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Abstract: We introduce an active, semisupervised algorithm that utilizes Bayesian experimental
design to address the shortage of annotated images required to train and validate Artificial Intelligence
(AI) models for lung cancer screening with computed tomography (CT) scans. Our approach
incorporates active learning with semisupervised expectation maximization to emulate the human
in the loop for additional ground truth labels to train, evaluate, and update the neural network
models. Bayesian experimental design is used to intelligently identify which unlabeled samples
need ground truth labels to enhance the model’s performance. We evaluate the proposed Active
Semi-supervised Expectation Maximization for Computer aided diagnosis (CAD) tasks (ASEM-CAD)
using three public CT scans datasets: the National Lung Screening Trial (NLST), the Lung Image
Database Consortium (LIDC), and Kaggle Data Science Bowl 2017 for lung cancer classification using
CT scans. ASEM-CAD can accurately classify suspicious lung nodules and lung cancer cases with an
area under the curve (AUC) of 0.94 (Kaggle), 0.95 (NLST), and 0.88 (LIDC) with significantly fewer
labeled images compared to a fully supervised model. This study addresses one of the significant
challenges in early lung cancer screenings using low-dose computed tomography (LDCT) scans and
is a valuable contribution towards the development and validation of deep learning algorithms for
lung cancer screening and other diagnostic radiology examinations.

Keywords: active learning; artificial intelligence; computer-aided diagnosis; deep learning; expectation
maximization; lung cancer screening; semisupervised learning

1. Introduction

Lung cancer is a highly prevalent cancer type and a major cause of cancer-related
deaths, accounting for 18.4% of such deaths [1]. It is also among the most commonly
diagnosed cancers, accounting for 11.4% of new cancer cases [2,3]. Low-dose computed
tomography (LDCT) has been shown to be an effective tool for early lung cancer screening,
resulting in a 20% reduction in mortality rates [4]. One of the major challenges of LDCT is
the high false-positive rate (23%) [4], leading to unnecessary tests, patient anxiety, and inva-
sive procedures. Currently, all low-dose CT scans (LDCTs) for screening are adjudicated for
risk by radiologists using the Lung-screening Reporting and Data System (Lung-RADS) [5],
which assigns a score (1, 2, 3, 4A, 4B, or 4X) based on the most worrisome nodule in
an LDCT. An algorithm then suggests the next step in the workup of these findings for
the clinician. Balancing the high probability of malignancy with the significant difficulty
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associated with investigating the nodule’s etiology leaves the clinicians with a management
conundrum of intervening versus watchful waiting. Biopsy strategies for these nodules are
either remarkably invasive (e.g., surgical resection) or fraught with increased risk of com-
plications and poor yields. Waiting for the nodule to grow to a size that is more amenable
to biopsy also allows the potential to metastasize whilst waiting. Al strategies demonstrate
excellent performance in predicting the malignancy potential of a nodule within a year [6,7].
Computer-aided diagnostic (CAD) tools based on Al have demonstrated high efficacy in
low-dose CT lung cancer screening, with the performance levels approaching those of
double readings by radiologists. These tools have been recommended for use as second
reader [7]. A review of Al-based CAD research revealed that deep learning networks had a
pooled sensitivity and specificity of 93% and 68%, respectively, [8].

Advancements in deep learning have led to significant improvements in medical
image analysis [9], the accuracy of CAD-based cancer screening in particular [10-16], and
the use of CAD tools to support clinical findings [9]. Most fully supervised deep learning
algorithms are often limited by scarcity of annotations for medical image analysis. The cost
of annotating 3D medical images at the voxel level is high, since it is labor-intensive, requires
proficient clinical experts, and could be inaccurate [17-21]. Therefore, algorithms that can
learn and generalize from limited, sparse annotations with limited supervision are essential
for deep learning models in medical image analysis [22]. Given the rapid expansion of Al
applications in healthcare, it is crucial to establish standardized Al software specifications
and implement a safe process for continuous evaluation, updating, and evolution that can
be used in clinical practice [7,23,24]. In real-world clinical operation, obtaining ground truth
data for evaluation and monitoring of Al models require clinicians and experts to provide
feedback and annotation, which is impractical for real-time or near-real-time practice. In
many cases, the ground truth labels are not available until further procedural tests are
performed and confirmed. Transfer learning [9,25,26], self-supervised learning [19,20,27,28],
semi-supervised learning [29,30], uncertainty estimations [31], and active learning [32,33]
are some approaches to overcome the need for human annotations.

