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Abstract

As modern electronic devices are increasingly miniaturized and integrated, their performance re-
lies more heavily on effective thermal management. In this regard, two-phase cooling methods
which capitalize on thin-film evaporation atop structured porous surfaces are emerging as potential
solutions. In such porous structures, the optimum heat dissipation capacity relies on two compet-
ing objectives that depend on mass and heat transfer. Optimizing these objectives for effective
thermal management is challenging due to the simulation costs and the high dimensionality of the
design space which is often a voxelated microstructure representation that must also be manufac-
turable. We address these challenges by developing a data-driven framework for designing optimal
porous microstructures for cooling applications. In our framework we leverage spectral density
functions (SDFs) to encode the design space via a handful of interpretable variables and, in turn,
efficiently search it. We develop physics-based formulas to simulate the thermofluidic properties
and assess the feasibility of candidate designs based on offline image-based analyses. To decrease
the reliance on expensive simulations, we generate multi-fidelity data and build emulators to find
Pareto-optimal designs. We apply our approach to a canonical problem on evaporator wick design
and obtain fin-like topologies in the optimal microstructures which are also characteristics often
observed in industrial applications.

Keywords: Gaussian processes, multi-fidelity modeling, microstructure reconstruction, inverse
problems, thermal management.

1 Introduction

Developments in modern electronic devices such as smartphones, computers, and medical de-
vices [|l] heavily rely on microelectronics that perform complex tasks and rapidly process large
data[2]. The functionality, robustness, and longevity of these devices depend on the efficient ther-
mal management of microelectronics as they are becoming increasingly miniaturized and integrated
into multi-functional systems [3, 4]. Due to the space limitations inherent in these systems, con-
ventional cooling strategies that rely on heat dissipation via bulky solid materials are impracti-
cal. To address the challenges posed by the spatial constraints, single-phase microfluidic cooling
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techniques are proposed which use liquid coolants to transfer heat away from the source and then
dissipate it through a heat exchanger. These techniques provide a number of benefits such as main-
taining better temperature uniformity across the heating surface [5] and minimizing pressure drop
inside the system [6].

While single-phase liquid cooling solutions offer better performance compared to traditional
air cooling methods, they entail additional challenges such as requiring high amounts of pump-
ing power to sustain fluid flow through the system. Compared to single-phase cooling solutions,
two-phase approaches [7] have the potential to dissipate more heat from electronic devices by lever-
aging the liquid-vapor phase change processes. The key to enhancing heat transfer performance in
two-phase solutions is to utilize structured porous surfaces. Examples of such surfaces include mi-
crochannels, micropillars, metal foams, inverse opals, and sintered metal particles which increase
thermal efficiency by extending the liquid-solid contact area, supplying capillary-driven flow, ac-
celerating bubble nucleation during boiling, enhancing heat transfer coefficients, or combinations
thereof. Aligned with these investigations, [8, 9] focus on incorporating composite porous ar-
chitectures including micro/nanoparticles and graphene nanoplatelets (GNP)/copper into cooling
systems. The empirical findings of these studies report a notable elevation in the heat transfer co-
efficient (HTC) that ranges from 50% to as high as 290% when compared to systems featuring
non-porous and plain surfaces.

The cooling performance of porous microstructures depends on mass and heat transfer which
are competing objectives: while pores and their interconnections (characterized by permeability)
enable fluid transfer (which, in turn, increases heat dissipation through convection), the solid phase
decreases the temperature gradients in the microstructure and is also responsible for most of the me-
chanical properties of the structure. To design porous microstructures that strike a balance between
these two competing objectives (mass and heat transfer in this case), many prior methods have used
task-specific design frameworks that predominantly rely on ad-hoc procedures, see Figure [Il. For
example, [10] perform a sequence of tests by manually and exhaustively exploring the impact of
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Figure 1 Schematic comparison between our work and existing methods: In contrast to current practice, our inverse
design framework considers three objectives (permeability, conductivity, and manufacturability) and can leverage an
arbitrary number of data sources with any level of accuracy (we use three fidelity levels in this paper).
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pillar diameter, height, and center-to-center spacing on the thin-film evaporation performance of
a silicon micropillar wick. As another example, [[11] apply a similar manual parameterization to
explore the pool boiling performance of inverse opal porous structures. These ad-hoc techniques
typically yield sub-optimal outcomes due their high costs (associated with developing the ad-hoc
framework and collecting data) and their inability to systematically identify and optimize a diverse
set of design variables.

To address these challenges, we develop a data-driven framework to automate the design of
porous microstructures for microelectronic cooling applications. As shown in Figure P, our frame-
work consists of three primary modules that (1) parameterize the large design space via a hand-
ful of interpretable variables, (2) quantify the properties and manufacturing feasibility of design
candidates via offline high-fidelity (HF) and low-fidelity (LF) simulations, and (3) build accurate
emulators that are used for identifying Pareto optimal designs.

In order to tractably explore a wide variety of microstructure designs, we introduce spectral
density functions (SDFs) that represent microstructures in the frequency space. As explained in
Section 2.1|, we design SDFs that are parameterized via a few physically meaningful variables
that can be directly related to microstructural features such as the size and distribution of pore
channels [[12]. Additionally, microstructures and their SDF representations can be rapidly converted
to each other [[13], so the computational costs associated with representing the design space via the
parameterized SDFs are negligible. These advantages motivate us to search for the optimal design
in the parameterized SDF space rather than in the very high-dimensional microstructural space.

Another unique advantage of our framework is its ability to leverage multi-fidelity datasets which
dramatically reduces the overall data collection costs during the design process. In most multi-
physics problems, there are several available simulation tools which provide different levels of
fidelity (i.e., accuracy). This fidelity level primarily depends on the approximations and assump-
tions that are adopted in the simulations to decrease the computational costs, i.e., the fidelity and
costs are highly correlated. Hence, one can accelerate the design process through multi-fidelity
modeling [14-18] where inexpensive LF data are leveraged to reduce the reliance on expensive HF
data.

Examples of numerical methods for extracting microstructural thermofluidic properties are pore
network modeling (PNM) [[19], the finite volume method (FVM) [20], and the lattice Boltzmann
method (LBM) [21]]. Among these, PNM stands out for its computational efficiency and capability
to construct pore networks that faithfully represent the microstructure. In contrast, FVM is one
of the most commonly employed techniques for robustly modeling porous structures but it is less
efficient than PNM. Finally, LBM is an accurate but computationally very intensive approach. In
this work, we employ LBM and PNM to simulate mass and heat transfer, respectively, to strike a
balance between efficiency and accuracy. Specifically, we simulate mass transfer in the void por-
tion of porous structures via LBM and simulate heat transfer within the solid portion of the porous
structure using PNM. We extract each property set at multiple levels of fidelity by calculating the
properties at different resolutionsl, which can be easily controlled in our SDF-based microstructure
reconstruction algorithm. Once we build our multi-fidelity dataset, we learn the relation between
the SDF parameters and microstructural thermofluidic properties at different resolutions via ma-

By resolution, we mean number of voxels per edge of our cubic microstructure arrays.
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chine learning (ML) models that are then used to identify Pareto-optimal microstructures and their
manufacturing feasibility.

