AN EXCEPTIONAL SPLITTING OF KHOVANOV’S ARC
ALGEBRAS IN CHARACTERISTIC 2

JESSE COHEN

ABSTRACT. We show that there is an associative algebra H,, such that,
over a base ring R of characteristic 2, Khovanov’s arc algebra H, is
isomorphic to the algebra H,[xz]/(22). We also show a similar result for
bimodules associated to planar tangles and prove that there is no such
isomorphism over Z.

1. INTRODUCTION

In [Kho00|, Mikhail Khovanov introduced a categorification of the Jones
polynomial in the form of a bigraded homology group
(1.1) Kh(L) = P Kn (L)

ijez
associated to each oriented link L in S®. This group has the unreduced Jones
polynomial as its graded Fuler characteristic:
(1.2) J(L) =) (~1)'rk(Kh™(L))q .
i,jez

These homology groups are functorial under smooth link cobordisms and
have been used to great effect in low-dimensional topology. There are a vari-
ety of spectral sequences, many of which are themselves link invariants (see
[BHL19]), whose E?-pages are given by either Khovanov homology or its
reduced version f(vh(L) (see [OS05, Blo11, KM11, BHL19, BS15, Dow18] for
some examples). In [Ras10], Rasmussen used the spectral sequence defined
by Lee in [Lee02] to define the s-invariant s(K') of a knot K. In that paper,
Rasmussen used s(K) to give a combinatorial reproof of the Milnor conjec-
ture: that the slice genus of the (p, ¢)-torus knot is %. The original
proof of the Milnor Conjecture, due to Kronheimer-Mrowka [KM93|, relied
heavily on gauge theory. Similarly, the s-invariant can be used to give a
combinatorial proof of the existence of exotic smooth structures on R* (see
|[Ras05]). More recently, the s-invariant was used by Piccirillo in [Pic20] to
show that the Conway knot is not smoothly slice and, in a similar vein,
Hayden—Sundberg show in [HS21| that the cobordism maps on Khovanov
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homology can be used to distinguish exotically knotted smooth surfaces in
the 4-ball which are topologically but not smoothly isotopic.

Khovanov homology Kh(L) also admits a refinement to a spectrum
Xin(L) (see [LLS21, HKK16]) whose homotopy type is an invariant of the
link L and whose reduced singular cohomology recovers Kh(L). This al-
lows for the construction of Steenrod operations on Khovanov homology
(see |LS14, Bod20, Mor19]) which can be used to distinguish some pairs of
non-isotopic knots with the same Khovanov homology groups.

In [Kho02], Khovanov defined algebras H,,, the arc algebras on 2n points,
and associated to an (2m,2n)-tangle diagram 7" a complex of (H,,, H,)-
bimodules Cgy, (1) whose chain homotopy type is an invariant of the under-
lying tangle in D? x I. These bimodules and their variants can also be used
to define invariants of annular links (see [BPW19, Lip20, LLS22|) as well as
links in S? x S (see [Roz10, Wil21, MMSW19]). The algebras H,, and the
bimodules Cg;, (7)), like Khovanov homology, admit stable homotopy refine-
ments (see [LLS21, LLS22|) and are also of importance in the representation
theory of the quantum group U,(sly) (see [CK14, Str09, BS10, BS11]).

1.1. Results. In [Shul4], Shumakovitch showed that Khovanov homology
with coéfficients in F = Fy decomposes as Kh(L) = f(vh(L) ® A, where
A = F[z]/(x?). We show that analogs of this result hold for the arc algebras
H,, and Khovanov bimodules Cg,(7T) defined over a ring of characteristic 2.
We also show that there is no such isomorphism of arc algebras over Z.

2. BACKGROUND

Fix a base ring R. Given a non-negative integer n, let €, denote the
set of planar crossingless matchings on 2n points, i.e. the set of (2n,0)
Temperley—Lieb diagrams.

¢, = D

F1GURE 1. The set €, of planar crossingless matchings on 4 points.

