Does fluid structure encode predictions of glassy dynamics?
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Data-driven approaches that infer the local structures responsible for plasticity in amorphous
materials have made substantial contributions to our understanding of the failure, flow, and rear-
rangement dynamics of supercooled fluids. Some of these methods, such as the “softness” approach,
have identified combinations of local structural features in a supercooled particle’s environment
that predict energy barriers associated with particle rearrangements. This approach also predicts
the onset temperature, often characterized as the temperature below which the system’s dynam-
ics becomes non-Arrhenius and above which local structures are no longer predictive of dynamical
activity. We implement a transfer-learning approach in which we first show that classifiers can be
trained to predict dynamical activity even far above the onset temperature. We then show that
applying these classifiers to data from the supercooled phase recovers the same essential physical
information about the relationship between local structures and energy barriers that softness does.

I. INTRODUCTION

At the microscopic scale glassy materials possess amor-
phous structures very similar to their dense fluid phase
[1], but their dynamical properties are radically different
[2]. Many different temperature scales have been iden-
tified in the transition from equilibrium fluid to out-of-
equilibrium amorphous solid; the first one encountered
upon cooling the system is the onset temperature, Ty,
which marks a transition to “landscape-influenced” dy-
namics [3-6]. Above this temperature the particle-level
dynamics are simple, diffusive, and do not depend on
local structure; below this temperature dynamics be-
come both spatially and temporally heterogeneous, de-
pend strongly on local structure, and (for fragile glass-
formers) begin slowing down super-exponentially [7-11].

The role of local microscopic structure on local dy-
namics is a deep question, and a major theme of re-
cent research has been a search for correlations between
them [12-17]. Data-driven approaches, using numerical
simulations to generate large data sets for the train-
ing of Support Vector Machines (SVMs) [18-20], Graph
Neural Networks [21], or other techniques [22, 23] have
shown substantial promise in finding maximally correla-
tive structures for the dynamics at different timescales in
strong glassformers [24], fragile glassformers [19, 21, 25],
and even anomalous glassformers modeled after biolog-
ical systems [26]. Notably, approaches based on SVMs
[19] have found physically interpretable classifiers. This
physical interpretation comes from training classifiers at
low temperatures and studying how they behave when
applied to data at other temperatures: by maximizing
correlations in the training data in a compressed way,
these classifiers are learning combinations of structural
features that can be interpreted as a local energy barrier
to particle rearrangements. However, relatively little is
known about why these approaches work, and whether
or how one could use these results to help build a more
robust theoretical description of glass-forming systems.
Key unresolved questions include why these particular

approaches lead to what is apparently a local order pa-
rameter for the supercooled liquids, and how the learned
energy barriers actually depend on the construction of
the classifiers.

In this work we bridge between the changing dynami-
cal behavior above and below the onset temperature on
the one hand and the physical interpretation of amor-
phous state classifiers on the other. We first demonstrate
that the same machine learning techniques that have suc-
cessfully correlated structure and dynamics in the super-
cooled phase can be used to classify “extreme diffusive”
events even far above the onset temperature. In the spirit
of a transfer learning approach, we show that these liquid-
state classifiers can statistically identify activated events
in the supercooled phase, even though the character of
the activated dynamics below 7 changes dramatically.
We further show that not only can accuracy on a classi-
fication task be maintained, but that the physical inter-
pretability is maintained: apparently fluid-phase classi-
fiers also learn energy barriers in the super-cooled phase.

II. METHODS

Model and Simulations

Our analysis is focused on a large set of molecular
dynamics simulations of N = 4096 particles, using the
standard 80:20 Kob-Andersen model [27] (with a cutoff
distance of 2.5) at a density of p = 1.2 in a cubic box
with periodic boundary conditions. Throughout we re-
port all quantities in dimensionless (reduced) units, us-
ing the standard Lennard-Jones (L.J) convention in which
the base units are distance (measured in units of the large
particle diameter, o44), energy (in units of the interac-
tion parameter, €44), and mass (in units of the particle
mass, m). For this model the dimensionless onset tem-
perature is often reported as Ty ~ 0.87 [7, 19]; given
the broad crossover in the dynamics, values between 0.8
and 1.2 are also reasonable estimates for this tempera-



ture scale [4, 11]. Our simulations were done in the NVT
ensemble for temperatures in the range T € [0.45,2.0] in
standard LJ units (i.e., ranging from the moderately su-
percooled to the supercritical fluid phase). We note that
our use of a deterministic Nose-Hoover thermostat [28]
should not unduly influence the results reported below:
in our classification task we do not include any informa-
tion about the fictitious degrees of freedom used by the
thermostat to maintain an average temperature, and we
expect that if anything our quantitative results would im-
prove upon conducting simulations in an NVE ensemble.

