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Abstract

Socially-induced plasticity in mating signals and mate preferences is widespread in animals. The
timing of plasticity induction is key for the-mating and evolutionary consequences: plasticity
induced before and after dispersal often results in-the different mate choices. Here we discuss two
additional factors that may be of importance: the nature of social interactions that are involved at
different stages, and the direction and strength of plasticity in mating traits. We review a case study
with the Enchenopa binotata complex of treehoppers. In spite of a wide scope for social plasticity
in E. binotata across their life stages, effects of the juvenile social environment were stronger and
more common, especially those influencing the signal-preference relationship. These results
emphasize the importance of studying variation in plasticity induced along various life stages and of
considering all the mating traits that may be socially plastic. We suggest that systematic
investigation of these patterns across taxa will help better understand the origin of diversity in

animal communication systems.

Keywords : life stages, mating signal evolution, preference functions, signal ontogeny, behavioural

plasticity
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Introduction
Socially-induced plasticity in mating signals and mate preferences is widespread in animals
including fish, birds, mammals and various invertebrates (Dukas, 2013; Rosenthal, 2017; Soha &
Peters, 2015; Takahashi et al., 2017). Examples range from classical imprinting, whereby
individuals learn their signals and/or preferences from parents early in life (E. Hebets & Sullivan-
Beckers, 2010), to mate copying, whereby individuals chose mates that are similar to the ones
chosen by others in their immediate mating environment (Davies et al., 2020; Witte et al., 2015).
Variation in signals and preferences determines the patterns of assortative mating that arise
from courtship and mate choice (Jennions & Petrie, 1997; Kopp et al., 2018; Rosenthal, 2017).
Social plasticity in signals and preferences may therefore influence those patterns. Thus plasticity in
signals and preferences may have a strong impact on the direction and strength of selection on
signals and mate preferences. Moreover, plastic changes induced by the social environment set up
the stage for feedback loops regardinginvolving both the causes of variation in phenotypes and the
causes of selection on those phenotypes because each individual in a social group is both a receiver
and aeterproducer of inputs from social interactions, as well as a target and a cause of selection.

Modelling of such feedback in iInteracting phenotypes theorymedels suggests that suehthese effects

can initiate and/or intensify rapid evolution of extravagant signals and/or preferences sueh-as+is
expeetedinwith Fisherian runaways,-and-this even in the absence of “direct” genetic covariance
between signals and preferences (Bailey & Moore, 2012; Moore et al., 1997).

One important factor that determines the evolutionary consequences of social plasticity in
signals and preferences is the timing of induction of plasticity. In most song-birds, for instance,
young individuals are able to learn new songs up to a certain point in their lives, beyond which their
songs are nearly fixed and-thus-thislearnineisnon—reversible-(Marler & Peters, 2010; Nowicki &
Searcy, 2014). In such species, the induction of plasticity in song (learning) usually occurs prior to

dispersal, territory establishment, and mating. If females have learned theira preference locally
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(resulting in a preference for local songs; e.g. Ten Cate & Vos, 1999), individuals will only be able

to find accepting mates at sites with songs similar to those they learned. Different timings of
learning and dispersal will thus have different consequences, ranging from individuals being unable
to learn the songs of a new population and thus strugglingunable to find a mate in that new
population, to individuals being able to learn the songs of a new population and thus easily finding
a mate (Boughman & Servedio, 2022; Verzijden et al., 2012).

Here we point out an additional factor regarding social plasticity that;-besides-the-timingof
the-induetion-of plastieity; may influence patterns of mate choice and assortative mating in addition

to the timing of the induction of plasticity: the nature of the interactions involved. Animals engage

in many different kinds of social interactions, often involving different signals, signal repertoires,
signalling modalities, and behavioural contexts; and these interactions may occur at different stages
in ansmals'their lives (Bradbury & Vehrencamp, 1998; Drosopoulos & Claridge, 2005; Fletcher,
2007). The nature of these interactions, together with differences across_context and life stages in
how animals respond to those inputs, may have important consequences for the direction and
strength of the plasticity in signals and preferences that is generated.

Here we consider the role of the nature of the social interactions in the direction and strength
of the resulting plastic response, in conjunction with their timing of induction. We ground our
discussion on a case study with Enchenopa treehoppers, where we find that social interactions at
different life stages involve different sets of individuals and signal repertoires, and differentially
affect adult signals and mate preferences. The Enchenopa communication system offers ample
opportunity for social plasticity to be induced by inputs from their conspecifics{petentialmates;
competitors-andjuventles) as juveniles as well as mature and immature adults. We thus consider
how the timing and nature of induction may interact, and how that may vary the consequences of
signal-preference plasticity. We suggest that systematically investigating the direction and strength

of plasticity in signals and preferences that arise at different times in the life cycle of animals from
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different social interactions will open novel avenues to understand the evolution of social plasticity

in communication systems and its evolutionary consequences.

Introduction to the Enchenopa binotata species complex (Hemiptera: Membracidae)

The E. binotata complex is a clade of host specialist plant-feeding insects that communicate with
plant-borne vibrational signals (Cocroft et al., 2008; Hsu et al., 2018; Wood, 1993). Communication
with substrate-borne vibrations is widespread among animals, including insects and spiders, and
signalling with plant-borne vibrations is common among insects, especially in Hemiptera (Cocroft

& Rodriguez, 2005; P. S. Hill, 2008; P. S. M. Hill & Wessel, 2016; Rodriguez & Desjonquéres,

2019; Virant-Doberlet et al., 2014). -

al52013: Redriguezetal; 2006y Ot these-Enchenopa engage in signalling interactions with rich
signal repertoires as nymphs and adults (Cocroft et al., 2008; Desjonquéres, Maliszewski, et al.,

2019; Rodriguez et al., 2018; Sullivan-Beckers, 2008; Michael & Cocroft, unpubl.). Afterthe-adult

petential-competitorsimates-and-sample-the-mating peel-During the mating season, mate-searching

males fly from plant to plant, producing advertisement signals that are composed of two main

elements: a near pure-tone whine followed by a few pulses (Fig. 1a-b; Cocroft et al., 2008, 2010). A
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female on the plant that finds the male’s signals attractive may decide to produce her own response
signals and alert the male to her presence; there follows a male-female signal duet- that continues
while the male searches for the female on the plant until mating begins (Fig. 1c; Cocroft et al.,
2008; Rodriguez et al., 2004; Rodriguez & Cocroft, 2006). Enchenopa females have strong mate
preferences, mainly for the dominant frequency of male signals, which they express through
selective duetting (Rodriguez et al., 2004, 2006; Rodriguez, Boughman, et al., 2013). Sources of

divergent selection on signals include mate preferences and signal filtering by plants (McNett &

Cocroft, 2008: Rodriguez, Boughman, et al., 2013: Rodriguez et al., 2006). Of these, mate

preferences make the strongest contribution (Sullivan-Beckers & Cocroft, 2010).

