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Abstract 

 
Interest continues to grow for lattice structures produced by additive manufacturing 

methods that are described by triply periodic minimal surface (TPMS). Tunable parameters that 
define the TPMS provide unique design flexibility where prior research has focused on designing 
hybrid or functionally graded TPMS structures. In this paper, a new strategy is proposed to 
include an orientation angle and volume fraction of each lattice cell simultaneously when 
defining structures derived from TPMS. The algorithm iteratively solves an underlying partial 
differential equation with the finite difference method to obtain a smooth, continuous lattice 
structure with a spatially varying orientation angle. The resulting lattice structure can be 
combined with other types of TPMS models using Gaussian radial basis and distance functions 
to achieve multi-TPMS lattice designs. The spatially varying lattice structures can also take the 
advantage of the directional effective modulus of TPMS to improve the strength the performance 
of lattice design.  
 

1. Introduction 
 
The mechanical and structural compatibility between orthopedic implant and human body 

is vital for successful implantation since a large mismatch in modulus can lead to stress shielding 
due to the uneven stress distribution at the bone-implant interface [1], [2]. Cellular lattice 
structures have been shown to be ideal for tailoring the properties of implants so as to avoid 
stress shielding. Within the wide range of lattice structures often considered, triply periodic 
minimal surface (TPMS) structures offer a unique combination of strength and biological 
compatibility [3]. The advancement in additive manufacturing has greatly facilitated the 
fabrication of lattices and thus allowed for the adaptation in the design process in biomaterials. 
Therefore, lattice structures are increasingly employed in numerous applications, such as tissue 
engineering and other areas of mechanical engineering [4-6]. 

 
Yoo [7] developed an efficient internal pore architecture design system based on a triply 

periodic minimal surface unit cell library and associated computational methods to assemble 
TPMS unit cells into an entire scaffold model. Due to the unique design flexibility of TPMS 
lattice structures, the lattice material properties can be easily tuned to produce a desired output 
property. When the unit cell porosity (defined as 1- ρ) and/or the unit cell size within a lattice is 
spatially varied to achieve a desired functionality, it is referred as functional grading [8].  In 
addition, a hybrid lattice structure can be obtained by combining two or more type of lattice 
structures together [9]. Further, the implicit surface mathematical function of TPMS lattice offers 
great advantage for modifying the cellular topology to generate anisotropic properties. However, 
there are limitations when tailoring the spatial structure and its properties when employing a 
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single type of TPMS lattice. For example, as evident from the mathematic function, only one iso-
surface parameter can be tuned to change the relative density.  

A variety of heterogeneous porous scaffold with gradients in porosity and pore size has 
been designed by using an efficient implicit interpolation method [10]. Numerical results show 
that the proposed scaffold design method has the potential benefits for accurately controlling the 
spatial porosity distribution within an arbitrarily shaped scaffold while maintaining the 
advantage of the TPMS-based unit cell. Afshar et al. [11] performed experimental and numerical 
investigations to determine the mechanical properties and deformation mechanisms of a linearly 
graded porosity scaffold. His work showed that the energy absorption for a uniform lattice is 
higher than those for graded structures and depends on loading direction. It is possible not only 
to change porosity through TPMS-based lattice structures, but pore architecture can be spatially 
varied to combine mechanical responses of different pore architecture.  

Cheikho et al. [12] presented an advanced and versatile method to design graded circular 
porous 2D structures based on the conformal mapping of unit cells. His approach provided 
porous lattices obtained using a periodic transformation into a circular pattern by controlling the 
phase and amplitude of the periodic domain. The versatility allowed for tunable anisotropy by 
selecting the most appropriate structure for a given clinical application, depending on the desired 
porosity, pore size, and effective mechanical properties. Ma [13] proposed a design approach for 
heterogeneous porous scaffolds, which was obtained by discretizing the original model using the 
conformal refinement of the hexahedral mesh followed by a mapping of the TPMS unit onto 
existing mesh elements with shape functions. The TPMS lattice generated on the uniform grid 
was mapped into the predefined mesh patterns such that the re-meshed scaffold could be 
designed to the appropriate elastic properties.  

