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inner models satisfying the existence of a measurable cardinal
w of Mitchell order pt+.
© 2024 Elsevier Inc. All rights reserved.

1. Introduction

The class M of o-scattered linear orders was considered by Galvin as a natural gen-
eralization of the classes of countable linear orders and well orders. On the one hand
N is quite rich, and on the other it is amenable to refined structural analysis. Recall
that a linear order is scattered if it does not contain a copy of the rational line (Q, <)
and is o-scattered if it is a union of countably many scattered suborders. Both of these
classes include the well orders and are closed under lexicographic sums » ., L; and the
converse operation L — L* which reverses the order on L; in fact Hausdorff [12] showed
that the scattered orders form the least class with these closure properties.

The o-scattered orders form the least class with these closure properties and the
additional property of closure under countable unions. In [22], Laver proved Fraissé’s
conjecture that the countable linear orders are well quasi-ordered: whenever L; (i < 00)
is a sequence of countable linear orders, there is an ¢ < j such that L; embeds into L;.
In fact, his proof established the following celebrated result.

Theorem 1.1. (Laver [22]) The class 9 is well quasi-ordered by the embeddability rela-
tion.

Empirically, 9t is the largest class of linear orders which is immune to set-theoretic
independence phenomena. It is therefore natural to study those linear orders which lie
just barely outside of 91. In general, given a class € of linear orders, we will say that a
linear order L is a minimal element of € if L is in € and embeds into all of its suborders
which are in €. In this paper we will investigate those linear orders L which are minimal
with respect to not being in 991. More precisely, we will prove that it is consistent that
for each infinite cardinal s, there is a linear order of cardinality x* which is minimal
with respect to being non-o-scattered. Previously it was not known if it was consistent to
have a minimal non-o-scattered order of cardinality greater than R;. Moreover, even our
construction of a minimal non-o-scattered order of cardinality N; is novel and answers
a question of Baumgartner [5, p. 275].

Mathematical and historical background. One of the first results on scattered linear
orders is the following result of Hausdorff.

Theorem 1.2. (Hausdorff [12], see also [30]) If k is a regular cardinal and L is a scattered
linear order of cardinality k, then either k or k* embeds into L.
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While o-scattered linear orders were not considered until [22], Theorem 1.2 immedi-
ately generalizes to the class of o-scattered linear orders. Since neither w; nor wj embed
into R, it follows that no uncountable set of reals is o-scattered. For brevity, we will say
that a linear order is a real type if it is isomorphic to an uncountable suborder of the
real line.

The properties of real types are already sensitive to set theory. On one hand, a classical
diagonalization argument yields the following result of Dushnik and Miller.

Theorem 1.3. (Dushnik and Miller [8]) Assume CH. For any uncountable X C R there
is an uncountable Y C X such that Y? does not contain the graph of any uncountable
strictly monotone function other than the identity (and hence does not embed into any
proper suborder).

On the other hand, Baumgartner demonstrated that if X, Y C R are X;-dense’ and
CH holds, then there is a c.c.c. forcing which makes X and Y order isomorphic [4]. In
particular, he showed that there is always a forcing extension in which every two R;-dense
sets of reals are isomorphic. This result is now often phrased axiomatically as follows.

Theorem 1.4. (Baumgartner [}]) Assume PFA. Any two Ri-dense subsets of R are iso-
morphic. In particular, any real type of cardinality Ry is minimal.

Here the Proper Forcing Axiom (PFA) is a powerful generalization of the Baire Cat-
egory Theorem. It plays an important role in the broader analysis of non-o-scattered
linear orders as we will see momentarily. More information on PFA in the context of
linear orders can be found in [37]; see e.g. [1], [7], [27], [38] for an introduction to PFA
and its consequences.

Another class of non-o-scattered linear orders is provided by the Aronszajn lines’:
uncountable linear orders with the property that they do not contain uncountable sub-
orders which are either separable or scattered. Aronszajn lines were first constructed
by Aronszajn and Kurepa (see [17] [39]) in the course of analyzing Souslin’s Problem
[36], which asks if R is the only complete dense linear order in which every family of
pairwise disjoint intervals is countable. By Theorem 1.2, Aronszajn lines are necessarily
non-o-scattered.

In the 1970s, R. Countryman introduced a class of linear orders now known as Coun-
tryman lines. These are the uncountable linear orders C' such that C' x C' is a union of
countably many chains. Such orders are necessarily Aronszajn and have the property
that no uncountable linear order can embed into both C' and C*. They were first con-
structed by Shelah [33], with a simplified construction later being given by Todorcevic
[40]. Notice that being Countryman is clearly inherited by uncountable suborders.

Abraham and Shelah proved the analog of Theorem 1.4 for Countryman lines.

L A linear order is k-dense if it has no first or last elements and each interval has cardinality .
2 Aronszajn lines are also known as Specker types.
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Theorem 1.5. (Abraham and Shelah [2]) Assume PFA. Any Countryman line embeds into
all of its uncountable suborders. Moreover, any two reqular® Countryman lines are either
isomorphic or reverse isomorphic.

The next results give a complete classification of the Aronszajn lines under PFA.

Theorem 1.6. (Moore [25]) Assume PFA. Every Aronszajn line has a Countryman sub-
order.

Theorem 1.7. (Martinez-Ranero [25]) Assume PFA. The Aronszajn lines are well quasi-
ordered by embeddability.

The next theorem gives a complete characterization of the minimal non-o-scattered
linear orders under PFA™ a strengthening of PFA.

Theorem 1.8. (Ishiu and Moore [13]) Assume PFAT. Every minimal non-o-scattered
linear order is isomorphic to either a set of reals of cardinality Wy or a Countryman
line. Furthermore, any non-o-scattered linear order contains a non-o-scattered suborder
of cardinality Ny.

Since PFA and PFA™ are rather strong assumptions, it is natural to ask what is possi-
ble in other models of set theory. While it is reasonable to think that some enumeration
principle such as CH or ¢ might allow one to prove an analog of Theorem 1.3 for Aron-
szajn lines, Baumgartner showed that this is not the case (Baumgartner’s construction
contained an error which was later corrected by D. Soukup).

Theorem 1.9. (Baumgartner [5], D. Soukup [35]) Assume {F. There is a Souslin line
which embeds into all of its uncountable suborders.

Here a Souslin line is a nonseparable linear order in which every family of pairwise
disjoint intervals is countable. Any Souslin line can be embedded in a Souslin line which
is moreover dense and complete as a linear order— hence the existence of a Souslin line
is equivalent to the existence of a counterexample to Souslin’s Problem. On the other
hand, any Souslin line L contains a suborder which is Aronszajn—simply pick a sequence
of points {2 : @ < w1} from L such that for all § < wi, xs is not in the closure of
{zq : @ < B}. Furthermore it is easily checked that Aronszajn suborders of Souslin lines
are themselves Souslin.

While Baumgartner’s construction produces a minimal Aronszajn line, it should be
noted that Souslin lines are necessarily not Countryman. In [5], Baumgartner asked if

3 An Aronszajn line L is regular if L is R;-dense and the collection of all countable subsets of L which
are closed in the order topology contains a closed and cofinal set in ([L]“, C).
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Ot could be weakened to <y in his construction and if his argument could be adapted to
construct a minimal Aronszajn line which was not Souslin.

In [26], the third author proved that it is consistent that there are no minimal Aron-
szajn lines. This was achieved by obtaining a model of CH which also satisfied a certain
combinatorial consequence of PFA. That CH held in this model also yielded the following
stronger result.

Theorem 1.10. (Moore [26]) It is consistent (with CH) that wy and wi are the only
manimal uncountable linear orders.

In [34], D. Soukup adapts this argument to show that the existence of a Souslin line
does not imply the existence of a minimal Aronszajn line.

The strategy in [26] was combined with the analysis of [13] to yield the following
result.

Theorem 1.11. (Lamei Ramandi and Moore [21]) If there is a supercompact cardinal,
there is a forcing extension in which CH holds and there are no minimal non-o-scattered
linear orders.

On the other hand, Lamei Ramandi has shown that <> is consistent with the existence
of a minimal non-o-scattered linear order which is neither a real nor Aronszajn type. In
fact he has produced two qualitatively different constructions.

Theorem 1.12. (Lamei Ramandi [20]) It is consistent with { that there is a minimal
non-o-scattered linear order L with cardinality X1 which is a dense suborder of a Kurepa
line.*

Theorem 1.13. (Lamei Ramandi [19]) It is consistent with { that there is a minimal
non-o-scattered order with the property that every uncountable suborder contains a copy

of wy.

Main results. Up to this point though, all consistent examples of minimal non-o-scattered
linear orders are of cardinality N;. In order to state our main result, we need to introduce
another definition. A linear order L is xT-Countryman if L has cardinality x* and L2
is a union of k chains.

Theorem 1.14. Assume V = L. For each infinite cardinal x, there is a k+-Countryman
line which is minimal with respect to being non-o-scattered.

In fact, the construction in Theorem 1.14 factors through the combinatorial principle K
considered in [3], [28], [29]. This has added interest, because the main result of Rinot’s

4 A Kurepa line is a linear order of density Ny which has cardinality greater than ¥; and does not contain
a real type. See [39] for more information.
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[28] shows that if  is a singular cardinal, the principle[}), is equivalent to the conjunction
of O, and 2" = ™. As a corollary, it follows that the failure of KJ, at a singular strong
limit cardinal has large cardinal strength: in such a situation, either there is a violation
of the singular cardinal hypothesis or O, fails. Either of these possibilities carries large
cardinal strength [9], [10], [15], [31] and so we obtain, for example, the following striking
corollary.

