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Abstract. We show that there is an associative algebra H̃n such that,

over a base ring R of characteristic 2, Khovanov's arc algebra Hn is

isomorphic to the algebra H̃n[x]/(x
2). We also show a similar result for

bimodules associated to planar tangles and prove that there is no such

isomorphism over Z.

1. Introduction

In [Kho00], Mikhail Khovanov introduced a categori�cation of the Jones

polynomial in the form of a bigraded homology group

Kh(L) =
⊕
i,j∈Z

Kh i,j(L)(1.1)

associated to each oriented link L in S3. This group has the unreduced Jones

polynomial as its graded Euler characteristic:

J(L) =
∑
i,j∈Z

(−1)irk(Kh i,j(L))qj.(1.2)

These homology groups are functorial under smooth link cobordisms and

have been used to great e�ect in low-dimensional topology. There are a vari-

ety of spectral sequences, many of which are themselves link invariants (see

[BHL19]), whose E2-pages are given by either Khovanov homology or its

reduced version K̃h(L) (see [OS05, Blo11, KM11, BHL19, BS15, Dow18] for

some examples). In [Ras10], Rasmussen used the spectral sequence de�ned

by Lee in [Lee02] to de�ne the s-invariant s(K) of a knot K. In that paper,

Rasmussen used s(K) to give a combinatorial reproof of the Milnor conjec-

ture: that the slice genus of the (p, q)-torus knot is (p−1)(q−1)
2

. The original

proof of the Milnor Conjecture, due to Kronheimer�Mrowka [KM93], relied

heavily on gauge theory. Similarly, the s-invariant can be used to give a

combinatorial proof of the existence of exotic smooth structures on R4 (see

[Ras05]). More recently, the s-invariant was used by Piccirillo in [Pic20] to

show that the Conway knot is not smoothly slice and, in a similar vein,

Hayden�Sundberg show in [HS21] that the cobordism maps on Khovanov
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homology can be used to distinguish exotically knotted smooth surfaces in

the 4-ball which are topologically but not smoothly isotopic.

Khovanov homology Kh(L) also admits a re�nement to a spectrum

XKh(L) (see [LLS21, HKK16]) whose homotopy type is an invariant of the

link L and whose reduced singular cohomology recovers Kh(L). This al-

lows for the construction of Steenrod operations on Khovanov homology

(see [LS14, Bod20, Mor19]) which can be used to distinguish some pairs of

non-isotopic knots with the same Khovanov homology groups.

In [Kho02], Khovanov de�ned algebras Hn, the arc algebras on 2n points,

and associated to an (2m, 2n)-tangle diagram T a complex of (Hm, Hn)-

bimodules CKh(T ) whose chain homotopy type is an invariant of the under-

lying tangle in D2× I. These bimodules and their variants can also be used

to de�ne invariants of annular links (see [BPW19, Lip20, LLS22]) as well as

links in S2 × S1 (see [Roz10, Wil21, MMSW19]). The algebras Hn and the

bimodules CKh(T ), like Khovanov homology, admit stable homotopy re�ne-

ments (see [LLS21, LLS22]) and are also of importance in the representation

theory of the quantum group Uq(sl2) (see [CK14, Str09, BS10, BS11]).

1.1. Results. In [Shu14], Shumakovitch showed that Khovanov homology

with coë�cients in F = F2 decomposes as Kh(L) ∼= K̃h(L) ⊗ A, where

A = F[x]/(x2). We show that analogs of this result hold for the arc algebras

Hn and Khovanov bimodules CKh(T ) de�ned over a ring of characteristic 2.

We also show that there is no such isomorphism of arc algebras over Z.

2. Background

Fix a base ring R. Given a non-negative integer n, let Cn denote the

set of planar crossingless matchings on 2n points, i.e. the set of (2n, 0)

Temperley�Lieb diagrams.

C2 =

 ,


Figure 1. The set C2 of planar crossingless matchings on 4 points.