Enchenopa plant-borne vibrational signals transmit well on their host plants, at least at the

scale of a stem or bush (which is the scale at which mating aggregations and interactions occur),

and individuals on a given plant can perceive most of the movements and signalling by other

individuals around them (Cocroft, 2011; Cocroft et al., 2008: Cocroft & Rodriguez, 2005: Mazzoni

et al., 2014: StrauB} et al., 2021: Virant-Doberlet et al., 2014). A treechopper may thus receive inputs

regarding the presence, abundance and behaviour of males and females, potentially including the

range of variation in male signals, as well as how females are responding to them. These vary

between and within species in the E. binotata complex, from dense aggeregations with chorusing to

low-density distributions across plants with call-fly behaviour (Cocroft et al., 2008).
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Figure 1: Signals of adult Enchenopa binotata. (a) Bout of four male signals. (b) Detail of one of

the signals in the above bout. Note the whine--and--pulses structure. (c) Duet between a male and

female.

Species differences among adults in the E. binotata complex mainly involve the

advertisement and duetting signals of males and females (especially their dominant frequency), as

7/26



140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
’156
157
158
159
160
161
162

163

well as female mate preferences for male signal frequency (Cocroft et al., 2010; Rodriguez et al.,

2004; Rodriguez & Cocroft, 2006). In the discussion below we therefore focus on socially plastic
causes of variation in the frequency of male advertisement signals and in female mate preferences
for male signal frequency, although we also consider variation in terms of other signal and

preference traits. We first provide a brief primer on describing variation in mate preferences.

Describing variation in mate preferences

Mate preferences are expressed as a function of the features of potential mates that are encountered;
i.e., they are function-valued traits (Kilmer et al., 2017; Stinchcombe et al., 2012). Thus, mate
preferences are best characterized as functions or curves depicting variation in signal attractiveness
over a range of signal trait values (Kilmer et al., 2017; Ritchie, 1996; Wagner, 1998). With mate
preferences, the entire sweep of the function is of interest. However mate preferences can be
characterised with a few “mate preference function traits” that capture variation in the preferred
signal values and the shape of the function around those preferred values (Kilmer et al., 2017). Here
we focus on two of these mate preference function traits: peak preference, and preference selectivity
(Fig. 2). Peak preference is the most preferred-eeurtship signal trait value (Fig. 2a; Kilmer et al.,
2017). When related at population or species levels to mean signal traits in the population, peak
preference determines the form of selection due to mate choice on signals: stabilising if peak
preference and mean signal values match, directional if they do not (Kilmer et al., 2017; Rodriguez
et al., 2006; Rodriguez, Boughman, et al., 2013). Preference selectivity summarizes several aspects
of the shape of the function around the peak, such as how steeply attractiveness decreases away

from the peak, or how high the curve is on average (Fig. 2b; Kilmer et al., 2017).
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__
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Figure 2: Mate preference functions varying in two preference traits: preference peak (a) and
preference selectivity (b). Variation in preference peak and preference selectivity may represent
different individuals, populations, treatments or species. (a) Preference peak is the most preferred
signal trait value. In this example, the blue curve has a lower preference peak than the orange curve.
(b) Preference selectivity summarizes several aspects of the shape of mate preferences around the
peak such as how steeply attractiveness decreases away from the peak, or how high the curve is on

average. In this example, the blue curve has a lower preference selectivity than the orange curve.

Social plasticity of signals and preferences in Enchenopa

Across a series of studies, we have found considerable variation in the direction (sign of the
slopeeffect) and strength (magnitude of the stepeeffect) of plasticity in Enchenopa adult signals and
mates preferences induced at different times of life and by inputs from different social contexts.
Here we summarize these findings starting with juvenile social experience and proceeding to early

adult experience and then the immediate social context of mate choice (Fig. 3).
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sexually mature adult sexually immature adult

Figure 3: Summary of the effect of social plasticity in the signals and preferences of E.

binotata induced at different life stages.

Social experience as juveniles

The Enchenopa communication system offers ample opportunity for social plasticity to be induced
by inputs during juvenile stages. Nymphs develop in aggregations on their host plant, and they
communicate with a variety of signal types (Cocroft et al., 2008; Michael & Cocroft, unpubl.).
Nymphs signalling interactions vary according to group size and composition (Desjonquéres,
Maliszewski, et al., 2019; Rodriguez et al., 2018).

An experiment that varied nymph aggregation density showed that adult females reared in
denser aggregations developed higher peak preferences for signal frequency (i.e. as with the shift in
preference from the blue curve to the orange curve in Fig. 2a; Fowler-Finn et al., 2017). A separate
experiment that used playbacks to nymphs reared in isolation (one nymph per plant) showed that
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195 the effect of aggregation density is a function of the experience of nymphs with both signal

196 perception and production, rather than aggregation density or plant quality per se (Desjonqueres et
197 al., 2021; Desjonqueres, Maliszewski, et al., 2019; Desjonqueéres, Speck, et al., 2019). Additionally,
198 isolated nymphs had a lower selectivity as adult females than those raised in aggregations; and
199 playbacks of juveniles recover the selectivity of individuals in aggregations (i.e. shifting the

200 preference from orange to blue in Fig. 2b; Desjonqueres, Maliszewski, et al., 2019; Desjonqueres,
‘201 Speck, et al., 2019). Finally, these effects of signalling interactions appear to happen in a switch-
202 like manner rather than as an accumulating effect (Desjonquéres et al., 2021). Males reared in

203 isolation tended to have lower pulse lengths and higher signal rates than the ones in reared in

204 standard aggregations (Desjonquéres, Maliszewski, et al., 2019). A playback of juvenile signals to
205 isolated juveniles partially recovers the pulse length but not the signal rate effect (Desjonqueéres,
206  Speck, et al., 2019), suggesting that those effects of isolation are less strongly influenced by the
207 experience of signal interactions.

