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Dear Dr. Desjonquères: 
Dear Prof. Lau, 
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The American Naturalist 
Indiana University 
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C7: --Please place your Acknowledgments section after the main text and before the Literature Cited 
section in the manuscript file. The funding and conflict of interest statements should appear as 
paragraphs (or sentences) within the Acknowledgments section. 
R7: We have moved the acknowledgements and added funding and conflict of interest as sentences in it. 
 
C8: --Place the "Statement of Authorship" section after your Acknowledgements. Please rewrite this 
statement in paragraph format, rather than as a table. 
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C9: --Place the "Data and Code Accessibility" statement after the Statement of Authorship and make 
sure that it is up to date with references and DOIs for all deposits of data and/or code. 
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C10: --Please note that figures and tables must be numbered in the order in which they are first 
mentioned. 
R10: The figures and tables are numbered in the order in which they are first mentioned. 
 
C11: --Figure legends should generally be 100 words or fewer. Longer or more detailed discussions 
about the figures should be moved to the main text. 
R11: Only the legends of figure 5 and 6 exceed 100 words. These legends do not contain discussions 
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Abstract 

 

The social environment is often the most dynamic and fitness-relevant environment animals 

experience. Here we tested whether plasticity arising from variation in social environments can 

promote signal-preference divergence—a key prediction of recent speciation theory, but one that 

has proven difficult to test in natural systems. Interactions in mixed social aggregations could 

reduce, create or enhance signal-preference differences. In the latter case, social plasticity could 

establish or increase assortative mating. We tested this by rearing two recently diverged species of 

Enchenopa treehoppers—sap-feeding insects that communicate with plant-borne vibrational 

signals—in treatments consisting of mixed-species versus own-species aggregations. Social 

experience with heterospecifics (in the mixed-species treatment) resulted in enhanced signal-

preference species differences. For one of the two species, we tested but found no evidence for 

differences in the plastic response between sympatric and allopatric sites suggesting the absence of 

reinforcement in the signals and preferences and their plastic response. Our results support the 

hypothesis that social plasticity can create or enhance signal-preference differences, and that this 

might occur in the absence of long-term selection on plastic responses themselves. Such social 

plasticity may facilitate rapid bursts of diversification. 
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Secondary abstract in Spanish: 

La plasticidad social aumenta la co-divergencia entre señales y preferencias 

 

El ambiente social es a menudo dinámico e influye la adecuación de los animales que contiene. En 

agregaciones mixtas, por ejemplo, las interacciones entre individuos podrían influir las diferencias 

entre señales de cortejo y preferencias de pareja— creándolas, aumentándolas, o  

reduciéndolas—y afectar los patrones de aislamiento reproductivo entre poblaciones naturales. Aquí 

pusimos a prueba esta hipótesis. Condujimos un experimento con dos especies recientemente 

divergidas de membrácidos del complejo Enchenopa binotata—insectos que se alimentan de la 

savia de sus plantas hospederas y que se comunican con señales vibracionales que se transmiten por 

los tejidos de las plants. Creamos tratamientos de agregaciones mixtas o de cada una de las especie, 

en los cuales los membrácidos se desarrollaron. Encontramos mayores diferencias en señales y 

preferencias entre las dos especies en el tratamiento mixto. En una de las especies, no hubo 

diferencia en la respuesta plástica a los tratamientos entre individuos de sitios simpátricos y 

alopátricos, lo cual sugiere tentativamente que la respuesta plástica que observamos no se debe a 

selección previa para prevenir la hibridización. (No logramos hacer esta prueba para la otra 

especie.) Estos resultados apoyan a la hipótesis que dice que la plasticidad debida al ambiente social 

puede crear o aumentar diferencias en señales y preferencias al ocurrir primeros encuentros entre 

poblaciones en divergencia o especies recientemente formadas. Tal plasticidad podría resultar en 

episodios de diversificación rápida.  
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Secondary abstract in French: 

La plasticité sociale augmente la co-divergence des signaux et des préférences 

 

L’environnement social est souvent l’environnement le plus dynamique et le plus pertinent pour la 

valeur sélective que les animaux éprouvent. Dans cet article, nous avons testé si la plasticité due à la 

variation de l’environnement social peut promouvoir la divergence des signaux et des préférences—

une prédiction clé de la théorie de spéciation récente mais qui s’est révélée difficile à tester en 

milieux naturel. Les interactions en aggrégation sociales mixtes pourraient réduire, créer ou 

augmenter les différences de signaux et de préférences. Dans le dernier cas, la plasticité sociale 

pourrait établir ou augmenter l’accouplement assortatif. Nous avons testé cela en élevant deux 

espèces récemment divergées de Membracides du genre Enchenopa—des insectes se nourrisant de 

sève qui communique grâce à des signaux vibratoires transmis dans les plantes—dans des 

traitements expérimentaux consistant d’aggregations d’un mixe des deux espèces et d’une seule 

espèce. L’expérience sociale d’hétérospécifiques (dans le traitement mixe) a augmenté les 

différences de signaux et préférences entre espèces. Pour l’une des espèces, nous avons testé la 

présence de différences de réponse plastique entre les sites en allopatrie et en sympatrie mais nous 

n’en avons pas trouvé suggérant l’absence de renforcement des signaux et préférences et leur 

réponse plastique. Nos résultats soutiennent l’hypothèse d’une plasticité qui peut créer ou 

augmenter les différences de signaux et préférences et le fait que cela peut se produire en l’absence 

de sélection à long terme sur les réponses plastiques. Une telle plasticité sociale pourrait faciliter 

une diversification “en rafales”.  
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Introduction 

 

Phenotypic plasticity in sexual traits such as advertisement signals and mate preferences may have 

important consequences for speciation. Speciation involves the establishment of linkage 

disequilibrium in polygenic suites of ecological and sexual traits (Kirkpatrick and Ravigné 2002; 

Coyne and Orr 2004; van Doorn et al. 2009; Michel et al. 2010; Nosil 2012; Riesch et al. 2017; 

Kopp et al. 2018). Factors that increase linkage disequilibrium include geographic structure, habitat 

or mate preferences, genetic architecture, and "magic traits" that produce both ecological 

divergence and assortative mating (Kirkpatrick and Ravigné 2002; Servedio et al. 2011; Flaxman et 

al. 2013, 2014; Nonaka et al. 2015; Kopp et al. 2018; Mendelson and Safran 2021). Social plasticity 

is an additional factor that may promote signal-preference co-divergence (cf. Bailey & Moore 2012; 

Rebar & Rodríguez 2015). 

