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Abstract—Classifying solar flares is crucial for comprehending
their potential impact on space weather forecasting. In this study,
we propose a novel approach to classify multivariate time series
(MVTS) solar flare data using an Attention/Transformer-based
framework. By utilizing the power of attention mechanisms and
transformer architectures, we can capture complex temporal
dependencies and interactions among different features in the
time series data. Our model simultaneously attends to rele-
vant features and learns their dependencies, enabling accurate
classification of solar flare events. We evaluate our approach
on a solar flare MVTS dataset and compare its performance
against several state-of-the-art methods. The experimental results
demonstrate that our approach achieves superior classification
accuracy, outperforming existing ones. These findings highlight
the effectiveness of attention mechanisms and transformer models
in capturing the complex patterns in multivariate time series
solar flare data. This research contributes to the advancement
of solar physics and space weather forecasting, facilitating a
deeper understanding of solar flare dynamics and enabling
more accurate predictions to improve space weather forecasting
capabilities.

Index Terms—Solar flares, Multivariate time series,
Attention/Transformer-based framework, Classification, Space
weather forecasting

I. INTRODUCTION

Solar flares are sudden and intense bursts of magnetic flux

that occur in the solar corona and heliosphere. These events

have significant consequences, including Extreme Ultra-Violet

(EUV), X-ray, and gamma-ray emissions, which can have

catastrophic effects on our technology-dependent society. They

result in radiation exposure-based health risks for astronauts,

disruption in GPS and radio communication, and damage to

electronic devices. The economic impact of such extreme

solar events can reach trillions of dollars [1]. To address

these challenges, research efforts have been directed towards

predicting and mitigating the effects of solar eruptive activities.

In recent years, the heliophysics community has focused on

predicting solar flares by analyzing current and historical

magnetic field data from solar active regions. Although there is

no direct theoretical relationship between magnetic field influx

and flare occurrence in these regions, researchers rely on data

science-based approaches for their predictions.

The Helioseismic Magnetic Imager (HMI) within the Solar

Dynamics Observatory collects full-disk vector magnetograms

that contains spatiotemporal magnetic field data of active

regions. To predict solar flares, time series modeling of the

magnetic field data is required. Consequently, spatiotemporal

magnetic field data is mapped into multiple instances of

Multivariate Time Series (MVTS) [2]. Each MVTS instance

contains solar magnetic field parameters such as flux, current,

helicity, and Lorentz force. The time series corresponding to

these parameters are extracted based on two-time windows: the

observation window (during data collection) and the prediction

window (before the flare occurrence). The instances are then

labeled into six classes: Q, A, B, C, M, and X. ”Q” represents

flare quiet active regions, while the other labels represent

flaring events with increasing intensity. Notably, X and M-

class flares denote the most intense flaring events.

Recent MVTS-based models have proven more effective

in predicting flaring activities compared to earlier single

timestamp-based magnetic field vector classification models

[2]. There are two main categories of MVTS-based models

targeting flare prediction. The first category is the statistical

feature-based method [3], where low-dimensional represen-

tations of MVTS instances are calculated by aggregating

summarization statistics of the univariate time series com-

ponents. Traditional classifiers like kNN and SVM are then

trained using these labeled MVTS representations. The second

category involves end-to-end deep learning-based methods [4],

using RNN/LSTM-based deep sequence models. These models

train by sequentially feeding vectors representing magnetic

field parameters into sequence model cells and optimizing

the cell weights through gradient descent-based backpropa-

gation. However, they can only utilize the time dimension

of the MVTS instances, leading to sub-optimal classification

performance due to limited usage of underlying patterns.

To address these limitations, Vaswani et al. [5] introduced

the Transformer model, a neural network architecture based

solely on self-attention mechanisms. The Transformer model

revolutionized the field of natural language processing (NLP)

and became the foundation for many subsequent advance-

ments, including state-of-the-art models such as BERT [6]

and GPT [7]. Its key advantage is the ability to capture long-

range dependencies efficiently and in parallel, leading to faster

training and inference times compared to previous models.

