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Abstract
We present a novel algorithm that is able to generate deep synthetic COVID-19 pneumonia CT scan slices using a very small 
sample of positive training images in tandem with a larger number of normal images. This generative algorithm produces 
images of sufficient accuracy to enable a DNN classifier to achieve high classification accuracy using as few as 10 positive 
training slices (from 10 positive cases), which to the best of our knowledge is one order of magnitude fewer than the next 
closest published work at the time of writing. Deep learning with extremely small positive training volumes is a very difficult 
problem and has been an important topic during the COVID-19 pandemic, because for quite some time it was difficult to 
obtain large volumes of COVID-19-positive images for training. Algorithms that can learn to screen for diseases using few 
examples are an important area of research. Furthermore, algorithms to produce deep synthetic images with smaller data 
volumes have the added benefit of reducing the barriers of data sharing between healthcare institutions. We present the cycle-
consistent segmentation-generative adversarial network (CCS-GAN). CCS-GAN combines style transfer with pulmonary 
segmentation and relevant transfer learning from negative images in order to create a larger volume of synthetic positive 
images for the purposes of improving diagnostic classification performance. The performance of a VGG-19 classifier plus 
CCS-GAN was trained using a small sample of positive image slices ranging from at most 50 down to as few as 10 COVID-
19-positive CT scan images. CCS-GAN achieves high accuracy with few positive images and thereby greatly reduces the 
barrier of acquiring large training volumes in order to train a diagnostic classifier for COVID-19.
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Introduction

Although deep learning algorithms have achieved high 
performance in cross-validated diagnostic tasks including 
screening for COVID-19 from X-ray and CT modalities, 

these results have been obtained overwhelmingly using 
extensive volumes of training data, including large vol-
umes of COVID-19-positive images obtained from many 
cases. The use of large volumes of positive cases for train-
ing, however, is problematic, especially for a novel dis-
ease, as there may be a substantial lag between when the 
disease becomes a major public health concern and when 
large training datasets become publicly available, especially 
given HIPAA and IRB considerations [1, 2]. This has led to 
a great deal of research in order to determine how a deep 
learning algorithm can best screen for a disease when few 
positive training samples are available [3–6]. Successful 
deep learning–based COVID-19 diagnostic classification 
from CT scans has been demonstrated using hundreds of 
positive cases for training [3–6], but it is desirable to dem-
onstrate that accurate classification is possible using even 
fewer training cases, especially as a preventative measure 
for a potential future pandemic for which adequate training 
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examples may once again be difficult to obtain. As such, 
throughout this paper, an assumption is made that nega-
tive (normal) images are prevalent and accessible, whereas 
positive (COVID-19) images are rare and/or difficult to 
obtain. Under such an assumption, reasonable metrics for 
the evaluation of an AI-based screening algorithm includ-
ing accuracy and AUC are obtainable using a given num-
ber of positive images, even if larger volumes of negative 
images may be used freely as necessary for training of a 
deep neural network in order to achieve adequate clas-
sification performance. To the best of our knowledge, we 
present the first deep learning–based COVID-19 classifica-
tion algorithm capable of achieving a cross-validated test 
accuracy of 99.00% (VGG19) and 98.17% (AlexNet) while 
using only 10 COVID-19-positive CT scan cases for train-
ing. Furthermore, the algorithm presented obtains these 
results using only a single CT scan slice per positive training 
case. These results are obtained by using a cycle-consistent 
segmentation-generative adversarial network (CCS-GAN) 
that is designed to generate high-quality COVID-19-infected 
pulmonary images using as few positive training examples 
as possible. CCS-GAN incorporates style transfer based on 
CycleGAN, automated intensity-based pulmonary segmen-
tation, and transfer learning from relevant CT scan images, 
all of which greatly reduce the need for positive samples 
and allow the method to learn from a highly skewed train-
ing dataset with many more negative samples. An ablation 
study included in this work demonstrates that each of these 
underlying techniques alone is insufficient to achieve the 
presented results, and rather, all these techniques must be 
combined as part of the CCS-GAN methodology in order 
for high classification accuracy to be possible using very 
few positive cases for training.

Literature Review

Generative Methods for COVID‑19 Pneumonia 
Screening

There have been a number of related works that have inves-
tigated the use of GANs to improve the performance of 
COVID-19 screening from CT scans with reduced training 
volumes. However, to the best of our knowledge, all recent 
studies have made use of hundreds of positive cases for 
training [3–8]. Hundreds of cases, although small by deep 
learning standards, are still a substantial training volume to 
obtain during a pandemic, and the intent of CCS-GAN is 
to determine how advanced methods may be able to greatly 
reduce the number of positive images needed for potential 
future events. Loey et al. introduced the use of conditional 
GANs (cGAN) for the generation of deep synthetic COVID-
19 CT scans [3]. Their cGAN methodology generates both 