The remainder of the paper is organized as follows. We provide some technical background
relevant to our framework in Section ] and detail our approach in Section §. We present the results
of applying our framework to the problem of porous microstructure design for thermal management
in Section [ and conclude the paper in Section 3.

2 Technical Preliminaries

In this section, we first review the fast SDF-based reconstruction method proposed in [[13] and
then provide a brief overview of latent map Gaussian processes (LMGPs) and their application to
multi-fidelity modeling.

2.1 Microstructure Generation via Spectral Density Functions

By treating microstructures as realizations of linear shift invariant (LSI) systems, [[13] develop a
fast reconstruction algorithm to build statistically equivalent microstructures from a target SDF. To
demonstrate, we note that the output Y of a given LSI system to any input X is characterized as:

Sy (v) = |H ()|” Sx (v) (D

where v is spatial frequency, Sy and Sx are the SDFs of the input and output signals, and H is the
Fourier transform of the impulse response of the system. By treating a microstructure as a discrete
signal, specifically the response of an LSI system with white noise input, [[13] recast Equation ([I])
as:

Sr=IT 0O Sw (2)

where g, Y7, and ¥ denote the reconstructed, target, and white noise discrete SDFs (3-D
arrays), respectively, and © is the Hadamard product. Given Equation (f]) and noting that an SDF
is the squared amplitude of a Fourier transform, the microstructure corresponding to .z can be
reconstructed via:

My = )ff—l{\/?&}@ff{///w}‘ :ﬁ—l{\/%} 3)

where .#% and .,y denote the reconstructed and white noise microstructures and .7 {-} denotes
the Fourier transform. In this case, /.7 = | & {.#r}| is the transfer function of the system and
corresponds to H in Equation ({ll) which defines the statistical properties of .#5 (i.e., the response
of the system to .#yy). The significance of Equation (B) is that by changing .#; one can rapidly
generate a large number of microstructures whose stochastic nature is governed by .. In this
work, we leverage this knowledge and design two parameterized classes of .. These parameters
are physically meaningful (i.e., they are directly related to the microstructural features) and enable
us to systematically build a wide range of microstructures by varying them.

The above reconstruction method is best suited for quasi-random microstructures whose mor-
phologies are governed by underlying frequency-based correlations. Additionally, reconstructed

*Note that .#g is an array of continuous real values and hence must be level cut to obtain a binary or two-phase
microstructure. The threshold used in level cutting is based on the desired phase volume (area in 2D) fractions.
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microstructures may be isotropic or anisotropic depending on the defined target SDF and are peri-
odic (i.e., each face of a microstructure connects seamlessly to its opposite face) which enables easy
assembly of a macro-scale structure. However, certain types of microstructures (typically highly
ordered ones) cannot be directly modeled via this method due to the use of white noise and the loss
of phase information in frequency space during the transformation from Fourier transform to SDF.
We refer the reader to [[12] for more details on SFD-based microstructure reconstruction.

2.2 Latent Map Gaussian Process

LMGPs [14, 22] are extensions of Gaussian processes (GPs) that can handle categorical inputs
and which can be applied for multi-fidelity modeling. LMGPs accommodate categorical inputs
by learning a parametric function (e.g., a matrix or a feedforward neural network) that maps a
prior representation of categorical variables into a low-dimensional quantitative embedding (latent
space) which, in turn, allows us to directly use the categorical variables in a GP.

We denote the mapping function of an LMGP via ¢(¢) : R% — R% where d( is the dimensional-
ity of the latent space and ¢ = [, . . ., LdL]T are the appropriately encoded (e.g., one-hot) categorical
inputs of dimensionality d¢ (we note that multiple mapping functions can also be used in an LMGP,
we use two mapping functions for some of our emulators in Section B.3). The correlation between

two inputs (&, ¢) and (E/, L/> can then be found by modifying any standard GP correlation func-
tion 7(+,-) to accept the (now quantitative) mapped categorical variables. A common choice of

correlation function is the Gaussian, which is modified as:
de ) )
r((€0).(€,0)) =exp (— > 104(& - @)2> X exp (— l¢w - ¢@) \2) )
i=1
where € = [£1,&, ..., &x|T € R% are the numerical inputs, |-||, denotes the Euclidean 2-norm,
and w = |wy, ..., wg,]" are the roughness or scale parameters.

/

As indicated by Equation (})), distances in the latent space directly correspond to correlation be-
tween categorical inputs. Specifically, if ¢(¢) and ¢(¢') are mapped to two latent points whose
distance is A, then LMGP indicates that the correlation between these two categorical combina-
tions is exp (—A?). That is, plotting ¢(¢) for every categorical combination after fitting an LMGP
provides a visual interpretation of the relationships between the categorical variables and their lev-
els. We use this visually interpretable result of LMGP in Section to validate our emulators’
ability to correctly learn the relationships within our dataset.

Multi-fidelity modeling via LMGP starts with augmenting the data sets with a categorical vari-
able whose levels denote the data sources. Then, all the data sets are combined and an LMGP is
fitted directly to the unified data set. As described above, this method provides a visual representa-
tion of the relationships between the data sources. As detailed in [[14], multi-fidelity modeling via
LMGPs provides a number of unique advantages such as (1) the ability to jointly fuse data from
an arbitrary number of sources which may have categorical features, (2) accurate and probabilistic
predictions for all data sources, (3) interpretability via the latent space and other model hyper-
parameters post-fitting, (4) the ability to incorporate prior knowledge through choice of kernel /
correlation function, and (5) insensitivity of the model’s performance to the majority of the tuning
parameters. We refer the interested reader to [|14, [15] (and the open-source implementation in [16])
for more details on multi-fidelity modeling via manifold learning approaches such as LMGP.
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3 Methodology

Direct optimization of high-resolution microstructures (e.g., via topology optimization) that pro-
vide desired property sets is quite challenging as property evaluations are complex and computa-
tionally costly. To address this challenge, we develop an indirect inverse design framework where
the optimization is performed in a reduced dimensional space, see Figure Pl As detailed in Sec-
tion B.1|, we build this low-dimensional design space by encoding a microstructure (which can be
isotropic or anisotropic) via a few parameters that characterize its corresponding SDF. We also
develop objective functions that quantify manufacturability in addition to directional properties
(permeability and thermal conductivity, see Section B.2.3) of a microstructure. To connect these
objectives to the design variable (i.e., the SDF parameters), we leverage multi-fidelity emulation
where low-fidelity data (based on coarse microstructure discretization) are used to reduce the re-
liance on expensive high-fidelity samples. Once the emulators are built, we identify the Pareto-
optimal microstructures via the Genetic Algorithm (GA) as detailed in Section B.3 see Section [
for a full cost breakdown of our approach.

