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Solving the nuclear pairing model with neural network quantum states
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We present a variational Monte Carlo method that solves the nuclear many-body problem in the occupation
number formalism exploiting an artificial neural network representation of the ground-state wave function.
A memory-efficient version of the stochastic reconfiguration algorithm is developed to train the network by
minimizing the expectation value of the Hamiltonian. We benchmark this approach against widely used nuclear
many-body methods by solving a model used to describe pairing in nuclei for different types of interaction
and different values of the interaction strength. Despite its polynomial computational cost, our method out-
performs coupled-cluster and provides energies that are in excellent agreement with the numerically exact full
configuration-interaction values.
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I. INTRODUCTION

The nuclear many-body problem entails nontrivial chal-
lenges, primarily due to the nonperturbative nature and the
strong spin-isospin dependence of realistic nuclear forces.
Solving it has been the springboard for the development of
sophisticated numerical methods that are designed to cap-
italize on each generation of high-performance computing
resources [1–4]. Among them, continuum quantum Monte
Carlo approaches have proven extremely accurate in model-
ing nuclear dynamics at short and long range, but are either
limited to relatively small systems or to somewhat simplified
nuclear potentials [5]. On the other hand, although methods
based on single-particle basis expansions can treat nuclei up
to 208Pb—including their binding energies, radii, and elec-
troweak transitions—in terms of the individual interactions
among their constituents [6–8], they are not ideally suited to
model the high-momentum components of the nuclear wave
function. Therefore, a comprehensive description of short-
and long-range nuclear dynamics for medium-mass and heavy
nuclei has not been achieved using available nuclear many-
body methods.

Since their pioneering application to interacting spin mod-
els [9], neural network quantum states (NQSs) have seen
widespread and successful applications to quantum chemistry
[10–12] and condensed-matter [13,14] problems. When solv-
ing many-particle systems of fermions, NQSs must respect the
Pauli exclusion principle; in the first quantization formalism,
this constraint is imposed by using representations that are an-
tisymmetric by construction, such as the Slater-Jastrow [15],
the generalized backflow [11,12], and the hidden-fermion [16]
Ansätze. On the other hand, within the second quantization
formalism, the Pauli principle is automatically taken care of,

thereby allowing one to use simpler NQS architectures, in-
cluding restricted Boltzmann machines [10,17].

Within low-energy nuclear physics, from their initial appli-
cations to solving the deuteron in momentum space [18,19],
NQSs have been subsequently combined with variational
Monte Carlo (VMC) techniques to approximately solve A ! 4
[20] and A ! 6 nuclei [21]. Most recently, the hidden-nucleon
architecture has been proposed to overcome the limitations of
the Slater-Jastrow Ansatz and successfully applied to nuclei
up to 16O [22]. Nuclear physics applications of NQSs have so
far been limited to the first-quantization formalism. However,
the possibility of using nondiverging effective nuclear forces
at short distances makes NQSs in the occupation-number
formalism ideally suited to tackle the nuclear many-body
problem.

In this work, we put forward a novel VMC method suitable
for solving the nuclear many-body problem using NQS to
compactly represent the ground state of the system in the
occupation-number formalism. As a first application, we con-
sider different versions of the nuclear pairing model, which
is one of the most important ingredients of the effective nu-
clear interaction, as recognized in the early work of Bohr,
Mottelson, and Pines [23]. Pairing plays an important role
in the calculations of a number of properties that depend on
the low-energy microscopic structure of the nucleus, including
their ground-state energies, low-lying excitations, level densi-
ties, odd-even staggering effects, single-particle occupancies,
and electromagnetic transition rates. Pairing is also relevant
in our understanding of nuclear reactions and particle decays
[24,25].