normal and COVID-19 images by conditioning using the 
category label (COVID/non-COVID). Goel et al. devel-
oped a similar approach making use of the InceptionV3 
network with whale optimization for hyperparameter tuning 
[4]. Li et al. [7] extended these approaches by combining 
GANs with ensemble learning and attention mechanisms.  
Mangalagiri et al. also proposed an algorithm for generating 
3D diagnostic quality COVID-19 CT scans with a condi-
tional GAN architecture [8]. This method mainly focused 
on generating the entire CT volume through subdivision 
into blocks and focusing on blockwise synthesis rather 
than slice-wise synthesis. All of these methods have dem-
onstrated improved performance of a binary classifier with 
a limited number of positive cases for training. However, all 
of these methods still require hundreds of positive cases or 
more to achieve their reported classification accuracies over 
a withheld testing set. We are unaware of any works prior 
to CCS-GAN that have been able to demonstrate compa-
rable diagnostic classification accuracy using on the order 
of 10 positive cases for training. Several recent works that 
have looked at the use of style transfer as a foundation for 
deep fake CT image synthesis. Similar to CCS-GAN, most 
of these approaches have made use of the cycle-consistent 
loss approach from CycleGAN as a backbone approach. 
However, none of these works has combined this approach 
with automated pulmonary segmentation, and as such, 
these approaches may be susceptible to artifacts in regions 
unrelated to COVID-19 disease presentation []. Sandfort  
et al. show that CycleGAN can be used to generate synthetic  
CT images by learning the transformation of contrast to 
non-contrast CT [9]. Ghassemi et al. [10] also show the 
use of CycleGANs for improved COVID-19 classification 
with transfer learning, but they have used a total of 3163 
images, which is far more than the proposed approach. Jin 
et al. incorporates prior training on a similar dataset in 
order to regularize the model and improve performance, 
especially with limited training volumes [11]. Liu et al. [6] 
generates full CT scan volumes using feature in-painting 
to insert COVID-19 opacities via alpha-opacity blending. 
Transferring disease presentation as a style is an active area 
of research, but more work is necessary to demonstrate that 
style transfer is feasible for the CT scan modality using a 
small number of positive images, as well as to prevent style 
transfer from introducing artifacts in background regions 
that are not affected by the target disease.

Very few works have looked at the possibility of using 
pulmonary segmentation in order to greatly simplify 
the problem of generating high-quality CT scan slices of 
COVID-19 pneumonia, and instead most have focused on 
attempting to generate the full CT scan slices including 
irrelevant anatomy. We demonstrate that pulmonary seg-
mentation, however, can have a major positive impact on the 
performance of GAN techniques, especially when training 
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with few examples, because when training data volumes are 
small, the GAN could be distracted by learning to gener-
ate bones, organs, and other non-lung anatomy which are 
irrelevant to COVID-19 at the expense of decreased ability 
to learn relevant pulmonary features.

Although Jiang et al. [5] was the first to make use of 
pulmonary segmentation to generate synthetic COVID-19 
CT scan slices using a dual generator/discriminator with 
dynamic element-wise sum, their segmentation approach 
requires annotation of the infected region of the lung which 
may be tedious for a radiologist to annotate for training 
data purposes [5]. We are unaware of a comparable GAN 
approach that takes advantage of automated pulmonary 
segmentation without the need for pixelwise annotated 
training data. Although there have been very few works 
to take advantage of pulmonary segmentation for the pur-
pose of deep fake COVID-19 synthesis, there are several 
recent works that have explored segmentation toward the 
identification of lesions. However, we do not believe these 
works to be directly relevant to the proposed research aims 
because lesion segmentation (CADe) is a very different task 
from diagnostic classification (CADx). Deep convolutional 
GAN (DCGAN) [12] and conditional-GAN [13] were used 
to augment medical CT images of liver lesions and mammo-
grams, yielding improved CNN-based classification accu-
racy of malignancy [14, 15]. Z. Xu et al. proposed GASNet 
in [16] which is a 3D segmentation framework containing 
a segmentation network with an embedded GAN to seg-
ment the pixel boundaries of COVID-19 opacities in CT 
scans. Although substantial progress has been made for the 
purposes of lesion segmentation, more work is necessary 
to determine the extent to which segmentation can improve 
the performance of GAN-based deep fake image synthesis 
at low training volumes.

Relation to Few‑Shot Image Classification

It is important to discuss how the task of COVID-19 
image synthesis with few positive cases is related to a 
branch of machine learning known as few-shot image 
classification [17–20]. Few-shot image classification 
is the task of constructing an N-shot K-way classifier 
using very few examples (small N) of the target data-
set. Usually, other relevant datasets are available for 
meta-learning of a low-dimensional feature embedding 
[17–20]. One of the highly influential metric-based few-
shot classifiers is the Siamese neural network [18] for 
which two identical network branches are pre-conditioned 
to learn a low-dimensional embedding suitable for a pair-
wise cosine similarity metric to distinguish between 
the image classes [18]. Matching networks improve on 
metric-based image classification, by combining a low-
dimensional embedding network with a differentiable 

k-nearest neighbor distance metric to enable end-to-end 
gradient optimization for the entire problem [19]. Proto-
typical networks further expand upon matching networks 
by restricting the distance metric to compare against a 
single M-dimensional cluster centroid or prototype per 
image category within the low-dimensional embedding 
space [20]. Although CCS-GAN is designed to reduce 
the number of positive samples necessary for COVID-
19 image classification, the CCS-GAN technique greatly 
differs in its design from these metric-based algorithms, 
because rather than learning a low-dimensional embed-
ding for a distance-metric classifier, CCS-GAN instead 
learns a manifold in order to generate a large number of 
deep synthetic images to enable a standard DNN classifier 
to achieve adequate performance.