 Here we focus on plasticity arising from interactions in mixed aggregations of diverging 

populations or recently diverged species, as in sympatric speciation or in allopatric speciation upon 

secondary contact with incomplete reproductive isolation. In such cases, plasticity in mate 

preferences or signals could arise from learning due to prior positive or negative experiences with 

potential mate types (e.g. Dukas 2004; Dukas et al. 2006; Rather et al. 2022); imprinting (Servedio 

et al. 2009; Hebets and Sullivan-Beckers 2010; Verzijden et al. 2012); or other effects of the social 

environment such as habituation or exposure to differing degrees of sexual trait variability (Bailey 

2011; Bailey and Moore 2012; Fowler-Finn and Rodríguez 2012a, 2012b; Rodríguez et al. 2013c). 

The diverging populations might show various forms of plasticity in response to the different social 

environment caused by that contact (Fig. 1). They might respond in the same way, so that their 

phenotypes shift in similar directions and magnitudes (Fig. 1b-c). Alternatively, they might respond 

differently. The populations might become more similar to each other; e.g., if they were to imprint 

on each other (Fig. 1d). Such effects would be interesting, perhaps promoting the establishment of 
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novel signals (cf. Broder et al. 2021; Tibbetts and Snell-Rood 2021), but would not enhance 

assortative mating. Here we note that the converse is also possible, however: the populations could 

become more different from each other (Fig. 1e), establishing or enhancing assortative mating. To 

our knowledge, this is a possibility that has not been explored. However, it arises intuitively from 

consideration of variation in the "sign" of the effects inducing plasticity. Additionally, there could 

be population and/or sex differences in the magnitude and direction of plasticity (Fig. 1f-g) with one 

population or sex lacking plasticity altogether but still contribute to assortative mating.  

 Here we test the hypothesis that plasticity in response to interactions in mixed-species 

aggregations creates or enhances signal-preference co-divergence (Fig. 1e-g). To do this, we tested 

for plasticity in signals and preferences generated by interactions between two members of the 

Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Species in this 

clade of host-specialist sap-feeding insects show remarkable signal-preference coevolution 

(Rodríguez et al. 2006; Cocroft et al. 2008, 2010; Rodríguez et al. 2013c). As many plant-feeding 

insects, Enchenopa communicate with plant-borne vibrational signals, both as juveniles and as 

adults (Cocroft and Rodríguez 2005; Cocroft et al. 2008; Hill 2008; Hill and Wessel 2016; 

Rodríguez et al. 2018; Rodríguez and Desjonquères 2019). These interactions are an important 

cause of plasticity in adult signals and preferences, with inputs from the social environment and 

developmental at different life stages having varying effects (Fowler-Finn and Rodríguez 2012a, 

2012b; Rebar and Rodríguez 2013, 2014a, 2014b, 2015; Fowler-Finn et al. 2017; Desjonquères et 

al. 2019a, 2019b, 2021; Desjonquères & Rodríguez accepted). The strongest social effects on 

signals and preferences appear to result from the amount and nature of signalling interactions in the 

juvenile stage (Desjonquères et al. 2021; Desjonquères & Rodríguez accepted). Our two study 

species differ in their rate of signalling as juveniles (Rodríguez et al. 2018). Here we examine the 

overall effect of life-long interactions, by rearing individuals from nymphs to adults in treatments of 

mixed-species vs. own-species aggregations. We tested the effect of these treatments on the adult 



8/29 

treehoppers’ male advertisement signals, female preferred signal values (peak preferences), and on 

the strength of those preferences (Kilmer et al. 2017). 

  

 Our two species likely diverged from each other within the last 130-60 thousand years (Hsu 

et al. 2018). There is strong support for sympatric speciation across the E. binotata complex, driven 

by colonization of novel host plants and signal-preference coevolution (Wood 1993; Cocroft et al. 

2008). For E. binotata populations on Viburnum host plants, however, there is evidence suggestive 

of a role for isolation by distance and/or secondary colonization from other hosts (Cocroft et al. 

2010; Hsu et al. 2018). Thus, our two study species likely represent a case of recent secondary 

encounter on V. lentago in some of our study sites. Our geographic sampling (see below) also 

allows testing for reinforcement in signals and preferences and reinforcement in their plastic 

response to the treatment for the species that occurs both in sympatry and allopatry at our sites, as 

there has been an opportunity for selection against hybridization between our two study species at 

the sites where they co-occur. 

 

Material and methods 

 

Field collection 

 

Most of the species in the E. binotata complex survive poorly on hosts used by other members of 

the complex (Wood and Guttman 1983; Cocroft et al. 2008). Reproductive isolation between 

species in the complex arises from multiple causes—phenological differences between host plants; 

physiological host specialization; behavioural host preferences; and behavioural mate preferences 

for species-specific advertisement signals (Wood 1993; Cocroft et al. 2008). Nevertheless, there are 

some sites throughout the range of the complex across North America where different E. binotata 
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species live on the same host (Cocroft et al. 2010; R. B. Cocroft, pers. comm.). We took advantage 

of one such case in Wisconsin (USA), where two members of the complex occur on Viburnum 

lentago (Adoxaceae) plants at some sites (Rodríguez et al. 2018). Only one of our study species 

occurs at most sites in our study area, with the exception of two sites where both species co-occur 

reliably in distributions that have remained stable since we first observed them in 2012 (micro areas 

of the order of a few square meters within each site where either species occurs alone and micro 

areas where both occur side by side, sometimes on the same plant; D. Rebar & R. L. Rodríguez, 

unpubl.). Despite extensive searching, we have never found allopatric sites with the other species so 

all observations of it are from the two sympatric sites (see below). 

 Most members of the E. binotata complex have not been formally described (Hamilton and 

Cocroft 2009). However, they can be readily distinguished by their host plant species, nymph 

coloration, and adult signal frequencies (Pratt and Wood 1992; Cocroft et al. 2008). For shorthand, 

here we refer to our study species as splow and sphigh because of their distinctive male signal 

frequencies (ca. 165 and 275 Hz respectively) and corresponding female mate preferences (peak 

preferences at ca. 185 and 295 Hz respectively) (Rodríguez et al. 2013b; Rebar and Rodríguez 

2015; Rodríguez et al. 2018).  

 We conducted the experiment over the summers of 2018-2020. Each June, we collected 3rd 

instar nymphs (the earliest stage at which the species can be distinguished by their different nymph 

coloration; Fig. 2; Rodríguez et al. 2018b) from five populations (Fig. S1). These sites include three 

allopatric sites with only splow (BOG, OLT and PNV) and two sympatric sites with both splow and 

sphigh (FST and FGC). We collected more than 3200 individuals during those three years (Table S1) 

that were subsequently installed on rearing plants at the University of Wisconsin-Milwaukee 

greenhouse (total of 80 plants over the three years). 

