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The purpose of this article is to give new constructions of 
linear orders which are minimal with respect to being non-σ-

scattered. Specifically, we will show that Jensen’s principle ♦
implies that there is a minimal Countryman line, answering 
a question of Baumgartner [5]. We also produce the first 
consistent examples of minimal non-σ-scattered linear orders 
of cardinality greater than ℵ1, as given a successor cardinal 
κ+, we obtain such linear orderings of cardinality κ+ with 
the additional property that their square is the union of κ-
many chains. We give two constructions: directly building such 
examples using forcing, and also deriving their existence from 
combinatorial principles. The latter approach shows that such 
minimal non-σ-scattered linear orders of cardinality κ+ exist 
for every cardinal κ in Gödel’s constructible universe, and 
also (using work of Rinot [28]) that examples must exist at 
successors of singular strong limit cardinals in the absence of 
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inner models satisfying the existence of a measurable cardinal 
µ of Mitchell order µ++.
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1. Introduction

The class M of σ-scattered linear orders was considered by Galvin as a natural gen-

eralization of the classes of countable linear orders and well orders. On the one hand 

M is quite rich, and on the other it is amenable to refined structural analysis. Recall 

that a linear order is scattered if it does not contain a copy of the rational line (Q, �)

and is σ-scattered if it is a union of countably many scattered suborders. Both of these 

classes include the well orders and are closed under lexicographic sums 
∑

i∈K Li and the 

converse operation L �→ L∗ which reverses the order on L; in fact Hausdorff [12] showed 

that the scattered orders form the least class with these closure properties.

The σ-scattered orders form the least class with these closure properties and the 

additional property of closure under countable unions. In [22], Laver proved Fraïssé’s 

conjecture that the countable linear orders are well quasi-ordered: whenever Li (i < ∞)

is a sequence of countable linear orders, there is an i < j such that Li embeds into Lj . 

In fact, his proof established the following celebrated result.

Theorem 1.1. (Laver [22]) The class M is well quasi-ordered by the embeddability rela-

tion.

Empirically, M is the largest class of linear orders which is immune to set-theoretic 

independence phenomena. It is therefore natural to study those linear orders which lie 

just barely outside of M. In general, given a class C of linear orders, we will say that a 

linear order L is a minimal element of C if L is in C and embeds into all of its suborders 

which are in C. In this paper we will investigate those linear orders L which are minimal 

with respect to not being in M. More precisely, we will prove that it is consistent that 

for each infinite cardinal κ, there is a linear order of cardinality κ+ which is minimal 

with respect to being non-σ-scattered. Previously it was not known if it was consistent to 

have a minimal non-σ-scattered order of cardinality greater than ℵ1. Moreover, even our 

construction of a minimal non-σ-scattered order of cardinality ℵ1 is novel and answers 

a question of Baumgartner [5, p. 275].

Mathematical and historical background. One of the first results on scattered linear 

orders is the following result of Hausdorff.

Theorem 1.2. (Hausdorff [12], see also [30]) If κ is a regular cardinal and L is a scattered 

linear order of cardinality κ, then either κ or κ∗ embeds into L.



J. Cummings et al. / Advances in Mathematics 441 (2024) 109540 3

While σ-scattered linear orders were not considered until [22], Theorem 1.2 immedi-

ately generalizes to the class of σ-scattered linear orders. Since neither ω1 nor ω∗
1 embed 

into R, it follows that no uncountable set of reals is σ-scattered. For brevity, we will say 

that a linear order is a real type if it is isomorphic to an uncountable suborder of the 

real line.

The properties of real types are already sensitive to set theory. On one hand, a classical 

diagonalization argument yields the following result of Dushnik and Miller.

Theorem 1.3. (Dushnik and Miller [8]) Assume CH. For any uncountable X ⊆ R there 

is an uncountable Y ⊆ X such that Y 2 does not contain the graph of any uncountable 

strictly monotone function other than the identity (and hence does not embed into any 

proper suborder).

On the other hand, Baumgartner demonstrated that if X, Y ⊆ R are ℵ1-dense1 and 

CH holds, then there is a c.c.c. forcing which makes X and Y order isomorphic [4]. In 

particular, he showed that there is always a forcing extension in which every two ℵ1-dense 

sets of reals are isomorphic. This result is now often phrased axiomatically as follows.

Theorem 1.4. (Baumgartner [4]) Assume PFA. Any two ℵ1-dense subsets of R are iso-

morphic. In particular, any real type of cardinality ℵ1 is minimal.

Here the Proper Forcing Axiom (PFA) is a powerful generalization of the Baire Cat-

egory Theorem. It plays an important role in the broader analysis of non-σ-scattered 

linear orders as we will see momentarily. More information on PFA in the context of 

linear orders can be found in [37]; see e.g. [1], [7], [27], [38] for an introduction to PFA 

and its consequences.