To the best of our best knowledge, there is no studies that discuss TPMS lattice structures 
with both spatial varying infill volume fraction and orientation. Consequently, the first objective 
of the current study is to present an advanced framework for designing spatially varying TPMS 
lattices by changing the relative density and orientation for each unit lattice cell. Secondly, the 
design of heterogeneous lattice with spatially varying properties is demonstrated by two 
hybridization methods with irregular boundaries. Lastly, the versatility and limitations of the 
proposed method and its potential application to various tissue applications is discussed.  

2. Methodology

2.1. The design of spatially varying TPMS lattice 

TPMS lattice structures [14] are typically defined mathematically to have an 
approximately zero mean curvature at every point on the surface without self-intersection. A 
widely used TPMS form is the Schwarz’s Primitive-surface [15] as appearing in Fig. 1 (a), where 
the minimal surface is defined by the level set function 

𝐹(𝑥, 𝑦, 𝑧) = cos(𝑎𝑥) +  cos(𝑎𝑦) +  cos(𝑎𝑧) − 𝑡 > 0 (1) 
where the parameter t controls the continuity of the cell surface which determines the volumetric 
solid bounded by the surface, and a defines the size of cubic unit cell. When 𝐹(𝑥, 𝑦, 𝑧) = 0, it 
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defines a 3D boundary between positive F and negative F. Specifically, a candidate structure can 
be modeled using a 3D surface given by 𝐹(𝑥, 𝑦, 𝑧) − 𝑡 = 0 which defines a wide range of unit 
cell lattices with different volume fractions defined by t. Otherwise, the 𝐹(𝑥, 𝑦, 𝑧) can be 
modified to define other types of TPMS lattice structure, such as Gyroid and IWP shown as Fig. 
1 (b) and (c) (not studied here). 

The level set function in Eq. (1) is limited to being able to the generation of uniform 
TPMS structures which only require the size of the unit cell size and the parameter t. The 
uniform TPMS has been extended to include a continuous sigmoid weight function to form 
hybrid types of TPMS structures with a functional dependance on the coordinate location [9]. 
These hybrid structure have a unit cell orientation that remains unchanged. In addition, other 
research has shown that 3D periodic structures can be modeled by the interference to a four non-
coplanar laser beams in the photonic crystals of physics field [16]. Here it is desirable to 
functionally grade and/or spatially vary the periodicity of the structure to form a metamaterial. 
The initial approach to develop a spatially varying lattice was adopted to guide the flow of the 
light in a preferred direction in prior work [17].  

Fig. 1 TPMS unit cell: (a) Primitive type unit cell; (b) Gyroid type unit cell; (c) IWP type unit 
cell. The shown TPMS structure with relative density 0.3, the t value is 0.7066, 0.6044 and 

0.0049 respectively.  

To define a spatially orientation varying TPMS, the basic unit cell defined in Eq. (1) 
which describes a specific geometry is spatially varied to the form the final hybrid lattice.  To 
this end, a periodic unit cell can be decomposed into a complex Fourier series where each term is 
spatially harmonic which can be interpreted as a one-dimensional sinusoidal grating that are 
combined to reconstruct the original unit cell. A finite set of spatial harmonics is truncated to 
construct the unit cell for practical implementation as 

𝜀௨௖(𝑠) =  ෍ 𝛼௜𝑒
௝௄ሬሬ⃗ ೔∙௦⃗ 

ெ

௜ୀଵ

(2) 

where 𝛼௜ represents the Fourier coefficient of the 𝑖௧௛ spatial harmonic, obtained from the 
decomposition of the baseline unit cell. Otherwise, the specific expression can be reformulated 
as a generalized one as Eq. (2). In the above equation,  𝑠 is position, and  𝐾ሬሬ⃗ ௜ is the grating vector 
associated with the 𝑖௧௛ spatial harmonics can be calculated by Eq. (2) 

𝐾ሬሬ⃗ ௜ =  𝐾௫𝑥ො +  𝐾௬𝑦ො + 𝐾௭𝑧̂ (3) 

where the magnitude of  𝐾ሬሬ⃗ ௜ is defined as 
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𝐾ሬሬ⃗ =
2𝜋