Our study employs both active learning and semisupervised learning techniques to
train and evaluate Al models to classify lung cancer malignancy from CT scans using a
smaller subset of labeled images. We demonstrate an active, semisupervised expectation
maximization for CAD tasks (ASEM-CAD) using pulmonary CT scans. Semisupervised
learning is performed using an expectation maximization (EM) algorithm to train CNN-
based CAD algorithms with observed and latent image labels (pseudolabels). Previously,
we demonstrated semi-supervised and active, semisupervised algorithms for lung cancer
screening with limited experiments [34,35]. Our key contributions are:

*  We present a novel algorithm that combines active learning with semisupervised
expectation maximization to simulate human-in-the-loop by adding additional ground
truth (i.e., labeled data) to train and update the model. This algorithm employs a
Bayesian experimental design to estimate the uncertainty of prediction outcomes
without access to ground truth and to identify unlabeled samples that require expert
labeling to enhance the model performance during training or updating.

e  The ASEM-CAD algorithm was evaluated using three public CT scan datasets and
two deep learning architectures (3D CNN and ResNet34) for lung cancer classification.
The experimental results demonstrate high true positive rates and lower false positive
rates with significantly fewer labeled images. This accomplishment represents a
valuable step towards developing accurate and efficient deep learning algorithms for
computer-aided diagnosis (CAD).

To the best of our knowledge, this is the first study to combine semisupervised algo-
rithm with an active learning CAD system that involves human-in-the-loop and demon-
strates its effectiveness in classifying malignancy in lung cancer cases (whole CT scans) and
malignancy in lung nodules using three low-dose CT scan datasets. The training algorithm
and the Bayesian experimental design for estimating uncertainty of the prediction outcome
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without accessing to the ground truth labels are generic in that they can be applied to other
Al applications.

The paper is organized as follows: In Section 2, we review the current semisupervised
approaches. Section 3 outlines our proposed architecture, methods, and algorithm. The
experimental design is presented in Section 4, while Section 5 provides a detailed evalua-
tion. Finally, we conclude this work with the main findings and suggest potential future
directions in this field of research.

2. Related Work

Applying artificial intelligence (Al) algorithms and deep learning (DL) techniques
to automate medical image analysis is an active area of research. Medical image analysis
using deep convolutional neural networks (DCNNs) [36—41] relies heavily on annotated
3D medical images, which are difficult to create, owing to the labor-intensive process and
necessary prowess that is often unavailable [19-21]. Recent studies have used LDCT-based
radiomic signatures for lung cancer screening [42] to predict the survival in patients based
on the risk score generated by radiomic models [43].

Semi-Supervised learning (SSL) is a learning approach that can utilize a limited
amount of labeled data along with a significant amount of unlabeled data to improve model
performance [44]. Typical SSL methods include entropy minimization [45-47], self learning
or pseudo labeling [48-51], and consistency regularization [52-55]. SSL is extensively
employed in medical image processing tasks such as image detection, segmentation, and
classification [30,56-61].

Generative models are another category of techniques commonly utilized in SSL
and have been proven to generate additional realistic samples [62]. In [63,64], generative
adversarial networks (GANSs) utilized labeled and unlabeled data with a localization
classifier to extract information from unlabeled data, which was otherwise insufficient.
One of the most influential among the generative techniques is expectation maximization
(EM), which was introduced by Dempster et al. [65]. Although EM assumes an underlying
generative model, it has been shown to be compatible with CNNs [66], in which EM can be
applied to improve the semantic segmentation of natural images.

Semi-Supervised Active Learning: Several recent studies have explored the combi-
nation of SSL and AL, resulting in semisupervised active Learning (SSAL). For example,
in [67,68], SSL was employed to learn the latent representation of both labeled and un-
labeled samples, with AL performed on the learned semantic distribution. One popular
AL method is uncertainty sampling [69], which selects the least certain data point for
acquisition of its ground truth label. Additionally, an AL-based approach [70] was used
to overcome data scarcity issues by iteratively selecting the most informative unlabeled
samples for labeling and include them in the labeled dataset.

Various techniques have been utilized in prior research to assess the degree of un-
certainty in active learning, including Monte Carlo dropout [71], ensemble models [72],
and data augmentation for classification tasks [73]. In a recent study, McKinly et al. [74]
proposed a loss function, a generalized version of binary cross entropy, that accounts for
label uncertainty.

Reversed active learning (RAL) [75] is an approach that remove samples found to be
uninformative based on computed confidence intervals. While active learning adds ground
truth labels to the dataset, the reverse active learning approach removes samples from the
dataset, thereby reducing the number of samples in the overall training set.

3. Methodology

In this section, we discuss the basic components of ASEM-CAD.

3.1. ASEM-CAD Design

ASEM-CAD uses a combination of active and semisupervised learning to improve
the prediction accuracy using minimal data labels. The active learning approach is based
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on two key principles: (i) a large amount of unlabeled data is available frequently, and (ii)
the learning model queries the oracle (e.g., human annotator) for labels during training
iterations. Figure 1 shows an overview of the ASEM-CAD learning model. The algorithm
initiates the training of a deep learning model by utilizing a subset of training data that
has been fully labeled (observed) by experts. Once this process is complete, the algorithm
generates an initial model. Then, the initial model is utilized to assign labels to unlabeled
(unobserved) images and to retrain the model.
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Figure 1. An active, semisupervised expectation maximization (ASEM) framework for CAD tasks.