3.1 Design Space Encoding

To tractably explore the microstructure design space we dramatically reduce its dimensionality
via SDFs because (1) conversion between a microstructure and its SDF representation is compu-
tationally very fast (see Section R.1)), and (2) SDFs are relatively well ordered for quasi-random
microstructures and hence can be readily parameterized with a few variables [[12, 13] which can be

i Property Extraction Module i

®- N NV
Pore- Thermal 'p QA Y, Lattice- s
.. \" X Permeability
Network — conductivity - ) Boltzmann — 2
i Modeling k (W /mK) V = ; &4 Method p (um?)
SDF Parameterization Fourier’s Law: q = —k — AT 4 ar TR t Darcy’s Law: V = i_:AP

A

Low-Fidelity ~Mid-Fidelity ~High-Fidelity Property z m—: Low-Fidelity ) Machine

0 Middle-] -Fidelity .
‘ . ‘ Extractio Learning
“Solid volume fraction

— . High-Fidelity
Multi-Fidelity Structures Multi-Fidelity Dataset

f

: Sy i a8
a ..*’-;- ;’.
2

=)

Pareto Frontier

Predicted
Number of
Solid Clusters

Pareto Optimal Structures

Machine Learning Module

High-Fidelity

Objectives SDF Inputs

1,0,0,¢,v
+

Categorical

Low-Fidelity Variable

Objectives

SDF Inputs
r,0,60,¢,v
+

Multi-
Fidelity
LMGPs

Single-
Fidelity
LMGP

Mid-Fidelity

. - ectives
Categorical Objectives

Variables

Figure 2 Multi-fidelity multi-objective framework for the design of porous microstructures: We automate the
design of porous microstructures via three main modules. First, we develop two SDF parameterizations and use them
to tractably explore the design space at three fidelity levels. Then, we extract thermofluidic properties and feasibility
information via simulations and develop objectives as functions of these properties. Finally, identify Pareto-optimal
microstructure designs by building emulators that predict the properties and manufacturing feasibility of the recon-
structions.
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easily linked to morphological features such as degree of anisotropy/isotropy, size and distribution
of pore networks, or anisotropy direction, see Figure H.

The SDF representation of a microstructure is a 3-D array? whose nonzero elements determine
its shape and the corresponding microstructure morphology. SDFs that are used for designing
microstructures are often generated as a binary array (all elements are only 0 or 1) for simplicity,
but we may represent a greater variety of microstructure morphologies by defining the magnitude
of the nonzero elements of the SDF as a function of radius (distance from the origin) via the 1-D
power spectrum [[12]. Power spectrum shapes can be modeled via, e.g., triangle/flat wavest or the
delta function.

There are many classes of SDF shapes with associated parameterizations, e.g., spheres in 3-D
which may be defined by just the radius. Each choice of combination of SDF shape and 1-D
power spectrum may represent some restricted subset of possible microstructure designs. Here,
the challenge is to choose a combination that reduces the dimensionality of the design space while
maintaining sufficient representation power to cover the space of optimal designs for the target
application. To address this challenge, we develop two types of SDF shapes which extend 2-D
partial rings which are commonly seen in 2-D slices of real microstructures to portions of a sphere
(denoted by Sph) or portions of a cylinder (denoted by Cy/). To construct an SDF via either param-
eterization, we begin by forming a 2-D partial ring in the z-y plane by defining a point at radius r
on the z axis, sweeping through an angle 6 in both the positive and negative directions, and reflect-
ing the resulting arc across the y axis the reflection across the y axis, while not strictly necessary,
makes user-designed microstructures more closely resemble those derived from real microstruc-
tures, which have discrete SDFs (via fast Fourier transform) that are symmetric with respect to
radius in spherical coordinates. The arcs are then either rotated about the y axis by an angle ¢ in
both the positive and negative directions to form a Sph-type SDF, as shown in Figure Bd, or are
extruded vertically in both the positive and negative directions by a height A to form a Cyl-type
SDF, as shown in Figure Bb.

For the 1-D power spectrum, we use the Gaussian probability density function (PDF),

£ = = exp{—% () } ®

where ¢ is the distance from the origin (or the distance from the z axis for the cylinder-type SDF), r
is the chosen radius used in defining the SDF shape, and o is the standard deviation. The Gaussian
PDF can roughly approximate a triangle wave, flat wave, or delta function with appropriate choices
of r and o. Our choice of the 1-D power spectrum combined with our two parameterized SDF
shapes provide high representation power and allow us to explore a wide variety of microstructure
designs.

Once we choose some values for the SDF parameters (e.g., r = 7.40,0 = 1.22,0 = 1.25,¢ =
0.30 for a Cyl type SDF) and build the SDF as demonstrated in Figure 3, the corresponding mi-
crostructure is realized with the desired volume fraction v as described in Section 2.1 We show

3In this paper, we assume that the frequency space has been shifted to be zero centered, i.e., the center of the array
corresponds to zero frequency, and we consider the center of the array to be the origin in our coordinate system.
4Using a flat wave 1-D power spectrum is equivalent to using a binary SDF.
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(a) Sphere-type SDF parameterization (b) Cylinder-type SDF parameterization

(¢) Example of cylinder-type SDF (d) Microstructure realizations from example SDF

Figure 3 Microstructure reconstruction via parameterized SDFs: (a) A point at radius r on the = axis is swept
through 46 about the 2 axis to create an arc which is then swept through £¢ about the y axis to create a curved
rectangular patch with two axes of curvature. (b) A point at radius r on the x axis is swept through +6 about the z
axis to create an arc which is then extruded vertically by a height A in the £z direction to create a curved rectangular
patch with one axis of curvature. For clarity, we do not show the final reflection with respect to the radius (across the
y — z plane) in (a) and (b). (c) An example of a squat cylinder-type SDF produced from our parameterization. (d)
Four microstructure realizations from the squat cylinder-type SDF demonstrating anisotropic behavior.

some examples of the types of SDFs and corresponding structures generated via our parameteriza-
tions in Figure . As illustrated, we generate a wide range of quasi-random structures with various
degrees of anisotropy and order based on the choice of parameters. Note that we hold v constant
at 0.5 in Figure {f in order to highlight the effect of the choice of SDF—we can generate an even
wider range of behaviors with varying the values of volume fraction (which we do in Section ).

Our proposed SDF parameterizations each reduce the input space to a tractable dimensionality—
both require only five input parameters to define an SDF and its reconstructed microstructure,
specifically r, 0,6, ¢ (or h), and v. While it is straightforward to separately explore each individ-
ual parameterization efficiently via the design of experiments (DOE), we aim to explore both at
once to take full advantage of the space-filling properties of quasi-random sequences. To accom-
plish this, we unify the two input spaces via the transformation » = rtan (¢/2) and add an addi-
tional input .7° which denotes the SDF type (Sph or Cyl). We then explore the unified input space
via 6-dimensional Sobol sequence, rounding the input dimension corresponding to the SDF-type
to convert to a categorical input. We refer to this collection of 6 parameters which defines our
parameterized SDF as the design variables.
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Figure 4 Examples of microstructures generated from our SDF parameterization: We can generate a wide variety
of microstructures using our two SDF parameterizations despite only using four parameters r, o, 0, and ¢ (or h) to
characterize the structure (v is held constant at 0.5). Microstructures are shown with their corresponding SDF (Sph-
type for (a)-(d) and Cyl-type for (e)-(h)) in the bottom-right corner.