All simulations were conducted using HOOMD-Blue
[29], and in the following we focus on the behavior of
the large particles. Our simulation configurations were
generated as follows. We first equilibrated a system with
random initial conditions 50007 at a temperature of T' =
0.45. We used the final configuration of this as an initial
seed for out other simulations: a snapshot was loaded as
the initial configuration for our other simulations, each of
which was allowed to equilibrate for 10007 at its target
temperature. After this, data used in this study was saved
at intervals of 17.

We begin by characterizing the local structural envi-
ronment of particles in these simulations, using two-point
radial structure functions Gx (i;r,4d) [30]. For a target
particle 7, these functions are defined as
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where X denotes which of the components of the binary
mixture is being considered, r is a parameter control-
ling the distance from which dominant contributions to
the feature come, § is a parameter controlling the width
of the Gaussian shells, and R;; is the distance between
particles ¢ and j. We characterize the local environment
of particle ¢ with a vector in a 100-dimensional feature
space, ﬁi, with 6 = 0.2, 0 < r < 5 in increments of 0.1,
and X = A, B. Each feature is standardized [31] so that
at the training temperature they have zero mean and unit
variance.

We next choose a measure for the dynamics of parti-
cles; to be consistent with work on activated dynamics
We Use Ppop as introduced in Ref. [32]. We use an obser-
vational time window of 10 LJ time units, for which

Prop(i,t) = VATi(1) = (Fidwa) 2w (Fit) = (Fi)wn)?)wns

where wy = [t — 5,t], wa = [t,t + 5], and thus (- ),
averages over one half of the observation window. We do
not believe that using prop as a dynamical label is cru-
cial — preliminary results indicate that choosing instead
to measure particle dynamics using their cumulative dis-
placement over the same time window leads to qualita-
tively identical results — and we note that length of time
window is optimized for detecting activated events in the
supercooled regime.

Machine learning protocol

We train SVMs connecting structural features with
dynamic observables largely following the “softness”
methodology [19]. We build a training set by combing
through MD trajectories for examples of dynamically
active (“rearranging”) and inactive (“non-rearranging”)
particles, and train a linear soft margin SVM (using the
Scikit-learn package [33]) to classify these examples. We
can then use the learned classifier (here: a hyperplane
in feature space) to try to predict dynamics based on a
particle’s instantaneous environment, and we define the
softness of particle ¢ at time ¢, S;(t), as the shortest dis-
tance between its vector of structural features and this
classifying hyperplane.

The training set construction for our “softness” clas-
sifier closely followed the protocol outlined in Ref. [19].
We constructed a balanced 7600-sample training set us-
ing the coldest temperature considered (7' = 0.45): 3800
rearranging samples and 3800 non-rearranging samples.
We adopted the previously-used convention of associat-
ing the structural data of a particle ¢ at time ¢t — 27 with
the dynamical state at time ¢. We defined a rearrang-
ing particle if, at time ¢, ppop(?,t) > p. where p. = 0.2.
We defined a non-rearranging particle by requiring its
Phop(i,t) value to remain less than a lower threshold of
p; = 0.0085 for at least 1207 duration of time. We then
used the local structure of the non-rearranging particle in
the middle of its time of low activity. Unlike in previous
work, we take structure and pp.p values directly from the
thermal configurations rather than quenching to the in-
herent states (in part because the fluid-phase simulations
would be far from any minima). Unless otherwise stated,
we used a soft-margin misclassification hyperparameter
of C =1072.