 

Rearing aggregation treatments 
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We created treatments consisting of own- or mixed-species aggregations (Fig. 2-3). We randomly 

assigned individuals from each of the above sites to one or the other treatment. To assemble an 

aggregation, we placed 40 nymphs on a 40-60 cm-tall potted V. lentago host plant. In the own-

species treatment, each rearing plant/aggregation either contained 40 splow or 40 sphigh nymphs from 

a single site. In the mixed-species treatment each rearing plant/aggregation had 20 splow and 20 

sphigh nymphs (Fig. 3). Within species, all individuals were from the same site but the two sets of 20 

individuals in the mixed-species treatment could be from either the same or different sites. 

  Although species in the E. binotata complex can be distinguished as nymphs by their 

distinctive coloration patterns (splow nymphs are grey, whilst sphigh are dark brown with white 

stripes; Fig. 2; Rodríguez et al. 2018), the adults are very similar morphologically (Pratt and Wood 

1992; Cocroft et al. 2008). In order to distinguish the adults in our experiment, we marked them 

once they moulted with white or red non-toxic acrylic paint (Apple Barrel matte acrylic paint 

21469E Flag Red and 20503E White; Plaid Norcross, GA, USA). This required a brief separation of 

late instar nymphs in the mixed-species groups (Fig. 3). When the very first adults moulted in the 

mixed-species groups, we separated the remaining nymphs from each replicate onto two separate 

plants—one for each species (we excluded those first few adults which moulted from the 

experiment, as we had no way of knowing their species identity).Then, as new adults moulted, we 

marked them and re-assembled the experimental aggregations. We applied exactly the same 

manipulation to own-species aggregations (separation and marking) to avoid confounding effects. 

Thus, individuals spent 7.1 ± 3.8 days (mean ± SD) out of their treatments. At that time in the life of 

these insects, there is little signalling by nymphs (Desjonquères et al. 2019a) and adult signalling 

has not yet begun (see below), so this represented little interruption in the experimental 

manipulation. In the re-assembled aggregations of adults, we also separated the sexes onto different 

plants to prevent females from mating and becoming unresponsive to playbacks (see below). We 
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randomly switched the colour for species across plant replicates to avoid confounding effects of 

colour. For own-species replicates, we randomly assigned a colour to each plant aggregation, such 

that about half were white and half were red. 

 

Adult signals recording and analysis 

 

We recorded adult male and female vibrational signals with laser vibrometry. We focused a 

portable laser Doppler vibrometer (Polytec PDV-100; Polytec Inc. Auburn, MA, USA) on a piece 

of adhesive reflective tape on the stem of the recording plant (a potted V. lentago plant). The signal 

was band pass filtered between 40 and 3000 Hz with an electronic variable filter (model 3202; 

Krohn-Hite, Brockton, MA, USA) and transferred to an iMac computer (MacBook Pro; Apple, 

Cupertino, CA, USA) with a USB audio interface (Edirol USB Audio Capture UA-25; Roland, 

Hamamatsu, Japan). We recorded the output on the iMac with the program AUDACITY (v. 2.1.2; 

http://audacity.sourceforge.net/) at a sampling rate of 44.1 Hz. We used two digital thermometers 

(Fisher scientific, Pittsburgh, PA, USA; and Extech Instruments SDL500, Nashua, NH, USA) to 

monitor room temperature during signal and preference recordings. 

 Sexually active Enchenopa males signal spontaneously when placed on a stem of their host 

plant (starting approximately two weeks after the adult moult). We placed each male on the 

recording plant and if the male did not signal after one minute, we primed the male with a playback 

of a recorded male followed by a female response (see below for vibrational playback method). To 

avoid making assumptions about the signal phenotypes resulting from the experiment, we primed 

all males with both splow and sphigh playbacks, emitting one primer of each species separated by 30 

seconds of silent interval for a total of two primers in random order. If a male did not signal within 

10 minutes, we placed him back on his replicate plant and tried again every 2-4 days or until he 

died. Males that signalled did so within 2.8 ± 1.6 tries (mean ± SD). From the resulting 150 male 
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recordings (Table S1), we measured the dominant frequency of male signals using AUDACITY and 

core functions in R (V3.0.6; R Core Team 2015). 

 

Female mate preference description 

 

Sexually receptive Enchenopa females (starting approximately four weeks after the adult moult) 

duet with the signals of males that they find attractive, providing a realistic, natural, and convenient 

means for assessing their mate preferences for male signal traits (Rodríguez et al. 2004, 2006, 2012; 

Cocroft et al. 2008). To describe female preferences for signal frequency, we presented vibrational 

playback stimuli through a piezoelectric stack coupled to the stem of the plant with soft wax, driven 

by a piezoelectric controller (Thorlabs, Newton, NJ, U.S.A.). We recorded female signals and 

playbacks with the laser vibrometer as described above. The amplitude of playback stimuli was 

calibrated to 0.15 mm/s using an oscilloscope. We placed each female on a potted plant, allowing 

her to settle for 30 seconds, we then tested whether the female was receptive with a maximum of 6 

primer playbacks of recorded male signals from both species. The splow and sphigh primer playbacks 

were emitted in alternation and separated by 15 seconds of silent intervals. If a female did not 

respond to any of the 6 primers, we returned her to her replicate plant and tried again every 2-4 days 

or until she died. If the female responded to a splow (or sphigh) primer, we gave her a full preference 

sequence. The 374 females (Table S1) that responded did so within 1.9 ± 1.4 tries (mean ± SD). 

 To obtain female preference functions, we used vibrational playback sequences composed of 

synthetic stimuli varying in frequency, with all other features set to the population mean of each 

species (e.g., splow males produce signals with 4 pulses/signal, so each of our stimuli had 4 pulses 

per signal, and so on; see Table S2 for details about the stimuli features). We exposed each female 

to a randomized sequence of 18 playback stimuli.  To capture the full shape of the preference 

functions, the range of stimuli frequencies varied from 100 to 440 Hz in 20 Hz increments,  
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exceeding the range of signal frequency values in the two species (Kilmer et al. 2017). Each 

playback stimulus was a bout with four signals with that frequency, each separated from the next by 

1.9 or 2.5 sec (for splow and sphigh respectively, based on average population values) of silence. Each 

playback bout was separated from the next by 15 sec. of silence. We assayed female preference 

with the number of responses (between 0 if she did not respond to any signal and 4 if she responded 

to all the signals in the synthetic bout) that each female produced in response to each of the 18 

stimuli. A score of 4 responses for a stimulus thus indicates maximum attractiveness, and a score of 

0 the lowest attractiveness. 

 We fitted cubic spline regressions to the response data for each female and generated 

individual preference function curves using the program PFunc (v. 1.0.0; 

https://github.com/Joccalor/PFunc and https://hub.docker.com/r/joccalor/pfunc/; Kilmer et al. 

