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Abstract

We present a novel algorithm that is able to generate deep synthetic COVID-19 pneumonia CT scan slices using a very small
sample of positive training images in tandem with a larger number of normal images. This generative algorithm produces
images of sufficient accuracy to enable a DNN classifier to achieve high classification accuracy using as few as 10 positive
training slices (from 10 positive cases), which to the best of our knowledge is one order of magnitude fewer than the next
closest published work at the time of writing. Deep learning with extremely small positive training volumes is a very difficult
problem and has been an important topic during the COVID-19 pandemic, because for quite some time it was difficult to
obtain large volumes of COVID-19-positive images for training. Algorithms that can learn to screen for diseases using few
examples are an important area of research. Furthermore, algorithms to produce deep synthetic images with smaller data
volumes have the added benefit of reducing the barriers of data sharing between healthcare institutions. We present the cycle-
consistent segmentation-generative adversarial network (CCS-GAN). CCS-GAN combines style transfer with pulmonary
segmentation and relevant transfer learning from negative images in order to create a larger volume of synthetic positive
images for the purposes of improving diagnostic classification performance. The performance of a VGG-19 classifier plus
CCS-GAN was trained using a small sample of positive image slices ranging from at most 50 down to as few as 10 COVID-
19-positive CT scan images. CCS-GAN achieves high accuracy with few positive images and thereby greatly reduces the
barrier of acquiring large training volumes in order to train a diagnostic classifier for COVID-19.
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Introduction

Although deep learning algorithms have achieved high
performance in cross-validated diagnostic tasks including
screening for COVID-19 from X-ray and CT modalities,
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these results have been obtained overwhelmingly using
extensive volumes of training data, including large vol-
umes of COVID-19-positive images obtained from many
cases. The use of large volumes of positive cases for train-
ing, however, is problematic, especially for a novel dis-
ease, as there may be a substantial lag between when the
disease becomes a major public health concern and when
large training datasets become publicly available, especially
given HIPAA and IRB considerations [1, 2]. This has led to
a great deal of research in order to determine how a deep
learning algorithm can best screen for a disease when few
positive training samples are available [3—6]. Successful
deep learning—based COVID-19 diagnostic classification
from CT scans has been demonstrated using hundreds of
positive cases for training [3—6], but it is desirable to dem-
onstrate that accurate classification is possible using even
fewer training cases, especially as a preventative measure
for a potential future pandemic for which adequate training
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examples may once again be difficult to obtain. As such,
throughout this paper, an assumption is made that nega-
tive (normal) images are prevalent and accessible, whereas
positive (COVID-19) images are rare and/or difficult to
obtain. Under such an assumption, reasonable metrics for
the evaluation of an Al-based screening algorithm includ-
ing accuracy and AUC are obtainable using a given num-
ber of positive images, even if larger volumes of negative
images may be used freely as necessary for training of a
deep neural network in order to achieve adequate clas-
sification performance. To the best of our knowledge, we
present the first deep learning—based COVID-19 classifica-
tion algorithm capable of achieving a cross-validated test
accuracy of 99.00% (VGG19) and 98.17% (AlexNet) while
using only 10 COVID-19-positive CT scan cases for train-
ing. Furthermore, the algorithm presented obtains these
results using only a single CT scan slice per positive training
case. These results are obtained by using a cycle-consistent
segmentation-generative adversarial network (CCS-GAN)
that is designed to generate high-quality COVID-19-infected
pulmonary images using as few positive training examples
as possible. CCS-GAN incorporates style transfer based on
CycleGAN, automated intensity-based pulmonary segmen-
tation, and transfer learning from relevant CT scan images,
all of which greatly reduce the need for positive samples
and allow the method to learn from a highly skewed train-
ing dataset with many more negative samples. An ablation
study included in this work demonstrates that each of these
underlying techniques alone is insufficient to achieve the
presented results, and rather, all these techniques must be
combined as part of the CCS-GAN methodology in order
for high classification accuracy to be possible using very
few positive cases for training.

Literature Review

Generative Methods for COVID-19 Pneumonia
Screening

There have been a number of related works that have inves-
tigated the use of GANs to improve the performance of
COVID-19 screening from CT scans with reduced training
volumes. However, to the best of our knowledge, all recent
studies have made use of hundreds of positive cases for
training [3—8]. Hundreds of cases, although small by deep
learning standards, are still a substantial training volume to
obtain during a pandemic, and the intent of CCS-GAN is
to determine how advanced methods may be able to greatly
reduce the number of positive images needed for potential
future events. Loey et al. introduced the use of conditional
GANSs (cGAN) for the generation of deep synthetic COVID-
19 CT scans [3]. Their cGAN methodology generates both

