

Animal Behaviour

The direction and strength of social plasticity in mating signals and mate preferences vary with induction life stage

--Manuscript Draft--

Manuscript Number:	ANBEH-D-22-00303R2
Article Type:	SI: Behavioural Plasticity II
Keywords:	life stages; mating signal evolution; preference functions; signal ontogeny; behavioural plasticity
Corresponding Author:	Camille Desjonquères University of Wisconsin-Milwaukee Milwaukee, WI UNITED STATES
First Author:	Camille Desjonquères
Order of Authors:	Camille Desjonquères Rafael Rodríguez
Abstract:	<p>Socially-induced plasticity in mating signals and mate preferences is widespread in animals. The timing of plasticity induction is key for mating and evolutionary consequences: plasticity induced before and after dispersal often results in different mate choices. Here we discuss two additional factors that may be of importance: the nature of social interactions that are involved at different stages, and the direction and strength of plasticity in mating traits. We review a case study with the <i>Enchenopa binotata</i> complex of treehoppers. In spite of a wide scope for social plasticity in <i>E. binotata</i> across their life stages, effects of the juvenile social environment were stronger and more common, especially those influencing the signal-preference relationship. These results emphasize the importance of studying variation in plasticity induced along various life stages and of considering all the mating traits that may be socially plastic. We suggest that systematic investigation of these patterns across taxa will help better understand the origin of diversity in animal communication systems.</p> <p><small>p { color: #00000a; line-height: 120%; text-align: left; orphans: 0; widows: 0; margin-bottom: 0.25cm; direction: ltr; background: transparent }p.western { font-family: "Liberation Serif", serif; font-size: 12pt; so-language: fr-FR }p.cjk { font-family: "Droid Sans Fallback"; font-size: 12pt; so-language: zh-CN }p.ctl { font-family: "FreeSans"; font-size: 12pt; so-language: hi-IN }a:visited { color: #800000; so-language: zxx; text-decoration: underline }a:link { color: #000080; so-language: zxx; text-decoration: underline }</small></p>

The direction and strength of social plasticity in mating signals and mate preferences vary with the life stage of induction

3

4

5

5 Camille Desjonquères^{1,*}, Rafael Rodríguez¹

6

7

8 ¹ Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
9 Wisconsin-Milwaukee, Milwaukee, WI, USA

10

11 * Corresponding author: cdesjonqu@gmail.com, Tel.: +1 (414) 229-4214

12 Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
13 Wisconsin-Milwaukee, Milwaukee, WI, USA

14

15 Word count: 6 362

16

Dear Authors,

I have received the second round of comments from the reviewers, and they find the manuscript has been greatly approved and that the vast majority of their comments have been addressed. They only provided minor comments in this second round of revisions. Thus, I am happy to mark this as "Revise/Accept". Please address the very minor points that the reviewers pointed out, and resubmit the manuscript for final acceptance.

Best,

Dale

Dear Dale,

We thank you and the reviewers for their positive outlook and helpful comments. We have addressed all the concerned raised here. In this letter, we highlight the specific changes made to our manuscript. Note that the line numbers specified in this letter correspond to the version of the manuscript with track changes. We believe that this has greatly improved the quality and clarity of our manuscript.

Best wishes,
Camille Desjonquères and Rafael L. Rodríguez

Reviewer #1: The authors have addressed all major issues in their revision, and I do not have further comments, except a handful of specific issues:

C1: L62-67: is the new claim in response to R2 too strong now or are the authors really talking about examples in which preference functions of different populations have no overlap?

R1: Good point. We have added a reference for mate preference learning (L62-63). We also soften our claim that different populations will be unable to find mates (L64-68).

C2: L262-263: the sentence is slightly clearer now, but is probably still missing something to specify that the second part (after the comma) refers to "these inputs".

R2: We replace 'these inputs' by 'these experiences' (L250).

C3: L293: the new version is not really any different. Amplitude change in response to a competitor or any other environmental factor has, to my knowledge, never been described in arthropod vibrational communication and introducing such claims might give the reader the wrong idea (i.e. that the phenomenon is commonly known). Signal rate change may stay as far as I'm concerned, but I recommend only mentioning the additional signal type for which good references are cited.

R3: We believed this was an interesting result to report especially as there are no previous reports of such effect. But you are right that such a claim requires a publication. We now removed the results about amplitude (L278 and Figure 3).

Thus, I am recommending a minor revision (this time really minor).

Note: line numbers in my comments refer to the "track changes" version of the document, like in the authors' response.

We thank reviewer 1 for their helpful comments.

Reviewer #2: ANBEH-D-22-00303-R1:

C4: I have reviewed a previous version of this manuscript. I find the revision to be considerably improved. The authors have responded appropriately to my comments. Figure 3 is much improved and greatly improves the paper, as well as the references to Figure 2 throughout.

Scant minor comments below.

R4: We are glad we were able to address reviewer 2's comments. We address these minor comments below.

Minor comments

C5: L17: delete "the" before "different".

R5: Done (L17).

C6: L55: delete "and this".

R6: Done (L54).

C7: L68: Swap the clauses such that it reads: "...social plasticity that may influence patterns of mate choice and assortative mating besides the timing of induction: the nature..."

R7: Done (L69-71)

C8: L108: This sentence makes little sense.

R8: Good point, we clarified this sentence (L101-102).

C9: L200: "...these effects" or "...this effect"?

R9: There are several consequences of signalling interactions on males and females that operate as switch-like effects. We kept it as is (L188).

C10: L374: I do not think there is a need for both a comma and an em-dash. I would delete the comma.

R10: Good point, the em-dash was stricken through but the strike mark overlaps with the em-dash (L304).

The direction and strength of social plasticity in mating signals and mate preferences vary with the life stage of induction

3

4

5

5 Camille Desjonquères^{1,*}, Rafael Rodríguez¹

6

7

⁸ ¹ Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
⁹ Wisconsin-Milwaukee, Milwaukee, WI, USA

10

11 * Corresponding author: cdesjonqu@gmail.com, Tel.: +1 (414) 229-4214

12 Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
13 Wisconsin-Milwaukee, Milwaukee, WI, USA

14

15 Word count: 6 362

16

17 Highlights

18

- The evolutionary consequences of social plasticity vary with induction life stage
- We review a series of studies on plasticity in signals and preferences in treehoppers
- The most striking plastic responses are induced at the juvenile stage
- Plasticity induction nature and timing likely influences signal-preference evolution

1 The direction and strength of social plasticity in mating signals and mate preferences varies 2 with the life stage of induction

3

4

5 Camille Desjonquères^{1,*}, Rafael Rodríguez¹

6

7

8 ¹ Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
9 Wisconsin-Milwaukee, Milwaukee, WI, USA

10

11 * Corresponding author: cdesjonqu@gmail.com, Tel.: +1 (414) 229-4214

12 Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of

13 Wisconsin-Milwaukee, Milwaukee, WI, USA

14 **Abstract**

15 Socially-induced plasticity in mating signals and mate preferences is widespread in animals. The
16 timing of plasticity induction is key for ~~the~~-mating and evolutionary consequences: plasticity
17 induced before and after dispersal often results in~~the~~ different mate choices. Here we discuss two
18 additional factors that may be of importance: the nature of social interactions that are involved at
19 different stages, and the direction and strength of plasticity in mating traits. We review a case study
20 with the *Enchenopa binotata* complex of treehoppers. In spite of a wide scope for social plasticity
21 in *E. binotata* across their life stages, effects of the juvenile social environment were stronger and
22 more common, especially those influencing the signal-preference relationship. These results
23 emphasize the importance of studying variation in plasticity induced along various life stages and of
24 considering all the mating traits that may be socially plastic. We suggest that systematic
25 investigation of these patterns across taxa will help better understand the origin of diversity in
26 animal communication systems.

27

28

29

30

31

32

33

34

35

36 *Keywords : life stages, mating signal evolution, preference functions, signal ontogeny, behavioural*
37 *plasticity*

38 **Introduction**

39 Socially-induced plasticity in mating signals and mate preferences is widespread in animals
40 including fish, birds, mammals and various invertebrates (Dukas, 2013; Rosenthal, 2017; Soha &
41 Peters, 2015; Takahashi et al., 2017). Examples range from classical imprinting, whereby
42 individuals learn their signals and/or preferences from parents early in life (E. Hebets & Sullivan-
43 Beckers, 2010), to mate copying, whereby individuals chose mates that are similar to the ones
44 chosen by others in their immediate mating environment (Davies et al., 2020; Witte et al., 2015).

45 Variation in signals and preferences determines the patterns of assortative mating that arise
46 from courtship and mate choice (Jennions & Petrie, 1997; Kopp et al., 2018; Rosenthal, 2017).

47 Social plasticity in signals and preferences may therefore influence those patterns. Thus plasticity in
48 signals and preferences may have a strong impact on the direction and strength of selection on
49 signals and mate preferences. Moreover, plastic changes induced by the social environment set up
50 the stage for feedback loops ~~regardinginvolving~~ both the causes of variation in phenotypes and the
51 causes of selection on those phenotypes because each individual in a social group is both a receiver
52 and ~~aetorproducer~~ of inputs from social interactions, as well as a target and a cause of selection.

53 Modelling of such feedback in interacting phenotypes ~~theorymodels~~ suggests that ~~suchthese~~ effects
54 can initiate and/or intensify rapid evolution of extravagant signals and/or preferences ~~such as is~~
55 ~~expected inwith~~ Fisherian runaways, ~~and this~~ even in the absence of “direct” genetic covariance
56 between signals and preferences (Bailey & Moore, 2012; Moore et al., 1997).

57 One important factor that determines the evolutionary consequences of social plasticity in
58 signals and preferences is the timing of induction of plasticity. In most song-birds, for instance,
59 young individuals are able to learn new songs up to a certain point in their lives, beyond which their
60 songs are nearly fixed ~~and thus this learning is non-reversible~~ (Marler & Peters, 2010; Nowicki &
61 Searcy, 2014). In such species, the induction of plasticity in song (learning) usually occurs prior to
62 dispersal, territory establishment, and mating. If females have learned theira preference locally

63 (resulting in a preference for local songs; e.g. Ten Cate & Vos, 1999), individuals will only be able
64 to find accepting mates at sites with songs similar to those they learned. Different timings of
65 learning and dispersal will thus have different consequences, ranging from individuals being unable
66 to learn the songs of a new population and thus struggling~~unable~~ to find a mate in that new
67 population, to individuals being able to learn the songs of a new population and thus easily finding
68 a mate (Boughman & Servedio, 2022; Verzijden et al., 2012).

69 Here we point out an additional factor regarding social plasticity that, ~~besides the timing of~~
70 ~~the induction of plasticity~~, may influence patterns of mate choice and assortative mating in addition
71 to the timing of the induction of plasticity: the nature of the interactions involved. Animals engage
72 in many different kinds of social interactions, often involving different signals, signal repertoires,
73 signalling modalities, and behavioural contexts; and these interactions may occur at different stages
74 in animals' their lives (Bradbury & Vehrencamp, 1998; Drosopoulos & Claridge, 2005; Fletcher,
75 2007). The nature of these interactions, together with differences across context and life stages in
76 how animals respond to those inputs, may have important consequences for the direction and
77 strength of the plasticity in signals and preferences that is generated.

78 Here we consider the role of the nature of the social interactions in the direction and strength
79 of the resulting plastic response, in conjunction with their timing of induction. We ground our
80 discussion on a case study with *Enchenopa* treehoppers, where we find that social interactions at
81 different life stages~~s~~ involve different sets of individuals and signal repertoires, and differentially
82 affect adult signals and mate preferences. The *Enchenopa* communication system offers ample
83 opportunity for social plasticity to be induced by inputs from their conspecifics ~~(potential mates,~~
84 ~~competitors and juveniles)~~ as juveniles as well as mature and immature adults. We thus consider
85 how the timing and nature of induction may interact, and how that may vary the consequences of
86 signal-preference plasticity. We suggest that systematically investigating the direction and strength
87 of plasticity in signals and preferences that arise at different times in the life cycle of animals from

88 different social interactions will open novel avenues to understand the evolution of social plasticity
89 in communication systems and its evolutionary consequences.