Given the effectiveness of the transformer model, it can be

a powerful choice for MVTS classification, leveraging its

ability to capture long-range dependencies and handle multi-

variable, temporal data effectively. Thus, in this study, we aim

to explore an alternative approach using attention/transformer
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Fig. 1: Transformer/Attention Model for MVTS Classification

model-based techniques. By harnessing the power of self-

attention mechanisms in transformers, we strive to capture

long-range temporal dependencies among magnetic field pa-

rameters in the MVTS data, ultimately improving solar flare

classification performance and deepening our understanding of

these potentially catastrophic events.

1) We propose a transformer/attention-based framework for

the MVTS classification.

2) We utilize the power of self-attention mechanisms to

improve the MVTS classification performance.

3) Experimental results of our model demonstrate a test

accuracy of 83% on the solar flare MVTS dataset

when using the proposed transformer-based model,

outperforming the baselines by more than 10%.

II. RELATED WORK

In the past, flare prediction systems heavily relied on human

inputs and expert knowledge. An early system called THEO,

adopted by the Space Environment Center (SEC) of NOAA

in 1987, required manual input of sunspots and magnetic field

properties to distinguish flare classes [8]. However, with the

abundance of magnetic field data collected by recent NASA

missions, the focus has shifted towards data science-based

approaches over purely theoretical modeling.

These data science-based approaches can be broadly cate-

gorized into linear and nonlinear statistical models. Depending

on the type of dataset used, the models are further divided into

line-of-sight magnetogram-based and vector magnetogram-

based models. Line-of-sight magnetogram data contains only

the line-of-sight component of the magnetic field, while full-

disk photospheric vector magnetic field data represents solar

active regions more comprehensively.

Linear statistical models aimed to identify highly correlated

magnetic field features with flare occurrences. For instance,

Cui et al. [9] used line-of-sight magnetogram data to establish

correlation-based statistical relationships between magnetic

field parameters and flare events. Even before the launch

of the Solar Dynamics Observatory (SDO), Leka et al. [10]

utilized linear discriminant analysis (LDA) to classify flaring

events using vector magnetogram data from the Mees Solar

Observatory.

On the other hand, nonlinear statistical models employed

various machine learning classifiers like logistic regression, de-

cision trees, neural networks, support vector machines (SVM),

and more. For instance, Song et al. [11] and Yu et al.

[12] used different classifiers on line-of-sight magnetogram-

based datasets. Bobra et al. [13] employed SVM on SDO-

based vector magnetogram data for flare classification, while

Nishizuka et al. [14] compared the performance of kNN,

SVM, and Extremely Randomized Tree (ERT) on both line-

of-sight and vector magnetograms. Convolutional neural net-

works (ConvNets) have also been applied to SDO AIA/HMI

images for solar flare prediction [15], [16].

Recently, Angryk et al. [2] introduced temporal window-

based flare prediction, extending the earlier single timestamp-

based models. Their MVTS-based active region dataset records

magnetic field data for a preset observation time and uniform

sampling rate, with each instance labeled by flare classes that

occurred after a given prediction time. Hamdi et al. [17] and

Muzaheed et al. [4] presented various MVTS classification

approaches, including statistical summarization, decision trees,

and LSTM-based deep sequence modeling. Alshammari et al.

[18] addressed the future values forecasting of the magnetic

field parameters, given past values in the MVTS representa-

tions.

The transformer model, introduced by Vaswani et al.

[5], offers several strengths, including its ability to capture

long-range dependencies, handle parallel computation, and

learn contextual relationships without relying on explicit

sequential processing e.g., MVTS normalization. In the

context of multivariate time series (MVTS) classification, the

benefits of the transformer and self-attention mechanism can

be utilized due to the sequential nature of the data.
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III. METHODOLOGY

A. Notations

The solar event instance i is represented by an MVTS

instance mvtsi. The MVTS instance mvtsi ∈ R
T×N is

a collection of individual time series of N magnetic field

parameters, where each time series contains periodic

observation values of the corresponding parameter

for an observation period T . In the MVTS instance

mvtsi = {vt1 , vt2 , ., ., ., vtT }, where vti ∈ R
N represents a

timestamp vector.