Solving the pairing Hamiltonian, even in the simple case of
constant pairing strength, involves nontrivial difficulties. Ex-
act diagonalization techniques [26–29] and particle-number
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conserved-seniority approaches [30,31] suffer from growing
exponential complexity and are therefore very hard to use
for large systems. However, different families of integrable
pairing models were recognized after the pioneering work of
Richardson [32,33] and are now known as Richardson-Gaudin
models [34]. As an example of their physical relevance, the
authors of Ref. [35] found that a separable pairing interaction
and nondegenerate single-particle energies with two free pa-
rameters provides an excellent approximation to the Gogny
pairing. It has to be noted that the energies of the Richardson-
Gaudin models are found by solving a set of coupled nonlinear
equations, which by itself is a complicated problem [36] and
it is still an area of active research. In this regard, the number-
projected BCS approximation has proven to provide accurate
results for superconducting properties of ultrasmall Al grains
[37,38].

In this work, we compare the VMC-NQS method
with many-body perturbation theory, coupled-cluster
calculations—both widely used in ab initio studies of nuclear
systems—exact-diagonalization techniques, and iterative
solutions of the Richardson-Gaudin equations. We consider
different values of the interaction strength, and both constant
and separable couplings.

This work is organized as follows: In Sec. II we discuss the
different versions of the pairing model employed in this work
and their exact solutions. In Sec. III we introduce the VMC
method based on NQSs. Section IV is dedicated to coupled-
cluster theory, with particular emphasis to pair coupled cluster
doubles theory. Section V describes a many-body perturba-
tion theory approach. In Sec. VI we present our results and
concluding remarks are given in Sec. VII.

II. NUCLEAR PAIRING MODEL

A. The model

In 1963, Richardson proposed a model consisting of
fermions occupying nondegenerate energy levels which in-
teract solely through the pairing force [32,33]. This pairing
model consists of P nondegenerate energy levels, occupied
by M pairs of fermions of opposite spin (see Fig. 1). Its
Hamiltonian is given by

H =
∑

pσ

dpa†
pσ apσ −

∑

pq

gpqa†
p+a†

p−aq−aq+, (1)

where the indices p and q sum over the set {1, . . . , P}, rep-
resenting the different energy levels, while σ runs over the
set {+,−}, corresponding to the spin of each fermion. The
coefficients dp denote the single-particle energies, which for
our our analysis we set to grow linearly as dp = p. The coeffi-
cients gpq are the so-called pairing strengths, representing the
energy associated with moving a pair of fermions from the qth
to the pth energy level.

The pairing Hamiltonian can be rewritten in terms of so-
called pairing operators as

H =
P∑

p=1

dpNp −
P∑

p,q=1

gpqA†
pAq. (2)

Here, Np is the pair number operator, which counts the number
of fermions occupying the pth energy level. Furthermore, A†

p

FIG. 1. Example of model space with P = 4 and M = 2. Shown
are four energy levels with single-particle energies d1, d2, d3, d4,
of which the bottom two are initially filled by pairs. The dashed
line represents the Fermi level which divides the energy levels with
energies d1 and d2 (the hole states) from those with energies d3 and
d4 (the particle states).

and Ap are the pair fermionic creation and annihilation opera-
tors respectively, which create and annihilate pairs of fermions
on the pth energy level. These operators are defined in terms
of fermionic creation and annihilation operators as follows:

Np =
∑

σ

a†
pσ apσ ,

A†
p = a†

p+a†
p−, (3)

Ap = ap−ap+,

where σ , again, sums over the set {+,−}. The purpose of this
rewriting becomes clear when one notices that these operators
satisfy the SU(2) algebra described by the following commu-
tation relations:

[Ap, A†
q] = δpq(1 − Np),

[Np, A†
q] = 2δpqA†

p, (4)

[Np, Aq] = −2δpqAp.