Our task also somewhat differs from few-shot image 
classification, because of the prevalence of substantial 
class imbalance which does not adhere to the standard 
N-shot K-way problem definition. More specifically, we 
assume a large number of negative (normal) cases but very 
few positive (covid) cases. The distinction is that both the 
normal (large-N) and covid (small-N) samples are part of 
the target categories (for binary classification), as opposed 
to the N-shot K-way problem definition which assumes 
small-N for both target categories simultaneously. The 
prevalence of substantial class imbalance is one of the 
motivating factors for the use of a GAN to generate addi-
tional data to produce a balanced dataset of normal and 
covid image slices to train an accurate image classifier 
model which in our case is a standard DNN.

Significance

In this study, we demonstrate that it is possible to generate 
deep synthetic CT scan slices of COVID-19 pneumonia 
by using only 10 positive examples. In contrast, previous 
studies have required on the order of 100 positive exam-
ples or more to produce adequate results for an external 
DNN classifier. The lack of available COVID-19 images 
was a major hurdle at the onset of the pandemic due to 
the inherent difficulties in acquiring and sharing medical 
image data. Deep synthetic image generation is considered 
to be one of the most promising techniques to overcome 
the data-sharing bottleneck not just for COVID-19 pneu-
monia, but many other diseases. The smaller the minimum 
adequate sample size, the more likely it is for a single 
healthcare institution to have sufficient cases available to 
generate deep synthetic datasets that are easier to share 
with other research groups. As such CCS-GAN demon-
strates that deep synthetic images for COVID-19 can be 
generated with an order of magnitude fewer examples than 
previous studies.
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Contributions

CCS-GAN is the first architecture for COVID-19 pneumo-
nia image synthesis that can produce images of high qual-
ity for binary classification with only 10 positive training 
samples. CCS-GAN is data-efficient because it integrates 
style transfer with pulmonary segmentation thereby 
allowing the model to focus exclusively on generating the 
COVID-19 pneumonia features, rather than attempting to 
generate the entire CT scan slice including irrelevant anat-
omy. The architecture of CCS-GAN simplifies the learning 
task of generating CT-slices for COVID-19 pneumonia by 
reducing the need to generate irrelevant anatomy includ-
ing anatomy outside the lung such as bone and organs, as 
well as anatomy within the lung such as blood vessels. 
This simplification of the learning task thereby allows the 
model to focus exclusively on generating relevant COVID-
19 pneumonia features such as ground glass opacities. We 
summarize the contributions of CCS-GAN as follows:

1.	 We present the design of CCS-GAN which can gen-
erate deep synthetic COVID-19 pneumonia using an 
order of magnitude fewer positive CT slices relative 
to prior works. The synthetic images are demon-
strated to be of adequate quality for a DNN classifier 
to achieve high accuracy on a COVID-19 pneumonia 
binary image classification task.

2.	 The design of CCS-GAN is data-efficient because 
it simplifies the learning task for deep synthetic 
COVID-19 image generation by eliminating irrel-
evant anatomical features both within the lung as 
well as outside of the lung. This irrelevant anat-
omy would otherwise greatly increase the amount 
of training data required to generate high-quality 
synthetic images.

3.	 We find in our ablation experiment that the key 
features of CCS-GAN include pulmonary seg-
mentation which eliminates irrelevant anatomical 
features outside of the lung, as well as cycle con-
sistent loss which eliminates irrelevant anatomical 
features within the lung from the learning pro-
cess. If either of these key features are disabled, 
the quality of the generated images substantially 
degrades and the classifier degrades to random 
guessing.

4.	 Our quantitative and qualitative comparison 
shows that CCS-GAN is able to achieve high-
quality synthetic COVID-19 images with far fewer 
training images relative to COVID-CT-GAN [7] 
which is a state of the art method, as well as base-
line methods ResNet-50 GAN, U-Net GAN, and 
CycleGAN.

Limitations

We summarize the key limitations of this study as follows:

1.	 Although the CCS-GAN-generated deep synthetic 
images are of adequate quality for training a DNN 
classifier, these images are not intended to be of 
adequate quality to be used for clinical purposes 
by human radiologists. This is because the gen-
erated CT slices are easily distinguishable from 
real COVID-19 slices by a human, even though 
they are of adequate quality to augment a training 
sample for binary classification.

2.	 CCS-GAN operates on individual CT scan slices 
rather than whole images, which has both advantages 
and limitations. One notable limitation is that there is 
no guarantee that running CCS-GAN on consecutive 
slices will produce a coherent 3D volume, as it is 
likely that consecutive slices could generate pneu-
monia features in different locations in the lung lead-
ing to discontinuities between consecutive slices.