The arc algebra Hn over R is the associative graded R-algebra

Hn = qn
⊕

a,b∈Cn

CKh(a
!b),(2.1)

where a! is the result of �ipping a across the vertical axis, a!b is the result of

gluing a! and b along their common endpoints, and CKh : Cob1+1 → R−Mod
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is Khovanov's TQFT whose value on a single circle is given by

CKh(⃝) = A := R[x]/(x2)(2.2)

as a commutative Frobenius algebra with comultiplication de�ned on gen-

erators by ∆(1) = 1 ⊗ x + x ⊗ 1 and ∆(x) = x ⊗ x. The elements 1 and x

are endowed with an integer-valued quantum grading by taking grq(1) = −1

and grq(x) = 1 and the formal power qn in line (2.1) denotes a shift in this

grading by n. We take the convention that H0 = R. It is well-known that Hn

has the structure of a graded associative unital R-algebra given by applying

the functor CKh to the minimal saddle cobordisms Σa,b,c : a!b ⊔ b!c → a!c.

More precisely, if v and v′ are labelings of the components of a!b and b!c,

respectively, then the product (a!b,v)(b!c,v′) is given by Kh(Σa,b,c)(v ⊔ v′)

and products of the form (a!b,v)(c!d,v′) for c ̸= b vanish.

De�nition 2.1. Given a crossingless matching a ∈ Cn, we distinguish the

bottom-most of its 2n endpoints as a marked point. The reduced arc algebra

over R on 2n-points is then the associative graded R-algebra H̃n de�ned by

H̃n = qn
⊕

a,b∈Cn

C̃Kh(a
!b).(2.3)

Here, C̃Kh denotes the reduced Khovanov complex given by the choice of

basepoint as the quotient complex in which the marked component of every

generator is labeled with a 1 and the entire complex is endowed with a

quantum grading shift of 1.

Lemma 2.2. Let m̃ : H̃n ⊗ H̃n → H̃n be the map induced by multiplication

on Hn. Then (H̃n, m̃) is a graded associative unital algebra.

Proof. It is straightforward to see that the subgroup Ix ⊂ Hn generated by

elements in which the marked component is labeled by x is a homogeneous

two-sided ideal. The statement then follows from the fact that H̃n = Hn/Ix.

□

3. The Main Theorem

Given crossingless matchings a, b ∈ Cn, let κ0 ∈ π0(a
!b) be the marked

component of a!b and de�ne π∗(a
!b) = π0(a

!b) ∖ {κ0}. We de�ne a linear

map λ : H̃n ⊗ A → Hn as follows. Let

B̃n =
⋃

a,b∈Cn

{
(a!b,v)|v ∈ {1, x}π∗(a!b)

}
(3.1)

be the �standard� basis for H̃n consisting of two crossingless matchings a, b ∈
Cn and a labelling v : π∗(a

!b) → {1, x} of the unmarked components of a!b
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by either 1 or x. The marked component of a generator of H̃n will always

implicitly be labeled by 1 but, in light of the following, it will be convenient

to think of the labeling restricted to unmarked components only. Given a

basis element (a!b,v) ∈ B̃n and s ∈ {1, x}, let (a!b,v)s ∈ Hn be the result

of extending the labeling v to all of π0(a
!b) by taking v(κ0) = s. Now de�ne

X(a!b,v) = {κ ∈ π∗(a
!b)|v(κ) = x}(3.2)

and, for a component κ ∈ X(a!b,v), de�ne (a!b,vκ) ∈ Hn by taking vκ(κ0) =

x, vκ(κ) = 1, and vκ(κ
′) = v(κ′) for all other components κ′. In other words,

(a!b,vκ) is the result of labeling the marked component by x and relabeling

κ with 1. We then de�ne λ on basis elements (a!b,v)⊗ s ∈ B̃n ⊗ {1, x} by

λ((a!b,v)⊗ s) =

(a!b,v)x if s = x

(a!b,v)1 +
∑

κ∈X(a!b,v)
(a!b,vκ) otherwise.(3.3)

Example 3.1. Letting hollow and solid dots represent the labels of com-

ponents via the convention ◦ = 1 and • = x, if

(a!b,v) =(3.4)

i.e. a = b is the �rst of the crossingless matchings in C2 depicted in Figure

1 and v : π∗(a
!b) → {1, x} is the map taking the unmarked component of

a!b to x, then

λ((a!b,v)⊗ 1) = +(3.5)

and

λ((a!b,v)⊗ x) = .(3.6)

Lemma 3.2. λ is a graded R-linear isomorphism.

