows the ring configuration before the collapse and the final collapsed 
state. Traces of the rotation speed for individual units and of the sum of all speeds are color-coded as in (A). (C) Com-
parison of a single unit’s damping parameter ηeff, defined by the ratio Γl,i ∕ θ̇i , with the relaxation time scale τ, mea-
sured for a collapsing chain of 10 units. Both are plotted as a function of voltage bias ∣u∣. Data for the single unit were 
obtained from measurements of θ̇i for a fixed load Γl, i = 0.020 N m (red circles). Also shown is ηeff evaluated using the 
analytical form for θ̇i obtained from Eq. 3, for a typical load Γl.i = mgr, where m is the unit’s mass, r is its radius, and g 
is the acceleration of gravity (black dotted line). The relaxation time scale τ, measured for the collapsing chain (blue 
circles), closely tracks the evolution of the damping parameter with voltage bias ∣u∣.
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Fig. 5. Tensile load response of a closed-chain aggregate. Force-displacement curves measured for N = 8 units 
with rotor damping α = −1 and applying a vertical displacement rate of 1 mm/s. (A) Liquid-like response with torsion 
spring constant G = 0 N m/rad, voltage bias ∣u ∣ = 0.15 V ≃ u

∗

0
> u∗ (green curve), and hysteretic response in the vis-

coplastic solid state with G = 2.0 N m/rad, ∣u∣ = 0.1 V < u*. Inset: Still frame from a video of the Granulobot chain in the 
Instron materials tester used to generate the data in (A) and. In this image, the back side of the units is visible, show-
ing the circuit board and the battery. (B) Reversible elastic response in the self-oscillating solid with G = 2.0 N m/rad 
and ∣u∣ = 1 V > u* (loading in red, unloading in blue). The periodic variations are due to shape oscillations of the ag-
gregate. Insets: Enlarged images of the Granulobot chain in the Instron showing identical configurations at the be-
ginning (a) and end (c) of the load cycle, and elongation when the maximum strain was applied (b).
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behaves in a manner that can be characterized as an active liquid 
with low effective viscosity. The green curve in Fig. 5A presents data 
from a constant speed tensile test when ∣u∣ = u*, so Γf is actively 
compensated for by the voltage bias, with rotors remaining static 
when not loaded. We observe a quasi-flat, strain-independent be-
havior, consistent with what we expect for a Newtonian liquid-like 
response. In practice, a unit starts to rotate at a slightly larger bias 
than the estimate from calibration torque-displacement curves

This can be explained by static friction at zero angular speed 
that is larger than the kinetic friction producing Γf (see Materials 
and Methods).
Solid-like states
These states use feedback to sense the rotor movement and drive it 
toward its equilibrium angular position during a load perturbation. 
They are colored red and yellow in Fig. 3. With increasing G, the 

response of individual units, and thus also 
of the aggregate, becomes more elastic 
and rigid.

Considering a bias that always acts 
against the frictional torques  , 
Eq. 3 can be written as

When ∣u∣ = u* (the vertical dotted plane 
in Fig. 3), this behavior corresponds to 
a viscoelastic solid, the response of a 
damper, and a spring in parallel (45). In 
this specific state, vanishing damping, 
which occurs when α = −1, corresponds 
to an undamped mass-spring oscillator.

When ∣u∣ < u*, the unit’s response is 
analogous to a viscoplastic solid (col-
ored red in Fig. 3), which corresponds to 
a spring, a damper, and a frictional ele-
ment in parallel (45). In this regime, 
where the characteristic response time 
of a rotor is

effective position control with a fast re-
sponse is achieved by choosing a posi-
tive α and a large G. Otherwise, if α = −1, 
then the damping η0θ̇i is actively com-
pensated for, and a perturbation of the 
rotor that overcomes Γf leads to steady un-
damped oscillations. Because the biases 
will not completely cancel the frictional 
torques in individual units, if G is not 
large enough, then deformation will ex-
hibit substantial hysteresis

As shown in the tensile test data pre-
sented in Fig. 5A, the overall aggregate 
will then also respond to load with 

some hysteresis, implying plasticity.
If we choose biases ∣ui∣ > u*, the response of the aggregate to a 

quasi-static tensile test no longer is hysteretic but becomes revers-
ible, as shown in Fig. 5B. This is the signature of an elastic solid. 
However, unlike an ordinary elastic solid, in this state (colored yel-
low in Fig. 3), the internal dynamics of the aggregate are more com-
plex: Each rotor’s unit is driven away from its equilibrium angle, 
and oscillations arise spontaneously, even without applied load. The 
units are driven by the bias to “self-oscillate” such that, when isolated, 
they exhibit well-defined limit cycles with amplitude and fre-
quency fixed by ∣u∣, G, and α (Fig. 6A). Because individual units’ 
rotors are now subject to inertia (see Material and Methods for 
modeling), which manifests itself through spring-like oscillation, 
they can transfer momentum to each other when magnetically coupled 
in an aggregate and thus perturb their neighbor’s dynamical state. 
In a chain of units, after an initial transient, such purely mechanical 
coupling can lead to the self-organization of collective oscillatory 

u∗
0
> u∗ = Γf ∕k (15)

(16)

τ = (1 + α)η0∕G (17)