B. Pairings and exact solutions

When Richardson originally introduced the pairing model,
he accompanied it with an exact solution for the case of
constant pairing strengths, gpq = g for all p and q,

H =
P∑

p=1

dpNp − g
P∑

p,q=1

A†
pAq. (5)

The Ansatz that solves the model with M pairs is

|#〉 =
M∏

α=1

B†
α|0〉, (6)

where

B†
α =

P∑

κ=1

1
2dκ − Eα

A†
κ . (7)
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When plugged into the Schrödinger equation, this solution
leads to the so-called Richardson equations [32,33]

1 −
P∑

κ=1

g
2dκ − Eα

−
M∑

β=1,β #=α

2g
Eα − Eβ

= 0. (8)

This is a set of coupled, nonlinear equations which one solves
for the terms Eα and the ground-state energy of the Hamilto-
nian is found as E =

∑M
α=1 Eα . Unfortunately, the algebraic

solution of the Richardson equations becomes numerically
unstable at certain critical values of the interaction strength,
and dedicated stable algorithms have been developed to this
aim [36,39].

In addition to the constant-pairing Hamiltonian above, in
this work we also consider the exactly solvable Hamiltonian
with separable pairing interaction and nondegenerate single-
particle energies

H =
P∑

p=1

dpNp − 2g
P∑

p,q=1

√
(α − dp)(α − dq)A†

pAq, (9)

where g is the pairing strength and α the interaction cut-
off. The above Hamiltonian belongs to the hyperbolic family
of Richardson-Gaudin models, whose exact solution can be
obtained by again solving a set of coupled nonlinear equa-
tions similar to Eq. (8). Despite its simplicity, this model is
capable of reproducing properties of heavy nuclei as described
by a more realistic Gogny interaction [35].

III. VARIATIONAL MONTE CARLO WITH NEURAL
QUANTUM STATES

Variational Monte Carlo (VMC) algorithms solve the
many-body Schrödinger equation of a given Hamiltonian H
by approximating the true ground state of the system with a
variational state |ψV 〉, defined in terms of a set of variational
parameters θ. Their optimal values are found by minimizing
the variational energy

EV (θ) ≡
〈ψV |H |ψV 〉
〈ψV |ψV 〉

, (10)

since the Rayleigh-Ritz variational principle ensures that the
true ground-state energy E0 ! EV (θ). Therefore, a minimal
EV (θ) corresponds to the best possible approximation to the
true ground-state wave function given the Ansatz |ψV 〉.

In this work, we expand the variational wave function
in the occupation-number basis, where each state |N〉 =
|n1, n2, . . . , nP〉 is characterized by a set of occupation num-
bers np = 0, 1 representing the number of pairs occupying
each energy level p = 1, . . . , P. By inserting a complete-
ness relation over the occupation states, 1 =

∑
N |N〉〈N |, in

Eq. (10), one obtains

EV (θ) =
∑

N

|〈ψV |N〉|2

〈ψV |ψV 〉
EL(N ), (11)

where we define the local energy as

EL(N ) =
〈N |H |ψV 〉
〈N |ψV 〉

. (12)

The sum entering Eq. (11) quickly becomes intractable by
means of exact-quadrature methods due to the high dimen-
sionality of the Hilbert space, and it is typically evaluated by
means of Monte Carlo methods. Indeed, Eq. (11) has already
the form of an expectation value of the local energy over the
normalized probability distribution

P(N ) = |〈ψV |N〉|2

〈ψV |ψV 〉
. (13)

Therefore, according to the central limit theorem, EV (θ) can
be estimated by the average of the local energy EL(N ) cal-
culated for a set of configurations N sampled according to
the probability P(N ). This latter task can be accomplished
by employing the Metropolis-Hastings algorithm [40,41]. In
order for the exclusion principle to be satisfied and the total
number of pairs

∑
p np to be conserved, in the random walk,

the proposed state |N ′〉 is obtained by swapping two random
occupation numbers in the array of zeros and ones defining a
given |N〉. Note that this procedure is not limited to the Hamil-
tonian operator, but it can be used to estimate the ground-state
expectation value of any quantum-mechanical operator.