The expectation maximization (EM) algorithm is employed to perform semisupervised
learning. This algorithm estimates the maximum likelihood of unobserved (latent) image
labels, given the current model. Each ASEM iteration retrains the model in maximization
and active retraining phases, with improved latent variable estimates in each iteration.
This approach reduces the computational burden of retraining the model in each iteration
by reusing the weights from the previous iterations. While EM attempts to maximize the
likelihood, active Learning minimizes the cross entropy. In practical machine learning
applications, these have equivalent global optima, assuming statistical independence and
approximately equivalent optima, as shown in Equation (1).

= Y_p(Xi)log(p(Xi|0)) ~ —log(p(X]0)) M)

3.2. Active Learning with Expectation Maximization

Expectation maximization [65] is a widely used clustering algorithm that enables
parameter estimation in probabilistic models with incomplete data. The EM algorithm
involves two steps per iteration: (i) expectation, which computes the conditional expectation
of the log likelihood (i.e., probability distribution) over completions of missing labeled
data, given the current model; and (ii) maximization, which involves re-estimating the
model parameters to maximize the expected log likelihood of the model, given the current
expected value of the latent variables.

In an unsupervised model, EM is initiated in cases in which the classes are predefined
and parameters are random. However, in a semisupervised context, the initial model is
trained using a subset of training data with ground truth labels. In the subsequent phase,
which is unsupervised, the model is retrained on all the unlabeled data to infer the latent
variables (i.e., labels). Here, the classification entropy provided by the neural network
serves as the clustering metric, which adds on to the loss function.

EM initially generates a classifier (f). The algorithm uses 6 to classify the data and
generate a hypothesis based on the labels inferred in the previous step. EM attempts to
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determine latent variable Z (i.e., unknown labels), thereby maximizing the likelihood of
observing the image X in the neural network model.

The likelihood of the latent variable Z is given by the integral of the joint probability
density of all the possible values of the latent variable Z, as in Equation (2):

L(6;X) = P(X|0) = /p(X,Z|6)dZ @)

EM alternates between the expectation and maximization phases to solve the integral
in Equation (2). The expected value of the latent variable Z, given the t™ iteration of the
model ', is calculated in expectation. Ez |y g, the expected value of the latent variable (Z),
can be computed by classifying the probabilities of the unlabeled image labels using the
model coefficients (8%) in the t iteration,as shown below in Equation (3):

Q(6]0") = Ez|x ot [logL(6; X, Z)] ®)

The maximum likelihood model (6*!) is computed in the maximization phase, given
the expected value of the latent variable (Z). The deep learning model is retrained using the
expected values of the image labels in the t" iteration to compute the maximum likelihood
model as in Equation (4):

0"t = argmaxsQ(0)6") (4)

Furthermore, active learning optimizes the expected posterior cross entropy of the
model, given an alternate experimental design ¢, along with the labeled sample (y;). The
expected posterior cross entropy is expressed as:

U(@) =~ [ 1og(p(X16,i,))dy; ©)
Applying the Bayes rule to Equation (5):
/log(z? vil6, X, ¢) EX|9 gdy (©)

The integral in Equation (6) is computationally expensive since it requires retraining
of the algorithm for each sample choice and sample label prior to choosing an appropriate
sample. To simplify this process, we make an approximation since a single sample has
a negligible impact on the model prediction for most samples, and the predicted sample
yi makes the greatest local contribution to posterior cross entropy. Therefore, the change
in posterior cross entropy is approximately equal to the normalized classification entropy
across all possible K labels, as expressed in Equation (7):

—1
log(K) =

When active learning is performed in small batches rather than in a single step, the
average classification entropy of all of the selected samples in the batch is given as:

K
AU(E) = Lnorm (yi) = Z p(ix)log(p(yix)) ()

Z Inorm (8)

yeY

aog (I norm |Y|

The deep learning model is retrained after the additional labels are annotated by
Oracle. The ASEM-CAD algorithm alternates between steps (3), (4) and (8) to enhance
the maximum likelihood estimate and reduce the classification cross entropy when latent
variables are present, while optimizing Bayesian experimental design. It is essential to note
that the algorithm does not ensure convergence to a global optimum. Instead, it attains
a local optimal experimental design and a local optimal estimate of latent variables for
semisupervised learning.
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3.3. Bayesian Approximation

The main factors impacting the performance of the EM meta-algorithm (Algorithm 1)
are (i) accuracy of the trained initial model; (ii) the label quality, which depends on
Equation (2); and (iii) the acquisition policy for additional ground truth [76]. Monte Carlo
(MC) dropout has been used as a Bayesian approximation method to generate labels in
a semisupervised approach [77] and to evaluate the prediction uncertainty with active
learning [76].

The posterior cross entropy in Equation (5) can be optimized to decrease the model
loss, given the model weights 6, experimental design &, and the labeled sample (y;). MC
dropout is applied to infer the model output () for a fixed number of iterations to calculate
the average probability of outputs as:

(X, 0)vX )

1=

17— F _1
y_fT(Xre)_ T

t=1

where f) indicates the neural network function with dropout. Classification entropy, as
defined in (7), is the metric used to determine how close the output of neural network () is
from the predicted labels (pseudolabels) of the samples (as defined in line 8 of Algorithm 1).
Other approaches for label acquisition are discussed in [76].