3.	 We have not evaluated the performance of CCS-
GAN for binary classification of diseases other than 
COVID-19 pneumonia with CT-slices. Although 
we anticipate that CCS-GAN may be applicable 
to other similar pulmonary diseases using the CT 
modality, the use of intensity-based segmentation 
and style transfer may limit the applicability of 
CCS-GAN to other modalities and/or diseases with 
substantial differences in appearance.

Methods

CCS‑GAN

Figure 1 describes the CCS-GAN approach. The input dataset 
is defined as a tuple (XN, XC) where XN is the set of normal 
images and XC is the set of images exhibiting COVID-19 
pneumonia infection. Both the normal and COVID-19-in-
fected images are segmented using binary K-means/OTSU 
thresholding to extract the pulmonary regions by creation of 
a binary segmentation mask. This segmentation mask can be 
extracted due to the large intensity difference in radiodensi-
ties between lung (less dense) and tissue (denser), even when 
the lung region is potentially affected by ground glass opaci-
ties due to pneumonia. After this, the generator models are 
pre-trained using a cycle-consistent pre-training procedure 
in which the normal images are employed for both the X 
and Y categories. Subsequently, the CycleGAN component 
is trained using unmatched pairs of normal images XN and 
COVID-19 images XC. Finally, the dataset for use with the 



1380	 Journal of Digital Imaging (2023) 36:1376–1389

1 3

classifier is augmented through the generation of deep-fake 
COVID-19-infected images through style transfer from addi-
tional normal images. This multi-faceted approach minimizes 
the number of positive real cases necessary for training 
either the GAN or the classifier and allows the methodology  
to achieve high classification accuracy in the presence of 
extremely high class imbalance between positive and negative 
examples. The training set only exhibits between 10 and 50 
positive images, with up to 2000 normal images Figs. 2 and 3.

Intensity‑Based Pulmonary Segmentation

Intensity-based pulmonary segmentation is an effective 
training-free way to extract the lung region. Intensity-based 
segmentation is effective due to the large differences in 
radiodensity between the lung region, which is mostly air, 
and the denser surrounding tissue. In order to extract the 
lung region for purposes of pulmonary segmentation, binary 
K-means thresholding was performed. K-means attempts to 
minimize the intra-cluster variance as follows:

(1)J =
∑k

j=1

∑n

1=1
∥ x

j

i
− cj ∥

2

In this equation, J is the objective function, k is the num-
ber of clusters, n is the number of cases, xj

i
  is the ith case, 

cj is the centroid for cluster j, and ||x(j)
i
− cj||

2
 is the dis-

tance function. The special case of k-means clustering with 
only two cluster centers is mathematically equivalent to the 
Otsu thresholding technique for binary image segmenta-
tion, which minimizes the intra-class variance between pixel 
intensity histograms over the image as follows:

where � is the mean of the pixel, � is the standard deviation, 
q is the sum of the probabilities, and t is the threshold ranging 
from the minimum value of the pixel to the highest value of 
pixels. Subsequent to thresholding, a fixed series of erosion 
and dilation steps are performed to suppress noise particu-
larly over blood vessels in the lung. Air outside the patient is 
also removed, and the lung mask is identified due to its cen-
tral positioning within the image frame. All pixels outside of 
the lung region are zeroed out to prevent non-lung anatomy 
tissue from contaminating the GAN and classifier training.

(2)�
2
w
(t) = q1(t) �

2
1
(t) + q2(t) �

2
w
(t)

Fig. 1   CCS-GAN approach

Fig. 2   Pulmonary segmentation
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Adversarial and Cycle Consistent Loss

CCS-GAN makes use of combined adversarial and cycle-
consistent loss functions as first introduced by Cycle-
GAN [21]. The purpose of the cycle-consistent loss is that 
one should be able to apply style transfer from normal to 
COVID-19 and vice versa. This is accomplished by having 
two generators G and F, and two discriminators DX and DY. 
Each generator and discriminator makes use of the min/max 
loss as proposed by Goodfellow as follows [21, 22]:

The cycle-consistent loss ensures that if both generators are 
applied in a row, then the resulting image should be indistinguish-
able from the original image; i.e., for any images:x ∈ X , and 
y ∈ Y , that F(G(x)) ≈ x , and that F(G(y)) ≈ y as follows [21]:

The overall loss function accounts for all the losses is 
the sum of the constituent adversarial and cycle consistent 
loss functions as follows:

(3)
L
GAN

(G, D
Y

, X, Y ) = E
Y→Pdata(Y ) [logD

Y
(Y )]

+ E
X→P data(X) [1 − logD

Y
G(X)]

(4)
L
GAN

(F, D
X

, Y , X ) = E
X→P data(X) [logD

X
(X )]

+ E
Y→ P data(Y ) [1 − logD

X
G(Y)]