3.2 Design Evaluation

The thermofluidic system of interest in this work is a microelectronic device cooled by an evap-
orator wick subjected to a uniform heat flux from its bottom. The porous microstructure in the
evaporator wick, which can be either isotropic or anisotropic, remains saturated and enveloped
in water, see Figure §. The influx of liquid into the porous microstructure is passively driven by
capillary forces and leads to evaporation at the top where the to-be-dissipated heat is removed
through a phase change process. Modeling this system relies on considering intricate interactions
between mass transfer, heat transfer, and phase change within the porous microstructure compos-
ing the wick and is therefore quite challenging. To tackle this problem, we begin by making the
well-motivated (see Section B.2.2) assumption that all of the fluid that is passed through the porous
structure completely evaporates at its top surface (this assumption allows us to establish a clear
boundary condition). With this premise, cooling becomes primarily a function of in-plane mass
transfer and out-of-plane heat transfer. Therefore, we quantify directional permeabilities and ther-
mal conductivities as the key descriptors for evaluating the overall thermofluoidic performance of
the evaporator wick.

As detailed below, we extract these directional permeabilities and thermal conductivities via
LBM and PNM, respectively. In these simulations, we employ the microstructures that are built
via the process described in Section B.1|. Additionally, we note that in this section and the following
ones we distinguish between the coordinate system used for the SDF/microstructure (x, v, 2) and
the one used for the thermofluidic system (z', %, z'). We adopt this distinction because we can
align a generated microstructure in three different directions within the evaporative wick system.
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3.2.1 Permeability Modeling

In this section, we develop a customized model based on LBM to simulate the mass transfer.
LBM is well suited for simulating flow-based phenomena in complex geometries such as porous
microstructures. It is based on the concept of simulating the fluid as a large number of particles that
move and collide with each other over a discrete lattice mesh. In particular, the Boltzmann equation
describes the statistical behavior of the dynamic particle system where particle distributions are
utilized to compute the fluid velocity and pressure profiles [23]. We apply a single-time relaxation
scheme based on the Bhatnagar-Gross-Krook (BGK) collision operator to calculate the permeability
[24, 25]. We use the standard BGK version of this operator with a D3Q19 lattice which requires
the particles that represent the fluid flow to satisfy the distribution equation f (', ) formulated as:

FG +et) = S 1) — fuld ) =9 g.70) ©

where ¢; is the particle velocity in the i** direction, ¢ is the simulation time, 7 is the relaxation time,
and (2 is the collision operator.

While simulating the mass transfer we employ Dirichlet boundary conditions by defining con-
stant pressure drops across opposing faces and keeping all other boundary faces impermeable.
Since our design space includes anisotropic microstructures, we implement six simulations for
each microstructure by rotating it about different axes. The outcomes of the six simulations pro-
vide three pairs of identical permeability values which indicates that swapping the inlet and outlet
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1 1 1 Unit cell |
. | l.. 1 I
m; m;
tinx) a=50um hinx | : .
Min,yle " Miny 1 | l_
= | S 1
-, ! <+ | R | Yok=X
—p | €= th,z |
I Unit cell 1 : T,
_______ - I - . |
?ff min,z z 111
(c) Mass transfer analysis (d) Thermal transfer analysis

Figure 5 Mass and heat transfer within an evaporative wick: (a) and (b) The water pool surrounds the wick and the
to-be-dissipated heat is generated at the bottom of the wick. The black dashed box in (a) represents the microstructure
that tessellates the porous medium and the red dashed line in (a) is the evaporating surface of the wick. (¢) and (d)
represent, respectively, the mass and thermal analysis of the region specified with the black-dashed line in (a) that has
a side length of @ = 50 um.

10

20z Ateniged ¥z Uo UO UIIUOOA “BUIAI] BILIOMIED O ANSIoAUN AQ Jpd'8Z. L-€2-PWYL | LEYZL/EL8Y90 LIGL L L 0L/10p/spd-ajoie/ubisap|edlueyoaw/B10-awse uonoe||0o|eybipaLuse;/:diy Woly papeojumod



faces has no influence on the steady-state directional permeability calculationsd. Based on this
expected finding, henceforth we only run three simulations for a microstructure.

In each of our mass transfer simulations we set the constant pressure drop equal to the capillary
pressure P, which varies based on the topology of different porous microstructures. Assuming a
spherical meniscus, we use the Young-Laplace equation to express F,,, as:

20" cos(0)
R
where o’ is the water surface tension in IV /m, 6 is the contact angle in degrees, and R is the average

pore radius of the porous medium [26]. Once the velocity field is extracted from LBM, we calculate
the directional permeabilities via Darcy’s law:

Pcap = (7)

V=P Apa (8)
uL
where V is the fluid volumetric flow rate in m? /s, p is the permeability in m?, A is the cross-
sectional area of the fluid flow in m?, y is the fluid dynamic viscosity in Pa - s, L is the length of
the medium in m, and AP is the inlet to outlet pressure drop in Pa.

3.2.2 Thermal Conductivity Modeling

We model thermal conductivity via PNM which is frequently used to simulate mass and heat
transfer within porous microstructures such as rocks [27], soil, and membranes [28]. PNM creates
a simplified network representation of the real pore space where the pores and their connections
are represented by, respectively, spheres and sticks. We use the open-source software PoreSpy [29]
to build the pore network of the microstructures. Specifically, we first transfer the reconstructed
microstructures to boolean-type numpy arrays which are then processed via the sub-network of an
over-segmented watershed (SNOW) algorithm (for noise reduction, thresholding, and segmenta-
tion) to distinguish the pore space from the solid phase. Following this processing step, spherical
pores and cylindrical throats (the connections between pores) are identified and combined into an
interconnected PNM, which provides a simplified representation of the porous microstructure. We
note that PNMs model mass and heat transfer in pores and hence we model the heat transfer in the
solid portion of the porous microstructure by swapping the phases

We use OpenPNM [30] to model heat transfer. We first categorize the six faces of a microstruc-
ture with descriptive labels: left and right (corresponding to the inlet and outlet along the «” direc-
tion), front and back (along the v direction), and fop and bottom (along the 2 direction). Then,
we impose Dirichlet boundary conditions on the opposing faces, define a constant temperature
drop of AT = 50K, and maintain the remaining boundary faces in thermally insulated states, see
Figure [§. After imposing the boundary conditions, we discretize the PNM into a series of small
control volumes that comprise of two pores and their connecting throat. We then employ the Fourier
conduction law to solve the energy balance equation in the control volume given PNM-based prop-
erties including average temperatures of two pores, throat cross-section area, and heat flow rate in

the throat: or
q=—k A ©)
on

>Since these simulations are iterative, the equality of these permeability values is checked upon convergence.
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where ¢ is the heat rate in W, n is the spatial variable including z, y', and 2 directions, T is
the temperature in K, and k represents the effective thermal conductivity of the microstructure in
W /mK. Finally, the thermal conductivity in a specific direction of the microstructure is obtained
by solving a system of linear energy balance equations at each control volume in the PNM.

