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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A vision-based deep learning framework 
is developed to systematically study 
two-phase nucleation dynamics from a 
data-centric standpoint. 

• Identifying detection- and tracking-level 
errors is critical to ensure high-quality 
two-phase nucleation feature 
extractions. 

• Optimized detection and tracking pa-
rameters are defined through semi- 
automated image annotations specific 
examples. 

• Performance metrics are evaluated over 
a wide spectrum of heat fluxes to ensure 
optimal quantification of varying two- 
phase nucleation dynamics.  
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A B S T R A C T   

Quantifying the nucleation processes involved in liquid-vapor phase-change phenomena, while dauntingly 
challenging, is central in designing energy conversion and thermal management systems. Recent technological 
advances in the deep learning and computer vision field offer the potential for quantifying such complex two- 
phase nucleation processes at unprecedented levels. By leveraging these new technologies, a multiple object 
tracking framework called “vision inspired online nuclei tracker (VISION-iT)” has been proposed to extract large- 
scale, physical features residing within boiling and condensation videos. However, extracting high-quality fea-
tures that can be integrated with domain knowledge requires detailed discussions that may be field- or case- 
specific problems. In this regard, we present a demonstration and discussion of the detailed construction, al-
gorithms, and optimization of individual modules to enable adaptation of the framework to custom datasets. The 
concepts and procedures outlined in this study are transferable and can benefit broader audiences dealing with 
similar problems.  
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1. Introduction 

Liquid-vapor phase-change phenomena are critical for maintaining a 
sustainable and habitable environment on Earth. These phenomena 
continue to play a central role in present-day industries with ever 
growing presence. Phase-change processes utilize the high latent heat of 
the working fluid to transport great amounts of thermal energy effi-
ciently [1]. Among various phase-change processes, boiling and 
condensation are two of the most widely used in both domestic and 
industrial applications [2]. Therefore, increasing the heat transfer effi-
cacy of these processes can bring transformational changes to the safety, 
durability, cost, and sustainability of thermal energy systems [2]. 

Despite its significance and widespread usage, the underlying 
mechanisms governing boiling or condensation heat transfer perfor-
mances can be elusive and are still considered by some as technologies 
yet to mature [3]. Over more than a century, extensive research has been 
conducted to maximize phase-change heat transfer performances 
through theoretical and computational modeling [4], surface engi-
neering [5–7], new metrologies [8–10], and a diverse set of experi-
mental conditions [11,12]. The accumulated data has led to a multitude 
of both empirical and phenomenological correlations that have become 
the building blocks of the two-phase heat transfer field. However, many 
of these correlations are narrowly restricted to a specific range of con-
ditions, geometries, and working fluids, which ultimately contribute to 
the high level of data inconsistency present today. 

One of the primary reasons for inconsistencies in boiling and 
condensation studies is due to the poor understanding of and weak 
connection between nucleation statistics and effective heat and mass 
transport performances. Boiling and condensation are both quasi-steady 
processes [13], involving a temporal sequence of secondary phase (i.e., 
bubbles for boiling and droplets for condensation) nucleation, growth, 
interaction, and departure (Fig. 1a). Nucleation parameters, such as 
nuclei growth rate, nucleation site density, departure frequency, and 
departure diameter, have been instilled in traditional two-phase heat 
and mass transfer models for decades, but many of these parameters are 
derived from small quantities of manually extracted empirical datasets 

[14]. The need for better connections between experiments and visu-
alization methods has become increasingly important over the years as 
classical nucleation dynamics using different conditions have begun to 
deviate from what researchers previously understood as the norm [11, 
15]. To address this challenge, it is imperative to take a data-driven 
approach by extracting, curating, and analyzing mass nucleation infor-
mation from chaotic two-phase processes. One of the most viable and 
straightforward solutions is to analyze information-rich imagery (i.e., 
images and videos) that continues to be a customary part of most boiling 
and condensation experiments [16]. 

However, analyzing image data continues to be a daunting challenge 
for researchers. A significant portion of studies still rely on time- 
consuming and labor-expensive manual image analysis [16]. Algo-
rithmic computer vision approaches, such as thresholding and edge 
detection, are popular methods that have been used to analyze images 
over the past two decades. However, these approaches require signifi-
cant environmental control, and they can perform poorly with even 
slight changes in lighting or contrast [17–19]. Recently, machine 
learning and deep learning techniques have emerged as powerful tools 
for performing digital inference tasks [16,20,21]. Unlike traditional 
algorithmic approaches that rely heavily on handcrafted features and 
carefully designed experimental settings, machine learning and deep 
learning models are trained, rather than programmed, and therefore 
outperform other methods [22]. 