Corollary 1.15. Assume that there is no inner model with a measurable cardinal p of
Mitchell order wt*. If k is the successor of a singular strong limit cardinal, then there
is a minimal non-o-scattered linear order of cardinality k.

The k*-Countryman lines are interesting in their own right. Although they have
almost exclusively been studied when x = Ry (in which case they are known simply as
Countryman lines), their remarkable properties readily generalize to the higher cardinal
case:

o kT-Countryman lines do not contain a copy of k¥ or its converse.

e If L is kT-Countryman and X C L has cardinality T, then there is a family of
pairwise disjoint intervals of X of cardinality x*. In particular X has density x7.

o If L is kT-Countryman, then no linear order of cardinality x* embeds into both L
and L*.

Our argument for k = Ny is somewhat simpler and of independent interest as it
answers Baumgartner’s question mentioned above.

Theorem 1.16. Assume <. There is a Countryman line which embeds into all of its
uncountable suborders.

Organization. Section 2 will contain a review of the basic analysis of trees and linear
orders which we will need. In Section 3, we will show that < is sufficient to construct a
minimal Countryman line. Section 4 contains the basic analysis of x1-Countryman lines
for arbitrary infinite cardinals x. A framework for constructing xT-Countryman lines
which are minimal with respect to being non-o-scattered is introduced in Section 5. This
framework is then put to use in Sections 6 and 7 where we present forcing and axiomatic
constructions of such linear orders. Finally, Section 8 contains some concluding remarks.

2. Preliminaries

We will begin with a brief review of some notation, terminology, and concepts from
set theory which we will need. None of the material in this section is new or due to the
authors. Further information on trees and linear orders can be found in [30] and [39].
Both [14] and [16] are standard references for set theory ([14] is encyclopaedic whereas
[16] is more detail oriented).
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All counting starts at 0. As is standard, we will use w to denote the set of finite ordinals,
which we take to coincide with the nonnegative integers. A sequence is a function whose
domain is an ordinal. The domain of a sequence s is typically referred to as its length
and denoted [s|. If s and ¢ are sequences of ordinals, we define s <jex ¢ if either s is an
initial part of ¢ or else there is a & < min(|s], |¢|) with s(§) # t(§) and, for the least such
&, s(&) < t(&). We will generally identify a function with its graph. In particular if f
and g are functions, f C g exactly when f is a restriction of ¢ (including the possibility
f=9).

If s and ¢ are two sequences taking values in Z, we define s + ¢ to be the sequence of
length min(|s|, |¢t|) obtained by adding s and ¢ coordinatewise on the restricted domain.
If t is a sequence taking values in Z, then —t is the sequence of length |t| obtained by
multiplying ¢ coordinatewise by —1. As is standard, s — ¢t abbreviates s + (—t).

We note that any linear ordering is isomorphic to a set of sequences of ordinals ordered
by <jex- If one closes this set of sequences under initial segments, the structure of this
set equipped with the extension partial order captures important aspects of the linear
order. For this reason, it is fruitful to abstract this concept. A tree is a partially ordered
set (T, <r) in which the set {s € T': s < t} of predecessors of ¢ is well-ordered by <r
for any ¢ € T. The order-type of this set is called the height of t. The collection of all
elements of T of a given height § will be denoted by Ty, referred to as the 6™ level of
T. The height of the tree T is the least ¢ such that T contains no elements of height
0. Notation such as T'¢s should be given the obvious interpretation. If s is an infinite
cardinal, a tree is a k-tree if the height of T is k and all levels of T have cardinality less
than k.

We say that T is Hausdorff if whenever s,t € T have limit height and are distinct,
they have distinct sets of predecessors. If T' is a set of sequences which is downwards
closed with respect to <, then (7, <) is a Hausdorff tree and moreover T,, consists of
the sequences in T of length a; we say that T is a tree of sequences. Conversely, any
Hausdorff tree is isomorphic to a tree of sequences.

In this paper we will work with trees of sequences which moreover have the property
that sequences of limit length ¢ are extended by a unique element of the tree of length
d—+1. For this reason, we will typically work with trees consisting of sequences of successor
length and which are closed under taking initial segments of successor length.

An antichain in a tree T is a collection of pairwise incomparable elements. It is worth
noting that in a tree if s and ¢ are incomparable, they have no common upper bound
(i.e. they are incompatible). If T is a tree, S is a subtree’ of T if S C T, S is downward
closed in T', and S has the same height as T'. A subtree of T" which is a chain is a branch
of T

A k-Aronszajn tree is a k-tree with no branches. A linear ordering L is a k-Aronszajn
line if it does not contain a copy of x or xk* and whenever X C L has cardinality &,
its density is k. It is a standard fact that the lexicographic ordering on a k-Aronszajn

5 This meaning of “subtree” and “branch” are not completely standard.
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tree is a k-Aronszajn line and any x-Aronszajn line is isomorphic to the lexicographic
ordering of some subset of a xk-Aronszajn tree of sequences. If xk = Ny, then we just write
“Aronszajn” instead of “k-Aronszajn.”

(Note that by Hausdorfl’s theorem, any linear order which does not contain x or x*
also does not contain any scattered suborders of cardinality «. Hence this definition
of Aronszajn line is equivalent to the one given in the introduction.) A linear order C
is k-Countryman if C' has cardinality x and C? is a union of fewer than x chains (in
the coordinatewise order); we will write “Countryman” to mean “N;-Countryman.” The
basic analysis of k-Countryman lines can be found in Section 4.

Finally, we recall a useful characterization of o-scattered linear orders which follows
easily from Galvin’s analysis of 9 (see [22]). If + is an infinite ordinal, consider the
collection Q, C QY consisting of all z which change their values finitely often: there
exist 0 =&y < ... < &, =~ such that if i < n, x is constantly ¢; on [&;,&11). We equip
Q., with the lexicographic order. Since |Q,| = |y|, neither v* nor its converse embed
into Q. It is also easily checked by induction that any interval in Q. contains copies of
§ and ¢* for any ordinal § < 4*. Thus by Theorem 3.3 of [22], Q., is o-scattered and any
o-scattered linear order of cardinality |y| embeds into Q. (if L is o-scattered and has
cardinality at most ||, then L x Q. and Q. satisfy (i)—(iii) of [22, 3.3] for a = 8 =T
and hence are biembeddable). Rephrasing this, we have the following.

Proposition 2.1. If v is an infinite ordinal, then a linear order of cardinality at most |7|
is o-scattered if and only if it embeds into Q.. In particular Q. is biembeddable with

Q-
3. Baumgartner’s question

In this section, we prove Theorem 1.16, thus answering Baumgartner’s questions by
showing that from ¢, one may construct a minimal Countryman line. As already noted,
such a linear order is Aronszajn but not Souslin.

It will be useful to define some notation and terminology before proceeding.

Definition 3.1. S is the set of all s € <“*w of successor length which are finite-to-one.

We will view S as being equipped with the order of extension, making it a tree. Define
f:S—wxwhby

f(s) = (s(8), {n < &2 s(n) = s(E)})

where |s| = £ 4+ 1. Observe that if f(s) = f(s'), then s and s’ are incomparable. Thus S
is special.

The next definitions abstract the aspects of the tree of sequences associated to the
function g9 of [40].
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Definition 3.2. A o5-modifier is a continuous integer-valued sequence of successor length.
If s,¢t € S, we say that s is a go-modification of t if |s| = |¢t| and s — ¢ is a go-modifier. If
X C S, we will say that X is closed under gs-modifications if whenever s € X and ¢t is
a po-modification of s, t € X. We say X is pgs-full if it is uncountable and closed under
initial segments of successor length and gs-modifications.

We will sometimes drop the prefix “gs-" from go-modifier for brevity. Notice that if m
is a po-modifier of length a+1 for « limit, then m is uniquely determined by its restriction
to . In fact any continuous sequence s taking values in Z that is eventually constant
and having limit length can be uniquely extended to a gs-modifier of length |s| + 1. It
will sometimes be useful to regard such sequences s as po-modifiers by identifying them
with the minimum modifier which extends them.

Proposition 2.1 yields the following proposition.

Proposition 3.3. For any successor ordinal «, the set of modifiers s of length « is o-
scattered when ordered by <iex-

Definition 3.4. A subset X C S is ga-coherent if whenever s,t € X with |s| < [¢], t[|s] is
a go-modification of s. For ease of reading we will write “full” instead of “gs-full” in the
context of “po-coherent.”

Notice that there are only countably many gs-modifications of an element of S and
therefore any go-coherent full subset of S is a subtree which has countable levels and
hence is an Aronszajn tree. The following theorem is essentially due to Todorcevic (see
[40, 3.4]); see the proof of the more general Proposition 4.3 below.

Theorem 3.5. If C' C S is uncountable and p2-coherent, then (C,<jex) s Countryman.

We will prove Theorem 1.16 by showing that < implies the existence of a full go-
coherent tree T' C S with the property that for any uncountable antichain X of T' and
any uncountable subset Y of T, there is an embedding of (X, <jex) into (Y, <jex)-

Lemma 3.6. Suppose T is a p2-coherent subtree of S such that for any subtree S of T
there is an embedding ¢ : T — S that preserves both the lexicographic order <jex and
incompatibility with respect to T’s tree order. Then given any uncountable antichain X
of T and uncountable subset Y of T, there is an embedding of (X, <iex) nto (Y, <iex)-

Proof. Observe that by replacing Y with an uncountable subset if necessary, we may
assume Y is an antichain in T'. Let S be the downward closure of Y in T'and let ¢ : T — S
be the hypothesized embedding. We define a function f : X — Y by letting f(z) be some
element of Y that extends ¢(z); this is possible by our choice of S. Given = <jex y in X,
we know that ¢(x) and ¢(y) must be incompatible in S, and @(x) <iex ¢(y). But this
implies f(x) <iex f(y) as well, and we are done. O



10 J. Cummings et al. / Advances in Mathematics 441 (2024) 109540

How does this previous lemma help our project? It tells us that it will be sufficient
to build a gg-coherent T that admits suitable embeddings into any of its subtrees. Our
strategy is to build 7" so that every subtree will contain a tree of a canonical form that
will render the existence of the required ¢ obvious. This provides the motivation for the
next set of definitions, which capture a crucial ingredient in our proof.