3.2.3 Design Objectives

We develop two objective functions to evaluate the thermofluidic performance of a microstruc-
ture and an additional one to estimate its feasibility which we define as the absence of floating solid
clusters disconnected from the boundaries. The first objective, f;, measures the heat dissipation
capacity based on the mass transfer of liquid to the top surface of the microstructure. In this study,
we make the simplifying assumption that all the water transported from the surrounding water pool
through the porous microstructure—driven by capillary forces—eventually evaporates at its top
surface. This assumption is validated by the comparatively elevated heat dissipation rates associ-
ated with thin-film evaporation on the top surface of the porous structure. The heat rates based on
phase change mechanism are orders of magnitude (ranging from 10 to 100 times) higher than those
facilitated solely by mass transfer of liquid through the porous structure. Hence, f; quantifies the
ability of the microstructure to transport fluids, which determines the thin-film evaporation rate at
the top surface of the porous structure.

The second objective, f>, measures the microstructure’s capability to maintain minimal temper-
ature gradients in it. Given the previously established dominance of heat transfer in 2 direction,
it is logical to focus on the thermal properties in this particular direction where larger temperature
gradients are anticipated. As a result, we define f5 as the reciprocal of thermal resistance in the
out-of-plane (z') direction of the microstructure and derive both objectives below.

The volumetric flow rate through a porous microstructure can be calculated using Darcy’s law
in Equation (§). As shown in Figures 5d and 5d, the fluid enters the microstructure (represented via
the black-dashed unit cell) from both 2" and y' directions. The mass flow rates My, o and 1, o in
2 and y' directions are:

min,x/ =p 'in,x/ (10)

min,y, =p ‘in,y, (11)
where 7, » and 7, - are the mass flow rates in kg/s and p is the liquid density in kg/ m?2. To
avoid wick dry-out, we set the pressure drop A P, equal to the capillary pressure P, to balance

the supplied and evaporated liquid through the whole wick, that is:

AF)tot = Pcap (12)
Combining Equations ([7) and ([12), the pressure drop in the microstructure can be expressed as:
20c0s(0) a
APy=—7>-—ro 13
R dwick ( )

where A P, is the pressure drop through the unit cell, R is the average pore size, a is the side length
of the cubic unit cell, and d,,;. is the length of the wick. Combining Equation (E) and Equations

([10) - (13), we can express 1y, and 1y, .- as:
Dby

My, o = pi-APya (14)
’ /2
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Mgy = pi—;IZAPuca (15)

Using the conservation of mass, 1, = 1My, W€ can write:

2m,, .+ Qmin,y, + min,z’ = mout,z/—&-dz/ (16)

in,T

To obtain the mass flow rate difference in the 2 direction A, we rearrange Equation (16) as:

Amz, = mout,z/—&-dz, - min,z, =2m

in,ac, + Qmin,y/ (17)
and express Arin/ as:

Dy

+p
Ny = dpP" T AP a. (18)
L

As shown in Figure d, the heat flow into and out of the microstructure are qy and g, 4 in W,
respectively. We apply Fourier’s conduction law in this direction as shown below:

iar -,
) = —K— | 19
dT
Qz'—i-dz/ = _k‘z'g |z/+dzl (LQ (20)

where k_/ is the 2’ -direction effective thermal conductivity of the microstructure in W /m K. Hence,
the dissipated heat in the 2" direction is:

T / ’
2z 4dz =T
qu/ =9 yaq — 4 = _kzl a =a’ (21)
based on thermal circuit analysis, which can also be expressed as:
T / — T / /
Aqy = —z T ztdr (22)
Rth,z'

where R,;, .+ is the z-direction thermal resistance in K/W. By combining Equations (1)) and (22),
we can write R,  as:
1

k. a

Ry, = (23)
Since we assume that all the mass flow coming into the wick evaporates at its top surface, A
must be maximized. Additionally, to minimize the temperature gradient across the wick in the out-
of-plane direction, the effective thermal resistance in the z-direction should be minimized. Hence,
our two objectives f; and f; are defined as:

/ —‘I— /
fi= 4pz%mwa (24)
fo=lkya (25)

The two objectives in Equation (24) and Equation (29) are defined in terms of the thermoflu-
idic system’s coordinates or 2, 4/, and 2 where z’ and 7/ are treated identically due to symmetry.
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Hence, a given microstructure can be placed in the system in one of three possible non-degenerate
orientations &'y, U5, or U5 corresponding, respectively, to placing the microstructure such that its
2, y, or  axis is aligned with the 2" axis of the system. Note that, for SDFs (and hence microstruc-
tures) generated via the Sph parameterization, ¢ is equivalent to &5 with 6 and ¢ swapped and
we therefore expect to see identical objective space coverage from these combinations of SDF type
and orientation (note that we expect distinct behaviors for all three orientations of microstructures
generated via the Cyl SDF parameterization as there are no symmetries between axes). We test this
expectation in Section [,

As mentioned earlier, we additionally define a third objective, f3, as the expected number of
distinct solid clusters in microstructure realizations. We wish to minimize f3 to increase the prob-
ability that our designs are physically feasible. As explained in Section .3, we estimate f; of a
candidate microstructure’s SDF parameterization via emulation. That is, we first leverage our fast
reconstruction algorithm to generate a large number of microstructures and then for each sample
calculate the expected number of floating solid clusters (which should ideally equal 0). Once this
dataset is built, we train a GP that predicts the expected number of solid clusters in a microstructure
given its SDF parameterization.

3.3 Multi-fidelity Emulation and Inverse Design

This study aims to find microstructures which maximize f; and f, while minimizing f3. These
designs are Pareto optimal in the three-dimensional objective space defined as:

F:u=[€—[f1,fo,—f3] €ER® (26)

if there exist no choices of u which increase the value of any dimension of F without decreasing
the value of at least one of the other dimensions. The input space u = [£,¢] is 8-dimensional
with € = [r, 0,0, ¢, v, 7| as quantitative inputs, where .7 is the choice of SDF parameterization
which we treat as a numeric variable rather than categorical by assigning 0 to Spi and 1 to Cyl.
The remaining two inputs ¢ are categorical and correspond to the fidelity level (resolution) and the
choice of orientation used when calculating f; and f5. We choose this treatment of the qualitative
inputs as it yields the highest cross-validation emulation accuracy, see Section for remaining
details.

Since directly evaluating our objectives via simulations is too expensive, we build emulators
ni(uw), n2(w), and n3(€) to cheaply predict, respectively, fi1, f2, and f3, and work in an approxi-
mation of our objective space:

Fru= €t — [f1,f27—f3] = [m(w) ,m(u), —n3(€)] € R’ (27)

While emulation reduces the computational costs of our inverse design problem, training ac-
curate models requires large datasets which are still too expensive to construct at a high level of
fidelity for f; and f5. As such, we leverage multi-fidelity modeling to reduce the cost of data gen-
eration while achieving the desired degree of accuracy in learning the high-fidelity system. We
generate high-, mid-, and low-fidelity microstructures as cubes with edge lengths 125, 100, and 75
voxels, respectively, and build the datasets to train n; and 7, by calculating the outputs f; and f
as described in Section B.2.3. Property evaluation is much faster for the lower-fidelity structures,
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but is correspondingly less accurate. We then train multi-fidelity LMGPs to serve as surrogates for
f1 and fs.