90

91 **Introduction to the *Enchenopa binotata* species complex (Hemiptera: Membracidae)**

92

93 The *E. binotata* complex is a clade of host specialist plant-feeding insects that communicate with
94 plant-borne vibrational signals (Cocroft et al., 2008; Hsu et al., 2018; Wood, 1993). Communication
95 with substrate-borne vibrations is widespread among animals, including insects and spiders, and
96 signalling with plant-borne vibrations is common among insects, especially in Hemiptera (Cocroft
97 & Rodríguez, 2005; P. S. Hill, 2008; P. S. M. Hill & Wessel, 2016; Rodríguez & Desjonquères,
98 2019; Virant-Doberlet et al., 2014). -

99 ~~contribution (Sullivan-Beckers & Cocroft, 2010). The strong mate preferences make with The *E.*~~
100 ~~binotata complex constitutes a case study of speciation involving host plant shifts and signal-~~
101 ~~preference coevolution (Cocroft et al., 2008; Wood, 1993). Sources of selection on signals include~~
102 ~~mate preferences and signal filtering by plants (McNett & Cocroft, 2008; Rodríguez, Boughman, et~~
103 ~~al., 2013; Rodríguez et al., 2006). Of these, *Enchenopa* engage in signalling interactions with rich~~
104 signal repertoires as nymphs and adults (Cocroft et al., 2008; Desjonquères, Maliszewski, et al.,
105 2019; Rodríguez et al., 2018; Sullivan-Beckers, 2008; Michael & Cocroft, unpubl.). After the adult
106 ~~molt, males and females remain sexually immature for about two and four weeks, respectively~~
107 ~~(Cocroft et al., 2008; Rodríguez et al., 2004). Thus, males begin to signal about two weeks before~~
108 ~~females start to become receptive and begin engaging in duetting. This provides a natural window~~
109 ~~of opportunity during which males and females may perceive the range of variation in the signals of~~
110 ~~potential competitors/mates and sample the mating pool. During the mating season, mate-searching~~
111 males fly from plant to plant, producing advertisement signals that are composed of two main
112 elements: a near pure-tone whine followed by a few pulses (Fig. 1a-b; Cocroft et al., 2008, 2010). A

113 female on the plant that finds the male's signals attractive may decide to produce her own response
114 signals and alert the male to her presence; there follows a male-female signal duet- that continues
115 while the male searches for the female on the plant until mating begins (Fig. 1c; Cocroft et al.,
116 2008; Rodríguez et al., 2004; Rodríguez & Cocroft, 2006). *Enchenopa* females have strong mate
117 preferences, mainly for the dominant frequency of male signals, which they express through
118 selective duetting (Rodríguez et al., 2004, 2006; Rodríguez, Boughman, et al., 2013). Sources of
119 divergent selection on signals include mate preferences and signal filtering by plants (McNett &
120 Cocroft, 2008; Rodríguez, Boughman, et al., 2013; Rodríguez et al., 2006). Of these, mate
121 preferences make the strongest contribution (Sullivan-Beckers & Cocroft, 2010).

122 *Enchenopa* plant-borne vibrational signals transmit well on their host plants, at least at the
123 scale of a stem or bush (which is the scale at which mating aggregations and interactions occur),
124 and individuals on a given plant can perceive most of the movements and signalling by other
125 individuals around them (Cocroft, 2011; Cocroft et al., 2008; Cocroft & Rodríguez, 2005; Mazzoni
126 et al., 2014; Strauß et al., 2021; Virant-Doberlet et al., 2014). A treehopper may thus receive inputs
127 regarding the presence, abundance and behaviour of males and females, potentially including the
128 range of variation in male signals, as well as how females are responding to them. These vary
129 between and within species in the *E. binotata* complex, from dense aggregations with chorusing to
130 low-density distributions across plants with call-fly behaviour (Cocroft et al., 2008).

131

132

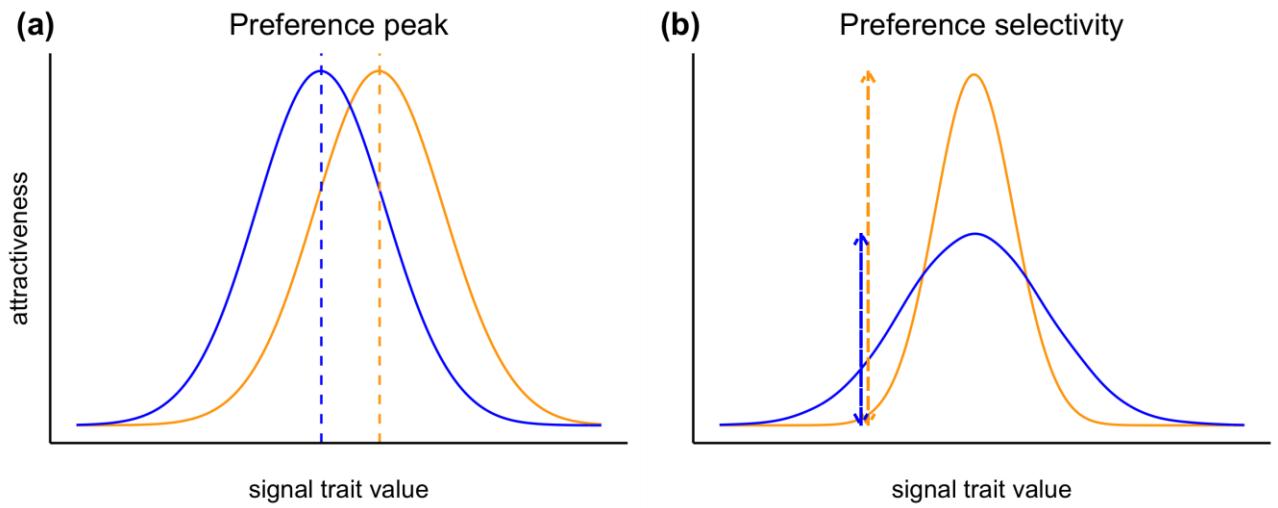
133

134 **Figure 1: Signals of adult *Enchenopa binotata*.** (a) Bout of four male signals. (b) Detail of one of
 135 the signals in the above bout. Note the whine-and-pulses structure. (c) Duet between a male and
 136 female.

137

138 Species differences among adults in the *E. binotata* complex mainly involve the
 139 advertisement and duetting signals of males and females (especially their dominant frequency), as

140 well as female mate preferences for male signal frequency (Cocroft et al., 2010; Rodríguez et al.,
141 2004; Rodríguez & Cocroft, 2006). In the discussion below we therefore focus on socially plastic
142 causes of variation in the frequency of male advertisement signals and in female mate preferences
143 for male signal frequency, although we also consider variation in terms of other signal and
144 preference traits. We first provide a brief primer on describing variation in mate preferences.


145

146 **Describing variation in mate preferences**

147

148 Mate preferences are expressed as a function of the features of potential mates that are encountered;
149 i.e., they are function-valued traits (Kilmer et al., 2017; Stinchcombe et al., 2012). Thus, mate
150 preferences are best characterized as functions or curves depicting variation in signal attractiveness
151 over a range of signal trait values (Kilmer et al., 2017; Ritchie, 1996; Wagner, 1998). With mate
152 preferences, the entire sweep of the function is of interest. However mate preferences can be
153 characterised with a few “mate preference function traits” that capture variation in the preferred
154 signal values and the shape of the function around those preferred values (Kilmer et al., 2017). Here
155 we focus on two of these mate preference function traits: peak preference, and preference selectivity
156 (Fig. 2). Peak preference is the most preferred ~~courtship~~ signal trait value (Fig. 2a; Kilmer et al.,
157 2017). When related at population or species levels to mean signal traits in the population, peak
158 preference determines the form of selection due to mate choice on signals: stabilising if peak
159 preference and mean signal values match, directional if they do not (Kilmer et al., 2017; Rodríguez
160 et al., 2006; Rodríguez, Boughman, et al., 2013). Preference selectivity summarizes several aspects
161 of the shape of the function around the peak, such as how steeply attractiveness decreases away
162 from the peak, or how high the curve is on average (Fig. 2b; Kilmer et al., 2017).

163

164


165 **Figure 2: Mate preference functions varying in two preference traits: preference peak (a) and**
 166 **preference selectivity (b).** Variation in preference peak and preference selectivity may represent
 167 different individuals, populations, treatments or species. (a) Preference peak is the most preferred
 168 signal trait value. In this example, the blue curve has a lower preference peak than the orange curve.
 169 (b) Preference selectivity summarizes several aspects of the shape of mate preferences around the
 170 peak such as how steeply attractiveness decreases away from the peak, or how high the curve is on
 171 average. In this example, the blue curve has a lower preference selectivity than the orange curve.

172

173 **Social plasticity of signals and preferences in *Enchenopa***

174

175 Across a series of studies, we have found considerable variation in the direction (sign of the
 176 **slopeeffect**) and strength (magnitude of the **slopeeffect**) of plasticity in *Enchenopa* adult signals and
 177 mates preferences induced at different times of life and by inputs from different social contexts.
 178 Here we summarize these findings starting with juvenile social experience and proceeding to early
 179 adult experience and then the immediate social context of mate choice (Fig. 3).

180

181 **Figure 3: Summary of the effect of social plasticity in the signals and preferences of *E.***

182 ***binotata* induced at different life stages.**

183

184 *Social experience as juveniles*

185

186 The *Enchenopa* communication system offers ample opportunity for social plasticity to be induced
 187 by inputs during juvenile stages. Nymphs develop in aggregations on their host plant, and they
 188 communicate with a variety of signal types (Cocroft et al., 2008; Michael & Cocroft, unpubl.).

189 Nymphs signalling interactions vary according to group size and composition (Desjonquères,
 190 Maliszewski, et al., 2019; Rodríguez et al., 2018).

191 An experiment that varied nymph aggregation density showed that adult females reared in
 192 denser aggregations developed higher peak preferences for signal frequency (i.e. as with the shift in
 193 preference from the blue curve to the orange curve in Fig. 2a; Fowler-Finn et al., 2017). A separate
 194 experiment that used playbacks to nymphs reared in isolation (one nymph per plant) showed that

195 the effect of aggregation density is a function of the experience of nymphs with both signal
196 perception and production, rather than aggregation density or plant quality per se (Desjonquères et
197 al., 2021; Desjonquères, Maliszewski, et al., 2019; Desjonquères, Speck, et al., 2019). Additionally,
198 isolated nymphs had a lower selectivity as adult females than those raised in aggregations; and
199 playbacks of juveniles recover the selectivity of individuals in aggregations (i.e. shifting the
200 preference from orange to blue in Fig. 2b; Desjonquères, Maliszewski, et al., 2019; Desjonquères,
201 Speck, et al., 2019). Finally, these effects of signalling interactions appear to happen in a switch-
202 like manner rather than as an accumulating effect (Desjonquères et al., 2021). Males reared in
203 isolation tended to have lower pulse lengths and higher signal rates than the ones in reared in
204 standard aggregations (Desjonquères, Maliszewski, et al., 2019). A playback of juvenile signals to
205 isolated juveniles partially recovers the pulse length but not the signal rate effect (Desjonquères,
206 Speck, et al., 2019), suggesting that those effects of isolation are less strongly influenced by the
207 experience of signal interactions.

208 Another experiment manipulated the genotype of the social neighbours developing
209 alongside focal treehoppers developed (Rebar & Rodríguez, 2013). These treatments induced
210 plasticity in the mate preferences that focal treehopper females expressed as adults (in both peak
211 preference and selectivity). A separate experiment manipulated the genotype of the host plants on
212 which focal treehoppers developed jointly with the social aggregations in which they developed
213 (Rebar & Rodríguez, 2014a, 2014b, 2015). These treatments induced plasticity in both the signal
214 frequency and mate preferences (peak preference) that focal treehopper males and females
215 expressed as adults. Remarkably, these plastic responses of male signals and female peak
216 preferences lead to strong signal-preference covariation, with the signal-preference span
217 approximating 50% of the difference between some species in the *E. binotata* complex (Rebar &
218 Rodríguez, 2015; Desjonquères et al. in prep).

219 Building on the above evidence of indirect genetic effects (from social neighbours and

220 developmental host plants) as causes of plasticity in signals and preferences, we tested a novel
221 hypothesis derived from interacting phenotypes theory: we asked whether interactions in mixed
222 species aggregations could create or enhance signal-preference differences between diverging
223 populations or recently-diverged species (Desjonquères et al., in review). We reared two recently
224 diverged members of the *E. binotata* complex in treatments consisting of mixed-species versus
225 own-species aggregations. We found that social experience with heterospecifics resulted in
226 enhanced signal-preference species differences in the mixed-species treatment and was mainly lead
227 by the plastic response of one of the two species. This result suggests that secondary contact early in
228 the process of speciation could cause further signal-preference divergence and establish or increase
229 assortative mating through plasticity (Desjonquères et al., in review).

230 In short, we find that juvenile social interactions ~~variously~~ influence various aspects of
231 signals and preferences in ways that are likely to ~~influence affect~~ mate choice and assortative mating
232 (Fig. 3). Social experience in denser aggregations lead to a stronger mismatch between signals and
233 preferences ~~i.e., to more strongly directional selection on signals~~ (Fowler-Finn et al., 2017). And
234 developing on different plants/ social aggregations can establish signal-preference covariance at a
235 level that approximates ~~observed~~differences between extant species ~~differences~~ (Rebar &
236 Rodríguez, 2015; Desjonquères et al. in prep).

237

238 *Social experience as immature adults*

239

240 The *Enchenopa* communication system also offers opportunity for social plasticity to be induced by
241 inputs from potential mates and competitors as young adults. After the adult moult, males and
242 females remain sexually immature for about two and four weeks, respectively (Cocroft et al., 2008;
243 Rodríguez et al., 2004). Thus, males begin to signal about two weeks before females start to become
244 receptive and begin engaging in duetting. This provides a natural window of opportunity during

245 which males and females may perceive and assess the range of variation in the signals of potential
246 competitors/mates and sample the mating pool. Further, females do not all become receptive at
247 once, but in staggered fashion along the mating season (Sullivan-Beckers & Cocroft, 2010). Thus,
248 females that become receptive relatively late have the opportunity to monitor male-female
249 interactions over some days or weeks.

250 Playback experiments to young adult females mimicking variation in the range of mate types
251 available (attractive, unattractive/heterospecifics, mixed), induced plasticity in female preference
252 selectivity but not peak preference (Fig. 3; Fowler-Finn & Rodríguez, 2012a, 2012b). Specifically,
253 females expressed higher selectivity when they had experienced either attractive only or mixed
254 mate types present (as in the blue-to-orange shift in Fig. 2b). By contrast, females expressed lower
255 selectivity when they had experienced either unattractive only or no mate types present (as in the
256 orange-to-blue shift in Fig. 2b). These effects may help females balance obtaining their preferred
257 mate types against securing a mating when those types are rare. They may also establish negative
258 frequency dependent cycles between the strength of selection due to mate choice and the
259 availability of preferred mates, contributing to the maintenance of variation under selection and to
260 the colonization of novel habitats (Rodríguez, Rebar, et al., 2013). Comparable playback
261 experiments to young adult males induced plasticity in signal length and rates (longer signals and
262 higher rates when they had experienced attractive competitors) but not dominant signal frequency
263 (Fig. 3; Rebar & Rodríguez, 2016).