B. Data Preprocessing and Normalization

The magnetic field parameter values are recorded in dif-

ferent scales, so we perform z-score normalization. Z-score

normalization is a technique used to transform data in such a

way that it possesses a mean of zero and a standard deviation

of one. By employing this method, we can effectively assess

and compare the relative significance of various features within

our dataset. Suppose that M number of MVTS instances

each with N parameters and T time points are represented

by a third-order tensor X ∈ R
M×N×T , where three modes

represent events, parameters, and timestamps. We perform

parameter-level z-normalization as a preprocessing step in the

following three steps.

1) We perform mode-2 metrication, i.e., reshaping the

tensor so that mode-2 entities (parameter) become the

columns of the matrix. The matrix is denoted by X(2) ∈
R

MT×N . The columns are denoted by P1, P2, . . . , PN .

2) For each column Pj , we perform z-normalization:

x
(j)
k =

x
(j)
k − μ(j)

σ(j)

Here, x
(j)
k is the k-th value of the column Pj , where

1 ≤ k ≤ MT , μ(j) is the mean of the column Pj , and

σ(j) is the standard deviation of the column Pj .

3) We reshape the matrix X(2) ∈ R
MT×N back to

third-order tensor, X ∈ R
M×N×T .

C. Attention-based MVTS Classification Framework

In this study, we use the attention/transformer-based model

to get better performance in classifying the MVTS solar flare

dataset. In our model, we create the transformer encoder

block as figure 1 shows. In [5] the authors proposed a model

architecture called the transformer. The transformer consists

of an encoder and a decoder, both of which are composed

of multiple layers of self-attention and feed-forward neural

networks. The encoder processes the input sequence, such as

a sentence in machine translation. It consists of a stack of

identical layers, where each layer has two sub-layers:

• Self-attention layer: this layer functions by enabling each

timestamp in the input time series to focus on all other

time steps within the same sequence. This process en-

ables the layer to capture temporal dependencies between

individual timestamps and produce context-aware repre-

sentations for each timestamp.

• Feed-forward neural network layer: after self-attention,

a feed-forward neural network layer is applied to each

timestamp representation independently. It introduces

non-linearity and enables the model to incorporate

additional information.

Algorithm 1 MVTS Transformer Encoder

1: function TRANSFORMER ENCODER( inputs, head size,

num heads, ff dim)

2: x ← LAYERNORMALIZATION(inputs, ε = 1e− 6)
3: x ← MULTIHEADATTENTION(x, x, key dim =

head size, num heads = num heads)
4: res ← x+ inputs
5: x ← LAYERNORMALIZATION(res, ε = 1e− 6)
6: x ← CONV1D(x, filters = ff dim, kernel size =

1, activation = ”relu”)
7: x ← CONV1D(x, filters =

inputs.shape[−1], kernel size = 1)
8: return x+ res
9: end function

Algorithm 2 Build MVTS Transformer Model

1: function BUILD TRANSFORMER MODEL(input shape,

head size, num heads, ff dim,

num transformer blocks, mlp units)

2: n classes ← LENGTH(unique y train)
3: inputs ← INPUT(shape = input shape)
4: x ← inputs
5: for i ← 1 to num transformer blocks do
6: x ← TRANSFORMER ENCODER( x, head size,

num heads, ff dim )

7: end for
8: x ← GLOBALAVERAGEPOOLING1D( x,

data_format = ”channels_first" )

9: for dim in mlp units do
10: x ← DENSE(x, dim, activation = ”relu”)
11: end for
12: outputs ← DENSE(x, n classes, activation =

