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Abstract
Whole- ecosystem interactions and feedbacks constrain ecosystem responses to en-
vironmental change. The effects of these constraints on responses to climate trends 
and extreme weather events have been well studied. Here we examine how these 
constraints respond to changes in day- to- day weather variability without changing 
the long- term mean weather. Although environmental variability is recognized as a 
critical factor affecting ecological function, the effects of climate change on day- 
to- day weather variability and the resultant impacts on ecosystem function are still 
poorly understood. Changes in weather variability can alter the mean rates of indi-
vidual ecological processes because many processes respond non- linearly to envi-
ronmental drivers. We assessed how these individual- process responses to changes 
in day- to- day weather variability interact with one another at an ecosystem level. We 
examine responses of arctic tundra to changes in weather variability using stochastic 
simulations of daily temperature, precipitation, and light to drive a biogeochemical 
model. Changes in weather variability altered ecosystem carbon, nitrogen, and phos-
phorus stocks and cycling rates in our model. However, responses of some processes 
(e.g., respiration) were inconsistent with expectations because ecosystem feedbacks 
can moderate, or even reverse, direct process responses to weather variability. More 
weather variability led to greater carbon losses from land to atmosphere; less variabil-
ity led to higher carbon sequestration on land. The magnitude of modeled ecosystem 
response to weather variability was comparable to that predicted for the effects of 
climate mean trends by the end of the century.
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1  |  INTRODUC TION

The constraints imposed by within- ecosystem interactions and 
feedbacks on responses to climate change are widely recognized. 
Most assessments address ecosystem responses to trends in car-
bon dioxide (CO2) and climate (e.g., Arora et al., 2020; Campbell 
et al., 2009; Eby et al., 2013; Iverson et al., 2017; Luo et al., 2008; 
McGuire et al., 2018; Monier et al., 2017, 2018; Rastetter, 
Kwiatkowski, et al., 2022; Rollinson et al., 2017; Valipour et al., 2021; 
Wang et al., 2019; Wu et al., 2019). Studies that address climate vari-
ability usually focus on extreme events (Cleverly et al., 2019; De 
Boeck et al., 2018; Hughes et al., 2019; Knapp et al., 2008; Rammig 
& Mahecha, 2015). Variability of the environment, independent 
of extreme events, can also affect ecosystem function (Bernhardt 
et al., 2020; Medvigy et al., 2010; Paschalis et al., 2015; Rudgers 
et al., 2018; Ruel & Ayres, 1999; Seddon et al., 2016).

Several studies have examined the effects of interannual vari-
ability or regional patterns in precipitation on grassland production 
(e.g., Lauenroth & Sala, 1992; Sala et al., 1988). At a physiological 
and even daily time scale, photosynthesis increases asymptotically 
with the amount of soil water (because of the non- linear relation of 
soil water volume to soil water potential, e.g., Keenan et al., 2010; 
Kim & Verma, 1991), but annual production in these studies in-
creased linearly with the supply rate of the major limiting resource, 
precipitation. This discrepancy in the curve shape of daily versus 
annual responses is likely due to both the metric used to quantify 
water availability (amount vs. supply rate) and to the time required 
for whole- plant response to changes in resource limitation. The 
slope of the within- site response to interannual variability in pre-
cipitation is much shallower (weaker) than the slope of among- site 
response to regional differences in the mean precipitation (Lauen-
roth & Sala, 1992), suggesting greater long- term adaptation of the 
community structure (species present), productivity, and ecosystem 
biogeochemistry at the regional scale.

Beyond these studies of interannual variability only a few studies 
have analyzed how changes in day- to- day weather variability might 
impact ecosystem function (e.g., Knapp et al., 2002, 2008; Paschalis 
et al., 2015). Changes in day- to- day weather variability should alter 
the mean rates of individual ecosystem processes because many of 
these processes respond non- linearly to environmental drivers (Sup-
porting Information Jensen's inequality, Figure S1; Jensen, 1906; 
Knapp et al., 2008; Rastetter et al., 1992; Ruel & Ayres, 1999; Sed-
don et al., 2016; Templeton & Lawlor, 1981). Because of this non- 
linearity, the mean process rate will shift toward the concave side of 
the response curve if variability increases. For example, by artificially 
altering intervals between precipitation events without altering total 
annual precipitation, Knapp et al. (2002) found that grassland pro-
duction decreased with increased variability in soil water content. 
This result is consistent with expectation of Jensen's inequality if 
the production response to soil water is concave downward (e.g., 
conceptual response in Knapp et al., 2008, Figure 1). Both Gherardi 
and Sala (2019) and Rudgers et al. (2018) report similar results, but it 
is difficult to separate effects of changes in variability from changes 

in the mean because their analyses are based on the coefficient of 
variation (variance/mean).

