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Abstract

Most tundra carbon flux modeling relies on leaf area index (LAI), generally estimated from
measurements of canopy greenness using the normalized difference vegetation index (NDVI),

to estimate the direction and magnitude of fluxes. However, due to the relative sparseness and

low stature of tundra canopies, such models do not explicitly consider the influence of variation

in tundra canopy structure on carbon flux estimates. Structure from motion (SFM),

a photogrammetric method for deriving three-dimensional (3D) structure from digital imagery, is
a non-destructive method for estimating both fine-scale canopy structure and LAI. To understand
how variation in 3D canopy structure affects ecosystem carbon fluxes in Arctic tundra, we adapted
an existing NDVI-based tundra carbon flux model to include variation in SEM-derived canopy
structure and its interaction with incoming sunlight to cast shadows on canopies. Our study system
consisted of replicate plots of dry heath tundra that had been subjected to three herbivore exclosure
treatments (an exclosure-free control [CT], large mammals exclosure), and a large and small
mammal exclosure [EXLS]), providing the range of 3D canopy structures employed in our study. We
found that foliage within the more structurally complex surface of CT canopies received significantly
less light over the course of the day than canopies within both exclosure treatments. This was
especially during morning and evening hours, and was reflected in modeled rates of net ecosystem
exchange (NEE) and gross primary productivity (GPP). We found that in the EXLS treatment,
SEM-derived estimates of GPP were significantly lower and NEE significantly higher than those
based on LAI alone. Our results demonstrate that the structure of even simple tundra vegetation
canopies can have significant impacts on tundra carbon fluxes and thus need to be accounted for.

1. Introduction

Variation in canopy structure can significantly
influence the light environment experienced by
leaves within the canopy (Monsi et al 2005) and
consequently photosynthetic activity (Brunner 1998).
As such, canopy structure can play a major role in

controlling the net exchange of carbon between an
ecosystem and the atmosphere (i.e. net ecosystem
exchange (NEE)), and thus in determining ecosystem
C sink strength (Kramer et al 2002). Due to the relat-
ively low stature of Arctic tundra, it may be tempting
to assume that canopy structure plays an insignific-
ant role in controlling tundra carbon fluxes, yet this

© 2023 The Author(s). Published by IOP Publishing Ltd
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assumption is rarely tested (n.b. Williams et al 2014).
To date, carbon dioxide (CO,) flux chamber studies
(Virkkala et al 2018), larger scale eddy flux studies
(Rastetter et al 2010, Stoy et al 2013) and regional
scale aircraft and satellite studies (Stow et al 1998,
Zulueta et al 2011) have typically relied on estima-
tions of leaf area index (LAI) derived from normal-
ized difference vegetation index (NDVI) (Street et al
2007) to incorporate how variation in vegetation can-
opies influence NEE. Similarly, current tundra car-
bon exchange models use LAI (in conjunction with
air temperature and light) to predict NEE (Shaver
et al 2007). However, recent evidence of signific-
ant photosynthetic partitioning within low statured
tundra canopies (Magney et al 2016) suggests that
shadows cast within tundra canopies have a signific-
ant impact on the amount of light reaching foliage.
As such, canopy structure will need to be taken into
account in tundra carbon models as overreliance
on LAI alone likely introduces error in estimates
of canopy photosynthetic rates and net carbon flux
(Sprintsin et al 2012). Lending further motivation
to explicitly account for tundra canopy structure, the
low sun angles that typify arctic ecosystems cause dra-
matic, diurnal dynamics in shadow patterns and light
quality that interact with spatial variation in tundra
canopy structure to have an outsized impact on light
available within tundra canopies for photosynthesis
(Stow et al 2004, Buchhorn et al 2016).