”softmax”)
13: return MODEL(inputs, outputs)
14: end function

In our model, we utilize the transformer encoder block and

use the benefits of the multi-head attention architecture which

is a crucial component of the transformer model. It allows the

model to focus on different parts of the input sequence simul-

taneously, enhancing its ability to capture complex temporal

dependencies and extract relevant features. By using multiple

attention heads, the model can learn different representations

and attend to different aspects of the input data in parallel. In

the context of MVTS data classification, multi-head attention

offers several advantages:
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• Enhanced representational capacity: by attending to dif-

ferent parts of the input sequence simultaneously, multi-

head attention allows the model to capture both local and

global dependencies effectively. This enables the model to

learn complex patterns within the time series data, leading

to improved classification performance.

• Robustness to variable-length sequences: MVTS data

often consists of sequences with varying lengths. Multi-

head attention can handle variable-length sequences effi-

ciently by assigning different attention weights to dif-

ferent parts of the input. This flexibility enables the

model to adapt to sequences of different lengths without

compromising its classification accuracy.

The multi-head attention mechanism is a crucial component

of the transformer model, allowing for the simultaneous cap-

ture of different aspects of the input sequence. It involves the

computation of multiple attention heads in parallel, enabling

the model to effectively process diverse information. The

equations governing the multi-head attention are as follows:

• Scaled Dot-Product Attention:

Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V

Here, Q, K, and V denote input matrices representing

queries, keys, and values, respectively. The dimension of

the key and query vectors is denoted by dk. The attention

mechanism computes the weighted sum of values based

on the similarity between queries (Q) and keys (K). Lin-

ear transformations are applied to the queries, keys, and

values before calculating attention weights through the

dot-product operation. The softmax function normalizes

these weights, and the resulting weights are used to weigh

the corresponding values (V ) to produce the final output.

• Multi-Head Attention:

MultiHead(Q,K, V ) =
Concatenate(head1, head2, .., headh)W

O

where headi = Attention(QWQ
i ,KWK

i , V WV
i ). The

matrices WQ
i , WK

i , and WV
i represent learnable linear

transformation matrices specific to the i-th attention

head, while WO is the linear transformation matrix

applied to the concatenated heads. In this step, the

input matrices Q, K, and V are linearly transformed

separately for each attention head. The attention function

is then applied to these transformed inputs to obtain the

attention outputs for each head. These attention heads

are again concatenated and transformed by matrix WO

to produce the final output of the multi-head attention

layer [5].

Our model diagram, as shown in Figure 1, can be described

as follows. The inputs undergo a series of Transformer En-

coder Blocks. Each Transformer Encoder Block comprises a

normalization and attention step, followed by a feed-forward

step. For each Transformer Encoder Block, the input data

is passed through a Layer Normalization (Encoder) block to

normalize the inputs. The normalized inputs are then fed into

the MultiHead Attention layer, which applies self-attention

to capture dependencies between different parts of the input

sequence. The output of the MultiHead Attention layer is com-

bined with the original inputs using a Residual Sum operation,

preserving the original information. The result is further passed

through another Layer Normalization (Encoder) block. The

output of the Layer Normalization block is fed into a 1D Con-

volutional layer with ReLU activation, enabling the capture of

local patterns and non-linear relationships in the data. This

output then passes through another 1D Convolutional layer.

The output of the second 1D Convolutional layer is once

again combined with the previous output using a Residual

Sum operation. The final output of the transformer encoder

function is obtained by summing the previous output with the

input data, representing the transformed representation of the

inputs. The Transformer Encoder Blocks are repeated multiple

times according to the specified parameter.

After the last Transformer Encoder Block, the output is

fed into a Global Average Pooling 1D layer to aggregate the

features across the time dimension. Subsequently, the output

of the Global Average Pooling 1D layer is passed through a

series of Dense layers with ReLU activation, as determined by

the mlp units parameter. The final Dense layer generates the

model’s outputs, with the number of units corresponding to the

number of output classes, and employs the softmax activation

function. These outputs represent the predictions made by the

model. Algorithm 1 operates as follows:

1) Layer Normalization: the tensor representation of MVTS

instances is first normalized along each feature dimen-

sion by passing it through a layer normalization layer.