2017). This approach allows any shape for the preference functions with a certain level of 

smoothness that is determined empirically (Schluter 1988; Kilmer et al. 2017). PFunc fits curves 

using the gam function in the mgcv R package (Wood and Wood 2015). We used the default 

smoothing parameter values calculated by PFunc for all our curves, setting the range of smoothing 

values between 0.005 and 0.5. This means that females could vary in smoothing values set for their 

curve (see Table S3 for all smoothing values). Additionally, we checked all curves and slightly 

changed the smoothing value for females with curves that strongly deviated from the raw data (Fig. 

S2). Smoothing values did not differ significantly between species and treatment (linear model with 

smoothing as a response variable and species, treatment, and their interaction as test variables; p-

value>0.45 for the three terms). We then analysed variation in the individual preference functions 

using the preference peak and preference strength metrics implemented in PFunc (Kilmer et al. 

2017). Preference peak is preferred display trait value, measured as the signal frequency with the 

highest response likelihood on the preference function. Preference strength is the degree to which 

attractiveness falls away from peak preference, calculated as [SD(response values)/mean(response 

https://github.com/Joccalor/Pfunc
https://github.com/Joccalor/Pfunc
https://github.com/Joccalor/Pfunc
https://hub.docker.com/r/joccalor/pfunc/
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values)]2 where SD=standard deviation. These two traits are highly repeatable (peak preference: r = 

0.40; preference strength: r = 0.76; Cirino et al. in review). 

 

Statistical analysis 

 

We conducted all analyses using the lmer function of the R-package lme4 (v. 1.1-25; Bates et al. 

2014). We built linear mixed models (described below) in which the error structure was Gaussian. 

We checked the assumptions of normality and homoscedasticity of residuals by visually examining 

a quantile-quantile plot and the residuals against the fitted values, both indicating no deviation from 

these assumptions. We assessed model stability by excluding data points one at a time from the 

data, fitting the model and collecting the parameter estimations. If the range of parameter 

estimations over all these iterations included 0, the model and variable estimation was considered 

unstable. To test for collinearity between fixed effects, we derived variance inflation factors (Field 

2009) using the function vif of the R-package car (version 2.1-4; Fox & Weisberg 2011) and they 

revealed the absence of collinearity between fixed effects (maximum value of 1.5; collinearity 

issues usually indicated by values higher than 4). 

 

Testing for plasticity due to rearing in own-species vs. mixed-species aggregations 

 

To test for an effect of the rearing treatments on male signal frequency and female peak preference, 

we built a linear mixed model in which we used a "reaction norm" approach with one dependent 

variable that represented both male signal frequency and female peak preference (cf. Fowler-Finn et 

al. 2015; Rebar and Rodríguez 2015). This approach allowed us to analyse the relationship between 

the effects of the treatments on both preferences and signals with a single model. The model had the 

following explanatory variables: treatment (“mixed” or “own”), species (splow or sphigh), sex (male 
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or female), year (categorical variable with three levels: 2018, 2019 or 2020), and recording 

temperature. Recording temperature and year were included as control variables. Typically, year 

would be included as a random factor, but because it had less than five categorical levels, we 

included it as a fixed effect (Arnqvist 2020). The model also included all two- and three-way 

interactions between treatment, species, and sex. These interactions terms test for test for species 

and sex differences in the plastic response to the rearing treatments. For instance, the best-case 

scenario for plasticity arising from interactions in mixed species aggregations to contribute to 

assortative mating would require that the signals and preferences of each species become more 

distinct in the mixed treatment (Fig. 1e). This would be indicated by a significant species × 

treatment interaction (with visual inspection to distinguish between the scenarios in Fig. 1d vs. e). 

Other scenarios would be indicated as follows: no significant effects (Fig. 1a); only treatment 

significant (Fig. 1b,c); significant sex × treatment interaction and species × treatment and/or 3-way 

interaction (Fig. 1f,g). As there were several individuals on each rearing plant/aggregation, the 

model also included rearing plant/aggregation identity as a random term. We initially included 

collection site as a term, but it was never significant (p>0.07 in all cases), so we removed it from 

our analyses.We used a second, similar model to test for an effect of the treatments on female 

preference strength, with preference strength as the dependent variable. 

 

Testing for reinforcement in splow 

  

We focused this analysis on splow, for which we had both sympatric and allopatric populations (we 

were unable to find allopatric sites for sphigh, despite considerable efforts; see above). We built a 

linear mixed model with frequency (of male signals or female preference) as the dependent 

variable. The explanatory variables were: treatment, population type (allopatric or sympatric), sex, 

year and recording temperature. We included an interaction between treatment and sex to keep the 
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model as similar to the previous one as possible to keep them comparable. We also included an 

interaction between treatment and population type to test for differences in the effect of treatment in 

different population types. The model included rearing plant/aggregation identity as a random term. 

We used a similar model to test for geographic variation in the form of plasticity for female 

preference strength in splow. 

 

Results 

 

Plasticity due to rearing in own- vs. mixed-species aggregations 

 

Our study species responded differently to the rearing treatments of own vs. mixed-species 

aggregations (significant species × treatment, and species × treatment × sex interactions; Table 1), 

supporting a scenario similar to Fig. 1f-g. Sphigh individuals reared in mixed-species aggregations 

differed more (by 11% on average) from splow in male advertisement signals and female mate 

preferences than individuals reared in own-species aggregations (Fig. 4, 5, and 6a-b). By contrast, 

splow exhibited little plasticity in signals or preferences in response to the rearing treatments (Fig. 4, 

5, and 6a-b). Note, however, that splow and sphigh showed comparable overall plasticity in signals 

and preferences due to within-treatment variation in developmental and social environments 

(significant random terms for rearing plant/aggregation; Table 1).  Interestingly, the variance in 

male signals did not differ between treatments while the variance in female peak preference was 

higher in own- than in mixed-species treatments for both species (Table S4). 

 The rearing treatments also tended to affect female preference strength differently in the two 

species (marginally significant species × treatment interaction, Table 2). sphigh females reared in 

mixed-species aggregations tended to have stronger preferences than females reared in own-species 

aggregations (Fig. 6c). By contrast, splow females exhibited little plasticity in preference strength 
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according to the rearing treatments but tended to express constitutively higher strength than that of 

sphigh females in own-species aggregations (Fig. 6c). Nevertheless, as above, both species showed 

comparable plasticity due to within-treatment variation in the developmental and social 

environment (significant random terms for rearing plant/aggregation; Table 2). 