Λ
(4) 

where Λ is the period of grating. Alternatively, the Primitive type of TPMS lattice is defined by 
small set of spatial harmonics [18] where the grating vector is the linear combination of the 
reciprocal vector of the lattice. The formulation of the Primitive type of lattice grating vector is 
defined in a manner similar to Eq. (1) as 

𝐾ሬሬ⃗ ଵ =
2𝜋

Λ
𝑥ො 

𝐾ሬሬ⃗ ଶ =
2𝜋

Λ
𝑦ො

𝐾ሬሬ⃗ ଷ =
2𝜋

Λ
𝑧̂

(5) 

where (𝑥ො, 𝑦ො, 𝑧̂) is the coordinate position. In this form the unit cell orientation and infill volume 
fraction must be defined as a function of position which requires that the vector 𝐾ሬሬ⃗  become a 
function of position to spatially vary the grating. Orientation variation in the x-y plane of 𝐾ሬሬ⃗  can 
be computed using the rotation matrix  

𝑅௭(𝜃) =  ൥
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

൩ (6) 

As the vector 𝐾ሬሬ⃗  becomes 𝐾ሬሬ⃗ (𝑠), it is tempting to calculate the ith spatial harmonic 
according to Eq. (2). However, this approach fails to construct the desired grating when the 
vector  𝐾ሬሬ⃗  is a function of position. 

𝜀௜(𝑠) ≠  𝛼௜𝑒
௝௄ሬሬ⃗ ೔(௦⃗)∙௦⃗ (7) 

In order to incorporate the arbitrary spatial orientation variance in the grating, an 
intermediate function 𝛷(𝑠) called the grating phase (or the mapping function) is introduced. The 
grating phase is related to the grating vector by the gradient operation as 

∇Φ(𝑠) =  𝐾ሬሬ⃗ (𝑠) (8) 

The grating phase is introduced to minimize the potential distortion of the final spatially 
variant lattice [20]. It is necessary to solve Eq. (8) numerically to determine the grating phase. 
Since there is no analytical solution for Eq. (8), it may be solved by the central finite differential 
method iteratively with incorporated the boundary equations [21] 

𝛷୶ =

⎩
⎪
⎨

⎪
⎧ 𝛷௢|ଶ,௝,௞ −

∆𝑥

2
൫𝐾௫|ଶ,௝,௞ + 𝐾௫|ଵ,௝,௞൯  for  i = 1

𝛷௢|௜ିଵ,௝,௞ + 𝛷௢|௜ିଵ,௝,௞

2
−

∆𝑥

4
൫𝐾௫|௜ିଵ,௝,௞ + 𝐾௫|௜ାଵ,௝,௞൯ 2 < i < N୶ − 1

𝛷௢|ேೣିଵ,௝,௞ −
∆𝑥

2
൫𝐾௫|ேೣ,௝,௞ + 𝐾௫|ேೣିଵ,௝,௞൯  for i =  N୶

 (9) 
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𝛷௬|௜,௝,௞ =

⎩
⎪
⎨

⎪
⎧ 𝛷௢|௜,ଶ,௞ −

∆𝑦

2
൫𝐾௬|௜,ଶ,௞ + 𝐾௬|௜,ଵ,௞൯                    for  j = 1

𝛷௢|௜,௝ିଵ,௞ + 𝛷௢|௜,௝ାଵ,௞

2
−

∆𝑦

4
൫𝐾௬|௜,௝ିଵ,௞ + 𝐾௬|௜,௝ାଵ,௞൯ 2 < j < N୷ − 1

𝛷௢|௜,ே೤ିଵ,௞ −
∆𝑦

4
ቀ𝐾௬|௜,ே೤,௞ + 𝐾௬|௜,ே೤ିଵ,௞ቁ          for j =  N୷

  (10) 

 