Δθ = k(u∗ − ∣u ∣ )∕G (18)
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Fig. 6. Self-oscillating solid-like state in a closed-chain aggregate. Granulobots were laid horizontally onto a slip-
pery surface (see movie S3). All data are for torsion spring constant G = 1.0 N m/rad and voltage bias threshold u* = 
0.11 V. (A) Phase space (θ, θ̇) of a single isolated unit for different biases ∣u∣ and damping parameters α: ∣u∣ = 2 V, 
α = −0.9 (brown); ∣u∣ = 1 V, α = −0.9 (red); ∣u∣ = 1 V, α = −0.5 (orange); ∣u∣ = 1 V, α = 0 (yellow). (B to H) Data for 
N = 10 units. (B) Angle as a function of time for two coupled neighboring units in a chain aggregate with bias ∣u∣ = 2.0 V, after 
turning all units on at time t = 0. (C) Limit cycles in phase space (θ, θ̇) for all N coupled units in the steady regime of the 
experiments corresponding to (B). (D) Maximum of power spectra averaged over N = 10 units 〈Smax〉 as a function of 
bias ∣u∣. Units are in the same aggregate configuration as in (B) and (C), with damping parameters αi = −0.9, while ∣u∣ 
is gradually increased from 0 to 2 V and decreased back to 0 V. (E) Limit cycles observed in an aggregate with α ∈ [ − 
0.9, − 0.6], ∣u∣ = 1.0 V. (F and G) Power spectra for each of the units from (E) when coupled into a ring aggregate (F) 
and when isolated (G). (H) Shape deformation γ over time for an aggregate with αi = α as in (B) and (C) (black) and with 
a range of α as in (E) and (F) (brown).
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states with well-defined global limit cycles that remain unchanged 
over time. Specifically, in a closed loop of an even number of units 
that all have the same parameters and that remain unperturbed, we 
observe a synchronization process (see movie S3). Figure 6B dis-
plays such a situation for an aggregate of N = 10 units and, by focus-
ing on two neighboring units, highlights how their angles evolve as 
a function of time. After turning the units on and a subsequent ini-
tial transient, all units lock in their phase and amplitude. Once the 
steady state is reached (to the right of the vertical dashed line in 
Fig. 6B), all units exhibit essentially identical limit cycles (Fig. 6C), 
and the frequency and amplitude observed in the aggregate are the 
same as for an isolated unit.

To characterize the degree of self-organization of an aggregate 
state, we use the frequency power spectra associated with data such 
as in Fig. 6B. We apply a fast Fourier transform to each θ(t)i to ob-
tain the single-sided amplitude spectrum Si. Pronounced and sharply 
peaked maxima at overlapping frequencies are expected between units of 
an aggregate in a highly synchronized state (fig. S2A), whereas no 
peaks are observed when no self-organization occurs. Averaging the 
power spectrum maximum value Smax

i
 over N units gives

Measuring 〈Smax〉 in an aggregate of coupled units as the bias voltage 
is first ramped up and then down again, we found that the transition 
between disordered dynamics to a synchronized behavior is strong-
ly hysteretic (Fig. 6F), with long transient regimes at biases close to 
u* and almost instantaneous transitions at larger biases. This hyster-
esis implies that, for a certain range of bias values ∣u∣, the Granulobot 
aggregate can be in two states, with and without a limit cycle. With 
a sensitivity that can be tuned with the voltage bias within this range, 
this means that switching between these behaviors can be triggered 
by mechanical perturbations from the environment the robot inter-
acts with, without electronic feedback.

When the system synchronizes, neighboring units’ phases alter-
nate between 0 and π, which corresponds to θ̇

i
= − θ̇

i+1
 , and 

∑N

i
θ̇
i
≈ 0 (Fig. 6B and fig. S2B). In this situation, the contour of the 

chain remains static in time with no deformation. We label this col-
lective steady state a self-oscillating solid (a similar phenomenology 
is observed when choosing ui across all units with the same sign, 
regardless of Γf; see Materials and Methods). In this state, perturba-
tions that are too small to switch the aggregate to disordered dy-
namics can still affect its behavior. For example, placing a previously 
synchronized closed-chain loop upright in a gravity field when per-
forming a tensile test leads to small global periodic deformations of 
the structure that can be seen by the oscillations in the force signal 
in Fig. 5B. However, on average the response to loading remains that 
of a purely elastic solid, with collective self-organized properties 
that ensure continuous deformation across all of the aggregate (see 
movie S3).

Such global shape oscillation can also be triggered internally 
when units are assigned different parameters and thus exhibit differ-
ent self-oscillation properties. In such a setting, we still observe col-
lective limit cycles characterized by self-organization, but without 
synchronization. Figure 6E shows such collective limit cycles for an 
assembly with a distribution of damping parameters αi in the range 
[−0.9, −0.6]. Changing the damping parameter changes the oscilla-
tion frequency of the individual units. Nevertheless, we see that 

mechanical coupling selects a single collective frequency (Fig. 6F) 
with phases that are locked in time, despite the spread in frequencies 
of isolated units (Fig. 6G). However, there remains a spread in oscilla-
tion amplitudes that is accompanied by a shift of the phases between 
consecutive units in a chain (see fig. S2) and the propagation of a wave 
that deforms the aggregate’s contour globally and periodically (see movie 
S3). Figure 6H shows the evolution of the deformation γ as a function 
of time for an assembly with the same range of α as in Fig. 6E and 
Fig. 6F and compares it with the case where α has the same value for 
all units, as in Fig. 6B and Fig. 6C. Here, the amount of deformation over 
time is parameterized by

where A is the total area contained within the perimeter of the assembly.