Two questions must be answered before the effects of day- to- 
day weather variability on ecosystem function can be assessed: (1) 
How will climate change affect day- to- day weather variability? and 
(2) what are the net- ecosystem effects of the individual- process re-
sponses to changes in weather variability in the context of whole- 
ecosystem interactions and feedbacks? We cannot answer the 
first question because there is currently a debate on whether sub- 
seasonal weather variability is increasing (Alexander et al., 2006; 
Bathiany et al., 2018; Donat & Alexander, 2012) or decreasing (Black-
port et al., 2021; Dai & Deng, 2021). Here we address the second 
question by using stochastic simulations of daily weather with con-
trol, less, or more variability in temperature, precipitation, and light 
to drive the multiple element limitation (MEL) model of terrestrial- 
ecosystem biogeochemistry (Rastetter, Kwiatkowski, et al., 2022). 
We assess the effects of changes in day- to- day weather variability 
on carbon (C), nitrogen (N), phosphorus (P), and water stocks and 
cycling rates in arctic tundra as an example. We then compare those 
effects to modeled responses of tundra to long- term climate trends 
of increasing CO2, temperature, and precipitation. We conclude that 
changes in weather variability can have impacts on terrestrial C stor-
age or C loss to the atmosphere that are comparable in magnitude 
to the impacts of the long- term climate trends, and thus could affect 
regional to global warming.

2  |  METHODS

2.1  |  Model

For our analysis, we used the MEL model, a process- based model 
of the interactions among C, N, P, and water cycles in terrestrial 
ecosystems (Rastetter et al., 1997, 2013; Rastetter, Kwiatkowski, 
et al., 2022; Rastetter & Shaver, 1992). The model has been cali-
brated and applied to many terrestrial ecosystems (e.g., Rastet-
ter, Kwiatkowski, et al., 2022) including tussock tundra near Toolik 
Lake, AK (Jiang et al., 2015; Pearce et al., 2015), with a full descrip-
tion of the model and its calibration in Rastetter, Kwiatkowski, 
et al. (2022). A key characteristic of this model is an acclimation 
algorithm that reallocates resource acquisition effort of plants 
from less- limiting resources to more- limiting resources. For ex-
ample, during drought periods, the algorithm will reallocate effort 
from light capture and carboxylation and redirect it toward water 
uptake (Rastetter & Kwiatkowski, 2020). Similarly, resource acqui-
sition effort is redistributed among C, N, and P to maintain plant 
stoichiometry. Equations in the model also assure the analogous 
stoichiometric balance in resource acquisition by soil microbes. 
These acclimation algorithms mean that if the availability or ac-
quisition rate of one resource is changed by a change in the vari-
ability of one of the drivers (e.g., light or temperature), the model 
will respond by reestablishing the stoichiometric balance of the 
system. The model has several processes that are driven directly 
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    |  6095RASTETTER et al.

by air temperature and light, or indirectly from temperature, pre-
cipitation, and light through a soil energy budget to calculate soil 
temperature or through a soil water budget to calculate soil water 
volume and soil water potential (Figure 1; Table 1).

2.2  |  Stochastic weather generator

To change variability in weather, we developed a stochastic weather 
generator for daily precipitation, light, and maximum and minimum 
daily temperature (described in Supporting Information; Table S1; 
Figures S2– S4). The weather generator reproduces the seasonal dis-
tributions and statistical properties of the 1989– 2019 climate record 
of the NSF Arctic Long- Term Ecological Research (ARC- LTER) site 
near Toolik Lake, AK (Environmental Data Center Team, 2021; Ras-
tetter, Griffin, et al., 2022a).

We generated 10 replicate sets of nine, 100- year weather records 
(described below). All nine weather records within a set were gener-
ated with the same time series of random numbers and therefore 
had the same underlying stochastic drivers and are correlated. The 
nine records within a set differed only in the values of the parame-
ters that determine variability in precipitation, light, and temperature 
(Table S1: αP in Equation S3, αD in Equation S4, βλ in Equation S10, 
and γT in Equation S14). Among the 10 replicate sets of weather re-
cords, the random numbers, and therefore the weather records, are 
independent of one another. To adjust all 90 weather records to the 

same 100- year mean precipitation, light, and temperature, we cal-
culated correction factors for each weather record (Table S1: ΨR in 
Equation S6 for precipitation; Ψλ in Equation S12 for light; and ΨT in 
Equation S15 for maximum and minimum temperature).

We generated three primary records for each of the 10 replicate 
sets of weather records:

1. The control record had properties similar to the measured 
Toolik Lake data (Table S1; Figures S2– S4). The standard de-
viation in average daily temperature was ~10°C in the winter 
and ~4°C in the summer; the average duration of periods of 
precipitation was ~2.7 days; the average duration of dry periods 
was ~5.1 days; ~48% of days had more than 90% of maximum 
possible light for that day of the year (λ > 0.9 λmax); and ~ 6% 
of days had less than 40% of maximum light for that day of 
the year (λ < 0.4 λmax).