Algorithm 1: Active Learning with Bayesian Approximation

Data: Input Data X, labels G, unlabeled data X', ground truth g’
Result: weights w
1 Initialize the data (X,G) with minimal samples and the weights w
2 train w on (X,G) to minimize the loss £
3 repeat

4 Expectation Maximization step
5 | whileVx' € X' do
6 infer the model output i’ using f, w and x’ with Bayesian Approximation
7 estimate the classification uncertainty via entropy
8 if classification entropy is below threshold 6 then
. (X,G) + (XG) U (x, p(y)
10 X'+ X'\«
11 end
12 if classification entropy higher than threshold 6 then
13 Active Learning: ask the oracle for ground truth g’
14 (X,G) + (X,G)u (¥, ¢)
15 X'+ X'\«
16 end
17 end
18 train w for N epochs with the updated (X, G) to minimize the loss £

19 until convergence;

MC dropout inference is applied to all data points for which the ground truth is
acquired from the oracle during training for threshold estimation. The average classification
entropy is calculated as in Equation (8). In every iteration of the EM algorithm, all the data
samples with entropy values below the chosen threshold are added. The entropy of the
average classification results under MC dropout is used for for both semi-supervised and
active learning (lines 8 and 12 in Algorithm 1) for all ’ € X’, where X' represents unlabeled
data points. For the samples with highest entropy, the oracle provides the ground truth
(¢')- The newly labeled data point (x’, ¢’) is added to the set of original data points (X) and
labels (G), thereby removing x” from X'.
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4. Experimental Design
4.1. Datasets

We demonstrate ASEM-CAD using three publicly available computed tomography
(CT) datasets: the National Lung Screening Trial (NLST), the Lung Image Database Con-
sortium (LIDC-IDRI), and Kaggle Data Science Bowl 2017 (Kaggle2017). NLST was a
randomized trial conducted at multiple centers to screen lung cancer with low-dose CT for
individuals aged 55-74 years with a significant smoking history [78]. Electronic calipers
were used by radiologists specialized in standardized image interpretation to measure
nodule size. Of the 26,722 patients in the CT screening arm of the NLST, 16,684 were
excluded, as no abnormality was recorded in the NLST database. In our study, CT studies
from 4075 scans from the NLST dataset were used. Each CT scans was annotated with 1 if
the patient was diagnosed with cancer, and the non-cancerous CT scans were labeled as 0.
Of the 4075 scans, 639 patients (15.7%) were diagnosed with lung cancer.

Kaggle Data Science Bowl provided labeled low-dose CT scans from 1375 patients
to facilitate the development of novel machine learning algorithms for automated CT
diagnosis [79]. This includes images with associated binary labels for 356 patients (25.8%)
diagnosed with lung cancer within one year of the scan.

The LIDC-IDRI dataset [80] is a publicly available and web-accessible international
resource initiated by the National Cancer Institute (NCI), further developed by the Founda-
tion for the National Institutes of Health (FNIH), and supported by the U.S. Food and Drug
Administration (FDA). The LIDC dataset consists of thoracic computed tomography (CT)
scans for diagnostic and lung cancer screening purposes. The scans contain marked-up an-
notated lesions provided by four experienced thoracic radiologists. This dataset is the result
of a collaboration between seven academic centers and eight medical imaging companies,
consisting of 1018 CT cases with thoracic CT scan images in the DICOM format, along with
an additional XML file per patient. Based on the nodule size, the lesions were categorized
into three categories: nodules > or =3 mm, nodules <3 mm, and non-nodules > or =3 mm.
Furthermore, it consists of malignancy ratings from 1 to 5 based on the nodule size, type,
and characteristics. In the LIDC-IDRI dataset, nodules that are equal to or larger than 3 mm
were annotated by four board-certified radiologists to include subtlety, internal structure,
calcification, sphericity, margin, lobulation, spiculation, and texture image characteristics.
Subtlety refers to the degree of contrast between the lung and its surrounding tissues [80].
Internal structure relates to the components that are present within the nodule. Calcification
is the appearance of calcium in the nodule, with smaller nodules more likely to exhibit
visible calcium. A central, non-central, laminated, or popcorn calcification rating is highly
indicative of a benign nodule. Sphericity refers to the roundness of the nodule. Margin
relates to how well-defined the edges of the nodule appear. Lobulation is an assessment of
whether the nodule has a visible lobular shape, which is a sign that the nodule is benign.
Spiculation refers to the presence of spicules or spike-like formations along the border of
the nodule, with a spiculated margin indicating malignancy. Finally, texture refers to the
internal density of the nodule and is an important characteristic when differentiating be-
tween partly solid and non-solid textures, which can complicate the process of establishing
the nodule boundary. A summary of the three datasets is shown in Table 1.