Proof. Note that the set

Bn =
⋃

a,b∈Cn

{
λ((a!b,v)⊗ s)|v ∈ {1, x}π∗(a!b), s ∈ {1, x}

}
(3.7)

forms an R-basis for Hn since there is a block lower-triangular matrix of the

form (
id 0
B id

)
,(3.8)

where B is a square matrix with entries in {0, 1}, taking the standard basis

Bstd
n =

⋃
a,b∈Cn

{
(a!b,v)|v ∈ {1, x}π0(a!b)

}
(3.9)

forHn to Bn. Here, we order Bstd
n so that those basis elements with v(κ0) = 1

appear �rst in the ordering. Now we have rkRH̃n ⊗R A = rkRHn so λ is
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automatically an R-linear isomorphism since commutative rings have the

invariant basis number property and both H̃n ⊗R A and Hn are free as R-

modules. Note that grq((a
!b,v)⊗ 1) = grq((a

!b,v)1) = grq((a
!b,vκ)) for any

κ ∈ X(a!b,v) since each of these has the same number of tensor factors of 1

and x. For the same reason, we have grq((a
!b,v) ⊗ x) = grq((a

!b,v)x) so λ

preserves quantum gradings and is, therefore, a graded isomorphism. □

Theorem 3.3. If R is a ring of characteristic 2, then λ is a graded R-

algebra isomorphism.

Proof. We have already shown that λ is a graded linear isomorphism so it

su�ces to show that it is multiplicative, i.e. that

λ((a!b,v)⊗ s1)λ((b
!c,v′)⊗ s2) = λ((a!b,v)(b!c,v′)⊗ s1s2).(3.10)

We do this by dividing into cases � note that we do not need to consider

products of the form (a!b,v)(c!d,v′) for b ̸= c since these are always zero in

Hn and, therefore, also in H̃n.

Case 1: s1 = s2 = x. By far-commutation of saddles, we may always ar-

range for the marked components to merge �rst. Since x2 = 0, we have

(a!b,v)x(b
!c,v′)x = 0,(3.11)

i.e. 0 = λ(((a!b,v)⊗x)((b!c,v′)⊗x)) = λ((a!b,v)⊗x)λ((b!c,v′)⊗x) for any

basis elements (a!b,v), (b!c,v′) ∈ B̃n.

Case 2: s1 = 1 and s2 = x. Next, consider λ((a!b,v)⊗1)λ((b!c,v′)⊗x): this

is equal to (a!b,v)1(b
!c,v′)x since (a!b,vκ)(b

!c,v′)x = 0 for any κ ∈ X(a!b,v)

as the marked components of both elements in this product are labeled x

so their merger creates a label of x2 = 0. Now suppose that the product

(a!b,v)(b!c,v′) in H̃n is given as a linear combination of elements of the basis

B̃n by

(a!b,v)(b!c,v′) =
∑
i

(a!c,v′′
i ).(3.12)

We claim that

(a!b,v)1(b
!c,v′)x =

∑
i

(a!c,v′′
i )x =

∑
i

λ((a!c;v′′
i )⊗ x).(3.13)

Note that, under the saddle cobordism a!b⊔b!c → a!c, if the marked compo-

nents merge and do not subsequently split, then this is true automatically.

Otherwise, in H̃n, any splittings of the marked component produces some

number of new components in the summands (a!c,v′′
i ), each of which is

labeled x. In Hn, after the �rst merger occuring in the saddle cobordism,

the marked component of (a!b,v)1(b!c,v′)x becomes labeled by x and any
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subsequent splittings produce the same new components as before, each of

which is again labeled by x since we have ∆(x) = x⊗x. Therefore, we have

λ((a!b,v)⊗ 1)λ((b!c,v′)⊗ x) = λ(((a!b,v)⊗ 1)((b!c,v′)⊗ x)),(3.14)

as desired.

Case 3: s1 = x and s2 = 1. It follows from the previous case that

λ((a!b,v)⊗ x)λ((b!c,v′)⊗ 1) = λ(((a!b,v)⊗ x)((b!c,v′)⊗ 1)).(3.15)

To see this, note that the algebra anti-automorphisms (−) : H̃n ⊗ A →
H̃n⊗A and (−) : Hn → Hn given in both cases by (a!b,v) = (b!a,v) satisfy

λ((a!b,v)⊗ s) = λ((a!b,v) ⊗ s) by construction. It is then straightforward

to show that

λ((a!b,v)⊗ x)λ((b!c,v′)⊗ 1) = λ(((a!b,v)⊗ x)((b!c,v′)⊗ 1))(3.16)

by a direct computation using Case 2.