F I G U R E  1  Instantaneous responses of some major processes 
in the biogeochemical model to changes in temperature, 
precipitation, and light. (a) Responses of autotrophic respiration 
(Ra) and photosynthesis that is CO2 limited (PsC), light limited (PsL), 
and water limited (PsW) to changes in temperature. Net primary 
production (NPP) is the difference between the most limiting 
photosynthesis rate and Ra. On a seasonal timescale, the three 
photosynthesis curves will change vertically relative to one another 
depending on the effort allocated to them in the optimization 
routine of the model and the leaf area. The light- limited curve 
will change with daily changes in total shortwave radiation. The 
water- limited curve will change with available soil water, including 
the decrease in available water in proportion to the fraction of 
soil that is frozen. The autotrophic respiration curve has the 
same shape as that for nutrient uptake and microbial metabolism, 
including heterotrophic respiration (Rh), and soil nutrient cycling. 
(b) Response of photosynthesis to changes in total shortwave 
radiation. Light- limited photosynthesis is only slightly concave 
downward because of the scaling to a daily time step. However, 
at high light the overall photosynthetic rate will be either CO2 
limited or water limited, giving a concave- downward, asymptotic 
overall response. Again, the three curves will change relative to 
one another as allocation of effort and environmental conditions 
change. (c) Responses of water- limited photosynthesis and 
microbial metabolism (represented by heterotrophic respiration) 
to changes in soil water. Decline in microbial metabolism with 
waterlogging is due to inhibition of O2 diffusion. Dashed lines 
indicate wilting point (W), field capacity (F), and porosity (P) for this 
peat soil. Equations, assumption, parameters, and sources are in 
Rastetter, Kwiatkowski, et al. (2022).
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2. For the record with less variability, we used the same series of 
random numbers as used for the control. The variance in daily 
average temperature was reduced (Table S1, γT decreased) so that 
the standard deviation of temperature decreased by ~3°C rela-
tive to the control for the entire year. The duration of periods of 
precipitation was about 1 day longer than the control (αP larger) 
and the duration of the dry periods was about 1 day shorter (αD 
smaller), thereby forcing the same total rainfall for the 100- year 
record into more days, spreading precipitation more evenly over 
time, and less day- to- day rainfall variability. We lowered its light 
variance (βλ smaller) so that 44% of days had more than 90% of 
maximum light for that day of the year (λ > 0.9 λmax) and 0.4% of 
days had less than 40% of maximum light (λ < 0.4 λmax).

3. For the record with more variability, we again used the same se-
ries of random numbers as used for the control. The variance in 
daily average temperature was increased (Table S1, γT increased) 
so that the standard deviation of temperature increased by 
~3°C over the control for the entire year. The duration of peri-
ods of precipitation was about 1 day shorter than the control (αP 
smaller) and the duration of the dry periods about 1 day longer 
(αD larger), thereby forcing the same total rainfall for the 100- 
year record into fewer days and more day- to- day rainfall vari-
ability. The variance in light was increased (βλ larger) so that 51% 
of days had more than 90% of maximum light for that day of the 
year (λ > 0.9 λmax) and 11% of days had less than 40% of maxi-
mum light (λ < 0.4 λmax).

TA B L E  1  Instantaneous responses of some major processes in the biogeochemical model to changes in temperature, precipitation, and 
light.

Process Temperature Precipitation Light

GPP Unimodal concave up at low 
temperature (+), down near 
optimum temperature (−)

Asymptotic concave down through 
soil moisture (−)

Asymptotic concave down (−)

Ra Exponential concave- up Q10 function 
through air and soil (roots) 
temperature (+)

None Exponential concave- up Q10 function 
of roots respiration through soil 
heat budget (+)

NPP = GPP − Ra Unimodal concave down (−); stronger 
concavity of Ra than GPP

Asymptotic concave down through 
soil moisture (−)

Asymptotic concave down (−); 
stronger concavity of GPP than Ra

Rh Exponential concave- up Q10 function 
through soil temperature (+)

Unimodal concave down on soil 
moisture (includes effect of 
low O2 with waterlogging) (−)

Exponential concave- up Q10 function 
through soil heat budget (+)

N uptake Exponential concave- up Q10 function 
through soil temperature (+)

Linear with soil water Exponential concave- up Q10 function 
through soil heat budget (+)

N immobilization Exponential concave- up Q10 function 
through soil temperature (+)

Unimodal concave down on soil 
moisture (includes effect of 
low O2 with waterlogging) (−)

Exponential concave- up Q10 function 
through soil heat budget (+)

Gross N mineralization Exponential concave- up Q10 function 
through soil temperature (+)

Unimodal concave down on soil 
moisture (includes effect of 
low O2 with waterlogging) (−)

Exponential concave- up Q10 function 
through soil heat budget (+)

Net N mineralization Exponential concave- up Q10 function 
through soil temperature (+)

Unimodal concave down on soil 
moisture (includes effect of 
low O2 with waterlogging) (−)

Exponential concave- up Q10 function 
through soil heat budget (+)

P uptake Exponential concave- up Q10 function 
through soil temperature (+)

Linear with soil water Exponential concave- up Q10 function 
through soil heat budget (+)

P immobilization Exponential concave- up Q10 function 
through soil temperature (+)

Unimodal concave down on soil 
moisture (includes effect of 
low O2 with waterlogging) (−)

Exponential concave- up Q10 function 
through soil heat budget (+)

Gross P mineralization Exponential concave- up Q10 function 
through soil temperature (+)

Unimodal concave down on soil 
moisture (includes effect of 
low O2 with waterlogging) (−)

Exponential concave- up Q10 function 
through soil heat budget (+)

Net P mineralization Exponential concave- up Q10 function 
through soil temperature (+)

Unimodal concave down on soil 
moisture (includes effect of 
low O2 with waterlogging) (−)