Definition 3.7. Suppose n < w and s and t are in S. We say that t is an n-extension of
s, written s C,, t, if s C ¢t and whenever |s| < & < |t], t(&) = n.

Definition 3.8. Suppose that 7' C S is go-coherent and full.
(1) The cone of T determined by s, denoted T'[s], is defined as usual by
Tls]:={teT:tCsorsCt}.
(2) The frozen cone of T determined by s and n, denoted T'[s, n], is defined by
Tis,n]:={teT:tCsorsC,t}.

(3) Given an ordinal §, we let Ts[s] denote the elements of T'[s] of height ¢, and similarly
for Tj[s, n].

It is clear that any cone of T is also a frozen cone, as T'[s] is just T'[s,0]. Since T is
oo-full, frozen cones of T" are also subtrees of T

Lemma 3.9. If T'C S is ga-coherent and full, then for any s € T and n < w there is an
embedding ¢ of T into T'[s,n] that preserves the lexicographic order <iex and incompati-
bility with respect to the tree ordering.

Before we begin the proof of the lemma, it will be useful to introduce two operations
on S.

Definition 3.10. If s,t,u € S, |s| < [t| = |u|, and

s(€) i €< s|, and
u(§) := ,
(&) if|s| <& <[t

then we say that u is obtained by writing s over t.

Definition 3.11. If t € T, 8 < |t|, and n < w, then the sequence v defined by

t(&) if £ <, and
v(§) = .
&) +n ifB<E<]
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is the result of translating t by n beyond (.

Proof of Lemma 3.9. Observe that if 7' C S is go-coherent and full, then it is closed
under these two operations. We prove the lemma in two stages. First, we prove that for
any s € T and n < w there is such an embedding from the (ordinary) cone 7T'[s] into the
frozen cone T'[s, n]. Doing this is straightforward: given ¢ € T'[s] extending s, we translate
t by n beyond |s|. This function has the required properties, and by our assumption on
T the range is contained in T'[s, n].

Next, we show for any s € T that T can be embedded into the (ordinary) cone T'[s]
preserving the lexicographic order and incompatibility. To do this, define § := |s|+w+1.
Observe that (Ts[s], <iex) is a dense linear order. Since T<s is countable, there is a
Klex-preserving embedding

¢0 : ng — T(;[S]

Notice that ¢ trivially preserves incompatibility since Tj[s] is an antichain. We extend
¢ to a function ¢ : T — T[s] by letting ¢(¢) be the result of writing ¢o(t | §) over t for ¢
of height greater than §. Again, our assumptions imply that the range of ¢ is contained
in T'[s], and the function preserves both <jex and incompatiblity. O

Now we come to the point: if we can build a tree as in Lemma 3.9 with the property
that any subtree contains a frozen cone, then we will have what we need to establish
Theorem 1.16.

Proposition 3.12. Suppose that T C S is o2-coherent, full and has the property that every
subtree of T' contains a frozen cone. If C C T is any uncountable antichain, then (C, <jex)
is a minimal Countryman line.

We have therefore reduced our task to establishing the following proposition.

Proposition 3.13. Assume <. There is a T C S which is po-coherent, full, and has the
property that every subtree of T contains a frozen cone.

We will pause to introduce some notation and terminology which, while a little gra-
tuitous now, anticipates the greater complexities of the higher cardinal constructions
in later sections. Let = denote the equivalence relation on S defined by s =t if ¢t is a
oo-modification of s. Define P := {[s] : s € S} to be the collection of all =-equivalence
classes of functions in S, and order P in the natural way: given ¢ and p in P, we define
g <p p to mean that some element of ¢ extends some element of p in S. We extend the
notion of “height” to elements of P in the obvious way: the height of p is the height of
any of its elements.

Our construction will depend on the interplay between the partially ordered sets (S, D)
and (P, <p), and we explore that relation a little with the following observations. We
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start by recording some easy facts about the interaction between the equivalence relation
= and the operations on sequences from Lemma 3.9.

Lemma 3.14. The following are true:

(1) Let sq,to,s1,t1 € S with sg = s1, to = t1 and |so| = |s1]| < |to] = [t1]|. Let r; be the
result of writing s; over t;. Then rq =ry.

(2) LettesS, let B < |t| and let r be the result of translating t by n beyond §+ 1. Then
r=t.

(3) For each s € S and countable 8 > |s|, there is at € S such that s Ct and |t| = f+1.

Proof. Routine. O

Lemma 3.15. The following are true:

(1) If (sn : n < w) is a sequence in' S with s, Ty spy1 then (U, .., sn)" (i) €S for all
1< w.

(2) If s,t € S with s =t | a, then for any n < w there is an s C,, r such that r = t.

(3) Any decreasing sequence (p, : n < w) in P has a lower bound.

Proof. For (1), let s = (|, sn) ~(i). Clearly |s| is a countable successor ordinal, so we
need only verify that s is finite-to-one. For k < n < w,

sTH({k}) C st ({RD) U {]s| = 1}

by the choice of the sequence (s, : n < w), and this set is finite because s, € S. To
see (2), let 7’ be the result of writing s over ¢, and let r be the result of translating r’
by n beyond «. By definition s C,, v, and by Lemma 3.14 r = ¢. For (3), observe that
by (2), we may recursively choose s, € S such that s, C,, s,41 and p, = [s,]. By (1),

[(Up<w )" (0)] is a lower bound for (p, : n <w). O

Using Lemma 3.15 it is straightforward to build <p-decreasing sequences (p,, : @ < wy)
in P such that p, is the =-class of some t, : @ + 1 — w. Given such a sequence, define

T:={teS:tep, for some a <w}= U Da-

a<wi

Clearly T is go-coherent and full and hence an Aronszajn tree by remarks made after
Definitions 3.1 and 3.4.

Our general strategy to prove Theorem 1.16 now comes into focus. What we need to
do is to use < to build a sequence (¢, : @ < wi) of elements of S such that:

o loia+1—w,
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o the sequence ([t,] : @ < wi) is <p-decreasing in P, and
o the associated tree has the property that any subtree contains a frozen cone.

If we can do this, then Theorem 1.16 follows.

Proof of Theorem 1.16. Let (A, : @ < wy) be a {-sequence, which we will assume is
tailored to guess initial segments of wi-trees from S—i.e. if S C S is an wi-tree, then
there are stationarily many limit ordinals § < w; with A5 = S<s, the initial segment of
S of all levels prior to level ¢ (see discussion in the proof of Theorem 7.7 below).

Part of the construction is trivial: we let to = (0), and if we are given ¢, then we set
ta+1 := to"(0). Thus, the interesting case occurs when § < w; is a limit ordinal and we
have constructed (t, : @ < ¢). Under these circumstances, we will know what 7' looks
like below level §, and our choice of t5 : 6 +1 — w will determine which branches through
this initial segment of T" will have continuations at level 4.

The {-sequence presents us with a countable subtree As of S, and we ask if Ay is a
subtree of T5 that does not contain a frozen cone of T;. If the answer to this question
is “no,” then we need not worry about As and let ¢t5 : 6 + 1 — w be any element of S
such that [¢5] is a lower bound of ([ts] : @ < ) in P. If the answer is “yes,” then we will
need to choose t5 : 6 + 1 — w in S so that for each s = t4, there is @ < ¢ such that
sla+ 1 is not in As.

We do this in countably many steps. First, we let (6, : n < w) be an increasing
sequence cofinal in é. In our construction, we will be choosing ordinals «,, and corre-
sponding s, € p,, such that:

e 0, <ap, <§,and
e 5 &y Sn41-

This guarantees that

ts == (U Sn> A<0>

will be in S and of the right length.

We start with ag = dp, and let sg = t,o,. Once we have constructed s, and a,, we
assume that some bookkeeping process hands us a go-modifier m,, : § + 1 — Z. The
function m,, should be thought of as coding a member of the equivalence class of the t5
we are building. Thus, we look at the function s,, + m,, defined on |s,| given by

(8n 4+ mu)(€) = sn(§) + mn()

and ask if this is a member of As. If the answer is “no” (this includes the case in which
Sn +my has negative values), then we choose a;,11 to be greater than d,,11, and let s,11
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be some n-extension of s, in the =-equivalence class [tq,,,]. If the answer is “yes,” then
we finally need to use our assumption that As, when considered as a subtree of T.g,
does not contain a frozen cone of T.s.

Define
M := max{|m,(€)] : £ < 6} and N:=M+n+1.

Our assumption says that s, + m,, will have an N-extension r in T that is not in As.
Extending r will not change this situation, so we may assume that |r| = a,41 + 1 where

Qi1 = Opy1-
Now the idea is that we should define
Spal =T — M.
Notice that if £ < a,, then

3n+1(£) = T(f) - mn(g) = Sn(f) +mn(§) - mn(é-) = Sn(g)a

and so s,4+1 extends s,. If @, <& < ayy1, then 7(€§) > N and hence

snt1(§) =7(§) —mn(§) 2n+ 1.