normal and COVID-19 images by conditioning using the
category label (COVID/non-COVID). Goel et al. devel-
oped a similar approach making use of the InceptionV3
network with whale optimization for hyperparameter tuning
[4]. Li et al. [7] extended these approaches by combining
GANs with ensemble learning and attention mechanisms.
Mangalagiri et al. also proposed an algorithm for generating
3D diagnostic quality COVID-19 CT scans with a condi-
tional GAN architecture [8]. This method mainly focused
on generating the entire CT volume through subdivision
into blocks and focusing on blockwise synthesis rather
than slice-wise synthesis. All of these methods have dem-
onstrated improved performance of a binary classifier with
a limited number of positive cases for training. However, all
of these methods still require hundreds of positive cases or
more to achieve their reported classification accuracies over
a withheld testing set. We are unaware of any works prior
to CCS-GAN that have been able to demonstrate compa-
rable diagnostic classification accuracy using on the order
of 10 positive cases for training. Several recent works that
have looked at the use of style transfer as a foundation for
deep fake CT image synthesis. Similar to CCS-GAN, most
of these approaches have made use of the cycle-consistent
loss approach from CycleGAN as a backbone approach.
However, none of these works has combined this approach
with automated pulmonary segmentation, and as such,
these approaches may be susceptible to artifacts in regions
unrelated to COVID-19 disease presentation []. Sandfort
et al. show that CycleGAN can be used to generate synthetic
CT images by learning the transformation of contrast to
non-contrast CT [9]. Ghassemi et al. [10] also show the
use of CycleGANs for improved COVID-19 classification
with transfer learning, but they have used a total of 3163
images, which is far more than the proposed approach. Jin
et al. incorporates prior training on a similar dataset in
order to regularize the model and improve performance,
especially with limited training volumes [11]. Liu et al. [6]
generates full CT scan volumes using feature in-painting
to insert COVID-19 opacities via alpha-opacity blending.
Transferring disease presentation as a style is an active area
of research, but more work is necessary to demonstrate that
style transfer is feasible for the CT scan modality using a
small number of positive images, as well as to prevent style
transfer from introducing artifacts in background regions
that are not affected by the target disease.

Very few works have looked at the possibility of using
pulmonary segmentation in order to greatly simplify
the problem of generating high-quality CT scan slices of
COVID-19 pneumonia, and instead most have focused on
attempting to generate the full CT scan slices including
irrelevant anatomy. We demonstrate that pulmonary seg-
mentation, however, can have a major positive impact on the
performance of GAN techniques, especially when training
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with few examples, because when training data volumes are
small, the GAN could be distracted by learning to gener-
ate bones, organs, and other non-lung anatomy which are
irrelevant to COVID-19 at the expense of decreased ability
to learn relevant pulmonary features.

Although Jiang et al. [5] was the first to make use of
pulmonary segmentation to generate synthetic COVID-19
CT scan slices using a dual generator/discriminator with
dynamic element-wise sum, their segmentation approach
requires annotation of the infected region of the lung which
may be tedious for a radiologist to annotate for training
data purposes [5]. We are unaware of a comparable GAN
approach that takes advantage of automated pulmonary
segmentation without the need for pixelwise annotated
training data. Although there have been very few works
to take advantage of pulmonary segmentation for the pur-
pose of deep fake COVID-19 synthesis, there are several
recent works that have explored segmentation toward the
identification of lesions. However, we do not believe these
works to be directly relevant to the proposed research aims
because lesion segmentation (CADe) is a very different task
from diagnostic classification (CADx). Deep convolutional
GAN (DCGAN) [12] and conditional-GAN [13] were used
to augment medical CT images of liver lesions and mammo-
grams, yielding improved CNN-based classification accu-
racy of malignancy [14, 15]. Z. Xu et al. proposed GASNet
in [16] which is a 3D segmentation framework containing
a segmentation network with an embedded GAN to seg-
ment the pixel boundaries of COVID-19 opacities in CT
scans. Although substantial progress has been made for the
purposes of lesion segmentation, more work is necessary
to determine the extent to which segmentation can improve
the performance of GAN-based deep fake image synthesis
at low training volumes.

Relation to Few-Shot Image Classification

It is important to discuss how the task of COVID-19
image synthesis with few positive cases is related to a
branch of machine learning known as few-shot image
classification [17-20]. Few-shot image classification
is the task of constructing an N-shot K-way classifier
using very few examples (small N) of the target data-
set. Usually, other relevant datasets are available for
meta-learning of a low-dimensional feature embedding
[17-20]. One of the highly influential metric-based few-
shot classifiers is the Siamese neural network [18] for
which two identical network branches are pre-conditioned
to learn a low-dimensional embedding suitable for a pair-
wise cosine similarity metric to distinguish between
the image classes [18]. Matching networks improve on
metric-based image classification, by combining a low-
dimensional embedding network with a differentiable
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k-nearest neighbor distance metric to enable end-to-end
gradient optimization for the entire problem [19]. Proto-
typical networks further expand upon matching networks
by restricting the distance metric to compare against a
single M-dimensional cluster centroid or prototype per
image category within the low-dimensional embedding
space [20]. Although CCS-GAN is designed to reduce
the number of positive samples necessary for COVID-
19 image classification, the CCS-GAN technique greatly
differs in its design from these metric-based algorithms,
because rather than learning a low-dimensional embed-
ding for a distance-metric classifier, CCS-GAN instead
learns a manifold in order to generate a large number of
deep synthetic images to enable a standard DNN classifier
to achieve adequate performance.