Exponential concave- up Q10 function 
through soil heat budget (+)

Note: (+) indicates that the average process rate is positively correlated with the magnitude of variance in the variable in the column heading. (−) 
indicates that the average process rate is negatively correlated with the magnitude of variance in the variable in the column heading. Equations, 
assumption, parameters, and sources are in Rastetter, Kwiatkowski, et al. (2022).
Abbreviations: GPP, gross primary production; NPP, net primary production; Ra, autotrophic respiration; Rh, heterotrophic respiration; VPD, vapor 
pressure deficit.
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To assess the individual effects of each weather variable, we assem-
bled an additional six weather records from components of these three 
primary weather records (nine weather records total in each of the 10 
sets). These additional weather records had the following properties:

4. A record with less variability in temperature only, using the 
temperature record from the less variability record 2 above, 
but precipitation and light from the control record 1 above.

5. A record with more variability in temperature only, using the tem-
perature record from the more variability record 3 above, but pre-
cipitation and light from the control record 1 above.

6. A record with less variability in precipitation only, using the pre-
cipitation record from the less variability record 2 above, but light 
and temperature from the control record 1 above.

7. A record with more variability in precipitation only, using the pre-
cipitation record from the more variability record 3 above, but 
light and temperature from the control record 1 above.

8. A record with less variability in light only, using the light record 
from the less variability record 2 above, but precipitation and 
temperature from the control record 1 above.

9. A record with more variability in light only, using the light record 
from the more variability record 3 above, but precipitation and 
temperature from the control record 1 above.

Because of the way we assembled these weather records, 
all records share identical time series for the individual weather 

components with the other records in the same set and are in this 
sense partly synchronized. We imposed this synchronization among 
weather records within a set to facilitate analysis of the contribu-
tion of each of the individual weather components on ecosystem 
response to changes in variability in all the weather components 
combined. By assessing responses to less or more variability relative 
to the control within the same set of simulations (i.e., paired compar-
isons), the synchronization also helped isolate the effects of variance 
from the idiosyncratic effects of the specific random- number series.

2.3  |  Simulations

We ran 90 simulations with the MEL model driven with data from the 
stochastic weather records described above and with no climate trend. 
All the simulations used the same parameter values from the calibra-
tion for tussock tundra (Rastetter, Kwiatkowski, et al., 2022). For each 
of the 10 sets of weather records, we generated initial conditions by 
running a 1000- year simulation using the control weather record for 
that set (10 times through record 1 above) and saving the final modeled 
conditions to initialize all nine simulations within that set. Thus, within 
a set, all simulations began from the same initial conditions. The only 
difference among simulations within a set was in the weather record 
used to drive the model. Even with this model initialization, the ecosys-
tem accumulated about 0.27 g C m−2 over 100 years in the control simu-
lation (i.e., very close to but not at steady state; Table 2). Parameter 

TA B L E  2  Changes in vegetation, soil, and total- ecosystem carbon (C) for 10 replicate model runs averaged over the last 10 years of a 
100- year simulation with less, control, and more weather variability.

No climate trend With climate trend

Less 
variability Control

More  
variability

Less  
variability Control

More  
variability

Mean change
(g C m−2)

Veg C 122.9 14.2 −176.8 491.6 440.0 357.4

Soil C 95.6 13.1 −358.9 −134.1 −167.1 −290.6

Total C 218.5 27.3 −535.8 357.5 272.9 66.9

Std error
(g C m−2)

Veg C 23.7 27.0 20.1 17.4 17.5 18.9

Soil C 42.2 48.6 49.8 41.2 41.7 43.6

Total C 45.8 42.9 49.8 45.5 42.6 43.0

Max
(g C m−2)

Veg C 240.6 123.9 −80.8 569.4 525.8 445.3

Soil C 159.9 64.2 −181.9 −90.0 −129.3 −270.6

Total C 296.7 121.0 −335.1 444.9 338.5 154.3

Min
(g C m−2)

Veg C −47.9 −157.6 −276.1 376.3 334.3 242.9

Soil C 56.1 −75.3 −499.2 −171.5 −192.3 −324.2

Total C 112.1 −93.3 −656.5 286.4 205.0 −43.6

Response effect
(mean/LSD0.05)

Veg C 2.0** 0.2 −2.8** 14.4** 12.9** 10.5**

Soil C 0.6 0.1 −2.1** −1.0* −1.2* −2.1**

Total C 1.3* 0.2 −3.1** 2.3** 1.7** 0.4

Note: Responses to weather records with no climate trend (left columns) and with an imposed mean climate trend (right columns) are described in 
Section 2. The no climate trend weather records are the same as used for Figure 1. The response effect is the mean value divided by the p < .05 least 
significant difference (LSD0.05); absolute magnitudes ≥1 indicate a significant change from the initial value at *p < .05, absolute magnitudes ≥1.35 
indicate a significant change at **p < .01.
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files, driver files, and results for these simulations are available from 
the Environmental Data Initiative (Rastetter, Griffin, et al., 2022b).