When evaluating EL(N ), the one-body term of the Hamil-
tonian and the diagonal part of the pairing interaction can be
computed as

〈N |
∑

p

(dpNp − gppA†
pAp)|ψV 〉

=
∑

p

(2dp − gpp)np〈N |ψV 〉. (14)

To compute the nondiagonal terms, we insert a completeness
relation:

〈N |
∑

p#=q

gpqA†
pAq|ψV 〉

=
∑

N ′

〈N |
∑

p#=q

gpqA†
pAq|N ′〉〈N ′|ψV 〉. (15)

In this expression, for a given a state |N〉, only the indices p,
q such that np = 1 and nq = 0 contribute to the inner sum.
Furthermore, for fixed p, q, only the |N ′〉 having n′

p = 0,
n′

q = 1 and n′
r = nr for r #= p, q yields a nonzero matrix el-

ement. Thus, these terms can be calculated using two nested
loops, one with index p running over the nonzero occupation
numbers of |N〉 and the other with index q over the null ones,
and multiplying gpq by the variational wave function evaluated
for a state |N ′〉 with the same occupation numbers as |N〉 but
n′

p = 0, n′
q = 1.

A. Neural network quantum states

Inspired by the recently introduced NQS Ansätze [21,22],
we parametrize the variational wave function as

ψV (N ) ≡ 〈N |ψV 〉 = eU (N ) tanh [V (N )], (16)

where U (N ) and V (N ) are fully connected neural networks
(FCNNs). In contrast with previous applications in the field
based on complex variational states, our Ansatz is real-valued;
the function U (N ) determines the magnitude of ψV (N ), while
tanh[V (N )] is a smooth version of its sign.
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A chief advantage of using the occupation number basis is
that the states |N〉 inherently encode the exchange symmetry
required for a wave function describing a system of fermions,
thus the FCNNs can simply take as inputs the string of oc-
cupation numbers np = 0, 1 defining each state. We typically
use between two to three hidden layers and tanh activation
functions, since these choices proved to be stable and yield the
most accurate results. As we typically use hidden layers of ≈P
neurons, evaluating the wave function exhibits a polynomial
scaling in the number of energy levels [O(P2)], independent
of the number of pairs. With a complexity for the calculation
of the local energy at worst quadratic in the number of energy
levels, this gives the whole algorithm a complexity in the
number of energy levels of O(P4).

B. Training algorithm

Generally, in the context of artificial neural networks, a
loss function L measures the performance of the model, and
training a network, i.e., optimizing its parameters θ, corre-
sponds to numerically minimizing L(θ). This procedure is
analogous to what is typically done in VMC, in this case the
loss function being the variational energy defined in Eq. (10).
Therefore, training the neural network quantum state Ansatz
of Eq. (16) consists in minimizing the variational energy with
respect to the parameters entering the Ansatz. A significant
improvement in the execution time and in the stability of the
optimization can be achieved by using the so-called stochastic
reconfiguration (SR) algorithm [42], which is closely related
to the natural gradient descent method [43,44]. Within the SR
algorithm, the variational parameters θ are updated as

θ → θ + δθ, Sδθ = −δτG, (17)

where δτ is the learning rate, S is the overlap matrix, and G
is the gradient of the variational energy with respect to the
variational parameters.

The matrix elements of S and G are calculated as the
following covariances:

Smn = 〈O†
mOn〉 − 〈O†

m〉〈On〉, (18)

Gn = 2〈O†
nH〉 − 2〈O†

n〉〈H〉, (19)

where On|ψV 〉 = ∂|ψV 〉/∂θn is the derivative operator with
respect to the variational parameter θn. An optimization us-
ing this update is essentially equivalent to performing an
imaginary-time evolution of the variational wave function
with time step δτ [42,45] in the manifold spanned by the
wave function and its derivatives. Since the overlap matrix
is positive definite, the linear system of Eq. (17) could be
solved using, e.g., the Cholesky decomposition. However, this
requires storing the entire matrix S and, since the number of
variational parameters is of order P2, its size scales as P4,
which quickly becomes prohibitively large as P increases. For
this reason, we solve the linear system using the conjugate
gradient algorithm, which only requires the definition of a
function that calculates the matrix-vector product Sv for an
arbitrary vector v. The expectation values in Eqs. (18) and (19)
can once again be expressed as averages over configurations
sampled according to the probability P(N ) of Eq. (13); the

FIG. 2. Convergence of the SR-RMSProp training algorithm
for a system of P = 10 energy levels occupied by M = 5
pairs of fermions. The correlation energy obtained from exact-
diagonalization is displayed by the solid blue line.

product Sv given an arbitrary v is then rewritten in order to
make its evaluation time and memory efficient [46].