(5)
Lcyc(G, F) = EX→P data(X) |F(G(X)) − X|
+ EY→ P data(Y ) |G(F(Y )) − Y |

Generator Architecture

Figure 4 describes the generator architecture of CCS-
GAN, which is inspired by U-Net [23]. This architecture 
is arranged as downsampling blocks (yellow), upsampling 
blocks (red), and finalizing blocks (green). The first layer 
is a conv2D layer which accepts as input a CT scan slice of 
size (256,256,1) and outputs features of shape (128,128,1). 
The next layer is a batch normalization layer, followed 
by a Leaky ReLU activation. These three layers comprise 
each of the downsampling blocks as seen in Fig. 4 Sect. 1 
(yellow). Furthermore, the Leaky ReLU activation layer 
has 2 output branches: a downsampling connection and a 
skip connection. The skip connection connects the output 
of a downsampling block of Sect. 1 (yellow) directly to the 
input of an upsampling block of Sect. 2 (red). Each upsam-
pling block consists of a series of conv2d, transpose, and 
concatenation layers. Section 3 (green) exhibits finalizing 
blocks of alternating conv2D and transpose layers in order 
to generate a synthetic output image of size (256,256,1).

Figure 5 compares real COVID-19 images versus deep 
synthetic images as generated by CCS-GAN as trained using 
a varying number of positive cases. Left shows real positive 
cases. Center left shows generated images as trained with 10 

(6)
L
GAN

(G, F, D
X
, D

Y
) = L

GAN
(G, D

Y
, X, Y )

+ L
GAN

(F, D
X
, Y , X) + L

cyc
(G, F)

Fig. 3   Segmented full CT-slices with Covid-19 Pneumonia (left) versus Normal (right)
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positive cases. Center right shows generated images as trained 
with 50 positive cases. Right shows generated images as trained 
with 500 positive cases. As expected, a general improvement in 
image quality is observed as the number of COVID-19-positive 

examples is increased, showing detail of blood vessels. Never-
theless, many pulmonary features are observable using very 
few positive cases, including those images when CCS-GAN is 
trained using 50 cases or even 10 cases.

Fig. 4   Generator architecture

Fig. 5   AlexNet and VGG-19 Stress Test
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Experimental Design

CCS-GAN was evaluated both quantitatively and qualita-
tively, with the overarching goal to determine the extent to 
which CCS-GAN can improve the ability of a classifier to 
identify COVID-19 infection using as few positive training 
images as possible. Furthermore, a stress test is included 
in which the number of positive images is reduced to as 
low as 10. Two CNN models were used for evaluation 
of diagnostic classification: AlexNet and VGG-19. These 
classifiers were trained for 50 epochs from scratch for 
every experiment. The Adam optimizer was used with a 
learning rate of 10 − 5. Additionally, another experiment 
was performed using a form of transfer learning from the 
normal images only. For this transfer learning experiment, 
CCS-GAN was initially pre-trained using 500 random 
unmatched samples of normal images in which both cycle-
consistent classes X and Y consisted of normal CT slices. 
The pre-trained model was subsequently fine-tuned with 
1000 normal images and 10 positive COVID-19 images. 
Finally, an ablation study was performed to compare the 
results produced by the proposed CCS-GAN method ver-
sus a baseline GAN. Throughout this ablation study, indi-
vidual features of the CCS-GAN are disabled including the 
cycle-consistent training, the pulmonary segmentation, the 
cycle-consistent transfer learning with unmatched normal 
pairs, and the U-Net inspired generator architecture (as 
replaced by ResNet-50). The key finding of this ablation 

study is that the entirety of the CCS-GAN approach is 
necessary to obtain the high-quality results, and that if any 
of these techniques is disabled, the image quality dramati-
cally suffers and becomes unsuitable for the intended use 
cases. As such, all of the underlying techniques of CCS-
GAN are necessary to achieve the reported performance.

Dataset

For training and evaluation of the GAN, a dataset was pro-
vided by the Networking Health, a nonprofit organization, 
consisting of deidentified imagery from 944 CT scans from 
patients with COVID-19 as collected across a diverse set 
of hospital institutions (Fig. 6). However, only between 10 
and 50 positive slices were employed for training the GAN 
in almost all experiments, the only exception being a con-
trol experiment in which 500 positive slices were used to 
observe how this larger number of cases affects qualitative 
image quality. From these CT scans, only the axial slices in 
the scan which exhibit substantial lung volume were consid-
ered, as determined by the pixel area of the automated lung 
segmentation mask. The normal CT scans were extracted 
from the Kaggle lung cancer dataset. This dataset consists 
of 1020 normal CT scans. All the slices of both the classes 
were resized to 256 × 256. The training dataset for the CCS-
GAN consists of COVID-19 and normal CT slices ranging 
from 10 to 50 COVID-19 images for each experiment and 
the testing dataset consisted of 200 images of each class.

Fig. 6   Results of generated 
slices using CCS-GAN versus 
real images of Covid-19 Pneu-
monia
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Statistical Inference and Hypothesis testing

CCS-GAN operates on individual 2D CT scan slices, not 
whole 3D CT scan volumes. In order to ensure sample inde-
pendence during our evaluation, we used only one axial slice 
per CT scan image for training and evaluations. The use of 
only one axial slice per image during training and evalua-
tion eliminates the potential for auto-correlated results due 
to the similarity between nearby slices within the same CT 
scan image and thereby ensures sample independence Fig. 7.