For our analyses of C, N, and P stocks, we used peak- season values 
(August 11). For our analyses of C, N, and P fluxes, we used annual cu-
mulative rates. To remove the year- to- year variability from the long- term 
response, and to remove any bias from using a single year at the end of 
the record, we calculated mean values for all response variables over the 
last 10 years of the 100- year simulations. To assess significant changes 
from the control in the less-  and more- variability simulations, we ran 
one factor (variability in either temperature or precipitation or light, or 
all three combined), three- level (less, control, and more variability) anal-
ysis of variance (ANOVA) on the 10 replicates of these 10- year means 
(Snedecor & Cochran, 1967; ANOVA tables assembled in Microsoft Of-
fice 365 Enterprise EXCEL). Based on these ANOVA, we calculated least 
significant differences (LSDs) at both the .05 and .01 probability levels 
(Snedecor & Cochran, 1967). To assess synergistic interactions among 
weather variables, we also calculated the sum of the responses to each of 
the three weather factors individually, along with the ANOVA and LSD 
analyses on the sum of the responses to individual weather factors.

Finally, to assess the importance of responses to changes in vari-
ability relative to responses to long- term climate trends, we ran an 
additional 30 simulations with less, control, or more variability in all 
three weather variables in combination with linear increases over 
100 years in atmospheric CO2, doubling from 400 to 800 μmol mol−1, 
temperature by 3.5°C, and precipitation by 20% (this is the “climate 
mean trend”). Parameter files, driver files, and results for these sim-
ulations are available from the Environmental Data Initiative (Rastet-
ter, Griffin, et al., 2022c).

3  |  RESULTS

Changing the day- to- day variability of all three weather variables 
together had significant effects on C storage in vegetation and soil 
within 5– 15 years from the start of the 100- year simulation (Figure 2). 
Averaging the last 10 years of the simulation, with less variability the 
vegetation C increased 109 g C m−2 above the control (p < .01) and with 
more variability it decreased 191 g C m−2 below the control (p < .01) 
(Figures 1a and 2a,b; Table 2). These areal changes in C are 1.7 and 3.1 
times greater than the p = .05 LSDs (Table 2). The 82.5 g C m−2 increase 
in soil C above control with less variability in the weather variables in 
combination was not significant, but with more variability soil C de-
creased by 372 g C m−2 below the control (p < .01) (Figures 1b and 2a,b; 
Table 2). The gain in vegetation C with less variability was enough to 
increase the total- ecosystem C 191 g C m−2 above the control (p < .05), 
even without a significant increase in soil C (Figures 1c and 2a,b; 
Table 2). With more variability, the significant C losses from both veg-
etation and soil led to a total- ecosystem loss of 563 g C m−2 below the 
control (p < .01) (>99% lost as CO2). The magnitudes of these losses 
are comparable to the gains predicted under the mean climate change 
trend using this same model (Rastetter, Kwiatkowski, et al., 2022).

Changes in C stocks result directly from changes in ecosystem 
fluxes of C, and indirectly from fluxes of N and P. These fluxes 

F I G U R E  2  Simulated changes in tussock tundra (a) vegetation, 
(b) soil, and (c) ecosystem carbon to the baseline control (black), 
less (blue), and more (red) variability of precipitation, light, and 
temperature using synthetic weather records (Table S1). The 
simulations use the multiple element limitation model and a 
single parameter set. Graphs show the mean responses (solid 
line) and standard error of the mean (shaded region) of 10 
replicate weather records for control (same variability as the 
Toolik Field Station record), less (same precipitation over 38% 
more days, 9% fewer bright and 93% fewer dim days, and 3°C 
decreased temperature standard deviation, SD), and more (same 
precipitation in 36% fewer days, 4.5% more bright, and 76% 
more dim days, and 3°C increased temperature SD) variability 
simulations. All weather records were adjusted to the same mean 
precipitation, temperature, and irradiance; only the day- to- day 
variability changed. Simulations are first initialized by running the 
model for 1000 years under the control weather (10 times though 
the control synthetic weather record).
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include gross primary production (GPP), autotrophic and heterotro-
phic respiration (Ra and Rh), uptake of N and P by plants, litterfall 
amounts of C, N, and P, and net N and P mineralization in the soil 
(Figure 4). Changes in the daily variability of average temperature 
had stronger effects on these fluxes than did changes in variabil-
ity of precipitation or light (Figure 4). GPP is a unimodal function 
of temperature that is concave up at lower temperature and con-
cave down as temperature approaches the optimum. Even at lower 
temperature, the concave- up curvature of GPP is weaker than the 
concave- up curvature of Ra. Thus, the effect of less temperature 
variability is to increase net primary production (NPP = GPP –  Ra) 
and the effect of more temperature variability is to decrease NPP. 
The significant increase in GPP with less temperature variability 
(p < .01, Figure 4) is mostly the effect of increased biomass with in-
creased NPP rather than a direct effect of Jensen's inequality on 
GPP. Similarly, the significant decrease in GPP with more tempera-
ture variability (p < .05; Figure 4) is mostly the effect of decreased 
biomass with decreased NPP rather than a direct effect of Jensen's 
inequality. With concave- up responses to temperature, the fluxes 
Ra, Rh, N, and P uptake by plants, and net N and P mineralization, 
are all expected to decrease with less temperature variability and 
increase with more temperature variability; however, all fluxes did 
the opposite in the long term (all significant at p < .01 except for N 
uptake by plants where p < .05 for both less and more variability and 
Ra with more variability is not significant; Figure 4). The decrease 
in Ra with more variability was not significant because an increase 
in biomass overrides the direct effects of Jensen's inequality in the 
long term. In the model, changes in temperature variability have no 
direct effect on litterfall, but, because of the change in biomass, lit-
terfall C, N, and P all increased significantly with less variability and 
decreased significantly with more variability (p < .01). In the long 
term, the net result was a significant (p < .01) increase in vegeta-
tion C, N, and P with less temperature variability and a significant 
(p < .01) decrease in vegetation C, N, and P with more temperature 
variability (Figure 3), which in turn feeds back to alter the rates of 
plant- mediated processes, as just described. There were no signif-
icant changes in soil or total- ecosystem C, N, or P with less tem-
perature variability. With more temperature variability there was a 
significant (p < .01) loss of soil and total- ecosystem C, but no signifi-
cant change in soil or total- ecosystem N or P (Figure 3).

