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Abstract—Classifying solar flares is crucial for comprehending
their potential impact on space weather forecasting. In this study,
we propose a novel approach to classify multivariate time series
(MVTS) solar flare data using an Attention/Transformer-based
framework. By utilizing the power of attention mechanisms and
transformer architectures, we can capture complex temporal
dependencies and interactions among different features in the
time series data. Our model simultaneously attends to rele-
vant features and learns their dependencies, enabling accurate
classification of solar flare events. We evaluate our approach
on a solar flare MVTS dataset and compare its performance
against several state-of-the-art methods. The experimental results
demonstrate that our approach achieves superior classification
accuracy, outperforming existing ones. These findings highlight
the effectiveness of attention mechanisms and transformer models
in capturing the complex patterns in multivariate time series
solar flare data. This research contributes to the advancement
of solar physics and space weather forecasting, facilitating a
deeper understanding of solar flare dynamics and enabling
more accurate predictions to improve space weather forecasting
capabilities.

Index Terms—Solar flares, Multivariate time series,
Attention/Transformer-based framework, Classification, Space
weather forecasting

1. INTRODUCTION

Solar flares are sudden and intense bursts of magnetic flux
that occur in the solar corona and heliosphere. These events
have significant consequences, including Extreme Ultra-Violet
(EUV), X-ray, and gamma-ray emissions, which can have
catastrophic effects on our technology-dependent society. They
result in radiation exposure-based health risks for astronauts,
disruption in GPS and radio communication, and damage to
electronic devices. The economic impact of such extreme
solar events can reach trillions of dollars [1]. To address
these challenges, research efforts have been directed towards
predicting and mitigating the effects of solar eruptive activities.
In recent years, the heliophysics community has focused on
predicting solar flares by analyzing current and historical
magnetic field data from solar active regions. Although there is
no direct theoretical relationship between magnetic field influx
and flare occurrence in these regions, researchers rely on data
science-based approaches for their predictions.

The Helioseismic Magnetic Imager (HMI) within the Solar
Dynamics Observatory collects full-disk vector magnetograms
that contains spatiotemporal magnetic field data of active
regions. To predict solar flares, time series modeling of the
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magnetic field data is required. Consequently, spatiotemporal
magnetic field data is mapped into multiple instances of
Multivariate Time Series (MVTS) [2]. Each MVTS instance
contains solar magnetic field parameters such as flux, current,
helicity, and Lorentz force. The time series corresponding to
these parameters are extracted based on two-time windows: the
observation window (during data collection) and the prediction
window (before the flare occurrence). The instances are then
labeled into six classes: Q, A, B, C, M, and X. ”Q” represents
flare quiet active regions, while the other labels represent
flaring events with increasing intensity. Notably, X and M-
class flares denote the most intense flaring events.

Recent MVTS-based models have proven more effective
in predicting flaring activities compared to earlier single
timestamp-based magnetic field vector classification models
[2]. There are two main categories of MVTS-based models
targeting flare prediction. The first category is the statistical
feature-based method [3], where low-dimensional represen-
tations of MVTS instances are calculated by aggregating
summarization statistics of the univariate time series com-
ponents. Traditional classifiers like kNN and SVM are then
trained using these labeled MVTS representations. The second
category involves end-to-end deep learning-based methods [4],
using RNN/LSTM-based deep sequence models. These models
train by sequentially feeding vectors representing magnetic
field parameters into sequence model cells and optimizing
the cell weights through gradient descent-based backpropa-
gation. However, they can only utilize the time dimension
of the MVTS instances, leading to sub-optimal classification
performance due to limited usage of underlying patterns.