While NDVI has been shown to identify small
spatial differences in maximum woody shrub height
before peak leaf out, once leaves are fully expan-
ded during peak growing season, NDVI and thus
LAI more closely tracks variation in canopy cover
rather than structure (Boelman et al 2011). Tra-
ditional methods for quantifying canopy structure
are time consuming, prone to substantial error, and
have relatively low spatial resolution (Wall et al
1991, Bréda 2003, Weiss et al 2004). Fortunately,
recent advances in remote sensing have enabled rapid,
fine-scale, and three-dimensional (3D) quantifica-
tion of canopy structure (Zellweger et al 2019). For
example, many studies make use of light detection
and ranging (LiDAR) technology to quantify the
structure of plant canopies, including tundra canop-
ies, from either spaceborne, airborne and terrestrial
sensors (Omasa et al 2007, Greaves et al 2015, Friedli
et al 2016, Magney et al 2016). In addition, struc-
ture from motion (SFM) techniques that use two-
dimensional photographs captured in sequence from
a suite of view angles, are being increasingly used as
an alternative to LiDAR (Ighaut et al 2019). Using
SEM specific software, the photographs are converted
to point cloud reconstructions of fine-scale plant
canopy structure products similar to those generated
using LiDAR (Mathews and Jensen 2013, Zellweger
et al 2019, Alonzo et al 2020, Mesas-Carrascosa et al
2020). Importantly however, a major advantage of
using SFM over LiDAR technology is that consumer
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grade RGB cameras can be used instead of specialized
LiDAR instruments (Westoby et al 2012, Cunliffe et al
2016, Shafian et al 2018), making SFM a more afford-
able and widely accessible means of assessing veget-
ation structure and height. In addition, this method
produces a point cloud with color information per
point that allows for color based classification meth-
ods. Although SFM has been used to map tall shrub
biomass in arctic tundra ecosystems (Alonzo et al
2020, Cunliffe et al 2020), it is a relatively new tech-
nique that has yet to be widely adopted.

Our overall goal is to understand how variation in
3D canopy structure interacts with diurnal dynamics
in sun angle to determine ecosystem carbon uptake
in arctic tundra during the period of peak leaf out.
To achieve this goal, our objective was to use a
SFM-based approach, combined with color vegeta-
tion indices and hourly data on ambient light levels
and sun angle, to estimate the amount of carbon fixed
over the course of a single day by dry heath tundra
canopies that differ in 3D structure. We hypothesized
that periods of substantial surface canopy shading
occur, primarily in more structurally complex canop-
ies and during early morning and late evening hours
when both the sun altitude and ambient light levels
are low. In turn, this may result in lower estimated
rates of CO, uptake than those previously estimated
by Min et al (2021) for the same dry heath canopies.

2. Methods

2.1. Study site and approach

2.1.1. Study site

Our study was conducted at the Arctic long term eco-
logical research (LTER) site at Toolik Lake in north-
ern Alaska (68.2 °N, 149.6 °W, 760 m a.s.l.) where a
long-term study of mammalian herbivory provided
for a range of canopy structures. Briefly, a long-
term herbivory experiment was established in 1996
in a dry heath tundra community, which is largely
composed of lichen and dwarf deciduous and ever-
green shrubs. The experimental design consists of
three replicate blocks of 5 m x 20 m plots. Each
block had one plot with a 5 m x 10 m exclosure-
free portion [CT] that was accessible to herbivores,
and a 5 m X 10 m fenced portion surrounded by
a large-mesh (15.2 cm X 15.2 cm mesh) fence to
exclude only large herbivores such as caribou (Ran-
gifer tarandus). This fenced area was divided in half,
with one 5 x 5 m half further surround by a small-
mesh fence (1.3 cm X 1.3 cm mesh) to addition-
ally exclude small mammals, such as singing voles
(Microtus miurus). This resulted in two different
herbivore exclosure treatments per block, with one
excluding only large herbivores [ExL], and the other
excluding both large and small herbivores [ExLS]
(Gough et al 2007). The experimental set up and local
environmental conditions are fully described else-
where (Min et al 2021 and references there in). In each
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Figure 1. Logic flow for analyzing Net Ecosystem Exchange (NEE, mmol CO, m ™2 ground s™!) in dry heath tundra community.
The standard approach used by Min et al (2021) combines carbon flux measurements (Fc ; mmol CO; m~2 ground s~!) made by
Min et al (2021), with environmental data (PPFD, photosynthetic proton flux density; mmol photons m~2 ground s~ !) and T,
air temperature; °C) and the Leaf Area Index (LAI, m? leaf m~2 ground) estimated from measurements of spectral reflectance
(i.e. NDVI) to fit the PLIRTLE model of Shaver et al (2007) and partition the observed NEE to the component fluxes of
photosynthesis and respiration (GPP and RE, both in mmol CO, m~2 ground s~!). The current approach incorporates canopy
structure (using Structure From Motion (SFM)), and solar ray tracing to determine the fully illuminated and green (i.e.
photosynthetically effective) leaf area index (LAleff), thus accounting for shade within the canopy. LAleff is substituted for LAI
when fitting the GPP portion of PLIRTLE. Finally, carbon flux partitioning between GPP and RE from these two modeling
approaches can be compared to the measured fluxes (see Min et al 2021) to assess strength of the model fits.