A major finding of Ref. [19] was that this signed dis-
tance — softness — encodes the probability the target par-
ticle would rearrange at a given temperature. The cor-
responding curves for the probability of rearranging at
different values of S as a function of T" all intersected at
a common temperature, which in turn suggested the exis-
tence of an onset temperature above which structure was
no longer predictive of dynamical events. The predicted
value of Ty was consistent with alternative definitions
[4, 7, 19] and with the numerical values cited above. Be-
fore we return to this finding, we first ask: Can we learn
to classify dynamical events based on structure not in
the supercooled regime but at and even above the onset
temperature?

For T > Ty individual particle motion is diffusive
rather than activated, and it is not clear that using ppop
as a dynamical label is the most natural choice. We con-
tinue to use it as an indicator function — it is still large
for dynamical trajectories that move a particle far from
its initial position and small for diffusive motions that



stay near a particle’s initial position — and will show in
a later work that this choice is not crucial to our results.
To identify “extreme events” to classify, we select parti-
cles in high and low tails of the probability density func-
tion of ppep at different temperatures. To have similarly
sized training sets as in the case of softness, we choose
lower and upper cutoffs (p; and p,) that captured the
most extreme 0.033% of low- and high-activity events,
respectively. We identify particle 7 at a given time ¢ as
“extremely diffusive” if prop(4,t) > pu, and associate it
with the particle’s local structure at time t—27. Similarly,
if prop(i,t) < pi, the particle is identified as “extremely
non-diffusive,” and its structure at time ¢t — 27 is included
in the training set. The training set for each temperature
we considered above Ty contained 10400 balanced sam-
ples.

Aside from this difference in choosing “rearranging”
and “non-rearranging” labels, we follow the methodol-
ogy above: we find a linear soft margin SVM that best
classifies a labeled training set, and then apply this clas-
sifier to new data. To distinguish it from softness we call
the distance of a point in feature space to such a clas-
sifying hyperplane the “fluidity,” and we use we Fi to
denote the fluidity of particle ¢ with respect to a classi-
fier trained from data at temperature 7. Given any of
our classifiers, one can compute a particle’s softness or
fluidity by computing its feature vector (which depends
only on the instantaneous structure around the particle)
and evaluating «;(t) = W, - F;(t) — by, where W, is the
normal vector and b, the bias defining a classifying hy-
perplane, and where « refers to either softness .S or a flu-
idity F7. We note that the term “fluidity” has previously
been used to describe an average rate of plastic events in
models of soft glassy rheology [34]; while our definition
is different, we will see that highly “fluid” particles have
more active dynamics at high temperatures and, indeed,
are more likely to undergo plastic rearrangement events
at low temperatures.

ITII. CLASSIFICATION IN THE FLUID PHASE

We find that we can learn to classify extreme diffu-
sive events even far above the onset temperature using
local structure. Hyperplanes are characterized by a nor-
mal vector and a bias; the direction of the normal cor-
responds to the linear combination of features that has
been learned, and the bias is an offset that bests sep-
arates the training set given that direction. We expect
the direction to encode the key physical features govern-
ing rearrangements, whereas we expect the bias may be
strongly dependent on details such as the choice of time
window or the temperature of the training set. For in-
stance: with our fixed-threshold definition of a rearrange-
ment the total number of rearranging particles increases
as T increases, so even if the same underlying structural
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FIG. 1. Fluidity classifies rare events at high and low
temperatures The points show the 5-fold cross-validation
accuracy of linear SVMs trained on extreme diffusive samples
at T'=1.0,1.2,1.4,1.8,2.0 (dark blue to light red) as a func-
tion of the classifier’s bias. Each classifier achieves near-peak
accuracy for small values of the bias. In contrast, the inset
show the test classification accuracy of the “softness” clas-
sifier trained on activated dynamics at T=0.45 and applied
to the extremes of diffusive events different temperatures, for
which very different values of the bias optimize performance.

variable controls rearrangements the optimal bias of the
hyperplane will shift to maximize the soft margin in the
training set data. Because of this, we want to remove the
influence of the bias on our later results. In Fig. 1 we
show the training accuracy of fluidity as a function of
the bias, and during our transfer learning approach later
we will select values that maximize our classification ac-
curacy not on the training but on a low-temperature test
set.