Depending on the choice of volume fraction and other input parameters, our generated mi-
crostructures may have floating solid clusters that are not connected to any of the edges of the cell.
Such microstructures are not manufacturable or physically feasible. To avoid such microstructures
in the design process, we process training datasets of 7; and 7, as follows: for each point in the
input space, we generate 50 microstructure realizationsf then, if there is no realization without float-
ing clusters, select the microstructure with the smallest volume of floating clusters and remove the
small disconnected clusters. If the change in volume fraction due to removing the clusters is very
small (e.g., below 5%), then we accept the processed structure and add the datum to the dataset (we
do change v in the stored input to match its updated value after removing the clusters). If none of
the 50 microstructure realizations result into fully connected designs after the above procedure, we
discard the input point.

Unlike f; and fs, it is relatively cheap to evaluate f; (although still too expensive to do within
a loop). Therefore, we use a single-fidelity LMGP to emulate f; trained on a high-fidelity dataset
of structures with edge length 150. 73(&) is trained with £ as its inputs and f3 estimated as the
average (over 50 realizations) number of solid clusters as its output. We use only one resolution
and orientation has no influence on the number of solid clusters, so we eliminate these categorical
variables and train an LMGP using .7 as our only categorical variable. We provide more detail on

h, 12, and 73 in Section }.1.

After constructing our emulators, we find the Pareto-optimal microstructures via GA (we use the
Python package pymoo, see Table [I| for the specific GA parameters used). We define the GA search
space to be the five quantitative inputs [r, 0,0, ¢, and v| and fix the other (categorical) variables
to search a specific combination of SDF type and orientation.! We restrict this search space to
be within the range seen in the training data for each quantitative input dimension as GPs (and
by extension LMGPs) are inaccurate in extrapolation. Using the GA, we find 500 Pareto-optimal
points (we refer to the set of Pareto-optimal points as the Pareto frontier) for each combination of
the 3 orientations and 2 SDF types for a total of 3, 000 structures. We examine this Pareto frontier
and some selected Pareto-optimal microstructures in Section 4.2,

4 Results

In this section, we first validate the accuracy of our emulators for each objective and present
the results of the multi-objective optimization via GA in Sections and §.2, respectively. In
section Section we use the NSGA2 genetic algorithm implemented in pymoo for our multi-
objective optimization with the parameters shown in Table [I. Then, in Section §.3, we examine
some selected microstructure realizations on the Pareto frontier and compare the LMGP prediction
of our objective function values to those predicted from thermofluidic property simulations.

This is computationally tractable because microstructure generation via SDF is many orders of magnitude faster
than property extraction.
"We fix the categorical variable for fidelity level such that we always predict at the highest fidelity level.
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Table 1 Genetic algorithm parameters used in multi-objective optimization.

Parameter Value
Population size 500
Number of offspring 100
Crossover (SBX) probability | 0.9
Crossover (SBX) eta 15
Mutation (PM) eta 20
Number of Generations 256

4.1 Emulation Performance

To train n; and 7y, we generate a multi-fidelity microstructure dataset of size n;, = 69, n,, =
131, and n; = 206 where ny, n,,, and n; refer to the number of high-, mid-, and low-fidelity data,
respectively. To explore a sufficiently large design space, we set the ranges of the variables as
r e [3,10], 0 € [0.06,3.0], 0 € [0.15,7/2], ¢ € [0.15,7/2], and v € [0.15,0.7].8 We then extract
properties and calculate f; and f, for the three possible orientations, leaving us with a training
dataset of size n, = 3 x 69 = 207, n,, = 3 x 131 = 393, n; = 3 x 206 = 618. Using a
convergence study based on incrementally increasing the portion of the data used in training, we
fit 7, to a subset of the data with n;, = 207, n,, = 303, n; = 390 and 7, to all data.

Since we use all available high-fidelity data to train n; and 7, and do not reserve test data for
validation, we rely on 5-fold cross-validation (CV) to assess the accuracy of our emulators. Specif-
ically, we split the training data randomly into 5 partitions and train 5 emulators with each using
only 4/5 of the available data (one for each possible permutation of the 5 folds). We then eval-
uate accuracy by obtaining predictions for each fold on the remaining 1/5 of the data and finally
calculate the normalized root mean squared error (NRMSE) across all folds as:

(fpred - ftest)T(fpred - ftest)

n X Var(ftest)

NRMSE (ftest? fpred) = \/ (28)

where f., is the combined vector of test outputs for all folds, f,,., is the combined vector of
predicted outputs from the test inputs for all folds, n is the total number of test data, and var(-) is
the variance. We obtain NRMSEs of 0.047 and 0.089 for the emulators for f; and f, respectively,
which indicates a high degree of accuracy. We note that these NRMSEs do not directly reflect the
accuracy for 7; and 7, as each NRMSE is obtained based on five separate emulators (each of which
is trained on a subset of the data). However, we expect both 7; and 7, to have roughly the same or
better accuracy than the calculated CV accuracy since they learn from more data.

Since 7, and 7, are LMGPs, they provide an additional validation metric in the form of the
latent spaces for both fidelity level and orientation. As shown in Figures [pd and pH, both emulators
learn that the mid-fidelity structures are more accurate than the low-fidelity structures and place the
latent point for y,,, closer to y;, than the latent point for y;. The emulators also learn the expected

$We place nonzero lower bounds on the sample range for # and ¢ since the rays swept out by the SDF shape at very
small values are all “between” the voxel locations in the discrete representation of the SDF, resulting in the absence of
nonzero voxels.
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behavior with regards to orientation—as shown in Figures [6d and [d, the latent points for all three
orientations are equidistant in a triangle pattern which indicates distinct uncorrelated behavior for
each. We expect this behavior because we trained both emulators on a combined dataset containing
both Cyl-type and Sph-type structures. If we were to instead separately train emulators for each,
we would expect to see the latent points for '; and &, coincide for the LMGPs trained on Sph-type
structures.

For 73, we generate a dataset of size 500 (using the same ranges for the design variables) and
use 350 and 150 samples to, respectively, train and test the emulator. 73 achieves an NRMSE of
0.218 and a corresponding mean absolute error (MAE) of 2.400,2 indicating a reasonable degree of
accuracy.

~0.101 + . +
.51
0.12- (@) X Ym 4= X Ym
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~0.161 +
X ~0.51 @)
—0.181
T T T -1.0 T T T
-0.1 0.0 0.1 -0.5 0.0 0.5
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(a) Latent space for fidelity level for 7, (b) Latent space for fidelity level for 7,
021 + o g o
+ X 0, X @2 X
0.01 O 03 C 6
< &0+ +
—0.21 x O O
—14
~0.44
0.0 0.5 -1 0 1
21 21
(¢) Latent space for orientation for 7; (d) Latent space for orientation for 75

Figure 6 Latent spaces learned by 7, and 72: (a) y, and y,, are close together in the latent space while y; is more
distant, indicating that the low-fidelity samples are significantly less accurate than the mid-fidelity samples. b yp, Y,
and y; lie on a line ordered by fidelity level. (c-d) &1, 05, and 05 are roughly equidistant, indicating that all three
orientations display unique behaviors.