The arc algebra H, over R is the associative graded R-algebra
(21) Hn = q” @ CKh(CL!b),
a,bed,
where a' is the result of flipping a across the vertical axis, a'b is the result of
gluing a' and b along their common endpoints, and Cgjp, : Cob' ™' — R—Mod
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is Khovanov’s TQFT whose value on a single circle is given by

(2.2) Cxn(O) = A= Rla]/(a?)

as a commutative Frobenius algebra with comultiplication defined on gen-
erators by A(l) =1 ®z+ 2 ® 1 and A(x) = z ® x. The elements 1 and x
are endowed with an integer-valued quantum grading by taking gr (1) = —1
and gr,(z) = 1 and the formal power ¢" in line (2.1) denotes a shift in this
grading by n. We take the convention that Hy = R. It is well-known that H,
has the structure of a graded associative unital R-algebra given by applying
the functor Cg; to the minimal saddle cobordisms >, : abUbc — de.
More precisely, if v and v are labelings of the components of a'b and b'c,
respectively, then the product (a'b, v)(b'c,v’) is given by Kh(Xap.)(v Uv')
and products of the form (a'b, v)(c'd,v’) for ¢ # b vanish.

Definition 2.1. Given a crossingless matching a € &€,, we distinguish the
bottom-most of its 2n endpoints as a marked point. The reduced arc algebra
over IR on 2n-points is then the associative graded R-algebra H,, defined by
(2.3) H,=q" P Crala'b).
CL,bEQ‘n

Here, 5Kh denotes the reduced Khovanov complex given by the choice of
basepoint as the quotient complex in which the marked component of every
generator is labeled with a 1 and the entire complex is endowed with a
quantum grading shift of 1.

Lemma 2.2. Let m : ﬁn ® ?[n — I:Tn be the map induced by multiplication

on H,. Then (H,,m) is a graded associative unital algebra.

Proof. 1t is straightforward to see that the subgroup I, C H, generated by
elements in which the marked component is labeled by z is a homogeneous
two-sided ideal. The statement then follows from the fact that H,, = H, /I,.

O

3. THE MAIN THEOREM

Given crossingless matchings a,b € €,, let kg € mo(a'b) be the marked
component of a'b and define 7,(a'b) = mo(a'b) \ {ko}. We define a linear
map A: H, ® A — H, as follows. Let
(3.1) B.= {(a!b,fv)|v = {1,x}”*(“!b)}

a,beﬁn
be the “standard” basis for H,, consisting of two crossingless matchings a,b €
¢, and a labelling v : 7.(a'b) — {1, 2} of the unmarked components of a'b
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by either 1 or x. The marked component of a generator of ﬁln will always
implicitly be labeled by 1 but, in light of the following, it will be convenient
to think of the labeling restricted to unmarked components only. Given a
basis element (a'b,v) € B, and s € {1,z}, let (a'b,v), € H, be the result
of extending the labeling v to all of my(a'b) by taking v(k¢) = s. Now define

(3.2) X(d'b,v) = {k € m.(a'b)|v(r) = z}

and, for a component x € X(a'b, v), define (a'b, v,) € H,, by taking v, (ko) =
x, vs(k) = 1, and v, (k") = v(K') for all other components «’. In other words,
(a'b, v,) is the result of labeling the marked component by z and relabeling
% with 1. We then define A on basis elements (a'b,v) ® s € B, ® {1,z} by
‘ (a'b,v), if s=u
(33)  Al(a’b,v)®@s) = (a'b,v)1 + > (a'b,v,) otherwise.
KkEX(a'b,v)
Example 3.1. Letting hollow and solid dots represent the labels of com-

ponents via the convention o = 1 and e = z, if

(3.4) (a'b,v) = 8

i.e. a = b is the first of the crossingless matchings in €, depicted in Figure
1 and v : m.(a'b) — {1,2} is the map taking the unmarked component of
a'b to x, then

(3.5) AM(a'b,v)®1) = 8 - 8
and
(3.6) A(a'b,v) ® ) = 8.

Lemma 3.2. \ s a graded R-linear isomorphism.

Proof. Note that the set
37 B.= | {A((a!b,v) ® 8)|v e {1,z)™@ s e {1, x}}
a,beC,
forms an R-basis for H,, since there is a block lower-triangular matrix of the
form

39 (5 )

where B is a square matrix with entries in {0, 1}, taking the standard basis
(3.9) grt= U {@v)ve (1,0}

a,bec,
for H,, to B,,. Here, we order B so that those basis elements with v(kg) = 1
appear first in the ordering. Now we have rkpH, ®r A = rkrH, so A is
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automatically an R-linear isomorphism since commutative rings have the
invariant basis number property and both H, ® r A and H, are free as R-
modules. Note that gr,((a'b,v) ® 1) = gr,((a'b,v);) = gr,((a'b, v,)) for any
k € X(a'b, v) since each of these has the same number of tensor factors of 1
and z. For the same reason, we have gr ((a'b,v) ® z) = gr,((a'b,v),) so A
preserves quantum gradings and is, therefore, a graded isomorphism. Il

Theorem 3.3. If R is a ring of characteristic 2, then X is a graded R-

algebra isomorphism.