 

No reinforcement in splow 

 

There was no difference between sympatric and allopatric populations in signals and preferences 

within treatment (non-significant population type; Table S5; Fig. 4, 5, and 6a-b) and in the form of 

the plastic response to the rearing treatments in signals or preferences (non-significant population 

type × treatment interaction; Table S5; Fig. 4, 5, and 6a-b). There was also no difference between 

sympatric and allopatric populations in female preference strength within treatment (non-significant 

population type; Table S6; Fig. 6c) and in the form of the plastic response in female preference 

strength (non-significant effect of population type × treatment interaction; Table S6; Fig. 6c). 

 

Discussion 

 

 

Here, wee propose a heuristic model whereby plasticity due to interactions in mixed aggregations of 

diverging populations or recently diverged species may create or enhance signal-preference 

differences and promote assortative mating (Fig. 1). We also present a "proof of concept" test of 

this hypothesis with two recently diverged species in the E. binotata complex of treehoppers that 

differ in signals and preferences but not ecologically. We found that social plasticity enhances 

signal-preference differences between two closely related species of Enchenopa treehoppers 

mediated via the plastic response of one species. When reared in mixed-species aggregations, males 
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of sphigh had higher frequency signals and females had preferences for higher signal frequencies 

than when reared in own-species aggregations. The other species (splow) did not show plasticity in 

response to these rearing treatments.  

 Social plasticity enhanced signal-preference differences between these two species by about 

10%. This is a relatively small, but important increase in the signal-preference species differences. 

Females E. binotata have strong preferences for signal frequency, and a 10% deviation from peak 

preference typically decreases signal attractiveness by ca. 50% (Rodríguez et al. 2006, 2013a). 

Further, the combined effect through signals and preferences further enhances that effect. Despite a 

wide frequency gap between the two species, the range of variation in the population, especially in 

female preferences (Fig. 4), points to some risk of hybridization. Indeed, some females appear 

potentially willing to accept males of the other species (e.g. female 12, 25, 33, 260, 289 or 291 in 

Fig. S2). Hence, we consider that the observed plastic response is likely to increase assortative 

mating in a biologically relevant way between the two species. These results support a key 

component of the scenario outlined in Fig. 1g: a species difference in social plasticity with plasticity 

of the predicted sign in one species and no plasticity in the other species. 

 Mate preferences can differ in preferred signal value, but also in strength, and the two can 

have distinct evolutionary consequences (Bailey 2008; Rodríguez et al. 2013a; Kilmer et al. 2017). 

Our rearing treatment not only influenced phenotypic values for male signals and female peak 

preferences, but also the strength of those preferences: sphigh females reared in mixed-species 

aggregations had stronger preferences than those reared in own-species aggregations. This 

compounded effect could further increase assortative mating when the two species are in contact, as 

females not only have a preference for higher frequencies, but that preference for higher frequencies 

is stronger. Splow female preference strength was not plastic in response to our treatments, but 

constitutively higher than that of sphigh females in own-species aggregations. The combined effect 

of preference peak and strength thus results in a reduction of splow signal attractiveness for sphigh 
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females, likely further enhancing assortative mating. 

 Although we did not attempt to identify the specific inputs into trait expression that may be 

responsible for the observed plasticity, several aspects of social interactions may have been at play. 

The manipulation in the social environment that we applied resulted in lifelong changes in the 

interactions experienced by individuals. As juveniles, splow have higher signalling rates than sphigh 

(Rodríguez et al. 2018). Thus, the mixed treatment likely presented a change for nymphs of both 

species, with higher than usual signalling rates for sphigh and lower than usual for splow. Males of the 

two species differ in their advertisement signals (mainly in dominant frequency, see above), and 

that would offer strong differences in experience between the treatments. However, prior work 

found that such differences in male adult experience alone do not change male signal frequency 

(Rebar and Rodríguez 2016). Further, although the strongest effects found were on female mate 

preferences, females were not exposed to male signals during the treatments and would not 

themselves signal until later in life and then mainly in response to males, so our treatments likely 

varied little at this stage for females. Consequently, we consider that our results likely arise from the 

effects of inputs that occurred during the juvenile stage, which prior work has shown to be 

important (Desjonquères et al. 2019b, 2019a, 2021). 

 The observed divergence-enhancing plasticity could arise in two ways. It could occur upon 

first encounter—without prior selection against hybridization—and immediately establish or 

strengthen assortative mating. Alternatively, it may arise from selection against hybridization—i.e., 

reinforcement (Servedio and Noor 2003). Reinforcement could act not only on signals or 

preferences themselves, but also on their plastic response (Lesna and Sabelis 1999; Pfennig 2007; 

Chaine and Lyon 2008). The “first encounter” and “reinforcement of plasticity” scenarios may be 

contrasted by testing for geographic variation in the form of plasticity and measuring the fitness of 

hybrids. Under the “reinforcement of plasticity” scenario, plasticity due to interactions in mixed-

species aggregations would create or enhance signal-preference differences only in individuals from 
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sympatric populations where both populations or species have a history of co-existence, and not in 

individuals from allopatric sites where only one species occurs. We occasionally find treehoppers 

with intermediate signals and preferences (a few individuals out of hundreds collected each year; K. 

D. Fowler-Finn & R. L. Rodríguez, unpubl.), suggesting that these species may hybridize at low 

rates in the field. However, hybrids are unlikely to mate, as their intermediate signals and 

preferences will fail to be attractive to (or be attracted by) either parental species. We found no 

differences in the plastic response between sympatric and allopatric sites for splow, but we were 

unable to conduct a similar test for sphigh. Future work would profit from a renewed population 

sampling effort to confidently test a "first encounter" versus "reinforcement” scenario. 

 Our results support the hypothesis that social plasticity can create or enhance signal-

preference differences and promote assortative mating. Specifically, we suggest that a change in the 

social environment can enhance phenotypic differences in mating signals and mate preferences, 

promoting reproductive isolation. This process might represent an under-appreciated cause of 

assortative mating and signal-preference divergence in the early stages of speciation. Once present, 

new or enhanced signal-preference differences expressed due to social plasticity would not only 

promote assortative mating, but also facilitate further co-divergence through subsequent evolution 

of signals, preferences, and/or their plastic response (the latter potentially involving genetic 

accommodation or assimilation; West-Eberhard 2003, 2005). Such subsequent evolution may lead 

to genetic change in signals, preferences and/or the machinery involved in their development, as 

well as genetic change in the elements of the social environment responsible for the plasticity-

inducing inputs—change in the indirect genetic components of signals, preferences and their 

developmental regulation (cf. Bailey & Moore 2012; Rebar & Rodríguez 2015). The importance of 

this process for speciation will depend on how common, how strong, and of what sign, the “first 

encounter” effects of social plasticity are. Further, reinforcement of the plastic response is an 

interesting and potentially important outcome that should be explored further with experimental 
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research. Such early unselected, “first encounter” plasticity may even contribute to that 

reinforcement through genetic accommodation of the plastic response. Comparative work to answer 

these questions and test these hypotheses will be illuminating. 
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T a b l es 

T a bl e 1: V a ri ati o n i n m al e si g n al f r e q u e n c y a n d f e m al e p e a k p r ef e r e n c e i n t w o E n c h e n o p a  
s p e ci es a c c o r di n g t o o w n- vs. mi x e d-s p e ci es r e a ri n g t r e at m e nts.  Si g nifi c a nt eff e cts a n d 
m ar gi n all y si g nifi c a nt i n b ol d. 