Thus 55,41 is in fact an n-extension of s,. Finally, s,41 = t,,,,, because s, is equivalent
to r and r € T<5. The key point is that if ¢ is any extension of s,,11 in T}y, then applying
the modification m,, to ¢ results in some s such that sfa, + 1 is not in As.

Since we made sure to arrange s,, C,, Sp+1, we know
+1

ts == ( U sn>A<0>,

nw

is in S and of height §. Thus, [ts] will be a lower bound for ([t,] : @ < §) in P, and the
oo-modifications of t5; will be the §** level of T.

The construction described above will produce a decreasing sequence ([t,] : @ < wq)
in P. It remains to show that every subtree of T contains a frozen cone. Suppose S C T
is downward closed and does not contain a frozen cone. By the choice of our {>-sequence,
there must be a § < w; such that A; = Scs and (T<s,<7,S<s) < (T, <7,S5). In
particular § is a limit ordinal, As C T, and A5 = S5 contains no frozen cone of Ts.

It suffices to show that S C Ts. This follows from our construction, though: if ¢ is
any element of level § of T', then during our construction of t5 there was a stage where
the function t — t5 appeared as m,,. Since S does not contain a frozen cone, s,4+1 was
chosen so that s,4+1 + my, is in T<s \ S<s. Because ¢ extends s,4+1 + my, t is also not
in S. Thus, the height of S is at most § and so S is countable. We conclude that any
subtree of T contains a frozen cone, as required. 0O
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4. Countryman lines at higher cardinals

In the remainder of the paper, our aim is to adapt the construction in the previous
section to higher cardinals. While this is of interest in its own right, our main motivation
is to produce examples of minimal non-o-scattered linear orders of cardinality x+ > N;.
In fact these orders will be x-Countryman lines.

We will begin recording some basic facts about x*-Countryman lines, when « is an
infinite cardinal. Here a linear order C is x*-Countryman if its cardinality is s and C?
is the union of  chains with respect to the coordinatewise partial order on C2.

Lemma 4.1. Suppose that L is a linear order of cardinality k™ and that whenever Z C
L x L is a chain, there are at most k elements x € L such that

Zy={yeL:(z,y)€Z}
has cardinality k. Then L is not kt-Countryman.
Proof. Suppose that 2 is a collection of chains in I x L with | 2’| = k. Since sV is not
a union of k sets of cardinality x, our assumption implies there is an « € L such that for
every Z € %, Z, has cardinality at most k. Again using the regularity of k¥, there is a
y € L such that y & Z, for every Z € Z. But now (x,y) € L x L is not covered by Z.

Since 2 was arbitrary, L is not kT-Countryman. O

Proposition 4.2. Suppose that C is k™ -Countryman. The following are true:

(1) C* is kT -Countryman and any suborder of C of cardinality k* is k™ -Countryman.
(2) C is not a well order.

(3) C is has no dense suborder of cardinality k.

(4) C is k*-Aronszajn.

(5) If L is a linear order which embeds into C' and C*, |L| < k.

Proof. Ttem (1) is trivial and (4) is an immediate consequence of (1)—(3). To see (2),
observe that by (1), it suffices to show that x* is not Countryman. Notice that if Z C
k+ x kT is a chain and some section Z, has cardinality T, then it is cofinal in x* and
hence Z, is empty whenever o < «’. In particular, there is at most one « such that Z,
has cardinality 7. By Lemma 4.1 s is not Countryman.

To see (3), suppose that C has cardinality x™ and yet has a dense subset D of
cardinality k. If Z C C x C' is a chain, let X be the set of all z € C such that the
section Z, contains at least two elements a, < b,. As D is dense, whenever x € X we
may choose d, € D with a, < d; < b,. Since x < 2’ implies Z, < Z,, it also implies
dy # dy. Thus | X| < |D| € k. Again, by Lemma 4.1, C' is not k-Countryman.
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Finally, to see (5), notice that if L is any linear order and f : L - C and g: L — C*
are order preserving, then {(f(z),g(z)) : # € L} meets any chain in C? in at most one
point. In particular, if C is k-Countryman, |L| < x. O

Notice that the definitions of go-modification and os-coherent which we made previ-
ously makes sense in the generality of <x'. A subset X of <®"w is 02-full with respect
to kT if it has cardinality ' and is closed under initial segments of successor length and
o2-modifications. If kT is clear from the context, we will sometimes abuse notation and
write “go-full” (or just “full”) to mean “go-full with respect to x™.” The next proposi-
tion provides a useful criterion for demonstrating that a linear order is xT-Countryman.
The proof is a routine modification of arguments of Todorcevic [40] and is included for
completeness. Recall that a tree of height k1 is special if it is a union of x antichains.

Proposition 4.3. Suppose that T C <K s 02-coherent and has cardinality k*. If T is
special, then (T, <jex) is k-Countryman.

Proof. It suffices to cover {(s,t) € T? : |s| < |t|} by k many chains. Given (s,t) € T?
with |s| < |t], let n = n(s,t) and & = &(s,t) for ¢ < n be such that:

s fH=0<& <. <& =8
o (&) — s(&) # t(&iv1) — s(&iv1), and
o if & < < &iqr, then t(n) — s(n) = (&) — s(&)-

Let f : T — & be such that f~!(a) is an antichain for each o < k. Define o(s,t) and
o(s,t) to be the sequences of length n(s,t) given by

o(s,t)(i) = t(&) — s(&) P(s,t)(i) :== f(s[&ir1)

whenever i < n(s,t).
Since the sets of possible values of o and ¢ have cardinality «, it suffices to show that
if o(s,t) =o(s',t') and ¢(s,t) = ¢(s',t'), then either:

e 5 lex 8 and t jex t’ OF
o 5" Clox 5 and ¥ Lex t.

Notice that this is vacuously true if either s = s’ or t = . For ease of reading, we
will write & for &;(s,t) and & for &;(s’,t’). Let i < n be maximal such that § = . If
i =mn and s = ¢, then the desired conclusion follows. Otherwise set { = |s| if i = n and
¢ =min(§41,&,,) if i <n.

Claim 4.4. s|C # §'[C.
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Proof. If i = n then &, = &, = |s| = |s'| = ¢, and we are done since s # s’. Thus we
may assume that ¢ < n. Since s[& 1 # s'[&; and f(s]&ip1) = f(s'[€4,), it follows
that s[&; 41 is incompatible with s'[£;, | and therefore that s[¢ # s'[¢. O

By exchanging the roles of s and s’ if necessary assume that s <jex s’. Observe that
since o(s,t) = o(s',t'),

and hence

t(n) —t'(n) = s(n) —s'(n) (4.1)

whenever n < (. Let ¢ be minimal such that s(d) # s'(d). Since 6 < (, (4.1) implies
t1d =t'10 and t(9) < t/(0). Thus t <jex t', as desired. O

Proposition 4.5. Suppose that C C <K s 02-coherent and full. If X C C has cardinality
at most k, then (X, <jex) is o-scattered.

Proof. By adding 1 to all of the values of elements of X if necessary, we may assume
that no element of X takes the value 0. Let ¢t € C' be such that |¢| is an upper bound
for the lengths of elements of X, and let Y be the set of all go-modifications of ¢. Define
f: X =Y by

s(§) & <|s|
f(s)(€) =40 if & = [s]
(&) it &> s

and observe that f preserves <jex (since we’ve arranged s only takes positive values, 0
effectively serves as a terminating symbol for the sequence and we’ve defined <jex so that
the terminating symbol is less than all other symbols). Since y — y—1t also preserves <jex
and maps Y into the set of go-modifiers of length |¢|, we are done by Proposition 3.3. O

5. Higher p»-coherence and the tree S,

In order to apply Proposition 4.3, it will be helpful to construct an analog S, C <k
of S for higher cardinals x such that any 7" C S,; which is ga-coherent and full is special.
Toward this end, let us assume that « is a (possibly singular) infinite cardinal. If there is
a Ogk-sequence, then the tree T'(p2) defined using minimal walks down the O,-sequence
has many nice coherence properties. Our plan is to capture some of this structure in an
abstract way.
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Definition 5.1. Define S, to consist of all functions ¢ € <~" 4 which satisfy the following
conditions:

(1) |t| =0 + 1 for some 6 < k™ (which we denote as top(t)),

(2) for each integer n > —1, the set C! := {a < |t] : t(a) < n} is closed,

(3) if o < |t] is a limit ordinal, then #(c) is the least n such that C? is unbounded in «
(noting that C* | = (), and

(4) if I is a maximal open interval of [t| that is disjoint to C!,_; then

otp(CENI) < k- w.
If t € S, then we let last(t) (the last value of t) be given by
last(t) := t(top(t)).

Setting n = 0 and I = |t| in (4), otp(Cf) < k- w. An easy induction (break up |¢| into
blocks demarcated by elements of the closed set C? ) now shows that otp(CY) < (k-w) 1
for all n < w.

Observe that if s # t are in S,;, last(s) = last(t) =: n, and s C ¢, then C? is a proper
initial segment of ¢ and hence otp(C?) < otp(C}). In particular,

s — (last(s), Otp(clsast(s)))

is a specializing function for S,. (The use of the specific ordinal k- w in the definition
is not critical: k - w is large enough to guarantee that S, will be closed under certain
types of increasing unions, but small enough to ensure that our specializing function
takes values in a set of cardinality k.)

The definition of C,, given in Section 3 generalizes without change to Sy, as does the
definition of frozen come. The following proposition summarizes what we have shown so
far; the proof of the later statement is obtained from the arguments in Section 3 mutatis
mutandis.