208 Another experiment manipulated the genotype of the social neighbours developing

209 alongside focal treehoppers developed (Rebar & Rodriguez, 2013). These treatments induced

210 plasticity in the mate preferences that focal treehopper females expressed as adults (in both peak
211 preference and selectivity). A separate experiment manipulated the genotype of the host plants on
212 which focal treehoppers developed jointly with the social aggregations in which they developed
[213 (Rebar & Rodriguez, 2014a, 2014b, 2015). These treatments induced plasticity in both the signal
214 frequency and mate preferences (peak preference) that focal treehopper males and females

215 expressed as adults. Remarkably, these plastic responses of male signals and female peak

216 preferences lead to strong signal-preference covariation, with the signal-preference span

‘217 approximating 50% of the difference between some species in the E. binotata complex (Rebar &
218 Rodriguez, 2015; Desjonqueres et al. in prep).

219 Building on the above evidence of indirect genetic effects (from social neighbours and
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developmental host plants) as causes of plasticity in signals and preferences, we tested a novel
hypothesis derived from interacting phenotypes theory: we asked whether interactions in mixed
species aggregations could create or enhance signal-preference differences between diverging
populations or recently-diverged species (Desjonquéres et al., in review). We reared two recently
diverged members of the E. binotata complex in treatments consisting of mixed-species versus
own-species aggregations. We found that social experience with heterospecifics resulted in
enhanced signal-preference species differences in the mixed-species treatment and was mainly lead
by the plastic response of one of the two species. This result suggests that secondary contact early in
the process of speciation could cause further signal-preference divergence and establish or increase
assortative mating through plasticity (Desjonqueéres et al., in review).

In short, we find that juvenile social interactions—varieusky influence various aspects of

signals and preferences in ways that are likely to i#nflaeneeaffect mate choice and assortative mating

(Fig. 3). Social experience in denser aggregations lead to a stronger mismatch between signals and

preferences—i.e., to more strongly directional selection on signals (Fowler-Finn et al., 2017). And
developing on different plants/ social aggregations can establish signal-preference covariance at a

level that approximates ebserveddifferences between extant species differences-(Rebar &

Rodriguez, 2015; Desjonqueéres et al. in prep).

Social experience as immature adults

The Enchenopa communication system also offers opportunity for social plasticity to be induced by
inputs from potential mates and competitors as young adults. After the adult moult, males and
females remain sexually immature for about two and four weeks, respectively (Cocroft et al., 2008;
Rodriguez et al., 2004). Thus, males begin to signal about two weeks before females start to become

receptive and begin engaging in duetting. This provides a natural window of opportunity during
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which males and females may perceive and assess the range of variation in the signals of potential
competitors/mates and sample the mating pool. Further, females do not all become receptive at
once, but in staggered fashion along the mating season (Sullivan-Beckers & Cocroft, 2010). Thus,
females that become receptive relatively late have the opportunity to monitor male-female
interactions over some days or weeks.

Playback experiments to young adult females mimicking variation in the range of mate types
available (attractive, unattractive/heterospecifics, mixed), induced plasticity in female preference
selectivity but not peak preference (Fig. 3; Fowler-Finn & Rodriguez, 2012a, 2012b). Specifically,
females expressed higher selectivity when they had experienced either attractive only or mixed
mate types present (as in the blue-to-orange shift in Fig. 2b). By contrast, females expressed lower
selectivity when they had experienced either unattractive only or no mate types present (as in the

orange-to-blue shift in Fig. 2b). These effects may help females balance obtaining their preferred

mate types against securing a mating when those types are rare. They may also establish negative

frequency dependent cycles between the strength of selection due to mate choice and the
availability of preferred mates, contributing to the maintenance of variation under selection and to
the colonization of novel habitats (Rodriguez, Rebar, et al., 2013). Comparable playback
experiments to young adult males induced plasticity in signal length and rates (longer signals and
higher rates when they had experienced attractive competitors) but not dominant signal frequency
(Fig. 3; Rebar & Rodriguez, 2016).

In short, we find that plasticity arising from young adults’ experience of available mate
types influences female preference selectivity (Fig. 3). It also influences the dynamics of male-male
competitive signalling (Fig. 3). However, none of these #putsexperiences from young adult social
experieneeenvironment affect signal frequency nor the mate preference for it, and thus seem
unlikely to influence the form of selection on signals and preferences. Nevertheless, the strength of

selection due to mate choice may interact with preference divergence generated at other points in
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the life cycle (cf. Rodriguez, Boughman, et al., 2013).

Immediate social context of mate choice

FheAs noted above, the Enchenopa communication system also offers opportunity for social

plasticity to be induced in mature adults by inputs from potential mates and competitors in the

immediate context of mating. ———

~In spite of

the above opportunities for plasticity, we have found little effect from the immediate context of
mate choice on Enchenopa female mate preferences. Playback experiments mimicking the presence
of strongly attractive or unattractive males did not modify female response to relatively attractive-
unattractive males (Fig. 3; Speck, 2022-+nprep-etal-Speek). And playback experiments mimicking
duets with females favouring attractive or unattractive males did not modify female peak preference
nor preference selectivity—i.e., there was no mate-choice copying (Fig. 3; Cirino et al. in
prep-review).