To address these limitations, Vaswani et al. [5] introduced
the Transformer model, a neural network architecture based
solely on self-attention mechanisms. The Transformer model
revolutionized the field of natural language processing (NLP)
and became the foundation for many subsequent advance-
ments, including state-of-the-art models such as BERT [6]
and GPT [7]. Its key advantage is the ability to capture long-
range dependencies efficiently and in parallel, leading to faster
training and inference times compared to previous models.
Given the effectiveness of the transformer model, it can be
a powerful choice for MVTS classification, leveraging its
ability to capture long-range dependencies and handle multi-
variable, temporal data effectively. Thus, in this study, we aim
to explore an alternative approach using attention/transformer
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Fig. 1: Transformer/Attention Model for MVTS Classification

model-based techniques. By harnessing the power of self-
attention mechanisms in transformers, we strive to capture
long-range temporal dependencies among magnetic field pa-
rameters in the MVTS data, ultimately improving solar flare
classification performance and deepening our understanding of
these potentially catastrophic events.

1) We propose a transformer/attention-based framework for
the MVTS classification.
We utilize the power of self-attention mechanisms to
improve the MVTS classification performance.
Experimental results of our model demonstrate a test
accuracy of 83% on the solar flare MVTS dataset
when using the proposed transformer-based model,
outperforming the baselines by more than 10%.

2)

3)

II. RELATED WORK

In the past, flare prediction systems heavily relied on human
inputs and expert knowledge. An early system called THEO,
adopted by the Space Environment Center (SEC) of NOAA
in 1987, required manual input of sunspots and magnetic field
properties to distinguish flare classes [8]. However, with the
abundance of magnetic field data collected by recent NASA
missions, the focus has shifted towards data science-based
approaches over purely theoretical modeling.

These data science-based approaches can be broadly cate-
gorized into linear and nonlinear statistical models. Depending
on the type of dataset used, the models are further divided into
line-of-sight magnetogram-based and vector magnetogram-
based models. Line-of-sight magnetogram data contains only
the line-of-sight component of the magnetic field, while full-
disk photospheric vector magnetic field data represents solar
active regions more comprehensively.

Linear statistical models aimed to identify highly correlated
magnetic field features with flare occurrences. For instance,
Cui et al. [9] used line-of-sight magnetogram data to establish
correlation-based statistical relationships between magnetic
field parameters and flare events. Even before the launch
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of the Solar Dynamics Observatory (SDO), Leka et al. [10]
utilized linear discriminant analysis (LDA) to classify flaring
events using vector magnetogram data from the Mees Solar
Observatory.

On the other hand, nonlinear statistical models employed
various machine learning classifiers like logistic regression, de-
cision trees, neural networks, support vector machines (SVM),
and more. For instance, Song et al. [11] and Yu et al.
[12] used different classifiers on line-of-sight magnetogram-
based datasets. Bobra et al. [13] employed SVM on SDO-
based vector magnetogram data for flare classification, while
Nishizuka et al. [14] compared the performance of kNN,
SVM, and Extremely Randomized Tree (ERT) on both line-
of-sight and vector magnetograms. Convolutional neural net-
works (ConvNets) have also been applied to SDO AIA/HMI
images for solar flare prediction [15], [16].

Recently, Angryk et al. [2] introduced temporal window-
based flare prediction, extending the earlier single timestamp-
based models. Their MVTS-based active region dataset records
magnetic field data for a preset observation time and uniform
sampling rate, with each instance labeled by flare classes that
occurred after a given prediction time. Hamdi et al. [17] and
Muzaheed et al. [4] presented various MVTS classification
approaches, including statistical summarization, decision trees,
and LSTM-based deep sequence modeling. Alshammari et al.
[18] addressed the future values forecasting of the magnetic
field parameters, given past values in the MVTS representa-
tions.

The transformer model, introduced by Vaswani et al.
[5], offers several strengths, including its ability to capture
long-range dependencies, handle parallel computation, and
learn contextual relationships without relying on explicit
sequential processing e.g., MVTS normalization. In the
context of multivariate time series (MVTS) classification, the
benefits of the transformer and self-attention mechanism can
be utilized due to the sequential nature of the data.