Our task also somewhat differs from few-shot image
classification, because of the prevalence of substantial
class imbalance which does not adhere to the standard
N-shot K-way problem definition. More specifically, we
assume a large number of negative (normal) cases but very
few positive (covid) cases. The distinction is that both the
normal (large-N) and covid (small-N) samples are part of
the farget categories (for binary classification), as opposed
to the N-shot K-way problem definition which assumes
small-N for both target categories simultaneously. The
prevalence of substantial class imbalance is one of the
motivating factors for the use of a GAN to generate addi-
tional data to produce a balanced dataset of normal and
covid image slices to train an accurate image classifier
model which in our case is a standard DNN.

Significance

In this study, we demonstrate that it is possible to generate
deep synthetic CT scan slices of COVID-19 pneumonia
by using only 10 positive examples. In contrast, previous
studies have required on the order of 100 positive exam-
ples or more to produce adequate results for an external
DNN classifier. The lack of available COVID-19 images
was a major hurdle at the onset of the pandemic due to
the inherent difficulties in acquiring and sharing medical
image data. Deep synthetic image generation is considered
to be one of the most promising techniques to overcome
the data-sharing bottleneck not just for COVID-19 pneu-
monia, but many other diseases. The smaller the minimum
adequate sample size, the more likely it is for a single
healthcare institution to have sufficient cases available to
generate deep synthetic datasets that are easier to share
with other research groups. As such CCS-GAN demon-
strates that deep synthetic images for COVID-19 can be
generated with an order of magnitude fewer examples than
previous studies.
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Contributions

CCS-GAN is the first architecture for COVID-19 pneumo-
nia image synthesis that can produce images of high qual-
ity for binary classification with only 10 positive training
samples. CCS-GAN is data-efficient because it integrates
style transfer with pulmonary segmentation thereby
allowing the model to focus exclusively on generating the
COVID-19 pneumonia features, rather than attempting to
generate the entire CT scan slice including irrelevant anat-
omy. The architecture of CCS-GAN simplifies the learning
task of generating CT-slices for COVID-19 pneumonia by
reducing the need to generate irrelevant anatomy includ-
ing anatomy outside the lung such as bone and organs, as
well as anatomy within the lung such as blood vessels.
This simplification of the learning task thereby allows the
model to focus exclusively on generating relevant COVID-
19 pneumonia features such as ground glass opacities. We
summarize the contributions of CCS-GAN as follows:

1. We present the design of CCS-GAN which can gen-
erate deep synthetic COVID-19 pneumonia using an
order of magnitude fewer positive CT slices relative
to prior works. The synthetic images are demon-
strated to be of adequate quality for a DNN classifier
to achieve high accuracy on a COVID-19 pneumonia
binary image classification task.

2. The design of CCS-GAN is data-efficient because
it simplifies the learning task for deep synthetic
COVID-19 image generation by eliminating irrel-
evant anatomical features both within the lung as
well as outside of the lung. This irrelevant anat-
omy would otherwise greatly increase the amount
of training data required to generate high-quality
synthetic images.

3. We find in our ablation experiment that the key
features of CCS-GAN include pulmonary seg-
mentation which eliminates irrelevant anatomical
features outside of the lung, as well as cycle con-
sistent loss which eliminates irrelevant anatomical
features within the lung from the learning pro-
cess. If either of these key features are disabled,
the quality of the generated images substantially
degrades and the classifier degrades to random
guessing.

4. Our quantitative and qualitative comparison
shows that CCS-GAN is able to achieve high-
quality synthetic COVID-19 images with far fewer
training images relative to COVID-CT-GAN [7]
which is a state of the art method, as well as base-
line methods ResNet-50 GAN, U-Net GAN, and
CycleGAN.

Limitations

We summarize the key limitations of this study as follows:

1. Although the CCS-GAN-generated deep synthetic
images are of adequate quality for training a DNN
classifier, these images are not intended to be of
adequate quality to be used for clinical purposes
by human radiologists. This is because the gen-
erated CT slices are easily distinguishable from
real COVID-19 slices by a human, even though
they are of adequate quality to augment a training
sample for binary classification.

2. CCS-GAN operates on individual CT scan slices
rather than whole images, which has both advantages
and limitations. One notable limitation is that there is
no guarantee that running CCS-GAN on consecutive
slices will produce a coherent 3D volume, as it is
likely that consecutive slices could generate pneu-
monia features in different locations in the lung lead-
ing to discontinuities between consecutive slices.