Enchenopa males seem somewhat more responsive than females to the immediate context of

mate choice, albeit not in ways that alter signal frequency. Males respond to the presence of other
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competitor signalling males by increasing signal rates and-amplitudes-(Rodriguez & Cocroft,
unpubl.) and may even produce an additional signal type that likely has a “signal masking” function
(Sullivan-Beckers, 2008; and see Legendre et al., 2012; and Miranda, 2006 for masking signals in
other treehoppers). In playbacks of “stand-alone” female signals (which receptive females do
produce on occasions; Rodriguez, Speck & Seidita, unpubl.), males signalled at higher rates in
response to longer (i.e., more “motivated”) female signals but were not influenced by female signal
frequency (which differs between species; Rodriguez et al., 2012).

In short, we find that, besides males being attentive to the level of “motivation” in female
responses to their signals, the effect of plasticity arising from the immediate context of mate choice
in Enchenopa is mainly to modify the dynamics of male-male competitive signalling interactions
(to a higher extent than social inputs to immature males; Fig. 3). But it does not seem to influence
female mate preferences nor the signal-preference relationship, especially pertaining to male signal
frequency. Overall, certain male traits appeared to respond more plastically than female traits to the
immediate social context of mate choice, this could be explained by differing optimal reproductive
strategies in males and females (it makes sense for males to increase their courting effort when in

the presence of competitors to potentially secure more matings).
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Discussion

Using a review of studies with Enchenopa treehoppers, we set out to examine the potential role of
the life stage at which social plasticity is induced in adult mating signals and mate preferences, and
the nature of interactions involved. Besides the well recognized effect of the timing of the induction
of plasticity relative to dispersal and mating (Verzijden et al., 2012), we were interested in
considering the nature of the social interactions involved at different stages, and the direction and
strength of the resulting plastic response.

We find a broad range of plastic responses. Interestingly, social inputs arising from
interactions between juveniles have stronger effects on the development of adult signals and
preferences, sometimes (especially when combined with inputs from developmental host plants)
generating remarkable signal-preference covariance involving a signal feature strongly involved in
assortative mating. By contrast social inputs arising from interactions between adults have
potentially important but moderate effects. Thus, plasticity induced earlier in life is not only more
likely to generate assortative mating because of the relative timing of its induction (before dispersal
and mating; Verzijden et al., 2012), but also the direction and strength of the resulting plastic
responses in signals and preferences also make it more likely to contribute to assortative mating.

It is unclear why juvenile social experience may lead to stronger plastic changes than at
other stages. Juvenile interactions may be a strong indicator of future mating opportunities
(although signalling between juvenile per se may have little bearing on future courtship and mating
activities). However, one would expect immediate and quasi-immediate mating context to be better
indicators of the mating stage. Perhaps there are costs to continuously monitoring the mating scene
and quickly changing mating preferences and signalling efforts (e.g. when individuals mate only
once, as is the case in Enchenopa; Rosenthal, 2017).

In this survey of social plasticity in Enchenopa, we have discussed input treatments initiated
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during a given stage (e.g., as juveniles) and continued until shortly before adult trials as mainly
being induced throughout the earlier stage. We consider this is warranted because very late nymphs
and very young Enchenopa adults do not signal (Cocroft et al., 2008; Desjonqueéres, Maliszewski, et
al., 2019). We have also discussed the resulting plasticity as developmental, rather than as
activational or reversible (cf. Piersma & Drent, 2003; Snell-Rood, 2013; Westneat et al., 2015). And
that is how we have measured them, taking a "snapshot" at a narrow interval shortly after the onset
of sexual behaviour. However, there is also evidence that peak preference and selectivity change
along the mating season as females age (Speck, 2022){Speek-et-al—inprep). Further, some of the
above inputs, or others we have not measured, may result in activational or reversible plasticity.
And, inputs of any type at one stage may interact with other inputs at other stages. It would
therefore be interesting to test whether such interactions between inputs impact the dynamics of
mate choice, and whether the resulting changes represent adaptive plasticity. For example, we have
interpreted plasticity in female selectivity according to recent prior experience of the mate types
available as adaptive, because it seems to tune selectivity-i such a-way-asthat it permitsting
stronger discrimination when there has been indication that preferred types will be present, whilst it
also allowsing for weaker discrimination to ensure mating when there has been indication that
preferred types will be rare or absent (Fowler-Finn & Rodriguez, 2012a, 2012b; Rodriguez, Rebar,
et al., 2013). Similarly, the plastic effects of juvenile aggregation density and isolation produce
lower selectivity and a shift in preference peak towards low signal frequency (resulting in a smaller
mismatch with the population mean for signal frequency; Fowler-Finn et al., 2017). This too could
be adaptive, if developing in sparse aggregations or in isolation indicates higher risk of not finding
preferred types. It will also be interesting to assess whether such plastic effects persist or interact
with more immediate inputs later in life.

It also remains to be seen how general the pattern we report here for Enchenopa treehoppers

is. It may be shared by other animal groups with imprinting from parents, such as song birds, some
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361 mammals and frogs (Gultekin & Hage, 2017; Lipkind et al., 2013; Marler & Peters, 1988; Nowicki
362 & Searcy, 2014; Pika et al., 2018; Takahashi et al., 2015; Yang et al., 2019), or with imprinting
363 from non-parental adults as in some wolf spiders (E. A. Hebets, 2003). However, strong effects
364 from the immediate context of mate choice of adults are also common, as with mate choice copying
365 in some vertebrates (Davies et al., 2020). Thus, understanding the evolutionary consequences of
366 social plasticity in mating signals and mate preferences will require explaining variation among
367 animals in: the time of life at which plasticity is induced; the type of interactions that are involved;
368 and the direction and strength of the resulting plastic responses.
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Figure 1: Signals of adult Enchenopa binotata. (a) Bout of four male signals. (b) Detail of one of
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the signals in the above bout. Note the whine and pulses structure. (c) Duet between a male and

female.