All experimental results include reported accuracies as well 
as confidence intervals using the Clopper-Pearson method 
with ⍺ = 0.05. Confidence intervals are designated by ( S≥, 
S≤), where

where x is the number of correctly identified samples, n is 
the total number of samples, and p is the unobserved popu-
lation success probability (unobserved accuracy). When 
comparing accuracies, p values are also reported using the 
two-tailed exact binomial test.

Quantitative Analysis

A quantitative analysis was performed to determine the 
extent to which CCS-GAN can improve the performance of 
a binary classifier with very few COVID-19 training images. 
To test the effectiveness, the classifier with CCS-GAN aug-
mented images was compared with a baseline. The backbone 
classifiers used for this task were AlexNet and VGG-19. 
The baseline classifier was trained on a balanced dataset 
of normal and COVID-19 CT slices ranging from 50 to 10 
images per class. This baseline was compared against a clas-
sifier with additional normal images as well as augmented 
with synthetic COVID-19 images as generated from CCS-
GAN. CCS-GAN was trained using the exact same COVID-
19 images as were available to the classifier. The reported 

(7)
S ≥ is minimum p s.t. P[Bin(n;p) < x] >

𝛼

2

S ≤ is minimum p s.t. P[Bin(n;p) < x] >
𝛼

2

performance metrics are accuracy and confidence intervals. 
Figure 4 shows a stress test which compares the accuracy 
of AlexNet and VGG-19 baselines versus the addition of 
synthetic COVID-19 images from CCS-GAN without trans-
fer learning. In this stress test, AlexNet and VGG-19 were 
trained with a small sample of COVID-19 images ranging 
from 10 images up to 50 images. In all cases, the addition of 
CCSGAN augmented images improves performance relative 
to the baseline. In both cases, the most dramatic improve-
ments were obtained when only 10 COVID-19 images were 
used. Furthermore, AlexNet + CCS-GAN presents a more 
dramatic improvement in the classification accuracy rela-
tive to VGG-19 + CCS-GAN. Baseline AlexNet achieves 
an accuracy of 62.75% (0.5780, 0.6750) with 10 COVID-
19 images, but this improves to 95.99% (0.935,0.9769) 
with the addition of CCS-GAN. The accuracy of baseline 
VGG19 is 89.13% (0.8551, 0.9189) which improves to 
94.99% (0.9238,0.9691) with the use of synthetic images 
as generated by CCS-GAN which is statistically signifi-
cant. Slightly higher accuracies, with somewhat less sub-
stantial improvements, are obtained when the models have 
access to a larger sample size of COVID-19 images. With 
50 COVID-19 images, baseline AlexNet achieves accu-
racy of 88.49% (0.8496, 0.9145), whereas the inclusion of 
CCS-GAN improves accuracy to 96.45% (0.9419, 0.9807) 
which is statistically significant. Moreover, baseline VGG-
19 achieves accuracy of 93.22% (0.9033, 0.9550) whereas 
enhancement with CCS-GAN improves accuracy to 96.99% 
(0.9481, 0.9844) which is statistically significant. As such, 
we observe that CCS-GAN greatly improves classification 
accuracy, and this improvement is particularly pronounced 
when using only 10 COVID-19 training images relative to 
50 COVID-19 images. Table 1 shows a final experiment 
that was performed in which the CCS-GAN was pre-trained 
using 1000 normal images (split into two groups of 500 
images each), prior to fine-tuning on 10 COVID-19 CT-
scan images and 1000 normal CT-scan images to generate 
990 synthetic COVID-19 images for the purposes of train-
ing the classifier. The classifier was then trained using 1000 

Fig. 7   Examples of real Covid-19 versus Normal CT-Slices.
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normal images and 1000 COVID19 images (990 generated). 
In this configuration, the classifier outperforms all of the 
prior experiments and yields an accuracy of 98.17% (0.9609, 
0.9913) using AlexNet, as well as an accuracy of 99.00% 
(0.9746, 0.9972) using VGG19 which is not statistically 
significant.

Comparative Comparison and Ablation Study

We have included a comparison study including the 
COVID-CT-GAN architecture of Li et al. [7] as well as 
several strong baseline methods including CycleGAN [21], 
a ResNet-50-GAN, and a U-Net-based GAN. We present 
generated images from each of these methods using 10 posi-
tive and 50 positive training samples along with a larger 
sample size of negative images. We qualitatively and quan-
titatively compare CCS-GAN against the following GAN 
implementations.

COVID‑CT‑GAN [8]

COVID-CT-GAN is a state-of-the-art generator architec-
ture proposed by Li et al. [7] for the purposes of COVID-19 
binary image classification from CT scans. COVID-CT-
GAN is based on the auxiliary classifier GAN (ACGAN) 
[24] including the concatenated version of feature pyramid 
networks (FPNs) [25] to improve inference across scales, as 
well as the convolutional block attention module (CBAM) 
of Woo et al. [26].