From collective states to decentralized locomotion tasks
The behaviors summed up in Fig. 3 show a wide range of responses 
to external loads and constraints. Such mechanical feedback from 
the environment can be seen as an emergent and decentralized col-
lective mechanical sensing ability that can be harnessed for control. 
These collective states can be driven out of their effective equilibri-
um to produce dynamical shape-shifting simply by preventing an 
individual unit’s behavioral state, thereby enabling decentralized 
deformation-based tasks. Furthermore, the use of voltage control 
via a single functional form (Eq. 2) allows for continuous transition 
between states of different response type and autonomous switching 
between strategies depending on environmental or computation 
constraints. We demonstrate this ability by implementing three dif-
ferent locomotion gaits. Using the liquid-like, self-oscillating, and 
viscoplastic mechanical responses, a robot can move over an obsta-
cle without sensors; self-organize into a steadily translating aggre-
gate, either on frictional or slippery surfaces, solely via mechanical 
coupling; or move quickly and efficiently using its own inertia when 
it maintains overall rigidity.
Morphing liquid for sensorless obstacle management
We leverage the aggregate’s ability to change its rigidity and behave 
as a liquid to locomote over an obstacle, using only mechanical feed-
back from the environment. For an aggregate to deform liquid-like 
while translating its center of mass without sensor readout, we must 

find a form of ui that implements a gait while satisfying 
∑N

i
θ̇ ≈ 0 . 

Here, we show that this can be achieved with α = G = 0 by using the 
functional form for the individual ui displayed in Fig. 7A, which we 
have inferred from a reverse kinetic approach. This gait relies on 
synchronous periodic deformation that we can implement with 
both closed or open chain configurations by allowing neighboring 
units to wirelessly sync their clocks and correct phase drift over time 
(see Materials and Methods). Figure 7B shows a snapshot of an ag-
gregate “flowing” over an obstacle to pass it (see movie S1).
Undulator: Emergent aggregate gait with coupled oscillators
Figure 6H shows that a spread in the units’ oscillation properties in an 
aggregate leads to limit cycles that generate periodic collective shape 
deformations. Even when there is no spread, similar collective shape 
deformations can be triggered by mechanical interaction with the en-
vironment. Specifically, when an aggregate of synchronized units, all 
with equal control parameters, is placed vertically onto a nonslip sur-
face, limit cycles remain, but small regular left-right periodic defor-
mations emerge because of frictional constraints: Units that are in 

⟨Smax
⟩ =

1

N

�

Smax
i (19)

γ =
A − A(t = 0)

A(t = 0)
(20)
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contact with the nonslip surface cannot rotate as much as the others. 
In such a setting, perturbing this state further by turning off one unit 
modifies the limit cycle (Fig. 7C), breaks the left-right symmetry of 
the collective periodic deformation, and amplifies it. This can lead to 
sustained locomotion of the aggregate (Fig. 7D) without the use of 
wireless communication, solely relying on unit-unit mechanical inter-
actions and hence minimal computation (see movie S3). To locomote 
with a closed chain, the left-right symmetry of the periodic deforma-
tion can also be broken by using an odd number of units with iden-
tical oscillation parameters (see movie S1). In an open chain 
configuration, periodic deformation can be used to locomote on a 
slippery surface. In that case, perturbing the properties of an oscillator 
in one portion of the chain can trigger an undulating deformation 
that alternates contact with the ground periodically between different 
sections of the chain (Fig. 7, E and F, and movie S1).
Inertial shape-shifter
Here, we demonstrate the implementation of a local displacement 
control approach to generating fast and efficient rolling gaits in rigid 
solid aggregates. This is achieved via fast and overdamped local 
feedback loops in the viscoplastic region of Fig. 3, with large G, ∣u∣ = 

0, and an optimal α. Small, appropriately 
timed shape perturbations are propagat-
ed through a ring-like chain of coupled 
units to generate coordinated locomo-
tion that leverages the assembly’s overall 
inertia. The shape perturbations are en-
forced by controlling the rotors’ absolute 
angles as a function of time (see Materials 
and Methods for details). The aggregate’s 
locomotion is triggered in a decentral-
ized way by sending the same message 
once to all units. Neighbor-neighbor 
communication and a leader-follower al-
gorithm then implement a predefined 
angle perturbation that propagates 
through the chain. Depending on the al-
gorithm parameters, the aggregate can 
either crawl or roll, the latter demon-
strating the faster and most energy-
efficient locomotion strategy because 
only small rotor displacements are re-
quired (Fig. 7, G and H, and movie S1).