Figure 2: Mate preference functions varying in two preference traits: preference peak (a) and
preference selectivity (b). Variation in preference peak and preference selectivity may represent
different individuals, populations, treatments or species. (a) Preference peak is the most preferred
signal trait value. In this example, the blue curve has a lower preference peak than the orange curve.
(b) Preference selectivity summarizes several aspects of the shape of mate preferences around the
peak such as how steeply attractiveness decreases away from the peak, or how high the curve is on

average. In this example, the blue curve has a lower preference selectivity than the orange curve.

Figure 3: Summary of the effect of social plasticity in the signals and preferences of E.

binotata induced at different life stages.
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Abstract

Socially-induced plasticity in mating signals and mate preferences is widespread in animals. The
timing of plasticity induction is key for mating and evolutionary consequences: plasticity induced
before and after dispersal often results in different mate choices. Here we discuss two additional
factors that may be of importance: the nature of social interactions that are involved at different
stages, and the direction and strength of plasticity in mating traits. We review a case study with the
Enchenopa binotata complex of treehoppers. In spite of a wide scope for social plasticity in E.
binotata across their life stages, effects of the juvenile social environment were stronger and more
common, especially those influencing the signal-preference relationship. These results emphasize
the importance of studying variation in plasticity induced along various life stages and of
considering all the mating traits that may be socially plastic. We suggest that systematic
investigation of these patterns across taxa will help better understand the origin of diversity in

animal communication systems.

Keywords : life stages, mating signal evolution, preference functions, signal ontogeny, behavioural

plasticity
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Introduction

Socially-induced plasticity in mating signals and mate preferences is widespread in animals
including fish, birds, mammals and various invertebrates (Dukas, 2013; Rosenthal, 2017; Soha &
Peters, 2015; Takahashi et al., 2017). Examples range from classical imprinting, whereby
individuals learn their signals and/or preferences from parents early in life (E. Hebets & Sullivan-
Beckers, 2010), to mate copying, whereby individuals chose mates that are similar to the ones
chosen by others in their immediate mating environment (Davies et al., 2020; Witte et al., 2015).

Variation in signals and preferences determines the patterns of assortative mating that arise
from courtship and mate choice (Jennions & Petrie, 1997; Kopp et al., 2018; Rosenthal, 2017).
Social plasticity in signals and preferences may therefore influence those patterns. Thus plasticity in
signals and preferences may have a strong impact on the direction and strength of selection on
signals and mate preferences. Moreover, plastic changes induced by the social environment set up
the stage for feedback loops involving both the causes of variation in phenotypes and the causes of
selection on those phenotypes because each individual in a social group is both a receiver and
producer of inputs from social interactions, as well as a target and a cause of selection. Modelling of
such feedback in interacting phenotypes theory suggests that these effects can initiate and/or
intensify rapid evolution of extravagant signals and/or preferences with Fisherian runaways, even in
the absence of “direct” genetic covariance between signals and preferences (Bailey & Moore, 2012;
Moore et al., 1997).

One important factor that determines the evolutionary consequences of social plasticity in
signals and preferences is the timing of induction of plasticity. In most song-birds, for instance,
young individuals are able to learn new songs up to a certain point in their lives, beyond which their
songs are nearly fixed (Marler & Peters, 2010; Nowicki & Searcy, 2014). In such species, the
induction of plasticity in song (learning) usually occurs prior to dispersal, territory establishment,

and mating. If females have learned their preference locally (resulting in a preference for local
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songs; e.g. Ten Cate & Vos, 1999), individuals will only be able to find accepting mates at sites
with songs similar to those they learned. Different timings of learning and dispersal will thus have
different consequences, ranging from individuals being unable to learn the songs of a new
population and thus struggling to find a mate in that new population, to individuals being able to
learn the songs of a new population and thus easily finding a mate (Boughman & Servedio, 2022;
Verzijden et al., 2012).

Here we point out an additional factor regarding social plasticity that may influence patterns
of mate choice and assortative mating in addition to the timing of the induction of plasticity: the
nature of the interactions involved. Animals engage in many different kinds of social interactions,
often involving different signals, signal repertoires, signalling modalities, and behavioural contexts;
and these interactions may occur at different stages in their lives (Bradbury & Vehrencamp, 1998;
Drosopoulos & Claridge, 2005; Fletcher, 2007). The nature of these interactions, together with
differences across context and life stages in how animals respond to those inputs, may have
important consequences for the direction and strength of the plasticity in signals and preferences
that is generated.

Here we consider the role of the nature of the social interactions in the direction and strength
of the resulting plastic response, in conjunction with their timing of induction. We ground our
discussion on a case study with Enchenopa treehoppers, where we find that social interactions at
different life stages involve different sets of individuals and signal repertoires, and differentially
affect adult signals and mate preferences. The Enchenopa communication system offers ample
opportunity for social plasticity to be induced by inputs from their conspecifics as juveniles as well
as mature and immature adults. We thus consider how the timing and nature of induction may
interact, and how that may vary the consequences of signal-preference plasticity. We suggest that
systematically investigating the direction and strength of plasticity in signals and preferences that

arise at different times in the life cycle of animals from different social interactions will open novel
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avenues to understand the evolution of social plasticity in communication systems and its

evolutionary consequences.

Introduction to the Enchenopa binotata species complex (Hemiptera: Membracidae)

The E. binotata complex is a clade of host specialist plant-feeding insects that communicate with
plant-borne vibrational signals (Cocroft et al., 2008; Hsu et al., 2018; Wood, 1993). Communication
with substrate-borne vibrations is widespread among animals, including insects and spiders, and
signalling with plant-borne vibrations is common among insects, especially in Hemiptera (Cocroft
& Rodriguez, 2005; P. S. Hill, 2008; P. S. M. Hill & Wessel, 2016; Rodriguez & Desjonqueéres,
2019; Virant-Doberlet et al., 2014). Enchenopa engage in signalling interactions with rich signal
repertoires as nymphs and adults (Cocroft et al., 2008; Desjonqueéres, Maliszewski, et al., 2019;
Rodriguez et al., 2018; Sullivan-Beckers, 2008; Michael & Cocroft, unpubl.). During the mating
season, mate-searching males fly from plant to plant, producing advertisement signals that are
composed of two main elements: a near pure-tone whine followed by a few pulses (Fig. 1a-b;
Cocroft et al., 2008, 2010). A female on the plant that finds the male’s signals attractive may decide
to produce her own response signals and alert the male to her presence; there follows a male-female
signal duet that continues while the male searches for the female on the plant until mating begins
(Fig. 1c; Cocroft et al., 2008; Rodriguez et al., 2004; Rodriguez & Cocroft, 2006). Enchenopa
females have strong mate preferences, mainly for the dominant frequency of male signals, which
they express through selective duetting (Rodriguez et al., 2004, 2006; Rodriguez, Boughman, et al.,
2013). Sources of divergent selection on signals include mate preferences and signal filtering by
plants (McNett & Cocroft, 2008; Rodriguez, Boughman, et al., 2013; Rodriguez et al., 2006). Of
these, mate preferences make the strongest contribution (Sullivan-Beckers & Cocroft, 2010).