We believe it is noteworthy that at such high tem-
peratures, any structural features predictive of dynamics
can be found. We find that even a softness classifier —
i.e., a classifier trained on activated dynamics — has some
ability to classify diffusive events in the fluid phase: as
shown in the inset, the accuracy on the high-T training
sets is almost as good as the classifiers trained at those
temperatures. The optimal bias that needs to be cho-
sen is quite different, but the direction in feature space
learned is quite similar. This finding encourages us to
more explicitly frame a transfer learning task from the
high-temperature to the low-temperature regime. Con-
cretely, we apply the fluid-phase classifiers — trained at
temperatures ranging from 7' =1 to T' = 2 — to labeled
data from 7' = 0.47. As shown in Fig. 2, even though we
have trained on data well above T we find that our classi-
fiers maintain substantial classification accuracy. Again,
the optimal bias varies strongly with training and test-
ing temperature, but the direction in feature space is ex-
tremely highly correlated.

To highlight how surprising this is, in the inset we
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FIG. 2. A transfer learning approach connects ex-
treme diffusive events above Ty, with activated dy-
namics below 7j. The main figure shows the test accu-
racy of linear SVMs, trained on extreme diffusive samples at
T =1.0,1.2,1.4,1.8,2.0 (dark blue to light red), as applied to
a test set of activated dynamics at T' = 0.47 as a function of
the classifier’s bias relative to the optimal bias for that choice
of temperature. The inset show the self part of the Van-Hove
correlation function for large particles at a time scale of 10
LJ time units. (Black dots are for T=0.45.)

show the self part of the van Hove function character-
izing single-particle displacements, choosing as a time
scale the same window we used for ppp. At high tempera-
tures this distribution is essentially Gaussian and involves
a substantial numbers of particles moving many times
their own size; at low temperatures this distribution is
non-trivial and has an exponential tail corresponding to
hopping motions whose size is less than a single particle
diameter.

IV. INTERPRETABILITY OF FLUIDITY AND
SOFTNESS

Using T > Ty classifiers we are able to obtain reason-
able accuracy on training sets (which are by definition
constructed from atypical particles at the various train-
ing temperatures), but remarkably we find that fluidity
has the same kind of physical interpretability as soft-
ness. We define a rearrangement as a particle having an
instantaneous value of ppnop, > pc, and fit the probabil-
ity of rearranging, Pg, to a Kramers form [35]: Pr =
Zexp (S(FT)) exp (—AE(FT)/T). Just as for softness,
we show in Fig. 3 that fluidity partitions the overall sys-
tem dynamics into a collection of barrier-hopping pro-
cesses characterized by an energy barrier scale (AFE) and
an entropic contribution (X). We also find that our pre-
diction of the onset temperature itself — whether from
the intersection of the Kramers form fits or more qualita-
tively from where the data collapses — is the same across
our softness and fluidity classifiers, suggesting that a con-
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FIG. 3. The probability of rearrangement conditioned
on fluidity reveals energy barriers below the onset
temperature. (a) The log probability of rearrangement con-
ditioned on F%° vs inverse temperature. Point colors corre-
spond to different bins of fluidity, as indicated in the legend.
Part (b) shows the same features for rearrangements condi-
tioned on S. In all cases, dotted lines are Kramers-form fits.

sistent physical interpretation is being learned.

The identification of a scalar value — fluidity — that en-
codes the energy barrier characterizing an activated pro-
cess by training a classifier on diffusive events is striking.
Given the cross-over nature of the onset temperature,
perhaps this qualitative result could have been expected
for training temperatures close to Ty, but it holds even
when training far above T}, as shown in Fig. 3a. How do
the energy barriers learned by these classifiers compare
to the energy barriers learned by classifiers trained on
supercoooled data, i.e., to those from softness? A direct
answer to this question is complicated by two aspects of
the training and testing procedure.

The first is that there is no reason to think that the hy-
perplane bias should be held constant when moving from
one task to another. This is implicit in the relatively large
shifts in bias needed in the inset of Fig. 1 and in the test
accuracy for sub-optimal choices of bias in Fig. 2. The
second issue relates to the fact that we study systems