treatment plot, the measurements described below
were made within three circular subplots (75.5 cm
diameter) that were selected arbitrarily but at least
0.5 m away from the fences to avoid significant shad-
ing and artifacts due to slight changes in snow accu-
mulation immediately next to the fences. As the fences
were constructed of thin posts and wire mesh, we
do not expect the fences to cast significant amounts
of shadow on the subplots aside from when the sun
angle and light is lowest, minimizing their impact on
our results. All measurements were made between 14
July and 28 July 2017, when the tundra’s leaf out was
at its characteristic annual peak (Shaver and Chapin
1991, Johnson et al 2000). We stress, this current study
is not focused on the cause of the observed differ-
ences in canopy structure among treatment plots (i.e.
herbivory) but instead takes advantage of the resulting
variation in canopy structure of the plots.

2.1.2. Overview of study approach

We assess the impact of spatial variation in canopy
structure (from SFM) on estimates of NEE by com-
paring them to previous estimates of NEE that were
based only on spatial variation in LAI (from NDVI)
(Min et al 2021). By quantifying 3D canopy struc-
ture and using light ray tracing, we consider only
the surface area of green (i.e. photosynthetically act-
ive) portions of the canopy that were illuminated as
the sun progressed through the ecliptic plane dur-
ing a 24 h period in late July. The flow chart shown
in figure 1 summarizes the main steps taken in the
SFM-based approach used to accomplish this, and
compares it to an NDVI-based approach previously
used by Min et al (2021) on the same tundra can-
opies. Details on each of the main steps used in
the current approach are described in the sections
below.
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2.2. SFM: canopy surface roughness and 3D
structure

Photographs were taken of each subplot using
five consumer grade red, green and blue (RGB)
wavelength cameras (HEROS5, GoPro, San Mateo, CA,
USA). The cameras were mounted on the vertical arc
of a custom hemispherical and rotatable rig attached
to a circular base with an inner diameter of 75.5 cm
(i.e. slightly larger than subplots) (figure 2). The
rig and base were centered over each subplot with
cameras facing inward. To ensure sufficient overlap
between images for subsequent processing, the rig
was systematically rotated a total of 360°, with a pho-
tograph taken from all five cameras every 3°-5° of
rotation (Forlani et al 2018). This resulted in hun-
dreds of overlapping photographs per subplot. An
external marker was placed directly adjacent to the
subplot to indicate north in each photograph.

An image processing software (PhotoScan Profes-
sional Edition, Agisoft LLC, St. Petersburg, Russia)
was used to convert the combination of photographs
taken of each individual subplot into a 3D point
cloud. A free 3D point cloud processing software
(CloudCompare (version 2.10.2), GPL, retrieved
from www.cloudcompare.org/) was used to digitally
level, center at the origin, orient north and scale each
point cloud, using the camera rig as a reference. In
order to exclude areas of each subplot that were in
shadow cast by the rig and/or those distorted around
the edges of the subplot photograph, a rectangular
area representing 26% of the total subplot area was
clipped from the center of each point cloud.

A digital surface map (DSM) of the canopy was
generated from each subplot’s point cloud using the
point to raster method as implemented in the ‘lidR®
package (Roussel et al 2020) in R (Team R C 2013).
This 3D representation of canopy surface structure is
made up of ‘voxels’ that define each point in three-
dimensional space. To estimate canopy surface rough-
ness, subplot level terrain ruggedness index (TRI) was
calculated from each DSM, as implemented in the
‘raster’ package (Hijmans ef al 2015) in R (Team R C
2013). TRI values range from 0 (smooth surface) to 1
(rough surface).