2) Self-Attention: the normalized tensor is then fed into a

multi-head attention layer, where a self-attention mecha-

nism is applied. Each attention head attends to different

parts of the input sequence and learns to capture distinct

relationships between time steps. The output of the

attention layer retains the same shape as the input.

3) Residual Connection: the output of the multi-head at-

tention layer is element-wise added to the original input

tensor (inputs). This residual connection facilitates the

direct flow of gradients from the input to the output,

easing the learning process for the model.

4) Feed-forward: the result of the residual connection is

passed through another layer normalization layer.

5) Convolutional Layer: a 1D convolutional layer with

ff dim filters and kernel size 1 is applied to the

normalized tensor. This layer acts as a feed-forward neu-

ral network layer, applying non-linear transformations

independently to each position in the sequence.

6) Second Convolutional Layer: another 1D convolutional

layer with inputs. shape[-1] filters and kernel size 1 is

applied to the result obtained from the previous layer.

7) Residual Connection: the output of the second convolu-

tional layer is element-wise added to the result obtained

from the first residual connection layer.

8) Final Output: the sum of the previous residual connec-

tion and the original input tensor (inputs) is returned as

the final output.
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Algorithm 2 incorporates several parameters, each

described as follows: input shape specifies the shape of

the input data, head size determines the size of each

attention head in the transformer, num heads denotes

the number of attention heads in the transformer, ff dim
represents the dimension of the feed-forward network in

the transformer, num transformer blocks indicates the

number of transformer blocks to be stacked, and mlp units
is a list of integers specifying the number of units in each

MLP layer. Within the algorithm, it first determines the

number of classes (n classes) based on the unique labels

present in the training data. It then defines the input layer

and sets it as the current layer, denoted as x. The algorithm

proceeds by applying the transformer encoder block through

the transformer encoder function. After the transformer

encoder blocks, a global average pooling layer is applied

to reduce the spatial dimensions of the data. Subsequently,

a series of MLP layers are implemented as specified by

the mlp units parameter, with each layer employing ReLU
activation. Finally, an output layer is added with n classes
units and a softmax activation function for classification.

IV. EXPERIMENTS

In this section, we present our experimental findings, where

we compare the performance of our model with six other

MVTS-based flare prediction baselines using a benchmark

dataset. We implemented our Attention/Transformer-based

MVTS classifier using TensorFlow, and the source code of

our model, along with the experimental dataset, is available in

our GitHub repository. 1

A. Dataset Description

For our experiments, we utilized the benchmark dataset

for MVTS-based solar flare prediction published by Angryk

et al. [2]. This dataset consists of multiple MVTS instances,

with each instance comprising 25-time series of active

region magnetic field parameters (a comprehensive list

can be found in Table 1). The time series instances are

recorded at 12-minute intervals, spanning a total duration

of 12 hours (60-time steps). The dataset is characterized

by having 60 observation points (T ) and 25 parameters

(N ). Our experimental dataset consists of 1,540 MVTS

instances, which are evenly distributed across four flare

classes: X, M, BC, and Q. Here, ”Q” represents flare-quiet

events, and ”BC” represents a mixture of B and C class events.

B. Baseline Models

We evaluated our model with six other baselines.

1) Flattened vector method (FLT): this is a naive method,

where each 60 × 25 MVTS instance is flattened into a

1, 500- dimensional vector.

2) Vector of last timestamp (LTV): this method was in-

troduced by Bobra et al [13], where vector magnetogram

1https://github.com/Kalshammari/tramsformer-based.git

data (feature space of all magnetic field parameters)

were used for classification. Since the last timestamp

of the MVTS is temporally nearest to the flaring event,

we sampled the vector of the last timestamp (25 dimen-

sional) to train the classifier.