Digital inference enables the acquisition of meaningful and rich 
physical descriptors through a feature hierarchy shown in Fig. 1b. At the 
bottom of the hierarchy, neural networks are designed and trained to 
learn salient features, such as edges, brightness, contrasts, and contours, 
from images. These features are typically used in modern deep learning 
models that address classification or regression problems. Previous ex-
amples of machine learning tasks include identifying different stages of 
the heat transfer curve [23], detecting nucleation behavior anomalies 
[24], and even forecasting events [25]. 

To extract physically meaningful information from the digital 
inference process, it is necessary to refine the process through object 
detection [26]. The object detection task allows to extract specific 

Fig. 1. Applications of vision-inspired online nuclei tracker (VISION-iT) for phase-change heat transfer analysis. (a) Phase-change processes follow nucleation, 
growth, interaction, and departure cycles, which can consist of hundreds of nucleation instances per second. (b) Artificial Intelligence (AI) solutions towards 
overcoming challenging two-phase image analysis come with varying feature levels. At the higher end of the feature hierarchy, spatio-temporal feature extractors are 
generally less user-friendly because they consist of multiple modules. (c) VISION-iT passes collected image data (from the orange frame) through object detection, 
tracking, and data processing modules (green frame) to extract multi-level physical descriptors that will establish a holistic description of two-phase heat and 
mass transfer. 
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features with varying levels of complexity, ranging from bounding 
box-level to pixel-level accuracy. At the most basic level, the networks 
specify the type, rough size, and location of objects via bounding box 
(bbox) regression [27,28]. With more advanced models, objects can be 
entirely segmented from the background with pixel-level accuracy [29]. 
While object detection modules can explain various aspects of in situ 
bubble or droplet dynamics, the most informative features are 
spatio-temporal, meaning that detected objects must also be linked with 
time information, which might be challenging. 

Our group has recently reported a vision-based framework named 
vision-inspired online nuclei tracker (VISION-iT), which can autono-
mously curate millions of informative physical descriptors from dense 
nucleation activity using video data (Fig. 1c) [21]. VISION-iT has proven 
to be essential in the retrospective analysis of heat and mass transfer and 
monitoring of nuclei behavior during phase-change. However, the 
framework consists of multiple integrated components which must be 
carefully customized to different nucleation conditions for optimal 
performance. Therefore, the practical challenges of applying VISION-iT 
to custom datasets include a concrete understanding of domain-specific 
nuclei behaviors, the recognition of the various sources of errors 
involved in each module, and the comprehensive physical description of 
two-phase heat transfer parameters. 

In this work, we demonstrate the operational procedures of VISION- 
iT by taking the example from pool boiling. We begin by providing 
detailed methods to quantitatively validate the performance of VISION- 
iT, including custom-defined validation metrics. Then, we identify 
common errors related to individual components of the framework and 
propose strategies to minimize them. Finally, the framework discussed 
in this study can be expanded to other applications within and beyond 
the thermal sciences through practical examples. The framework can be 
useful to analyze nucleation-based processes, such as boiling, conden-
sation, frosting, icing, cell-adhesion, crystal formation, corrosion, and 
flow analysis. 

2. Results 

2.1. Overall framework 

VISION-iT is an integrated pipeline consisting of image acquisition, 
instance-level object detection, object tracking, and post processing 
modules fine-tuned for, but not limited to, bubble and droplet feature 
extraction. At the image acquisition stage, high resolution optical im-
ages are collected from experimental apparatus. The object detection 
module then uses a custom-trained Mask R-CNN model to perform 
instance segmentation, where pixel-wise masks bearing unique identi-
fiers (IDs) are generated for individual objects (i.e., droplet or bubble) in 
each frame (see Methods Section and Supplementary Materials S1 for 
the detailed training procedure). An object tracking module takes the 
detected masks and passes them through a TrackPy-based cell tracking 
package [30,31], where the IDs are linked with respect to time. Finally, a 
data processing module post-processes the datasets to filter objects 
clipped by the view field and extract high-level spatio-temporal features. 

2.2. Detection- and Tracking-level errors 

To provide a holistic description of multi-level features, it is crucial 
to understand, prevent, and mitigate errors that manifest themselves 
within each module (Fig. 2). Errors arising from multiple-object tracking 
(MOT) module can be largely categorized into detection-level errors 
(where the primary concern is to accurately locate multiple objects in an 
image) and tracking-level errors (where the goal is to maintain correct 
object IDs and yield their respective trajectories throughout the 
sequence of images). 