CONCLUSIONS
The Granulobot represents a robotic sys-
tem inspired by granular material where 
motorized units can flexibly and reversibly 
couple with each other and self-assemble 
into larger aggregates. A minimal design 
with a single activated degree of freedom 
per unit enables aggregates to reconfig-
ure dynamically and to transition be-
tween solid- and liquid-like responses 
under gravity. In contrast with modular 
robotic systems that require successive 
steps of detachment and reattachment of 
individual units to change their shape, a 

Granulobot aggregate can deform by continuous local displace-
ment, similar to a deforming soft material. Because such deformation is 
a function of the Granulobots’ dynamical states, this results in the wide 
range of collective mechanical behaviors shown in Fig. 3. Further-
more, because these different response properties are all encoded 
in the functional form of the control voltage Ui, this allows continu-
ous transition between liquid-like behavior associated with open-
loop control and solid-like behavior where an onboard feedback 
loop monitors the local rotor displacement sensor.

The properties associated with several of the Granulobot aggregate 
states make it possible to use mechanical interaction with the environ-
ment to implement decentralized locomotion strategies without elec-
tronic environmental sensing and at minimal computation cost. In 
the liquid-like state, this enables an aggregate to pass over an obstacle 
by “flowing” over it. In the self-oscillating solid state, Granulobots 
self-organize strictly via mechanical coupling into well-defined limit 
cycles. In this setting, changes in the control parameters, as well as in 
the mechanical environment where robots operate, can trigger peri-
odic deformations. Using this feature, aggregates can self-coordinate 
periodic shape changes to slide on a slippery surface and roll on a 
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Fig. 7. Exemplary Granulobot locomotion strategies. (A) Liquid-like gait using a set of voltage biases with shifted 
phases in an aggregate of N = 8 units (initial voltage u0 = 0.7 V and amplitude A = 2.4 V). (B) Snapshots of a Granulobot 
aggregate using the gait (A) to move over an obstacle. (C) Limit cycle reached by a closed-chain aggregate in the 
self-oscillating solid state with N = 6 units, after turning unit i = 1 off (voltage bias ∣u∣ = 2 V, rotor damping α = −0.9, 
and torsion spring constant G = 1.0 N m/rad). (D) Snapshots of a steadily moving self-organized aggregate corre-
sponding to the gait in (C). (E) Limit cycle of an open chain aggregate in the self-oscillating solid state with N = 8 units, 
after turning unit i = 7 off (∣u∣ = 1 V, α = −0.9, and G = 0.5 N m/rad). (F) Snapshots of a steadily moving self-organized 
aggregate corresponding to the gait in (E). (G) Limit cycle from a leader-follower scheme to implement a propagating 
perturbation (inertial shape-shifter). Choosing ∣u∣ = 0, G = 10.0 N m/rad, and α = 1.0, units can be controlled in dis-
placement (large G with ∣u∣ < u*), enabling fast collective motion with small deformation by turning into a “pumping” 
wheel. (H) Snapshots corresponding to gait (G). The blue dot corresponds to unit i = 1. In (C), (E), and (G), the units of 
θ and θ̇ are rad and rad/s, respectively.
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no-slip surface, thus leveraging physical interactions with their envi-
ronment to generate locomotion (46). Furthermore, the bistability we 
observe in Granulobot aggregates for a range of bias voltages enables 
a minimal, purely mechanical “decision-making”: Sufficiently large 
external perturbations can switch the behavior of the system between 
disordered and self-organized states without requiring electronic 
sensing. Reminiscent of mechanisms found in living systems (47), 
this opens up a promising perspective in distributed robotics to de-
velop scalable and collective behavioral capabilities.

The viscoplastic state makes it possible to maintain an aggregate 
shape and exhibits less sensitivity to perturbation compared with the 
self-oscillating solid. This state is more amenable to the implementa-
tion of traditional displacement control, where parameters can be 
tuned for a rigid response that is insensitive to external environmental 
loading, similar to controlling a robotic arm. In our experiments with 
closed-chain aggregates, this is advantageous when implementing fast 
locomotion using inertia. It also demonstrates the ability of the design 
to combine in a decentralized way our physical approach with more 
widely used kinematic planned strategies. This is also the regime in 
which controlled neighbor reconfiguration can be implemented in 
usage more similar to existing modular robotic systems. However, 
such reconfiguration can happen spontaneously in any of the acces-
sible states through collective mechanisms.

We view the different locomotion strategies explored here as initial 
examples that demonstrate the versatility of the Granulobot platform. 
Hence, we anticipate that many additional locomotion strategies 
could be found as well as possible new tasks. A promising way to ex-
plore them could be to implement machine learning approaches such 
as in (48, 49). A more ambitious but crucial step would be to imple-
ment learning in a fully decentralized way, which could enable ag-
gregates to autonomously select strategies that are relevant to the 
environment and the constraints they encounter. In this context, con-
ventional machine learning approaches are conceptually challenging 
to apply because error functions are ultimately estimated centrally. 
We believe that the Granulobot platform offers a promising perspec-
tive for tackling this problem by combining the collective behavior 
emerging from mechanical interactions among the units with local 
error optimization executed in the units’ microcontrollers.

Furthermore, more complex packing and coupling structures 
could be created. This could be achieved by increasing each unit’s 
connectivity with additional freely rotating magnets and, in dense 
packing configurations, exploiting the metastability associated with 
granular jamming (25). For instance, it should be possible to main-
tain structural rigidity at no energy cost and to switch configura-
tions by actuating only a few units where resistance to reconfiguration 
is weaker. In such a setting, larger connectivities would increase the 
effect of couplings and could allow for more collective mechanical 
adaptability (50). In addition, although the Granulobot aggregates 
discussed in this work are effectively two-dimensional (2D), arrang-
ing different aggregates next to each other with elements that con-
nect them suggests a straightforward extension to a 3D version. 
Last, the simple contact and actuation principle that we propose 
could be integrated into larger-scale programmable matter (5).