3) Time series summarization-based MVTS representa-
tion (TS-SUM): this method, proposed by Hamdi et al.

[17] summarizes each individual time series of length

T by eight statistical features: mean, standard deviation,

skewness, and kurtosis of the original time series, and

the first-order derivative of the time series. As a result,

we get an 8 × 25-dimensional vector space, which is

used for training the downstream classifier.

4) Long-short term memory (LSTM): this LSTM-based

approach was proposed by Muzaheed et. al. [4]. Each

MVTS instance was considered as a T -length sequence

of x<t> ∈ R
N timestamp vectors. After sequentially

feeding the LSTM model with each timestamp vector,

the last hidden representation was considered as the

MVTS representation. In our experiments, we set the

number of cell state and hidden state dimensions to 64,

the number of training epochs to 500, and the learning

rate in stochastic gradient descent to 0.01.

5) Recurrent Neural Network (RNN): as the fifth base-

line, we replace LSTM cells of the model of [4] with

standard RNN cells. We use the number of RNN hid-

den dimensions as 128, the number of training epochs

as 1,000, and the learning rate in stochastic gradient

descent as 0.01.

6) Random Convolutional Kernel Transform
(ROCKET): ROCKET was shown as the best-

performing algorithm in the MVTS classification

benchmarking study by Ruiz et al [19], which included

26 MVTS datasets of the UEA archive [20]. ROCKET

uses a large number of random convolution kernels

along with a linear classifier, where each kernel is

applied to each univariate time series instance. In line

with the experimental setting of Ruiz et al. [19], we set

the number of kernels in ROCKET to 10,000.

The first three baselines involve embedding followed by

classification methods. We use a logistic regression classifier

with L2 regularization for classification. In all the baseline

experiments, we split the dataset into train and test sets

using the stratified holdout method, with two-thirds of the

data used for training and validation, and one-third for testing.

C. Multiclass classification performance

Table I presents the classification performances of the

Transformer-based MVTS classifier compared to several base-

line methods. In order to provide a comprehensive evaluation,

we report accuracy, precision, recall, and F1 scores for each

class. The experiments were conducted using five different

train/test sets, which were sampled using stratified holdout,

and we report the mean and standard deviation of the results.
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TABLE I: Multiclass classification performance of the proposed method with the baselines

Measures FLT LTV TS-SUM RNN LSTM ROCKET Transformer
Accuracy 0.26 ± 0.012 0.32 ± 0.02 0.61 ± 0.091 0.43 ± 0.025 0.63 ± 0.03 0.74 ± 0.02 0.83 ± 0.026
Precision (X) 0.23 ± 0.024 0.34 ± 0.041 0.71 ± 0.054 0.53 ± 0.031 0.76 ± 0.028 0.92 ± 0.03 0.95 ± 0.023
Recall (X) 0.26 ± 0.053 0.39 ± 0.043 0.77 ± 0.024 0.63 ± 0.028 0.95 ± 0.023 0.98 ± 0.01 0.98 ± 0.008
F1 (X) 0.24 ± 0.032 0.36 ± 0.04 0.74 ± 0.034 0.58 ± 0.019 0.84 ± 0.014 0.95 ± 0.02 0.97 ± 0.013
Precision (M) 0.25± 0.012 0.32± 0.033 0.52± 0.031 0.41± 0.014 0.59± 0.018 0.66± 0.04 0.82 ± 0.051
Recall (M) 0.26± 0.023 0.33± 0.061 0.55± 0.022 0.40± 0.03 0.54± 0.014 0.7± 0.03 0.85 ± 0.067
F1 (M) 0.26± 0.026 0.33± 0.042 0.53± 0.023 0.41± 0.029 0.57± 0.02 0.68± 0.02 0.83 ± 0.026
Precision (BC) 0.23± 0.044 0.26± 0.024 0.45± 0.033 0.28± 0.031 0.50± 0.013 0.58± 0.02 0.71 ± 0.055
Recall (BC) 0.24± 0.053 0.21± 0.02 0.47± 0.014 0.26± 0.021 0.41± 0.023 0.57± 0.05 0.70 ± 0.066
F1 (BC) 0.24± 0.041 0.23± 0.024 0.46± 0.041 0.27± 0.031 0.45± 0.031 0.57± 0.03 0.70 ± 0.053
Precision (Q) 0.32 ± 0.034 0.34 ± 0.044 0.58 ± 0.045 0.48 ± 0.024 0.60 ± 0.024 0.81 ± 0.04 0.85 ± 0.056
Recall (Q) 0.25 ± 0.042 0.36 ± 0.071 0.66 ± 0.034 0.41 ± 0.042 0.68 ± 0.023 0.72 ± 0.03 0.78 ± 0.048
F1 (Q) 0.28 ± 0.014 0.35 ± 0.013 0.62 ± 0.043 0.45 ± 0.032 0.64 ± 0.024 0.77 ±0.03 0.81 ± 0.033