Detection-level errors are mainly governed by the difficulties asso-
ciated with representing three-dimensional nucleation phenomena by 
using two-dimensional images. For example, a common error associated 
with pool boiling is occlusion-induced errors (OIEs), or errors that arise 
when an object is fully or partially hidden by another object of the same 
class, such as a bubble, situated closer to the camera (Fig. 2a). Moreover, 

Fig. 2. Detection and tracking errors from the VISION-iT framework. (a) At the object detection level, the morphological diversity of objects poses difficulties in 
identifying individual instances. Occlusions are often observed and can cause underestimations of the object size. For example, the comparison between extrinsic 
boundaries (blue) and the estimated intrinsic boundaries (red) results in missing occluded areas (shaded). The scale bar represents 3 mm. (b) Model performances 
may vary depending on the difficulty of the visual scenes. For example, nucleation activities can drastically vary depending on the heat flux of the surface and cause 
performance deviations. The scale bar represents 3 mm. Following the object detection, tracking parameters such as search range threshold η and memory ψ dictate 
the tracking performances. (c) The illustration shows that when the distance l between an object Oi and prediction Pi exceeds a certain search range threshold η, the 
model can no longer make a correspondence and switches the ID (color). (d) Ideally, the object detector will identify all objects throughout the given timeframes. The 
memory of the model decides the maximum number of frames for which a feature can vanish and then reappear nearby, and still be considered the same particle. The 
figure illustrates an ideal track, a track at low framerates where all objects are detected, and a track where the model misses objects at time t1, t2, and t5. On the third 
track, the model loses object correspondence when memory is set to 0. Note that the same type of errors can occur when using a low framerate because the search 
range threshold η is exceeded. 
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performance deviations can be introduced when predicting for varying 
bubble dynamics (Fig. 2b), which have a proclivity to change when 
experimental parameters such as heat flux, surface chemistry, surface 
architecture, orientation, and working fluid are changed [13,32]. 
Therefore, it is important for the model to generalize well across a wide 
range of nucleation and departure behaviors. In both cases, the errors 
must be quantified by the researcher to assess the prediction perfor-
mance of the model. 

Tracking-level errors are inevitably subject to the performance of the 
object detection model but can be mitigated by adjusting parameters in 
the linking module. The goal of the linking step is to find the most 
suitable set of assignments that match each feature in the previous frame 
with the corresponding feature in the current frame. While the most 
recent location of the object is a good candidate for matching features 
between frames, the nearest distance does not always result in correct 
pairing [30]. This is especially true for boiling and condensation pro-
cesses where new nuclei spontaneously form close to each other. 
Therefore, the tracking module links features using spatial coordinates 
as well as other instance characterizations available in the scikit-image 
toolkit such as eccentricity, perimeter, equivalent diameter, orientation, 
and solidity [33]. The tracking module then exploits an extended 
Crocker-Grier algorithm to link features together [34] using variables 
such as “search range” η, “memory” ψ , and feature weights to conserve 
computing power and time [30]. 

Search range, η, refers to a physical circular domain, centered on the 
most likely new position of an object, that the module will restrict its 
search to. As illustrated in Fig. 2c, the correspondence between object Oi 
and the prediction Pi is lost if their distance l exceeds the search range 
threshold η where i is the instance. In other words, using a small η can 
considerably increase the speed of the linkage process, but comes at the 
expense of losing the trajectories of objects for which l > η. Therefore, 
ideally η should be larger than the largest displacement of any object 
between frames, but smaller than the smallest distance between any two 
objects. However, the chances of having boiling and condensation 
videos in which these two distances are always distinct are slim. 
Depending on the framerate or the maximum velocity of bubbles or 
droplets, the maximum displacement varies greatly across different heat 
fluxes, as depicted in Fig. 2b, requiring different η values for each heat 
flux step. To address this issue, an “adaptive search” functionality is 
employed to allow for the tracking module to select candidate features 
more intelligently by starting with a maximum η and automatically 
reducing it when and where the model encounters difficulty [30]. 

Memory, ψ , is a parameter that controls the maximum number of 
frames in which an object can vanish and still be considered as the same 
object (Fig. 2d). Due to the complexity associated with two-phase system 
[16,35], objects occasionally vanish for a small number of frames due to 
occlusions (Fig. 2a) and flickering predictions [36]. Accordingly, ψ be-
comes an important parameter to keep accurate track of bubbles 
generated during pool boiling. However, setting ψ to be too high, and 
thus reaching back too far, can have negative effects by not recognizing 
new bubbles originating from a new nucleation cycle. The effects of 
acquiring images with low framerates and using low ψ are elucidated in 
Fig. 2d. While both cases can capture fragments of the object’s history 
throughout time, the tracker loses the object ID due to restricted spatial 
search range for the low framerate case and limited temporal search 
range for small ψ case. 