264 In short, we find that plasticity arising from young adults' experience of available mate
265 types influences female preference selectivity (Fig. 3). It also influences the dynamics of male-male
266 competitive signalling (Fig. 3). However, none of these inputsexperiences from young adult social
267 experienceenvironment affect signal frequency nor the mate preference for it, and thus seem
268 unlikely to influence the form of selection on signals and preferences. Nevertheless, the strength of
269 selection due to mate choice may interact with preference divergence generated at other points in

270 the life cycle (cf. Rodríguez, Boughman, et al., 2013).

271

272 *Immediate social context of mate choice*

273

274 ~~The~~As noted above, the *Enchenopa* communication system also offers opportunity for social
275 plasticity to be induced in mature adults by inputs from potential mates and competitors in the
276 immediate context of mating. —

277 ~~These vary between and within species in the *E. binotata* complex, from dense aggregations with~~
278 ~~chorusing to low density distributions across plants with call fly behaviour (Cocroft et al., 2008).~~

279 ~~receive inputs regarding the presence, abundance and behaviour of males and females, potentially~~
280 ~~including the range of variation in male signals, as well as how females are responding to them.~~

281 ~~thus A treehopper may *Enchenopa* plant borne vibrational signals transmit well on their host plants,~~
282 ~~at least at the scale of a stem or bush (which is the scale at which mating aggregations and~~
283 ~~interactions occur), and individuals on a given plant can perceive most of the movements and~~
284 ~~signalling by other individuals around them (Cocroft, 2011; Cocroft et al., 2008; Cocroft &~~

285 ~~Rodríguez, 2005; Mazzoni et al., 2014; Strauß et al., 2021; Virant-Doberlet et al., 2014).~~ In spite of
286 the above opportunities for plasticity, we have found little effect from the immediate context of

287 mate choice on *Enchenopa* female mate preferences. Playback experiments mimicking the presence
288 of strongly attractive or unattractive males did not modify female response to relatively attractive-

289 unattractive males (Fig. 3; Speck, 2022, ~~in prep et al. Speck~~). And playback experiments mimicking
290 duets with females favouring attractive or unattractive males did not modify female peak preference

291 nor preference selectivity—i.e., there was no mate-choice copying (Fig. 3; Cirino et al. in

292 ~~prep-review~~).

293 *Enchenopa* males seem somewhat more responsive than females to the immediate context of
294 mate choice, albeit not in ways that alter signal frequency. Males respond to the presence of other

295 competitor signalling males by increasing signal rates ~~and amplitudes~~ (Rodríguez & Coccoft,
296 unpubl.) and may even produce an additional signal type that likely has a “signal masking” function
297 (Sullivan-Beckers, 2008; and see Legendre et al., 2012; and Miranda, 2006 for masking signals in
298 other treehoppers). In playbacks of “stand-alone” female signals (which receptive females do
299 produce on occasions; Rodríguez, Speck & Seidita, unpubl.), males signalled at higher rates in
300 response to longer (i.e., more “motivated”) female signals but were not influenced by female signal
301 frequency (which differs between species; Rodríguez et al., 2012).

302 In short, we find that, besides males being attentive to the level of “motivation” in female
303 responses to their signals, the effect of plasticity arising from the immediate context of mate choice
304 in *Enchenopa* is mainly to modify the dynamics of male-male competitive signalling interactions
305 (to a higher extent than social inputs to immature males; Fig. 3). But it does not seem to influence
306 female mate preferences nor the signal-preference relationship, especially pertaining to male signal
307 frequency. Overall, certain male traits appeared to respond more plastically than female traits to the
308 immediate social context of mate choice, this could be explained by differing optimal reproductive
309 strategies in males and females (it makes sense for males to increase their courting effort when in
310 the presence of competitors to potentially secure more matings).

311 **Discussion**

312

313 Using a review of studies with *Enchenopa* treehoppers, we set out to examine the potential role of
314 the life stage at which social plasticity is induced in adult mating signals and mate preferences, and
315 the nature of interactions involved. Besides the well recognized effect of the timing of the induction
316 of plasticity relative to dispersal and mating (Verzijden et al., 2012), we were interested in
317 considering the nature of the social interactions involved at different stages, and the direction and
318 strength of the resulting plastic response.

319 We find a broad range of plastic responses. Interestingly, social inputs arising from
320 interactions between juveniles have stronger effects on the development of adult signals and
321 preferences, sometimes (especially when combined with inputs from developmental host plants)
322 generating remarkable signal-preference covariance involving a signal feature strongly involved in
323 assortative mating. By contrast social inputs arising from interactions between adults have
324 potentially important but moderate effects. Thus, plasticity induced earlier in life is not only more
325 likely to generate assortative mating because of the relative timing of its induction (before dispersal
326 and mating; Verzijden et al., 2012), but also the direction and strength of the resulting plastic
327 responses in signals and preferences also make it more likely to contribute to assortative mating.

328 It is unclear why juvenile social experience may lead to stronger plastic changes than at
329 other stages. Juvenile interactions may be a strong indicator of future mating opportunities
330 (although signalling between juvenile *per se* may have little bearing on future courtship and mating
331 activities). However, one would expect immediate and quasi-immediate mating context to be better
332 indicators of the mating stage. Perhaps there are costs to continuously monitoring the mating scene
333 and quickly changing mating preferences and signalling efforts (e.g. when individuals mate only
334 once, as is the case in *Enchenopa*; Rosenthal, 2017).

335 In this survey of social plasticity in *Enchenopa*, we have discussed input treatments initiated

336 during a given stage (e.g., as juveniles) and continued until shortly before adult trials as mainly
337 being induced throughout the earlier stage. We consider this is warranted because very late nymphs
338 and very young *Enchenopa* adults do not signal (Cocroft et al., 2008; Desjonquères, Maliszewski, et
339 al., 2019). We have also discussed the resulting plasticity as developmental, rather than as
340 activational or reversible (cf. Piersma & Drent, 2003; Snell-Rood, 2013; Westneat et al., 2015). And
341 that is how we have measured them, taking a "snapshot" at a narrow interval shortly after the onset
342 of sexual behaviour. However, there is also evidence that peak preference and selectivity change
343 along the mating season as females age (Speck, 2022)(~~Speck et al. in prep~~). Further, some of the
344 above inputs, or others we have not measured, may result in activational or reversible plasticity.
345 And, inputs of any type at one stage may interact with other inputs at other stages. It would
346 therefore be interesting to test whether such interactions between inputs impact the dynamics of
347 mate choice, and whether the resulting changes represent adaptive plasticity. For example, we have
348 interpreted plasticity in female selectivity according to recent prior experience of the mate types
349 available as adaptive, because it seems to tune selectivity ~~in such a way as that it permits~~ sing
350 stronger discrimination when there has been indication that preferred types will be present, whilst it
351 also allow~~sing~~ for weaker discrimination to ensure mating when there has been indication that
352 preferred types will be rare or absent (Fowler-Finn & Rodríguez, 2012a, 2012b; Rodríguez, Rebar,
353 et al., 2013). Similarly, the plastic effects of juvenile aggregation density and isolation produce
354 lower selectivity and a shift in preference peak towards low signal frequency (resulting in a smaller
355 mismatch with the population mean for signal frequency; Fowler-Finn et al., 2017). This too could
356 be adaptive, if developing in sparse aggregations or in isolation indicates higher risk of not finding
357 preferred types. It will also be interesting to assess whether such plastic effects persist or interact
358 with more immediate inputs later in life.

359 It also remains to be seen how general the pattern we report here for *Enchenopa* treehoppers
360 is. It may be shared by other animal groups with imprinting from parents, such as song birds, some

361 mammals and frogs (Gultekin & Hage, 2017; Lipkind et al., 2013; Marler & Peters, 1988; Nowicki
362 & Searcy, 2014; Pika et al., 2018; Takahashi et al., 2015; Yang et al., 2019), or with imprinting
363 from non-parental adults as in some wolf spiders (E. A. Hebets, 2003). However, strong effects
364 from the immediate context of mate choice of adults are also common, as with mate choice copying
365 in some vertebrates (Davies et al., 2020). Thus, understanding the evolutionary consequences of
366 social plasticity in mating signals and mate preferences will require explaining variation among
367 animals in: the time of life at which plasticity is induced; the type of interactions that are involved;
368 and the direction and strength of the resulting plastic responses.

369

370 **Acknowledgements**

371

372 We thank Dale Stevens and Matthew Wund for inviting us to participate in the symposium
373 *Evolution and behavioral plasticity: a symposium honoring the career of Susan A. Foster* (Animal
374 Behavior Society 2021 virtual meeting), and in this special issue. This review was supported by a
375 National Science Foundation Grant IOS-1855962 (to R.L.R. and C.D.). We thank two anonymous
376 reviewers for their useful comments.

377

378 **Author contribution**

379 RLR came up with the idea of the manuscript. CD lead the writing but both authors contributed
380 significantly to writing and editing. CD conceived the figures.

Bailey, N. W., & Moore, A. J. (2012). Runaway Sexual Selection without Genetic Correlations: Social Environments and Flexible Mate Choice Initiate and Enhance the Fisher Process. *Evolution*, 66(9), 2674–2684.

Boughman, J. W., & Servedio, M. R. (2022). The ecological stage maintains preference differentiation and promotes speciation. *Ecology Letters*, ele.13970. <https://doi.org/10.1111/ele.13970>

Bradbury, J. W., & Vehrencamp, S. L. (1998). *Principles of Animal communication* (Sinauer Associates). <http://www.sinauer.com/media/wysiwyg/tocs/PrinciplesAnimalCommunication2.pdf>

Cocroft, R. B. (2011). The public world of insect vibrational communication: NEWS AND VIEWS: PERSPECTIVE. *Molecular Ecology*, 20(10), 2041–2043. <https://doi.org/10.1111/j.1365-294X.2011.05092.x>

Cocroft, R. B., & Rodríguez, R. L. (2005). The behavioral ecology of insect vibrational communication. *Bioscience*, 55(4), 323–334.

Cocroft, R. B., Rodríguez, R. L., & Hunt, R. E. (2008). Host shifts, the evolution of communication, and speciation in the *Enchenopa binotata* species complex of treehoppers. In *Specialization, speciation, and radiation: The evolutionary biology of herbivorous insects* (ed. K. Tilmon, pp. 88–100). University of California Press. <http://www.biosci.missouri.edu/cocroft/Publications/documents/2008CocroftetalEnchenopachapter.pdf>

Cocroft, R. B., Rodríguez, R. L., & Hunt, R. E. (2010). Host shifts and signal divergence: Mating signals covary with host use in a complex of specialized plant-feeding insects. *Biological Journal of the Linnean Society*, 99(1), 60–72. <https://doi.org/10.1111/j.1095-8312.2009.01345.x>

Davies, A. D., Lewis, Z., & Dougherty, L. R. (2020). A meta-analysis of factors influencing the strength of mate-choice copying in animals. *Behavioral Ecology*, 31(6), 1279–1290.

<https://doi.org/10.1093/beheco/araa064>

Desjonquères, C., Maliszewski, J., Lewandowski, E. N., Speck, B., & Rodríguez, R. L. (2019).

Social ontogeny in the communication system of an insect. *Animal Behaviour*, 148, 93–103.

<https://doi.org/10.1016/j.anbehav.2018.12.002>

Desjonquères, C., Maliszewski, J., & Rodríguez, R. L. (2021). Juvenile social experience and practice have a switch- like influence on adult mate preferences in an insect. *Evolution*, 5(75), 1106–1116. <https://doi.org/10.1111/evo.14180>

Desjonquères, C., Speck, B., & Rodríguez, R. L. (2019). Signalling interactions during ontogeny are a cause of social plasticity in *Enchenopa* treehoppers (Hemiptera: Membracidae). *Behavioural Processes*, 166, 103887. <https://doi.org/10.1016/j.beproc.2019.06.010>

Drosopoulos, S., & Claridge, M. F. (2005). *Insect sounds and communication: Physiology, behaviour, ecology, and evolution*. CRC press.

Dukas, R. (2013). Effects of learning on evolution: Robustness, innovation and speciation. *Animal Behaviour*, 85(5), 1023–1030. <https://doi.org/10.1016/j.anbehav.2012.12.030>

Fletcher, N. H. (2007). Animal bioacoustics. In *Springer Handbook of Acoustics* (pp. 785–804). Springer. http://link.springer.com/chapter/10.1007/978-1-4939-0755-7_19

Fowler-Finn, K. D., Cruz, D. C., & Rodríguez, R. L. (2017). Local population density and group composition influence the signal-preference relationship in *Enchenopa* treehoppers (Hemiptera: Membracidae). *Journal of Evolutionary Biology*, 30(1), 13–25. <https://doi.org/10.1111/jeb.12994>

Fowler-Finn, K. D., & Rodríguez, R. L. (2012a). Experience-mediated plasticity in mate preferences: Mating assurance in a variable environment. *Evolution*, 66(2), 459–468.