Proof. We have already shown that A is a graded linear isomorphism so it
suffices to show that it is multiplicative, i.e. that

(3.10) M(a'b,v) @ s)M(be,v') @ s2) = M(a'b, v)(be,v') @ s152).

We do this by dividing into cases — note that we do not need to consider
products of the form (a'b, v)(c'd, v') for b # ¢ since these are always zero in
H,, and, therefore, also in H,,.

Case 1: s1 = s, = x. By far-commutation of saddles, we may always ar-
range for the marked components to merge first. Since 22 = 0, we have

(3.11) (a'b, v),(be,v), =0,

ie. 0= \((a'b,v)@2)((t'c,v") @) = A\((a'b,v) @ 2)\((b'c, v') ® ) for any
basis elements (a'b, v), (b'e,v') € B,,.

Case 2: s1 = 1 and sy = x. Next, consider A((a'b, v) @1)A((b'e,v')®2): this
is equal to (a'b,v);(b'e,v'), since (a'b, v,)(b'e,v'), = 0 for any k € X(a'b, v)
as the marked components of both elements in this product are labeled z
so their merger creates a label of 22 = 0. Now suppose that the product
(a'b, v)(b'c,v’) in H, is given as a linear combination of elements of the basis
B, by

(3.12) (a'b,v)(be,v') = Z(a!c, v!).

We claim that

(3.13) (a'b,v), (b, V), = Z ac,v; Z)\ de;vl!) @ ).

Note that, under the saddle cobordism a'bLib'c — a'c, if the marked compo-
nents merge and do not subsequently split, then this is true automatically.
Otherwise, in H,,, any splittings of the marked component produces some
number of new components in the summands (a'c,v/), each of which is
labeled x. In H,,, after the first merger occuring in the saddle cobordism,
the marked component of (a'b,v),(b'c,v’), becomes labeled by x and any
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subsequent splittings produce the same new components as before, each of
which is again labeled by z since we have A(z) = x ® x. Therefore, we have

(3.14)  M(a'b,v) @ DA((V'e,v) @ ) = M((a'b, v) @ 1)((V'e,v') @ 1)),
as desired.

Case 3: s1 = x and sy = 1. 1t follows from the previous case that
(3.15)  A((a'b,v) @ 2)A((be,v) @ 1) = A(((a'b,v) @ z)((ble,v') @ 1)).

To see this, note that the algebra anti-automorphisms m c H, @ A —
H,® A and (—) : H, — H, given in both cases by (a'b, v) = (b'a, v) satisfy
A((a'b,v) ® s) = A((a'b,v) ® s) by construction. It is then straightforward
to show that

(3.16)  A((a'b,v) @ 2)A((V'e,v) @ 1) = A(((a'b,v) @ z)((b'e,v") ® 1))

by a direct computation using Case 2.

Case 4: s1 = sy = 1. Let ¥ : ¢ = ¢ be a connected, orientable, 2-dimensional
cobordism, where ¢ and ¢ are disjoint unions of planar circles. Recall that if
v and w are labelings of ¢ and ¢ by {1, 2z} then w occurs as a summand in
Kh(3)(v) if and only if g(¥) = 0 and #,v + #,w = 1. Here, for a labeling
u, the quantities #,u and #,u are the number of components labeled 1
and = by w. The same holds true for ﬁz(Z)(v) subject to the constraint
that only those v and w which label the marked component 1 are permitted
(see Figure 2).

]
—

b~ \—— o~

1 1 1 1

FIGURE 2. An example of Kh(X)(v) (left) versus }/(vh(Z)(v)
(right) in which the two differ.

Now suppose we are given generators (a'b,v) and (b'c,v’) of H, and
consider the minimal saddle cobordism ¥ : a'b U b'c — a'c. We claim that
AKRE) (v Uv)©1) = Kh(S)A@A(vUv) ®1)) (see Example 3.6 below
for sample computations of the subcases which follow).