The results clearly demonstrate that the Transformer-based

MVTS classifier outperforms all other baselines across all per-

formance measures. When considering the overall evaluation,

ROCKET achieves the second-best performance, followed by

the LSTM model in third place. Notably, the Transformer-

based MVTS classifier achieves an accuracy of 20% which is

higher than the LSTM model.

Among the shallow ML models, TS-SUM performs better

than the FLT and LTV models. Overall, the exceptional

performances of TS-SUM, RNN, LSTM, ROCKET, and our

Transformer-based MVTS classifier emphasize the importance

of time series representations in understanding solar events.

D. Binary classification performance

In the context of data-driven flare prediction, binary classi-

fication plays a significant role in distinguishing major flaring

events from minor flaring events or flare quiet events. In

this experiment, we focus on classifying X and M class

MVTS instances as flaring events, while considering all other

instances (Q and BC) as non-flaring events. The figure depicts

the mean binary classification performances of all models over

five different train/test samples. Evaluation metrics such as

accuracy, precision, recall, and F1 scores are used for both

the flaring and non-flaring classes.

The results clearly demonstrate that the Transformer-based

MVTS model outperforms all other baseline models, and

achieves an average improvement of approximately 8%

compared to the second-best performing ROCKET algorithm

across all performance metrics. These findings highlight the

superior performance of our model in binary classification

and multi-class classification. This consistency reinforces the

efficacy and reliability of our Transformer-based model in

accurately predicting flaring events.

E. Classification varying training set size

To investigate the adaptability of our model to larger training

datasets, we conducted experiments by varying the size of

the training set. The training set size was adjusted from

10% to 90% of the total dataset size, while the remaining

Fig. 2: Binary classification performance of all baselines.

instances were used for testing. Stratified train/test sampling

was performed, and the classification performance of the

classifiers was evaluated five times using distinct samples of

training and test sets.

In Figure 3, we present the mean accuracy values and

in Figure 4 we present the mean F1 (X class) values ob-

tained from five runs. Across all training set sizes, our

transformer-based MVTS classifier consistently outperformed

the other baselines. Notably, the transformer-based MVTS

model achieved a classification accuracy of 75% using only

20% of the training data, surpassing the performance of the

third-best performing LSTM model, which required 90% of

the training data to achieve a similar high level of performance.

We observed consistent improvement patterns in deep learning

and kernel-based methods, including our transformer-based

model, ROCKET, LSTM, and RNN.

This observation suggests that with sufficiently large

datasets, deep learning models have the potential to

outperform traditional classifiers or embedding methods by a

significant margin. These findings underscore the superiority

of Transformer models when working with large datasets.
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Fig. 3: Multi-class classification accuracy with increasing

training data.

Fig. 4: F1 for X class with increasing training data

F. t-SNE Embedding performance

Visualizing high-dimensional data in 2D or 3D space using

techniques like t-SNE is a well-established method for assess-

ing the effectiveness of learned representations. In order to

evaluate the quality of the learned MVTS representations, we

present a visualization of the t-SNE transformed MVTS rep-

resentations extracted from the final layer of the Transformer-

based model. All instances are projected onto a t-SNE-reduced

2D space (see Figure 6). We employed a stratified holdout

strategy for pre-training the model.