Following Ref. [22], to further improve the stability of
the convergence, we regularize the SR equations by adding
a small RMSProp-inspired diagonal shift as

v → βv + (1 − β )G2,
[

S + ε diag
(√

v

(1 − βk )
+ 10−8

)]
δθ = −δτG. (20)

In the above equation, ε is the strength of the diagonal shift,
whose typical values range from ε = 0.0001 to ε = 0.001 for
different Hamiltonians. As with the exponential decay rates
for the second moment estimates of the RMSprop algorithm
[47], we take β = 0.99. Finally, the factor (1 − βk ) corrects
the bias in the second-moment estimates as in Adam [48], with
k being the current optimization step number.

To illustrate the performance of the SR-RMSProp training
algorithm, in Fig. 2 we plot the behavior of the correlation
energy as a function of the optimization step for the constant-
pairing Hamiltonian of Eq. (5) in the case of P = 10 energy
levels occupied by M = 5 pairs of fermions. After about
one thousand steps, the VMC-NQS correlation energy agrees
with the exact-diagonalization one. For this specific case, we
achieve a final 10−7 precision level.

IV. PAIR COUPLED CLUSTER DOUBLES THEORY

Coupled cluster theory was first developed to solve the
nuclear Schrödinger equation by Coester and Kümmel in the
late 1950s and early 1960s [49,50]. In this work, we focus
on the pair coupled cluster doubles theory (pCCD), which is
ideally suited to solve the pairing problem. The pCCD Ansatz
is given by

|#〉 = eT |,0〉, (21)

where |,0〉 is the reference state and T is the cluster operator
restricted to moving pairs of fermions:

T ≡
∑

ia

taiA†
aAi. (22)
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Here, A†
a and Ai are the pair fermionic creation and annihi-

lation operators defined in Eq. (3). Inspired by the notation
commonly adopted in quantum chemistry, we reserve the
labels i, j, k, . . . for the hole states and a, b, c, . . . for the
particle states.

Starting from the time-independent Schrödinger equation

H |#〉 = E |#〉, (23)

with the coupled cluster Ansatz (21), left-multiplying both
sides by e−T and left-multiplying by either the reference state
or an excited state yields

E = 〈,0|H |,0〉, (24)

0 =
〈
,a

i

∣∣H |,0〉, (25)

where the excited state 〈,a
i | is obtained as

〈
,a

i

∣∣ = 〈,0|A†
i Aa, (26)

and H is the similarity-transformed pairing Hamiltonian,

H = e−T HeT . (27)

Using the Baker-Campbell-Hausdorff (BCH) identity, H can
be expanded as

H = H + [H, T ] + 1
2 [[H, T ], T ] + · · · . (28)

When the latter expression is plugged into the pCCD equa-
tions (24) and (25), one can truncate the resulting expressions
by noting that only certain terms in the infinite sum (those
which can be fully contracted) are nonzero. Separating the
pairing model Hamiltonian into a single-body and a two-body
term H = F + V , where

F =
∑

p

dpNp,

(29)
V = −

∑

pq

gpqA†
pAq,

the truncated pCCD equations read

E = 〈,0|F + V + V T |,0〉, (30)

0 =
〈
,a

i

∣∣V + FT + V T + 1
2V T 2 − TV T |,0〉. (31)

Recognizing that the first two terms of the truncated pCCD
energy in Eq. (30) equal the reference energy, the correlation
energy equation can readily be identified with