3. We have not evaluated the performance of CCS-
GAN for binary classification of diseases other than
COVID-19 pneumonia with CT-slices. Although
we anticipate that CCS-GAN may be applicable
to other similar pulmonary diseases using the CT
modality, the use of intensity-based segmentation
and style transfer may limit the applicability of
CCS-GAN to other modalities and/or diseases with
substantial differences in appearance.

Methods
CCS-GAN

Figure 1 describes the CCS-GAN approach. The input dataset
is defined as a tuple (Xy, X) where Xy is the set of normal
images and X is the set of images exhibiting COVID-19
pneumonia infection. Both the normal and COVID-19-in-
fected images are segmented using binary K-means/OTSU
thresholding to extract the pulmonary regions by creation of
a binary segmentation mask. This segmentation mask can be
extracted due to the large intensity difference in radiodensi-
ties between lung (less dense) and tissue (denser), even when
the lung region is potentially affected by ground glass opaci-
ties due to pneumonia. After this, the generator models are
pre-trained using a cycle-consistent pre-training procedure
in which the normal images are employed for both the X
and Y categories. Subsequently, the CycleGAN component
is trained using unmatched pairs of normal images Xy and
COVID-19 images X. Finally, the dataset for use with the
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classifier is augmented through the generation of deep-fake
COVID-19-infected images through style transfer from addi-
tional normal images. This multi-faceted approach minimizes
the number of positive real cases necessary for training
either the GAN or the classifier and allows the methodology
to achieve high classification accuracy in the presence of
extremely high class imbalance between positive and negative
examples. The training set only exhibits between 10 and 50
positive images, with up to 2000 normal images Figs. 2 and 3.

Intensity-Based Pulmonary Segmentation

Intensity-based pulmonary segmentation is an effective
training-free way to extract the lung region. Intensity-based
segmentation is effective due to the large differences in
radiodensity between the lung region, which is mostly air,
and the denser surrounding tissue. In order to extract the
lung region for purposes of pulmonary segmentation, binary
K-means thresholding was performed. K-means attempts to
minimize the intra-cluster variance as follows:

=YX =gl ()

Fig.2 Pulmonary segmentation

Real Normal Segments

In this equation, J is the objective function, k is the num-
ber of clusters, n is the number of cases x’. is the i case,
¢; is the centroid for cluster j, and ||x —¢|| is the dis-
tance function. The special case of k-means clustermg with
only two cluster centers is mathematically equivalent to the
Otsu thresholding technique for binary image segmenta-
tion, which minimizes the intra-class variance between pixel
intensity histograms over the image as follows:

ol() = q,() o7 (t) + g, (1) o2 (D) )

where p is the mean of the pixel, o is the standard deviation,
q is the sum of the probabilities, and ¢ is the threshold ranging
from the minimum value of the pixel to the highest value of
pixels. Subsequent to thresholding, a fixed series of erosion
and dilation steps are performed to suppress noise particu-
larly over blood vessels in the lung. Air outside the patient is
also removed, and the lung mask is identified due to its cen-
tral positioning within the image frame. All pixels outside of
the lung region are zeroed out to prevent non-lung anatomy
tissue from contaminating the GAN and classifier training.

Original Image Mask using segmentation Mask applied on Original Image
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Fig.3 Segmented full CT-slices with Covid-19 Pneumonia (left) versus Normal (right)

Adversarial and Cycle Consistent Loss

CCS-GAN makes use of combined adversarial and cycle-
consistent loss functions as first introduced by Cycle-
GAN [21]. The purpose of the cycle-consistent loss is that
one should be able to apply style transfer from normal to
COVID-19 and vice versa. This is accomplished by having
two generators G and F, and two discriminators Dy and Dy,
Each generator and discriminator makes use of the min/max
loss as proposed by Goodfellow as follows [21, 22]:

Loan (G, Dy . X, Y) = Ey_pauay) [10gDy (Y)]

3
+ Ex_pdaaxy [1 — logDy G(X)] 3)

Loay (F, Dx . Y, X)) = Ex_p garaxy) [l0gDy (X)]

4
+ Ey_ paaar) [1 — log Dy G(Y)] “)

The cycle-consistent loss ensures that if both generators are
applied in a row, then the resulting image should be indistinguish-
able from the original image; i.e., for any images:x € X, and
y € Y, that F(G(x)) =~ x, and that F(G(y)) ~ y as follows [21]:

Lcyc(G’ F) = EX—»Pdata(X) IF(G(X)) - Xl

+ By paway, IGEQY ) = Y| )

The overall loss function accounts for all the losses is
the sum of the constituent adversarial and cycle consistent
loss functions as follows:

Loan (G, F, Dx , Dy ) = Lguy (G, Dy , X, Y)
+ Loy (F, Dy, Y, X) + L,(G, F) ©)

cyc

Generator Architecture

Figure 4 describes the generator architecture of CCS-
GAN, which is inspired by U-Net [23]. This architecture
is arranged as downsampling blocks (yellow), upsampling
blocks (red), and finalizing blocks (green). The first layer
is a conv2D layer which accepts as input a CT scan slice of
size (256,256,1) and outputs features of shape (128,128,1).
The next layer is a batch normalization layer, followed
by a Leaky ReLU activation. These three layers comprise
each of the downsampling blocks as seen in Fig. 4 Sect. 1
(yellow). Furthermore, the Leaky ReLU activation layer
has 2 output branches: a downsampling connection and a
skip connection. The skip connection connects the output
of a downsampling block of Sect. 1 (yellow) directly to the
input of an upsampling block of Sect. 2 (red). Each upsam-
pling block consists of a series of conv2d, transpose, and
concatenation layers. Section 3 (green) exhibits finalizing
blocks of alternating conv2D and transpose layers in order
to generate a synthetic output image of size (256,256,1).
Figure 5 compares real COVID-19 images versus deep
synthetic images as generated by CCS-GAN as trained using
a varying number of positive cases. Left shows real positive
cases. Center left shows generated images as trained with 10
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Fig.4 Generator architecture

positive cases. Center right shows generated images as trained ~ examples is increased, showing detail of blood vessels. Never-
with 50 positive cases. Right shows generated images as trained  theless, many pulmonary features are observable using very
with 500 positive cases. As expected, a general improvementin  few positive cases, including those images when CCS-GAN is
image quality is observed as the number of COVID-19-positive ~ trained using 50 cases or even 10 cases.
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Fig.5 AlexNet and VGG-19 Stress Test
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Experimental Design

CCS-GAN was evaluated both quantitatively and qualita-
tively, with the overarching goal to determine the extent to
which CCS-GAN can improve the ability of a classifier to
identify COVID-19 infection using as few positive training
images as possible. Furthermore, a stress test is included
in which the number of positive images is reduced to as
low as 10. Two CNN models were used for evaluation
of diagnostic classification: AlexNet and VGG-19. These
classifiers were trained for 50 epochs from scratch for
every experiment. The Adam optimizer was used with a
learning rate of 10 —5. Additionally, another experiment
was performed using a form of transfer learning from the
normal images only. For this transfer learning experiment,
CCS-GAN was initially pre-trained using 500 random
unmatched samples of normal images in which both cycle-
consistent classes X and Y consisted of normal CT slices.
The pre-trained model was subsequently fine-tuned with
1000 normal images and 10 positive COVID-19 images.
Finally, an ablation study was performed to compare the
results produced by the proposed CCS-GAN method ver-
sus a baseline GAN. Throughout this ablation study, indi-
vidual features of the CCS-GAN are disabled including the
cycle-consistent training, the pulmonary segmentation, the
cycle-consistent transfer learning with unmatched normal
pairs, and the U-Net inspired generator architecture (as
replaced by ResNet-50). The key finding of this ablation

Fig.6 Results of generated
slices using CCS-GAN versus
real images of Covid-19 Pneu-
monia

Real Covid Images

CCS-GAN 10 images

study is that the entirety of the CCS-GAN approach is
necessary to obtain the high-quality results, and that if any
of these techniques is disabled, the image quality dramati-
cally suffers and becomes unsuitable for the intended use
cases. As such, all of the underlying techniques of CCS-
GAN are necessary to achieve the reported performance.

Dataset

For training and evaluation of the GAN, a dataset was pro-
vided by the Networking Health, a nonprofit organization,
consisting of deidentified imagery from 944 CT scans from
patients with COVID-19 as collected across a diverse set
of hospital institutions (Fig. 6). However, only between 10
and 50 positive slices were employed for training the GAN
in almost all experiments, the only exception being a con-
trol experiment in which 500 positive slices were used to
observe how this larger number of cases affects qualitative
image quality. From these CT scans, only the axial slices in
the scan which exhibit substantial lung volume were consid-
ered, as determined by the pixel area of the automated lung
segmentation mask. The normal CT scans were extracted
from the Kaggle lung cancer dataset. This dataset consists
of 1020 normal CT scans. All the slices of both the classes
were resized to 256 X 256. The training dataset for the CCS-
GAN consists of COVID-19 and normal CT slices ranging
from 10 to 50 COVID-19 images for each experiment and
the testing dataset consisted of 200 images of each class.

CCS-GAN 50 images CCS-GAN 500 images
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COVID Dataset Full CT-Slice

Fig.7 Examples of real Covid-19 versus Normal CT-Slices.

Statistical Inference and Hypothesis testing

CCS-GAN operates on individual 2D CT scan slices, not
whole 3D CT scan volumes. In order to ensure sample inde-
pendence during our evaluation, we used only one axial slice
per CT scan image for training and evaluations. The use of
only one axial slice per image during training and evalua-
tion eliminates the potential for auto-correlated results due
to the similarity between nearby slices within the same CT
scan image and thereby ensures sample independence Fig. 7.