across such a wide temperature range that the distri-
bution of the structural features changes substantially (a
similar issue arose in the context of applying classifiers to
systems at different densities [36]). To account for these,
we compare the physical interpretations of the different
classifiers by defining x, = (u’)’a F— bgf“) /0«. That
is, we adjust the bias to the optimal value when the clas-
sifier is applied to a common (7" = 0.47) training set,
and rescale the feature vector by the standard deviation
of the distribution of fluidity (or softness) at the training
temperature. With this choice, in Fig. 4 we show that the
learned aspects of the landscape associated with particle
structure — including both the energy barrier and en-
tropic contribution — are almost identical. We note that
fitting the data only in the regime unambiguously below
the onset temperature — i.e., the points for which T' < 0.8
— does not qualitatively change these results. We specu-
late that there may be some correlation between training
at higher temperatures and a hint of a slight curvature in
the data, but do not yet have sufficient data to confirm
this.
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FIG. 4. Collapse of inferred landscape features from
different training temperatures. The energy barrier as a
function of distance to optimized classifier, AE vs. z,, as
inferred from Kramers fits to Pr(S) shows little variation
across a wide range of classifier training temperatures. The
inset showing the entropic contribution similarly collapses in
this representation.

Given these results, Table I reports several values that
contribute to the formation of the results: the bias (i.e.,
the bias that achieves the highest accuracy during train-
ing), standard deviation of fluidity and softness, and the
optimal choice of bias when the classifier is applied to a
test set at T = 0.47. We also report, as a simple mea-
sure of the similarity of the classifiers, the dot product
between the normal vector describing each classifier and
that of the softness classifier.

T b or | bt |g - a
0.45| 0.0096 |{1.1188|0.55710| 1.0000
1.0 |-0.0056|0.7653|-0.2385 | 0.8246
1.2 [-0.0171|0.7028|-0.4644 | 0.8071
1.4 -0.0099|0.6760|-0.4644 | 0.6643
1.8 |-0.0262|0.6286|-0.5774 | 0.7104
2.0 |-0.0341[0.6286|-0.6151| 0.7198

TABLE 1. Table of the optimal bias, b, of the hyper-
plane during training; the standard deviation of fluid-
ity (or softness for T=0.45) at the training tempera-
tures; and the optimal bias, b°***, that maximizes test
accuracy at T=0.47. The final column displays the
projection of our classifiers onto the softness classi-
fier.

V. DISCUSSION

Taken together, our work establishes a surprising con-
nection between the structural features that control ac-
tivated events at low temperatures and those apparently
responsible for the tails of the distribution of diffusive
events above the onset temperature. Although many ap-
proaches have considered the link between local struc-
tural arrangements and dynamical arrest in the super-
cooled regime [37], much of this knowledge is set aside
when studying the liquid phase. Our finding that struc-
ture is relevant even above the temperature of liquid-gas
critical point (roughly 7" = 1.2 in this model [38]) sug-
gests that further pursuing this avenue of research may
prove fruitful. The connections between structure and dy-
namics across temperatures that we find may be a con-
sequence of the only modestly growing structural length
scales over the temperature range studied, but we again
emphasize that the qualitative character of the dynamics
changes significantly over these same temperatures.

A natural hypothesis might be that our classification
accuracy stems from an ability to identify fluid phase
particles that do not diffuse very much: perhaps we are
identifying rare particles that consistently sample a sim-
ilar, high-barrier part of the energy landscape, and are
not truly distinguishing both immobile and highly-mobile
particles? We show in the Appendix that this hypothe-
sis fails, and that using both tails of the diffusive-motion
distribution is crucial to our results. We comment that
our main finding — that one can take a classifier built on
fluid-phase data without barrier-hopping dynamics, ap-
ply it to data in a dynamically heterogeneous phase, and
infer the existence of energy barriers there — is reminis-
cent of the results reported in Ref. [26]. That work con-
sidered a biologically-inspired model with highly unusual
glassy dynamics [39-41] meant to mimic the behavior of
dense cellular materials. There it was speculated that it
was the anomalous, sub-Arrhenius behavior of the model
that was responsible for the success of the transfer learn-



ing task; the results presented here suggest an alternative
explanation may be needed.