2.3. Effective LAI (LALy)
To estimate the average hourly ‘effective LAI’ (LALg,
defined as the LAI of only illuminated (i.e. not
in shadow), green (i.e. photosynthetically active)
vegetation in each subplot), we overlaid the voxels
representing the 3D canopy surface structure from
the DSM (see section 2.2) with color information
from the point cloud to determine whether each voxel
was dominated by green vs. non-green points, as
well as hourly dynamics in ambient light levels (i.e.
photosynthetic photon flux density (PPFD) and solar
position (figure 1). The paragraphs below provide
details on each of these steps.

The average hourly rate of PPFD (pmol
photons m™? ground s !)—hereafter referred to
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as photosynthetically active radiation (PAR)—was
calculated from continuous measurements made on
a single cloudless day (28 July 2017) (Toolik Field
Station Environmental Data Center). To determine
incident sun angles, the NOAA Solar Calculator (US
Department of Commerce et al 2005) was used to
determine solar position for each hour of the day.
The average hourly rate of PAR that reached each
voxel (PARy;) was determined using the ‘rayshader’
package (Morgan-Wall 2020) in R (Team R C 2013)
which combined information on ambient PAR, incid-
ent sun angle and 3D canopy surface structure. The
path of individual rays of PAR were traced through
the subplot’s DSM, generating 25 hourly shade maps
showing shade depth per voxel. Average hourly ambi-
ent PAR values were then scaled as a function of
average hourly shade depth. This yielded 25 hourly
estimates of PAR,.g per voxel for each subplot on 28
July 2017. The rayshader model incorporates Lam-
bertian reflectance (Morgan-Wall 2020) and assumes
a diffusely reflecting matte surface (Koppal 2014),
providing an approximation of reflection for the can-
opy (Verhoef 1984). Light transmission through the
leaf is not taken into account but typically less than
5% of radiation in the photosynthetically active range
is transmitted (Massa et al 2015) and is thus unlikely
to significantly influence our conclusions. Future
modeling efforts could test this assumption directly.
In order to distinguish between voxels domin-
ated by green or non-green vegetation in each sub-
plot, we used color vegetation indices (CVI). Prior to
calculating CVI values, RGB reflectance values (r, g
and b) from the point clouds (see section 2.2) were
normalized according to equations (1) and (2):

R G, B
r: = ey
R+G+B% R+G+B _ R+G+B

(1)

where R, G and B are normalized values of RGB for
each point calculated as:

red _green p blue

(2)
255 255 255

and where red, green, and blue are derived from raw
image data from the GoPro cameras and 255 is the
maximum signal for each of these three bands. A
suite of six CVIs that have previously been demon-
strated to emphasize the green component of images
(the defining trait of green vegetation) were calcu-
lated using the r, g, and b values. The CVIs that were
calculated were: excess of blue (Mao et al 2003),
excess of green (Woebbecke ef al 1995), excess of
red (Meyer et al 1999), excess of green minus excess
red (Neto 2004), color index of vegetation extrac-
tion (Kataoka et al 2003) and the normal green-
red difference index (Woebbecke et al 1993, Mesas-
Carrascosa et al 2020). To determine which of the
six CVIs provides the best discrimination between
green and non-green vegetation cells, an M-statistic
(M) was calculated according to equation (3):
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Figure 2. Photograph of camera and rig set up. The pin flags and clamp outside the base were used to indicate north. Five GoPro
cameras were attached along the inner edge of the vertical arc. Photograph shows a control plot.

M= (Mvegetation — Hnon—green vegetation) / (Uvegetation — Onon—green vegetation) (3)

where p and o are the mean and standard deviation
of both classes, respectively. Values of M lower than
1 indicate poor class discrimination, while values of
M higher than 1 indicate adequate class discrimina-
tion. The excess of green was the only CVI with an
M-value greater than 1 and thus was the only CVI
able to classify voxels as either green vegetation or
non-green vegetation. Each subplot was then ran-
domly sampled for 100 000 points and associated
excess of green values were calculated. Otsu’s method,
an algorithm commonly applied to perform auto-
matic image thresholding (Goh et al 2018), was used
to identify a threshold value of excess of green that
separates the two classes. This method was applied
100 times per subplot and the resulting 100 threshold
values were averaged to calculate the final threshold
value used to classify each voxel as either green or
non-green vegetation.