Subcase 1. We first consider the case that v L v’ labels all of the incoming
circles of the component ¥, of ¥ which contains the marked incoming circles
by 1. In the reduced product Kh(3)(vUv'), each w occurring as a summand
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labels the marked outgoing circle by 1 and any other outgoing circles of 3,
by x. The unreduced product Kh(3)(v U v') consists of these terms plus
terms in which the marked outgoing circle is labeled x and exactly one of the
remaining outgoing circles of 3, is labeled 1. The summand of A(ﬁz(z)(vl_l
v') ® 1) consisting of I?B(Z)(v U v') and those terms obtained only by
summing over the z-labeled outgoing circles of ¥, is precisely Kh(X)(vUv").
It thus suffices to show that the remaining terms either come in cancelling
pairs or come from swapping the label on a marked incoming circle of > with
that of an x-labeled circle. Consider a connected component 3; of ¥ \ X,.
If the incoming circles of ¥, are all labeled 1 and >; has ¢ outgoing circles,
then any labeling w; of these circles occuring as a sublabeling of a term in
ﬁL(Z)(v Ll v') labels ¢ — 1 of them by z and one of them by 1. Moreover,
if w is a summand of f(vh(E)('v L v") and w; occurs as a sublabeling of w,
then every possible labeling w’ obtained from w by permutating w; occurs
exactly once as a summand of f(vh(E)('v Lv’). Now, for any labeling w and
sub-labeling w; of the outgoing circles of ¥; and any choice of z-labeled
component x coming from w;, there exists a w’ and w] such that w and w’
agree away from w; and w] and a choice of z-labeled component ' coming
from w} such that the labelings w, and w!, agree. All such choices come
in pairs so the summands of )\(ﬁz(E)(v U o) ® 1) coming from summing
over the x-labeled outgoing circles of 3; cancel.

Note that if more than one incoming circle of ¥ is labeled x, then we
have ﬁL(E)(v Lv') = 0. On the other hand, we also have Kh(3X)(A@ A((vU
v') ® 1)) = 0 since either more than two of the incoming circles is labeled
— in which case applying Kh(X) to every term of A@ A((vUv') ® 1) yields
zero — or exactly two are, call them s and «’. In the latter case, the terms
Kh(3)((vUv'),) and Kh(X)((v U '), ) agree and, hence, cancel modulo 2.
If exactly one of the incoming circles k( of 3 is labeled by x, then every
outgoing circle of ¥ is also labeled x. If, as before, ¥ has ¢ outgoing circles
Ki,. .., ke, then the summand Kh(S)(v Uv'),, + -+ + Kh(S)(v U v'),, of
/\(ﬂ(E)('vl_lfv’)@l) coincides precisely with the summand Kh(X)((vUv'),,)
of Kh(32)(A® A((vUv') ®1)). Therefore, we have A(ﬁL(E)(v Hv)®1) =
Kh(Z) (AR A((vUv)®1)).

Subcase 2. If at least one of the incoming circles of the component X, is
labeled x, then ﬁL(Z)(U Ll v") ® 1 necessarily vanishes. If more than one
of these incoming circles is labeled z, then, as before, every term of A((v U
v') ® 1) necessarily also labels at least two of the incoming circles on this
component by x so we also have that Kh(X)(A @ A((v Uv") ® 1)) = 0. If
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exactly one incoming circle ko of X, is labeled x — assume for simplicity
that this label comes from v — then the terms of A@ A((vUv’) ® 1) consist
of v U, v,, U, and terms of the form v, U v, v Uv),, and v, U v/,
where k and k' are incoming circles of a component of ¥ \ X, labeled x by
v and v’, respectively. In Kh(X)(A((vUv")®1)), the first two of these terms
contribute two identical and hence cancelling terms since we are working
in characteristic 2 and the remaining terms contribute 0 since Y merges at
least two x-labeled circles in those cases.

g

Example 3.4. Using the same convention for hollow and filled dots as
before, in H3 ® A, we have

o (9)(@)-Q

while in Hj, we have

18 @@:@&gh

and

" ©-0.9-0. x 9.(94)

Example 3.5. In Hy, ® A, we have

(3.20) (g@m) (@@1) —0

e (De)-(5+9)9
(3.21) :2§>

modulo 2, which shows that A cannot possibly be a multiplicative map in
characteristics other than 2.

