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Abstract 

Structural integrity and quality of short fiber composite parts produced by Big Area 
Additive Manufacturing (BAAM) are largely affected by inherent bead microstructural features 
such as voids. Unfortunately, our understanding of void nucleation and evolution during polymer 
deposition process is lacking. Flow modeling focused on the associated microstructural formation 
provides a means for better understanding the process-structure-properties relations in large area 
extrusion deposition additive manufacturing of fiber reinforced composites.  Our prior computational 
effort that investigated mechanisms that may promote micro-void formation was based on 2-dimensional 
planar models of a single ellipsoidal fiber motion in purely viscous polymer extrusion/deposition flow 
through a BAAM nozzle. Here we present a 3D finite element modelling approach to simulate single fiber 
out-of-plane rotations utilizing velocity and velocity gradient values computed along streamlines 
obtained from a 3D extrusion/deposition simulation of the BAAM polymer deposition process. The 
pressure distribution on the fiber’s surface along the flow path provides new insight into potential 
micro-void nucleation mechanism. Results show low pressure regions occur near the fiber’s surface 
which varies across the printed bead and through its thickness. 

Introduction 
Short fiber reinforced thermoplastics exhibit superior stiffness-to-weight ratio as compared to 

their neat polymer alternatives, and thus haven seen continuous implementations in Large Area 
extrusion deposition Additive Manufacturing (LAAM). The material flow in the nozzle and subsequent 
deposition is crucial for determining the microstructural formations of the deposited composites, that 
directly influence the material behaviors of the solidified LAAM-printed parts. Micro voids within the 
LAAM bead are one such formation that has a significant influence on part integrity. Void nucleation 
has been identified to be dependent on both external factors and inherent fluid/flow properties. Various 
literature suggests possible sources that could instigate void nucleation including residual stresses, 
air entrapment, and volatile induction. Prior research has developed comprehensive mathematical 
models for volatile-induced void formation and void growth. One notable work by Roychowdhury et. 
al [1], in his model development, established dependence of the critical radius of nucleation and 
nucleation rate on the vapor pressure and pressure of surrounding fluid. 

Despite prior research efforts, definitive explanation for the formation and growth of microstructural 
voids remains inadequate, especially the effect of suspended fibers on the nucleation mechanism in 
LAAM polymer composite deposition. Vaxman et al. [2] suggests fiber aspect ratio dependent pressure 
localization as a contributing mechanism to void formation and showed that void nucleation is 
influenced by the melt flow shear rate, flow temperature and viscosity which itself is affected by 
the fiber distribution and alignment. Other contributing factors identified by [3] that affects void 
formation includes the dissimilar fiber-matrix coefficient of thermal expansion, the die swell/expansion 
of the free extrudate and differential cooling rate between the bead’s external surface and core regions.  
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This paper presents a computational method for understanding the mechanisms that may promote void 
formation. Based on a multiscale model methodology, we developed a three-dimensional (3D) Newtonian 
flow single ellipsoidal rigid fiber finite element model to simulate out-of-plane rotations. In this approach, 
velocity and velocity gradient values computed along 3D streamlines are obtained from a macro-scale 3D 
extrusion/deposition simulation of the BAAM polymer deposition process. At the micro scale, the fiber’s 
linear and angular velocities that result in zero net hydrodynamic force and torque on the fiber surface are 
computed based on Jeffery’s assumption and the fiber’s position are updated based on an explicit numerical 
algorithm. The rigor of adaptive remeshing is overcome by updating the fluid boundary conditions with 
respect to the fiber’s local orientation, while keeping a fixed mesh geometry during the transient analysis. 
The pressure distribution on the fiber’s surface along the flow path especially during die swell expansion 
at the nozzle exit provides new insight into mechanisms that could promote micro-void nucleation within 
the printed beads. Model validation is achieved based by benchmarking results for a planar shear flow with 
analytical solutions developed by Jeffery [4]. Results show low pressure regions near the fiber’s surface 
which varies across the printed bead as well as through its thickness. 
 