𝛷୸|௜,௝,௞ =

⎩
⎪
⎨

⎪
⎧ 𝛷௢|௜,௝,ଶ −

∆𝑧

2
൫𝐾௭|௜,௝,ଶ + 𝐾௭|௜,௝,ଵ൯                    for  k = 1

𝛷௢|௜,௝,௞ିଵ + 𝛷௢|௜,௝,௞ାଵ

2
−

∆𝑧

4
൫𝐾௭|௜,௝,௞ିଵ + 𝐾௭|௜,௝,௞ାଵ൯ 2 < k < N୸ − 1

𝛷௢|௜,௝,ே೥ିଵ −
∆𝑧

2
൫𝐾௭|ே೥,௝,௞ + 𝐾௭|௜,௝,ே೥ିଵ൯         for k =  N୸

  (11) 

 
The terms 𝐾௫|௜,௝,௞, 𝐾௬|௜,௝,௞, and 𝐾௭|௜,௝,௞ are the matrices containing the components of K 

across the grid after the orientation included using the rotation matrix in Eq. (8). The iterative 
grating phase is calculated as 

 

𝛷௡௘௪ =
 𝛷୶ + 𝛷୷ + 𝛷୸ 

3
 (12) 

 
To simplify the implementation of the algorithm, the function describing grating phase 𝛷 

is initialized to zero. After numerically computing a solution to Eq. (8), the spatially varying 
lattice can be reevaluated with incorporating the mapping function 𝛷(𝑠) into the exponential 
expression 

 
𝜀௩(𝑠) =  𝛼௠𝑒௜ః(௦⃗) (13) 

 
The imaginary part of above equation is ignored, and a preliminary spatially varying 

lattice is constructed by summation of 1D spatial grating and extraction of the real part 
 

𝜀(𝑠) = 𝑅𝑒 ൥෍ 𝜀௩(𝑠)

ெ

௜ୀଵ

൩ (14) 

 
For the other periodic unit cell in 2D or 3D, the generalization from the planar grating 

above to spatial variant lattice is straightforward. The single unit cell that describes the periodic 
structure that is to be spatially varied needs to be transformed into a set of planar gratings by 
Fourier transform, and the periodic array of elements are reduced into a Discrete Fourier 
Transform (DFT) which is then truncated to limit the number of terms. Therefore, the DFT is 
performed on the baseline unit cell to obtain each planar grating. Each of these resulting gratings 
are then spatially varied individually by including the orientation and accumulated to obtain the 
overall final lattice. 
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The spatially varying cell volume fraction over the lattice is incorporated following the 
solution of the gradient equation governing the orientation as described above. There are two 
methods for mapping the relative volume fraction to the complete lattice structure. The first one 
is based on average density where the difference in relative density between adjacent cells is 
averaged has been shown lead to smooth geometric transition [22]. Secondly, the spatially 
variant fill fraction of the TPMS lattice structure can be implemented by a threshold technique to 
the preliminary binary distribution given as  

𝜀(𝑠) = ቊ
𝜀ଵ, 𝜀′(𝑠) < 𝛾(𝑠)

𝜀ଶ, 𝜀′(𝑠) ≥ 𝛾(𝑠)
(15) 

where 𝛾(𝑠) is the interpolated value from the previous calculation of the single unit cell relative 
volume fraction obtained by varying the iso-surface parameter t [17]. After the unit lattice cell 
are established from the threshold method, a linear interpolation is utilized to construct the 
relative density for the complete lattice structure. 

2.2 Designing heterogeneous TPMS lattice structure 

The natural structure has specific porous structures in different regions according to the 
service requirements, which leads to the heterogeneous structures [23]. Considering a simple 
geometrical transition function, the heterogeneous TPMS lattice structure can be constructed by 
a weighted summation defined by sigmoid function [9] 

𝐹 =  ෍ 𝑤௜ ∙

௡

௜ୀଵ

𝐹௜(𝑥) ≥ 0 (16) 

where 𝐹௜ is the level set function for the substructure, and the weight functions 𝑤௜ are defined by 

𝑤௜(𝑥) =  
𝑒൫ି௞೔(ீ(௫,௬,௭))మ൯

∑ 𝑒൫ି௞ೕ(ீ(௫,௬,௭))మ൯௡
௝ୀଵ

(17) 

where 𝐺(𝑥, 𝑦, 𝑧) defines the transition boundary of the heterogeneous lattice, and 𝑘௝ is parameter 
that controls the width of the transition boundary.  