Finally, the model can use different weights to allow the tracker to 
link objects based on specific nucleation characteristics such as vertical 
or lateral movements. For example, during atmospheric pool boiling, 
bubbles are forced to rise due to buoyancy, establishing a difficult case 
where bubbles with similar shapes and sizes exist close to one another in 
both x and y directions. By adding weight to the x coordinate feature, the 
tracker has a greater tendency to link objects that are laterally closer in 
successive frames. Since the change in the x coordinate of a rising bubble 
is rarely larger than the distance between two bubbles being side by side 
in consecutive timesteps, the tracker is effectively forced to link rising 

bubbles. Similar strategies can be applied to other nucleation-based flow 
systems if they have preferable orientations. For example, it could be 
more advantageous to add weight to the spatial coordinates and object 
size for a dense coverage of identically shaped droplets [20]. Table S1 
provides a detailed list of the models and weights discussed in this study. 

2.3. Validation metrics 

Evaluating MOT performances is a nontrivial task, which requires 
the rigorous characterization of both detection- and tracking-level per-
formances. This study showcases the predictive performance of VISION- 
iT for pool boiling videos for demonstrative purposes. All evaluation 
metrics are grounded on at least 250 manually labeled, sequential im-
ages (i.e., groundtruth (GT) per heat flux increment adding to a total of 
> 1250 images. These datasets are used for evaluation purposes only and 
not for object detection model training. See the Methods Section for 
detailed annotation procedures. 

At the detection stage, we assess the tailored Mask R-CNN model 
ability to segment bubbles into pixelwise masks using standard evalu-
ation metrics as well as custom-defined metrics. Standard evaluation 
metrics, such as recall, precision, accuracy, and F-1 score, evaluate the 
segmentation performance through different combinations of possible 
outcomes of predicted instances (Fig. 3a). A true positive (TP) is defined 
as a condition when the model correctly detects an existing object that 
matches the GT, and a false positive (FP) is counted when the model 
labels or categorizes an image when it should not have. Conversely, a 
true negative (TN), although rare, situates when the model correctly 
predicts that there are no instances within the image. Finally, a false 
negative (FN) is assigned when the model misses an object with respect 
to the GT. 

In previous work where performance metrics were calculated based 
on IoU thresholds, the models were shown to maintain high-level per-
formance > 90 % until tight IoU thresholds > 0.9 were implemented 
[21]. Here, we implement stricter standards by determining positive- 
and negative-conditioned pixels instead of IoU thresholds. According to 
their respective definitions [37]: 

Recall =

∑

TP
∑

(TP + FN)
, (1)  

Precision =

∑

TP
∑

(TP + FP)
, (2)  

Accuracy =

∑

(TP + TN)
∑

(TP + TN + FN + FP)
, (3)  

and 

F − 1 score = 2⋅
Precision⋅Recall

Precision + Recall
. (4) 

In addition to these performance metrics, a metric called mean 
average pixel error (MAPE) evaluates the model prediction accuracy at 
the pixel-level (Fig. 3b). For this, the pixelwise error (PE) can be 
calculated by subtracting the GT and predicted mask (PM) images: 
PEj = GTj − PMj, (5)  

where an image j. Then, the MAPE is calculated by dividing each PE by 
its respective GT: 

MAPE =
1

n

∑

n

j=1

⃒

⃒

⃒

⃒

PEj

GTj

⃒

⃒

⃒

⃒

⋅100 (6)  

for the total n images. 
In parallel to MAPE, we quantify errors caused by bubble-bubble 

occlusions (i.e., OIE) by dividing pixel-based occlusion errors (OEs) 
with the GT: 
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OIE =
1

n

∑

n

j=1

⃒

⃒

⃒

⃒

OEj

GTj

⃒

⃒

⃒

⃒

⋅100 (7) 

To determine OEs (Fig. 2a-iii), a minimum of 200 images having 
occlusion events are separately labelled per dataset, where the intrinsic 
boundary estimations are added into the GT as shown in Fig. 2a-II. 