Methodology 
 
Macro Model - 3D Extrusion/Deposition Flow 
 
The flow domain for the macro model simulation is the polymer composite melt flow region within the 
nozzle and the subsequent 90-degree turning deposition onto the material substrate. The nozzle internal 
geometry is defined based on the design of a Strangpresse Model 19 (Strangpresse, LLC, Youngstown, 
Ohio, USA) single screw extruder nozzle, which is designed specifically for LAAM processes (cf. Figure 
1). We note that the free surface of the deposition flow is difficult to compute, especially for a steady state 
flow. In prior research, the flow model was evaluated in 2D [4-7], where the associated fiber-induced fiber 
orientation was computed in a one-way weakly coupled [5] and a fully coupled [4,6,7] flow/orientation 
analysis. In the present study, we first consider a fully solved 2D planar extrusion deposition approximation 
for a CF-ABS composite flow [7] as shown in Figure 2, where the boundary conditions of the 2D flow are 
defined in Figure 2(a) and the computed flow velocity contour 𝑣𝑣𝑦𝑦 is shown in Figure 2 (d). Then, we revolve 
the nozzle geometry with vertical extrudate (i.e., the flow in Ω1 and Ω2 in Figure 2(a)) around the center 
line of the nozzle (cf. Figure 1) by 180 degrees to generate a 3D flow domain such that the 3D deposition 
flow domain is obtained by extruding the cross-section area of bead cross section portion of Ω2 along the 
direction of deposition, as appearing in Figure 2 (b).  which provides an approximate 3D flow domain at a 
significant computational cost savings as compared to iterative solution methods for determining the shape 
of the free surface.  
 
In this model, the average inlet velocity is defined as 6.25 mm/s, yielding an average exit velocity of 100 
mm/s (computed based on flow rate conservation), which is a typical printing speed employed in LAAM 
applications [5,7]. The internal nozzle boundary is set as a no-slip wall boundary condition. The upper free 
surface of the deposition flow is set as fully developed (fixed through the simulation). In contrast, the front 
and side surfaces of the deposition flow are set as free surface boundaries. The improved elastic remeshing 
technique (built-in function in Polyflow) is applied for the surface profiles identifications. The flow end is 
set such that the normal and tangent force of the boundary are zeros. Note, the influence of surface tension 
is neglected during the computations. In addition, the lower surface boundary of the deposition flow is 
considered to be perfectly bonded to the print plate immediately after they contacted with each other. To 
this end, the velocity component along the deposition direction of 100 mm/s is imposed to the bottom 
surface of the deposition flow, simulating the relative motion between the nozzle and material substrate. 
 
The 3D flow model is solved via ANSYS-Polyflow module (ANSYS Inc., Canonsburg, PA, USA) using a 
one-way weakly coupled formulation, where the flow is solved assuming a homogeneous melt flow with 
no fibers. The internal nozzle flow region is meshed with 4-node quadrilateral elements and the free 
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deposition flow region is meshed with tetrahedral elements to better depict the 3D curvatures of the swelled 
free surface boundaries. There are a total of 25878 elements with 9084 nodes for the model in this study. 
 

 
Figure 1: Nozzle internal geometry of a Strangpresse Model 19 single screw extruder. [12] 

 

  
(a) (b) 

  
(c) (d) 

Figure 2: 3D extrusion deposition flow model: (a) Boundary Conditions (b) Mesh geometry of the half-
symmetry plane (c) Local shear rates of half-symmetry plane (d) fully-coupled solution of velocity 
contour 𝑣𝑣𝑦𝑦. 
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Figure 3: 3D Streamline contours of the BAAM polymer extrusion/deposition simulation highlighting 

select streamlines (ψ=4 & 20) considered for the single fiber evolution model 
 
Micro-Model – 3D Single Fiber Evolution Model 
 
In the micro-model evaluation, a custom finite element analysis (FEA) code is developed in MATLAB to 
simulate the quasi-time dependent evolution of a rigid ellipsoidal fiber along 3D streamlines of the BAAM 
polymer extrusion flow described above. Computed values of the streamline velocities, velocity gradients 
and pressures obtained from the 3D polymer deposition macro model are supplied as inputs to the single 
fiber micro model analysis. The governing equations for polymer melt flow in the micromodel are derived 
from Stokes equation neglecting compressibility, inertia, anisotropic, inhomogeneity and thermal effects, 
and considering a Newtonian fluid. Similar flow model assumptions and polymer melt properties in the 
macro model are assumed. The transformed FEA Galerkin weak formulation for mass and momentum 
conservation used in developing the element stiffness matrices and force vectors in the FEA model are 
given as: 
 