III. METHODOLOGY
A. Notations

The solar event instance ¢ is represented by an MVTS
instance muts;. The MVTS instance muots, € RT*N g
a collection of individual time series of N magnetic field
parameters, where each time series contains periodic
observation values of the corresponding parameter
for an observation period 7. In the MVTS instance
mots; = {V4,,Viyy - Uiy }» Where v, € RN represents a
timestamp vector.

B. Data Preprocessing and Normalization

The magnetic field parameter values are recorded in dif-
ferent scales, so we perform z-score normalization. Z-score
normalization is a technique used to transform data in such a
way that it possesses a mean of zero and a standard deviation
of one. By employing this method, we can effectively assess
and compare the relative significance of various features within
our dataset. Suppose that M number of MVTS instances
each with N parameters and 7" time points are represented
by a third-order tensor X € RM*N*T  yhere three modes
represent events, parameters, and timestamps. We perform
parameter-level z-normalization as a preprocessing step in the
following three steps.

1) We perform mode-2 metrication, i.e., reshaping the
tensor so that mode-2 entities (parameter) become the
columns of the matrix. The matrix is denoted by X ) €
RMTXN The columns are denoted by Py, P, ..., Py.

2) For each column P;, we perform z-normalization:
(4) j
ROl
k o(d)

Here, x% ) is the k-th value of the column P;, where

1<k<MT, ,u(j) is the mean of the column P;, and
(@) is the standard deviation of the column P;.

We reshape the matrix X(IQ\? € RMTXN pack to
third-order tensor, X € RM*NxT

3)

C. Attention-based MVTS Classification Framework

In this study, we use the attention/transformer-based model
to get better performance in classifying the MVTS solar flare
dataset. In our model, we create the transformer encoder
block as figure 1 shows. In [5] the authors proposed a model
architecture called the transformer. The transformer consists
of an encoder and a decoder, both of which are composed
of multiple layers of self-attention and feed-forward neural
networks. The encoder processes the input sequence, such as
a sentence in machine translation. It consists of a stack of
identical layers, where each layer has two sub-layers:

« Self-attention layer: this layer functions by enabling each
timestamp in the input time series to focus on all other
time steps within the same sequence. This process en-
ables the layer to capture temporal dependencies between
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individual timestamps and produce context-aware repre-
sentations for each timestamp.

Feed-forward neural network layer: after self-attention,
a feed-forward neural network layer is applied to each
timestamp representation independently. It introduces
non-linearity and enables the model to incorporate
additional information.

Algorithm 1 MVTS Transformer Encoder

1: function TRANSFORMER_ENCODER( inputs, head_size,
num_heads, ff_dim)
2 < LAYERNORMALIZATION(inputs,e = le — 6)
x 4+ MULTIHEADATTENTION(z, x, key_dim
head_size,num_heads = num_heads)

4: res <— x + nputs
5: 2 <~ LAYERNORMALIZATION(res, € = le — 6)
6 x < CONVID(z, filters = ff_dim, kernel_size =

1, activation = "relu”)

x — ConvID(z, filters
inputs.shape[—1], kernel_size = 1)

return r + res
9: end function

Algorithm 2 Build MVTS Transformer Model

1: function BUILD_TRANSFORMER_MODEL(input_shape,
head_size,num_heads, f f_dim,
num_trans former_blocks, mlp_units)

n_classes < LENGTH(unique_y_train)

inputs < INPUT(shape = input_shape)

T — inputs

for i < 1 to num_trans former_blocks do

T 4 TRANSFORMER_ENCODER( x, head_size,

num_heads, ff_dim )

end for

T

AN A R o

® A

— GLOBALAVERAGEPOOLING1D(
data_ format =7 channels_ first" )

z,

9: for dim in mip_units do

10: x < DENSE(z, dim, activation = "relu”)

11: end for

12: outputs <+ DENSE(z,n_classes,activation =
" softmax”)

13: return MODEL (inputs, outputs)

14: end function

In our model, we utilize the transformer encoder block and
use the benefits of the multi-head attention architecture which
is a crucial component of the transformer model. It allows the
model to focus on different parts of the input sequence simul-
taneously, enhancing its ability to capture complex temporal
dependencies and extract relevant features. By using multiple
attention heads, the model can learn different representations
and attend to different aspects of the input data in parallel. In
the context of MVTS data classification, multi-head attention
offers several advantages:



o Enhanced representational capacity: by attending to dif-
ferent parts of the input sequence simultaneously, multi-
head attention allows the model to capture both local and
global dependencies effectively. This enables the model to
learn complex patterns within the time series data, leading
to improved classification performance.