MATERIALS AND METHODS
Robotic prototype
The Granulobot prototype discussed in this work consisted of 3D-
printed parts assembled with ball bearings, permanent magnets, a 

custom battery-powered electronic circuit, and a geared DC motor 
(Fig. 8A). Each individual Granulobot unit was composed of three 
coaxial components that could rotate independently from each oth-
er: The first was a wheel, which contained the DC motor (N20 from 
Pololu) that drove a rotor with a magnet at its end (referred as actu-
ated magnet in the main text); the second was another rotor, also 
with a magnet at its end, that could move freely around the central 
motor axis (referred to as free magnet in the main text); and the 
third was a freely rotating second wheel (shown at the top of the 
exploded view in Fig. 6A) that helped to align the Granulobot units 
when making contact and stabilized an assembled aggregate against 
tipping over. Both rotors held hollow cylindrical neodymium mag-
nets (N54 from SuperMagnetMan; size of 3 mm by 12 mm by 15.5 mm) 
via a shaft with ball bearings on each end, which let the magnets 
rotate freely. The active rotor was attached to the motor shaft with 
two screws to adjust parallelism. The motor’s gear train could be 
changed to different ratios β depending on the application, with val-
ues ranging commercially from 5:1 to 1000:1. Additional freely 
rotating magnets can be added to increase the connectivity of a 
single unit and build more complex aggregate structures if desired 
(see fig. S1).

Individual Granulobot units had an overall width of l = 62 mm 
and an outer wheel diameter of 2r = 48 mm. The 3D-printed parts 
were made with an ultraviolet curing PolyJet printer (Stratasys J850) 
using an acrylonitrile butadiene styrene–type resin (RGD511 and 
535) and with a Phrozen Mini 4k printer using Loctite Onyx 410 
engineering resin. The total weight of a single Granulobot unit with 
a geared motor, printed circuit board (PCB), ball bearings, magnets, 
and two 220-mAh batteries was 98 g.

The electronic circuitry consisted of a Wi-Fi–enabled microcon-
troller (Espressif ESP-32), an H-bridge to control the motor, a power 
management circuit with 3.3- and 6-V regulation from two single-
cell lithium-ion polymer batteries, a six-axis linear and gyroscopic 
accelerometer, a magnetic sensor with sensitivity in the range of the 
field produced by the rotor magnets, and a continuous magnetic en-
coder to measure the motor rotation. All electronic components 
were assembled on a printed circuit board designed to fit within the 
circular Granulobot body (see Fig. 8B). The motor voltage U was 
produced by two microcontroller digital outputs using pulse-width 
modulation (PWM), averaged out by the low-frequency response of 
the motor system (see the Supplementary Materials for PWM cali-
bration). The entire circuit was controlled and monitored by firm-
ware coded in C++ with Arduino and Esp32 libraries. Data could 
be sent and received by Wi-Fi between individual units as well as 
with an external computer. For the latter, we developed Python soft-
ware that gathers data for post-analysis and visualization, at a rate of 
approximately 200 Hz, and that could execute scripts with a se-
quence of instructions.

Steady-state load response of individual Granulobot units
In a dc motor, the current I through the winding generates a torque 
Γ = KtI, where the constant Kt depends on the mechanical and elec-
tromagnetic properties of the motor (44). Our sign convention is 
that positive current I produces positive torque drive and positive 
gearbox output rotor speed θ̇ in the absence of any load. In Fig. 8C, 
positive torques correspond to clockwise rotation. The torque bal-
ance in the steady state of a loaded motor can then be expressed as

βKtI + Γl − Γfsgn(θ̇) = 0 (21)
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where β is the gearbox ratio, Γl is the external load (which can be 
positive or negative) on the motor’s gearbox output, and Γf > 0 is the 
magnitude of the friction torque that arises from the mechanical 
parts contacting each other inside the gearbox and the rotor system. 
The sign function sgn(θ̇) = θ̇∕ ∣ θ̇ ∣ appears because the friction 
torque always opposes any rotation. Using Kirchhoff ’s law, the mo-
tor current I during steady rotation obeys

where R is the motor resistance, U is the voltage applied to the 
motor, and E is the back EMF. The latter opposes the motion of the 
inner rotor, which spins at speed ω = βθ̇ , and can be expressed via 
Faraday’s law as E = –Keω, with Ke being the motor’s EMF constant. 
Equation 22 combined with Eq. 21 can be rewritten as

Theoretically, Kt  =  Ke, but, in practice, 
these two values can be slightly different, 
and we therefore distinguish them in what 
follows. Furthermore, Kt tends to decrease 
with an increasing gear ratio; thus, it is 
important to estimate it whenever β is 
changed (see the Supplementary Materi-
als for estimates of Ke and Kt). Defining

and

we arrive at Eq. 1 in the main text for the 
case of steady-state rotation, when the 
frictional torque has been exceeded 
∣Γl + kU∣ > Γf.