∫ 𝜙𝜙𝑒𝑒𝑇𝑇 
Ω𝑒𝑒 𝐵𝐵𝑒𝑒𝑑𝑑Ω𝑒𝑒 𝑑𝑑𝑒𝑒 = 0     1 

∫ 𝐵𝐵𝑠𝑠𝑒𝑒
𝑇𝑇 

Ω𝑒𝑒 𝜇𝜇𝐶𝐶𝑜𝑜 𝐵𝐵𝑠𝑠𝑒𝑒𝑑𝑑Ω𝑒𝑒 𝑑𝑑𝑒𝑒 − ∫ 𝐵𝐵𝑒𝑒𝑇𝑇 
Ω𝑒𝑒 𝜙𝜙𝑒𝑒𝑑𝑑Ω𝑒𝑒 𝑝𝑝𝑒𝑒 − ∫ 𝜌𝜌𝑁𝑁𝑒𝑒𝑇𝑇 

Ω𝑒𝑒 𝑓𝑓𝑑𝑑Ω𝑒𝑒 − ∫ 𝑁𝑁𝑒𝑒𝑇𝑇 
Γ𝜏𝜏𝑒𝑒

𝑡𝑡 𝑑𝑑Γ𝑒𝑒 = 0  2 

 
where 𝜌𝜌 and 𝜇𝜇 are the fluid density and dynamic viscosity,  𝜙𝜙𝑒𝑒  and 𝑁𝑁𝑒𝑒  are the pressure and velocity shape 
functions, respectively, 𝐵𝐵𝑒𝑒  and 𝐵𝐵𝑠𝑠𝑒𝑒   are strain displacement matrices,  𝑑𝑑𝑒𝑒   and  𝑝𝑝𝑒𝑒 are the velocities and 
pressures degrees of freedom (DoF) at their respective element nodes, 𝑡𝑡  and 𝑓𝑓  are the element surface 
tractions and body forces, and  Γ𝑒𝑒and Ω𝑒𝑒 are element surface and volume domains of integration. 
 
In the micro model, we assume no slip on the fiber surface and no flux across the fiber surface. In the FEA 
model, three (3) essential boundary conditions are prescribed (cf Figure 4(b)). The streamline velocities 
and velocity gradients are used to extrapolate the far-field velocities from the macro model onto the fluid 
boundary 𝑈𝑈 

BC1.  

 

 

𝜓𝜓4 

𝜓𝜓20 

814



   
      (a)       (b) 

Figure 4: (a) 3D Global and fiber’s local reference frame and orientation angle definition (b) Essential 
boundary conditions (BC1, BC2, and BC3).  Image Source [14,15] 

 
To reduce computation time, FEA calculations are performed based on the fiber’s local coordinate systems 
by keeping a constant mesh geometry where velocity boundary conditions are recalculated based on a 
transformation operation with respect to the fibers axis. The resulting velocities on the fluid boundary may 
be expressed as  
 

𝑈𝑈 
BC1 = 𝑅𝑅Ω𝑇𝑇𝑈𝑈𝜓𝜓 + 𝑅𝑅Ω𝑇𝑇∇𝑇𝑇 𝑈𝑈𝜓𝜓 𝑅𝑅Ω ∆𝑅𝑅𝐵𝐵𝐵𝐵1     3 

 

𝑈𝑈𝜓𝜓 = �
𝑢𝑢𝜓𝜓
𝑣𝑣𝜓𝜓
𝑤𝑤𝜓𝜓

� , ∇𝑇𝑇= �𝜕𝜕 𝜕𝜕𝜕𝜕� 𝜕𝜕
𝜕𝜕𝜕𝜕� 𝜕𝜕

𝜕𝜕𝜕𝜕� � , ∆𝑅𝑅 = �
∆𝑥𝑥′
∆𝑦𝑦′
∆𝑧𝑧′

� 

 
where the transformation operation is achieved through a set of fiber rotations based on the Euler’s 
orientation angle thus 