Fowler-Finn, K. D., & Rodríguez, R. L. (2012b). The evolution of experience-mediated plasticity in mate preferences. *Journal of Evolutionary Biology*, 25(9), 1855–1863. <https://doi.org/10.1111/j.1420-9101.2012.02573.x>

Gultekin, Y. B., & Hage, S. R. (2017). Limiting parental feedback disrupts vocal development in marmoset monkeys. *Nature Communications*, 8, 14046. <https://doi.org/10.1038/ncomms14046>

Hebets, E. A. (2003). Subadult experience influences adult mate choice in an arthropod: Exposed

female wolf spiders prefer males of a familiar phenotype. *Proceedings of the National Academy of Sciences*, 100(23), 13390–13395. <https://doi.org/10.1073/pnas.2333262100>

Hebets, E., & Sullivan-Beckers, L. (2010). Mate choice and learning. In *Encyclopedia of animal behavior* (M. D. Breed and J. Moore, pp. 389–393). Academic Press, London , Oxford.

Hill, P. S. (2008). *Vibrational communication in animals*. Harvard University Press.

Hill, P. S. M., & Wessel, A. (2016). Biotremology. *Current Biology*, 26(5), R187–R191. <https://doi.org/10.1016/j.cub.2016.01.054>

Hsu, Y.-H., Cocroft, R. B., Snyder, R. L., & Lin, C.-P. (2018). You stay, but I Hop: Host shifting near and far co-dominated the evolution of *Enchenopa* treehoppers. *Ecology and Evolution*. <https://doi.org/10.1002/ece3.3815>

Jennions, M. D., & Petrie, M. (1997). Variation in mate choice and mating preferences: A review of causes and consequences. *Biological Reviews*, 72(2), 283–327.

Kilmer, J. T., Fowler-Finn, K. D., Gray, D. A., Höbel, G., Rebar, D., Reichert, M. S., & Rodríguez, R. L. (2017). Describing mate preference functions and other function-valued traits. *Journal of Evolutionary Biology*, 30(9), 1658–1673. <https://doi.org/10.1111/jeb.13122>

Kopp, M., Servedio, M. R., Mendelson, T. C., Safran, R. J., Rodríguez, R. L., Hauber, M. E., Scordato, E. C., Symes, L. B., Balakrishnan, C. N., Zonana, D. M., & van Doorn, G. S. (2018). Mechanisms of Assortative Mating in Speciation with Gene Flow: Connecting Theory and Empirical Research. *The American Naturalist*, 191(1), 1–20. <https://doi.org/10.1086/694889>

Legendre, F., Marting, P. R., & Cocroft, R. B. (2012). Competitive masking of vibrational signals during mate searching in a treehopper. *Animal Behaviour*, 83(2), 361–368. <https://doi.org/10.1016/j.anbehav.2011.11.003>

Lipkind, D., Marcus, G. F., Bemis, D. K., Sasahara, K., Jacoby, N., Takahasi, M., Suzuki, K., Feher, O., Ravbar, P., Okanoya, K., & Tchernichovski, O. (2013). Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. *Nature*, 498(7452), 104–108. <https://doi.org/10.1038/nature12173>

Marler, P., & Peters, S. (1988). The Role of Song Phonology and Syntax in Vocal Learning Preferences in the Song Sparrow, *Melospiza melodia*. *Ethology*, 77(2), 125–149.

<https://doi.org/10.1111/j.1439-0310.1988.tb00198.x>

Marler, P., & Peters, S. (2010). A Sensitive Period for Song Acquisition in the Song Sparrow,

Melospiza melodia: A Case of Age-limited Learning. *Ethology*, 76(2), 89–100.

<https://doi.org/10.1111/j.1439-0310.1987.tb00675.x>

Mazzoni, V., Eriksson, A., Anfora, G., Lucchi, A., & Virant-Doberlet, M. (2014). Active Space and the Role of Amplitude in Plant-Borne Vibrational Communication. In *Studying Vibrational Communication* (pp. 125–145). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_8

McNett, G. D., & Cocroft, R. B. (2008). Host shifts favor vibrational signal divergence in

Enchenopa binotata treehoppers. *Behavioral Ecology*, 19(3), 650–656.

<https://doi.org/10.1093/beheco/arn017>

Miranda, X. (2006). Substrate-borne signal repertoire and courtship jamming by adults of *Ennya chrysura* (Hemiptera: Membracidae). *Annals of the Entomological Society of America*, 99(2), 374–386.

Moore, A. J., Brodie, E. D., & Wolf, J. B. (1997). Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions. *Evolution*, 51(5), 1352–1362. <https://doi.org/10.1111/j.1558-5646.1997.tb01458.x>

Nowicki, S., & Searcy, W. A. (2014). The evolution of vocal learning. *Current Opinion in Neurobiology*, 28, 48–53. <https://doi.org/10.1016/j.conb.2014.06.007>

Piersma, T., & Drent, J. (2003). Phenotypic flexibility and the evolution of organismal design. *Trends in Ecology & Evolution*, 18(5), 228–233.

Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C. (2018). Taking turns: Bridging the gap between human and animal communication. *Proceedings of the Royal Society B: Biological Sciences*, 285(1880), 20180598. <https://doi.org/10.1098/rspb.2018.0598>

Rebar, D., & Rodríguez, R. L. (2013). Genetic variation in social influence on mate preferences.

Proceedings of the Royal Society B: Biological Sciences, 280(1763), 20130803–20130803. <https://doi.org/10.1098/rspb.2013.0803>

Rebar, D., & Rodríguez, R. L. (2014a). Genetic variation in host plants influences the mate preferences of a plant-feeding insect. *The American Naturalist*, 184(4), 489–499.

Rebar, D., & Rodríguez, R. L. (2014b). Trees to treehoppers: Genetic variation in host plants contributes to variation in the mating signals of a plant-feeding insect. *Ecology Letters*, 17(2), 203–210. <https://doi.org/10.1111/ele.12220>

Rebar, D., & Rodríguez, R. L. (2015). Insect mating signal and mate preference phenotypes covary among host plant genotypes. *Evolution*, 69(3), 602–610. <https://doi.org/10.1111/evo.12604>

Rebar, D., & Rodríguez, R. L. (2016). Males adjust their signalling behaviour according to experience of male signals and male–female signal duets. *Journal of Evolutionary Biology*. <https://doi.org/10.1111/jeb.12825>

Ritchie, M. G. (1996). The shape of female mating preferences. *Proceedings of the National Academy of Sciences*, 93(25), 14628–14631.

Rodríguez, R. L., Boughman, J. W., Gray, D. A., Hebets, E. A., Höbel, G., & Symes, L. B. (2013). Diversification under sexual selection: The relative roles of mate preference strength and the degree of divergence in mate preferences. *Ecology Letters*, 16(8), 964–974. <https://doi.org/10.1111/ele.12142>

Rodríguez, R. L., & Cocroft, R. B. (2006). Divergence in Female Duetting Signals in the *Enchenopa binotata* Species Complex of Treehoppers (Hemiptera: Membracidae). *Ethology*, 112(12), 1231–1238. <https://doi.org/10.1111/j.1439-0310.2006.01285.x>

Rodríguez, R. L., & Desjonquères, C. (2019). Vibrational Signals: Sounds Transmitted Through Solids. In *Encyclopedia of Animal Behaviour (2nd edition)* (Elsevier, Academic Press, Vol. 1, pp. 508–517). Academic Press. <https://doi.org/10.1016/B978-0-12-809633-8.90702-7>

Rodríguez, R. L., Haen, C., Cocroft, R. B., & Fowler-Finn, K. D. (2012). Males adjust signaling effort based on female mate-preference cues. *Behavioral Ecology*, 23(6), 1218–1225. <https://doi.org/10.1093/beheco/ars105>

Rodríguez, R. L., Ramaswamy, K., & Cocroft, R. B. (2006). Evidence that female preferences have shaped male signal evolution in a clade of specialized plant-feeding insects. *Proceedings of the Royal Society B: Biological Sciences*, 273(1601), 2585–2593. <https://doi.org/10.1098/rspb.2006.3635>

Rodríguez, R. L., Rebar, D., & Fowler-Finn, K. D. (2013). The evolution and evolutionary consequences of social plasticity in mate preferences. *Animal Behaviour*, 85(5), 1041–1047.

<https://doi.org/10.1016/j.anbehav.2013.01.006>

Rodríguez, R. L., Sullivan, L. E., & Cocroft, R. B. (2004). Vibrational communication and reproductive isolation in the *Enchenopa binotata* species complex of treehoppers (Hemiptera: Membracidae). *Evolution*, 58(3), 571. <https://doi.org/10.1554/03-120>

Rodríguez, R. L., Wojcinski, J. E., & Maliszewski, J. (2018). Between-group variation in *Enchenopa* treehopper juvenile signaling (Hemiptera Membracidae). *Ethology Ecology & Evolution*, 30(3), 245–255. <https://doi.org/10.1080/03949370.2017.1347585>

Rosenthal, G. G. (2017). *Mate choice: The evolution of sexual decision making from microbes to humans*. Princeton University Press.

Snell-Rood, E. C. (2013). An overview of the evolutionary causes and consequences of behavioural plasticity. *Animal Behaviour*, 85(5), 1004–1011.
<https://doi.org/10.1016/j.anbehav.2012.12.031>

Soha, J. A., & Peters, S. (2015). Vocal Learning in Songbirds and Humans: A Retrospective in Honor of Peter Marler. *Ethology*, 121(10), 933–945.

Speck, B. L. V. (2022). *Architecture of Mate Choice Decisions in Enchenopa Treehoppers* [PhD Thesis]. The University of Wisconsin-Milwaukee.

Stinchcombe, J. R., Function-valued Traits Working Group, & Kirkpatrick, M. (2012). Genetics and evolution of function-valued traits: Understanding environmentally responsive phenotypes. *Trends in Ecology & Evolution*, 27(11), 637–647.

Strauß, J., Stritih-Peljhan, N., Nieri, R., Virant-Doberlet, M., & Mazzoni, V. (2021). Communication by substrate-borne mechanical waves in insects: From basic to applied biotremology. In *Advances in insect physiology* (Vol. 61, pp. 189–307). Elsevier.

Sullivan-Beckers, L. (2008). *The Ecology of mate choice: Identifying the agents of sexual selection on mating signals in Enchenopa treehoppers* [Ph.D.]. University of Missouri.

Sullivan-Beckers, L., & Cocroft, R. B. (2010). The importance of female choice, male-male competition, and signal transmission on male mating signals: Identifying sources of selection on mating signals. *Evolution*, 64(11), 3158–3171. <https://doi.org/10.1111/j.1558-5646.2010.01073.x>

Takahashi, D. Y., Fenley, A. R., Teramoto, Y., Narayanan, D. Z., Borjon, J. I., Holmes, P., &

Ghazanfar, A. A. (2015). The developmental dynamics of marmoset monkey vocal production. *Science*, 349(6249), 734–738.

Takahashi, D. Y., Liao, D. A., & Ghazanfar, A. A. (2017). Vocal Learning via Social Reinforcement by Infant Marmoset Monkeys. *Current Biology*, 27(12), 1844-1852.e6. <https://doi.org/10.1016/j.cub.2017.05.004>

Ten Cate, C., & Vos, D. R. (1999). Sexual Imprinting and Evolutionary Processes in Birds: A Reassessment. In *Advances in the Study of Behavior* (Vol. 28, pp. 1–31). Elsevier. [https://doi.org/10.1016/S0065-3454\(08\)60214-4](https://doi.org/10.1016/S0065-3454(08)60214-4)

Verzijden, M. N., ten Cate, C., Servedio, M. R., Kozak, G. M., Boughman, J. W., & Svensson, E. I. (2012). The impact of learning on sexual selection and speciation. *Trends in Ecology & Evolution*, 27(9), 511–519. <https://doi.org/10.1016/j.tree.2012.05.007>

Virant-Doberlet, M., Mazzoni, V., Groot, M. de, Polajnar, J., Lucchi, A., Symondson, W. O. C., & Čokl, A. (2014). Vibrational Communication Networks: Eavesdropping and Biotic Noise. In *Studying Vibrational Communication* (pp. 93–123). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_7

Wagner, W. L. (1998). Measuring female mating preferences. *Animal Behaviour*, 55(4), 1029–1042.

Westneat, D. F., Wright, J., & Dingemanse, N. J. (2015). The biology hidden inside residual within-individual phenotypic variation: The biology of residual phenotypic variance. *Biological Reviews*, 90(3), 729–743. <https://doi.org/10.1111/brv.12131>

Witte, K., Kniel, N., & Kureck, I. M. (2015). Mate-choice copying: Status quo and where to go. *Current Zoology*, 61(6), 1073–1081. <https://doi.org/10.1093/czoolo/61.6.1073>

Wood, T. K. (1993). Speciation of the *Enchenopa binotata* complex (Insecta: Homoptera: Membracidae). *Evolutionary Patterns and Processes*, 14, 299–317.

Yang, Y., Servedio, M. R., & Richards-Zawacki, C. L. (2019). Imprinting sets the stage for speciation. *Nature*, 574(7776), 99–102. <https://doi.org/10.1038/s41586-019-1599-z>

383 **Figures**

384

385 **Figure 1: Signals of adult *Enchenopa binotata*.** (a) Bout of four male signals. (b) Detail of one of

386 the signals in the above bout. Note the whine and pulses structure. (c) Duet between a male and
387 female.

388

389 **Figure 2: Mate preference functions varying in two preference traits: preference peak (a) and**
390 **preference selectivity (b).** Variation in preference peak and preference selectivity may represent
391 different individuals, populations, treatments or species. (a) Preference peak is the most preferred
392 signal trait value. In this example, the blue curve has a lower preference peak than the orange curve.
393 (b) Preference selectivity summarizes several aspects of the shape of mate preferences around the
394 peak such as how steeply attractiveness decreases away from the peak, or how high the curve is on
395 average. In this example, the blue curve has a lower preference selectivity than the orange curve.