From Eq.  23 or, equivalently, Eq.  1, 
we expect the speed-torque curves to be 
linear with slope η0 once the load Γl ex-
ceeds the yield threshold torque. When 
kU becomes larger than Γfsgn(θ̇) , the 
yield threshold vanishes, and the units 
will exhibit rotation already without ap-
plied torque, at zero-load rotation speed

Figure 8D shows that this is consistent 
with data from experiments where we sys-
tematically varied Γl and measured θ̇ for 
different voltages U. Only very close to 
zero bias voltage, where the rotor remains 
at rest until a certain torque load threshold 
Γl

* is exceeded, are there deviations.
The parameters R and Ke can be deter-

mined for each motor from measure-
ments of the motor current performed 
during the experiments presented in 
Fig. 8D (see the Supplementary Materials 
and fig. S4). To determine Kt and Γf, we 
averaged parameters obtained by fitting 
Eq. 23 to the data in Fig. 8D. We observe 

that a single Γf obtained with such methods allows us to describe well 
all the behaviors for θ̇ > 0 . However, when θ̇ approaches zero, we ob-
serve a threshold that is larger than that estimated by the model. This 
is consistent with the existence of a static friction torque that is larger 
than the kinetic one Γf, as commonly observed in dry friction.

Dynamical load response of individual Granulobot units
To model the self-oscillating solid regime in Fig.  3, we can re-
write Eq. 16 as

In this form, Eq. 16 shows how in the self-oscillating regime, where 
∣ui∣ − u* > 0, the right-hand side (RHS) provides a constant force that 
always pushes the rotor in the direction it is moving. The RHS thus 

RI = U + E (22)

β
Kt

R
U + Γl − Γfsgn(θ̇) =

KtKe

R
β
2
θ̇ (23)

η0 = β
2KtKe ∕R (24)

k = βKt ∕R (25)

θ̇0 = η
−1
0
(kU − Γfsgn(θ̇)) (26)

(1+α)η0θ̇+G�=Γ
l
+k( ∣u ∣ −u

∗)sgn(θ̇) (27)
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Fig. 8. Granulobot design, rotor response to load, and actuation. (A) Exploded view of Granulobot three-
dimensional model. (B) Assembled electronic circuitry, custom-designed for driving and real-time measurements. (C) 
Sketch to indicate sign convention. (D) Torque load as a function of rotation speed for different voltages. The dotted 
lines are fits of Eq. 23 with gear ratio β = 379, resistance R = 9.6 ohms, EMF constant Ke = 2.65 × 10−3 V s/rad. Motor 
constant Kt = 5.8 × 10−3 N m/A and frictional torque Γf = 0.024 N m were determined by averaging fit values obtained 
for each voltage tested. (E to G) Angle θ (blue), voltage bias u (black), and total voltage U produced by the circuitry 
(orange) as a function of time in a self-oscillating Granulobot with torque load Γl = 0 N m. The inertia of the rotor with 
magnet was Iθ = 0.036 kg × (0.020 m)2, k = 0.229 N m/V. Motor internal damping was η0 = 0.231 N m s/rad. (E) Over-
damped self-oscillation (damping parameter ζ > 1). Rotor damping α = 0, ∣u∣ = 1 V, G = 0.5 N m/rad, corresponding 
to ζ = 1.37, and undamped oscillation frequency ω0 = 5.88 rad/s. The red curves are Eq. 32 for Γf = 0.024 N m (solid) 
and Γf = 0.034 N m (dashed). (F) Self-oscillation in the crossover regime (0 < ζ < 1). α = −0.5, ∣u∣ = 1 V, G = 1 N m/rad, 
corresponding to ζ = 0.48 and ω0 = 8.31 rad/s. The red curve is the prediction from Eq. 34, leading to ω = 7.29 rad/s 
and steady-state amplitude θn = 0.30 rad. (G) Underdamped self-oscillations (ζ = 0). α = −1, ∣u∣ = 1 V, G = 1 N m/rad, 
corresponding to ω0 = 8.31 rad/s.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

hicago on M
ay 15, 2024



Saintyves et al., Sci. Robot. 9, eadh4130 (2024)     24 January 2024

S c i e n c e  R o b o t i c s  |  R e s e a r c h  Ar  t i c l e

11 of 14

effectively acts as negative Coulomb friction, which injects energy 
rather than taking it out. With this energy input, for large α, the angle 
θ will approach its maximum excursion while experiencing large vis-
cous, velocity-dependent dissipation, such that it will exhibit an expo-
nential time dependence similar to charging a capacitor. Near that 
maximum, where the viscous dissipation will vanish, inherent noise 
in the system can then trigger a switch of sign in the highly nonlinear 
sgn function on the RHS of Eq. 27, so that the forcing changes direc-
tion and the process reverses, similar to discharging the capacitor. 
Figure 8E shows this behavior (blue) along with the alternating volt-
age forcing ∣u ∣ sgn(θ̇

i
) (black). Because the precise moment of switch-

ing the direction of forcing depends on noise, there is chatter in the 
rise and fall of the forcing, which in turn leads to a small degree of 
randomness in the successive timing and thus also in the amplitudes 
of the oscillations (see inset to Fig. 8E).