Robustness to variable-length sequences: MVTS data
often consists of sequences with varying lengths. Multi-
head attention can handle variable-length sequences effi-
ciently by assigning different attention weights to dif-
ferent parts of the input. This flexibility enables the
model to adapt to sequences of different lengths without
compromising its classification accuracy.

The multi-head attention mechanism is a crucial component
of the transformer model, allowing for the simultaneous cap-
ture of different aspects of the input sequence. It involves the
computation of multiple attention heads in parallel, enabling
the model to effectively process diverse information. The
equations governing the multi-head attention are as follows:

o Scaled Dot-Product Attention: .

Attention(Q, K, V) = softmax (%) \%
Here, @), K, and V denote input matrices representing
queries, keys, and values, respectively. The dimension of
the key and query vectors is denoted by dj.. The attention
mechanism computes the weighted sum of values based
on the similarity between queries () and keys (/). Lin-
ear transformations are applied to the queries, keys, and
values before calculating attention weights through the
dot-product operation. The softmax function normalizes
these weights, and the resulting weights are used to weigh
the corresponding values (V') to produce the final output.
Multi-Head Attention:

MultiHead(Q, K, V)
Concatenate(heady, heads, .., headh)WO
where head; Attention(QW 2, KWK, VWY). The
matrices W,°, W/<, and W)Y represent learnable linear
transformation matrices specific to the ¢-th attention
head, while W© is the linear transformation matrix
applied to the concatenated heads. In this step, the
input matrices ), K, and V are linearly transformed
separately for each attention head. The attention function
is then applied to these transformed inputs to obtain the
attention outputs for each head. These attention heads
are again concatenated and transformed by matrix W©
to produce the final output of the multi-head attention
layer [5].

Our model diagram, as shown in Figure 1, can be described
as follows. The inputs undergo a series of Transformer En-
coder Blocks. Each Transformer Encoder Block comprises a
normalization and attention step, followed by a feed-forward
step. For each Transformer Encoder Block, the input data
is passed through a Layer Normalization (Encoder) block to
normalize the inputs. The normalized inputs are then fed into
the MultiHead Attention layer, which applies self-attention
to capture dependencies between different parts of the input
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sequence. The output of the MultiHead Attention layer is com-
bined with the original inputs using a Residual Sum operation,
preserving the original information. The result is further passed
through another Layer Normalization (Encoder) block. The
output of the Layer Normalization block is fed into a 1D Con-
volutional layer with ReLU activation, enabling the capture of
local patterns and non-linear relationships in the data. This
output then passes through another 1D Convolutional layer.
The output of the second 1D Convolutional layer is once
again combined with the previous output using a Residual
Sum operation. The final output of the transformer encoder
function is obtained by summing the previous output with the
input data, representing the transformed representation of the
inputs. The Transformer Encoder Blocks are repeated multiple
times according to the specified parameter.