396

397 **Figure 3: Summary of the effect of social plasticity in the signals and preferences of *E.***
398 ***binotata* induced at different life stages.**

1 The direction and strength of social plasticity in mating signals and mate preferences vary
2 with the life stage of induction

3

4

5

5 Camille Desjonquères^{1,*}, Rafael Rodríguez¹

6

7

⁸ ¹ Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
⁹ Wisconsin-Milwaukee, Milwaukee, WI, USA

10

11 * Corresponding author: cdesjonqu@gmail.com, Tel.: +1 (414) 229-4214

12 Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of

13 Wisconsin-Milwaukee, Milwaukee, WI, USA

14 **Abstract**

15 Socially-induced plasticity in mating signals and mate preferences is widespread in animals. The
16 timing of plasticity induction is key for mating and evolutionary consequences: plasticity induced
17 before and after dispersal often results in different mate choices. Here we discuss two additional
18 factors that may be of importance: the nature of social interactions that are involved at different
19 stages, and the direction and strength of plasticity in mating traits. We review a case study with the
20 *Enchenopa binotata* complex of treehoppers. In spite of a wide scope for social plasticity in *E.*
21 *binotata* across their life stages, effects of the juvenile social environment were stronger and more
22 common, especially those influencing the signal-preference relationship. These results emphasize
23 the importance of studying variation in plasticity induced along various life stages and of
24 considering all the mating traits that may be socially plastic. We suggest that systematic
25 investigation of these patterns across taxa will help better understand the origin of diversity in
26 animal communication systems.

27

28

29

30

31

32

33

34

35

36 *Keywords : life stages, mating signal evolution, preference functions, signal ontogeny, behavioural*
37 *plasticity*

38 **Introduction**

39 Socially-induced plasticity in mating signals and mate preferences is widespread in animals
40 including fish, birds, mammals and various invertebrates (Dukas, 2013; Rosenthal, 2017; Soha &
41 Peters, 2015; Takahashi et al., 2017). Examples range from classical imprinting, whereby
42 individuals learn their signals and/or preferences from parents early in life (E. Hebets & Sullivan-
43 Beckers, 2010), to mate copying, whereby individuals chose mates that are similar to the ones
44 chosen by others in their immediate mating environment (Davies et al., 2020; Witte et al., 2015).

45 Variation in signals and preferences determines the patterns of assortative mating that arise
46 from courtship and mate choice (Jennions & Petrie, 1997; Kopp et al., 2018; Rosenthal, 2017).

47 Social plasticity in signals and preferences may therefore influence those patterns. Thus plasticity in
48 signals and preferences may have a strong impact on the direction and strength of selection on
49 signals and mate preferences. Moreover, plastic changes induced by the social environment set up
50 the stage for feedback loops involving both the causes of variation in phenotypes and the causes of
51 selection on those phenotypes because each individual in a social group is both a receiver and
52 producer of inputs from social interactions, as well as a target and a cause of selection. Modelling of
53 such feedback in interacting phenotypes theory suggests that these effects can initiate and/or
54 intensify rapid evolution of extravagant signals and/or preferences with Fisherian runaways, even in
55 the absence of “direct” genetic covariance between signals and preferences (Bailey & Moore, 2012;
56 Moore et al., 1997).

57 One important factor that determines the evolutionary consequences of social plasticity in
58 signals and preferences is the timing of induction of plasticity. In most song-birds, for instance,
59 young individuals are able to learn new songs up to a certain point in their lives, beyond which their
60 songs are nearly fixed (Marler & Peters, 2010; Nowicki & Searcy, 2014). In such species, the
61 induction of plasticity in song (learning) usually occurs prior to dispersal, territory establishment,
62 and mating. If females have learned their preference locally (resulting in a preference for local

63 songs; e.g. Ten Cate & Vos, 1999), individuals will only be able to find accepting mates at sites
64 with songs similar to those they learned. Different timings of learning and dispersal will thus have
65 different consequences, ranging from individuals being unable to learn the songs of a new
66 population and thus struggling to find a mate in that new population, to individuals being able to
67 learn the songs of a new population and thus easily finding a mate (Boughman & Servedio, 2022;
68 Verzijden et al., 2012).

69 Here we point out an additional factor regarding social plasticity that may influence patterns
70 of mate choice and assortative mating in addition to the timing of the induction of plasticity: the
71 nature of the interactions involved. Animals engage in many different kinds of social interactions,
72 often involving different signals, signal repertoires, signalling modalities, and behavioural contexts;
73 and these interactions may occur at different stages in their lives (Bradbury & Vehrencamp, 1998;
74 Drosopoulos & Claridge, 2005; Fletcher, 2007). The nature of these interactions, together with
75 differences across context and life stages in how animals respond to those inputs, may have
76 important consequences for the direction and strength of the plasticity in signals and preferences
77 that is generated.

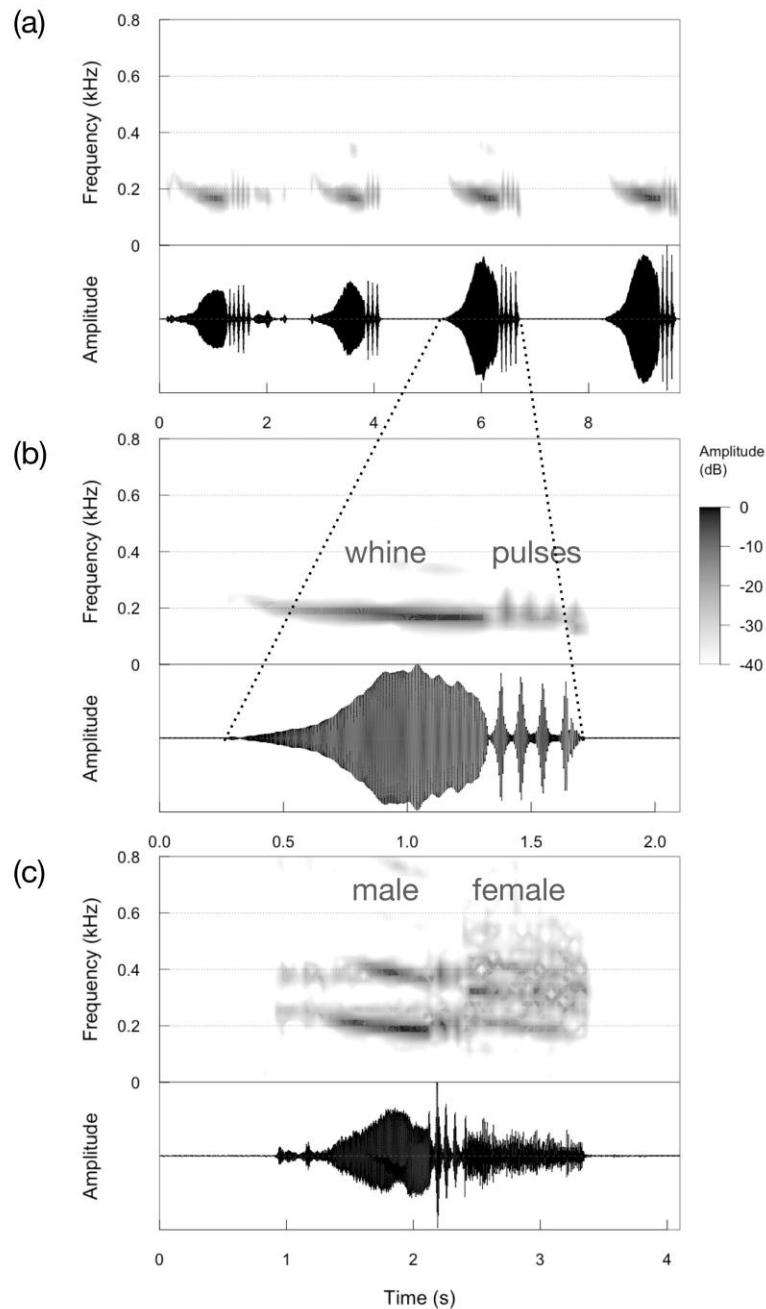
78 Here we consider the role of the nature of the social interactions in the direction and strength
79 of the resulting plastic response, in conjunction with their timing of induction. We ground our
80 discussion on a case study with *Enchenopa* treehoppers, where we find that social interactions at
81 different life stages involve different sets of individuals and signal repertoires, and differentially
82 affect adult signals and mate preferences. The *Enchenopa* communication system offers ample
83 opportunity for social plasticity to be induced by inputs from their conspecifics as juveniles as well
84 as mature and immature adults. We thus consider how the timing and nature of induction may
85 interact, and how that may vary the consequences of signal-preference plasticity. We suggest that
86 systematically investigating the direction and strength of plasticity in signals and preferences that
87 arise at different times in the life cycle of animals from different social interactions will open novel

88 avenues to understand the evolution of social plasticity in communication systems and its
89 evolutionary consequences.

90

91 **Introduction to the *Enchenopa binotata* species complex (Hemiptera: Membracidae)**

92


93 The *E. binotata* complex is a clade of host specialist plant-feeding insects that communicate with
94 plant-borne vibrational signals (Cocroft et al., 2008; Hsu et al., 2018; Wood, 1993). Communication
95 with substrate-borne vibrations is widespread among animals, including insects and spiders, and
96 signalling with plant-borne vibrations is common among insects, especially in Hemiptera (Cocroft
97 & Rodríguez, 2005; P. S. Hill, 2008; P. S. M. Hill & Wessel, 2016; Rodríguez & Desjonquères,
98 2019; Virant-Doberlet et al., 2014). *Enchenopa* engage in signalling interactions with rich signal
99 repertoires as nymphs and adults (Cocroft et al., 2008; Desjonquères, Maliszewski, et al., 2019;
100 Rodríguez et al., 2018; Sullivan-Beckers, 2008; Michael & Cocroft, unpubl.). During the mating
101 season, mate-searching males fly from plant to plant, producing advertisement signals that are
102 composed of two main elements: a near pure-tone whine followed by a few pulses (Fig. 1a-b;
103 Cocroft et al., 2008, 2010). A female on the plant that finds the male's signals attractive may decide
104 to produce her own response signals and alert the male to her presence; there follows a male-female
105 signal duet that continues while the male searches for the female on the plant until mating begins
106 (Fig. 1c; Cocroft et al., 2008; Rodríguez et al., 2004; Rodríguez & Cocroft, 2006). *Enchenopa*
107 females have strong mate preferences, mainly for the dominant frequency of male signals, which
108 they express through selective duetting (Rodríguez et al., 2004, 2006; Rodríguez, Boughman, et al.,
109 2013). Sources of divergent selection on signals include mate preferences and signal filtering by
110 plants (McNett & Cocroft, 2008; Rodríguez, Boughman, et al., 2013; Rodríguez et al., 2006). Of
111 these, mate preferences make the strongest contribution (Sullivan-Beckers & Cocroft, 2010).

112 *Enchenopa* plant-borne vibrational signals transmit well on their host plants, at least at the

113 scale of a stem or bush (which is the scale at which mating aggregations and interactions occur),
114 and individuals on a given plant can perceive most of the movements and signalling by other
115 individuals around them (Cocroft, 2011; Cocroft et al., 2008; Cocroft & Rodríguez, 2005; Mazzoni
116 et al., 2014; Strauß et al., 2021; Virant-Doberlet et al., 2014). A treehopper may thus receive inputs
117 regarding the presence, abundance and behaviour of males and females, potentially including the
118 range of variation in male signals, as well as how females are responding to them. These vary
119 between and within species in the *E. binotata* complex, from dense aggregations with chorusing to
120 low-density distributions across plants with call-fly behaviour (Cocroft et al., 2008).

121

122

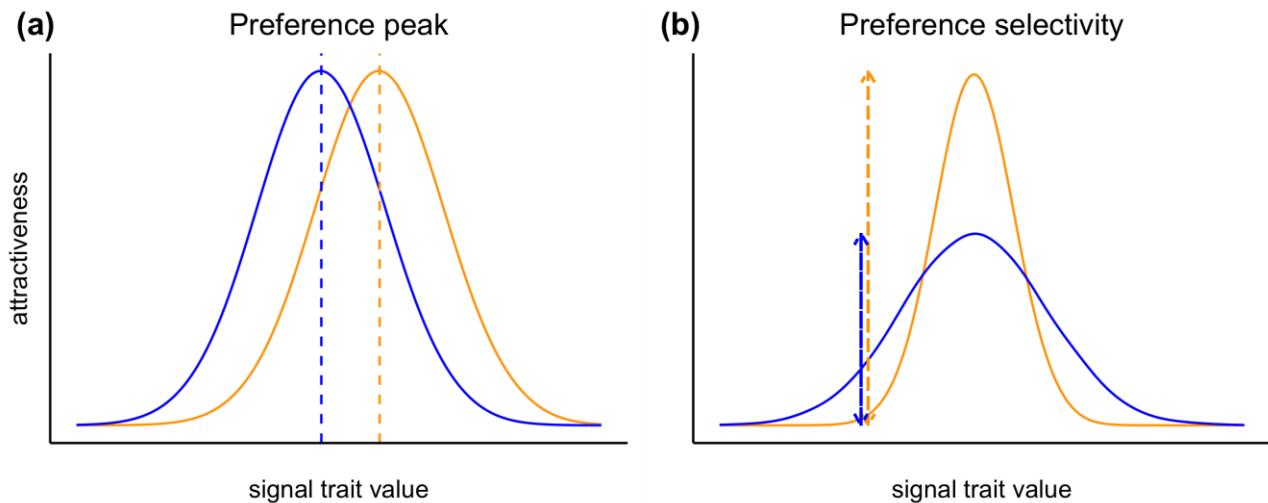
123

124 **Figure 1: Signals of adult *Enchenopa binotata*.** (a) Bout of four male signals. (b) Detail of one of
 125 the signals in the above bout. Note the whine-and-pulses structure. (c) Duet between a male and
 126 female.