2.2.1. Heterogeneous TPMS design by Gaussian radial basic function 

If the desired model comprises an irregular transition shape, there is no continuous 
function to define the intersection region. The Gaussian Radial Basic Function (GRBF) may be 
used to construct a unique function from given control points [24] to provide a more robust 
means to capture the transition. Implementing the GRBF requires the solving of a set of linear 
functions for the  𝛽௜ as 
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൥
Ω(1,1) ⋯ Ω(1, 𝑚)

⋮ ⋱ ⋮
Ω(𝑚, 1) ⋯ Ω(𝑚, 𝑚)

൩ ൥
𝛽ଵ

⋮
𝛽௠

൩ =  ൥
1
⋮
1

൩ (18) 

where 

Ω(I, j) =  𝑒
൬ି

(௫ି௫೔)మ

ఋమ ൰
(19) 

and the weight function is defined by 

𝛼(𝑋) =  ෍ 𝛽ଵ

௠

௜ୀଵ
𝑒

൬ି
(௫ି௫೔)మ

ఋమ ൰
(20) 

Once the control line segment is represented by the Gaussian Radial Basic Function, the 
heterogeneous hybrid structure is constructed by the weight function of Eq. (16).  

2.2.2. Distance field of a control line segment 

In order to represent the line segment with basic function explicitly, the distance function 
was introduced to accommodate the poly shape of the transition boundary for heterogeneous 
TPMS structures. The distance field [25] can represent a piecewise of control points which can 
be defined by  

𝒅𝒊(𝒙) =  ‖𝒙 − 𝒙𝒊‖ (21) 

A control line segment of two points can be defined by 

𝑥 = 𝑥ଵ + (𝑥ଵ −  𝑥ଶ)𝑡 (22) 

For different t, Eq. (22) represents the line segments in the x coordinate space. Therefore, 
the distance field d(x) of the line segments can be defined in a piecewise manner as 

𝑑(𝒙) = ቐ

‖𝒙 − 𝒙ଵ‖, 𝑡 < 0
‖𝒙 − 𝒙௧‖, 0 ≤ 𝑡 ≤ 0
‖𝒙 − 𝒙ଶ‖, 𝑡 ≥ 1

(23) 

where t and 𝒙௧ are determined by, 

൜
(𝒙௧ −  𝒙) ∙ (𝒙ଶ − 𝒙ଵ) = 0

𝒙௧ =  𝒙ଵ + (𝒙ଶ −  𝒙ଵ)𝑡
(24) 

Eq. (23) can be approximated by a continuous function which yields a structurally smooth result 
as  

𝑑(𝒙) =  
‖𝒙 − 𝒙ଵ‖

1 + 𝑒௞೏௧
+  

‖𝒙 − 𝒙௧‖

(1 + 𝑒ି௞೏௧)(1 + 𝑒௞೏(௧ିଵ))
+

‖𝒙 − 𝒙ଶ‖

1 + 𝑒௞೏(ଵି௧)
(25) 

where 𝑘ௗ is a parameter for controlling the transition gradients between adjacent regions for t.  
Based on the distance field function, the irregular control line segments can be represented by a 
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continuous function, which could be incorporated in to the TPMS surface function by sigmoid 
weight function.  

3. Methods Implementation and Results

3.1. Spatially varying TPMS lattice structure 

As an example of constructing of spatially varying orientation TPMS lattice structure, the 
orientation distribution and relative density distribution field need to be defined firstly. The 
varying angle distribution can be generated by some mathematic function or the optimized 
results from topology optimization. After solving Eq. (7) numerically with Eq. (8), the grating 
phase 𝛷 can be incorporated into the exponential functions to further construct the 3D surface for 
TPMS lattice. The predefined orientation distribution and reconstructed spatially varying TPMS 
for gradually varying and self-defined varying field appear in Fig.2 and Fig.3 respectively.  

Fig. 2 The uniform gradual spatially varying Primitive TPMS lattice: (a) the varying lattice 
orientation and relative density distribution; (b) the reconstructed TPMS lattice. 

Fig. 3 The self-defined spatially varying Primitive TPMS lattice: (a) the varying lattice 
orientation and relative density distribution; (b) the reconstructed TPMS lattice. 