After the last Transformer Encoder Block, the output is
fed into a Global Average Pooling 1D layer to aggregate the
features across the time dimension. Subsequently, the output
of the Global Average Pooling 1D layer is passed through a
series of Dense layers with Re LU activation, as determined by
the mlp_units parameter. The final Dense layer generates the
model’s outputs, with the number of units corresponding to the
number of output classes, and employs the so ftmax activation
function. These outputs represent the predictions made by the
model. Algorithm 1 operates as follows:

1) Layer Normalization: the tensor representation of MVTS
instances is first normalized along each feature dimen-
sion by passing it through a layer normalization layer.
Self-Attention: the normalized tensor is then fed into a
multi-head attention layer, where a self-attention mecha-
nism is applied. Each attention head attends to different
parts of the input sequence and learns to capture distinct
relationships between time steps. The output of the
attention layer retains the same shape as the input.
Residual Connection: the output of the multi-head at-
tention layer is element-wise added to the original input
tensor (inputs). This residual connection facilitates the
direct flow of gradients from the input to the output,
easing the learning process for the model.
Feed-forward: the result of the residual connection is
passed through another layer normalization layer.
Convolutional Layer: a 1D convolutional layer with
ff_dim filters and kernel size 1 is applied to the
normalized tensor. This layer acts as a feed-forward neu-
ral network layer, applying non-linear transformations
independently to each position in the sequence.

Second Convolutional Layer: another 1D convolutional
layer with inputs. shape[-1] filters and kernel size 1 is
applied to the result obtained from the previous layer.
Residual Connection: the output of the second convolu-
tional layer is element-wise added to the result obtained
from the first residual connection layer.

Final Output: the sum of the previous residual connec-
tion and the original input tensor (inputs) is returned as
the final output.

2)

3)

4)

5)

6)

7

8)



Algorithm 2 incorporates several parameters, each
described as follows: input_shape specifies the shape of
the input data, head_size determines the size of each
attention head in the transformer, num_heads denotes
the number of attention heads in the transformer, ff_dim
represents the dimension of the feed-forward network in
the transformer, num_transformer_blocks indicates the
number of transformer blocks to be stacked, and mlip_units
is a list of integers specifying the number of units in each
MLP layer. Within the algorithm, it first determines the
number of classes (n_classes) based on the unique labels
present in the training data. It then defines the input layer
and sets it as the current layer, denoted as x. The algorithm
proceeds by applying the transformer encoder block through
the transformer_encoder function. After the transformer
encoder blocks, a global average pooling layer is applied
to reduce the spatial dimensions of the data. Subsequently,
a series of MLP layers are implemented as specified by
the mlp_units parameter, with each layer employing ReLU
activation. Finally, an output layer is added with n_classes
units and a softmax activation function for classification.

IV. EXPERIMENTS

In this section, we present our experimental findings, where
we compare the performance of our model with six other
MVTS-based flare prediction baselines using a benchmark
dataset. We implemented our Attention/Transformer-based
MVTS classifier using TensorFlow, and the source code of
our model, along with the experimental dataset, is available in
our GitHub repository. !

A. Dataset Description

For our experiments, we utilized the benchmark dataset
for MVTS-based solar flare prediction published by Angryk
et al. [2]. This dataset consists of multiple MVTS instances,
with each instance comprising 25-time series of active
region magnetic field parameters (a comprehensive list
can be found in Table 1). The time series instances are
recorded at 12-minute intervals, spanning a total duration
of 12 hours (60-time steps). The dataset is characterized
by having 60 observation points (1) and 25 parameters
(N). Our experimental dataset consists of 1,540 MVTS
instances, which are evenly distributed across four flare
classes: X, M, BC, and Q. Here, ”Q” represents flare-quiet
events, and "BC” represents a mixture of B and C class events.

B. Baseline Models

We evaluated our model with six other baselines.

1) Flattened vector method (FLT): this is a naive method,
where each 60 x 25 MVTS instance is flattened into a
1, 500- dimensional vector.

2) Vector of last timestamp (LTV): this method was in-
troduced by Bobra et al [13], where vector magnetogram

"https://github.com/Kalshammari/tramsformer-based.git
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data (feature space of all magnetic field parameters)
were used for classification. Since the last timestamp
of the MVTS is temporally nearest to the flaring event,
we sampled the vector of the last timestamp (25 dimen-
sional) to train the classifier.