127

128 Species differences among adults in the *E. binotata* complex mainly involve the
 129 advertisement and duetting signals of males and females (especially their dominant frequency), as

130 well as female mate preferences for male signal frequency (Cocroft et al., 2010; Rodríguez et al.,
131 2004; Rodríguez & Cocroft, 2006). In the discussion below we therefore focus on socially plastic
132 causes of variation in the frequency of male advertisement signals and in female mate preferences
133 for male signal frequency, although we also consider variation in terms of other signal and
134 preference traits. We first provide a brief primer on describing variation in mate preferences.


135

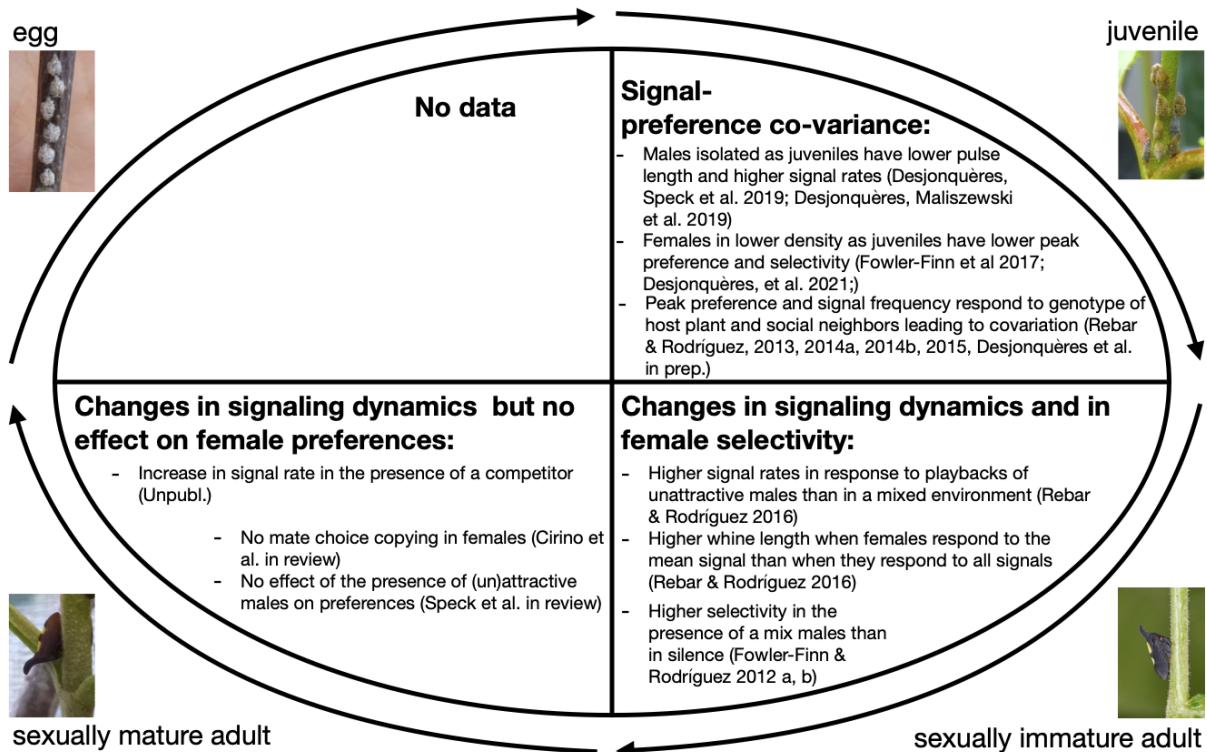
136 **Describing variation in mate preferences**

137

138 Mate preferences are expressed as a function of the features of potential mates that are encountered;
139 i.e., they are function-valued traits (Kilmer et al., 2017; Stinchcombe et al., 2012). Thus, mate
140 preferences are best characterized as functions or curves depicting variation in signal attractiveness
141 over a range of signal trait values (Kilmer et al., 2017; Ritchie, 1996; Wagner, 1998). With mate
142 preferences, the entire sweep of the function is of interest. However mate preferences can be
143 characterised with a few “mate preference function traits” that capture variation in the preferred
144 signal values and the shape of the function around those preferred values (Kilmer et al., 2017). Here
145 we focus on two of these mate preference function traits: peak preference, and preference selectivity
146 (Fig. 2). Peak preference is the most preferred signal trait value (Fig. 2a; Kilmer et al., 2017). When
147 related at population or species levels to mean signal traits in the population, peak preference
148 determines the form of selection due to mate choice on signals: stabilising if peak preference and
149 mean signal values match, directional if they do not (Kilmer et al., 2017; Rodríguez et al., 2006;
150 Rodríguez, Boughman, et al., 2013). Preference selectivity summarizes several aspects of the shape
151 of the function around the peak, such as how steeply attractiveness decreases away from the peak,
152 or how high the curve is on average (Fig. 2b; Kilmer et al., 2017).

153

154


155 **Figure 2: Mate preference functions varying in two preference traits: preference peak (a) and**
 156 **preference selectivity (b).** Variation in preference peak and preference selectivity may represent
 157 different individuals, populations, treatments or species. (a) Preference peak is the most preferred
 158 signal trait value. In this example, the blue curve has a lower preference peak than the orange curve.
 159 (b) Preference selectivity summarizes several aspects of the shape of mate preferences around the
 160 peak such as how steeply attractiveness decreases away from the peak, or how high the curve is on
 161 average. In this example, the blue curve has a lower preference selectivity than the orange curve.

162

163 **Social plasticity of signals and preferences in *Enchenopa***

164

165 Across a series of studies, we have found considerable variation in the direction (sign of the effect)
 166 and strength (magnitude of the effect) of plasticity in *Enchenopa* adult signals and mates
 167 preferences induced at different times of life and by inputs from different social contexts. Here we
 168 summarize these findings starting with juvenile social experience and proceeding to early adult
 169 experience and then the immediate social context of mate choice (Fig. 3).

170

171 **Figure 3: Summary of the effect of social plasticity in the signals and preferences of *E.***

172 ***binotata* induced at different life stages.**

173

174 *Social experience as juveniles*

175

176 The *Enchenopa* communication system offers ample opportunity for social plasticity to be induced
 177 by inputs during juvenile stages. Nymphs develop in aggregations on their host plant, and they
 178 communicate with a variety of signal types (Cocroft et al., 2008; Michael & Cocroft, unpubl.).

179 Nymphs signalling interactions vary according to group size and composition (Desjonquères,
 180 Maliszewski, et al., 2019; Rodríguez et al., 2018).

181 An experiment that varied nymph aggregation density showed that adult females reared in
 182 denser aggregations developed higher peak preferences for signal frequency (i.e. as with the shift in
 183 preference from the blue curve to the orange curve in Fig. 2a; Fowler-Finn et al., 2017). A separate
 184 experiment that used playbacks to nymphs reared in isolation (one nymph per plant) showed that

185 the effect of aggregation density is a function of the experience of nymphs with both signal
186 perception and production, rather than aggregation density or plant quality per se (Desjonquères et
187 al., 2021; Desjonquères, Maliszewski, et al., 2019; Desjonquères, Speck, et al., 2019). Additionally,
188 isolated nymphs had a lower selectivity as adult females than those raised in aggregations; and
189 playbacks of juveniles recover the selectivity of individuals in aggregations (i.e. shifting the
190 preference from orange to blue in Fig. 2b; Desjonquères, Maliszewski, et al., 2019; Desjonquères,
191 Speck, et al., 2019). Finally, these effects of signalling interactions appear to happen in a switch-
192 like manner rather than as an accumulating effect (Desjonquères et al., 2021). Males reared in
193 isolation tended to have lower pulse lengths and higher signal rates than the ones in reared in
194 standard aggregations (Desjonquères, Maliszewski, et al., 2019). A playback of juvenile signals to
195 isolated juveniles partially recovers the pulse length but not the signal rate effect (Desjonquères,
196 Speck, et al., 2019), suggesting that those effects of isolation are less strongly influenced by the
197 experience of signal interactions.

198 Another experiment manipulated the genotype of the social neighbours developing
199 alongside focal treehoppers developed (Rebar & Rodríguez, 2013). These treatments induced
200 plasticity in the mate preferences that focal treehopper females expressed as adults (in both peak
201 preference and selectivity). A separate experiment manipulated the genotype of the host plants on
202 which focal treehoppers developed jointly with the social aggregations in which they developed
203 (Rebar & Rodríguez, 2014a, 2014b, 2015). These treatments induced plasticity in both the signal
204 frequency and mate preferences (peak preference) that focal treehopper males and females
205 expressed as adults. Remarkably, these plastic responses of male signals and female peak
206 preferences lead to strong signal-preference covariation, with the signal-preference span
207 approximating 50% of the difference between some species in the *E. binotata* complex (Rebar &
208 Rodríguez, 2015; Desjonquères et al. in prep).

209 Building on the above evidence of indirect genetic effects (from social neighbours and

210 developmental host plants) as causes of plasticity in signals and preferences, we tested a novel
211 hypothesis derived from interacting phenotypes theory: we asked whether interactions in mixed
212 species aggregations could create or enhance signal-preference differences between diverging
213 populations or recently-diverged species (Desjonquères et al., in review). We reared two recently
214 diverged members of the *E. binotata* complex in treatments consisting of mixed-species versus
215 own-species aggregations. We found that social experience with heterospecifics resulted in
216 enhanced signal-preference species differences in the mixed-species treatment and was mainly lead
217 by the plastic response of one of the two species. This result suggests that secondary contact early in
218 the process of speciation could cause further signal-preference divergence and establish or increase
219 assortative mating through plasticity (Desjonquères et al., in review).

220 In short, we find that juvenile social interactions influence various aspects of signals and
221 preferences in ways that are likely to affect mate choice and assortative mating (Fig. 3). Social
222 experience in denser aggregations lead to a stronger mismatch between signals and preferences—
223 i.e., to more strongly directional selection on signals (Fowler-Finn et al., 2017). And developing on
224 different plants/ social aggregations can establish signal-preference covariance at a level that
225 approximates differences between extant species (Rebar & Rodríguez, 2015; Desjonquères et al. in
226 prep).

227

228 *Social experience as immature adults*

229

230 The *Enchenopa* communication system also offers opportunity for social plasticity to be induced by
231 inputs from potential mates and competitors as young adults. After the adult moult, males and
232 females remain sexually immature for about two and four weeks, respectively (Cocroft et al., 2008;
233 Rodríguez et al., 2004). Thus, males begin to signal about two weeks before females start to become
234 receptive and begin engaging in duetting. This provides a natural window of opportunity during

235 which males and females may perceive and assess the range of variation in the signals of potential
236 competitors/mates and sample the mating pool. Further, females do not all become receptive at
237 once, but in staggered fashion along the mating season (Sullivan-Beckers & Cocroft, 2010). Thus,
238 females that become receptive relatively late have the opportunity to monitor male-female
239 interactions over some days or weeks.

240 Playback experiments to young adult females mimicking variation in the range of mate types
241 available (attractive, unattractive/heterospecifics, mixed), induced plasticity in female preference
242 selectivity but not peak preference (Fig. 3; Fowler-Finn & Rodríguez, 2012a, 2012b). Specifically,
243 females expressed higher selectivity when they had experienced either attractive only or mixed
244 mate types present (as in the blue-to-orange shift in Fig. 2b). By contrast, females expressed lower
245 selectivity when they had experienced either unattractive only or no mate types present (as in the
246 orange-to-blue shift in Fig. 2b). These effects may help females balance obtaining their preferred
247 mate types against securing a mating when those types are rare. They may also establish negative
248 frequency dependent cycles between the strength of selection due to mate choice and the
249 availability of preferred mates, contributing to the maintenance of variation under selection and to
250 the colonization of novel habitats (Rodríguez, Rebar, et al., 2013). Comparable playback
251 experiments to young adult males induced plasticity in signal length and rates (longer signals and
252 higher rates when they had experienced attractive competitors) but not dominant signal frequency
253 (Fig. 3; Rebar & Rodríguez, 2016).

254 In short, we find that plasticity arising from young adults' experience of available mate
255 types influences female preference selectivity (Fig. 3). It also influences the dynamics of male-male
256 competitive signalling (Fig. 3). However, none of these experiences from young adult social
257 environment affect signal frequency nor the mate preference for it, and thus seem unlikely to
258 influence the form of selection on signals and preferences. Nevertheless, the strength of selection
259 due to mate choice may interact with preference divergence generated at other points in the life

260 cycle (cf. Rodríguez, Boughman, et al., 2013).

261

262 *Immediate social context of mate choice*

263

264 As noted above, the *Enchenopa* communication system also offers opportunity for social plasticity
265 to be induced in mature adults by inputs from potential mates and competitors in the immediate
266 context of mating. In spite of the above opportunities for plasticity, we have found little effect from
267 the immediate context of mate choice on *Enchenopa* female mate preferences. Playback
268 experiments mimicking the presence of strongly attractive or unattractive males did not modify
269 female response to relatively attractive-unattractive males (Fig. 3; Speck, 2022). And playback
270 experiments mimicking duets with females favouring attractive or unattractive males did not modify
271 female peak preference nor preference selectivity—i.e., there was no mate-choice copying (Fig. 3;
272 Cirino et al. in review).