Table 1. Summary of datasets.

Dataset Samples Positive Samples Type
NLST 4075 639 (15.7%) Whole CT scans
Kagglel7 1375 356 (25.8%) Whole CT scans
LIDC-IDRI 4253 1653 (38.9%) 3D Nodules from

1018 CT scans
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Data Preprocessing

The Kaggle and NLST data contain chest whole-slice CT scans with varied slice
numbers and a slice thickness of less than 3 mm. The CT scans are a 3D volume, with
a single intensity value expressed in Hounsfield scale standardized units for each voxel.
An axial slice of the dataset is 512 x 512, and the number of axial slices per CT scan
varies between 150 and 225 in each volume. Chunks of 20 slices per patient were created
by averaging adjacent slices, and each 512 x 512 image was resized to 50 x 50 due to
the burden of computing resources such as RAM and CPU processing time. Thus, the
dimensions of the input 3D volume for each patient is 50 x 50 x 20, with a label of 1 or 0
representing cancer and non-cancerous cases, respectively. Some benign and malignant
nodules from an example CT scan are shown in Figures 2 and 3, in which the difference in
appearance between a benign and a malignant nodule can be observed.

The Kaggle dataset includes the data for 1375 patients with 356 cancer cases, account-
ing for 25.8% of the entire dataset, with the non-cancer cases representing 74% of the data.
NLST data include 2538 cases, with 397 and 2141 cancer and non-cancer outcomes, respec-
tively. The LIDC-IDRI dataset consists of 1018 CT scans, and each slice has a thickness of
512 x 512 pixels. Radiologists outlined nodules larger than 3 mm in all sections where
they appeared by marking the pixels that comprise the outline at the first pixel outside the
nodule. These annotations are provided in the form of nodule regions of interest, along
with their z-positions. These spatial co-ordinates where used to create a 3D box and a 3D
mask centered on the annotations of the lung nodule. Thus, we cropped the nodules using
a box size of 32 pixels x 32 pixels x, with 16 slices centered on the annotated location
of the CT scan. To assign a label for each nodule, the malignancy scores provided by
board-certified radiologists were used. The malignancy scores range from 1 to 5 (1 indicates
highly unlikely to be malignant, 2 is moderately unlikely, 3 is intermediate, 4 is moderately
suspicious to be malignant, and 5 is highly suspicious to be malignant). The nodules of in-
termediate malignancy (malignancy score of 3) were not considered for binary classification
in this work.

In summary, a total of 4253 nodules with dimensions 32 x 32 x 16 were analyzed,
each associated with a label of 1 (cancer) or 0 (non-cancer). In total, 1653 cancerous and
2600 non-cancerous nodules were included in the analysis.

Figure 2. An example of a benign lung nodule from the CT scans.

Figure 3. An example of a malignant lung nodule from the CT scans.

4.2. Network Architectures

ASEM-CAD was evaluated using a 3D convolutional neural network (3D CNN) and
3D residual networks.
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4.2.1. 3D Convolutional Neural Networks (3D CNNs)

The 3D-CNN model is a variant of the traditional CNN and is composed of a feature
extractor and an ANN (artificial neural network) classifier. Figure 4 depicts the model
architecture for this evaluation, which consists of five CNN layers and two fully connected
dense layers. The input 3D lung volume is passed through the first layer of the CNN using
a sliding window of 3 x 3 x 3. The output of the first layer has dimensions of (32,32,16,1)
and is passed to the next convolution layer, resulting in an output of with dimensions
of (32,32,16,8). Each convolution layer uses a 3 x 3 x 3 kernel and regularizers with a
regularization factor of 0.001. The activation function after each convolution layer is ReLU.
The max pooling layer downsamples the feature maps before passing them on to the next
convolution layer, using a pool size of (3,3,3), resulting in an output of shape of (11,11,6,8).
Two more convolution layers are applied to the image, producing an output of shape
(11,11,6,16). The final max pooling layer downsamples the output to (4,4,2,16). A dropout
layer and a flattening layer are then applied to the image, with the latter reshaping the
features into a 1D array that can be fed to the dense layer. The ANN component consists
of two fully connected dense layers with ReLU as the activation function. The flattened
image passes through the dense layer with 64 neurons, followed by batch normalization
and dropout layers with 64 features each. The final layer is an output dense layer with
one neuron.
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Figure 4. Three-dimensional CNN architecture.

4.2.2. Residual Networks (ResNet)

Residual networks (ResNets) were introduced to tackle the performance degradation
in the training of deep CNNs [81] by adding skip connections to allow information to
flow through identity mappings, thereby eliminating extra parameters and computational
complexity.