Time series summarization-based MVTS representa-
tion (TS-SUM): this method, proposed by Hamdi et al.
[17] summarizes each individual time series of length
T by eight statistical features: mean, standard deviation,
skewness, and kurtosis of the original time series, and
the first-order derivative of the time series. As a result,
we get an 8 x 25-dimensional vector space, which is
used for training the downstream classifier.
Long-short term memory (LSTM): this LSTM-based
approach was proposed by Muzaheed et. al. [4]. Each
MVTS instance was considered as a 7" -length sequence
of x<*> € RY timestamp vectors. After sequentially
feeding the LSTM model with each timestamp vector,
the last hidden representation was considered as the
MVTS representation. In our experiments, we set the
number of cell state and hidden state dimensions to 64,
the number of training epochs to 500, and the learning
rate in stochastic gradient descent to 0.01.

Recurrent Neural Network (RNN): as the fifth base-
line, we replace LSTM cells of the model of [4] with
standard RNN cells. We use the number of RNN hid-
den dimensions as 128, the number of training epochs
as 1,000, and the learning rate in stochastic gradient
descent as 0.01.

3)

4)

5)

6) Random Convolutional Kernel Transform
(ROCKET): ROCKET was shown as the best-
performing algorithm in the MVTS classification

benchmarking study by Ruiz et al [19], which included
26 MVTS datasets of the UEA archive [20]. ROCKET
uses a large number of random convolution kernels
along with a linear classifier, where each kernel is
applied to each univariate time series instance. In line
with the experimental setting of Ruiz et al. [19], we set
the number of kernels in ROCKET to 10,000.

The first three baselines involve embedding followed by
classification methods. We use a logistic regression classifier
with L2 regularization for classification. In all the baseline
experiments, we split the dataset into train and test sets
using the stratified holdout method, with two-thirds of the
data used for training and validation, and one-third for testing.

C. Multiclass classification performance

Table I presents the classification performances of the
Transformer-based MVTS classifier compared to several base-
line methods. In order to provide a comprehensive evaluation,
we report accuracy, precision, recall, and F1 scores for each
class. The experiments were conducted using five different
train/test sets, which were sampled using stratified holdout,
and we report the mean and standard deviation of the results.



TABLE I: Multiclass classification performance of the proposed method with the baselines

Measures FLT LTV TS-SUM RNN LSTM ROCKET Transformer
Accuracy 0.26 £ 0.012 | 0.32 + 0.02 | 0.61 + 0.091 | 0.43 + 0.025 | 0.63 +£0.03 | 0.74 +£ 0.02 | 0.83 + 0.026
Precision (X) 0.23 +£0.024 | 0.34 £ 0.041 | 0.71 + 0.054 | 0.53 4+ 0.031 | 0.76 + 0.028 | 0.92 + 0.03 | 0.95 + 0.023
Recall (X) 0.26 + 0.053 | 0.39 + 0.043 | 0.77 + 0.024 | 0.63 4+ 0.028 | 0.95 £+ 0.023 | 0.98 + 0.01 | 0.98 + 0.008
F1 (X) 0.24 +0.032 | 0.36 + 0.04 | 0.74 + 0.034 | 0.58 + 0.019 | 0.84 + 0.014 | 0.95 + 0.02 | 0.97 + 0.013
Precision (M) 0.25+0.012 | 0.324+0.033 | 0.52+0.031 | 0.41+0.014 | 0.59+0.018 | 0.66 +0.04 | 0.82 + 0.051
Recall (M) 0.26 +0.023 | 0.33 +0.061 | 0.55+0.022 | 0.40+0.03 | 0.54+0.014 | 0.7+ 0.03 0.85 + 0.067
F1 (M) 0.26 +0.026 | 0.334+0.042 | 0.53 £0.023 | 0.41+£0.029 | 0.574+0.02 | 0.684+0.02 | 0.83 + 0.026
Precision (BC) | 0.23 £0.044 | 0.26 +0.024 | 0.454+0.033 | 0.28 +0.031 | 0.50 £0.013 | 0.58 +£0.02 | 0.71 + 0.055
Recall (BC) 0.24 +0.053 | 0.21£0.02 | 0.47+0.014 | 0.26 +0.021 | 0.41 +0.023 | 0.57 =0.05 | 0.70 £+ 0.066
F1 (BC) 0.24 +0.041 | 0.234+0.024 | 0.46 £0.041 | 0.27 £0.031 | 0.45+0.031 | 0.57+0.03 | 0.70 £+ 0.053
Precision (Q) 0.32 +0.034 | 0.34 £ 0.044 | 0.58 + 0.045 | 0.48 + 0.024 | 0.60 4+ 0.024 | 0.81 = 0.04 | 0.85 + 0.056
Recall (Q) 0.25 £ 0.042 | 0.36 + 0.071 | 0.66 + 0.034 | 0.41 4+ 0.042 | 0.68 + 0.023 | 0.72 £+ 0.03 | 0.78 + 0.048
F1 (Q) 0.28 + 0.014 | 0.35 £ 0.013 | 0.62 + 0.043 | 0.45 4+ 0.032 | 0.64 + 0.024 | 0.77 £0.03 | 0.81 + 0.033