273 *Enchenopa* males seem somewhat more responsive than females to the immediate context of
274 mate choice, albeit not in ways that alter signal frequency. Males respond to the presence of other
275 competitor signalling males by increasing signal rates (Rodríguez & Cocroft, unpubl.) and may
276 even produce an additional signal type that likely has a “signal masking” function (Sullivan-
277 Beckers, 2008; and see Legendre et al., 2012; and Miranda, 2006 for masking signals in other
278 treehoppers). In playbacks of “stand-alone” female signals (which receptive females do produce on
279 occasions; Rodríguez, Speck & Seidita, unpubl.), males signalled at higher rates in response to
280 longer (i.e., more “motivated”) female signals but were not influenced by female signal frequency
281 (which differs between species; Rodríguez et al., 2012).

282 In short, we find that, besides males being attentive to the level of “motivation” in female
283 responses to their signals, the effect of plasticity arising from the immediate context of mate choice
284 in *Enchenopa* is mainly to modify the dynamics of male-male competitive signalling interactions

285 (to a higher extent than social inputs to immature males; Fig. 3). But it does not seem to influence
286 female mate preferences nor the signal-preference relationship, especially pertaining to male signal
287 frequency. Overall, certain male traits appeared to respond more plastically than female traits to the
288 immediate social context of mate choice, this could be explained by differing optimal reproductive
289 strategies in males and females (it makes sense for males to increase their courting effort when in
290 the presence of competitors to potentially secure more matings).

291 **Discussion**

292

293 Using a review of studies with *Enchenopa* treehoppers, we set out to examine the potential role of
294 the life stage at which social plasticity is induced in adult mating signals and mate preferences, and
295 the nature of interactions involved. Besides the well recognized effect of the timing of the induction
296 of plasticity relative to dispersal and mating (Verzijden et al., 2012), we were interested in
297 considering the nature of the social interactions involved at different stages, and the direction and
298 strength of the resulting plastic response.

299 We find a broad range of plastic responses. Interestingly, social inputs arising from
300 interactions between juveniles have stronger effects on the development of adult signals and
301 preferences, sometimes (especially when combined with inputs from developmental host plants)
302 generating remarkable signal-preference covariance involving a signal feature strongly involved in
303 assortative mating. By contrast social inputs arising from interactions between adults have
304 potentially important but moderate effects. Thus, plasticity induced earlier in life is not only more
305 likely to generate assortative mating because of the relative timing of its induction (before dispersal
306 and mating; Verzijden et al., 2012), but also the direction and strength of the resulting plastic
307 responses in signals and preferences also make it more likely to contribute to assortative mating.

308 It is unclear why juvenile social experience may lead to stronger plastic changes than at
309 other stages. Juvenile interactions may be a strong indicator of future mating opportunities
310 (although signalling between juvenile *per se* may have little bearing on future courtship and mating
311 activities). However, one would expect immediate and quasi-immediate mating context to be better
312 indicators of the mating stage. Perhaps there are costs to continuously monitoring the mating scene
313 and quickly changing mating preferences and signalling efforts (e.g. when individuals mate only
314 once, as is the case in *Enchenopa*; Rosenthal, 2017).

315 In this survey of social plasticity in *Enchenopa*, we have discussed input treatments initiated

316 during a given stage (e.g., as juveniles) and continued until shortly before adult trials as mainly
317 being induced throughout the earlier stage. We consider this is warranted because very late nymphs
318 and very young *Enchenopa* adults do not signal (Cocroft et al., 2008; Desjonquères, Maliszewski, et
319 al., 2019). We have also discussed the resulting plasticity as developmental, rather than as
320 activational or reversible (cf. Piersma & Drent, 2003; Snell-Rood, 2013; Westneat et al., 2015). And
321 that is how we have measured them, taking a "snapshot" at a narrow interval shortly after the onset
322 of sexual behaviour. However, there is also evidence that peak preference and selectivity change
323 along the mating season as females age (Speck, 2022). Further, some of the above inputs, or others
324 we have not measured, may result in activational or reversible plasticity. And, inputs of any type at
325 one stage may interact with other inputs at other stages. It would therefore be interesting to test
326 whether such interactions between inputs impact the dynamics of mate choice, and whether the
327 resulting changes represent adaptive plasticity. For example, we have interpreted plasticity in
328 female selectivity according to recent prior experience of the mate types available as adaptive,
329 because it seems to tune selectivity such that it permits stronger discrimination when there has been
330 indication that preferred types will be present, whilst it also allows for weaker discrimination to
331 ensure mating when there has been indication that preferred types will be rare or absent (Fowler-
332 Finn & Rodríguez, 2012a, 2012b; Rodríguez, Rebar, et al., 2013). Similarly, the plastic effects of
333 juvenile aggregation density and isolation produce lower selectivity and a shift in preference peak
334 towards low signal frequency (resulting in a smaller mismatch with the population mean for signal
335 frequency; Fowler-Finn et al., 2017). This too could be adaptive, if developing in sparse
336 aggregations or in isolation indicates higher risk of not finding preferred types. It will also be
337 interesting to assess whether such plastic effects persist or interact with more immediate inputs later
338 in life.

339 It also remains to be seen how general the pattern we report here for *Enchenopa* treehoppers
340 is. It may be shared by other animal groups with imprinting from parents, such as song birds, some

341 mammals and frogs (Gultekin & Hage, 2017; Lipkind et al., 2013; Marler & Peters, 1988; Nowicki
342 & Searcy, 2014; Pika et al., 2018; Takahashi et al., 2015; Yang et al., 2019), or with imprinting
343 from non-parental adults as in some wolf spiders (E. A. Hebets, 2003). However, strong effects
344 from the immediate context of mate choice of adults are also common, as with mate choice copying
345 in some vertebrates (Davies et al., 2020). Thus, understanding the evolutionary consequences of
346 social plasticity in mating signals and mate preferences will require explaining variation among
347 animals in: the time of life at which plasticity is induced; the type of interactions that are involved;
348 and the direction and strength of the resulting plastic responses.

349

350 **Acknowledgements**

351

352 We thank Dale Stevens and Matthew Wund for inviting us to participate in the symposium
353 *Evolution and behavioral plasticity: a symposium honoring the career of Susan A. Foster* (Animal
354 Behavior Society 2021 virtual meeting), and in this special issue. This review was supported by a
355 National Science Foundation Grant IOS-1855962 (to R.L.R. and C.D.). We thank two anonymous
356 reviewers for their useful comments.

357

358 **Author contribution**

359 RLR came up with the idea of the manuscript. CD lead the writing but both authors contributed
360 significantly to writing and editing. CD conceived the figures.

Bailey, N. W., & Moore, A. J. (2012). Runaway Sexual Selection without Genetic Correlations: Social Environments and Flexible Mate Choice Initiate and Enhance the Fisher Process. *Evolution*, 66(9), 2674–2684.

Boughman, J. W., & Servedio, M. R. (2022). The ecological stage maintains preference differentiation and promotes speciation. *Ecology Letters*, ele.13970. <https://doi.org/10.1111/ele.13970>

Bradbury, J. W., & Vehrencamp, S. L. (1998). *Principles of Animal communication* (Sinauer Associates). <http://www.sinauer.com/media/wysiwyg/tocs/PrinciplesAnimalCommunication2.pdf>

Cocroft, R. B. (2011). The public world of insect vibrational communication: NEWS AND VIEWS: PERSPECTIVE. *Molecular Ecology*, 20(10), 2041–2043. <https://doi.org/10.1111/j.1365-294X.2011.05092.x>

Cocroft, R. B., & Rodríguez, R. L. (2005). The behavioral ecology of insect vibrational communication. *Bioscience*, 55(4), 323–334.

Cocroft, R. B., Rodríguez, R. L., & Hunt, R. E. (2008). Host shifts, the evolution of communication, and speciation in the *Enchenopa binotata* species complex of treehoppers. In *Specialization, speciation, and radiation: The evolutionary biology of herbivorous insects* (ed. K. Tilmon, pp. 88–100). University of California Press. <http://www.biosci.missouri.edu/cocroft/Publications/documents/2008CocroftetalEnchenopachapter.pdf>

Cocroft, R. B., Rodríguez, R. L., & Hunt, R. E. (2010). Host shifts and signal divergence: Mating signals covary with host use in a complex of specialized plant-feeding insects. *Biological Journal of the Linnean Society*, 99(1), 60–72. <https://doi.org/10.1111/j.1095-8312.2009.01345.x>

Davies, A. D., Lewis, Z., & Dougherty, L. R. (2020). A meta-analysis of factors influencing the strength of mate-choice copying in animals. *Behavioral Ecology*, 31(6), 1279–1290.

<https://doi.org/10.1093/beheco/araa064>

Desjonquères, C., Maliszewski, J., Lewandowski, E. N., Speck, B., & Rodríguez, R. L. (2019).

Social ontogeny in the communication system of an insect. *Animal Behaviour*, 148, 93–103.

<https://doi.org/10.1016/j.anbehav.2018.12.002>

Desjonquères, C., Maliszewski, J., & Rodríguez, R. L. (2021). Juvenile social experience and practice have a switch- like influence on adult mate preferences in an insect. *Evolution*, 5(75), 1106–1116. <https://doi.org/10.1111/evo.14180>

Desjonquères, C., Speck, B., & Rodríguez, R. L. (2019). Signalling interactions during ontogeny are a cause of social plasticity in *Enchenopa* treehoppers (Hemiptera: Membracidae). *Behavioural Processes*, 166, 103887. <https://doi.org/10.1016/j.beproc.2019.06.010>

Drosopoulos, S., & Claridge, M. F. (2005). *Insect sounds and communication: Physiology, behaviour, ecology, and evolution*. CRC press.

Dukas, R. (2013). Effects of learning on evolution: Robustness, innovation and speciation. *Animal Behaviour*, 85(5), 1023–1030. <https://doi.org/10.1016/j.anbehav.2012.12.030>

Fletcher, N. H. (2007). Animal bioacoustics. In *Springer Handbook of Acoustics* (pp. 785–804). Springer. http://link.springer.com/chapter/10.1007/978-1-4939-0755-7_19

Fowler-Finn, K. D., Cruz, D. C., & Rodríguez, R. L. (2017). Local population density and group composition influence the signal-preference relationship in *Enchenopa* treehoppers (Hemiptera: Membracidae). *Journal of Evolutionary Biology*, 30(1), 13–25. <https://doi.org/10.1111/jeb.12994>

Fowler-Finn, K. D., & Rodríguez, R. L. (2012a). Experience-mediated plasticity in mate preferences: Mating assurance in a variable environment. *Evolution*, 66(2), 459–468.

Fowler-Finn, K. D., & Rodríguez, R. L. (2012b). The evolution of experience-mediated plasticity in mate preferences. *Journal of Evolutionary Biology*, 25(9), 1855–1863. <https://doi.org/10.1111/j.1420-9101.2012.02573.x>

Gultekin, Y. B., & Hage, S. R. (2017). Limiting parental feedback disrupts vocal development in marmoset monkeys. *Nature Communications*, 8, 14046. <https://doi.org/10.1038/ncomms14046>

Hebets, E. A. (2003). Subadult experience influences adult mate choice in an arthropod: Exposed

female wolf spiders prefer males of a familiar phenotype. *Proceedings of the National Academy of Sciences*, 100(23), 13390–13395. <https://doi.org/10.1073/pnas.2333262100>

Hebets, E., & Sullivan-Beckers, L. (2010). Mate choice and learning. In *Encyclopedia of animal behavior* (M. D. Breed and J. Moore, pp. 389–393). Academic Press, London , Oxford.

Hill, P. S. (2008). *Vibrational communication in animals*. Harvard University Press.

Hill, P. S. M., & Wessel, A. (2016). Biotremology. *Current Biology*, 26(5), R187–R191. <https://doi.org/10.1016/j.cub.2016.01.054>

Hsu, Y.-H., Cocroft, R. B., Snyder, R. L., & Lin, C.-P. (2018). You stay, but I Hop: Host shifting near and far co-dominated the evolution of *Enchenopa* treehoppers. *Ecology and Evolution*. <https://doi.org/10.1002/ece3.3815>

Jennions, M. D., & Petrie, M. (1997). Variation in mate choice and mating preferences: A review of causes and consequences. *Biological Reviews*, 72(2), 283–327.

Kilmer, J. T., Fowler-Finn, K. D., Gray, D. A., Höbel, G., Rebar, D., Reichert, M. S., & Rodríguez, R. L. (2017). Describing mate preference functions and other function-valued traits. *Journal of Evolutionary Biology*, 30(9), 1658–1673. <https://doi.org/10.1111/jeb.13122>

Kopp, M., Servedio, M. R., Mendelson, T. C., Safran, R. J., Rodríguez, R. L., Hauber, M. E., Scordato, E. C., Symes, L. B., Balakrishnan, C. N., Zonana, D. M., & van Doorn, G. S. (2018). Mechanisms of Assortative Mating in Speciation with Gene Flow: Connecting Theory and Empirical Research. *The American Naturalist*, 191(1), 1–20. <https://doi.org/10.1086/694889>

Legendre, F., Marting, P. R., & Cocroft, R. B. (2012). Competitive masking of vibrational signals during mate searching in a treehopper. *Animal Behaviour*, 83(2), 361–368. <https://doi.org/10.1016/j.anbehav.2011.11.003>

Lipkind, D., Marcus, G. F., Bemis, D. K., Sasahara, K., Jacoby, N., Takahasi, M., Suzuki, K., Feher, O., Ravbar, P., Okanoya, K., & Tchernichovski, O. (2013). Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. *Nature*, 498(7452), 104–108. <https://doi.org/10.1038/nature12173>

Marler, P., & Peters, S. (1988). The Role of Song Phonology and Syntax in Vocal Learning Preferences in the Song Sparrow, *Melospiza melodia*. *Ethology*, 77(2), 125–149.