Case 4: s1 = s2 = 1. Let Σ : c → c′ be a connected, orientable, 2-dimensional

cobordism, where c and c′ are disjoint unions of planar circles. Recall that if

v and w are labelings of c and c′ by {1, x} then w occurs as a summand in

Kh(Σ)(v) if and only if g(Σ) = 0 and #xv +#1w = 1. Here, for a labeling

u, the quantities #1u and #xu are the number of components labeled 1

and x by u. The same holds true for K̃h(Σ)(v) subject to the constraint

that only those v and w which label the marked component 1 are permitted

(see Figure 2).

1 1

1
x

+

1 1

x
1

∗

∗

∗
1 1

1
x

Figure 2. An example of Kh(Σ)(v) (left) versus K̃h(Σ)(v)
(right) in which the two di�er.

Now suppose we are given generators (a!b,v) and (b!c,v′) of H̃n and

consider the minimal saddle cobordism Σ : a!b ⊔ b!c → a!c. We claim that

λ(K̃h(Σ)(v ⊔ v′)⊗ 1) = Kh(Σ)(λ⊗ λ((v ⊔ v′)⊗ 1)) (see Example 3.6 below

for sample computations of the subcases which follow).

Subcase 1. We �rst consider the case that v ⊔ v′ labels all of the incoming

circles of the component Σ∗ of Σ which contains the marked incoming circles

by 1. In the reduced product K̃h(Σ)(v⊔v′), each w occurring as a summand
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labels the marked outgoing circle by 1 and any other outgoing circles of Σ∗

by x. The unreduced product Kh(Σ)(v ⊔ v′) consists of these terms plus

terms in which the marked outgoing circle is labeled x and exactly one of the

remaining outgoing circles of Σ∗ is labeled 1. The summand of λ(K̃h(Σ)(v⊔
v′) ⊗ 1) consisting of K̃h(Σ)(v ⊔ v′) and those terms obtained only by

summing over the x-labeled outgoing circles of Σ∗ is precisely Kh(Σ)(v⊔v′).

It thus su�ces to show that the remaining terms either come in cancelling

pairs or come from swapping the label on a marked incoming circle of Σ with

that of an x-labeled circle. Consider a connected component Σ1 of Σ∖ Σ∗.

If the incoming circles of Σ1 are all labeled 1 and Σ1 has ℓ outgoing circles,

then any labeling w1 of these circles occuring as a sublabeling of a term in

K̃h(Σ)(v ⊔ v′) labels ℓ − 1 of them by x and one of them by 1. Moreover,

if w is a summand of K̃h(Σ)(v ⊔ v′) and w1 occurs as a sublabeling of w,

then every possible labeling w′ obtained from w by permutating w1 occurs

exactly once as a summand of K̃h(Σ)(v ⊔ v′). Now, for any labeling w and

sub-labeling w1 of the outgoing circles of Σ1 and any choice of x-labeled

component κ coming from w1, there exists a w′ and w′
1 such that w and w′

agree away from w1 and w′
1 and a choice of x-labeled component κ′ coming

from w′
1 such that the labelings wκ and w′

κ′ agree. All such choices come

in pairs so the summands of λ(K̃h(Σ)(v ⊔ v′) ⊗ 1) coming from summing

over the x-labeled outgoing circles of Σ1 cancel.

Note that if more than one incoming circle of Σ1 is labeled x, then we

have K̃h(Σ)(v⊔v′) = 0. On the other hand, we also have Kh(Σ)(λ⊗λ((v⊔
v′)⊗ 1)) = 0 since either more than two of the incoming circles is labeled x

� in which case applying Kh(Σ) to every term of λ⊗ λ((v ⊔ v′)⊗ 1) yields

zero � or exactly two are, call them κ and κ′. In the latter case, the terms

Kh(Σ)((v ⊔ v′)κ) and Kh(Σ)((v ⊔ v′)κ′) agree and, hence, cancel modulo 2.