We then used element-wise multiplication of each
subplot’s green vegetation and average hourly PAR g
matrices to calculate the average hourly PAR levels
incident on green vegetation voxels (PARgGyg) for

each subplot. Daily sums of PARGycg per subplot were
calculated by integrating the 25 average hourly val-
ues for each voxel. Finally, LAl was calculated by
dividing the number of illuminated, green vegeta-
tion voxels (in the PARGyeg matrix) for a given hour,
divided by the total number of voxels per subplot.
These subplot level LAl values were used in the cal-
culation of GPPLAI (see equation (9)).

2.4.LAI

Since the process of foliar respiration does not require
light, in addition to LAL, we calculated LAI per sub-
plot by dividing the number of all green vegetated
voxels by the total number of voxels in each subplot.
These LAl values were used in the calculation of RE; 41
(see equation (8)), as well as in GPPp5; which was
compared with GPP LAl (see section 2.5).

2.5. Modeled canopy carbon fluxes

The same widely used NEE (umol CO, m™2
ground s~') model (PLIRTLE, Shaver et al 2007)
(equations (4)—(6)) and model parameters were used
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as in our previous study (Min et al 2021) to estimate
carbon fluxes for each hour of 28 July 2017, in each
subplot (figure 1),

NEE = RE — GPP (4)
RE = (Ro * LAI + R,) e**T (5)
Prnaxt. * LAL % Ey % PAR
Gpp — —maL* LA F R0 * (6)
Paxt. + Eo % PAR

where RE is ecosystem respiration (pmol CO, m™2

ground s~'), GPP is gross primary productivity
(umol CO, m™2 ground s~ '), each of Ry (umol
m~2 leaf s7!), R, (umol m~2 ground s~') and /3
(°C™!) are empirically derived respiration paramet-
ers, T is air temperature inside the chamber (°C),
Prnaxt, is the theoretical light saturated photosynthesis
rate (umol m~2 leaf s7!), LAI is canopy LAI (m?
leaf m~2 ground), E, is the light use efficiency (mol
CO, pmol~! photons), and PAR is the PAR at the top
of the canopy (umol photons m~2 ground s~1). Ry,
R, and 3 values were restricted to values >0.

However, to take into account shade cast by
canopy structure as determined by our SFM-
based approach, the following modifications to
the LAI and PAR terms used to calculate fluxes
were made (equations (7)—(9)). First, to estimate
hourly rates of gross primary productivity (GPP
LAlI) we used average hourly LAl and PARGyeg
values (equation (9)). Second, to estimate hourly
rates of ecosystem respiration (REpa;) we used LAI
(equation (8)). Daily flux values were calculated by
integrating hourly flux estimates over the entire 24 h
period,

NEEpareff = RELaT — GPPparest (7)

REpo; = (Rp * LAI 4 R,) e?*T (8)

PmaxL * LAIeff * Eo * PARGveg

GPP =
LAleff Prnaxt. + Eo % PARGyeg

)

2.6. Statistical analysis

Data were analyzed using linear mixed effects mod-
els with block as a random effect and either treat-
ment or method as a fixed effect depending on the
data being compared. Maximum likelihood estima-
tion was used to obtain p-values for fixed effects. The
Kenward—Roger method was used to obtain p-values
for differences among treatments when applicable.
P-values less than 0.05 were considered significant.
Model residuals were checked for normality. In cases
where the residuals were non-normal, data were log
transformed before performing statistical tests. In the
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rare case that the transformed data remained non-
normal, outliers, defined as data points beyond 1.5
times the interquartile range, were removed. Unless
otherwise noted, statistical analyses were done in R
v. 3.5.1 (Team R C 2013), and the following pack-
ages were used to calculate statistics: Ime4 (Bates et al
2015), ImerTest (Kuznetsova et al 2017), and Ismeans
(Lenth 2016).

3. Results

3.1. Canopy surface roughness

There was a statistically significant difference in
the canopy surface roughness, estimated via TRI,
between the CT and each of the long-term treatments
(figure 3). Relative to CT, the mean TRI for ExL was
37% lower, and ExLS was 22% lower, indicating that
the canopy surface of the CT subplots has more vari-
ation in canopy heights.