All experimental results include reported accuracies as well
as confidence intervals using the Clopper-Pearson method
with a =0.05. Confidence intervals are designated by ( S.,
S.), where

S > is minimum p s.t. P[Bin(n;p) < x] >

(N

NIRL |

S < is minimum p s.t. P[Bin(n;p) < x] >

where x is the number of correctly identified samples, n is
the total number of samples, and p is the unobserved popu-
lation success probability (unobserved accuracy). When
comparing accuracies, p values are also reported using the
two-tailed exact binomial test.

Quantitative Analysis

A quantitative analysis was performed to determine the
extent to which CCS-GAN can improve the performance of
a binary classifier with very few COVID-19 training images.
To test the effectiveness, the classifier with CCS-GAN aug-
mented images was compared with a baseline. The backbone
classifiers used for this task were AlexNet and VGG-19.
The baseline classifier was trained on a balanced dataset
of normal and COVID-19 CT slices ranging from 50 to 10
images per class. This baseline was compared against a clas-
sifier with additional normal images as well as augmented
with synthetic COVID-19 images as generated from CCS-
GAN. CCS-GAN was trained using the exact same COVID-
19 images as were available to the classifier. The reported
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Normal dataset Full CT-Slice

performance metrics are accuracy and confidence intervals.
Figure 4 shows a stress test which compares the accuracy
of AlexNet and VGG-19 baselines versus the addition of
synthetic COVID-19 images from CCS-GAN without trans-
fer learning. In this stress test, AlexNet and VGG-19 were
trained with a small sample of COVID-19 images ranging
from 10 images up to 50 images. In all cases, the addition of
CCSGAN augmented images improves performance relative
to the baseline. In both cases, the most dramatic improve-
ments were obtained when only 10 COVID-19 images were
used. Furthermore, AlexNet+ CCS-GAN presents a more
dramatic improvement in the classification accuracy rela-
tive to VGG-19 + CCS-GAN. Baseline AlexNet achieves
an accuracy of 62.75% (0.5780, 0.6750) with 10 COVID-
19 images, but this improves to 95.99% (0.935,0.9769)
with the addition of CCS-GAN. The accuracy of baseline
VGGI19 is 89.13% (0.8551, 0.9189) which improves to
94.99% (0.9238,0.9691) with the use of synthetic images
as generated by CCS-GAN which is statistically signifi-
cant. Slightly higher accuracies, with somewhat less sub-
stantial improvements, are obtained when the models have
access to a larger sample size of COVID-19 images. With
50 COVID-19 images, baseline AlexNet achieves accu-
racy of 88.49% (0.8496, 0.9145), whereas the inclusion of
CCS-GAN improves accuracy to 96.45% (0.9419, 0.9807)
which is statistically significant. Moreover, baseline VGG-
19 achieves accuracy of 93.22% (0.9033, 0.9550) whereas
enhancement with CCS-GAN improves accuracy to 96.99%
(0.9481, 0.9844) which is statistically significant. As such,
we observe that CCS-GAN greatly improves classification
accuracy, and this improvement is particularly pronounced
when using only 10 COVID-19 training images relative to
50 COVID-19 images. Table 1 shows a final experiment
that was performed in which the CCS-GAN was pre-trained
using 1000 normal images (split into two groups of 500
images each), prior to fine-tuning on 10 COVID-19 CT-
scan images and 1000 normal CT-scan images to generate
990 synthetic COVID-19 images for the purposes of train-
ing the classifier. The classifier was then trained using 1000
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Table 1 Comparative performance of classification using CCS GAN with 10 real COVID-19 images

Model 10 real COVID-19 CT
slices + 10 real normal CT

slices

Test data CT slices

1000 generated COVID-19 CT slices
by CCS-GAN using 10 real COVID-
19 CT slices + 1000 real normal CT
slices

Transfer learning 1000 generated
COVID-19 CT slices by CCS-
GAN using 10 real COVID-19 CT
slices + 1000 real normal CT slices

VGG-19 200 covid + 200 normal
AlexNet 200 covid +200 Normal

89.13% (0.8551, 0.9189)
62.75% (0.5780, 0.6750)

94.99% (0.9238,0.9691)
95.99% (0.935,0.9769)

98.17% (0.9609, 0.9913)
99.00% (0.9746, 0.9972)

The bold format was to signify the best performing model

normal images and 1000 COVID19 images (990 generated).
In this configuration, the classifier outperforms all of the
prior experiments and yields an accuracy of 98.17% (0.9609,
0.9913) using AlexNet, as well as an accuracy of 99.00%
(0.9746, 0.9972) using VGG19 which is not statistically
significant.