The results clearly demonstrate that the Transformer-based
MVTS classifier outperforms all other baselines across all per-
formance measures. When considering the overall evaluation,
ROCKET achieves the second-best performance, followed by
the LSTM model in third place. Notably, the Transformer-
based MVTS classifier achieves an accuracy of 20% which is
higher than the LSTM model.

Among the shallow ML models, TS-SUM performs better
than the FLT and LTV models. Overall, the exceptional
performances of TS-SUM, RNN, LSTM, ROCKET, and our
Transformer-based MVTS classifier emphasize the importance
of time series representations in understanding solar events.

D. Binary classification performance

In the context of data-driven flare prediction, binary classi-
fication plays a significant role in distinguishing major flaring
events from minor flaring events or flare quiet events. In
this experiment, we focus on classifying X and M class
MVTS instances as flaring events, while considering all other
instances (Q and BC) as non-flaring events. The figure depicts
the mean binary classification performances of all models over
five different train/test samples. Evaluation metrics such as
accuracy, precision, recall, and F1 scores are used for both
the flaring and non-flaring classes.

The results clearly demonstrate that the Transformer-based
MVTS model outperforms all other baseline models, and
achieves an average improvement of approximately 8%
compared to the second-best performing ROCKET algorithm
across all performance metrics. These findings highlight the
superior performance of our model in binary classification
and multi-class classification. This consistency reinforces the
efficacy and reliability of our Transformer-based model in
accurately predicting flaring events.

E. Classification varying training set size

To investigate the adaptability of our model to larger training
datasets, we conducted experiments by varying the size of
the training set. The training set size was adjusted from
10% to 90% of the total dataset size, while the remaining
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Fig. 2: Binary classification performance of all baselines.

instances were used for testing. Stratified train/test sampling
was performed, and the classification performance of the
classifiers was evaluated five times using distinct samples of
training and test sets.

In Figure 3, we present the mean accuracy values and
in Figure 4 we present the mean F1 (X class) values ob-
tained from five runs. Across all training set sizes, our
transformer-based MVTS classifier consistently outperformed
the other baselines. Notably, the transformer-based MVTS
model achieved a classification accuracy of 75% using only
20% of the training data, surpassing the performance of the
third-best performing LSTM model, which required 90% of
the training data to achieve a similar high level of performance.
We observed consistent improvement patterns in deep learning
and kernel-based methods, including our transformer-based
model, ROCKET, LSTM, and RNN.

This observation suggests that with sufficiently large
datasets, deep learning models have the potential to
outperform traditional classifiers or embedding methods by a
significant margin. These findings underscore the superiority
of Transformer models when working with large datasets.
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E t-SNE Embedding performance

Visualizing high-dimensional data in 2D or 3D space using
techniques like t-SNE is a well-established method for assess-
ing the effectiveness of learned representations. In order to
evaluate the quality of the learned MVTS representations, we
present a visualization of the t-SNE transformed MVTS rep-
resentations extracted from the final layer of the Transformer-
based model. All instances are projected onto a t-SNE-reduced
2D space (see Figure 6). We employed a stratified holdout
strategy for pre-training the model.