3.2. Light received by green vegetation throughout
the day

Over the course of the day, the hourly mean PARG,
of each treatment changed dramatically, ranging
from 0 pmol photons m~2 s~! at midnight to a max-
imum of ~1100 gmol photons m~2 s~! at 2 pm
(i.e. solar noon) (figure 4). Throughout the day there
were statistically significant differences in PARGyeg
between CT and each of the exclosure treatments. Rel-
ative to CT, PARGyeg for ExL was higher in nearly all
hours of the day between 5 am and midnight (except
for 9 am and 10 am), while PARGy, for ExLS was
higher during only late afternoon through evening
hours (i.e. from 4 pm through 10 pm) (figure 5).
No statistically significant differences in PARGyeg
were found between ExL and ExLS at any hour
of the day.

3.3. LAl and LAL

There were no statistically significant differences
among treatments in either LAI or daily integrated
LAIs. The same trend was observed in LAI and LAI¢
among treatments, where values were highest in ExLS
and lowest in CT (supp. figure 1). Although there
were no statistically significant differences between
LAI and mean daily integrated LAl within treat-
ments, the variance of LAl values was between
150% (ExL and ExLS) and 300% (CT) higher than
that of LAIL

3.4. Ecosystem carbon fluxes

Daily. Treatment had a statistically significant effect
for both the LAI- and LAl g-derived daily integrated
carbon fluxes (figure 5). While GPP LAI.¢ was sig-
nificantly higher in ExL relative to both CT and
ExLS, there were no statistically significant differences
in GPPps among treatments (figure 5(a)). There
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between treatments.
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Figure 3. Average terrain ruggedness index (TRI) per treatment. The center black line within each box represents the median TRI
value per subplot. Boxes are bound at the 25th and 75th percentiles and whiskers extend to 1.5 * the interquartile range beyond
the boxes. Red points indicate outliers that were removed before statistical analyses. Letters indicate significant differences
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Figure 4. Average hourly PAR received by voxels identified as green vegetation per treatment (PARGyeg). Boxplots are defined as in
figure 3. Significant differences between treatments are indicated by colored asterisks according to the legend.

were statistically significant differences in NEELAL¢
among CT (highest; net loss of CO, from canopy
to atmosphere), ExL (lowest; net gain of CO, by
canopy from atmosphere) and ExLS (net loss of
CO, from canopy to atmosphere), while NEE]
was higher in CT (net loss of CO;, from canopy
to atmosphere) relative to both exclosure treatments
(figure 5(b)). There were statistically significant dif-
ferences between GPPLAI.¢ and GPPp; in only ExLS
where GPPLAI¢ was lower than GPPy4; (figure 5(a)),
and between NEELAI ¢ and NEE; o; where NEELAI ¢
was both higher and positive (net loss of CO, from
canopy to atmosphere) relative to NEE; o; which was
negative (net gain of CO, from atmosphere to can-
opy) (figure 5(b)). There was little variation in RE

fluxes among treatments as the Ry parameter was near
0 (data not shown).

Hourly. In contrast to daily integrated carbon
flux estimates in which only ExLS showed statist-
ically significant differences in LAl.¢- compared to
LAI-derived values, hourly carbon flux estimates
showed strong differences in each of CT, ExL and
ExLS (figure 6). In general, GPP LAl was lower
than GPPp,; during the early morning (~4 am to
7 am) and late evening (~9 pm to 11 pm) hours
(figures 6(a), (c) and (e)), and NEE LAL values were
higher than NEE; 5; during those same time periods
(figures 6(b), (d) and (f)). There was little variation
in RE fluxes among treatments as the R, parameter
was near 0 (data not shown).
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but no pairwise comparisons were significant.
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4. Discussion

Daily rates of canopy CO, uptake (i.e. GPP) of dry
heath tundra canopies during mid-summer are likely

significantly lower compared to those estimated by
the majority of tundra studies to date that use LAl and
assume uniform light distribution over vegetation
canopies throughout the day. By explicitly accounting
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for canopy positions of green vegetation and the
amount of light that reaches that vegetation over the
course of a single day, our results support our hypo-
thesis by demonstrating that the uniquely low sun
angles of arctic summers interact with even the low
stature of dry heath ecosystems to create long shad-
ows over canopies for large portions of the day. In
turn, the reduction of light reaching green vegeta-
tion of dry heath canopies limits rates of canopy car-
bon uptake via photosynthesis, and since shadows do
not impose an equivalent limitation in ecosystem res-
piration, rates of net carbon loss to the atmosphere
are likely greater in this tundra type than previously
estimated.