Fi x e d eff e ct s  

T e r m  ꭓ 2  Df  P -v al u e  

S p e ci es  4 5 2 0. 2 2  1  < 0. 0 0 0 1  

S e x  2 2. 7 9  1  < 0. 0 0 0 1  

Tr e at m e nt  2. 0 1  1  0. 1 6  

Y e ar  9. 6 1  2  0. 0 0 9  

T e m p er at ur e  1 4. 6 7  1  0. 0 0 0 1 3  

S p e ci es ×  s e x 0. 5 7  1  0. 4 5  

S p e ci es ×  tr e at m e nt 5. 1 0  1  0. 0 2 4  

S e x ×  tr e at m e nt 0. 1 4  1  0. 7 1  

S p e ci es ×  s e x ×  tr e at m e nt 5. 7 0  1  0. 0 1 7  

R a n d o m eff e ct  

T e r m  ꭓ 2  Df  P -v al u e  

R e ari n g pl a nt/ a g gr e g ati o n  4. 1 1  1  0. 0 4 3  
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T a bl e 2: V a ri ati o n i n f e m al e p r ef e r e n c e st r e n gt h i n t w o E n c h e n o p a  s p e ci es a c c o r di n g t o o w n- 
vs. m i x e d-s p e ci es r e a ri n g t r e at m e nts. Si g nifi c a nt a n d m ar gi n all y- si g nifi c a nt eff e cts i n b ol d. 
 

Fi x e d eff e ct s  

T e r m  ꭓ 2  Df  P -v al u e  

S p e ci es  0. 1 0  1  0. 7 6  

Tr e at m e nt  0. 1 7  1  0. 6 8  

Y e ar  3. 3 4  2  0. 1 9  

T e m p er at ur e  0. 5 4  1  0. 4 6  

S p e ci es  ×  tr e at m e nt 3. 2 3  1  0. 0 7 3  

R a n d o m eff e ct s  

T e r m  ꭓ 2  Df  P -v al u e  

R e ari n g a g gr e g ati o n  4. 3 0  1  0. 0 3 8  
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Figures 

 

Figure 1: Sketch of possible effects of social plasticity on signal-preference differences. When 

two populations or closely related species first meet (a), interactions may increase or decrease the 

signal-preference values of both populations or species (b or c, respectively), make each population 

or species more similar to the other (d), or create/enhance signal-preference differences (e-g). There 

are many other possible scenarios combining species and sex differences in the plastic response (64 

possible scenarios if we consider that each species’ trait values could shift in 8 different directions). 

In the interest of space, we only illustrate the major categories of scenarios. 

 

Figure 2: Examples of own- and mixed-species rearing aggregations that constituted the 

treatments in our experiment. 

 

 Figure 3: Flowchart of the experimental design to rear individuals in own- or mixed-species 

treatments. Nymphs were brought into a greenhouse and installed on host plants either as own- or 

mixed-species aggregations. When the first adults appeared, we separated the two species onto two 

rearing plants (for the own-species treatment, aggregations were just split on two new rearing plants 

to follow the same procedure as for mixed-species treatment). As adults continued to appear, we 

marked them according to their rearing plant and separated males and females. 

 

Figure 4: Variation in female preference curves in Enchenopa according to species and own- 

vs. mixed-species rearing treatments. Dotted lines present individual-level preference curves. 

Solid lines present group-level preference curves for each treatment-species combination. Light 

blue shows females reared in own-species treatments and orange indicates those reared in mixed-

species treatments. Left panel shows splow and the right sphigh. 

 

Figure 5: The effect of own- vs. mixed-species treatments on male signal frequency and female 

peak preference in two Enchenopa species. Points and associated bars show the mean and 

standard error for each rearing treatment–site–species combination (data corrected for the effects of 

temperature, year and plant replicate using model predictions). For reference, data from splow and 

sphigh species occupy the lower left and upper right portions of the plot, respectively. Blue shades 
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show means of individuals reared in own-species treatments and red and orange shades show means 

of individuals reared in mixed-species aggregations. Lighter colours (orange and light blue) are for 

individuals from sympatric populations while darker colours (red and dark blue) are for individuals 

from allopatric populations. There were no allopatric populations for sphigh thus there are no dark 

colours for that species. 

 

Figure 6: The effect of own- vs. mixed-species treatments on male signal frequency (a), female 

peak preference (b) and preference strength (c) in two Enchenopa according to own- vs. 

mixed-species rearing treatments. Solid points and associated bars show the mean and standard 

error for each rearing site–treatment–species combination (data corrected for the effects of 

temperature, year and plant replicate using model predictions). Transparent points show the 

individual data. Blue shades indicate means for individuals reared in own-species treatments. In red 

and orange shades indicate means for mixed-species aggregations. Lighter colours (orange and light 

blue) indicate individuals coming from sympatric populations while darker colours (red and dark 

blue) indicate individuals from allopatric populations. Note there were no allopatric sphigh 

populations thus there are no dark colours for that species. Dotted grey lines show the reaction norm 

for each site (two sites for sphigh and five sites for splow). 
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Figure S1: Map of the sampling locations. BOG, PNV and OLT are the allopatric locations in 

yellow. FST and FGC are the sympatric locations in light blue.
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Table S1: Replication levels for male and female Enchenopa binotata in different treatment, 

site and year.

Site splow Site sphigh Treatment Years Plant 
replicate

Nymphs Males Females

BOG x own 2018-2020 9 360 splow 14 splow 51

FGC x own 2019-2020 8 320 splow 21 splow 41

x FGC own 2019-2020 5 200 sphigh 2 sphigh 15

FST x own 2018-2020 10 400 splow 10 splow 32

x FST own 2018-2020 7 280 sphigh 18 sphigh 17

OLT x own 2018 4 160 splow 7 splow 18

PVN x own 2020 4 160 splow 26 splow 27

BOG FST mixed 2018-2020 7 280 splow 6
sphigh 6

splow 17
sphigh 8

FGC FST mixed 2019-2020 7 280 splow 2
sphigh 2

splow 18
sphigh 18

FST FGC mixed 2019-2020 2 80 splow 1
sphigh 1

splow 7
sphigh 13

FST FST mixed 2018-2019 6 240 splow 10
sphigh 3

splow 15
sphigh 13

OLT FST mixed 2018 4 160 splow 7
sphigh 2

splow 11
sphigh 6

PVN FGC mixed 2020 2 80 splow 2
sphigh 0

splow 6
sphigh 3

PVN FST mixed 2020 5 200 splow 5
sphigh 7

splow 20
sphigh 18

Total 80 3200 153 375
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Table S2: Playback stimuli features for the two species.