-E = 〈,0|V T |,0〉 = −
∑

ia

taigia, (32)

where in the last equality we used Wick’s theorem [51]. Sim-
ilarly, Eqs. (31) become

0 = gai + 2
(

di − da − gii + giatai −
∑

b

gibtbi

−
∑

j

g jata j

)
tai +

∑

b

gabtbi +
∑

j

g jita j

+
∑

b j

g jbta jtbi. (33)

In practice, the amplitudes t are found by solving the non-
linear and coupled Eqs. (33), which is accomplished using an
iterative root-finding algorithm such as Newton’s method, and
plugging them into Eq. (32). To facilitate the convergence of
Newton’s method, a good initial guess for each t is necessary,
which is informed here by many-body perturbation theory.

V. MANY-BODY PERTURBATION THEORY

Many-body perturbation theory (MBPT) [52–54] adds
correlations between particles as perturbations to the Hartree-
Fock wave function, the ground state of a collection of
noninteracting particles subject to a mean-field potential that
approximates their interaction. Analogously to single-body
perturbation theory, it is possible to approximate the energy
of a system by writing the Hamiltonian as the sum of two
terms, one of which is readily diagonalizable. In this theory,
we assume that the Hamiltonian H can be written as the sum
of an unperturbed Hamiltonian H0 and an interacting Hamil-
tonian HI , namely, H = H0 + HI , where H0|,n〉 = En|,n〉
is easily solvable. Expanding the exact wave-function |#0〉
in terms of the unperturbed wave function and its excited
states and the defining the projection operators P = |,0〉〈,0|
and Q =

∑∞
n=1 |,n〉〈,n|, we can expand the correlation en-

ergy -E perturbatively in terms of the interaction HI . A
standard approach for this perturbative expansion is given
by Rayleigh-Schrödinger (RS) perturbation theory, see, for
example, Refs. [52–54]. With RS many-body perturbation
theory the correlation energy reads

-E =
∞∑

n=1

-E (n), (34)

where, up to second order in the interaction, we have

-E (1) = 〈,0|HI |,0〉, (35)

-E (2) = 〈,0|HI
Q

E0 − H0
HI |,0〉. (36)

For the pairing model Hamiltonian (1) with the partitioning

H0 =
∑

pσ

εpa†
pσ apσ , (37)

where

εp = dp −
∑

i

δpigpp, (38)

we can rewrite the second-order correlation energy
contribution (36) as

-E (2) = 1
2

∑

ia

gaigia

di − da − gii
. (39)

We can use this result to inform a good initial guess for the
cluster parameters t by comparing the pCCD correlation en-
ergy (32) with the second-order contribution to the correlation
energy from MBPT, which allows us to identify

tai
(0) = −1

2
gai

di − da − gii
. (40)
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FIG. 3. Correlation energy for the constant-coupling model for
P = 10 energy levels and M = 5 pairs as a function of the interaction
strength. VMC-NQS (solid orange circles), MBPT (solid red trian-
gles), and pCCD (green crosses) calculations are compared with the
exact answer (solid line).

VI. RESULTS

The VMC-NQS values reported in this section were
obtained by averaging over the energy estimates of 100 op-
timization steps at convergence. We initially present results
for the Hamiltonian with constant pairing strength g of Eq. (5)
considering P = 10 energy levels occupied by M = 5 pairs of
fermions. The correlation energies as functions of the pairing
strength computed within MBPT, pCCD, and VMC-NQS are
displayed in Fig. 3. At small values of g, all many-body meth-
ods yield similar correlation energies. Already at g ! −0.2,
MBPT results start deviating from the exact-diagonalization
ones, indicating the shortcomings of perturbation theory in
addressing the large negative coupling constant region. A
similar trend is observed by the pCCD calculations, albeit they
remain closer to the exact ones down to g ! −0.4. At deeper
values of g, the pCCD energies become significantly lower
than the exact ones, showing a clear violation of the varia-
tional principle. On the other hand, the correlation energies
computed using VMC-NQS are in excellent agreement with
the exact ones over the whole range of g values considered
and beyond, with discrepancies remaining always smaller than
10−4. Crucially, in contrast with MBPT and pCCD methods,
VMC-NQS fulfils by construction the variational principle.