Comparative Comparison and Ablation Study

We have included a comparison study including the
COVID-CT-GAN architecture of Li et al. [7] as well as
several strong baseline methods including CycleGAN [21],
a ResNet-50-GAN, and a U-Net-based GAN. We present
generated images from each of these methods using 10 posi-
tive and 50 positive training samples along with a larger
sample size of negative images. We qualitatively and quan-
titatively compare CCS-GAN against the following GAN
implementations.

COVID-CT-GAN [8]

COVID-CT-GAN is a state-of-the-art generator architec-
ture proposed by Li et al. [7] for the purposes of COVID-19
binary image classification from CT scans. COVID-CT-
GAN is based on the auxiliary classifier GAN (ACGAN)
[24] including the concatenated version of feature pyramid
networks (FPNs) [25] to improve inference across scales, as
well as the convolutional block attention module (CBAM)
of Woo et al. [26].

Cycle-GAN [21]

Cycle-GAN is a generator architecture for image-to-
image translation that makes use of a cycle-consistent
loss as well as adversarial loss and perceptual loss. CCS-
GAN makes use of the cycle-consistent loss term first
presented in CycleGAN, and as such the comparison
against CycleGAN is included as a part of the ablation
experiment.

ResNet 50 GAN

The ResNet 50 GAN is a baseline method that uses the gen-
eral purpose ResNet 50 architecture as the backbone genera-
tor for the GAN model. The ResNet 50 GAN is therefore
included as a comparison against the basic.

U-Net GAN

U-Net GAN is also a component of CCS-GAN as the CCS-
GAN generator architecture is based on a U-Net generator
model. The U-Net GAN however does not exhibit the cycle-
consistent loss, nor does it exhibit the pulmonary segmenta-
tion methods that are part of the full CCS-GAN technique,
and as such U-Net GAN can be presented as part of the
Ablation experiment.

The selection of methods also has the benefit of consti-
tuting an Ablation study to determine if the entire CCS-
GAN methodology is necessary to obtain the reported
results. In particular, we wish to determine if both the
pulmonary segmentation and cycle-consistent adversarial
loss techniques are necessary, or if a simplified version
of CCS-GAN using only one of these methods would be
adequate for the intended purposes. The first set of abla-
tion experiments were to generate synthetic COVID-19
images using only pulmonary segmentation, only cycle-
consistent adversarial loss, with either the U-Net like
proposed generator or using a ResNet 50 generator archi-
tecture. The qualitative outcome of these experiments is
presented and all of which yield very poor image quality
relative to the full CCS-GAN which combines all of these
techniques into a single methodology. Figure 8 shows the
image quality obtained if cycle-consistent adversarial loss
is disabled. As such, the pulmonary segmentation is used
in both cases, but the generator is only trained to generate
COVID-19 images using the 10 COVID-19 input image
slices. We also made use of two generator models, the
U-Net-like architecture as used in CCS-GAN, as well as
a ResNet50 architecture which is a commonly employed
alternative in related literature. As we see in Fig. 8, when
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Res-Net 50 GAN Res-Net 50 G

IRt
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Fig.8 Comparison of generated synthetic CT slices with models trained with (left) 10 positive CT slices and (right) 50 positive CT slices
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Table 2 Comparative accuracy of CCS-GAN versus related advanced and baseline methods

Model

Accuracy using 10 real COVID-19 CT slices 4+ 1000
real normal CT slices

Accuracy using 50 real COVID-19
CT-slices + 1000 real normal CT
slices

CCS-GAN with AlexNet
CCS-GAN with VGG19
COVID-CT-GAN [7] AlexNet
COVID-CT-GAN [7] VGG19
Cycle GAN with AlexNet
Cycle GAN with VGG-19
ResNet-50 GAN with AlexNet
ResNet-50 GAN with VGG-19
U-Net GAN with AlexNet
U-Net GAN with VGG-19

94.99% (0.92383, 0.96919)
95.99% (0.93585, 0.97697)
50.25% (0.4523,0.5525)
50.50% (0.4548, 0.5550)
50.25% (0.45239, 0.55257)
50.50% (0.45487, 0.55505)
50.50% (0.45487, 0.55505)
50.25% (0.45239, 0.55257)
50.00% (0.4286, 0.5713)
50.00% (0.4286, 0.5713)

96.99% (0.94818,0.98440)
96.45% (0.94197,0.98074)
50.25% (0.4523,0.5525)

50.50% (0.4548, 0.5550)

50.50% (0.45487, 0.55505)
51.25% (0.46233, 0.56248)
51.25% (0.46233, 0.56248)
51.25% (0.46233, 0.56248)
50.00% (0.4286, 0.5713)

50.25% (0.45239,0.55257)

The bold format was to signify the best performing model

a regular GAN is trained using pulmonary segmentation,
in both cases the resulting images are unreasonable and do
not show any meaningful anatomic structure. The U-Net
generator is able to produce the rough silhouette of a lung
region, but the structure within this silhouette appears
more similar to woven fabric than to pulmonary anatomy.