The responses to changes in precipitation variability were 
weaker than responses to changes in temperature variability. The 
only significant response to a change in precipitation variability was 
an increase in litterfall P with less variability (p < .05, Figure 4), even 
though there is no direct effect of moisture on litterfall in the bio-
geochemical model. This increase in litterfall P resulted from a sig-
nificant increase in vegetation P with less variability (p < .05) despite 
no significant increase in the plant uptake rate of P (Figure 3). There 
were no significant changes in either metabolic rates or stocks of C, 
N, or P with more variability in precipitation (Figures 3 and 4).

Responses to changes in variability of light (cloudiness) were 
also weak (Figures 2 and 3). Jensen's inequality for the asymptotic, 
concave- down relation of GPP to light predicts that less light variability 

will increase GPP, and more light variability will decrease GPP; both 
expectations were met, but neither was significant (Figure 4). There 
is no direct effect of changes in light variability on aboveground auto-
trophic respiration or litterfall C, N, or P in the model. However, light 
is included in the soil energy budget (heat from incident radiation) and 
can thereby affect soil temperature and in turn microbially mediated 
processes. Through this indirect mechanism, belowground processes 
are expected to decrease with less light variability and increase with 
more light variability. Contrary to expectation, the only significant re-
sponses were increases in net P mineralization and plant uptake of P 
(p < .05) with less light variability (Figure 4), which was likely driven by 
the increase in GPP rather than the direct effects on the soil energy 
balance. This increase in P uptake resulted in a significant increase in 
vegetation P with less light variability (Figure 3).

When the changes in metabolic rates in response to variability 
of the three weather variables individually are added together, their 
sum is consistent in direction, magnitude, and significance level with 
the change in metabolic rates when the variability in all three weather 
variables is altered together (Figure 4). The exception is the increase 
in GPP with less variability, which is significant at p < .01 for the sum 
of individual effects of temperature, precipitation, and light alone and 
is only significant at p < .05 in all three variables together. N uptake 
with less weather variability did not change significantly, but all other 
responses are significant at p < .01. With less variability in the weather 
variables, these metabolic changes resulted in increased vegetation 
C, N, and P (p < .01) and increased total- ecosystem C (p < .01 for the 
sum of individual responses, p < .05 for all weather variables com-
bined). With more variability in the weather variables, these metabolic 
changes resulted in decreased vegetation C, N, and P (p < .01), and 
decreased soil and total- ecosystem C (p < .01). Total- ecosystem P de-
creased significantly with all the weather variables combined (p < .01) 
but not with the sum of responses to the individual weather variables.

Imposing a gradual, linear climate trend over 100 years for atmo-
spheric CO2 (400– 800 μmol mol−1), mean temperature (+3.5°C), and 
precipitation (+20%) (see Section 2) changed the amount and distribu-
tion of C in the ecosystem but did not alter the relative ranking of re-
sponses to less, control, and more weather variability. That is, compared 
to the simulation with control variability, the C stored in vegetation, 
soil, or the whole ecosystem was always highest with less weather vari-
ability and lowest with more variability (Figure 5; Table 2). The model 
predicts gains in ecosystem C with the mean climate trend in all but 
two of the 10 replicate simulations, both of which had more weather 
variability. With the climate trend and control variability, the vegetation 
gained C (440 ± 18 g C m−2) and the soil lost C (167 ± 42 g C m−2), result-
ing in a net total- ecosystem gain of 273 ± 43 g C m−2 (±standard error of 
the mean) (Figure 5; Table 2). Less weather variability increased the net 
total- ecosystem gain to 358 ± 45 g C m−2, but when the climate trend 
was coupled with more weather variability, this carbon gain was 80% 
lower and the total- ecosystem gain was only 67 ± 43 g C m−2.

In our simulations, the C, N, and P cycles are tightly coupled. Across 
the nine core treatments in our study (control, low and high variabil-
ity for temperature, precipitation, light, and all three combined), the 
values averaged over the last 10 years of the simulations and across 
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6100  |    RASTETTER et al.

the 10 replicates for GPP, Ra, NPP, litterfall C, N, and P, uptake of  
N and P by plants, and net N and P mineralization, are all positively and 
strongly correlated (mean of the 45 Pearson's correlations r = .95, range 
.84– 1.00, all p < .01). This tight coupling derives from the acclimation of 
both plants and microbes in the model to correct imbalances in stoichi-
ometry, and as described below illustrates why Jensen's inequality used 
with single variables is inadequate to describe ecosystem responses.