𝑅𝑅Ω = 𝑅𝑅𝜙𝜙𝑇𝑇𝑅𝑅𝜃𝜃𝑇𝑇𝑅𝑅𝜓𝜓𝑇𝑇       4 
In the above, 
 

𝑅𝑅𝜙𝜙 = �
1  0 0 
 0      cos𝜙𝜙 sin𝜙𝜙 
0 − sin𝜙𝜙 cos𝜙𝜙 

� ,𝑅𝑅𝜃𝜃 = �
cos𝜃𝜃 sin𝜃𝜃 0 
−sin𝜃𝜃 cos𝜃𝜃 0 

 0 0 1
� ,𝑅𝑅𝜓𝜓 = �

1 0 0 
0    cos𝜓𝜓 sin𝜓𝜓 
0 − sin𝜓𝜓 cos𝜓𝜓 

� 

 
The prescribed velocity on the fiber’s surface 𝑈𝑈 

BC3 is computed from the fiber’s center linear and angular 
velocities according to the equation of rigid body motion (cf. Equation 5). Likewise, we transform the 
global velocities into local variables with respect to the fibers local reference axis as:   
 

𝑈𝑈 
BC3 = 𝑅𝑅Ω𝑇𝑇𝑈𝑈𝑐𝑐 + 𝑅𝑅Ω𝑇𝑇  𝑅𝑅Ω̇

  Ω̇ × ∆𝑅𝑅𝐵𝐵𝐵𝐵3     5 
where, 

𝑅𝑅Ω̇
 = �

1  0 cos𝜃𝜃
0 −sin𝜙𝜙 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 cos𝜙𝜙
 0    cos𝜙𝜙 sin𝜃𝜃 sin𝜙𝜙

� , 𝑈𝑈𝑐𝑐 = �
𝑢𝑢𝑐𝑐
𝑣𝑣𝑐𝑐
𝑤𝑤𝑐𝑐
� , Ω̇ = �

𝜙̇𝜙
𝜃̇𝜃
𝜓̇𝜓
� , ∆𝑅𝑅 = �

∆𝑥𝑥′
∆𝑦𝑦′
∆𝑧𝑧′

� 

 
The pressure point constraint 𝑝𝑝𝐵𝐵𝐵𝐵2 is prescribed by imposing the far-field streamline pressure 𝑝𝑝𝜓𝜓  from the 
macro model simulation result at a node on the fluid surface according to 

𝑝𝑝𝐵𝐵𝐵𝐵2 = 𝑝𝑝𝜓𝜓       6 
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  (a)      (b)         (c)  

Figure 5: (a) Finite element domain showing mesh geometry for outer boundary, (b) mesh geometry on 
the fiber surface (c) 3-node tetrahedral element showing velocity and pressure DoF 

 
 
In the FEA formulation, the element stiffness matrices are derived based on the mixed method with 
velocities and pressure DoF as the primary nodal variables. The derived element shape functions are 
quadratic for the velocities and linear for the pressure. We employ quadratic iso-parametric serendipity 
tetrahedral elements for the analysis with 6 mid-side nodes (3 velocities DoF) and 4 vertex nodes (3 
velocities + 1 pressure DoF). We achieve domain discretization by using a radial seed of 28 cell units with 
a geometric bias of 1.2, an azimuthal seed of 20 cell unit around the half-circumference of the fiber’s long 
axis with a geometric bias of 0.8 towards its midplane and a polar seed of 18 equally spaced cells. For each 
prism element at the fibers tip, there are 3 tetrahedral element and for each hexahedral element there are 6 
tetrahedral elements resulting in a total element of 6804 tetrahedral elements.     
 