Our work highlights what we believe continue to be
crucial unanswered questions: why do these machine
learning methodologies learn simple structural order pa-
rameters that correspond to local energy barriers in dis-
ordered phases of matter? What aspects of the train-
ing lead to this result? And to what extent can we use
this result to uncover new, relevant descriptions for the
physics of amorphous solids? We note that there is some
indication that the specific methodology used here and
earlier — linear SVMs — may not be crucial to recover
this physical interpretation; Ref. [23] hinted at a simi-
lar result using a GNN-inspired linear-regression-based
model. We believe it will be crucial to compare differ-
ent machine learning techniques as applied to predicting
glassy dynamics [21, 42] not only along dimensions of pre-
dictive capacity, generalizability, efficiency, and training
cost, but also in terms of their physical interpretability.
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2143815. We thank Ilya Nemenman, Sean Ridout, Ara-
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APPENDIX
Fluidity Distribution

Similar to the distribution of softness shown in
Ref. [19], the distributions of fluidity, when measured at
different test temperatures, remains approximately Gaus-
sian. This is shown in Fig. 5 for two training temperatures
(T'=1.2 and T = 2.0). The mean of the distribution be-
haves monotonically as the test temperature changes.
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FIG. 5. The distribution of fluidity at different test
temperatures for two considered training tempera-
tures. Training at both 7' = 1.2 (a) and 7" = 2.0 (b) the
distribution of fluidity is approximately Gaussian. The mean
is a monotonic function of the test temperature.
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FIG. 6. Classification accuracy above the onset tem-
perature as a function of misclassification penalty (C)
using different thresholds for defining extreme events.
Three different choices for the fraction of the distribution of
events to use in the training set give broadly consistent ac-
curacies on the test set, with no systematic changes in the
optimal hyperparameter.

Determination of rearrangement threshold for
fluidity

The dependence of softness on various choices for train-
ing set thresholds was explored in Ref. [19], and our
choices were consistent with widely employed values. In
the case of fluidity, as noted above, we selected threshold
values to have comparably sized training sets given the
length of our simulations (i.e., to generate of order 10*
elements of a balanced training set). We first emphasize
that the qualitative outcome of our analysis is not cru-
cially dependent on the choice of threshold. In Fig. 6 and
7 we show (at a fixed representative temperature above
the onset temperature, 7' = 1.2) that our classification
accuracy on the test set is only weakly dependent on the
precise choice of p; and p,,: sensibly, more extreme events
are slightly easier to classify, but we are far enough into
the tail of rare events that the effect is a small one.

We note, however, that our ability to classify and to
successfully transfer learn is dependent on the selection
of appropriate structural examples that correspond to
both extreme ends of the pp,, distribution. As discussed
in the main text, one natural hypothesis is that local
structures corresponding to the lower tail of events cap-
ture sufficiently deep minima that influence even particles
in the fluid phase, and that our ability to classify stems
entirely from these rare, relatively immobile particles. To
test this, we construct a classifier using local structures
from the lower tail of the pp,p, distribution as our non-
rearranging particles and construct the other class from
randomly selected particles with ppep > p;. We train such
a classifier at T' = 1.2 and evaluate it on the test set of
T = 047 (as in Fig. 2 of the main text). We show in
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FIG. 7. Classification accuracy above the onset tem-
perature as a function of bias at fixed training hyper-
parameter. Using a fixed misclassification hyperparameter
of C = 1072, we again see that the accuracy is only weakly
dependent on the chosen event thresholds.

Fig. 8 that the accuracy of this “immobile vs. randomly
selected” classifier is substantially lower than the accu-
racy of the “immobile vs highly mobile” fluidity classifier.
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FIG. 8. Test accuracy against bias of a “low mobility
vs random particle” classifier. The plot shows that the
test accuracy of the classifier (blue, lower points) is lower
than the classifier built using both extreme ends of the prop
distribution (orange, upper points).

Probability of rearrangements as a function of z,

In this section, we show data for the probability of re-
arrangement as a function of z,, against 1/T for different
training temperatures — this data leads directly to the
results reported in Fig. 4 of the main text. The proba-
bility of rearrangement conditioned on z,, is the fraction
of local structure with value x,, that has a corresponding
DPhop Value greater than p., where p. is the rearrange-



ment cutoff used at low T. Figure 9 — mirroring Fig. 3 —
shows the probability of rearrangement as a function of
1/T for the softness and the fluidity classifiers. In Fig. 4,
we reported the inferred energy barriers and “entropic

barriers” associated with each of these fits.
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FIG. 9. The probability of rearrangement conditioned
on z, against 1/T. Dotted lines are fits to the Kramers
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