Proposition 5.2. If T C S, is oa-coherent and full, then (T, <iex) is a k1 -Countryman
line and any suborder of cardinality at most K is o-scattered. Moreover, if every subtree
of T contains a frozen cone, then (C,<jex) 8 a minimal non-o-scattered linear order,
whenever C C T is an antichain of cardinality k.

Unlike in Section 3, it need not be the case that in a given model of set theory that
there is a subset T of S,, which is ps-coherent and full when xk > Rg—after all such a T is
a kT-Aronszajn tree and hence witnesses the failure of the tree property at k* (see [24]).
On the other hand, if g3 is defined from a O,-sequence as in [40], then the collection of
all po-modifications of
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{o2(B)la+1:a<B <k}

is a subset of S, which is go-coherent and full [40].
We will now establish some basic properties of S, and define some terminology and
notation.

Lemma 5.3. Suppose t € S, and 0 = top(t).

(1) The sequence (C!,
0+ 1=t
(2) If a < |t| is a limit ordinal, then t(«) = n implies that t is constant with value n on

i n < w) s an increasing sequence of closed sets with union

a closed unbounded subset of .

(3) For each n < w the set nacc(CL) of non-accumulation points of C consists of
successor ordinals.

(4) The function t is determined by its values on successor ordinals.

Proof. Item (1) is immediate from the definitions. For (2), assume that t(a)) = n. Both
C!_,Naand C! Na are closed in «, but the former is bounded below « while the latter
is not. Thus C! N\ sup(C? _,) is closed and unbounded in «. But since this is contained
in the set of 8 < « for which ¢(5) = n, we are done. Statements (3) and (4) now follow

immediately. O

The collection S, is closed under some natural operations. For example, it is clear
that this set is closed under restrictions to successor ordinals. Also if ¢t € S,;, then so is
t~(n) for every n < w. Most important for us, though, is that S, is essentially closed
under certain types of increasing unions. The next definition will help us analyze the
situation.

Definition 5.4. Given a limit ordinal § < ™, a function t : § — w is an Sj-limit if
t] a+1isin S, for every a < 4.

The point is that any strictly C-increasing union of elements of S, is an Sj-limit.
If t is an S,-limit with domain some limit ordinal &, then ¢ will possess many of the
characteristics of an element of S, automatically. For example, the definition of C!,
makes sense for each n, and these sets will each be closed in § because all of their proper
initial segments are closed. We also note that if ¢ does have an extension s € S, with
top(s) = 4, then in fact this extension is unique, because the value s(¢) must be the least
n for which C!, is unbounded in §. We will encounter this idea many times, so it will
be convenient to give this particular n a name.

Definition 5.5. Suppose t : § — w for some limit ordinal § < x*. The limit infimum of
t, denoted lim inf(¢) is defined to be the least n < w with pre-image unbounded in ¢ if
such an n exists, and is said to be oo otherwise.
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Notice that if 6 has uncountable cofinality, then any ¢ : 6 — w will have a finite limit
infimum by a simple counting argument. Thus, the situation lim inf(¢) = co is possible
only if ¢f(§) = w.

For an S,-limit ¢, the question of whether ¢ can be extended to an element of Sy
hinges on the existence of a finite limit infimum whose pre-image is not too large. The
following lemma makes this precise.

Lemma 5.6. Suppose t is an S,-limit with domain some limit ordinal § < k™. Then the
following two statements are equivalent:

o t has an extension s € S, with top(s) = 0.
o liminf(¢) is some finite n < w, and the pre-image of n under t has a tail of order-type
less than k - w.

In particular, if t is an Sy-limit and |t| = & has uncountable cofinality, then t has an
extension s € S,; with top(s) = 4.

Proof. For the forward implication, suppose s € S, is an extension of ¢ with top(s) = 4.
Since s € S,;, liminf(¢) = s(0) is finite. If & < § is such that ¢ > s(J) on the interval
(c, 8], then

otp({n € (a,8) : t(n) = 5(d)}) <k -w

because s satisfies requirement (4) in Definition 5.1.

For the reverse implication assume ¢ satisfies lim inf(¢) = n. We want to show that the
function s := ¢t7(n) is in S,. Since ¢ is an S,-limit and s(§) = lim inf(¢) = n, requirements
(1)—(3) of Definition 5.1 are easily satisfied.

For requirement (4), let m be given and I C 6+ 1 be an open interval on which s > m.
If m > n, then since s~1(n) is cofinal in §, it must be that 3 := sup(I) < §. Since t[3+1
is in S, it follows that

m

otp(Cy iy NI) = otp(CfnriTl NI <k-w.

If m <n—1, then s7(m+1) = t~}(m+1) is bounded by some 3 < § and we are again
done by virtue of ¢[8 + 1 being in S,. Finally, if m = n — 1, then by our hypothesis we
may write I 1§ = Iy U I1, where I is an initial segment of I N § which is bounded in ¢,
and I is a tail of I N § such that otp({n € I : t(n) = n}) < k- w. Since t is an S,-limit,
we have otp({n € Iy : t(n) = n}) < k- w. Since & - w is closed under ordinal addition, it
follows that otp({n € I : s(n) =n}) < k-w as required. O

This simplifies the project of building C-increasing sequences in S,; immensely: we just
need to worry about what happens at limit stages of countable cofinality. In particular,
we need to guarantee that the limit infimum is finite and that the order-type of its
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pre-image does not grow to ordertype k - w. This turns out to be relatively easy to
arrange provided we are careful at successor stages. The following definition formulates
a straightforward way of doing this.

Definition 5.7. Suppose s,t € S,. We say that t is a capped extension of s if:

e s Ct (sot properly extends s),

e last(¢t) = 0 (so t terminates with the value 0), and

o t(&) >0 forall [s| <& < |t| —1 (so top(t) is the only place beyond s where ¢ returns
the value 0).

The motivation for this definition is as follows. Suppose that (s, : n < w) is a sequence
of elements of S,; and that s, 11 is a capped extension of s, for all n < w. The definition
guarantees that the union ¢ of the chain will satisfy lim inf(¢) = 0, and

otp(t™({0})) = otp(sy 1 ({0})) +w < k- w.
Thus, the sequence (s, : n < w) can be continued in a canonical way: we can define
Sw 1= t7(0).

The function s, so defined is in fact a least upper bound for the sequence in Sy, as any
such extension must take on the value 0 at top(s). We now extend this notion to longer
sequences in the obvious way.

Definition 5.8. A C-increasing sequence 5 = (sg : § < «) of elements of S,; is capped if:

e sg4+1 is a capped extension of sg for all 8 < a.
e for 7 < o a limit ordinal, we have

5y = ( U 35>’\<0).

B<y

(So for limit v, s, is the canonical extension of the sequence (sg : f < ) in Sj.)

We now have all the pieces we need to easily get our sufficient condition for building
C-increasing sequences in S, that are guaranteed to have upper bounds.

Lemma 5.9. A capped sequence in S, of length at most k has a least upper bound in
(Sﬁa g)

Proof. Let (s, : @ < 7) be a capped sequence in Sy, for v < « and let t = Ua<7 Sq. Let
da = |Sa| and observe that {J, : a < v} is a closed unbounded set in || and moreover is a
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tail of t=1(0). In particular, liminf¢ = 0 and a tail of t1(0) has ordertype v < k < K- w.
By Lemma 5.6, t7(0) isin S,,. O

Next we turn to modifications of elements of S,. For the sake of simplicity, in the
context of S, all modifiers will have length ™ + 1 and will be identified with their
restriction to kT as per our remark in Section 3.

It will be helpful to define some notation and terminology associated to a given mod-
ifier.

Definition 5.10. Suppose m : kT — Z is a modifier.

(1) The height of m, denoted ht(m), is the least ( < x* for which h is constant on
(¢, &™)
(2) The norm of m, denoted ||m||, is the maximum value of the form |m(&)|. Equivalently
lm]| is the least N such that every value of m is in [N, N].
(3) We define the change set of m, denoted A(m), to consist of the ordinals £ = 0 <
&1 < -+ &, = ht(m) such that m is constant on [£;, &;11) for each i < nand m(&;11) #
m(&;); the ordinals & for 0 < i < n are the change points of m.

We say that a modifier ¢ is legal for s € S if the values of s+ ¢ are nonnegative. The
motivation for this definition is the following lemma.

Lemma 5.11. If s € S, and m is a gz2-modifier which is legal for s, then s +m € S.

Proof. Clearly |s + m| = |s| is a successor ordinal and s + m takes values in w, so
requirement (1) of Definition (5.1) is satisfied. To verify requirements (2) and (3), let
a < |s| with « limit, and let s(«) = k and m(a) = . Since m is continuous m(8) = [ for
all large 8 < a, and since s € S,;, s(8) = k for all large 8 < « and s(8) = k for cofinally
many § < a. It follows that (s + m)(a) =k +1, (s+m)(8) = k +1 for all large 8 < a,
and (s +m)(8) = k + [ for cofinally many § < .

As for requirement (4), let I be an interval such that (s4+m)(«) > n for all @ € I, and
break up [ into finitely many disjoint subintervals I; for ¢ < k such that m is constant
on I; with value ;. For a € I; we have that s(a) = (s + m)(a) — I; = n —I;, so that

otp{a € I;: s(a) =n—-1}) < k- w,

which implies that otp({ar € I; : (s+m)(a) = n}) < k-w. Since the ordinal - w is closed
under finite sums, otp({a € I : s(«)

(4). O

=n}) < k- w and we have verified requirement

Notice that it follows immediately from Lemma 5.11 that if s € S, and m is legal for
s, then —m is legal for s +m, in which case (s +m) —m = s.
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Proposition 5.12. Suppose s : 0 +1 — w is in S, and let o < 4.