<https://doi.org/10.1111/j.1439-0310.1988.tb00198.x>

Marler, P., & Peters, S. (2010). A Sensitive Period for Song Acquisition in the Song Sparrow,

Melospiza melodia: A Case of Age-limited Learning. *Ethology*, 76(2), 89–100.

<https://doi.org/10.1111/j.1439-0310.1987.tb00675.x>

Mazzoni, V., Eriksson, A., Anfora, G., Lucchi, A., & Virant-Doberlet, M. (2014). Active Space and the Role of Amplitude in Plant-Borne Vibrational Communication. In *Studying Vibrational Communication* (pp. 125–145). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_8

McNett, G. D., & Cocroft, R. B. (2008). Host shifts favor vibrational signal divergence in

Enchenopa binotata treehoppers. *Behavioral Ecology*, 19(3), 650–656.

<https://doi.org/10.1093/beheco/arn017>

Miranda, X. (2006). Substrate-borne signal repertoire and courtship jamming by adults of *Ennya chrysura* (Hemiptera: Membracidae). *Annals of the Entomological Society of America*, 99(2), 374–386.

Moore, A. J., Brodie, E. D., & Wolf, J. B. (1997). Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions. *Evolution*, 51(5), 1352–1362. <https://doi.org/10.1111/j.1558-5646.1997.tb01458.x>

Nowicki, S., & Searcy, W. A. (2014). The evolution of vocal learning. *Current Opinion in Neurobiology*, 28, 48–53. <https://doi.org/10.1016/j.conb.2014.06.007>

Piersma, T., & Drent, J. (2003). Phenotypic flexibility and the evolution of organismal design. *Trends in Ecology & Evolution*, 18(5), 228–233.

Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C. (2018). Taking turns: Bridging the gap between human and animal communication. *Proceedings of the Royal Society B: Biological Sciences*, 285(1880), 20180598. <https://doi.org/10.1098/rspb.2018.0598>

Rebar, D., & Rodríguez, R. L. (2013). Genetic variation in social influence on mate preferences.

Proceedings of the Royal Society B: Biological Sciences, 280(1763), 20130803–20130803. <https://doi.org/10.1098/rspb.2013.0803>

Rebar, D., & Rodríguez, R. L. (2014a). Genetic variation in host plants influences the mate preferences of a plant-feeding insect. *The American Naturalist*, 184(4), 489–499.

Rebar, D., & Rodríguez, R. L. (2014b). Trees to treehoppers: Genetic variation in host plants contributes to variation in the mating signals of a plant-feeding insect. *Ecology Letters*, 17(2), 203–210. <https://doi.org/10.1111/ele.12220>

Rebar, D., & Rodríguez, R. L. (2015). Insect mating signal and mate preference phenotypes covary among host plant genotypes. *Evolution*, 69(3), 602–610. <https://doi.org/10.1111/evo.12604>

Rebar, D., & Rodríguez, R. L. (2016). Males adjust their signalling behaviour according to experience of male signals and male–female signal duets. *Journal of Evolutionary Biology*. <https://doi.org/10.1111/jeb.12825>

Ritchie, M. G. (1996). The shape of female mating preferences. *Proceedings of the National Academy of Sciences*, 93(25), 14628–14631.

Rodríguez, R. L., Boughman, J. W., Gray, D. A., Hebets, E. A., Höbel, G., & Symes, L. B. (2013). Diversification under sexual selection: The relative roles of mate preference strength and the degree of divergence in mate preferences. *Ecology Letters*, 16(8), 964–974. <https://doi.org/10.1111/ele.12142>

Rodríguez, R. L., & Cocroft, R. B. (2006). Divergence in Female Duetting Signals in the *Enchenopa binotata* Species Complex of Treehoppers (Hemiptera: Membracidae). *Ethology*, 112(12), 1231–1238. <https://doi.org/10.1111/j.1439-0310.2006.01285.x>

Rodríguez, R. L., & Desjonquères, C. (2019). Vibrational Signals: Sounds Transmitted Through Solids. In *Encyclopedia of Animal Behaviour (2nd edition)* (Elsevier, Academic Press, Vol. 1, pp. 508–517). Academic Press. <https://doi.org/10.1016/B978-0-12-809633-8.90702-7>

Rodríguez, R. L., Haen, C., Cocroft, R. B., & Fowler-Finn, K. D. (2012). Males adjust signaling effort based on female mate-preference cues. *Behavioral Ecology*, 23(6), 1218–1225. <https://doi.org/10.1093/beheco/ars105>

Rodríguez, R. L., Ramaswamy, K., & Cocroft, R. B. (2006). Evidence that female preferences have shaped male signal evolution in a clade of specialized plant-feeding insects. *Proceedings of the Royal Society B: Biological Sciences*, 273(1601), 2585–2593. <https://doi.org/10.1098/rspb.2006.3635>

Rodríguez, R. L., Rebar, D., & Fowler-Finn, K. D. (2013). The evolution and evolutionary consequences of social plasticity in mate preferences. *Animal Behaviour*, 85(5), 1041–1047.

<https://doi.org/10.1016/j.anbehav.2013.01.006>

Rodríguez, R. L., Sullivan, L. E., & Cocroft, R. B. (2004). Vibrational communication and reproductive isolation in the *Enchenopa binotata* species complex of treehoppers (Hemiptera: Membracidae). *Evolution*, 58(3), 571. <https://doi.org/10.1554/03-120>

Rodríguez, R. L., Wojcinski, J. E., & Maliszewski, J. (2018). Between-group variation in *Enchenopa* treehopper juvenile signaling (Hemiptera Membracidae). *Ethology Ecology & Evolution*, 30(3), 245–255. <https://doi.org/10.1080/03949370.2017.1347585>

Rosenthal, G. G. (2017). *Mate choice: The evolution of sexual decision making from microbes to humans*. Princeton University Press.

Snell-Rood, E. C. (2013). An overview of the evolutionary causes and consequences of behavioural plasticity. *Animal Behaviour*, 85(5), 1004–1011.
<https://doi.org/10.1016/j.anbehav.2012.12.031>

Soha, J. A., & Peters, S. (2015). Vocal Learning in Songbirds and Humans: A Retrospective in Honor of Peter Marler. *Ethology*, 121(10), 933–945.

Speck, B. L. V. (2022). *Architecture of Mate Choice Decisions in Enchenopa Treehoppers* [PhD Thesis]. The University of Wisconsin-Milwaukee.

Stinchcombe, J. R., Function-valued Traits Working Group, & Kirkpatrick, M. (2012). Genetics and evolution of function-valued traits: Understanding environmentally responsive phenotypes. *Trends in Ecology & Evolution*, 27(11), 637–647.

Strauß, J., Stritih-Peljhan, N., Nieri, R., Virant-Doberlet, M., & Mazzoni, V. (2021). Communication by substrate-borne mechanical waves in insects: From basic to applied biotremology. In *Advances in insect physiology* (Vol. 61, pp. 189–307). Elsevier.

Sullivan-Beckers, L. (2008). *The Ecology of mate choice: Identifying the agents of sexual selection on mating signals in Enchenopa treehoppers* [Ph.D.]. University of Missouri.

Sullivan-Beckers, L., & Cocroft, R. B. (2010). The importance of female choice, male-male competition, and signal transmission on male mating signals: Identifying sources of selection on mating signals. *Evolution*, 64(11), 3158–3171. <https://doi.org/10.1111/j.1558-5646.2010.01073.x>

Takahashi, D. Y., Fenley, A. R., Teramoto, Y., Narayanan, D. Z., Borjon, J. I., Holmes, P., &

Ghazanfar, A. A. (2015). The developmental dynamics of marmoset monkey vocal production. *Science*, 349(6249), 734–738.

Takahashi, D. Y., Liao, D. A., & Ghazanfar, A. A. (2017). Vocal Learning via Social Reinforcement by Infant Marmoset Monkeys. *Current Biology*, 27(12), 1844-1852.e6. <https://doi.org/10.1016/j.cub.2017.05.004>

Ten Cate, C., & Vos, D. R. (1999). Sexual Imprinting and Evolutionary Processes in Birds: A Reassessment. In *Advances in the Study of Behavior* (Vol. 28, pp. 1–31). Elsevier. [https://doi.org/10.1016/S0065-3454\(08\)60214-4](https://doi.org/10.1016/S0065-3454(08)60214-4)

Verzijden, M. N., ten Cate, C., Servedio, M. R., Kozak, G. M., Boughman, J. W., & Svensson, E. I. (2012). The impact of learning on sexual selection and speciation. *Trends in Ecology & Evolution*, 27(9), 511–519. <https://doi.org/10.1016/j.tree.2012.05.007>

Virant-Doberlet, M., Mazzoni, V., Groot, M. de, Polajnar, J., Lucchi, A., Symondson, W. O. C., & Čokl, A. (2014). Vibrational Communication Networks: Eavesdropping and Biotic Noise. In *Studying Vibrational Communication* (pp. 93–123). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_7

Wagner, W. L. (1998). Measuring female mating preferences. *Animal Behaviour*, 55(4), 1029–1042.

Westneat, D. F., Wright, J., & Dingemanse, N. J. (2015). The biology hidden inside residual within-individual phenotypic variation: The biology of residual phenotypic variance. *Biological Reviews*, 90(3), 729–743. <https://doi.org/10.1111/brv.12131>

Witte, K., Kniel, N., & Kureck, I. M. (2015). Mate-choice copying: Status quo and where to go. *Current Zoology*, 61(6), 1073–1081. <https://doi.org/10.1093/czoolo/61.6.1073>

Wood, T. K. (1993). Speciation of the *Enchenopa binotata* complex (Insecta: Homoptera: Membracidae). *Evolutionary Patterns and Processes*, 14, 299–317.

Yang, Y., Servedio, M. R., & Richards-Zawacki, C. L. (2019). Imprinting sets the stage for speciation. *Nature*, 574(7776), 99–102. <https://doi.org/10.1038/s41586-019-1599-z>

363 **Figures**

364

365 **Figure 1: Signals of adult *Enchenopa binotata*.** (a) Bout of four male signals. (b) Detail of one of

366 the signals in the above bout. Note the whine and pulses structure. (c) Duet between a male and
367 female.

368

369 **Figure 2: Mate preference functions varying in two preference traits: preference peak (a) and**
370 **preference selectivity (b).** Variation in preference peak and preference selectivity may represent
371 different individuals, populations, treatments or species. (a) Preference peak is the most preferred
372 signal trait value. In this example, the blue curve has a lower preference peak than the orange curve.
373 (b) Preference selectivity summarizes several aspects of the shape of mate preferences around the
374 peak such as how steeply attractiveness decreases away from the peak, or how high the curve is on
375 average. In this example, the blue curve has a lower preference selectivity than the orange curve.

376

377 **Figure 3: Summary of the effect of social plasticity in the signals and preferences of *E.***
378 ***binotata* induced at different life stages.**

The direction and strength of social plasticity in mating signals and mate preferences vary with the life stage of induction

3

4

5

5 Camille Desjonquères^{1,*}, Rafael Rodríguez¹

6

7

8 ¹ Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
9 Wisconsin-Milwaukee, Milwaukee, WI, USA

10

11 * Corresponding author: cdesjonqu@gmail.com, Tel.: +1 (414) 229-4214

12 Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
13 Wisconsin-Milwaukee, Milwaukee, WI, USA

14

15 Word count: 6 372

16

17 Acknowledgements

18

19 We thank Dale Stevens and Matthew Wund for inviting us to participate in the symposium

20 *Evolution and behavioral plasticity: a symposium honoring the career of Susan A. Foster* (Animal
21 Behavior Society 2021 virtual meeting), and in this special issue. This review was supported by a
22 National Science Foundation Grant IOS-1855962 (to R.L.R. and C.D.). We thank two anonymous
23 reviewers for their useful comments.

24

1 The direction and strength of social plasticity in mating signals and mate preferences vary

2 with the life stage of induction

3

4

5 Camille Desjonquères^{1,*}, Rafael Rodríguez¹

6

7

⁸ ¹ Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
⁹ Wisconsin-Milwaukee, Milwaukee, WI, USA

10

11 * Corresponding author: cdesjonqu@gmail.com, Tel.: +1 (414) 229-4214

12 Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
13 Wisconsin-Milwaukee, Milwaukee, WI, USA

14

15 Word count: 6 362

16 **Animal welfare note:**

17

18 This manuscript did not involve the use of live animals.

1 The direction and strength of social plasticity in mating signals and mate preferences vary

2 with the life stage of induction

3

4

5 Camille Desjonquères^{1,*}, Rafael Rodríguez¹

6

7

8 ¹ Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
9 Wisconsin-Milwaukee, Milwaukee, WI, USA

10

11 * Corresponding author: cdesjonqu@gmail.com, Tel.: +1 (414) 229-4214

12 Behavioral & Molecular Ecology Group, Department of Biological Sciences, University of
13 Wisconsin-Milwaukee, Milwaukee, WI, USA

14

15 Word count: 6 362

16

17 Author contribution

18 RLR came up with the idea of the manuscript. CD lead the writing but both authors contributed
19 significantly to writing and editing. CD conceived the figures.