We then extend our comparative analysis considering a
larger model space, with up to P = 40 energy levels and
M = 20 pairs of fermions. In Table I, we compare the cor-
relation energies obtained within VMC-NQS, pCCD, and the
highly accurate iterative approach for solving the Richardson
equations developed in Ref. [36]. To make contact with the
results of the latter reference, the single-particle energies are
rescaled as dp = p/10 and the pairing strength is taken to be
g = 0.05. Similarly to the smaller model space, the correla-
tion energies computed within VMC-NQS are almost always
in perfect agreement with those obtained from the iterative
method. The only exception is the case with P = 40 and
M = 20, for which the VMC-NQS yields −1.785, while the
iterative method provides −2.111. In this regard, we success-
fully executed the Mathematica program attached to Ref. [36]

TABLE I. Correlation energies obtained with the VMC-NQS
method compared with pCCD and the iterative approach of Ref. [36]
for the constant-coupling Hamiltonian of Eq. (5) with g = 0.05 and
dp = p/10.

P M = 5 M = 10 M = 15 M = 20

VMC-NQS 10 −0.160 0.000
pCCD 10 −0.193 0.000
Iterative 10 −0.160 0.000

VMC-NQS 20 −0.394 −0.515 −0.394 0.000
pCCD 20 −0.987 −1.743 −1.110 0.000
Iterative 20 −0.394 −0.515 −0.394 0.000

VMC-NQS 30 −0.606 −0.946 −1.057 −0.946
pCCD 30 −1.750 3.500 −6.467 −5.697
Iterative 30 −0.606 −0.946 −1.057 −0.946

VMC-NQS 40 −0.809 −1.356 −1.678 −1.785
pCCD 40 −4.231 124.923 7.598 −44.346
Iterative 40 −0.809 −1.356 −1.678 −2.110

for all combinations of P and M, except for P = 40 and
M = 20, where we could not obtain converged results. As
expected and numerically verified in the P = 10 case using
exact diagonalization, the correlation energy as a function of
M for fixed P is convex and has a minimum for M = P/2. This
behavior is correctly reproduced by the VMC-NQS algorithm;
on the other hand, the behavior of the iterative method is less
regular, with a change from positive to negative concavity at
M = 20. To further support the VMC-NQS result, we also
verified its consistency within statistical error (of order 10−6)
when doubling the width of the inner neural networks layers
from 40 to 80 neurons.

Contrarily to VMC-NQS, pCCD struggles already for P =
10 and M = 5, where it yields ≈20% overbinding. Increasing
the number of single-particle states and pairs, pCCD becomes
more and more unreliable, with large departures from both
the exact and VMC-NQS values. This behavior is due to the
pairing interaction terms growing faster with the number of
states than the mean-field one, making the exact ground-state
very different from the Hartree-Fock solution.

To further gauge the accuracy of the VMC-NQS method,
we consider a parametrization of the constant-pairing Hamil-
tonian of Eq. (5) suitable to describe ultrasmall supercon-
ducting grains [37,38]. Specifically, to make contact with
density-matrix renormalization group and exact results of
Refs. [37,38], we take P = 100 energy levels with half filling
(M = 50) and g = 0.4. We find the VMC-NQS correlation
energy, −40.500 741(20), to be statistically compatible with
the exact value of −40.500 756.