At the tracking stage, we define a metric called relative multiple- 
object tracking accuracy (RMOTA) to evaluate the tracking perfor-
mance of complex systems where the tracking groundtruth may be un-
available, or impractical to generate. Despite the growing interest in 
using object tracking for academic and commercial purposes, there is 
still no clear golden standard for evaluating the tracking quality [38,39]. 
Moreover, the evaluations are conducted on official datasets with 
identical GTs, which suggests that even the best model may not perform 
well on custom datasets. The difficulty of assessing the tracking per-
formance on custom datasets varies significantly depending on the 
application at hand. For instance, creating GT tracks for complex sys-
tems that display chaotic behavior, such as boiling, is notoriously 
difficult because it demands general solutions for highly subjective 
problems. One such example is tracking IDs for bubbles during their 
merging events. Furthermore, in high nucleation density systems such as 
condensation, it is practically impossible to manually track every 
droplet for a large number of frames. To address these challenges, we 
propose RMOTA (see Supplementary Materials S2 for a detailed deri-
vation), which compares the relative tracking performance between 
input videos of predicted masks and GT masks (Fig. 3c): 

RMOTA = 1 −

∑

t

(IDtr + IDsw)j

∑

t

(GT)j

, (8)  

where IDtr is the difference between the number of tracked IDs per 
frame, and IDsw is the number of ID switching events relative to the GT 
with respect to image j. RMOTA is a relative measure of how well the 
model tracks objects, comparing object masks predicted by Mask R-CNN 
to manually labeled (i.e., GT) object masks. RMOTA assumes that the 
trajectories created from manually labeled objects are ideal because they 
minimize mispredictions or missing objects. Under this definition, 
RMOTA incorporates errors resulting from missed objects as well as ID 

switching events. Fig. 3d illustrates an example case of where ID 
switching events can lead to completely misinterpreted tracks, where 
dashed lines represent the GT paths, and predictions P are color-coded 
based on how the model linked them over time. At t4, the combina-
tion of the initialization and termination of tracks, similar morphology, 
and dense packing leads to all three instances switching their IDs. 
Furthermore, because the object linkage process is influenced by η and 
ψ , RMOTA optimization involves a series of iterations until it meets the 
appropriate criteria (RMOTA > 75%) across all heat fluxes. 

2.4. Detection module optimization 

To assess the detection model across varying heat fluxes (4 – 50 W/ 
cm2), we employ instance-based or pixel-based metrics as well as oc-
clusion errors, as shown in Figs. 4a-c. The model scores exceptionally 
well (> 83 %) on conventional instance-based metrics, such as accuracy, 
recall, F-1 score, and precision across all tests. In comparison to preci-
sion, the model scores relatively high in recall, which implies that the 
model leans towards missing objects rather than mislabeling them 
(Fig. 4a). Overall, the model scores higher at the low (4 W/cm2) and 
high (50 W/cm2) heat fluxes, respectively. We speculate this to be a 
result of bubbles having a varying level of difficulties between the low- 
and high-end of the heat flux spectrum. On the one hand, bubbles 
forming near the onset of nucleate boiling (ONB) form as isolated bub-
bles with minimum bubble-bubble interaction. On the other hand, 
bubbles are ejected as a singular unit at high (> 50 W/cm2) heat fluxes 
due to elevated nucleation density paired with rapid bubble coalescence. 
The intermediate regime (14 – 31 W/cm2) poses the greatest challenge 
for all vision-based analysis because it is fraught with chain interactions 
that are difficult to distinguish, even for a trained expert. 

Similar to the instance-based metrics, the pixel-based errors 
including MAPE and OIE also show low (< 6 %) values for all heat 
fluxes, which can be negligible (Fig. 4b and c). In alignment with our 
hypothesis, the MAPE peaks at an intermediate heat flux of 23 W/cm2 

and decreases as the heat flux further increases. Meanwhile, OIE exhibits 
a continuously increasing trend as the heat flux increases, suggesting 
that occlusion errors become more pronounced as the overall bubble size 
grows. 

To maximize detection fidelity, researchers should optimize imaging 

Fig. 3. Object detection and tracking validation metrics. (a) Illustration of traditional detection metrics such as recall, precision, accuracy, and F-1 score. (b) 
Schematic of workflow for determining mean average pixel error (MAPE). (c) Relative multiple-object tracking accuracy (RMOTA) is calculated by comparing the 
extent that predicted mask videos deviate from the ground truth, GT. (d) Representative examples of ID mismatches that can occur during object tracking. The small 
circles with dotted lines represent the ground truths, GTi, whereas colored circles indicate predictions, Pi. In the frames from t0 to t2, P1 and P3 are correctly mapped to 
their respective GTs. At t3, P2 first appears, P1 disappears, and P3 is situated close to P2. The combination of such events causes all IDs to switch at t4. 
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conditions, image quality, and annotation consistency. Although there is 
a pressing demand for a foundation model tethered to two-phase 
nucleation applications, such models would require a collaborative 
effort among different institutes to enable access to a wide range of 
image datasets to train on. Therefore, it is currently still more practical 
to fine-tune deep learning algorithms to the specific experimental 
environment. 