We evaluated ASEM-CAD on a 34-layer residual network (ResNet-34). The ResNet-34
model has 34 layers of convolutional and identity blocks [81], with 3 convolution layers
in each of the blocks. The ResNet34 architecture has an input layer. The 3D volume data
are passed through the input layer. Our architecture uses the following five stages: Stage
one includes the convolution layer, batch normalization, and activation, followed by the
max pooling layer. Stage two includes the convolution block and two identity blocks (Res
block x 3). Stage 3 includes the convolution block and three identity blocks (Res block x 4).
Stage 4 includes the convolution block and five identity blocks (Res block x 6). Stage 5
includes the convolution block and two identity blocks (Res block x 3). Stage 5 is followed
by the average pooling layer and dense 512 and two classes.

For supervised learning experiments, the ASEM-CAD model was trained on 80% of
the input data, and 20% of the data was used for testing. The initial model was trained
with 50% of labeled data using category cross-entropy loss until convergence. The training
phase employed an RMSprop optimizer with a learning rate of 0.0001. The initial model
was fully trained over 500 epochs using a batch size of 32 samples, and each metaiteration
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(EM iteration) was trained over 10 epochs. Once fully trained, the initial model was
saved. Subsequent EM iterations loaded the initial model parameters and started the active
EM training phase. The active learning component selected 10 samples and requested
the oracle to label them during an ASEM-CAD iteration. Up to 10 active EM iterations
were performed.

4.2.3. Evaluation Metrics

The AUC ROC curve is a commonly used performance measurement for classification
problems. It is based on the receiver operating characteristic (ROC) probability curve
and is calculated as the integral of sensitivity with respect to the specificity over the ROC
curve domain, with a resulting value between 0 and 1. This score reflects the ability of
the model to distinguish between classes. A higher AUC value indicates that the model is
better at predicting 0 s as 0 s and 1 s as 1s. A higher AUC also indicates that the model
can differentiate between cancerous and non-cancerous patients more accurately. The
ROC curve is a graphical representation of true positive rate (TPR) on the y-axis and the
false positive rate (FPR) on the x-axis. Other entities, such as sensitivity, specificity, and
predictive values, are used to express test performance in different ways. Sensitivity is also
known as the true positive rate. The binary classifier confusion matrix is shown in Table 2.

Table 2. Binary classifier confusion matrix.

Labels Predicted (True) Predicted (False)
Actual (True) True Positive False Negative
Actual (False) False Positive True Negative

Sensitivity is the ability of a screening test to determine whether a test correctly
generates a positive result for people who have the test condition (true positive rate).
Sensitivity is defined in Equation (9).

TruePositive
TruePositive + FalseNegative

Sensitivity = (10)
Specificity is the ability of a screening test to determine whether a test correctly
generates a negative result for people who do not have the test condition (true negative
rate). Specificity is expressed as in Equation (10).
We calculated an inflection point along this ROC curve and present sensitivity, speci-
ficity, and AUC as the performance metrics to evaluate ASEM-CAD in comparison with
other approaches.

TrueNegative

TrueNegative + FalseNegative (1)

Specificity =

5. Evaluation

This section presents the experimental results for ASEM-CAD. We evaluated the
performance of a fully supervised model, a semi-supervised model with EM, and the ASEM-
CAD model using high-entropy and average classification entropy-based label acquisition
policies. We evaluated the results based on metrics such as AUC/ROC, accuracy, sensitivity,
and specificity.

The initial model was fully trained until convergence, and for each additional EM
iteration, the model was retrained for 10 epochs. We conducted experiments on an AMD
processor with a clock rate of 1885 MHz, 32 cores, 658 GB of storage space, and three
NVIDIA GeForce RTX GPUs, each with 11 GB of memory. Table 3 displays the training
time (wall clock time) for the ASEM-CAD model. The overall increase in the training time
is around 30-50%, rather than a tenfold increase in runtime, as the model reuses the param-
eters (weights) after each iteration instead of retraining. During the maximization phase of
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EM, each ASEM-CAD iteration strives to enhance the maximum likelihood estimates of
the model parameters. Hence, the weights from the previous ASEM-CAD iteration can be
utilized to assess the weights of the next iteration, which significantly reduces the number
of epochs, ultimately decreasing the training time for the ASEM-CAD iterations.

Table 3. Training time for the ASEM-CAD algorithm estimated based on 10 EM iterations.

Number of Initial Model ASEM-.CAD Total Time
Dataset . Iterations . % Increase
Images (Minutes) . (Minutes)
(Minutes)
Kaggle 1357 26 8 34 31
NLST 2538 47 15 62 32
LIDC 4253 8 4 12 50

In addition to active, semisupervised learning with Bayesian approximation, we
applied upsampling, label smoothing, batch normalization, hyperparameter tuning, and
early termination techniques to improve the model performance.

ASEM-CAD was trained using batches of 32 samples, after which the initial model
was saved. In the following phase, EM iterations load the parameters that were saved from
the initial model and begin the active EM training process. The active component selects
10 samples and determines which labels to acquire ground truth labels for based on an
entropy-based label acquisition policy. For each dataset, we evaluated ASEM-CAD with
increasing labeled samples in steps of 10 iterations (step10) and analysis of active learning
phases (activel0) on two different neural network architectures.