Signal trait splow sphigh

Signal length (ms) 950 710

Pulse number 3 4

Pulse rate (s-1) 21 13.5

Pulse length (ms) 38 25

Intersignal interval (ms) 2841 3460

Signals per bout 4 4
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Table S3: Smoothing values for female preference curves.

female number smoothing treatment species
1 0,005 homo LF
2 0,005 homo LF
3 0,05 homo LF
4 0,05 homo LF
5 0,005 homo LF
6 0,008787994 homo LF
7 0,05 homo LF
8 0,005 homo LF
9 0,005 homo LF

10 0,05 homo LF
11 0,005 hete LF
12 0,005 homo LF
13 0,05 homo LF
14 0,005 homo LF
15 0,005 homo LF
16 0,0348664 homo LF
17 0,005 hete HF
18 0,05 hete LF
19 0,005 hete LF
20 0,0289302 hete HF
21 0,005 hete HF
22 0,005 hete HF
23 0,05 hete LF
24 0,005 hete LF
25 0,05 homo LF
26 0,005 homo LF
27 0,005 homo LF
28 0,005 homo LF
29 0,005 homo LF
30 0,05 hete LF
31 0,05 hete LF
32 0,005 homo LF
33 0,05 homo LF
34 0,05 homo LF
35 0,05 homo LF
36 0,05 homo LF
37 0,005 homo LF
38 0,05 homo LF
39 0,005 homo LF
40 0,005 homo LF
41 0,005 hete LF
42 0,008933725 hete LF
43 0,01640138 hete HF
44 0,005 hete HF
45 0,005 hete LF
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46 0,005 hete LF
47 0,005 hete LF
48 0,005 hete LF
49 0,05 hete HF
50 0,05 homo HF
51 5,00E-04 homo LF
52 0,005 homo LF
53 0,05 homo LF
54 0,05 homo LF
55 0,005 homo LF
56 0,04163705 homo LF
57 0,005 homo LF
58 0,001 homo LF
59 0,005 hete LF
60 0,005 hete LF
61 0,005 hete LF
62 0,05 hete HF
63 0,005 hete HF
64 0,05 hete LF
65 0,005 hete HF
66 0,005 homo LF
67 0,01114964 homo LF
68 0,005 homo LF
69 0,005 homo LF
70 0,005 homo LF
71 0,006344236 homo LF
72 0,01153259 hete LF
73 0,005 hete HF
74 0,005 hete LF
75 0,005 hete HF
76 0,005 hete HF
77 0,005 homo LF
78 0,005 homo LF
79 0,02842651 homo LF
80 0,03282305 homo LF
81 0,05 homo LF
82 0,005 homo LF
83 0,006143665 homo LF
84 0,005 homo LF
85 0,005 homo LF
86 0,005 homo LF
87 0,03995623 hete HF
88 0,005 hete LF
89 0,005 homo LF
90 0,02015132 homo LF
91 0,005 homo LF
92 0,005 homo LF
93 0,01735497 hete LF
94 0,01472007 hete HF
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95 0,005 hete LF
96 0,005 hete LF
97 0,005 hete LF
98 0,05 hete LF
99 0,005 hete LF