The ResNet50 generator produces red noise and is una-
ble to even construct the pulmonary silhouette at such low
volumes. By comparison, the CCS-GAN is able to produce
qualitatively reasonable results showing pulmonary features.
Figure 8 shows the qualitative results of training CycleGAN
(without pulmonary segmentation) versus CCS-GAN with
two training configurations. Configuration 1 is with a dataset
of 10 slices of the COVID-19 class and 10 slices of the nor-
mal class, and Configuration 2 is with a dataset of 50 slices
of the COVID-19 class and 50 slices of the normal class.
All images are displayed with a standard grayscale window
of [— 1000 to 1000] HU. We observe that without pulmo-
nary segmentation, baseline CycleGAN does not generate
qualitatively reasonable images using such a small COVID-
19 training sample, whereas the images generated by CCS-
GAN are qualitatively reasonable and constitute a substan-
tial improvement, although they remain less than clinically
accurate. It can be seen that basic CycleGAN at such low
training volumes attempts to replicate bones and non-lung
features. Furthermore, basic CycleGAN appears to have
unreasonably high contrast exaggerating the radiodensity of
bones, while unreasonably suppressing the radiodensity of
non-bone anatomy. Finally, basic CycleGAN is only able to
synthesize few if any pulmonary features. Conversely CCS-
GAN is able to synthesize relatively superior pulmonary
features. With 50 COVID-19 images, it appears to generate
ground glass opacities. As such, it is clear that CCS-GAN,
as it includes pulmonary segmentation, is vastly superior
to a basic CycleGAN in this qualitative comparison, as the

basic CycleGAN does not yield reasonable image quality
at these low training volumes. Quantitative analysis using
these generated images was performed using AlexNet and
VGG19; however, the results are not shown as baseline mod-
els achieve very poor performance, as anticipated because
the synthetic images using only part of the CCS-GAN meth-
odology are of unacceptable quality. As such, we conclude
from these qualitative ablation experiments that the entire
CCS-GAN approach is necessary to achieve the reported
qualitative results and quantitative performance.

For the quantitative analysis, we trained AlexNet and
VGG-19 on 1000 generated COVID-19-positive and 1000
negative samples, then tested the models on 200 positive
and 200 negative COVID-19 samples. When AlexNet and
VGG-19 were trained on positive samples generated by CCS-
GAN (using 10 samples), they had an accuracy of 94.99%
(confidence interval of 92.38-96.91%) and 95.99% (confi-
dence interval of 93.55-97.69%) respectively which is not
statistically significant. We also trained AlexNet and VGG-
19 on images generated by CCS-GAN without segmentations
(using 10 and 50 samples, respectively). The models had an
accuracy of 50.25% (confidence interval of 45.2-55.2%) and
50.50% (confidence interval of 45.4-55.5%) for AlexNet, and
50.50% (confidence interval of 45.48-55.55%) and 51.25%
(confidence interval of 46.23-56.24%) for VGG-19 which
is not statistically significant. Finally, we performed a quan-
titative analysis on images generated by ResNet-50 GAN.
AlexNet trained on positive samples generated by ResNet50
(using 10 slices) had an accuracy of 50.50% (confidence
interval of 45.4-55.5%) and VGG-19 had an accuracy of
50.25% (confidence interval of 45.2-55.2%) which is not
statistically significant. When trained on positive samples
generated by ResNet50 (using 50 slices), AlexNet had an
accuracy of 51.25% (confidence interval of 46.23-56.24%)
and VGG-19 had an accuracy of 51.25% (confidence interval
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of 46.23-56.24%) which is not statistically significant. While
comparing the performance of CCS-GAN to other related
methodologies, it was observed that CCS-GAN outperformed
the other methodologies. The results were better and the sta-
tistical analysis showed a p value of less than 0.0001 Table 2.

Conclusion and Future Work

Diagnostic classification using few positive training example
images is an important problem, because in the early stages of
a pandemic, there may be a substantial lag between when the
disease is of global health concern and when large datasets are
publicly available. A similar problem may also be encountered
if screening for rare diseases in which few example images
have been collected. A novel methodology is presented that
combines intensity based pixel wise segmentation with cycle-
consistent segmentation-generative adversarial networks to
generate synthetic COVID-19 CT scans with one order of
magnitude fewer positive training examples than have been
previously demonstrated. As such, CCS-GAN allows CNN
classifiers to achieve high performance in COVID-19 diag-
nostic classification from the CT modality using only 10 CT
scan slices from 10 positive cases. As future work, we wish to
extend this approach to be able to classify with only a single
example of the target disease. Furthermore, in future wor,k we
wish to determine if the reported results are only valid for detec-
tion of COVID-19 or if the CCS-GAN approach is capable of
screening the presence of other pulmonary diseases with few
examples. We remain optimistic that in the near future, the need
for very large training datasets of a target disease will no longer
be a hindrance to the timely development of accurate Al-based
screening algorithms [27-31].
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