4  |  DISCUSSION

The mean temperature, precipitation, and light used to drive the 
model were constant in the core simulations (i.e., no imposed climate 

trend), and only the magnitude of day- to- day variability in one or 
in all three of the weather variables changed in our simulations. 
Thus, the only possible response in the model is through the direct 
effects of Jensen's inequality on individual processes and the sub-
sequent cascade of interactions and feedbacks initiated by these 
direct effects. We found both statistically significant and ecologi-
cally meaningful responses to the changes in weather variability 
that were of magnitudes comparable to the modeled responses to 
future mean climate trends (Figure 5). The response to changes in 
temperature variability dominated the overall responses. However, 
of the processes we examined, only NPP responded to changes in 
variability as expected based on Jensen's inequality; the significant 
response of GPP was in the expected direction but was due to the 

F I G U R E  3  Average change from control for the last 10 years of the simulations for vegetation, soil, and total- ecosystem carbon 
(a, b), nitrogen (c, d), and phosphorus (e, f) with less (left) and more (right) variability in temperature (TEMP), precipitation (PPT), and total 
shortwave radiation (LIGHT) both individually and in combination (ALL) and for the sum of the effects of the three individual weather 
variables (SUM). The change is calculated relative to the control in the same set of nine simulations and the chart values are the average 
across the 10 sets of simulations (see Section 2). To help assess the magnitude of these changes, the numbers in parentheses in the legend 
are the average value of each variable in the last 10 years of all 10 control runs. Error bars are for p < .01 least significant differences (LSDs) 
based on an analysis of variance on the averages of the last 10 years of the 10 simulations for less- , control- , and more- variability simulations. 
“**” Indicates that the change is larger than the p < .01 LSD. “*” Indicates that the change is larger than the p < .05 LSD.
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indirect effect of NPP on biomass rather than a direct effect of 
Jensen's inequality.

Our results indicate that Jensen's inequality applied to individ-
ual processes is an inadequate predictor of ecosystem response to 
changes in weather variability because of the interactions and tight 
coupling of element cycles in terrestrial ecosystems. This tight cou-
pling is illustrated in our model results where ecosystem processes 
were highly correlated (mean Pearson's r = .95). In addition, in many 
mature terrestrial ecosystems, N and P cycle tightly (internal cy-
cling >> supply from outside the ecosystem), and thus N and P cycles 
are coupled. Biomass production is tightly tied to these N and P cy-
cling rates (Rastetter et al., 2013); NPP in Alaskan tussock tundra is 
known to be strongly nutrient limited (Shaver et al., 2014). If a change 
in weather variability results in the acceleration or deceleration of one 
element cycle relative to the others, then the cycles become decou-
pled. Any loss of coupling of the C, N, and P cycles resulting from the 
effects of a change in weather variability on individual processes must 
therefore be transient. That is, in the absence of continued major dis-
turbances eventually the stoichiometric feedbacks in the ecosystem 
will act to recouple the cycles. For example, with less temperature 
variability the stronger concave- up relation of Ra than of GPP to tem-
perature should result in an increase in NPP (see Section 3). However, 
the concave- up relation of net N and P mineralization to temperature 
should result in a decrease in nutrient supply with less temperature 
variability and should thereby limit NPP. Thus, the increase in NPP 
caused by less temperature variability on GPP and Ra cannot be main-
tained unless some mechanism increases the supply of N and P to 
vegetation and thereby overrides the Jensen's- induced nutrient lim-
itation of NPP. Our simulations indicate that the acclimation of plant 

and microbe resource acquisition in our model results in such an over-
ride. Most importantly, the increase in NPP disrupts the vegetation 
stoichiometric balance so the MEL model reallocates resource acqui-
sition effort from C to N and P. Vegetation is thereby able to compete 
more effectively with microbes for nutrients. Thus, less temperature 
variability caused net N and P mineralization to increase rather than 
decrease (Figure 4); this result illustrates that these secondary feed-
back effects can eventually overwhelm the initial effect of Jensen's 
inequality on individual processes. These secondary feedbacks are 
similar to the Lauenroth and Sala (1992) explanation for the weaker 
within- site sensitivity of production to interannual variability in pre-
cipitation relative to the stronger regional increase in production with 
increased precipitation among grassland sites. The pattern addressed 
by Lauenroth and Sala (1992) is driven by adaptation to persistent dif-
ferences in mean conditions across the region (Estiarte et al., 2016). In 
contrast, our secondary feedback effects are driven by adaptation to 
persistent changes in day- to- day variability, which in turn alters the 
mean response because of the non- linearity.