As α approaches −1 from above, damping is no longer dominat-
ing, and dynamic behavior will be reached. We must then take into 
account the moment of inertia of the rotor I

θ
= mr2

0
 , with m the 

mass of the rotor including the attached magnet and r0 its radius of 
revolution. Adding an inertial term to Eq. 16 or Eq. 27 leads to

where

is the damping parameter,

is the oscillation frequency of the undamped oscillator, and

is the characteristic angular displacement under the combined ac-
tion of the load, the Coulomb friction, and the driving torques. This 
equation describes a harmonic oscillator with (positive) viscous 
damping but negative Coulomb friction. It has been used to model-
driven dissipative systems in different contexts and is known to lead 
to spontaneous limit cycles (51).

For ζ > 1, the rotor is in an overdamped regime, resulting in al-
ternating exponential decay (also described by Eq. 27). When the 
system is turned on, the rotor is initially at rest with θ = 0 and θ̇ = 0 . 
It then starts to oscillate with increasing amplitudes until reaching a 
steady state. In this regime, Eq. 28 can be solved analytically for a 
half oscillation, remarking that, because we expect exponential be-
haviors, we can take as the initial condition θn(t – tn = 0) = θn–1(∞) 
at each half oscillation n. Until the angular speed flips sign, the solu-
tion of Eq. 28 then takes the form

Figure 8E shows very good agreement between this solution and the 
experimental data, with no fit parameters. We observe a slight un-
derestimation of the angle when θ̇ approaches zero, which can be 
explained by static friction for vanishing speeds that is larger than Γf 
(see Fig. 8D and fig. S5A for data with larger ζ).

In the intermediate regime, 0 < ζ < 1, inertia starts to be important, 
and we expect the solution giving the half oscillation to overshoot. As 
ζ decreases from 1, the mechanism that triggers the speed sign flip be-
comes dominated by the dynamics of the system, hence exhibiting 
more regular oscillations. The initial conditions for a half oscillation n, 
which corresponds to the first overshoot of the solution at n – 1, can be 
determined following the method used in (51) to predict that for large 
n the oscillations approach a steady-state amplitude

Combined with the general form of the solution of Eq. 28 in this 
regime, this leads to the steady state (see details in the Supplemen-
tary Materials):

where

and

Figure 8F shows good agreement between the analytical prediction 

and the experimental values for ζ = 0.47. The amplitudes are under-
estimated by the model but consistent numerically with the ob-
servations.

For ζ =  0, which implies α = −1 (Fig. 8G), there is no longer 
viscous damping in the system, while energy is constantly added via 
negative Coulomb friction. If no other balancing mechanism is 
present, we expect the amplitude θn to grow linearly over time with 
frequency ω0 given by Eq. 30 independent of the driving force (51). 
In any physical system, the total voltage produced by the motor con-
troller cannot exceed a maximum value such that U ≤ Umax. As a 
consequence, we observed a saturation of the total voltage U pro-
duced by the circuitry (orange curve in Fig. 8G), and finite ampli-
tudes at large n, θn = f(∣u∣, Umax) that increase with ∣u∣, while ω < ω0 
decreases with ∣u∣ (fig. S5B).
Tensile test experiments
Tensile test experiments were performed with an Instron 5640 ma-
terials tester equipped with a 50-kN load cell. To apply strain to 
Granulobot aggregates, we used two ferromagnetic parallel plates as 
text fixtures. We then added a third, freely rotating magnet, as in 
fig. S1, to two of the Granulobot units placed in opposite locations 
within a closed-chain aggregate. To prevent direct contact of these 
two units’ gear surfaces with the Instron plates, we placed slender 
neodymium magnets between the third rotors and the plates. This 
firmly attached these two units to the plates while allowing for free 
rotation of all Granulobot units during testing. All experiments 
were performed at a constant tensile speed of 1 mm/s.

Effect of parameter variability on Granulobot 
aggregate states
In Fig. 3, the parameters G and ∣u∣ determine the different states of 
a Granulobot aggregate for a given load. The values for G, which 
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determines the stiffness of the effective torsion spring in each unit, 
can be programmed into all Granulobot units. In the fluid-like state, 
G is simply set to zero. In the solid-like states, variability in this pa-
rameter will affect the effective stiffness of the aggregate but will not 
affect how the aggregate switches between passive, viscoplastic, and 
self-oscillating solid-like states. On the other hand, the threshold u* 
for the voltage bias magnitude ∣u∣, which determines the onset of 
either the active liquid or the active solid, depends on the internal 
static friction within individual Granulobot units. Variability in this 
friction, which can come from mechanical components inside the 
motors and from the frictional motion of all rotors, therefore, can 
have an effect. Going from passive to active flow as ∣u∣ is increased, 
we can anticipate that some units will initiate motion earlier than 
others and therefore simply broaden the crossover. The one situa-
tion where one could expect a notable effect from variability in the 
dynamical parameters is the transition to the self-organized self-
oscillating solid. However, Fig. 6D shows that the onset of a syn-
chronized state can be observed robustly within a wide range of 
bias voltages, despite residual hardware variability (we note the 
slightly differing amplitudes in Fig. 6, B and C, and fig. S2E), and 
without any prior calibration procedures. Furthermore, there is a 
key benefit from deliberately introducing much larger variability 
within the self-oscillating regime, for example, by choosing differ-
ent damping parameters among units. In this case, we find that ag-
gregates are still self organizing (Fig. 6, E to G). Although they are 
losing synchronization (see fig. S2, B and D, and movie S3), they 
exhibit periodic deformations that are global shape changes 
(Fig. 6H) and that form the basis for different self-coordinated lo-
comotion gaits.