1794



 
 
 

3.2. Laminate or recursive TPMS lattice design 
 
Yang [26] proposed a skewed TPMS lattice with a coordinate transformation to tune the 

anisotropy for a single TPMS cell rather than combining various TPMS types with weight 
coefficients. Yang’s skew transformation can be viewed as a shift in the global coordinate of the 
cubic cell for TPMS lattice, the relationship is defined as 

 

𝐹ଵ ቀ𝑥′, 𝑦, 𝑧ቁ > 0, where 𝑥′ = 𝑥 − (𝑧 + 1) tan 𝛼௫௭ (26) 

 
where 𝛼௫௭ is the angle for the skew transformation, 𝐹ଵ is skewed 3D iso-surface. 

 
In addition, a hybrid TPMS lattice with varying layer orientation can be generated by 

combining a skewed TPMS lattice structure with a continuous sigmoid function as in Eq. (16), 
and the laminate (a concept borrowed from composite structure) lattice structure can be obtained 
by using the sigmoid function recursively shown as Fig. 4 (a). However, this method may lead to 
the structural discontinuity between two layers. The spatially varying lattice algorithm proposed 
in the current research can also be utilized to generate the laminate lattice with predefined 
orientation filed but better microstructure transition shown as Fig. 4 (b).  

 

 
Fig. 4 The laminate TPMS designed: (a) the laminate TPMS generated by hybrid with skew 

transformation; (b) the laminate TPMS generated by spatial varying transformation.  
 
 

3.3. Hybrid heterogeneous TPMS lattice 
 
A hybrid TPMS lattice can also be constructed using a weight function based on the 

sigmoid function in Eq. (16) where the hybrid transition area comes from the location function 
defined in Eq. (17).  
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Since GRBF is a real-valued function that depends on the distance between the input and 
some fixed points, the sum of radial function can be used to approximate the given boundary. An 
example of a computed heterogeneous TPMS with variant orientation for Primitive structures 
generated by GRBF appears in Fig. 5, where a uniform Gyroid and IWP lattice is also included 
that both have an irregular enclosed shape.  Unfortunately, the lattice orientation leads to 
noncontinuous structure and defects on the transition boundary. Therefore, the GRBF method 
needs to be refined to apply on spatially orientation varying TPMS lattice structures. 

Alternatively, complex line segments given by control points are represented by the 
distance function in Eq. (25) are introduced. Here the distance function is incorporated into the 
sigmoid weight function to tune the transition area between different lattice types. The 
heterogeneous lattice with variant orientation angles for the Primitive type lattice is shown as 
Fig. 6 where the distance field function shows a good hybrid TPMS lattice structure compared to 
Gaussian Radian Basic Function representation.  

Fig. 5 Heterogeneous TPMS generated by GRBF: (a) the combination of P type and Gyroid type 
TPMS; (b) the combination of P type and IWP type TPMS. 

Fig. 6 Heterogeneous TPMS generated by distance field function: (a) the combination of P type 
and Gyroid type TPMS; (b) the combination of P type and IWP type TPMS. 
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4. Discussion and limitation 
 
The spatial varying algorithm provides a significant advantage for accommodating a 

change in orientation within lattice cells which allows for an adaption of directional dependent 
elastic properties of TPMS lattice structures during design and optimization. To ultimately align 
the anisotropy of microstructures to stress direction, it is critical to release the rotational freedom 
of the unit lattice cell parameterization, in a manner similar to that done by Bendsoe and Kikuchi 
[27] in their homogenization method.  The distribution of lattice orientation in the design domain 
would allow for an adaption of each unit cell anisotropy to the local stress direction, rather than 
controlling the anisotropy by assembly two different base units to form a new representative unit 
as in [28].  

 
However, there some limitations on the spatial variant lattice construction. The 

orientation can infill volume fraction distribution field should be continuous, the significant local 
distortion will result if the difference between neighboring cell angles is greater than 45°. For 
large angle difference, the standard triply symmetric TPMS structure will no longer exist in the 
distorted unit cell as the adaption of orientation difference. In this case, the neck area is 
elongated to offset the lattice distortion. Furthermore, the construction algorithm will lead to the 
lattice shift outside of the unit cell boundary to keep the required smooth transition due to the 
varying grating phase.  