Cycle‑GAN [21]

Cycle-GAN is a generator architecture for image-to-
image translation that makes use of a cycle-consistent 
loss as well as adversarial loss and perceptual loss. CCS-
GAN makes use of the cycle-consistent loss term first 
presented in CycleGAN, and as such the comparison 
against CycleGAN is included as a part of the ablation 
experiment.

ResNet 50 GAN

The ResNet 50 GAN is a baseline method that uses the gen-
eral purpose ResNet 50 architecture as the backbone genera-
tor for the GAN model. The ResNet 50 GAN is therefore 
included as a comparison against the basic.

U‑Net GAN

U-Net GAN is also a component of CCS-GAN as the CCS-
GAN generator architecture is based on a U-Net generator 
model. The U-Net GAN however does not exhibit the cycle-
consistent loss, nor does it exhibit the pulmonary segmenta-
tion methods that are part of the full CCS-GAN technique, 
and as such U-Net GAN can be presented as part of the 
Ablation experiment.

The selection of methods also has the benefit of consti-
tuting an Ablation study to determine if the entire CCS-
GAN methodology is necessary to obtain the reported 
results. In particular, we wish to determine if both the 
pulmonary segmentation and cycle-consistent adversarial 
loss techniques are necessary, or if a simplified version 
of CCS-GAN using only one of these methods would be 
adequate for the intended purposes. The first set of abla-
tion experiments were to generate synthetic COVID-19 
images using only pulmonary segmentation, only cycle-
consistent adversarial loss, with either the U-Net like 
proposed generator or using a ResNet 50 generator archi-
tecture. The qualitative outcome of these experiments is 
presented and all of which yield very poor image quality 
relative to the full CCS-GAN which combines all of these 
techniques into a single methodology. Figure 8 shows the 
image quality obtained if cycle-consistent adversarial loss 
is disabled. As such, the pulmonary segmentation is used 
in both cases, but the generator is only trained to generate 
COVID-19 images using the 10 COVID-19 input image 
slices. We also made use of two generator models, the 
U-Net-like architecture as used in CCS-GAN, as well as 
a ResNet50 architecture which is a commonly employed 
alternative in related literature. As we see in Fig. 8, when 

Table 1   Comparative performance of classification using CCS GAN with 10 real COVID-19 images

The bold format was to signify the best performing model

Model Test data CT slices 10 real COVID-19 CT 
slices + 10 real normal CT 
slices

1000 generated COVID-19 CT slices 
by CCS-GAN using 10 real COVID-
19 CT slices + 1000 real normal CT 
slices

Transfer learning 1000 generated 
COVID-19 CT slices by CCS-
GAN using 10 real COVID-19 CT 
slices + 1000 real normal CT slices

VGG-19 200 covid + 200 normal 89.13% (0.8551, 0.9189) 94.99% (0.9238,0.9691) 98.17% (0.9609, 0.9913)
AlexNet 200 covid + 200 Normal 62.75% (0.5780, 0.6750) 95.99% (0.935,0.9769) 99.00% (0.9746, 0.9972)
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Fig. 8   Comparison of generated synthetic CT slices with models trained with (left) 10 positive CT slices and (right) 50 positive CT slices
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a regular GAN is trained using pulmonary segmentation, 
in both cases the resulting images are unreasonable and do 
not show any meaningful anatomic structure. The U-Net 
generator is able to produce the rough silhouette of a lung 
region, but the structure within this silhouette appears 
more similar to woven fabric than to pulmonary anatomy.

The ResNet50 generator produces red noise and is una-
ble to even construct the pulmonary silhouette at such low 
volumes. By comparison, the CCS-GAN is able to produce 
qualitatively reasonable results showing pulmonary features. 
Figure 8 shows the qualitative results of training CycleGAN 
(without pulmonary segmentation) versus CCS-GAN with 
two training configurations. Configuration 1 is with a dataset 
of 10 slices of the COVID-19 class and 10 slices of the nor-
mal class, and Configuration 2 is with a dataset of 50 slices 
of the COVID-19 class and 50 slices of the normal class. 
All images are displayed with a standard grayscale window 
of [− 1000 to 1000] HU. We observe that without pulmo-
nary segmentation, baseline CycleGAN does not generate 
qualitatively reasonable images using such a small COVID-
19 training sample, whereas the images generated by CCS-
GAN are qualitatively reasonable and constitute a substan-
tial improvement, although they remain less than clinically 
accurate. It can be seen that basic CycleGAN at such low 
training volumes attempts to replicate bones and non-lung 
features. Furthermore, basic CycleGAN appears to have 
unreasonably high contrast exaggerating the radiodensity of 
bones, while unreasonably suppressing the radiodensity of 
non-bone anatomy. Finally, basic CycleGAN is only able to 
synthesize few if any pulmonary features. Conversely CCS-
GAN is able to synthesize relatively superior pulmonary 
features. With 50 COVID-19 images, it appears to generate 
ground glass opacities. As such, it is clear that CCS-GAN, 
as it includes pulmonary segmentation, is vastly superior 
to a basic CycleGAN in this qualitative comparison, as the 

basic CycleGAN does not yield reasonable image quality 
at these low training volumes. Quantitative analysis using 
these generated images was performed using AlexNet and 
VGG19; however, the results are not shown as baseline mod-
els achieve very poor performance, as anticipated because 
the synthetic images using only part of the CCS-GAN meth-
odology are of unacceptable quality. As such, we conclude 
from these qualitative ablation experiments that the entire 
CCS-GAN approach is necessary to achieve the reported 
qualitative results and quantitative performance.