Example 3.6. We consider two more examples to exhibit some of the phe-
nomena that can occur when comparing mo(A®A\) and Aom in characteristic

2. Suppose that

(3.22) (a\by,v) =
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and
(3.23) (bey,v') = 7
then

(3.24) ((a\br,v) @ D) ((bey,v) @ 1) =

)er

/—‘\
+

SO

M((arby, v) @ 1)((bier, ') @ 1)) =

(3.25)

_|_

+

+

(]
o)

modulo 2. On the other hand, we have

M(arby, v) @ DA((byer, v') @ 1)

(3.26)

I
5@

This is an instance of the first part of Case 4, Subcase 1, in the proof of the

main theorem. Similarly, if

(3.27) (a4, ) = @

and (bhco, w') = (bicy,v'), then we have

(3.28) ((ahby, w) @ 1)((bhyey, w') @ 1) = ® 1

SO

(329) A(((abborw) ® D(Ghenw) o 1) = (@ V(9@ )4

while

(3.30) M (ayby, w) @ 1) = @ -
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SO

Al(ahbs, w) © DA((Byea, w') @ 1) =

®

+>
++.

This is an instance of the second part of Case 4, Subcase 1.

(3.31)

3.1. Bimodules of planar tangles. Now suppose that T is a planar
(crossingless) (2m, 2n)-tangle diagram and let

(3.32) Can(T)= P Cru(a'Th)
a€Cm beC,
be the associated (H,,, H,)-bimodule. Choose either the left bottom-most
endpoint or the right bottom-most endpoint of T" as a marked point for
every a'Th and denote the corresponding reduced bimodules by @L(h(T ) and
CE (T), respectively. We define a map AL : CL, (T)® A — Cy(T) as follows:
given a labeling v : 7,(a'Th) — {1, 2}, let X(a'Th, v) denote the set of all
components of a'Th labeled x by v. We then define

(3.33)
(a'Th,v), if s=x
AN((a'Th,v) ® 5) = (a'Th,v); + > (a'Th,v,) otherwise,
KEX(a'Th,v)

where, as before, (a'Th,v), and (a'Th,v,) are the elements of Cy,(T) ob-
tained by labeling the marked component by s and by swapping the label
of x and the marked component, respectively. We define A\ similarly. Note
that if the bottom left-most and bottom right-most endpoints of T" are on
the same connected component, then the two maps coincide.

Proposition 3.7. If R is a ring of characteristic 2, then A\ (resp. \%)
15 a graded linear isomorphism intertwining the left ﬁm ® A- and H,,-
module (resp. right H,® A- and H,-module) structures on CL, (T)Q A (resp.
5§h(T) ® A) and Cxp,(T). However, they are not bimodule isomorphisms in
general.

Proof. The proof for both is essentially identical to the proof of Theorem
3.3. The example that follows shows that A* and A\® need not be bimodule
isomorphisms when they are not equal. Il
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Q0
QQ

and right-actions of the elements @, é) € H,: we have that

(3.34) (@@1) (88@1) —0

and
Qe (gee) =G5+ 00+ o0)
(3.35) :2@3
=0

modulo 2, as expected, and, on the other hand, we have

o0 (3501) (Do) =

while
w(Goe) ¥ (Do) =(50+ 00+ 60)

o ROROMD
0

so A¥ is not a right-module homomorphism, even in characteristic 2.

oC

Example 3.8. Let T' = and consider € @;L(h(T) Consider the left-

4. Z-COEFFICIENTS

We will now show that there is in general no such decomposition of arc
algebras over Z. To that end, let

(4.1) a:ag+bg+c®+d@+e+f@

be an arbitrary central element in ]?[2. Then we have

(4.2) 0= [a, ] - cé) —d@,

so ¢ = d = 0. It then follows that

(4.3) 0= |a. é}] — (a— @é)

so a = e. Therefore, « is of the form

(4.4) a:a<g+>+bg+d@.

One can check that both g and @ are themselves central so

(4.5) 2(i) =23+ (). 3.(9)).

Now, since H, and A are both free as abelian groups and A is commutative,
we have Z(Hy ® A) = Z(Hy) ® A.
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In [KhoO6], Khovanov showed that the only invertible central elements
of degree 0 in H,, with Z-coéfficients are +1 and, as a consequence, that if
M is an invertible complex of graded H,,-bimodules, then the only degree 0
automorphisms of M are +id. The same argument holds, mutatis mutandis,
in characteristic 2 to show that the only degree 0 automorphisms of f[n ®A
and H, are the respective identity maps. In particular, this tells us that if
there were a graded algebra isomorphism A : Hy® A — H,, then A = A\
modulo 2 so