 
The relationship between the variant volume fraction of the TPMS and iso-surface 

parameter t is not a linear one. Typically, the relative density of the unit lattice is controlled by 
changing the value of t to change the enclosed volume of the 3D surface or offsetting t to 
produce surface-based on lattice. Due to the introduction of infill fraction that is caused by the 
threshold method in the current algorithm, the relationship between t and volume fraction no 
longer exists. In this case, the relative density can be extracted from the summation of binary 
pixel by comparing pixel values with the threshold value. A more accurate volume faction is 
obtained by recalculating the summation of the volumes of tetrahedron after meshing the enclose 
patch surface.  

 
Compared to the laminate TPMS lattice structure produced by recursive skew 

transformation, the current lattice structure shifts out of the unit cell after spatial transformation. 
Due to the continuous orientation accumulation in one direction which is like the wave 
accumulation in propagation, the rotation of cells in Y direction leads to the skew shift in the X 
direction. If the orientation angle difference is small, this defect will disappear. However, the 
morphological variation generated by the spatially varying algorithm keeps a smooth transition 
while varying the lamina orientation, but the hybrid design with skew transformation does not. 
Besides, if the relative volume fraction is lower, the connectivity between each layer is destroyed 
as shown in Fig. 4 (a).   

 
Since the spatial variant lattice needs to decompose to the planar grating vector in order 

to incorporate the varying orientation and solve for the grating phase, the presented research is 
limited to a primitive network or scaffold based TPMS lattice structure and is not applicable to 
surface-based lattices. There are two approaches to extend the current algorithm to other types of 
scaffold-based lattices, such as Gyroid, IWP and Diamond. From the generalized method, the 
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orientation can be introduced to the truncated and decomposed Fourier terms to construct the 
mapping equation, which is not very computation efficient. The more elegant approach takes less 
computation resources, since the unit TPMS lattice can be generated by the basic reciprocal 
vector as mentioned before [18], where the number of reciprocal vectors is far less than the 
truncated Fourier terms. The rotation matrices can be applied on the reciprocal vectors directly to 
construct the mapping equation and later solved by the finite difference method. With the 
solution of mapping function, the spatially varying TPMS lattices can be reconstructed by the 
generalized exponential expression. 

 In addition, the present algorithm cannot distribute the TPMS lattice type simultaneously 
according to user-defined boundaries. Hence, two different methods were proposed to design 
heterogeneous TPMS lattice structures with varying orientation distribution. Unfortunately, the 
introduction of varying orientation within the lattices may lead to uncertain defects such as the 
sharp corners or unconnected ligaments when it comes to the heterogenous lattice structures.  

The transformed lattice under varying orientation needs to be combined with the cubic 
symmetric TPMS lattice to produce the heterogenous lattice structures, where the defects 
between different types of lattices is unavoidable. The IWP type lattice is more compatible with 
Primitive type (similar with Body-centered Cubic) than Gyroid shown as Fig. 5 and Fig. 6, due 
to the BCC lattice (Primitive type) with varying orientation being closer to the geometric 
configuration of Face-Centered Cubic (FCC). In addition, the transition area produced by the 
distance field function shows a better geometry connectivity, however, it is necessary to evaluate 
its construction quality by finite element analysis in the future research.  

5. Conclusion

In summary, a novel method is proposed to design spatially varying TPMS lattice 
structures with varying infill volume fraction and varying spatial orientation. An iterative central 
finite difference method was applied to solve the partial differential equation governing the 
relationship between varying orientation and position. The current method can be utilized to 
optimized directional dependent TPMS lattice structure to align principal stress with the lattice 
geometry configuration within the design domain. In addition, the heterogeneous lattice with 
varying orientation is explored by GRBF and the distance field function where the later one is 
shown to produce better structure transitions between different lattice types. By introducing the 
lattice varying volume fraction, unit cell variant orientation and lattice type distribution, more 
freedom is offered to the design domain of TPMS lattice structures.  
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