Enchenopa plant-borne vibrational signals transmit well on their host plants, at least at the
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scale of a stem or bush (which is the scale at which mating aggregations and interactions occur),
and individuals on a given plant can perceive most of the movements and signalling by other
individuals around them (Cocroft, 2011; Cocroft et al., 2008; Cocroft & Rodriguez, 2005; Mazzoni
et al., 2014; StrauB et al., 2021; Virant-Doberlet et al., 2014). A treehopper may thus receive inputs
regarding the presence, abundance and behaviour of males and females, potentially including the
range of variation in male signals, as well as how females are responding to them. These vary
between and within species in the E. binotata complex, from dense aggregations with chorusing to

low-density distributions across plants with call-fly behaviour (Cocroft et al., 2008).
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Figure 1: Signals of adult Enchenopa binotata. (a) Bout of four male signals. (b) Detail of one of

the signals in the above bout. Note the whine-and-pulses structure. (¢) Duet between a male and

female.

Species differences among adults in the E. binotata complex mainly involve the

advertisement and duetting signals of males and females (especially their dominant frequency), as
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well as female mate preferences for male signal frequency (Cocroft et al., 2010; Rodriguez et al.,

2004; Rodriguez & Cocroft, 2006). In the discussion below we therefore focus on socially plastic
causes of variation in the frequency of male advertisement signals and in female mate preferences
for male signal frequency, although we also consider variation in terms of other signal and

preference traits. We first provide a brief primer on describing variation in mate preferences.

Describing variation in mate preferences

Mate preferences are expressed as a function of the features of potential mates that are encountered;
i.e., they are function-valued traits (Kilmer et al., 2017; Stinchcombe et al., 2012). Thus, mate
preferences are best characterized as functions or curves depicting variation in signal attractiveness
over a range of signal trait values (Kilmer et al., 2017; Ritchie, 1996; Wagner, 1998). With mate
preferences, the entire sweep of the function is of interest. However mate preferences can be
characterised with a few “mate preference function traits” that capture variation in the preferred
signal values and the shape of the function around those preferred values (Kilmer et al., 2017). Here
we focus on two of these mate preference function traits: peak preference, and preference selectivity
(Fig. 2). Peak preference is the most preferred signal trait value (Fig. 2a; Kilmer et al., 2017). When
related at population or species levels to mean signal traits in the population, peak preference
determines the form of selection due to mate choice on signals: stabilising if peak preference and
mean signal values match, directional if they do not (Kilmer et al., 2017; Rodriguez et al., 2006;
Rodriguez, Boughman, et al., 2013). Preference selectivity summarizes several aspects of the shape
of the function around the peak, such as how steeply attractiveness decreases away from the peak,

or how high the curve is on average (Fig. 2b; Kilmer et al., 2017).
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Figure 2: Mate preference functions varying in two preference traits: preference peak (a) and
preference selectivity (b). Variation in preference peak and preference selectivity may represent
different individuals, populations, treatments or species. (a) Preference peak is the most preferred
signal trait value. In this example, the blue curve has a lower preference peak than the orange curve.
(b) Preference selectivity summarizes several aspects of the shape of mate preferences around the
peak such as how steeply attractiveness decreases away from the peak, or how high the curve is on

average. In this example, the blue curve has a lower preference selectivity than the orange curve.

Social plasticity of signals and preferences in Enchenopa

Across a series of studies, we have found considerable variation in the direction (sign of the effect)
and strength (magnitude of the effect) of plasticity in Enchenopa adult signals and mates
preferences induced at different times of life and by inputs from different social contexts. Here we
summarize these findings starting with juvenile social experience and proceeding to early adult

experience and then the immediate social context of mate choice (Fig. 3).
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Figure 3: Summary of the effect of social plasticity in the signals and preferences of E.

binotata induced at different life stages.

Social experience as juveniles

The Enchenopa communication system offers ample opportunity for social plasticity to be induced
by inputs during juvenile stages. Nymphs develop in aggregations on their host plant, and they
communicate with a variety of signal types (Cocroft et al., 2008; Michael & Cocroft, unpubl.).
Nymphs signalling interactions vary according to group size and composition (Desjonquéres,
Maliszewski, et al., 2019; Rodriguez et al., 2018).

An experiment that varied nymph aggregation density showed that adult females reared in
denser aggregations developed higher peak preferences for signal frequency (i.e. as with the shift in
preference from the blue curve to the orange curve in Fig. 2a; Fowler-Finn et al., 2017). A separate

experiment that used playbacks to nymphs reared in isolation (one nymph per plant) showed that
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the effect of aggregation density is a function of the experience of nymphs with both signal
perception and production, rather than aggregation density or plant quality per se (Desjonquéres et
al., 2021; Desjonquéres, Maliszewski, et al., 2019; Desjonqueéres, Speck, et al., 2019). Additionally,
isolated nymphs had a lower selectivity as adult females than those raised in aggregations; and
playbacks of juveniles recover the selectivity of individuals in aggregations (i.e. shifting the
preference from orange to blue in Fig. 2b; Desjonquéres, Maliszewski, et al., 2019; Desjonqueéres,
Speck, et al., 2019). Finally, these effects of signalling interactions appear to happen in a switch-
like manner rather than as an accumulating effect (Desjonquéres et al., 2021). Males reared in
isolation tended to have lower pulse lengths and higher signal rates than the ones in reared in
standard aggregations (Desjonquéres, Maliszewski, et al., 2019). A playback of juvenile signals to
isolated juveniles partially recovers the pulse length but not the signal rate effect (Desjonqueéres,
Speck, et al., 2019), suggesting that those effects of isolation are less strongly influenced by the
experience of signal interactions.