With this in mind, we first recommend maintaining relatively 
controlled visualization environments by minimizing unnecessary errors 
that can come from operations. Although deep learning-based computer 
vision models respond better to environmental changes than traditional 
computer vision algorithms [20], it is still advantageous to reduce po-
tential errors caused by preventable vibration or illumination variation. 
Furthermore, since a consistent pixel-to-length conversion is crucial for 
accurate measurements, it is convenient to maintain a fixed focal length 
throughout all experiments to efficiently cross-compare evolving bubble 
dynamics between differing heat fluxes and surfaces. 

The image quality is an important factor that determines whether the 
image is analyzable. Bubbles or droplets captured at low framerates 
become distorted due to motion blur, which might not be suitable for 
further analysis such as labeling. In addition, relatively large 2D boiling 
surface areas can produce an excessive number of bubbles such that 
either the bubbles outside the focal view become blurred, or intra-class 
occlusion events become overwhelming. The errors associated with this 
these cases can be reduced by collecting pool boiling images from 
smaller boiling surfaces or 1D line heaters. Finally, detection-level errors 
can be further reduced by enhancing the consistency of annotations. 
This study minimizes human-induced annotation errors by developing a 
human-in-the-loop annotation framework (see Supplementary Materials 
S1 and Fig. S1) that realizes semi-automatic image annotations in 
addition to demonstrating clear annotation rules (see Table S2) along 
with active communication between annotators. 

Finally, we report a resolution-induced trade-off between accuracy 
and prediction time when inferring imaging data. Fig. 4d quantifies this 

conflict, showing a considerable prediction runtime difference of 131 % 
when comparing a 128 × 128 to a 1024 × 1024 pixel case. The 
discrepancy is caused by high-frequency feature loss, as shown in 
Fig. 4e, where high-pixel intensity variations are smoothened from file 
compression. To make the balance between accuracy and computational 
time, this study employs 512 × 512 pixel images. 

2.5. Tracking module optimization 

Enhancing the tracking module involves multiparametric fine-tuning 
of linkage specifications and weights. However, quantitatively assessing 
the tracking performance is a major challenge for most two-phase pro-
cesses due to limited access to the GT videos. To address this challenge, 
we introduce a semi-automatic workflow to derive the best tracking 
conditions, as listed in Fig. 5a. To begin, an initial set of tracking pa-
rameters (i.e., η and ψ) and weights are selected for manual initial 
validation. Typically, poor linkage can be quickly filtered by monitoring 
incomplete tracks and ID switches. If the linkage process passes manual 
screening, the present weights are fixed for all heat flux steps. The 
tracking parameters η and ψ are then fine-tuned by mapping RMOTA, as 
shown in Fig. 5b, where maximum values are denoted with an asterisk. 
The results show that RMOTA drastically declines when η < 135 is 
applied. Furthermore, the combination of η = 135 − 225 and ψ = 2 − 3 
offers the best tracking performance for our examples of pool boiling. 
Fig. 5c compares the tracking performance when different weights are 
applied, confirming that fine-tuning can assist with the optimization of 
specific tasks. 

3. Discussion 

As ML-assisted frameworks become increasingly popular in the 
thermal science community, the impact of big and new data is becoming 
more pronounced. The VISION-iT framework addresses one of the 
enduring challenges of acquiring a sufficient amount of high-quality 

Fig. 4. Object detection results. (a) Plot showing how a custom-trained model performs on a wide heat flux range (4 – 50 W/cm2). (b) The MAPE and (c) occlusion- 
induced error (OIE) both show reasonably low values, < 6 %, confirming the pixel-wise accuracy of the trained model. (d) The results show an inherent trade-off 
between precision (yellow bars) and prediction runtime (red squares) for varying image sizes, where precision and inference time suffer greatly when image di-
mensions are too small or too large, respectively. (e) The reduction of image dimensions from 1024 × 1024 pixels to 128 × 128 pixels cause high-frequency feature 
loss, which is detrimental for both object detection training and prediction. 
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data during nucleation dynamics. The VISION-iT framework can be 
adapted for various applications (Fig. 6) and provide a detailed 
description of the algorithms used (See Supplementary Materials S3). 
For example, VISION-iT can extract classic nucleation dynamics pa-
rameters, such as departure diameter (Fig. 6b), nucleation site density 
(Fig. 6c), and departure frequency (Fig. 6d), over the full boiling curve 

during pool boiling [40]. In addition, our recent work demonstrates 
ultra-high resolution surface heat flux mapping capabilities during 
dropwise condensation experiments (Fig. 6e – g) with up to 300 nm and 
200 ms spatio-temporal resolutions, respectively [20]. Moreover, we 
demonstrate that the same methods can be applied to condensation tests 
where surface patterns, similar to droplet morphologies, exist (Fig. 6e). 