We compute the system nodal velocity and pressure degrees of freedom compose the unknown vector 
𝑈𝑈 from a solution technique based on partitioning the assembled linear algebraic system of equation of the 
form [17] 

𝐾𝐾 𝑈𝑈 = 𝐹𝐹      7 
into essential and free degrees of freedom (denoted by  ′𝑒𝑒′  & ′𝑓𝑓′ post subscript respectively). 𝐾𝐾 is the global 
system ‘stiffness’ matrix and 𝐹𝐹 is the associated force vector containing the respective nodal reaction forces 
and flow rates.  

�
𝐾𝐾𝑓𝑓𝑓𝑓 𝐾𝐾𝑓𝑓𝑓𝑓
𝐾𝐾𝑒𝑒𝑒𝑒 𝐾𝐾𝑒𝑒𝑒𝑒

� �
𝑢𝑢𝑓𝑓
𝑢𝑢𝑒𝑒� = �

𝐹𝐹𝑓𝑓
𝐹𝐹𝑒𝑒
�     8 

The fiber’s translational and angular velocities are obtained by zeroing the hydrodynamic forces and torques 
acting on the fiber’s surface due to exertion from the surrounding fluid. This is achieved using a Newton-
Raphson (NR) algorithm [14,15] thus 

𝑋̇𝑋 
+ = 𝑋̇𝑋 

− − 𝐽𝐽−\𝑅𝑅−     9 

In the above, 𝑅𝑅 is the residual vector  containing the fiber’s hydrodynamic forces 𝐹𝐹𝐻𝐻 and torques 𝑇𝑇𝐻𝐻 and 
𝑋̇𝑋 

  is the fiber’s velocity vector comprising the fiber’s translational and rotational velocity vector, i.e.  𝑅𝑅 =
[𝐹𝐹𝐻𝐻 𝑇𝑇𝐻𝐻]𝑇𝑇and  𝑋̇𝑋 = �𝑋̇𝑋𝑐𝑐 Ω̇�𝑇𝑇. The net hydrodynamic forces and torques acting on the fiber are the nodal 
summation of the force components and the nodal summation of the vector product of the position vectors 
and force components over the fiber surface, i.e.  

𝐹𝐹𝐻𝐻   = −∑ 𝐹𝐹𝑒𝑒,𝑛𝑛
𝐵𝐵𝐵𝐵3  

𝑛𝑛∈ 𝑁𝑁         , 𝑇𝑇𝐻𝐻 = −∑ 𝑟𝑟𝑛𝑛 × 𝐹𝐹𝑒𝑒,𝑛𝑛
𝐵𝐵𝐵𝐵3  

𝑛𝑛∈ 𝑁𝑁    10 

 

    
 

Velocity & pressure 

Pressure 
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The Jacobian 𝐽𝐽 for the Newton Raphson iteration is obtained by differentiating the residual vector 𝑅𝑅 with 

respect to the fiber’s velocity 𝑋̇𝑋, which requires differentiating the nodal component forces with respect to 
the fiber’s velocity vector. i.e.  

𝐽𝐽 = 𝜕𝜕𝑅𝑅
𝜕𝜕𝑋̇𝑋 

 = 𝜕𝜕
𝜕𝜕𝑋̇𝑋 

 [𝐹𝐹𝐻𝐻 𝑇𝑇𝐻𝐻]𝑇𝑇 = �−∑
𝜕𝜕𝐹𝐹𝑒𝑒,𝑛𝑛

𝐵𝐵𝐵𝐵3

𝜕𝜕𝑋̇𝑋 
 
 
 

  
𝑛𝑛∈ 𝑁𝑁 −∑ 𝑟𝑟𝑛𝑛 × 𝜕𝜕𝐹𝐹𝑒𝑒,𝑛𝑛

𝐵𝐵𝐵𝐵3

𝜕𝜕𝑋̇𝑋 
 

  
𝑛𝑛∈ 𝑁𝑁 �

𝑇𝑇

  11 

In addition, the velocity derivative of the nodal reaction force based on Newtonian fluid is  
𝜕𝜕𝐹𝐹𝑒𝑒 