5.1. Initial Accuracy

The model was initially trained with a small percentage of the labeled dataset until
convergence. The initial achieved model accuracy is shown in Figure 5 for Kaggle and
NLST datasets. Early stopping was implemented, which stops the algorithm execution
once the model starts converging. The model started converging around 350 epochs for
Kaggle dataset and 230 epochs using the NLST dataset, as observed in the initial accuracy
plots presented in Figure 5. The model stabilized after 400 epochs for the Kaggle dataset
and 300 epochs for the NLST dataset. The model showed very good stability thereafter up
to 500 epochs.

We conducted experiments with 25%, 30%, 40%, and 50% of total training labels. The
initial models were trained until convergence. Subsequently, there were 10 EM iterations
in which each iteration in the active learning step selects 10 unlabeled samples for which
ground truth labels are provided by oracles (experts). Thus, the total number of labeled
samples add 9.1%, 3%, and 2% to the initial labels for the Kaggle, NLST, and LIDC datasets,
respectively. For example, when the initial model was trained in the active learning phase
with 50% of training labels from the Kaggle dataset, by the final iteration, the model would
have used 59.1% of the labels (with additional labels being added at each iteration). The
fully supervised learning models use 100% of the training labels. The model performances
were tested using unseen testing data (20% of dataset). For each dataset, all models were
tested using the same unseen test data.
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Figure 5. The initial training and validation accuracy for ASEM-CAD with (left) Kaggle and (right)
NLST datasets. The accuracy curves illustrate the ASEM-CAD performance, which is not underfit or
overfit with the improvement in validation accuracy over the number of epochs.

5.2. Experiments on the Kaggle17 Dataset

For active phase iterations, the initial model was trained with a fixed number of labeled
samples. Subsequently, the model was trained using 10 EM iterations, and 10 ground truth
labels were added in each EM iteration.

As shown in Figure 6 (left), the model was trained with 25% of initially labeled samples,
and 10 ground truth labels were added per EM iteration. The ROC curve using 3D-CNN
architecture for active phase iterations (active 10) is shown in Figure 6. ASEM-CAD with
high classification entropy shows a high true positive rate and low false positive rate, with
an AUC of 0.89, as shown in Figure 6 (left). The AUC for high classification entropy has a
better AUC value in comparison with average classification entropy and semi-supervised
classification. A fully supervised model has an AUC of 0.92. However, with 25% of labeled
data, ASEM-CAD with high classification entropy provides good results.
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Figure 6. Active phase iterations for the Kaggle dataset using a 3D CNN with (left) 34% and (right)
59% of training labels. Fully supervised learning using 100% of training labels.

Figure 6 (right) shows the ROC curve with 50% of initially labeled samples for active
phase iterations. ASEM-CAD with high classification entropy achieves an AUC of 0.92.
This is comparable to a fully supervised model, which uses 100% of the labels, with an
AUC of 0.94. The ROC curve shows similarity in TPR and FPR between the performance of
our ASEM-CAD model and that of a fully supervised learning model. Our model achieved
sensitivity of 0.9 and specificity of 0.81.

The ASEM-CAD performance increases when the number of samples used by ASEM-
CAD is increased (see Figure 7). The ASEM-CAD achieved an average and maximum AUC
of 0.93 and 0.94, respectively compared with 0.925 and 0.96 for the fully supervised models.
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With an increasing number of samples for training experiments, the ASEM-CAD performed
as well as the supervised learning model (using 100% of labeled samples) but only used
59% of labeled samples.

Avg Our ASEM-CAD |Avg fully supervised |Max Our ASEM-CAD Max fully supervised
0.93 0.925 0.94 0.96
Sensitivity Specificity
0.9 0.81

INCREASE NUMBER OF TRAINING SAMPLES AUC-
PERFORMANCE USING KAGGLE17

B Our ASEM-CAD 3DCNN M Semi-Supervised-3D CNN
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Figure 7. Comparison of algorithms with an increasing number of samples for training.

5.3. Experiments on the NLST Dataset
5.3.1. Active Phase Iterations Using 3D CNN

Figure 8 shows the ROC curve for active phase iterations using the NLST dataset with
3D CNNs. The AUC values with 25 % initial labels for ASEM-CAD with high classification
entropy, average classification, and the semisupervised model are nearly the same as those
indicated in Figure 8a. Using all samplesand 53% of labels (50% initially) for training, we
observe that AUC values for our ASEM-CAD model are very close (0.95) to those of a fully
supervised model using 100% of the labels (0.97).
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Figure 8. Active phase: 10 labels per iteration for the NLST dataset using a CNN with (a) 25% and
(b) 50% of initial labels.

5.3.2. Active Phase Iterations Using Resnet34

The performance of active phase iterations with Resnet34 architecture is shown in
Figure 9. With 25% of initial labels for ASEM-CAD, the fully supervised model outper-
formed all the configurations of ASEM-CAD, as shown in Figure 9a. However, with 50% of
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initial labels, the AUC values for ASEM-CAD with high and average classification entropies
(0.95) are as good as the fully supervised model (0.96), which uses 100% of the labels, as
shown in Figure 9b.
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Figure 9. Active phase: 10 labels per iteration for the NLST dataset using ResNet34 with (a) 25% and
(b) 50% of initial labels.