The resulting 2D projection clearly demonstrates distinct
clustering of the MVTS instances. The t-SNE scatter plot
provides meaningful insights, as it allows us to easily distin-
guish patterns among the four classes. Flare-quiet events (Q)
and minor flaring events (B and C) exhibit relatively similar
characteristics. On the other hand, X and M class flares show
significant dissimilarity from the other classes. Additionally,
we observe that certain flare-quiet events share similarities
with minor flaring events, while some minor flares display
characteristics similar to M-class flares. The characteristics
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Fig. 5: t-SNE embedding of Transformer-based generated
representations of all MVTS instances in the dataset

of X-class flares are distinct, with no observed similarity in
instances from other classes.

By visualizing the t-SNE transformed representations, we
gain valuable insights into the distinguishable patterns and
similarities among the different classes of MVTS instances.
This analysis allows for a deeper understanding of the learned
representations and sheds light on the distinct features and
characteristics of flaring events.

G. Ablation Study of the Transformer-base MVTS Classifica-
tion Mode

To gain a better understanding of the contributions and
effectiveness of the different layers in our model, we con-
ducted several experiments to evaluate the significance of
various aspects. Firstly, we assessed the importance of the
self-attention mechanism by removing it from the model
architecture and comparing the results. The removal of the
attention mechanism led to a noticeable drop in accuracy,
from 83% to 71%. This outcome highlights the significant
role played by the Multi-Head Attention layer in capturing
relevant patterns and relationships within the MVTS data.

Secondly, we examined the impact of layer normalization
by removing the layer normalization layers from the model.
This resulted in a decrease in accuracy from 83% to 77%. This
finding underscores the importance of layer normalization in
maintaining the model’s performance and stability.

Lastly, we investigated the effect of the 1D convolutional
layers. When these layers were removed from the model, there
was a significant drop in accuracy from 83% to 71%. This
result clearly demonstrates the crucial role played by the 1D
convolutional layers in capturing important temporal features
and contributing to the overall performance of the model.

Overall, the ablation study provided valuable insights
into the contributions of different layers in our model. The
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Fig. 6: Ablation Study: Revealing the Contributions of Model
Components in MVTS Classification of Solar Flares.

significant decrease in accuracy upon removing the attention
mechanism, layer normalization, and 1D convolutional layers
highlights their importance in capturing relevant patterns,
maintaining stability, and extracting essential temporal
features. These findings underscore the effectiveness and
significance of each layer in our model architecture.

V. CONCLUSION

In this work, we presented an end-to-end transformer-
based flare prediction model that leverages the self-attention
model for the classification of multivariate time series (MVTS)
instances. Our study presents a novel approach that utilizes the
strengths of the transformer model and self-attention mecha-
nism for MVTS classification. Through an end-to-end learning
process, the proposed model effectively captures the temporal
relationships within MVTS instances, including higher-order
inter-variable relationships and local and global temporal
changes. Through the integration of attention/transformer-
based techniques, our experiments on the solar flare prediction
dataset demonstrate the superior performance of our model
in multi-class MVTS classification, achieving an impressive
accuracy of 83%. The results demonstrate the potential of
our approach in providing more comprehensive and accurate
predictions in the field of solar physics and space weather
forecasting. This contribution holds promise for improving the
overall accuracy and reliability of space weather forecasting.
For future research, we plan to utilize LIME (Local Inter-
pretable Model-Agnostic Explanations) interpretability [21] to
understand the attention mechanisms in transformer models
for MVTS analysis. Additionally, we aim to integrate the
Graph Attention Network (GAT) [22] to construct functional
networks from MVTS instances, to allow the model to learn
both local and global sequences, and capture complex depen-
dencies.
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