(4.6) D= A ( T

@ _
®®1>—8Q+to

for some s,t € {1}. Now T is central since A is an algebra isomorphism so

(4.7) 0=, é}} — (S+t)é>

and hence t = —s. Up to composing A with —id, we may assume s = 1 so

Q@ Q
4.8 r=>-—72.
(4.8) o~ 0
On the other hand, we have

o 2
4.9 ( 1) —0
(19) o
so we would have to have
Q

4.10 0=T%=-2
(410 2.

which is false. Therefore no such isomorphism can exist. Now note that
f[z ® A and H, include into f[n ® A and H,, respectively, as subalgebras
J»® A and J, for any n > 2 by stacking n — 2 round 1-labeled circles above
every generator. If we had a Z-algebra isomorphism A : H,® A — H, and
e € H, is a minimal idempotent, i.e. e = (a'a,1) for some a € ¢,, then
we necessarily have that A(e ® 1) = +e; since A(e ® 1) = e;. This tells us
that the restriction of A to J ® A would give us an algebra isomorphism
(72 ® A — Jy but we have shown this is impossible. Therefore, there is no
graded Z-algebra isomorphism H,® A — H, for any n > 1.

FURTHER DIRECTIONS

In [Wan21|, Wang showed that there are bigraded R-module isomor-
phisms

KR,(L; R) = KR,(L; R) g Rlz]/ (")
relating the unreduced and reduced Khovanov-Rozansky s[,-link homologies

(see [Kho04, KRO08|) whenever R is a ring of characteristic p. Analogs of
the arc algebras in the setting of sl, homology, the sl,-web algebras, were
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introduced by Mackaay-Pan-Tubbenhauer, in the p = 3 case, and Mackaay
in [MPT14, Mac14]. There is also an annular version of the arc algebra
which was studied by Ehrig-Tubbenhauer in [ET21].

In [ORS13|, Ozsvath, Rasmussen, and Szab6 defined an “odd” version of
Khovanov homology using an exterior version of the Frobenius algebra used
in the original construction. This invariant also categorifies the Jones poly-
nomial and agrees with ordinary Khovanov homology modulo 2. As in the
characteristic 2 case, there is a splitting of odd Khovanov homology with
Z-coéfficients (see [ORS13|, Proposition 1.8). Moreover, other properties of
Khovanov homology in characteristic 2 can be realized as the mod 2 reduc-
tion of a property of odd Khovanov homology. For instance, Wehrli proved in
|[Weh10] that Khovanov homology with F-coéfficients is mutation invariant
and this was shown by Bloom for odd Khovanov homology in [Blo10]|. The
odd analogues of the arc algebras and bimodules for tangles were studied
by Naisse—Vaz in [NV16] and Naisse-Putyra in [NP20]|, respectively. Unlike
the ordinary arc algebras, however, odd arc algebras are only associative up
to a sign depending on the elements being multiplied.

In [KR20], Khovanov and Robert studied a deformation A, of the TQFT
A defined over the ring Ro = Z[ag, a1] = Hpy ) (Pt) as an R,-algebra
by

(4.11) Aa = Ra[2]/((z — a0)(z — 1)) = Hiyy)p0)(S?)

with comultiplication given by

l—=1®z+2z1—(ap+ o)1 ®1
(4.12)

T—=rR®r— gl Q1.
This TQFT defines a link invariant in the same way as does A and, taking
different values for the parameters oy and a; at the chain level, one can
recover both Khovanov and Lee homology. One may define deformed arc
algebras H; and ﬁ,‘j‘ analogous to the unsual ones. However, even in char-
acteristic 2, the naive R,-linear extension of A to a map H® @ A, — H® is
not multiplicative. For example, letting h = oy + a1 and t = apa; for the
sake of brevity, in ]:l:,‘f ® A,, we have

(@)(©*)

:<h2+h(é+>+é)®1

(4.13)
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SO

v @2)(G7)

) Q (Q Q Q Q Q
OBNONOIMONONO)
On the other hand, in HS', we have
(4.15)

06 |

h2+t‘+h(@ ‘ ‘>+é++é
(4.16)

(@) (@)@ )©)

In light of the present result, it is natural to ask whether or not there are
splittings analogous to ours in each of these settings: in characteristic p for
the sl,-web algebras, over Z for the odd arc algebras, and in characteris-
tic 2 for the equivariant arc algebras, respectively. In the last setting, this
would take the form of an algebra isomorphism A : ffﬁ ® Ay — HY in
characteristic 2 which recovers X if we take ag = a3 = 0.
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