In addition to ecosystem interactions and feedbacks modifying 
the direct response of a process to weather variability, some compo-
nents of the ecosystem are likely buffered from day- to- day variabil-
ity. For example, aboveground plant components respond directly 
to changes in air temperature. However, root and soil components 
respond to changes in air temperature indirectly through a soil en-
ergy budget, which is buffered by the soil thermal mass, resulting 
in lower variability in soil temperature and thus a weakened effect 
of Jensen's inequality. Similarly, responses to variability in precipita-
tion are buffered by the soil water budget. Responses to changes in 
precipitation should increase as water becomes more limiting (Hux-
man et al., 2004), thus, more mesic soils should be more sensitive to 
changes in day- to- day variation of precipitation, as found by Knapp 
et al. (2002). The temporal scale of the variability relative to the re-
sponse time of the ecosystem components likely also plays a role in 
the overall response. Thus, stronger responses have been found for 
changes in year- to- year variation in precipitation where the vege-
tation has more time to respond (Baldocchi et al., 2018; Gherardi & 
Sala, 2019; Hou et al., 2021; Knapp & Smith, 2001; Sala et al., 1988).

The dominant ecosystem response to weather variability was to in-
crease element cycling rates and storage when variability was lowered, 
and to decrease cycling rates and storage when variability was raised 
(Figures 2– 5; Table 2). Similar trends have been found for changes in 
the frequency of disturbances that remove element stocks (Luo & 
Weng, 2011; Valipour et al., 2021), but for different reasons because 
no element stocks are directly removed in our simulations. This super-
ficial similarity arises because the decrease in NPP with increased vari-
ability decreases the ability of the ecosystem to retain elements, rather 
than the direct removal of elements by disturbance.

The responses of ecosystem C storage and loss to the atmosphere 
as greenhouse gases are relevant for predictions of climate warming, 
especially in a rapidly warming Arctic with huge C stocks in perma-
frost soils (McGuire et al., 2018). More variability alone resulted in a 
large, significant loss of C from the ecosystem (536 g C m−2, Figure 5; 
Table 2). This loss is striking considering that the Arctic is currently 

F I G U R E  5  Mean changes in carbon over the 100- year 
simulations for vegetation, soil, and total ecosystem with less (blue), 
control (black), and more (red) variability in precipitation, light, and 
temperature, without (open symbols) and with (closed symbols) 
a climate trend (ramped doubling of CO2, 3.5°C warming, and 
20% increase in precipitation). Whiskers show the maximum and 
minimum values of 10 replicate simulations. All data are for changes 
in peak- season (August 11) values between year 1 of the control 
with no climate change simulation and the average over the last 
10 years of the treatment simulations.
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near C balance with respect to the atmosphere (McGuire et al., 2018). 
Even when combined with an imposed climate trend, more weather 
variability always reduced the C stored in vegetation, soil, and the 
whole ecosystem (total- ecosystem reduction of 206 g C m−2 below the 
control, Figure 5); a similar masking of the response to climate forcing 
has been found for internally generated variability arising from uncer-
tainty in initial conditions for other models (Bonan et al., 2021). How-
ever, given the uncertainty on the sign of current or future changes in 
weather variability, the critical result here is that either more or less 
day- to- day weather variability could act as a powerful lever on the 
balance of C storage on land or loss to the atmosphere. In addition, 
the same mechanistic processes that regulate nutrient cycling and C 
storage in our biogeochemical model operate in all ecosystems, and 
we suggest that there should be analogous effects of day- to- day 
weather variability in most if not all biomes, although the sensitivity 
to individual weather variables will differ with the nature of limitation 
(e.g., temperature in arctic tundra vs. precipitation in mesic grass-
lands; Knapp et al., 2002). A final implication of our analyses is that 
changes in day- to- day weather variability are apparent within years 
to decades (Figure 2) and might therefore manifest sooner than the 
full effect of responses to predicted long- term mean trends in climate.

Although it is still unclear if weather variability is increasing (Alex-
ander et al., 2006; Bathiany et al., 2018; Donat & Alexander, 2012) or 
decreasing (Blackport et al., 2021; Dai & Deng, 2021), it might be pos-
sible to detect at least initial effects of changes in weather variability 
for specific sites (e.g., rainfall manipulation, using eddy covariance 
data). However, only the initial effects of Jensen's inequality are likely 
to be detected in comparisons of years with low variability to years 
with high variability. Longer, persistent changes in day- to- day weather 
variability will be required for the ecosystem- level feedbacks that 
underly the most important results of our analysis to become man-
ifest. Our analysis is based on the resource- optimization perspective 
embodied in the MEL model (Rastetter, Kwiatkowski, et al., 2022). A 
comparison of the results of similar analyses among different models 
could identify key hypotheses, long- term monitoring strategies, or the 
best empirical approach to test the effects of changes in day- to- day 
variability on ecosystem C storage (Rastetter, 1996).

Our predicted response of arctic tundra to climate trends is 
within the wide range of responses predicted by other models for 
tundra and boreal ecosystems (McGuire et al., 2018). To this large 
uncertainty among models our results add the uncertainty of how 
weather variability will change as climate changes and the uncer-
tainty associated with how ecosystems will respond to that change 
in weather variability. Thus, our most important conclusion is not in 
the magnitude of the response predicted by our model, but rather in 
the recognition that changes in weather variability can have signifi-
cant effects on C sequestration in ecosystems and the exchange of 
C between ecosystems and the atmosphere.
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