(1) The sequence s has a modification t that extends s | a and satisfies t(§) = 0.
(2) If & is a successor ordinal, then s has a modification that is a capped extension of
s a.

Proof. Part (1) is immediate except for the case where ¢ is a limit ordinal for which
n :=s(d) > 0. Since s € S, n is the least element of w whose pre-image is unbounded in
d. Increasing « if necessary, we may assume that s(§) > n for £ > a. Now we can define
a function m : k™ — Z by
(&) = {0 %fg < a, and
—-n fa<&<kt.

The function m is a modifier, and by the choice of a we know that it is legal for s. The
function ¢ := s + m has all the required properties.

Now suppose § = v+ 1. Part (2) is easy if a =+, so let us assume « < v and define
a modifier m : kK — w by

0 if £ <aq,
m) =<1 if o <& <, and
_s(8) if € =4.

Now m is legal for s, and s+ m is a capped extension of s | « that is equivalent to s. O
6. Forcing an example

Recall that in Section 3 we derived a poset P from the set S, investigated the properties
of P as a forcing poset, and then used ¢ and P to construct a subtree of S which
permitted us to answer Baumgartner’s question. The argument of Section 3 easily shows
that forcing with P adds a suitable tree, and indeed we may view the < construction as
building an wi-sequence of elements which generates a sufficiently generic filter.

By analogy with the definition of P from S, we let [s] be the set of legal modifications
of s for s € S, let P,, = {[s] : s € S, }, and order P,; by ruling that [t] < [s] if and only
if |s| < |t| and [s] = [¢]]s]]. In this section we investigate P, as a notion of forcing, and
show that P, is a (k + 1)-strategically closed notion of forcing that adjoins a tree of the
sort we desire.

Definition 6.1. Let P be a notion of forcing and let « be an ordinal. The game G, (P)
involves two players, Odd and Even, who take turns playing conditions from P for «
many moves. Odd chooses their move at odd stages, and Even chooses their move at even
stages (including all limit stages). Even is required to play 1p (the maximal element of
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P) at move zero. If pg is the condition played at move /3, the player who played pg loses
immediately unless pg < p, for all v < . If neither player loses at any stage 8 < «,
then Even wins the game.

Definition 6.2. Let P be a notion of forcing and « be an ordinal. The notion of forcing
IP is y-strategically closed if and only if Even has a winning strategy in G (IP).

We come now to one of our main points.
Theorem 6.3. P is (k + 1)-strategically closed.

Proof. The strategy for Even in the game is simple, and involves building a capped
sequence (tg : f < k), where tg is an element of pag. In the end, Even’s victory will be
assured by applying Lemma 5.9.

Whenever Odd chooses their move psg1, Even will choose a t € pygy; that is a 1-
extension of tg, and define tg,1 = t7(0) and pyg41) = [tg+1]. At a limit stage § < &,
the capped sequence (tg : 8 < ) will have a least upper bound ¢5 in S, and Even will
then play the condition ps = [t5]. O

Note that this game is very easy for Even to win: if they are building a capped sequence
(te : £ < k) in the background, then all that is required at successor stages is that their
response to pag41 must contain a capped extension of ¢g. If this is done, then Even will
always be able to play at limit stages. This flexibility will be an important ingredient for
us, as part of our proof relies on the fact that Even has many winning moves available
at successor stages.

The fact that P, is (k + 1)-strategically closed tells us that it adds no k-sequences
of ordinals, and therefore preserves all cardinals up to and including x*. If we assume
2% = kT as well, then all cardinals and cofinalities will be preserved.

The forcing also adds a xT-tree. Given a generic filter G C P, let us step into the
extension V[G]. An easy density argument shows us that G will consist of a decreasing
sequence (ps : 6 < kT) of elements of P,, which we enumerate so that ps consists of
sequences of length § 4+ 1.

If we now define

T(G) := U bs

o<kt

then it is straightforward to see that T'(G) forms a tree under extension. Moreover, by
construction T(G) is ga-coherent and full.

We will need to work with certain elementary submodels of cardinality . In the case
when & is regular and k<" = k we could use such models which are closed under sequences

of length < &, but if  is singular this is impossible because in this case £f(%) >, and
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in any case we do not want to make cardinal arithmetic assumptions. We will make a
standard move and use a certain type of “internally approachable” model.

If x be a sufficiently large regular cardinal, we will mildly abuse notation by writing
“N < H(x)” as a shorthand for “N < (H(x), €, <y)” where <, is some fixed wellordering
of H(x). We claim that any parameter 2 € H(x), we can find an elementary submodel
M < H(x) satisfying the following:

e z € M,

e M is of cardinality x with x +1 C M;

e M Nkt is some ordinal § < xt;

o for every X € M with |X| > &, there is an enumeration £ = (z; : i < k) of X N M
such that Z[j € M for all j < k.

Let cf(x) = p. We construct M as the union of a p-chain (M;);<, where:
e X,k € My;
o forall i < p, M; < H(x) and |M;| < k;
o for all ¢ and j with ¢ < j < u, M; C M; and M; € Mj;
o forall j <p, (M;:i<j)e M
o for all v < k there is ¢ < p such that v C M;.

This is all possible if we choose y sufficiently large.

We verify that if we set M :=J,_,
and so M Nk* € k™. Now suppose X € M with |X| > . To build ¥, we assume without
loss of generality that X € M. We start by choosing (z; : ¢ < ) to be the <,-least
enumeration of X N My, noting that 9 < & because |My| < k and (x; : i < ) € My

M; then M is as required. By construction kK C M,

because X, My € M;. We will now proceed inductively for p steps, choosing (z; : i < ;)
enumerating X N M; with v; < x and (z; : i < ;) € Mjq;1. Given (x; : ¢ < 7;), we
choose (y; : ¢ < J;) to be the <,-least enumeration of X N (M;41 \ M;), and then set
Yi+1 = 5 + 965 and x4 = y; for i < 4. Since X, My, M;; € Mj,5 it follows that
(yi 11 < d;) € Mjy2, and so (x; : i < 7yj41) € Mjyo. When j is limit let v; = sup;, - Vo,
then v, < k because j < p = cf(k), and (x; : ¢ < ;) € M;1;1 because it can be defined
from (M; : i < j) and we have (M; : i < j) € M.

Observation 6.4. If we require that the set X N M be enumerated with repetitions, then
we replace X by k X X and let ((a,x;) 11 < k) be an enumeration of (k x X) N M with
all its proper initial segments in M. Then (x; : i < k) enumerates X with repetitions
and all its proper initial segments lie in M.

Let M be a submodel of this type, and note that since k € M any set which is
definable from the parameter x is also in M: in particular the set Sy, the forcing poset
P., the winning strategy for the game G,;1(P,), the set of go-modifiers of length s,
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and the set of all dense subsets of P, are all elements of M. Given any p € M NP, we
can use our game G1(P;) to build an (M, P,)-generic subset G of M N P, together
with a lower bound for G, that is to say a totally (M, P,)-generic condition. To this
we fix an enumeration D of the dense subsets of P, which lie in M in order type &,
such that every proper initial segment of D is in M. We then build a run of the game
Gr+1(P,) where Even uses the winning strategy, and player Odd plays by choosing pagy1
as the <,-least extension of pys that lies in Dg. The key point is that for every v < &,
the sequence of moves up to v is defined from the strategy and an initial segment of D,
hence it is in M: in particular p, € M for all v < k. It is now clear that the final move
py 18 totally (M, P,)-generic. In particular, p,, induces an (M, P,)-generic filter which
determines our generic tree up to level § = M N T, and the same will occur if S is a
name in M for a subtree of 7. We leverage this to establish that the generic tree T'(G)
added by P is such that all of its subtrees contain a frozen cone.

Theorem 6.5. Every subtree of the generic tree T(G) adjoined by P, contains a frozen
cone. Thus, there is a minimal non-o-scattered linear order of cardinality kT in the
generic extension.

Proof. Let T be a P,-name for the generic tree T(G), and suppose
p Ik “S is a subtree of T' that does not contain a frozen cone”. (6.1)
We will find 6 < ™ and ¢ < p such that
qIF“S C Ty (6.2)

Let x be some sufficiently large regular cardinal, and let M be an elementary submodel
of H(x) as discussed above, containing all parameters of interest to us. We let d be
M N k*. As in the preceding discussion let D = (D; : i < K) be an enumeration of the
dense open subsets of P, that lie in M with every proper initial segment of Din M , and
let 7 = (m; : 9 < k) be an enumeration with repetitions of the modifiers that lie in M
with every proper initial segment of m in M. We play the game G,11(Px) to produce
the required g. The initial moves are as expected: Even must open with [@], and we let
Odd respond with p.

Suppose now that we are playing the game, and it is Odd’s turn to play. In this
situation, we have collaboratively built (p, : v < 28), while Even has been building
their auxiliary sequence (¢, : v < ) on the side. Our construction will be guided by D
and m, so that as in our prior construction of a totally generic condition we have that
(py 1y < 2p) and (t, : v < ) are both in M. The sequence (t, : v < ) will be topped,
in particular last(t¢g) = 0.

We now consider the modifier mg, noting that since mg € M we have h(mg) < 0.
We ask first if mg is legal for ¢g with h(mg) < top(¢g). If the answer is “no,” then Odd
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doesn’t need to take any special action, and chooses pagy1 := p2g. In this case Even
responds by choosing tg41 := tg.