Solid-like regime with bias voltages of the same sign ui = ∣u∣
When the ui across all units have the same sign regardless of Γf, 
hysteresis is still observed in the regime colored red in Fig. 3, but 
it will be either negative (plasticity) or positive depending on the 
sign of the load. As a consequence, the transition toward the self-
oscillating regime (orange in Fig.  3) can be shifted slightly. We 
still observe self-organized oscillating states, but units oscillate 
sinusoidally regardless of α, with a shift of the equilibrium angle 
θo = k(u – u*)/G. This is due to alternating within an oscillation 
between a friction in the direction of the bias and a friction in the 
opposite one.

Morphing liquid passing an obstacle
The onboard monitoring of the rotor angle in each unit makes it 
possible to develop suitable locomotion strategies by reverse engi-
neering. This proceeds by manually “teaching” the Granulobot ag-
gregate how to overcome a type of obstacle, recording the potentially 
complex sequence of local angle changes and from it extracting the 
essential features required for successful obstacle management.

To achieve this, we go through the following four stages. We first 
put the system in the liquid state, with a low typical damping 
η
0
eff
< 0.01 N s/rad, which corresponds to ∣ui∣ = u0 > 1.5 V, such that 

it behaves as a passive liquid aggregate. Second, we deform the ag-
gregate by hand to pass it over an obstacle. Once a continuous se-
quence of deformations has been successful in overcoming the 
obstacle, we reproduce by hand the same sequence without obstacle 
and record via the Wi-Fi data acquisition platform the associated 
time-dependent angle changes for each Granulobot unit. Third, we 
“play back” these angle variations from a central computer to each 

Granulobot, which they follow via local feedback using the rotor 
encoder. The voltage signals generated by the feedback loops are re-
corded. We then use these voltages to infer a general, time-dependent 
voltage bias ui(t) appropriate to overcome the type of obstacle just 
trained on. During play back of an aggregate of N = 8 units, we ob-
serve that all eight ui(t) exhibit oscillations of similar frequency and 
amplitude, with phases shifted between neighbors such that Granulobots 
placed at opposite positions (i and i + 4) along the chain recover the 
same phase. We generalize this behavior by using a simple periodic 
function for the bias voltage that shifts each unit’s phase by π/2 
such that

and A is the amplitude of the oscillation. To ensure the right phase 
shift between units when forcing this behavior in the aggregate, we 
send to each Granulobot the sequence of addresses in which they 
are ordered in the chain such that each unit knows its location and 
its direct neighbor. Figure 7A shows the bias voltages in an aggregate 
of eight Granulobot units trained to “flow” over an obstacle.

When using such a control strategy, only the pair of parameters 
(u0, A) must be sent. As the peak voltage A is increased, the aggre-
gate becomes more compliant and follows the contour of the obsta-
cle more closely. This is consistent with a smaller effective viscosity.

Inertial shape-shifter
The inertial shape-shifter moves by configuring the Granulobot 
units into a ring-shaped chain and then applies a suitably chosen 
shape perturbation that propagates around the ring to drive an over-
all rolling motion, as shown in Fig. 7H and movie S1. In a closed 
chain geometry, the sum of angles must satisfy an overall geometric 
constraint (52), namely,

All angle perturbations [dθ1…dθi…dθN] of units [1…i…N] must 
then satisfy

To achieve this kinematic control in a decentralized way, with the 
same instructions sent to all the Granulobot units, we used a local 
communication strategy whereby one unit temporarily becomes the 
leader and the trailing neighbors become followers. The control 
strategy involves a sequence of four sets of instructions that are sent 
simultaneously to all units at the initial stage.

In the first instruction, the units receive the sequence of all units’ 
addresses in the order they are in the ring-like chain, so each knows 
its location and the address of its direct neighbor connected to the 
active rotor. An initial leader and a specific number of trailing fol-
lowers are chosen. The leader communicates its real-time angle 
value θi to its actuated neighbor. This angle information is com-
municated through all followers via neighbor-neighbor communi-
cation. Each follower applies a rotation that is a linear combination 
of the leader’s angle variation, denoted as

ui = (−1)iu0 + Asin(�t + ϕi), with ϕi+1 = ϕi +
π

2
(37)

N
∑

i=1

θi(t) = π(N − 2) (38)

dθi =

N−1
∑

i≠j

dθj (39)

dθi+1 = αi+1dθi (40)
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where the full sequence of coefficients {α1, …, αN}, which must sat-
isfy the angle conservation relationship Eq. 39, constitutes the sec-
ond instruction.

The third instruction sets the angle perturbation 

where the parameters T and dθ0 are chosen to control the shape of 
the perturbation.

The last instruction sets a timer that is initiated when the leader 
begins the shape perturbation. Once this timer reaches tcom, the 
leader stops moving and sends a message to its first follower, in-
structing it to become the new leader. This process triggers a repeat 
of the perturbation procedure, which then propagates through the 
entire chain. The result of this propagating shape perturbation is a 
shift in the center of gravity of the aggregate that triggers a rolling or 
crawling motion sustained by the aggregate’s inertia.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S3
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