100 0,005 homo HF
101 0,005 homo HF
102 0,005 homo LF
103 0,005 homo LF
104 0,005 hete LF
105 0,05 hete HF
106 0,005 hete LF
107 0,05 hete HF
108 0,005 homo LF
109 0,001 homo LF
110 0,005 homo LF
111 0,005 homo LF
112 0,005 hete HF
113 0,05 homo LF
114 0,005 hete LF
115 0,005 hete HF
116 0,01522379 hete LF
117 0,005661009 hete HF
118 0,005 homo HF
119 0,005 homo HF
120 0,05 homo LF
121 0,005 homo LF
122 0,005 homo LF
123 0,005 homo LF
124 0,005 homo LF
125 0,005 homo LF
126 0,05 homo LF
127 0,008579381 hete LF
128 0,005 hete LF
129 0,008984747 hete LF
130 0,005 hete LF
131 0,005 hete LF
132 0,05 hete LF
133 0,00861887 homo HF
134 0,05 homo HF
135 0,005 hete HF
136 0,005 hete LF
137 0,005 hete LF
138 0,05 hete LF
139 0,05 hete LF
140 0,05 hete HF
141 0,008337663 hete LF
142 0,005 hete LF
143 0,005 hete LF
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144 0,006565031 hete HF
145 0,0193478 hete HF
146 0,005 hete LF
147 0,01817277 homo LF
148 0,05 homo HF
149 0,005 homo LF
150 0,005 homo LF
151 0,005 homo LF
152 0,005 homo LF
153 0,02842651 hete LF
154 0,005 homo HF
155 0,01488127 homo HF
156 0,05 homo HF
157 0,005 homo LF
158 0,02870255 homo LF
159 0,005 homo LF
160 0,03296894 homo LF
161 0,005 homo LF
162 0,005 homo LF
163 0,005 homo LF
164 0,01428094 homo LF
165 0,005 homo LF
166 0,005 homo LF
167 0,005 homo LF
168 0,005 homo LF
169 0,005 homo LF
170 0,008458835 homo LF
171 0,005 homo LF
172 0,005 homo LF
173 0,005 homo LF
174 0,05 homo HF
175 0,005 homo HF
176 0,005 homo LF
177 0,005 homo LF
178 0,05 homo LF
179 0,005 homo LF
180 0,005 homo LF
181 0,05 homo LF
182 0,01395171 homo HF
183 0,02829996 homo HF
184 0,005 homo HF
185 0,05 homo HF
186 0,005 homo LF
187 0,005 homo LF
188 0,005 homo LF
189 0,005 homo LF
190 0,02510162 homo LF
191 0,005 homo LF
192 0,005 homo LF
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193 0,04008847 homo LF
194 0,02912358 homo LF
195 0,005 hete LF
196 0,007402557 hete LF
197 0,005 hete LF
198 0,005 hete LF
199 0,05 hete LF
200 0,005 hete LF
201 0,005 hete LF
202 0,005 hete HF
203 0,005 homo LF
204 0,0132327 homo LF
205 0,005 homo LF
206 0,005 homo LF
207 0,005 homo LF
208 0,005 homo LF
209 0,005 hete HF
210 0,005 hete LF
211 0,001 hete LF
212 0,05 hete HF
213 0,005 hete LF
214 0,005 hete HF
215 0,007370676 hete HF
216 0,005 hete LF
217 0,005 hete LF
218 0,005 homo LF
219 0,007161673 homo LF
220 0,005 homo LF
221 0,005 hete HF
222 0,005 hete LF
223 0,005 hete HF
224 0,006297506 hete HF
225 0,005 hete HF
226 0,02846831 homo LF
227 0,005 homo LF
228 0,005 homo LF
229 0,005 homo LF
230 0,005 hete HF
231 0,01474261 hete HF
232 0,005 hete HF
233 0,005 hete LF
234 0,05 hete LF
235 0,005 hete LF
236 0,005 homo LF
237 0,005 homo LF
238 0,005 homo LF
239 0,02725187 hete LF
240 0,005 hete HF
241 0,05 hete HF
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242 0,005 hete HF
243 0,005 hete LF
244 0,005 hete LF
245 0,01065837 hete HF
246 0,01066943 hete HF
247 0,005 hete LF
248 0,005 hete HF
249 0,008305693 hete HF
250 0,005 hete LF
251 0,005 hete LF
252 0,05 hete LF
253 0,005 hete LF
254 0,005 hete HF
255 0,005 hete HF
256 0,005 hete LF
257 0,005 hete LF
258 0,05 hete HF
259 0,007890447 hete HF
260 0,005 hete HF
261 0,01265992 hete HF
262 0,04672711 hete HF
263 0,005 hete LF
264 0,005748247 hete LF
265 0,005 hete HF
266 0,005 hete HF
267 0,01893001 hete HF
268 0,005 hete LF
269 0,005 hete LF
270 0,005 hete LF
271 0,0132224 hete HF
272 0,05 homo LF
273 0,005 homo LF
274 0,005 homo LF
275 0,005091953 homo LF
276 0,005 homo LF
277 0,005 hete HF
278 0,005 hete HF
279 0,005 hete HF
280 0,05 hete LF
281 0,005 hete LF
282 0,005 hete HF
283 0,005797086 hete HF
284 0,005 hete LF
285 0,005 hete HF
286 0,0108547 homo HF
287 0,005 homo HF
288 0,005 homo HF
289 0,005 homo HF
290 0,005 homo HF
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291 0,005 homo LF
292 0,005 homo LF
293 0,005 hete HF
294 0,005 homo HF
295 0,01689381 homo HF
296 0,005381584 hete HF
297 0,005 hete LF
298 0,05 hete HF
299 0,005 hete HF
300 0,006644961 hete LF
301 0,005 homo HF
302 0,005 homo HF
303 0,005 homo HF
304 0,005 homo HF
305 0,005 homo HF
306 0,005 homo HF
307 0,005 homo HF
308 0,02014902 homo LF
309 0,005 homo LF
310 0,005 homo LF
311 0,005 homo LF
312 0,005 homo HF
313 0,01429245 homo LF
314 0,005 hete HF
315 0,01022045 homo LF
316 0,005 homo LF
317 0,005 homo LF
318 0,005 homo LF
319 0,005 homo LF
320 0,005428979 hete HF
321 0,05 hete HF
322 0,0172832 hete HF
323 0,005073751 hete LF
324 0,005 hete LF
325 0,005 homo LF
326 0,005 homo LF
327 0,05 homo LF
328 0,05 homo LF
329 0,0209091 hete LF
330 0,01208893 hete LF
331 0,01382503 hete LF
332 0,006074263 hete HF
333 0,01893001 hete HF
334 0,05 hete LF
335 0,0346496 hete HF
336 0,005 hete LF
337 0,005 hete LF
338 0,005 hete HF
339 0,005 homo LF
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340 0,005 homo LF
341 0,005653506 homo LF
342 0,005 homo LF
343 0,005 homo LF
344 0,05 homo LF
345 0,01194879 homo LF
346 0,005 homo LF
347 0,005 homo LF
348 0,005 homo LF
349 0,001 homo LF
350 0,005 homo LF
351 0,005 homo LF
352 0,05 homo LF
353 0,05 homo LF
354 0,005 homo LF
355 0,005 homo LF
356 0,005 homo LF
357 0,05 homo LF
358 0,005 homo LF
359 0,005 hete HF
360 0,05 hete HF
361 0,05 hete HF
362 0,005 hete LF
363 0,005 homo LF
364 0,005 homo LF
365 0,005 homo LF
366 0,005 hete HF
367 0,02842651 hete LF
368 0,005 hete HF
369 0,005 hete LF
370 0,005 hete LF
371 0,005 hete HF
372 0,005 hete LF
373 0,005 hete HF
374 0,005 homo LF
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Table S4: Variation in the variance of male signal frequency and female peak preference in 
two Enchenopa species according to own- vs. mixed-species rearing treatments. Significant 
effects and marginally significant in bold.

Variance 
comparison

Term F Df (num, denom) p

Females Peak preference of splow in own- vs. 
mixed-species treatment

1.43 168, 93 0.058

Peak preference of sphigh in own- vs. 
mixed-species treatment

3.40 31, 78 <<0.001

Males Signal frequency of splow in own- vs. 
mixed-species treatment

1.12 77, 30 0.76

Signal frequency of sphigh in own- vs. 
mixed-species treatment

1.19 19, 20 0.70
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Table S5: Results of generalized linear mixed model exploring the variation in the effect of 
rearing treatment on male signal frequency and female preference peak in one Enchenopa 
species (splow) according to population type (sympatric vs. allopatric). Significant effects (p-
value < 0.10) are marked in bold.

Fixed effects

Term ꭓ2 Df P-value

Sex 28.12 1 <0.0001

Treatment 0.04 1 0.84

Population type (sympatric/allopatric) 2.03 1 0.15

Year 9.72 1 0.0077

Temperature 6.41 1 0.011

Sex × treatment 0.87 1 0.35

Treatment × population type 0.10 1 0.75

Random effect

Term ꭓ2 Df P-value

Rearing plant/aggregation 0.61 1 0.43
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Table S6: Results of generalized linear mixed model exploring the variation in the effect of 
rearing treatment on female preference strength in one Enchenopa species (splow) according to 
population type (sympatric vs. allopatric). Significant effects (p-value < 0.10) are marked in 
bold.

Fixed effects

Term ꭓ2 Df P-value

Population type 0.02 1 0.88

Treatment 1.63 1 0.20

Year 0.53 1 0.77

Temperature 1.91 1 0.17

Treatment × population type 0.00 1 0.99

Random effects

Term ꭓ2 Df P-value

Rearing aggregation 1.52 1 0.22