If the answer is “yes,” then we will ask Odd to do some additional work. Note that
tg + mg € M because mg,tg € M. Also observe that the eventual constant value of
mg is non-negative because mg is legal for ¢, h(mg) < top(tg) and last(tg) = 0. In
particular mg is automatically legal for any extension of t3. We choose g < p23 to be the
< -minimal extension of pog deciding “tg+mg € S Since q is definable from parameters
in M, it is in M. If q forces “t5 +mg ¢ S” we let pag1 = ¢. In this case Even choose
tpy1 as the <,-least capped extension of tg with [ts41] < ¢.

If ¢ forces “tg +mg € S” we take ¢ and follow the procedure described above to
extend it to a totally (M, P, )-generic condition, generating an (M, P, )-generic filter G
on M NP,. Of course G itself is not in M, but we see shortly that this is not a problem.
Using G 3 we can interpret names for the initial segments of S and T that are in M and
thus decide the identities of T'«5 and Sc<s: these objects will depend on Gg, but for any
a < § there will be a condition in G forcing that the information is valid through level
a. Since ¢ € Gg we have that tg +mg € S<s.

Since p € G, our assumption (6.1) implies that for any s € T'«s and n < w there is an
n-extension ¢ of s in T'«s that is not in S<s. This is the key ingredient of our argument.
Let N be the norm of our modifier mg. Since t3+mg € S<s, tg+mp has an N-extension
s in T« such that s ¢ S.s. This situation is forced to be true for this particular s by
some condition in Gg which extends g.

We have shown that there exist an N-extension s of tg +mg and an extension r of ¢
such that r forces “s ¢ S Let (s',7') be the <y-least pair with these properties, where
as usual this pair is in M, and let pag+1 = r’. We note that there is no reason to believe
that pegy1 € Gg or that s = s. Note also that we can just look at s’ and tell that it is an
N-extension of tg +mg without reference to the forcing at all, so the point is that pagi1
contains enough information to determine that s’ is in 7' but not in S. This has some
consequences, because the only way pagi1 can force s’ to be in T is if pagy1 extends the
equivalence class of s’ in P,.

By the closure properties of pogy1, peg+1 contains an N-extension s” of s’. By the
definition of T', pag41 forces that s” € T and since S is forced to be downwards closed,
pop+1 forces that s” ¢ S. In summary, pag4+1 contains an N-extension s” of ¢g +mg that
is forced by p2g41 to lie outside of S.

Now define ¢ := s” — mg. Since N is the norm of mg and s” is an N-extension of
tg+ mg, we know —mg is legal for s’ and ¢ will be a 1-extension of ¢3. Now Even defines

tar1 :=17(0)

and po(g41) 1= [tg+1), and play continues. As we observed above, mg is legal for t5;.

We summarise the results of this round of the construction, keeping in mind that there
were various cases. We claim that in all cases where mg is legal for tg with h(mg) <
top(tg), tp+1 is a capped extension of ¢g and
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D2(8+1) s “t5+1 + mg ¢ S.”

If we are in the case where ¢ forces “ts +mg ¢ S,” then we set pogy1 := ¢ and the
claim is immediate because tg41 + mgp extends tg + mg. If we are in the case where ¢
forces “tg+mg € S,” then we arranged that tg 1 +mg extends s” and that pysy; forces
LLS// ¢ S.w

Because we were careful to make all choices at the successor stages using the wellorder-
ing <y, (py : v < 2B) and (¢, : v < ) are both in M for all v < k. If Even follows this
strategy, then they will end up winning the game by Lemma 5.9, because the sequence
(tg : B < k) is a capped sequence. Let ¢ be the corresponding final move p,, for Even,
and now we claim

qIF“S C T

To see this, let us define

ti= ( U tﬁ)ﬁ<0>.

B<K

Observe that t € S, is a bound of the capped sequence (tg : § < k) that Even built
during our run of the game. We know ¢ = [t], so it suffices to show for any gs-modifier
m that is legal for ¢ that

gl “t+m¢S”

It suffices to check this for modifiers m that are in M, as t+m is completely determined
by m [ § and m must be constant on a tail of §. Since we enumerated the modifications
in M with repetitions, during our play of the game we came to a stage 25 + 1 for which
mg = m and ht(mg) < top(tg). Since m is legal for ¢, we know m is legal for t5 and
therefore t31 was selected so that

P2p+1) IF“ tgy1 +mp ¢ 87

Hence

gIF“t+m¢sS”
as required. O
7. Building many examples

Our goal in this section is to prove that if V. = L then there is a minimal non-o-
scattered linear order of cardinality s for every infinite cardinal . This will be achieved
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by showing that such linear orders can be constructed using the “diamond in the square”
principle ). Principles of this type, which combine <+ and O, for some infinite cardinal
k, were first introduced by Gray [11] for k = wy in his dissertation, and first appeared
in the literature in work of Abraham, Shelah, and Solovay [3]. The paper [3] develops
several “diamond in the square” principles: the principle now known as [{Jl, appears there
in a slightly different (but equivalent) form under the name SD,. If V = L, then .
holds for every infinite cardinal x [3, Section 2].

We recall the definition of .. If C is a set of ordinals, let acc(C') denote the set of
elements of C' which are limit points of C.

Definition 7.1. The principle [{J]; asserts the existence of a sequence
<(C§,X§) 10 < li+>

such that:

(1) for limit 6 < k™ the set Cjs is a closed unbounded subset of ¢ of order-type at most
Ry

(2) XsCéforalld <k,

(3) if a € acc(Cs) then:
. «=CsNa,
e X, =Xs5Nq,

(4) for every subset X C kT and every club C C kT there is a limit ordinal § € C such
that:

° Czi - Ca
e otp(Cs) = k, and
« XN6=X;.

We will need the following lemma due to Assaf Rinot; see Remark 7.6 below.

Lemma 7.2. Suppose that C' := (Cs : & < k™) is a Ogx-sequence. Then there exists a
sequence {fs : 6 < k™) of functions fs : Cs — § such that for every limit ordinal § < k™ :

o for every v € acc(Cs), fy = fsl7v, and
o if otp(Cs) = K, then fs maps Cs onto J.

Proof. This may be extracted from the proof of [18, Lemma 3.8], but we prove this
simplified case from scratch. Fix a map e : [sT]> — & such that if @« < 3 < 7 then
e(a,y) # e(B,7). Let m : Kk — Kk X k be a surjection such that the preimage of any
singleton is cofinal in k. For every § € acc(k™), define a function fs : C5 — 4, by letting
for all 5 € Cy:

f5(B) := min({or < B : w(otp(Cs N ) = (otp(Cs Nav), e(a, min(Cs \ (v +1))))} U {B}).
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Claim 7.3. Let ¢ € acc(k™) and vy € acc(Cs). Then fy = f5]7.

Proof. As C is a Ok-sequence, Cy = CsN. So, forall a < B <, CsN B =C, N},
CsNna=CyNaand Cs\ (e +1) =C, \ (o +1). Consequently, fy, = f5lv. O

Claim 7.4. Let § € acc(k™) with otp(Cs) = k. Then fs maps Cs onto 6.

Proof. Let oo < 4. Set i := min(Cs \ (a4 1)) and (4, j) := (otp(Cs N ), e(c,m)). By the
choice of the surjection 7, {e < k : w(e) = (4,7)} is a cofinal subset of otp(Cjs), so we
may fix some 8 € Cs above « such that 7(otp(Cs N B)) = (4, ). By the definition of f;,
it now follows that if f5(8) # «, then there exists some @ < « such that otp(Cs Na) =i
and e(a, min(Cs \ (&4 1))) = j. Towards a contradiction, suppose that & < « is such an
ordinal. But as otp(Cs N &) = i = otp(Cs N «), it is the case that min(Cs \ (@ + 1)) =
min(Cs \ (o + 1)) = n, so, e(a,n) = j = e(a,n), contradicting the fact that the fiber
e(-,n) is injective. O

This completes the proof. 0O

The following formal strengthening of [{J,—which is an equivalent by Lemma 7.2—will
be useful in carrying out our construction below.

Definition 7.5. If ((Cs, X5) : 0 < k™) is a Js-sequence and (fs : & < k™) satisfies the
conclusion of Lemma 7.2 with respect to (Cs : & < xT), then we say that ((Cs, Xs, f5) :
§ < k1) is a ¢-sequence. The hypothesis K¢ postulates the existence of a KJf*-
sequence.

Remark 7.6. By Lemma 7.2, ), implies K} €. The first circulated draft of this paper
derived ¢ from the stronger hypothesis [{J, introduced by Rinot and Schindler in [29)
and which also holds if V = L. Following the third author’s presentation of the results
of this paper in the Toronto Set Theory Seminar in February 2023, Rinot informed us
that T already followed from [J;. He has generously given us permission to include
above his formulation of Lemma 7.2 and its proof.

We now turn to the task of using ), to construct a minimal non-o-scattered linear
order of cardinality xT.

Theorem 7.7. If k is an infinite cardinal for which ., holds, then there is a T C Sy
which is pa-coherent and full. Consequently, there is a minimal non-o-scattered linear
ordering of cardinality k™ which is moreover k™ -Countryman.