The resulting 2D projection clearly demonstrates distinct

clustering of the MVTS instances. The t-SNE scatter plot

provides meaningful insights, as it allows us to easily distin-

guish patterns among the four classes. Flare-quiet events (Q)

and minor flaring events (B and C) exhibit relatively similar

characteristics. On the other hand, X and M class flares show

significant dissimilarity from the other classes. Additionally,

we observe that certain flare-quiet events share similarities

with minor flaring events, while some minor flares display

characteristics similar to M-class flares. The characteristics

Fig. 5: t-SNE embedding of Transformer-based generated

representations of all MVTS instances in the dataset

of X-class flares are distinct, with no observed similarity in

instances from other classes.

By visualizing the t-SNE transformed representations, we

gain valuable insights into the distinguishable patterns and

similarities among the different classes of MVTS instances.

This analysis allows for a deeper understanding of the learned

representations and sheds light on the distinct features and

characteristics of flaring events.

G. Ablation Study of the Transformer-base MVTS Classifica-
tion Mode

To gain a better understanding of the contributions and

effectiveness of the different layers in our model, we con-

ducted several experiments to evaluate the significance of

various aspects. Firstly, we assessed the importance of the

self-attention mechanism by removing it from the model

architecture and comparing the results. The removal of the

attention mechanism led to a noticeable drop in accuracy,

from 83% to 71%. This outcome highlights the significant

role played by the Multi-Head Attention layer in capturing

relevant patterns and relationships within the MVTS data.

Secondly, we examined the impact of layer normalization

by removing the layer normalization layers from the model.

This resulted in a decrease in accuracy from 83% to 77%. This

finding underscores the importance of layer normalization in

maintaining the model’s performance and stability.

Lastly, we investigated the effect of the 1D convolutional

layers. When these layers were removed from the model, there

was a significant drop in accuracy from 83% to 71%. This

result clearly demonstrates the crucial role played by the 1D

convolutional layers in capturing important temporal features

and contributing to the overall performance of the model.

Overall, the ablation study provided valuable insights

into the contributions of different layers in our model. The
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Fig. 6: Ablation Study: Revealing the Contributions of Model

Components in MVTS Classification of Solar Flares.

significant decrease in accuracy upon removing the attention

mechanism, layer normalization, and 1D convolutional layers

highlights their importance in capturing relevant patterns,

maintaining stability, and extracting essential temporal

features. These findings underscore the effectiveness and

significance of each layer in our model architecture.

V. CONCLUSION

In this work, we presented an end-to-end transformer-

based flare prediction model that leverages the self-attention

model for the classification of multivariate time series (MVTS)

instances. Our study presents a novel approach that utilizes the

strengths of the transformer model and self-attention mecha-

nism for MVTS classification. Through an end-to-end learning

process, the proposed model effectively captures the temporal

relationships within MVTS instances, including higher-order

inter-variable relationships and local and global temporal

changes. Through the integration of attention/transformer-

based techniques, our experiments on the solar flare prediction

dataset demonstrate the superior performance of our model

in multi-class MVTS classification, achieving an impressive

accuracy of 83%. The results demonstrate the potential of

our approach in providing more comprehensive and accurate

predictions in the field of solar physics and space weather

forecasting. This contribution holds promise for improving the

overall accuracy and reliability of space weather forecasting.

For future research, we plan to utilize LIME (Local Inter-

pretable Model-Agnostic Explanations) interpretability [21] to

understand the attention mechanisms in transformer models

for MVTS analysis. Additionally, we aim to integrate the

Graph Attention Network (GAT) [22] to construct functional

networks from MVTS instances, to allow the model to learn

both local and global sequences, and capture complex depen-

dencies.
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