If exactly one of the incoming circles κ0 of Σ1 is labeled by x, then every

outgoing circle of Σ1 is also labeled x. If, as before, Σ1 has ℓ outgoing circles

κ1, . . . , κℓ, then the summand K̃h(Σ)(v ⊔ v′)κ1 + · · · + K̃h(Σ)(v ⊔ v′)κℓ
of

λ(K̃h(Σ)(v⊔v′)⊗1) coïncides precisely with the summand Kh(Σ)((v⊔v′)κ0)

of Kh(Σ)(λ⊗ λ((v ⊔ v′)⊗ 1)). Therefore, we have λ(K̃h(Σ)(v ⊔ v′)⊗ 1) =

Kh(Σ)(λ⊗ λ((v ⊔ v′)⊗ 1)).

Subcase 2. If at least one of the incoming circles of the component Σ∗ is

labeled x, then K̃h(Σ)(v ⊔ v′) ⊗ 1 necessarily vanishes. If more than one

of these incoming circles is labeled x, then, as before, every term of λ((v ⊔
v′) ⊗ 1) necessarily also labels at least two of the incoming circles on this

component by x so we also have that Kh(Σ)(λ ⊗ λ((v ⊔ v′) ⊗ 1)) = 0. If
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exactly one incoming circle κ0 of Σ∗ is labeled x � assume for simplicity

that this label comes from v � then the terms of λ⊗λ((v⊔v′)⊗1) consist

of v ⊔ v′, vκ0 ⊔ v′, and terms of the form vκ ⊔ v′, v ⊔ v′
κ′ , and vκ ⊔ v′

κ′

where κ and κ′ are incoming circles of a component of Σ∖Σ∗ labeled x by

v and v′, respectively. In Kh(Σ)(λ((v⊔v′)⊗1)), the �rst two of these terms

contribute two identical and hence cancelling terms since we are working

in characteristic 2 and the remaining terms contribute 0 since Σ merges at

least two x-labeled circles in those cases.

□

Example 3.4. Using the same convention for hollow and �lled dots as

before, in H̃3 ⊗ A, we have(
⊗ 1

)(
⊗ 1

)
= ⊗ 1,(3.17)

while in H3, we have

= + +(3.18)

and

+ + = 1 +
∑

κ∈X
( ) κ = λ

(
⊗ 1

)
.(3.19)

Example 3.5. In H̃2 ⊗ A, we have(
⊗ 1
)(

⊗ 1
)
= 0(3.20)

while

λ
(

⊗ 1
)
λ
(

⊗ 1
)
=
(

+
)

= 2

= 0

(3.21)

modulo 2, which shows that λ cannot possibly be a multiplicative map in

characteristics other than 2.

Example 3.6. We consider two more examples to exhibit some of the phe-

nomena that can occur when comparingm◦(λ⊗λ) and λ◦m̃ in characteristic

2. Suppose that

(a!1b1,v) =(3.22)
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and

(b!1c1,v
′) = ,(3.23)

then

((a!1b1,v)⊗ 1)((b!1c1,v
′)⊗ 1) =

(
+

)
⊗ 1(3.24)

so

λ(((a!1b1,v)⊗ 1)((b!1c1,v
′)⊗ 1)) = + + 2

= +

(3.25)

modulo 2. On the other hand, we have

λ((a!1b1,v)⊗ 1)λ((b!1c1,v
′)⊗ 1) =

= + .

(3.26)

This is an instance of the �rst part of Case 4, Subcase 1, in the proof of the

main theorem. Similarly, if

(a!2b2,w) =(3.27)

and (b!2c2,w
′) = (b!1c1,v

′), then we have

((a!2b2,w)⊗ 1)((b!2c2,w
′)⊗ 1) = ⊗ 1(3.28)

so

λ(((a!2b2,w)⊗ 1)((b!2c2,w
′)⊗ 1)) = + +(3.29)

while

λ((a!2b2,w)⊗ 1) = +(3.30)
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so

λ((a!2b2,w)⊗ 1)λ((b!2c2,w
′)⊗ 1) =

(
+

)

= + + .

(3.31)

This is an instance of the second part of Case 4, Subcase 1.