𝜕𝜕𝑋̇𝑋 
 = �𝐾𝐾𝑒𝑒𝑒𝑒 − 𝐾𝐾𝑒𝑒𝑒𝑒 𝐾𝐾𝑓𝑓𝑓𝑓−1 𝐾𝐾𝑓𝑓𝑓𝑓 �

𝜕𝜕𝑢𝑢𝑒𝑒
𝜕𝜕𝑋̇𝑋 

      12 
 
The global transformation matrix for the fiber’s velocities based on its reference frame of axis is given by, 
 

𝑅𝑅𝑋̇𝑋 
 = �

𝑅𝑅Ω 0
 0 𝑅𝑅Ω̇𝑅𝑅Ω

 �     13 

The quasi-time dependent evolution of the fiber is computed using a fourth order Runge-Kutta iteration 
algorithm to update the fibers position and orientation.  
 
Model Verification  
 
To validate the FEA model for the single fiber evolution, we compare results of a stationary study for simple 
shear flow with results obtained from commercial software – COMSOL Multiphysics. In both models, we 
consider zero initial fiber orientation and angular velocities and zero pressure point constraint at a far field 
boundary node. We consider a fiber aspect ratio of 6:1, a shear rate of 1 [s-1] in the y-plane. For model 
validation we consider a rather coarse mesh with a total element of 2916 units. The mesh geometry from 
the custom FEA software is imported into the COMSOL model for uniformity. A sufficiently large fluid 
domain size is considered such that the ratio of the far-field radial distance to the fiber’s long axis is 20:1 

     

 

 
(a) (b) 

Figure 6: velocity and pressure contour plots for (a) COMSOL model (b) custom FEA model 
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From the result we see a discrepancy less than 4.7% in the minimum pressure on the fibers surface. For 
further verification, we benchmark result of orientation angle of the time evolution model for the single 
fiber along Jefferies orbit and compare to values obtained analytically.  The Jefferies equation are developed 
based on zero-torque acting on a rigid ellipsoidal fiber suspension in a homogenous simple shear Newtonian 
flow and assuming the fiber translates with the same translational velocities of the undisturbed surrounding 
fluid [3]. Based on these assumptions, Jeffery’s analytical relations for the fiber’s angular velocities are 
presented in Equation 11 below. 
 

𝜙̇𝜙(𝑡𝑡) =
𝛾̇𝛾
2

[𝜆𝜆 cos 2𝜙𝜙 + 1],   𝜃̇𝜃(𝑡𝑡) =
𝛾̇𝛾
2

(𝜆𝜆 sin 2𝜙𝜙)�(𝜆𝜆 cos 2𝜙𝜙 + 1)𝐶𝐶2(1 + 𝜆𝜆)
[(𝜆𝜆 cos 2𝜙𝜙 + 1) + 𝐶𝐶2(1 + 𝜆𝜆)] , 𝜓̇𝜓(𝑡𝑡) = −

𝛾̇𝛾
2

(𝜆𝜆 cos 2𝜙𝜙) cos𝜃𝜃 

 14 
Where scalar magnitude of the strain rate tensor 𝛾̇𝛾 is given as 
 

𝜆𝜆 =
𝑟𝑟𝑒𝑒2 − 1
𝑟𝑟𝑒𝑒2 + 1

, 𝛾̇𝛾 = �1
2
Γ: Γ, Γ =

1
2 ��

∇U� + �∇U�𝑇𝑇� 

 
Γ is the second-order rate of deformation tensor and ∇U is the velocity gradient tensor. For simple shear in 
one plane 𝐶𝐶 = +∞ such that 𝜃𝜃 = 𝜋𝜋 2⁄ , 𝜓𝜓 = 0, 𝜓̇𝜓 = 𝜃̇𝜃 = 0. Jeffery’s Orbital period is given as 
 

𝑇𝑇 = 2𝜋𝜋
𝛾̇𝛾
�𝑟𝑟𝑒𝑒 + 1 𝑟𝑟𝑒𝑒� �     15 

Results of the 2D simulation using similar input data were obtained from [8]. The results below show slight 
deviation in tumbling period especially for the 3D model. Further mesh refinement would be required for 
close exact match however at a computational cost. 
 

  
       (a)            (b) 
Figure 7: Result from Jeffery Analytical model, 2D FEA & 3D FEA simulation of simple shear flow for 

(a) In-plane angular velocity (b) In plane orientation angle. 
 