Another experiment manipulated the genotype of the social neighbours developing
alongside focal treehoppers developed (Rebar & Rodriguez, 2013). These treatments induced
plasticity in the mate preferences that focal treehopper females expressed as adults (in both peak
preference and selectivity). A separate experiment manipulated the genotype of the host plants on
which focal treehoppers developed jointly with the social aggregations in which they developed
(Rebar & Rodriguez, 2014a, 2014b, 2015). These treatments induced plasticity in both the signal
frequency and mate preferences (peak preference) that focal treehopper males and females
expressed as adults. Remarkably, these plastic responses of male signals and female peak
preferences lead to strong signal-preference covariation, with the signal-preference span
approximating 50% of the difference between some species in the E. binotata complex (Rebar &
Rodriguez, 2015; Desjonqueéres et al. in prep).

Building on the above evidence of indirect genetic effects (from social neighbours and
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developmental host plants) as causes of plasticity in signals and preferences, we tested a novel
hypothesis derived from interacting phenotypes theory: we asked whether interactions in mixed
species aggregations could create or enhance signal-preference differences between diverging
populations or recently-diverged species (Desjonquéres et al., in review). We reared two recently
diverged members of the E. binotata complex in treatments consisting of mixed-species versus
own-species aggregations. We found that social experience with heterospecifics resulted in
enhanced signal-preference species differences in the mixed-species treatment and was mainly lead
by the plastic response of one of the two species. This result suggests that secondary contact early in
the process of speciation could cause further signal-preference divergence and establish or increase
assortative mating through plasticity (Desjonqueéres et al., in review).

In short, we find that juvenile social interactions influence various aspects of signals and
preferences in ways that are likely to affect mate choice and assortative mating (Fig. 3). Social
experience in denser aggregations lead to a stronger mismatch between signals and preferences—
i.e., to more strongly directional selection on signals (Fowler-Finn et al., 2017). And developing on
different plants/ social aggregations can establish signal-preference covariance at a level that

approximates differences between extant species (Rebar & Rodriguez, 2015; Desjonqueres et al. in

prep).

Social experience as immature adults

The Enchenopa communication system also offers opportunity for social plasticity to be induced by
inputs from potential mates and competitors as young adults. After the adult moult, males and
females remain sexually immature for about two and four weeks, respectively (Cocroft et al., 2008;
Rodriguez et al., 2004). Thus, males begin to signal about two weeks before females start to become

receptive and begin engaging in duetting. This provides a natural window of opportunity during
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which males and females may perceive and assess the range of variation in the signals of potential
competitors/mates and sample the mating pool. Further, females do not all become receptive at
once, but in staggered fashion along the mating season (Sullivan-Beckers & Cocroft, 2010). Thus,
females that become receptive relatively late have the opportunity to monitor male-female
interactions over some days or weeks.

Playback experiments to young adult females mimicking variation in the range of mate types
available (attractive, unattractive/heterospecifics, mixed), induced plasticity in female preference
selectivity but not peak preference (Fig. 3; Fowler-Finn & Rodriguez, 2012a, 2012b). Specifically,
females expressed higher selectivity when they had experienced either attractive only or mixed
mate types present (as in the blue-to-orange shift in Fig. 2b). By contrast, females expressed lower
selectivity when they had experienced either unattractive only or no mate types present (as in the
orange-to-blue shift in Fig. 2b). These effects may help females balance obtaining their preferred
mate types against securing a mating when those types are rare. They may also establish negative
frequency dependent cycles between the strength of selection due to mate choice and the
availability of preferred mates, contributing to the maintenance of variation under selection and to
the colonization of novel habitats (Rodriguez, Rebar, et al., 2013). Comparable playback
experiments to young adult males induced plasticity in signal length and rates (longer signals and
higher rates when they had experienced attractive competitors) but not dominant signal frequency
(Fig. 3; Rebar & Rodriguez, 2016).

In short, we find that plasticity arising from young adults’ experience of available mate
types influences female preference selectivity (Fig. 3). It also influences the dynamics of male-male
competitive signalling (Fig. 3). However, none of these experiences from young adult social
environment affect signal frequency nor the mate preference for it, and thus seem unlikely to
influence the form of selection on signals and preferences. Nevertheless, the strength of selection

due to mate choice may interact with preference divergence generated at other points in the life
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cycle (cf. Rodriguez, Boughman, et al., 2013).

Immediate social context of mate choice

As noted above, the Enchenopa communication system also offers opportunity for social plasticity
to be induced in mature adults by inputs from potential mates and competitors in the immediate
context of mating. In spite of the above opportunities for plasticity, we have found little effect from
the immediate context of mate choice on Enchenopa female mate preferences. Playback
experiments mimicking the presence of strongly attractive or unattractive males did not modify
female response to relatively attractive-unattractive males (Fig. 3; Speck, 2022). And playback
experiments mimicking duets with females favouring attractive or unattractive males did not modify
female peak preference nor preference selectivity—i.e., there was no mate-choice copying (Fig. 3;
Cirino et al. in review).

Enchenopa males seem somewhat more responsive than females to the immediate context of
mate choice, albeit not in ways that alter signal frequency. Males respond to the presence of other
competitor signalling males by increasing signal rates (Rodriguez & Cocroft, unpubl.) and may
even produce an additional signal type that likely has a “signal masking” function (Sullivan-
Beckers, 2008; and see Legendre et al., 2012; and Miranda, 2006 for masking signals in other
treehoppers). In playbacks of “stand-alone” female signals (which receptive females do produce on
occasions; Rodriguez, Speck & Seidita, unpubl.), males signalled at higher rates in response to
longer (i.e., more “motivated”) female signals but were not influenced by female signal frequency
(which differs between species; Rodriguez et al., 2012).