The ROC curves in Figures 8 and 9 show that the curve of our ASEM-CAD model with
high classification is hugs the top left-hand side which, indicating a higher true positive
rate and lower false positive rate compared to other algorithms, achieving almost equal
performance to that of the fully supervised learning model.

5.4. Experiments on the LIDC-IDRI Dataset

ASEM-CAD was evaluated using supervised and semisupervised models for nodule
malignancy classification using the LIDC-IDRI dataset. ASEM-CAD achieved an AUC
of 0.81, which is comparable with the performance of a fully supervised model (with an
AUC 0.82). The ROC curves for a fully supervised model and ASEM-CAD are shown in
Figure 10. The ROC curves for both models indicate similar accuracy and performance
characteristics. It is important to note that ASEM-CAD uses 52% of the data labels, as
opposed to 100% of the labels in the fully supervised model. For the LIDC-IDRI dataset,
ASEM-CAD achieves comparable AUC performance, and these algorithms outperformed
those reported in our previous work on a semisupervised EM (SEM) algorithm [35]. We
did not observe an improvement in training LIDC using 3D images of the nodule alone
(image only) with a Bayesian experimental design via the Monte Carlo dropout method.
To make an improvement, we incorporated additional input variables, known as image
biomarkers or image characteristics, assigned by radiologists to the LIDC 3D images and
trained the model to predict whether the nodule was malignant or benign. These additional
variables include subtlety, internal structure, calcification, sphericity, margin, lobulation,
speculation, and texture [80]. The values for these variables are scalar numbers. Subtlety
is rated based on the contrast between the lung nodule and its surroundings, indicating
the level of difficulty in nodule detection. Its possible ratings are: 1, extremely subtle;
2, moderately subtle; 3, fairly subtle; 4, moderately obvious; and 5, obvious. For more
information on the methodology, please refer to our previous publication [34]. As a result,
the model was able to achieve an AUC of 0.8822 and a sensitivity of 0.87, which represents
an improvement over the use of 3D images only as input, with which an AUC of 0.81 and a
sensitivity of 0.79 were obtained. Figure 10 shows the ROC curve.
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Figure 10. ROC curve using LIDC 3D images and image characteristics as input. The red dotted
diagonal represents ROC curve for a random classifier.

6. Conclusions

Our study presents an active, semi-supervised algorithm called ASEM-CAD, which
utilizes expectation maximization to classify lung cancer. We evaluated the performance
of the algorithm on three publicly available datasets using two distinct neural network
architectures. Using active learning strategies and label acquisition policies, we showed
that ASEM-CAD using 52% to 59% of labels achieved a performance comparable to that
of a fully supervised model (using 100% of labels). The ASEM-CAD model achieved
high positive rates of 0.9, 0.88, and 0.87 (sensitivity) for the Kaggle, NLST, and LIDC
datasets, respectively.

The active learning component of ASEM-CAD acquires additional ground truth labels
during the EM training phase based on two label acquisition policies: high classification
entropy and average classification entropy. The overall outcome of these two approaches
proved to be better in terms of performance when compared to the semi-supervised model.

ASEM-CAD will be a useful tool for the enhancement of medical imaging research.
This training algorithm can be integrated with annotation and evaluation tools. ASEM-
CAD intelligently asks experts (human in the loop) for ground truth labels during training,
which results in better prediction outcomes. It can also be used to continuously retrain
the model over time to learn features from more data and identify changes in datasets.
The changes may be the outcome of new CT scanners, adjustments to radiation doses, or
changes in scanning procedures.

Moreover, commercial vendors can use the proposed methods to train and evaluate Al-
based virtual radiology assistants that can accurately predict oncology imaging outcomes
within the context of lung cancer screening and other diagnostic radiology examinations.
Semi-supervised and active learning approaches have the potential to significantly enhance
CAD algorithms by facilitating knowledge acquisition from large clinical PACS (picture
archiving and communication system) datasets, thereby reducing the need for manual
annotation by radiologists.
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7. Future Directions

Although deep learning algorithms have tremendously enhanced medical image
analysis, learning from few labeled samples while exploiting the vast majority of unlabeled
data is a long-standing problem in the machine learning domain. It is worth exploring more
powerful semi-supervised and self-supervised learning methods so that the novel methods
may prove to be as promising as supervised models in the future. Self-supervised methods
have gained popularity in the medical imaging field due to their ability to outperform
supervised approaches on specific tasks, as reported in previous studies [82]. However,
when implementing self-supervised frameworks in the medical domain, it is essential
to address the challenge of data imbalance [83]. Another area of future research is to
use self-supervised learning methods to extract data features by constructing negative
examples by enhancing the contrastive learning frameworks to facilitate downstream tasks
in medical imaging.
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