The result of the 3D simulation for the case of simple shear shows a drop in the minimum pressure on the 
fiber surface along Jefferies orbit to about -13kPa below the far-field reference pressure of 0kPa set at the 
start of the analysis (cf. Figure 8(a)). Based on our hypothesis, the pressure dip suggests a propensity for 
the onset of void nucleation at these sites where they occur (cf. Figure 8(b)). 
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(a) 

 

   
1). Min:0.00 kPa    Max:0.00 kPa 2). Min:-13.37 kPa   Max:1.91 kPa 3). Min:-1.39 kPa    Max: 4.74 kPa 

   
4). Min:-1.91kPa    Max:+13.39kPa 5). Min:-13.39MPa    Max:1.90 kPa 6). Min:-4.90kPa    Max:1.42 kPa 

 

  

7). Min:-1.74 kPa    Max:+3.46 kPa   
 
Figure 8: Evolution of pressure limits on fiber’s surface (a) minimum and maximum pressure profile (b) 

Surface Contour at different time stamps. 
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Results & Discussion 
 
Subsequent results presented in this section are based on actual 3D streamline data (velocity, velocity 
gradients, and pressure) obtained from the BAAM extrusion deposition flow model (cf. Figure 3). The 
fiber’s evolution analysis is carried out for 2 streamlines, streamline ψ=4 closer to the nozzle center and 
ψ=20 closer to the nozzle edge. At the nozzle center, the velocity gradients are not as severe compared to 
streamlines closer to the nozzle edge (cf. Figure 2(c)). As expected, we do not experience high rotational 
velocities for streamlines closer to the center compared to those farther out especially at the region where 
the fiber' exits the nozzle and turns onto the bed due to relatively lower shear rates (cf. Figure 14 (a, c)). It 
is worth noting that the deposition times however for the edge streamlines are relatively longer (about 9.7s 
for ψ=20) compared to the center streamline due to the wall effect (about 5.7s for ψ=4). Thus, the 
translational velocities are higher for the streamlines closer to the center ψ=4, than for those closer to the 
nozzle edge (cf. Figure 14 (b, d)). 
 

  
(a) (b) 

  
(c) (d) 

Figure 9: Evolution of fiber’s angular velocity for (a) streamline ψ=4 (c) streamlines ψ=20, and Evolution 
of fiber’s orientation angle for (b) streamline ψ=4 (d) streamlines ψ=20 

 
The results for the pressure limits on the fibers surface for both streamlines shows that the fiber pressure  
persists below the reference pressure during the downward travel however at the region of interest where it 
exits the nozzle and is deposited on the bed, the minimum pressure stays well below the reference pressure 
for the streamline closer to the edge (ψ=20) about -0.4Mpa, however this is not the case for streamline 4 
closer to the center where the minimum pressure goes above the reference pressure before it returns to the 
zero (cf. Figure 9 (a, b)) 
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(a) (b) 

Figure 10: Evolution of Pressure limits on fiber’s surface for (a) streamline ψ=4 (b) streamlines ψ=20 

Conclusion 
 
The paper presents preliminary investigation on localized pressure related void nucleation during polymer 
extrusion/deposition flow process based on 3D simulation to study the impact of out-of-plane fiber 
orientation on void nucleation propensity at these low-pressure sites. Currently, we do not have established 
benchmark to understand the effect of out of plane 3D orientation on the pressure response, however we 
report substantial drop in the minimum pressure as the fiber exits the nozzle for streamlines closer to the 
edge with higher velocity gradients compared to those closer to the center which are pointers to likelihood 
for void formation [1,18]. We see from the results that for most part during the deposition, the fiber’s 
pressure stays below the far field pressure.  
 
Work is currently underway to establish a relationship between print processing parameters and likelihood 
of void formation and to improve simulation calculation efficiency and accuracy. Other factors that could 
significantly impact the pressure response on the fiber surface such as non-Newtonian fluid behavior, initial 
fiber orientation, fiber-fiber interaction, and flexure consideration of the fiber suspension for high aspect 
ratio fibers would be considered for further investigation.  
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