4.2 Multi-Objective Optimization Results

We demonstrate the results of our multi-objective optimization via GA in Figure[f. All six Pareto
frontiers show the expected permeability-conductivity trade-off between f; and f5. As shown in
Figure [7d, the best performing combination of orientation and SDF type is (&, Cyl), which ex-

9We provide MAE for 73 as it is directly interpretable as the average number of solid clusters.
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ceeds the performance of every other combination throughout the domain. We also note that s,
which corresponds to placing the microstructure such that its = axis is aligned with the 2" axis of the
wick system, performs much worse than the other orientations. We explain this by noting that our
SDFs are constructed such that there exist nonzero points on the = axis regardless of the choice of
parameters This construction translates to frequency variation in the x direction in the microstruc-
ture (2" direction in the thermofluidic system). Hence, placing structures in orientation 3 (i.e., with
the SDF z axis oriented vertically in the wick), never results in continuous solid z'-direction con-
nections, e.g., vertical sheets or pillars. This leads to lower maximum 2z -direction conductivity
and hence lower f», which we also see reflected in Figure []. Additionally, we note that (01, Sph)
and (05, Sph) have near-identical performance, which indicates that the GA results are performing
as expected since as explained in Section B.2.3, these two orientations are equivalent. Finally, we
note that the value of f3, shown in the color bar of Figure [7H, correlates positively with f; and
negatively with fs, i.e., , the number of solid clusters increases as permeability increases and as
conductivity decreases. This trend is expected since both increasing permeability and decreasing
conductivity correlate with decreasing volume fraction which leads to less well-connected quasi-
random microstructures.

4.3 Optimized Structures

In this subsection, we first visualize some selected structures from the Pareto frontier in Sec-
tion and then analyze the performance of the structures in terms of the two objective functions

in Section §.3.2.
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Figure 7 Comparison of Pareto frontiers: 2-D projections of the results of our 3-objective optimization. (a) Cylinder-
type SDF placed in orientation 2 outperforms all other combinations throughout the entire design space. (b) f5 generally
increases in value with increasing f; and decreasing fo.
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4.3.1 Visualization and Feasibility Assessment

We visualize seven optimized porous microstructures ordered by increasing f; (or decreasing
) selected from the best-performing Pareto frontier in Figure [§. As we progress from ./ to .-,
we observe an evolution of structure topologies that demonstrates a decrease in solid volume frac-
tion, characteristic frequency, and complexity. This aligns with our expectation that solid volume
fraction correlates positively with f, (based on the thermal conductivity) and negatively with f;
(based on the permeability). The decrease in high-frequency behavior also aligns with our expec-
tations since high-frequency behavior leads to thinner channels and lower mass flow rates (and
hence lower f1).

M

0.007

0.006

0.005

0.004

fa

0.003

0.002

0.001

7

0.000
T T T T
0 100000 200000 300000

bil
(a) Pareto frontier for (05, Cyl) and selected structures. (d) 5 (e) A~

Figure 8 Best performing Pareto frontier and selected microstructure visualizations: (a) We select seven mi-
crostructures from the Pareto front to visualize. .#5, .#,, and .#s are shown next to their corresponding locations
in the objective space while the other structures are described in (b)-(e). (b) .#; shows behavior characteristic of the
high- f> region with high volume fraction and no floating solid clusters. (¢) Compared to .#1, .45 has lower volume
fraction and much straighter vertical walls. (d) .#5 continues the trends of decreasing volume fraction and randomness,
and is composed of a few wavy, thin vertical walls. (e) .#7 is characteristic of the trends of structures seen in thermal
management and the cooling industry—the microstructure is composed of three parallel, perfectly straight walls.

As the structures range from . to ./, they become more well-ordered (less complex) and show
a concomitant decrease in the characteristic frequency of phase variation along each axis as well
as the number of axes with significant variation. For example, in .7, we observe high-frequency
phase variation in the 2" and 4/’ directions and low-frequency phase variation in the 2" direction.
With .4, we lose all variation in the 2" direction and have lower-frequency variations in the 2" and
y' directions. .# still has no variation in the 2" direction and has very low-frequency variation in
the 2" direction with lower-frequency variation in the y direction than .#5. Lastly, .# only has
phase variation in the ¢ direction. While these trends are difficult to quantify in the microstructure
space, they correspond to decreasing r, o, #, and ¢ in the SDF inputs as we increase the structure
index. These trends in the SDF parameters explain the previous two observed trends— directly
correlates positively with the characteristic frequency of the phase variation of the microstructure
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(and hence negatively with the channel widths), while 6 and ¢ control the degree of frequency
variation along the y and 2 axes, respectively. ¢ has a more subtle effect, with larger values causing
a higher range of frequency behaviors throughout the microstructure which corresponds to higher
variation in channel widths and hence more complex structures.

The number of distinct solid clusters is not strictly increasing as we go from . to .#;—instead,
A 1s fully connected while .7, through .#; are not. This aligns with our expectation that the
probability of having more than one distinct solid cluster should correlate with decreasing v. Ad-
ditionally, structures with phase variation in fewer directions are more likely to have disconnected
clusters. For example, a structure built from the same SDF as .#; but with a higher volume fraction
will still be composed of distinct, albeit thicker, disconnected sheets. While .7, through .#; are
not fully connected, each distinct solid cluster is connected to the base of the design system (bottom
% -axis face) and therefore these designs are feasible.

Finally, we note that a fin-like topology in the out-of-plane direction emerges in our Pareto-
optimal structures as a preferable configuration for cooling our thermofluidic system. In real-world
industrial applications, fin-like topologies are frequently utilized in various applications, e.g., latent
heat thermal energy storage systems [31] and flow distributors [32], due to their simplicity and
manufacturability. A similar trend is seen in designs for commercial air- or liquid-cooling heat
sinks [33], B4]], which incorporate porous screen-fins and vertical channel-like structures, and these
designs bear a striking similarity to the selected structures shown in Figure [§. However, these
trends are not imbued into our design space or the search process; rather, they emerge from our
fully-automated inverse design process as a natural result of the selected performance measures in
the multi-objective optimization step. The obtained optimal microstructures can be manufactured
via, e.g., laser cutting [35] and 3D printing [36] at large scale as well due to their periodic nature.

4.3.2 Visualizations and Validations of Thermofluidic Objectives

Our first objective controls the evaporative heat flux at the top surface of the microstructure and
critically depends on the pore topology. Our second objective regulates the temperature uniformity
in the 2" direction of the porous microstructure and is exclusively affected by the solid phase. To
gain a deeper understanding on how these two objectives spatially vary across our Pareto optimum
designs, we examine the fluid dynamics and thermal characteristics.

As elucidated in Section B.2.3, the permeabilities in " and ¢/’ directions dominantly contribute to
the first objective f. As the structures progress from .#; to .47, they display noticeable declines
in directional permeabilities across all axes, including z’, 3/, and 2" directions, see Figure Pd. To
visualize these trends in more detail, we provide four steady-state velocity fields corresponding to
M, Ms, M, and A+, see Figures Pt toPd. In this context, a system reaches steady-state when the
fluctuations in directional permeabilities, computed over a series of 10, 000 iterations, fall below a
predetermined threshold value of 0.0005 pm?. These velocity fields indicate that as the topological
complexity increases in a given direction, it disrupts the formation of a concentrated flow path or
primary strain. This disruption leads to a more dispersed flow field and consequently adversely
affects the permeability in that specific direction of the microstructure.