Fig. 5. Object tracking statistics. (a) The tracker optimization procedure follows an iterative process until the target RMOTA is obtained. (b) Tracking parameters are 
fine-tuned by mapping the search range η and memory ψ with respect to RMOTA. The plot shows a representative mapping of η and ψ using adjusted weights. The 
model with the highest performance is marked with an asterisk. (c) Parameters adjusted for pool boiling applications show high RMOTA scores compared to 
other models. 

Fig. 6. Deployment of VISION-iT for various two-phase processes. For (a) pool boiling applications, the extraction of parameters such as the (b) departure diameter 
distribution, (c) effective nucleation site density, and (d) departure frequency is demonstrated as a function of departure diameter, where the gray scatter represents 
the raw data and the black markers are the averaged values over diameter bins. The departure frequency versus diameter plot is compared with previous manually 
verified results (pink and purple lines). The scale bar represents 5 mm. (e) Condensation on a patterned surface shows ultra-high resolution surface heat flux 
mappings in (f and g). The scale bar is 50 μm. (h) Flow boiling shows the evolution of the (i) instantaneous overall volume fraction and (j) local vapor void fraction for 
varying subcooling conditions. The scale bar is 3 mm. 
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Our model successfully learns how to distinguish droplets from surface 
patterns, which is impossible using conventional thresholding tech-
niques. We also present flow boiling videos where vapor fractions are 
measured at varying scales to identify triggering mechanisms of the 
critical heat flux (CHF) (Fig. 6h – j). It is important to note that these are 
only a few of the features that VISION-iT can potentially extract. Other 
examples include mapping bubble rise velocity [41], droplet number 
distributions and densities [20], nucleation spread and distribution 
[20], initial nucleation site recording, nearest neighbor analysis [42], 
FFT-based nucleation regularity [43], and Voronoi analysis [44]. 

Several challenges still need to be addressed to facilitate the 
deployment of VISION-iT. One major challenge is generating objective 
GT trajectories for two-phase processes, which is inherently subjective. 
Hence, there is a dire need for fully autonomous systems that can 
intelligently generate reasonable object trajectories. In other fields, re-
searchers have reported the use of simulated videos that match observed 
experimental conditions to overcome such issues [45]. Recent examples 
in the thermal science community include the successful reconstruction 
of artificial bubble images using deep neural networks [25], and the 
development of simulated datasets used for scientific machine learning 
(SciML) models [46], which are promising steps towards achieving 
simulated video GTs for complex two-phase processes. The development 
and maintenance of a global database for two-phase studies, similar to 
ImageNet [47], is necessary to provide researchers access to pre-trained 
universal detection models. 

4. Conclusion 

This paper introduces a state-of-the-art two-phase object tracking 
framework, enabling the autonomous curation of large quantities of 
physically descriptive features from multi-phase video data. The 
descriptive features acquired from this developed technique have been 
demonstrated to enable greater mechanistic understandings of two- 
phase processes by bridging the conventional gap between nucleation 
statistics and heat and mass transfer performances. Through systematic 
experiments and data-driven analysis, we identify errors that manifest 
during object detection and tracking processes and provide detailed 
documentation and guidelines for optimizing VISION-iT for custom 
datasets. The framework can be applied to a broad spectrum of heat 
fluxes for pool boiling research, as traditional investigations have been 
confined primarily to lower heat flux regimes. Beyond the pool boiling, 
we further demonstrate the potential of our framework by applying it to 
multiple challenging visual datasets like condensation or flow boiling, 
thereby showcasing its versatility in a wide spectrum of applications. 

5. Methods 

5.1. Model training 

We train three separate Mask R-CNN models for pool boiling, drop-
wise condensation, and flow boiling, respectively. Each model is trained 
on custom-built inventories of several thousand labeled images gathered 
from multiple test settings. To label images, a group of annotators are 
individually trained on specific guidelines for each annotation project 
and regularly communicate with each other to maximize labeling con-
sistency. Annotation projects are managed using a commercial annota-
tion platform (Supervisely, San Jose, CA, USA) and by employing 
human-in-the-loop annotation (Fig. S1). The model generalizability is 
increased by diversifying the image inventory by including images with 
varying experimental conditions and through data augmentation tech-
niques [16]. The data augmentation takes image transformations such as 
horizontal flips, brightness modification, contrast modification, and 
resizing to the original data, creating new, increased training data. All 
models are trained using stochastic gradient descent with varying 
learning rates. Table S3 summarizes the training parameters in detail. 
The pool boiling, condensation, and flow boiling models achieve test 

losses of 0.046, 0.11, and 0.02, respectively. We further demonstrate 
that our model outperforms traditional global and adaptive thresholding 
techniques, which are among the most used in previous literature [48], 
on detection performance metrics (Fig. S2). All models were fine-tuned 
using a single NVIDIA GeForce RTX 2070 GPU. 