3.1. Bimodules of planar tangles. Now suppose that T is a planar

(crossingless) (2m, 2n)-tangle diagram and let

CKh(T ) =
⊕

a∈Cm,b∈Cn

CKh(a
!Tb)(3.32)

be the associated (Hm, Hn)-bimodule. Choose either the left bottom-most

endpoint or the right bottom-most endpoint of T as a marked point for

every a!Tb and denote the corresponding reduced bimodules by C̃L
Kh(T ) and

C̃R
Kh(T ), respectively. We de�ne a map λL : C̃L

Kh(T )⊗A → CKh(T ) as follows:

given a labeling v : π∗(a
!Tb) → {1, x}, let X(a!Tb,v) denote the set of all

components of a!Tb labeled x by v. We then de�ne

λL((a!Tb,v)⊗ s) =

(a!Tb,v)x if s = x

(a!Tb,v)1 +
∑

κ∈X(a!Tb,v)

(a!Tb,vκ) otherwise,

(3.33)

where, as before, (a!Tb,v)s and (a!Tb,vκ) are the elements of CKh(T ) ob-

tained by labeling the marked component by s and by swapping the label

of κ and the marked component, respectively. We de�ne λR similarly. Note

that if the bottom left-most and bottom right-most endpoints of T are on

the same connected component, then the two maps coïncide.

Proposition 3.7. If R is a ring of characteristic 2, then λL (resp. λR)

is a graded linear isomorphism intertwining the left H̃m ⊗ A- and Hm-

module (resp. right H̃n⊗A- and Hn-module) structures on C̃L
Kh(T )⊗A (resp.

C̃R
Kh(T )⊗A) and CKh(T ). However, they are not bimodule isomorphisms in

general.

Proof. The proof for both is essentially identical to the proof of Theorem

3.3. The example that follows shows that λL and λR need not be bimodule

isomorphisms when they are not equal. □
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Example 3.8. Let T = and consider ∈ C̃L
Kh(T ). Consider the left-

and right-actions of the elements , ∈ H̃2: we have that(
⊗ 1
)(

⊗ 1
)
= 0(3.34)

and

λL
(

⊗ 1
)
λL
(

⊗ 1
)
=

(
+ +

)
= 2

= 0

(3.35)

modulo 2, as expected, and, on the other hand, we have(
⊗ 1
)(

⊗ 1
)
= 0(3.36)

while

λL
(

⊗ 1
)
λL
(

⊗ 1
)
=
(

+ +
)

= + +

̸= 0

(3.37)

so λL is not a right-module homomorphism, even in characteristic 2.

4. Z-coëfficients

We will now show that there is in general no such decomposition of arc

algebras over Z. To that end, let

α = a + b + c + d + e + f(4.1)

be an arbitrary central element in H̃2. Then we have

0 =
[
α,

]
= c − d ,(4.2)

so c = d = 0. It then follows that

0 =
[
α,

]
= (a− e)(4.3)

so a = e. Therefore, α is of the form

α = a
(

+
)
+ b + d .(4.4)

One can check that both and are themselves central so

Z(H̃2) = Z
〈

+ , ,
〉
.(4.5)

Now, since H̃2 and A are both free as abelian groups and A is commutative,

we have Z(H̃2 ⊗ A) = Z(H̃2)⊗ A.
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In [Kho06], Khovanov showed that the only invertible central elements

of degree 0 in Hn with Z-coë�cients are ±1 and, as a consequence, that if

M is an invertible complex of graded Hn-bimodules, then the only degree 0

automorphisms of M are ±id. The same argument holds, mutatis mutandis,

in characteristic 2 to show that the only degree 0 automorphisms of H̃n⊗A

and Hn are the respective identity maps. In particular, this tells us that if

there were a graded algebra isomorphism Λ : H̃2 ⊗ A → H2, then Λ = λ

modulo 2 so

Γ := Λ
(

⊗ 1
)
= s + t(4.6)

for some s, t ∈ {±1}. Now Γ is central since Λ is an algebra isomorphism so

0 =
[
Γ,

]
= (s+ t)(4.7)

and hence t = −s. Up to composing Λ with −id, we may assume s = 1 so

Γ = − .(4.8)

On the other hand, we have (
⊗ 1
)2

= 0(4.9)

so we would have to have

0 = Γ2 = −2 ,(4.10)

which is false. Therefore no such isomorphism can exist. Now note that

H̃2 ⊗ A and H2 include into H̃n ⊗ A and Hn, respectively, as subalgebras

J̃2⊗A and J2 for any n > 2 by stacking n− 2 round 1-labeled circles above

every generator. If we had a Z-algebra isomorphism Λ : H̃n ⊗ A → Hn and

e ∈ H̃n is a minimal idempotent, i.e. e = (a!a,1) for some a ∈ Cn, then

we necessarily have that Λ(e ⊗ 1) = ±e1 since λ(e ⊗ 1) = e1. This tells us

that the restriction of Λ to J̃2 ⊗ A would give us an algebra isomorphism

J̃2 ⊗ A → J2 but we have shown this is impossible. Therefore, there is no

graded Z-algebra isomorphism H̃n ⊗ A → Hn for any n > 1.