Proof. Applying Lemma 7.2, let ((Cs, X5, f5) : § < ™) be a ] “-sequence, and fix an
enumeration (ms : 6 < k) of all go-modifiers, subject to the conditions that ht(ms) < &
and that each modifier appears in the enumeration unboundedly often.
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We need to give a little attention to how we use our KJ-sequence to guess k*-trees.
This will be done in a completely straightforward way, but at one point in the proof the
specificity will be convenient. Since {>(x") is a consequence of KJ¢, we know k* = kT
and so we can fix an enumeration (o, : a« < k1) of S, in order-type k. Given any
kt-tree S C S, we can code S with a set X C k* by setting

X:={a<kt:0,€8}

What we need to observe is that if we do this, then there will be a closed unbounded set
of § < k™ for which

Scs ={oq:a € XN} (7.1)

This observation will help us later when we try to apply [J°.
The tree is built via a construction of length £+, and we build a sequence (t,, : @ < k™)
of elements of S,; with top(t,) = « that further satisfy

tﬁEKtQ[5+1

whenever 3 < a < kT. At a typical stage a of our construction, we will have available
the sequence (t5 : 8 < ) (hence we will know T, ) and will need to produce a suitable
to, with domain o + 1.

The particular choice of t, will matter only in cases where « is a limit ordinal, because
if v is a successor ordinal v + 1 then we set

At a limit stage a of our construction, we commit to building a t, € S, which
corresponds to a cofinal branch through T, and satisfies the following two conditions:

B € acc(Cq) =t C ta, (7.2)
and
acc(Cy) Ct1({0}) Cacc(Cy) U{B +1: B €nacc(Cy))}. (7.3)

Notice that this last condition will guarantee that the set of 8 < a for which ¢,(8) =0
will have order-type at most . Since « is a limit ordinal, membership of ¢, to S, requires
a condition along the lines of (7.3) to allow us to define t,(a) = 0.

We have no freedom if acc(C,,) happens to be unbounded in «, as (7.2) will force us
to define

ta::( U tﬁ)“<0>,

Beacc(Cy)
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and this will be an element of S,, with the required properties. Thus, the only leeway
in our construction occurs when the set acc(Cy) is bounded below «, and whatever
substantive action we take must occur at these stages.

Suppose then that our construction has arrived at a limit ordinal a for which v :=
sup(acc(Cy,)) is less than «. In such a situation, we know that C, \ v+ 1 must have
order-type w, so we can list it in increasing order as (o, : n < w). When we choose
to € Sy, we will want to make sure that it satisfies the following structural requirements:

top(ta) = «,

b t’y g to

o to [B+1€T,, forall B <a,and
e there is an m < w such that

PO N (v, 0) = {ap +1:m < n < w}.

As long as t,, satisfies these requirements, our construction can proceed. They are not
difficult to arrange: if s is any l-extension of ¢, in T« at all, then we can extend s to a
suitable t, by means of a capped sequence of length w whose tops consist of the ordinals
a, +1form<n<w.

Our work at stage a will depend on the set X, presented to us by the ]! “-sequence.
Let us agree to call a an active stage if the following three criteria are satisfied:

e X, codes an unbounded subtree Y, of T,
e Y, does not contain a frozen cone of T, and
o there is a £ € C, for which ., + my (¢) is in Y.

If o is an active stage, then let ¢ € C,, be the least £ as above. We say that this ¢ is
targeted for action at stage «, and our task will be to find an extension t, of ¢, that
satisfies all the structural requirements with the additional property that

(ta +my (¢)) [ a is not a cofinal branch through Y. (7.4)

If on the other hand « is not an active stage, then we can simply let ¢, € S, be any
extension of ¢, that satisfies the structural requirements.

Suppose now that o is an active stage, and ¢ € C,, is the corresponding target. It
suffices to produce a l-extension s of ¢, in T, with the property that s +my () is not
in Y,, as such an s can be extended to the t, we need. To do this, let N be the norm
of the modifier m £4(0)- Since Y, does not contain a frozen cone of T, we know that
ty +my (¢) has an N-extension ¢ in T, that is not in Y,,. By definition, the modifier
—my. (¢) will be legal for ¢, and

s:=t—mg
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will be a 1-extension of ¢, in T, of the sort we seek, and therefore we can find ¢, which
satisfies (7.4) in addition to the structural requirements. This completes stage a.

Why does this construction succeed? We let T' be the xT-tree determined by our
sequence (t, : @ < k1), so that level a of T' will consist of all the legal modifications
of t,. Our task is to show that any unbounded subtree of T contains a frozen cone, so
assume by way of contradiction that S C T is a counterexample, and let X C T code
S.

There is a closed unbounded set E of ordinals § < k% satisfying the following two
statements:

e if sisin S.5 and n < w, then s has an n-extension in T that is not in .S;
e if 6 € F then S.; is coded by X N 4.

Notice that this last is where we use the property of our coding mechanism discussed in
the context of (7.1).

If x is some sufficiently large regular cardinal, we can find an elementary submodel
M of H(x) of cardinality s that contains S, T, and F such that:

e MNkt =6 <k,
« Cs CE,

e X5=XnNJ,and
e fs maps Cs onto 6.

This can be achieved because of the properties of our K ¢-sequence: note that the defini-
tion implies that there will be a stationary set of § satisfying the last three requirements
above, hence we can find § satisfying the first.

Since S contains an element from level § of T', there is at least one legal modification
of ts in S. Since 0 is a limit ordinal, we may assume that the relevant modifier m satisfies
ht(m) < ¢, and hence the modifier m will be in the model M and therefore will appear
before stage ¢ in our enumeration of S,.

Since the function fs maps Cs onto §, the modifier m guarantees that there is some
least ¢ € Cs for which

ts +my,(¢) | 0 is a cofinal branch through S_s. (7.5)

Now turn our focus to the way our construction proceeds through the stages indexed
by acc(Cs). Suppose now that « is in acc(Cs). By the coherence of our K} ¢-sequence,
we know

Xoe=XsNa=XNa«a

and since « is also in E, we conclude that X, codes S.,. We also know that S., does
not contain a frozen cone of T, as this fact will reflect to a by our choice of E. Thus,



34 J. Cummings et al. / Advances in Mathematics 441 (2024) 109540

any a € acc(Cy) will satisfy the first two requirements needed to be an active stage of
our construction.

We now show that all sufficiently large elements of nacc(acc(Cys)) will be active stages
of our construction. More specifically, if « € acc(Cs) and

¢ < v :=suplacc(Cs) Na) < a,

then a will satisfy the third requirement of being an active stage of our construction. To
see this, note that since we are working with a KJ!-sequence we have

(e C»y =Cs N7, (7.6)
and

F+(€) = £5(0). (7.7)

Since t5 + my; ) [ 0 is a cofinal branch through Ss, we know
ty +my (¢) I 7 is a cofinal branch through S,

and therefore & must be an active stage of the construction.
Said another way, we have shown that all sufficiently large o € nacc(acc(Cjs)) are
active stages. This is enough to get a contradiction: since otp(Cs) = k we know

otp(nace(ace(Cs)) \ (v +1)) = &,

and our construction guarantees that once an ordinal has been targeted at such a stage
a, it will never be targeted again at any future stage from acc(Cjs). Thus, we must
eventually arrive at an active stage a € Cs where ( will be targeted for action, but the
choice of t,, then contradicts (7.5). We conclude that S must contain a frozen cone, and
the theorem is established. O

8. Concluding remarks

We feel that it is likely that the methods of this paper can be adapted to show that
in L, there is a k-Aronszajn line which is minimal with respect to being non-o-scattered
whenever x is an uncountable regular cardinal which is not weakly compact.® Presumably
if k is regular uncountable and not weakly compact, L satisfies a suitable principle {J(k),
which in turn implies that there is a s-Aronszajn tree T C w<* with the following

properties:

6 Update: In July 2023 at a workshop in CMO, Oaxaca, Roy Shalev announced he has a proof of this
statement. He has since posted a preprint with this result on the arXiv [32].
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e T is ps-coherent and full;
e every subset of T" of cardinality x contains an antichain of cardinality k;
e every subtree of T' contains a frozen cone.

The arguments presented in this paper then show that the lexicographic ordering on any
antichain in 7T of cardinality x is minimal with respect to not being o-scattered.

Galvin asked whether there is a minimal non-o-scattered linear order with the addi-
tional property that every uncountable suborder contains a copy of w;—this is equivalent
to being minimal with respect to not being a countable union of well orders (see [6,
Problem 4]). As noted in the introduction, Ishiu and the third author have shown that a
negative answer follows from PFA™ [13] and Lamei Ramandi has shown that a positive
answer is consistent [19]. It remains an open problem whether there are consistent ex-
amples of linear orders of cardinality greater than N; which are minimal with respect to
not being a countable union of well orders. Such orders necessarily are not k-Aronszajn
and hence the methods of this paper do not seem to shed much light on this problem.
Todorcevic has shown that Oy, implies that there is a linear order of cardinality N,,;
of density N, such that every suborder of cardinality N, is a countable union of well
orders [37, 7.6]. Note, however, that the construction of Dushnik and Miller [8] gener-
alizes to show that if 2 = k™, then there is no minimal linear order of cardinality T
and density k. Thus at least consistently, Todorcevic’s example [37, 7.6] does not solve
Galvin’s problem; one would need an analog of Baumgartner’s model [4] at the level of
N, 41, which seems beyond the reach of current methods.

A minimal non-o-scattered ordering of cardinality A > N; is a “non-reflecting” object,
in the sense that it enjoys a property which is not enjoyed by any of its properly smaller
suborders. This phenomenon is ruled out by large cardinal assumptions. For instance if A
is weakly compact, then any non-o-scattered order of cardinality A has a non-o-scattered
suborder of smaller cardinality. Similarly if x is supercompact, then any non-o-scattered
linear order has a non-o-scattered suborder of cardinality less than k. The proofs of these
statements are routine modifications of arguments in [6, §7].
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