In short, we find that, besides males being attentive to the level of “motivation” in female
responses to their signals, the effect of plasticity arising from the immediate context of mate choice

in Enchenopa is mainly to modify the dynamics of male-male competitive signalling interactions
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(to a higher extent than social inputs to immature males; Fig. 3). But it does not seem to influence
female mate preferences nor the signal-preference relationship, especially pertaining to male signal
frequency. Overall, certain male traits appeared to respond more plastically than female traits to the
immediate social context of mate choice, this could be explained by differing optimal reproductive
strategies in males and females (it makes sense for males to increase their courting effort when in

the presence of competitors to potentially secure more matings).
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Discussion

Using a review of studies with Enchenopa treehoppers, we set out to examine the potential role of
the life stage at which social plasticity is induced in adult mating signals and mate preferences, and
the nature of interactions involved. Besides the well recognized effect of the timing of the induction
of plasticity relative to dispersal and mating (Verzijden et al., 2012), we were interested in
considering the nature of the social interactions involved at different stages, and the direction and
strength of the resulting plastic response.

We find a broad range of plastic responses. Interestingly, social inputs arising from
interactions between juveniles have stronger effects on the development of adult signals and
preferences, sometimes (especially when combined with inputs from developmental host plants)
generating remarkable signal-preference covariance involving a signal feature strongly involved in
assortative mating. By contrast social inputs arising from interactions between adults have
potentially important but moderate effects. Thus, plasticity induced earlier in life is not only more
likely to generate assortative mating because of the relative timing of its induction (before dispersal
and mating; Verzijden et al., 2012), but also the direction and strength of the resulting plastic
responses in signals and preferences also make it more likely to contribute to assortative mating.

It is unclear why juvenile social experience may lead to stronger plastic changes than at
other stages. Juvenile interactions may be a strong indicator of future mating opportunities
(although signalling between juvenile per se may have little bearing on future courtship and mating
activities). However, one would expect immediate and quasi-immediate mating context to be better
indicators of the mating stage. Perhaps there are costs to continuously monitoring the mating scene
and quickly changing mating preferences and signalling efforts (e.g. when individuals mate only
once, as is the case in Enchenopa; Rosenthal, 2017).

In this survey of social plasticity in Enchenopa, we have discussed input treatments initiated
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during a given stage (e.g., as juveniles) and continued until shortly before adult trials as mainly
being induced throughout the earlier stage. We consider this is warranted because very late nymphs
and very young Enchenopa adults do not signal (Cocroft et al., 2008; Desjonquéres, Maliszewski, et
al., 2019). We have also discussed the resulting plasticity as developmental, rather than as
activational or reversible (cf. Piersma & Drent, 2003; Snell-Rood, 2013; Westneat et al., 2015). And
that is how we have measured them, taking a "snapshot" at a narrow interval shortly after the onset
of sexual behaviour. However, there is also evidence that peak preference and selectivity change
along the mating season as females age (Speck, 2022). Further, some of the above inputs, or others
we have not measured, may result in activational or reversible plasticity. And, inputs of any type at
one stage may interact with other inputs at other stages. It would therefore be interesting to test
whether such interactions between inputs impact the dynamics of mate choice, and whether the
resulting changes represent adaptive plasticity. For example, we have interpreted plasticity in
female selectivity according to recent prior experience of the mate types available as adaptive,
because it seems to tune selectivity such that it permits stronger discrimination when there has been
indication that preferred types will be present, whilst it also allows for weaker discrimination to
ensure mating when there has been indication that preferred types will be rare or absent (Fowler-
Finn & Rodriguez, 2012a, 2012b; Rodriguez, Rebar, et al., 2013). Similarly, the plastic effects of
juvenile aggregation density and isolation produce lower selectivity and a shift in preference peak
towards low signal frequency (resulting in a smaller mismatch with the population mean for signal
frequency; Fowler-Finn et al., 2017). This too could be adaptive, if developing in sparse
aggregations or in isolation indicates higher risk of not finding preferred types. It will also be
interesting to assess whether such plastic effects persist or interact with more immediate inputs later
in life.

It also remains to be seen how general the pattern we report here for Enchenopa treehoppers

is. It may be shared by other animal groups with imprinting from parents, such as song birds, some
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341 mammals and frogs (Gultekin & Hage, 2017; Lipkind et al., 2013; Marler & Peters, 1988; Nowicki
342 & Searcy, 2014; Pika et al., 2018; Takahashi et al., 2015; Yang et al., 2019), or with imprinting
343 from non-parental adults as in some wolf spiders (E. A. Hebets, 2003). However, strong effects
344 from the immediate context of mate choice of adults are also common, as with mate choice copying
345 in some vertebrates (Davies et al., 2020). Thus, understanding the evolutionary consequences of
346 social plasticity in mating signals and mate preferences will require explaining variation among
347 animals in: the time of life at which plasticity is induced; the type of interactions that are involved;
348 and the direction and strength of the resulting plastic responses.

349
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Figures

Figure 1: Signals of adult Enchenopa binotata. (a) Bout of four male signals. (b) Detail of one of

25/26



366

367

368

369

370

371

372

373

374

375

376

377

378

the signals in the above bout. Note the whine and pulses structure. (c) Duet between a male and

female.

Figure 2: Mate preference functions varying in two preference traits: preference peak (a) and
preference selectivity (b). Variation in preference peak and preference selectivity may represent
different individuals, populations, treatments or species. (a) Preference peak is the most preferred
signal trait value. In this example, the blue curve has a lower preference peak than the orange curve.
(b) Preference selectivity summarizes several aspects of the shape of mate preferences around the
peak such as how steeply attractiveness decreases away from the peak, or how high the curve is on

average. In this example, the blue curve has a lower preference selectivity than the orange curve.

Figure 3: Summary of the effect of social plasticity in the signals and preferences of E.

binotata induced at different life stages.
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