Further Directions

In [Wan21], Wang showed that there are bigraded R-module isomor-

phisms

KRp(L;R) ∼= K̃Rp(L;R)⊗R R[x]/(xp)

relating the unreduced and reduced Khovanov�Rozansky slp-link homologies

(see [Kho04, KR08]) whenever R is a ring of characteristic p. Analogs of

the arc algebras in the setting of slp homology, the slp-web algebras, were
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introduced by Mackaay�Pan�Tubbenhauer, in the p = 3 case, and Mackaay

in [MPT14, Mac14]. There is also an annular version of the arc algebra

which was studied by Ehrig�Tubbenhauer in [ET21].

In [ORS13], Ozsváth, Rasmussen, and Szabó de�ned an �odd� version of

Khovanov homology using an exterior version of the Frobenius algebra used

in the original construction. This invariant also categori�es the Jones poly-

nomial and agrees with ordinary Khovanov homology modulo 2. As in the

characteristic 2 case, there is a splitting of odd Khovanov homology with

Z-coë�cients (see [ORS13], Proposition 1.8). Moreover, other properties of

Khovanov homology in characteristic 2 can be realized as the mod 2 reduc-

tion of a property of odd Khovanov homology. For instance, Wehrli proved in

[Weh10] that Khovanov homology with F-coë�cients is mutation invariant

and this was shown by Bloom for odd Khovanov homology in [Blo10]. The

odd analogues of the arc algebras and bimodules for tangles were studied

by Naisse�Vaz in [NV16] and Naisse�Putyra in [NP20], respectively. Unlike

the ordinary arc algebras, however, odd arc algebras are only associative up

to a sign depending on the elements being multiplied.

In [KR20], Khovanov and Robert studied a deformation Aα of the TQFT

A de�ned over the ring Rα = Z[α0, α1] ∼= H∗
U(1)×U(1)(pt) as an Rα-algebra

by

Aα = Rα[x]/((x− α0)(x− α1)) ∼= H∗
U(1)×U(1)(S

2)(4.11)

with comultiplication given by

1 7→ 1⊗ x+ x⊗ 1− (α0 + α1)1⊗ 1

x 7→ x⊗ x− α0α11⊗ 1.
(4.12)

This TQFT de�nes a link invariant in the same way as does A and, taking

di�erent values for the parameters α0 and α1 at the chain level, one can

recover both Khovanov and Lee homology. One may de�ne deformed arc

algebras Hα
n and H̃α

n analogous to the unsual ones. However, even in char-

acteristic 2, the naïve Rα-linear extension of λ to a map H̃α
n ⊗Aα → Hα

n is

not multiplicative. For example, letting h = α0 + α1 and t = α0α1 for the

sake of brevity, in H̃α
3 ⊗ Aα, we have(

⊗ 1

)(
⊗ 1

)

=

(
h2 + h

(
+

)
+

)
⊗ 1

(4.13)
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so

λ

((
⊗ 1

)(
⊗ 1

))

= h2 + h

(
+

)
+ + + .

(4.14)

On the other hand, in Hα
3 , we have

= (h2 + t) + h

(
+ +

)
+ + +

(4.15)

so

λ

((
⊗ 1

)(
⊗ 1

))
̸= λ

(
⊗ 1

)
λ

(
⊗ 1

)
.

(4.16)

In light of the present result, it is natural to ask whether or not there are

splittings analogous to ours in each of these settings: in characteristic p for

the slp-web algebras, over Z for the odd arc algebras, and in characteris-

tic 2 for the equivariant arc algebras, respectively. In the last setting, this

would take the form of an algebra isomorphism λα : H̃α
n ⊗ Aα → Hα

n in

characteristic 2 which recovers λ if we take α0 = α1 = 0.
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