For the quantitative analysis, we trained AlexNet and 
VGG-19 on 1000 generated COVID-19-positive and 1000 
negative samples, then tested the models on 200 positive 
and 200 negative COVID-19 samples. When AlexNet and 
VGG-19 were trained on positive samples generated by CCS-
GAN (using 10 samples), they had an accuracy of 94.99% 
(confidence interval of 92.38–96.91%) and 95.99% (confi-
dence interval of 93.55–97.69%) respectively which is not 
statistically significant. We also trained AlexNet and VGG-
19 on images generated by CCS-GAN without segmentations 
(using 10 and 50 samples, respectively). The models had an 
accuracy of 50.25% (confidence interval of 45.2–55.2%) and 
50.50% (confidence interval of 45.4–55.5%) for AlexNet, and 
50.50% (confidence interval of 45.48–55.55%) and 51.25% 
(confidence interval of 46.23–56.24%) for VGG-19 which 
is not statistically significant. Finally, we performed a quan-
titative analysis on images generated by ResNet-50 GAN. 
AlexNet trained on positive samples generated by ResNet50 
(using 10 slices) had an accuracy of 50.50% (confidence 
interval of 45.4–55.5%) and VGG-19 had an accuracy of 
50.25% (confidence interval of 45.2–55.2%) which is not 
statistically significant. When trained on positive samples 
generated by ResNet50 (using 50 slices), AlexNet had an 
accuracy of 51.25% (confidence interval of 46.23–56.24%) 
and VGG-19 had an accuracy of 51.25% (confidence interval 

Table 2   Comparative accuracy of CCS-GAN versus related advanced and baseline methods

The bold format was to signify the best performing model

Model Accuracy using 10 real COVID-19 CT slices + 1000 
real normal CT slices

Accuracy using 50 real COVID-19 
CT-slices + 1000 real normal CT 
slices

CCS-GAN with AlexNet 94.99% (0.92383, 0.96919) 96.99% (0.94818,0.98440)
CCS-GAN with VGG19 95.99% (0.93585, 0.97697) 96.45% (0.94197,0.98074)
COVID-CT-GAN [7] AlexNet 50.25% (0.4523,0.5525) 50.25% (0.4523,0.5525)
COVID-CT-GAN [7] VGG19 50.50% (0.4548, 0.5550) 50.50% (0.4548, 0.5550)
Cycle GAN with AlexNet 50.25% (0.45239, 0.55257) 50.50% (0.45487, 0.55505)
Cycle GAN with VGG-19 50.50% (0.45487, 0.55505) 51.25% (0.46233, 0.56248)
ResNet-50 GAN with AlexNet 50.50% (0.45487, 0.55505) 51.25% (0.46233, 0.56248)
ResNet-50 GAN with VGG-19 50.25% (0.45239, 0.55257) 51.25% (0.46233, 0.56248)
U-Net GAN with AlexNet 50.00% (0.4286, 0.5713) 50.00% (0.4286, 0.5713)
U-Net GAN with VGG-19 50.00% (0.4286, 0.5713) 50.25% (0.45239,0.55257)
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of 46.23–56.24%) which is not statistically significant. While 
comparing the performance of CCS-GAN to other related 
methodologies, it was observed that CCS-GAN outperformed 
the other methodologies. The results were better and the sta-
tistical analysis showed a p value of less than 0.0001 Table 2.

Conclusion and Future Work

Diagnostic classification using few positive training example 
images is an important problem, because in the early stages of 
a pandemic, there may be a substantial lag between when the 
disease is of global health concern and when large datasets are 
publicly available. A similar problem may also be encountered 
if screening for rare diseases in which few example images 
have been collected. A novel methodology is presented that 
combines intensity based pixel wise segmentation with cycle-
consistent segmentation-generative adversarial networks to 
generate synthetic COVID-19 CT scans with one order of 
magnitude fewer positive training examples than have been 
previously demonstrated. As such, CCS-GAN allows CNN 
classifiers to achieve high performance in COVID-19 diag-
nostic classification from the CT modality using only 10 CT 
scan slices from 10 positive cases. As future work, we wish to 
extend this approach to be able to classify with only a single 
example of the target disease. Furthermore, in future wor,k we 
wish to determine if the reported results are only valid for detec-
tion of COVID-19 or if the CCS-GAN approach is capable of 
screening the presence of other pulmonary diseases with few 
examples. We remain optimistic that in the near future, the need 
for very large training datasets of a target disease will no longer 
be a hindrance to the timely development of accurate AI-based 
screening algorithms [27–31].
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