We now turn to the separable-pairing Hamiltonian of
Eq. (9). In Fig. 4, we display the correlation energy for this
Hamiltonian for P = 10 energy levels and M = 5 pairs as a
function of the interaction strength. Consistent with Ref. [35],
we use the cutoff α = 10. The exact-diagonalization and
VMC-NQS results overlap nicely over the entire range of
pairing strength that we consider, in some cases matching
up to eight significant digits, corroborating once more the
accuracy of NQS in representing complicated many-body
wave functions. Similarly to the results displayed in Fig. 3 for
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FIG. 4. Correlation energy for the separable-coupling model for
P = 10 energy levels and M = 5 pairs as a function of the interaction
strength. VMC-NQS (solid orange circles), MBPT (solid red trian-
gles), and pCCD (green crosses) calculations are compared with the
exact answer (solid line).

the constant-pairing case, MBPT yields accurate correlation
energies only for very small values g, while for larger values
of the pairing strength large deviations are observed. The
energies computed within pCCD start deviating from the exact
ones for g " 0.06, exhibiting abrupt violations of the varia-
tional principle. Consistent with the constant-pairing energies
listed in Table I, pCCD becomes less accurate with increasing
system size, while VMC-NQS does not seem to suffer similar
limitations. In addition, we verified that the nearly perfect
agreement between VMC-NQS and exact-diagonalization en-
ergies persist at least up until g = 0.6, confirming once again
the robustness of the method in the nonperturbative regime.

VII. CONCLUSIONS

We have introduced a variational Monte Carlo method
based on neural-network quantum states that solves the
nuclear many-body problem in the occupation-number for-
malism. A tailored version of the stochastic-reconfiguration
algorithm, with a regularization term inspired by RMSprop,
is utilized to train the neural networks and minimize the
Hamiltonian expectation value.

As a specific application of this method, which exhibits a
polynomial scaling with the number of single-particle levels,
we considered two classes of exactly solvable pairing models
both with constant and separable pairing interaction strength.
In addition to exact-diagonalization techniques, which are
limited to relatively small model spaces, we benchmark the
VMC-NQS approach against virtually exact methods that
solve the Gaudin-Richardson equations in an iterative fashion.
We also gauge the accuracy of many-body perturbation theory
and pair coupled cluster doubles theory, both routinely used to
solve the nuclear many-body problem.

We find the VMC-NQS results to be in excellent agree-
ment with the exact solution, independent of the magnitude
of the pairing strength. As expected, the correlation energies
obtained from MBPT start deviating from the exact values
when the pairing strength becomes large. A similar trend is
observed by pCCD calculations, although they remain closer
to the exact solutions for a broader range of pairing strengths
values. Most notably, VMC-NQS is guaranteed to respect the
variational principle, which is in general violated by both
MBPT and pCCD.

It has to be mentioned that VMC-NQS is not limited to
constant or separable pairing interactions. As an immediate
application of this method, we will consider the state depen-
dent, nonseparable, Gogny interaction in the Hartree-Fock
basis and compute the ground-state energies of nuclei go-
ing beyond the mean-field approximation. In this regard, it
would be interesting to validate the conclusions of Ref. [35],
which were obtained by fitting an exactly solvable hyperbolic
model to the gaps and pairing tensors of Gogny Hartree-Fock-
Bogoliubov calculations.

The applicability of VMC-NQS extends to pairing Hamil-
tonians relevant to model interacting systems in condensed
matter. An example is the characterization of number-
conserving topological superconductors, or superfluids, and
the fate of Majorana zero-modes beyond mean-field [55].
While the Richardson-Gaudin-Kitaev model is integrable for
periodic and antiperiodic boundary conditions, no exact solu-
tions are known for open boundaries. Since the interactions
are long-range, DMRG approaches struggle to converge [56],
while deep neural quantum states should be able to provide
more accurate solutions.

Although interesting in its own right, solving the pairing
model is only the first application of NQS to the nuclear many-
body problem in the occupation number formalism. As a next
step, we will consider more realistic shell-model Hamiltoni-
ans [57]. We plan on carrying out benchmark calculations with
exact-diagonalization methods and coupled cluster theory in
pf-shell nuclei. The long-range goal is to provide accurate so-
lutions to Hamiltonians that are systematically derived within
chiral effective-field theory, extending the work of Ref. [58]
that was limited to a matrix product state Ansatz.
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