5.2. Video groundtruth preparation 

We generate the GT of sequential images by employing human-in- 
the-loop annotation (Fig. S1). To validate the framework performance, 
we label at least 250 images per heat flux step, totaling approximately 
1250 GT images. As shown in Fig. 6c, nucleation site density decreases 
after 50 W/cm2, resulting in less complex bubble shapes. Therefore, we 
select a GT range up to 50 W/cm2 in this study to capture the significant 
bubble morphology transition stages. 

5.3. Side view optical measurement of pool boiling 

Pool boiling experiments are conducted on a custom-built pool 
boiling experimental setup. The pool boiling setup is composed of a 
chamber, data acquisition system, copper block and four cartridge 
heaters. Bubble dynamics are captured using a high-speed camera 
(FASTCAM Mini AX50) at 2,000 fps with a light emitting diode (LED) 
through the optically transparent polycarbonate boiling chamber. All 
visualization measurements are taken at consistent focal lengths and 
light intensities to maintain fixed pixel-to-length ratios. Temperatures 
are measured from four equally-spaced K-type thermocouples embedded 
in the copper block. Thermal signals are processed via a data acquisition 
system (LabJack U6) where the obtained measurements are used to 
calculate the heat flux and surface temperature. The four cylindrical 
cartridge heaters (Omega, CIR-20191) that are inserted at the bottom of 
the copper block generate heat flux through a voltage transformer 
(Variac AC variable voltage converter). Prior to conducting the boiling 
test, the sample is placed and attached on the 1 cm × 1 cm copper 
block through soldering. Once the sample is firmly fixed on the copper 
block with proper polydimethylsiloxane (PDMS) sealing, the chamber is 
filled with the working fluid (DI water). To maintain the water tem-
perature close to saturation, a PID-controlled guard heater is used and 
immersed in the water. A more detailed description of the experimental 
setup can be found in previous work [16,21,49]. 

5.4. Top view optical microscopy of water vapor condensation 

A customized top-view microscopy setup is used to observe 
condensation behavior on biphilic surfaces [50]. The setup consists of a 
cold stage (TP104SC-mk2000A, Instec) that holds the sample horizon-
tally and cools the sample surface to 5 ± 0.5 ◦C to condense water vapor 
from the laboratory ambient air having a temperature Ta = 25 ± 0.5 ◦C 
and relative humidity Φ = 55 ± 5 % (Roscid Technologies, RO120). 
Condensate growth behavior is recorded at 4 frames per second (fps) 
with a 20X objective lens (TU Plan Fluor EPI, Nikon). An LED light 
source (SOLA SM II Light Engine, Lumencor) is selected for illumination 
due to its high intensity but low power consumption (2.5 W) which 
minimizes the surface heating with minimal infrared emission. More-
over, the flexibility of manual control of increasing the camera exposure 
time and reducing the condenser aperture diaphragm opening size helps 
minimize local heating effects during condensation experiments. Addi-
tional details of the visualization technique can be found elsewhere 
[51]. 

5.5. Side view optical measurement of flow boiling 

Single-sided heating flow boiling experiments in a rectangular 
channel are conducted using a flow boiling module that is part of a two- 
phase flow conditioning loop. The flow conditioning loop allows the 
capability to provide a continuous flow of the PF-5060 working fluid to 
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the flow boiling module and for tuning the inlet conditions that were set 
to provide low subcooling (near-saturated) at the module inlet. The flow 
module includes a rectangular channel 2.5 mm by 5 mm with single- 
sided heating provided on the top wall, bottom wall being insulated, 
and transparent side walls to allow for flow visualization access. The 
heated top wall, 11.6 cm in length, has 6 resistive heaters connected in 
parallel to simulate uniform heat flux boundary conditions. There are 7 
thermocouples placed uniformly along the copper heater to measure the 
wall temperature and estimate the corresponding heat transfer co-
efficients. In addition, the inlet/outlet temperature and pressure to the 
flow boiling module are measured using thermocouples and pressure 
transducers, respectively. Flow visualization is achieved using a high- 
speed camera to capture the two-phase interfacial features along the 
heated portion of the flow channel. A fixed frame rate of 21,000 frames 
per second and pixel resolution of 1022 × 96 is used to capture the entire 
heated length for each test run. Illumination on the back side is provided 
with the use of LEDs. More details of the experiment are provided 
elsewhere [52,53]. 
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