Our second objective f, is primarily governed by the thermal conductivity in 2" direction, as
explained in Section B.2.3. Predictably, transitioning from .#; to .#+, there is a discernible in-
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crease in the directional thermal conductivities along all axes, including z, y', and 2’ directions,
see Figure [L0d. Here, k,,q, represents the maximal theoretical thermal conductivity attainable by
a microstructure, given a specified solid volume fraction. To study the correlation between direc-
tional thermal conductivities and solid topology, we visualize four temperature fields on the basis
of PNMs for .4, .43, 45, and .4+, respectively, see Figures to [L0d. The observed temper-
ature fields suggest that the magnitude of directional thermal conductivity is primarily tied to the
solid volume fraction of a microstructure. As the significance of f; escalates, denser PNMs emerge
as more preferable.

We now validate our selected Pareto-optimal microstructure designs by extracting thermoflu-
idic properties (according to the process described in Section B.2) and comparing the objectives
calculated from those properties to those predicted by our multi-fidelity LMGP emulators. The
results, as shown in Table P, indicate that both emulators 7, and 7, perform reasonably accurately
on our test samples. However, 7, loses accuracy in the high-f; regime, as shown in Table P,
and 7, develops a slight bias in the low- f, regime. We explain this by noting that the distribution
of outputs in our training dataset has few samples with high- f; or low- f>, making it difficult for
our emulators to accurately predict the behavior of the corresponding structures. This comes from
our intentional omission of structures with floating solid clusters during our data generation pro-
cess (see Section B.3) which encourages our dataset to only cover the space of physically feasible
structures. Structures with floating solids occur at a much higher rate for lower volume fractions,
leading to samples with high f; and/or low f, being disproportionately scarce in the dataset.

Finally, to highlight the superior thermofluidic performance of our Pareto-optimal microstruc-
tures, we compare them with commonly used sintered particle microstructures. Specifically, we
create a dataset of structures with sintered particles, where the pore volume fraction is the same as
in our optimized microstructures), and the aim is to maximize both of our objectives. As illustrated
in Figure [ ]| for this particular scenario, our designs outperform sintered particle microstructures.
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Figure 9 Mass transfer behaviors for selected structures: (a) Directional permeabilities (p,, py, p.+) extracted
from LBM for varying solid volume fractions of the four selected optimal points on the Pareto frontier of objective
space obtained from LMGP. (b)-(e) 3-D visualizations of the velocity fields in optimized porous structures of .41, .43,
M, and A, respectively.
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Figure 10 Heat transfer behaviors for selected structures: (a) Directional thermal conductivities (ky/, ky, k1)
extracted from PNMs for varying solid volume fractions of the four selected optimal points on the Pareto frontier of
objective space obtained from LMGP, along with the upper limit thermal conductivity (k;,,4,) in @ porous structure.
(b)-(e) 3-D visualizations of the PNMs and temperature fields in optimized porous structures of .#1, .45, .5, and
M, respectively.

5 Conclusion

We develop a data-driven framework for automatically and systematically designing quasi-
random porous microstructures for microelectronic cooling. Our framework reduces the design
space to tractable dimensionality by leveraging SDFs and balances cost and accuracy through of-
fline multi-fidelity simulations. It quantifies the performance and feasibility of design candidates
through property-based objectives, builds accurate multi-fidelity emulators providing visualiza-
tions of relationships within the datasets, and uses these emulators to find Pareto-optimal design
candidates. We demonstrate and validate our framework by applying it to the design of porous
microstructures for thin-film evaporation where our results reflect the well-established trends seen

0.007 4 G g~ Pareto-optimal SDF-reconstructed
—-—- Pareto-optimal sintered-particle
Sintered-particle
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Figure 11 Pareto frontier comparison: We compare the Pareto frontier of our reconstructed microstructures against
that of sintered-particle microstructures (black dashed line), along with sintered-particle microstructure dataset. As it
can be observed, our microstructures better optimize the two objective functions.
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Table 2 Comparison of emulator predictions and extracted properties for selected structures: (a) Emulator pre-
dictions are accurate for the low-f; regime, but lose accuracy in the high-f; regime. (b) Emulator predictions are
reasonably accurate throughout.

Structure No. | f; simulated | f; emulated Structure No. | f; simulated | f; emulated
M 11060 12834 M 0.007256 0.006985
Mo 37386 34156 Mo 0.003471 0.004545
M3 60804 56318 M 0.002322 0.003390
My 75422 86116 My 0.001485 0.002587
M, 125221 139183 M 0.000546 0.001753
M 140260 204533 M 0.000549 0.001127
M7 182182 295024 M7 0.000137 0.001531
(a) f1 validation (b) f> validation

in the industry.

To reduce the dimensionality of the problem, we develop two classes of parameterized SDFs
which encode our design space via a small number of meaningful parameters and demonstrate that
this enables us to explore a wide variety of microstructures. The results of the multi-objective
optimization demonstrate that the cylinder-type parameterization placed in orientation 2 solidly
outperforms the other combinations of SDF type and orientation. We also observe, as expected,
identical behavior from two orientations of the sphere-type parameterizations and the trend that
expected number of solid clusters correlates negatively with volume fraction. These observations
further cement that our emulators are well-trained. The structures selected from the Pareto front
also align with our prior expectations. Interestingly, these designs, which are found fully automat-
ically via inverse design, align with heat sink design in industry applications despite no preference
for these designs being imbued in our optimization process. Despite containing multiple solid clus-
ters, our selected designs are feasible as they connect to the base of the system. Concurrently, the
chosen microstructures exhibit notable fluid transport in the " and 4/’ directions, along with effi-
cient thermal delivery in the 2" direction, meeting the cooling demands of the target thermofluidic
system in this work.

The framework we have developed facilitates rapid, agile, and systematic searching for optimal
microstructures and can be easily adapted to other problems. Our framework focuses on homo-
geneous microstructure designs by encoding the design space via SDFs (which cannot reconstruct
nonstationary microstructures). Recognizing that nonstationary designs often outperform homoge-
neous ones, especially in scenarios with non-uniform heat flux, we plan to extend our framework
to accommodate such cases. Additionally, we will explore other designs using other engineered
surfaces like nonhomogeneous micropillars.

Appendix: Computational Cost

We provide an approximate breakdown of the computational cost of our approach as follows.
Our microstructure dataset for f; and f5 consists of 406 SDF design points with 20 microstructure
realizations each, while the dataset for f3 consists of 500 SDF design points with 50 realizations
each. Since microstructure realization takes around a tenth of a second for the structure sizes used
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in our dataset, the total computational cost of this portion of the data generation is under an hour.
Thermofluidic property extraction is by far the most expensive portion of our approach. The time
required to extract the desired properties varies based on structure topology, but on average takes
2500, 750, and 200 seconds for size 125, 100, and 75 structures, respectively, for a total com-
putational cost of around 100 hours. GP training is the least expensive portion of our approach,
taking around 10 minutes total (querying the GP after training takes less than a second). Finally,
an exhaustive multi-objective search via GA takes around 6 hours, yielding an approximate total
computational cost of 107 for our approach.
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