Lack of information on 3D canopy structure has
been cited as a cause for both over- and underestima-
tions of GPP in a range of ecosystems due to the con-
tribution of shaded foliage to photosynthesis being
improperly accounted for (Chen et al 2012, Sprintsin
etal2012). Although the importance of canopy struc-
ture on carbon flux in taller, woody deciduous shrub
dominated tundra communities has been previously
recognized (Williams et al 2014, Magney et al 2016),
the impact of canopy structure in lower stature and
partially vegetated (i.e. LAl < 1 m?> m~2) tundra com-
munities, such as dry heath tundra studied herein,
has not been considered. Our findings are important
as they strongly suggest that even in tundra canop-
ies as simple as dry heath, disregarding the effects of
shading introduces inaccuracies into estimates of eco-
system carbon fluxes. In fact, by incorporating can-
opy structure the current findings can further explain
our own previous work in the same dry heath tundra
communities and experimental plots (Min et al 2021).
Previously we used only NDVI-derived estimates of
LAI which do not explicitly account for 3D canopy
structure and found that despite having lower LAI, the
ExL treatment had higher light saturated rates of pho-
tosynthesis in mid-summer than the EXLS treatment
(Min et al 2021). Relative to plots with a higher ter-
rain ruggedness (i.e. CT and ExLS), the smoother ExL
treatment not only had lower LAI, but there was little
difference in its vegetation composition that would
help explain the higher light saturated photosynthetic
rates observed by Min et al (2021). Instead, our cur-
rent findings reveal that due to differences in the 3D
structure of their canopies, dry heath canopies of the
smoother ExL treatment consistently receive higher
levels of light due to less shading compared to CT.
This suggests that the green vegetation of ExL canop-
ies is well-adapted to high light conditions that sup-
port the high rates of light saturated photosynthesis
(Laisk et al 2005).

Although not the primary purpose of this study,
our findings also provide new insight into how herb-
ivores can alter the form and function of tundra
communities. Not only do our results show that
mammalian herbivores directly alter the 3D canopy

E Min et al

structure of dry heath tundra communities, they also
suggest that these alterations can result in significant
differences in ecosystem carbon fluxes. Moreover, our
findings highlight the fact that in these characterist-
ically low productivity ecosystems, even small inac-
curacies in estimates of carbon fluxes can affect the
prediction of whether tundra communities are net
carbon sinks or sources. When variation in 3D canopy
structure was not explicitly accounted for in estimat-
ing NEE, the exclusion of both large and small herbi-
vores (ExLS) was predicted to render dry heath com-
munities net sinks for carbon during mid-summer
(Min et al 2021). In contrast, our current, explicit
inclusion of information on 3D canopy structure in
estimating NEE reveals that dry heath tundra is pre-
dicted to be a net source of carbon in the absence
of both large and small herbivores (ExLS). In this
way, our study strongly suggests that spatial differ-
ences and temporal changes in even the structurally
simplest arctic tundra canopies should be accounted
for to reduce uncertainty in predictions of how tundra
vegetation contributes to the biome’s overall cycling
and storage of carbon. Importantly, although Arctic
tundra has been a carbon sink for tens of thousands
of years (Miller et al 1983, McKane et al 1997), its
present and future carbon balance remains in ques-
tion with many studies reporting conflicting findings
(Jones et al 1998, McGuire et al 2012, Fisher et al
2014, Euskirchen et al 2016, Commane et al 2017).
Further, the work presented herein adds to a small
body of tundra-specific studies that have also demon-
strated the effective use of SFM based approaches
to better understand the response of arctic tundra’s
ecological form and function to climate change (e.g.
Cunliffe et al 2016, Fraser et al 2016, Korne et al
2020).
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