Another class of non-σ-scattered linear orders is provided by the Aronszajn lines2: 

uncountable linear orders with the property that they do not contain uncountable sub-

orders which are either separable or scattered. Aronszajn lines were first constructed 

by Aronszajn and Kurepa (see [17] [39]) in the course of analyzing Souslin’s Problem 

[36], which asks if R is the only complete dense linear order in which every family of 

pairwise disjoint intervals is countable. By Theorem 1.2, Aronszajn lines are necessarily 

non-σ-scattered.

In the 1970s, R. Countryman introduced a class of linear orders now known as Coun-

tryman lines. These are the uncountable linear orders C such that C × C is a union of 

countably many chains. Such orders are necessarily Aronszajn and have the property 

that no uncountable linear order can embed into both C and C∗. They were first con-

structed by Shelah [33], with a simplified construction later being given by Todorcevic 

[40]. Notice that being Countryman is clearly inherited by uncountable suborders.

Abraham and Shelah proved the analog of Theorem 1.4 for Countryman lines.

1 A linear order is κ-dense if it has no first or last elements and each interval has cardinality κ.
2 Aronszajn lines are also known as Specker types.
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Theorem 1.5. (Abraham and Shelah [2]) Assume PFA. Any Countryman line embeds into 

all of its uncountable suborders. Moreover, any two regular3 Countryman lines are either 

isomorphic or reverse isomorphic.

The next results give a complete classification of the Aronszajn lines under PFA.

Theorem 1.6. (Moore [25]) Assume PFA. Every Aronszajn line has a Countryman sub-

order.

Theorem 1.7. (Martinez-Ranero [23]) Assume PFA. The Aronszajn lines are well quasi-

ordered by embeddability.

The next theorem gives a complete characterization of the minimal non-σ-scattered 

linear orders under PFA+, a strengthening of PFA.

Theorem 1.8. (Ishiu and Moore [13]) Assume PFA+. Every minimal non-σ-scattered 

linear order is isomorphic to either a set of reals of cardinality ℵ1 or a Countryman 

line. Furthermore, any non-σ-scattered linear order contains a non-σ-scattered suborder 

of cardinality ℵ1.

Since PFA and PFA+ are rather strong assumptions, it is natural to ask what is possi-

ble in other models of set theory. While it is reasonable to think that some enumeration 

principle such as CH or ♦ might allow one to prove an analog of Theorem 1.3 for Aron-

szajn lines, Baumgartner showed that this is not the case (Baumgartner’s construction 

contained an error which was later corrected by D. Soukup).

Theorem 1.9. (Baumgartner [5], D. Soukup [35]) Assume ♦+. There is a Souslin line 

which embeds into all of its uncountable suborders.

Here a Souslin line is a nonseparable linear order in which every family of pairwise 

disjoint intervals is countable. Any Souslin line can be embedded in a Souslin line which 

is moreover dense and complete as a linear order— hence the existence of a Souslin line 

is equivalent to the existence of a counterexample to Souslin’s Problem. On the other 

hand, any Souslin line L contains a suborder which is Aronszajn—simply pick a sequence 

of points {xα : α < ω1} from L such that for all β < ω1, xβ is not in the closure of 

{xα : α < β}. Furthermore it is easily checked that Aronszajn suborders of Souslin lines 

are themselves Souslin.

While Baumgartner’s construction produces a minimal Aronszajn line, it should be 

noted that Souslin lines are necessarily not Countryman. In [5], Baumgartner asked if 

3 An Aronszajn line L is regular if L is ℵ1-dense and the collection of all countable subsets of L which 
are closed in the order topology contains a closed and cofinal set in ([L]ω , ⊆).
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♦+ could be weakened to ♦ in his construction and if his argument could be adapted to 

construct a minimal Aronszajn line which was not Souslin.

In [26], the third author proved that it is consistent that there are no minimal Aron-

szajn lines. This was achieved by obtaining a model of CH which also satisfied a certain 

combinatorial consequence of PFA. That CH held in this model also yielded the following 

stronger result.

Theorem 1.10. (Moore [26]) It is consistent (with CH) that ω1 and ω∗
1 are the only 

minimal uncountable linear orders.

In [34], D. Soukup adapts this argument to show that the existence of a Souslin line 

does not imply the existence of a minimal Aronszajn line.

The strategy in [26] was combined with the analysis of [13] to yield the following 

result.

Theorem 1.11. (Lamei Ramandi and Moore [21]) If there is a supercompact cardinal, 

there is a forcing extension in which CH holds and there are no minimal non-σ-scattered 

linear orders.

On the other hand, Lamei Ramandi has shown that ♦ is consistent with the existence 

of a minimal non-σ-scattered linear order which is neither a real nor Aronszajn type. In 

fact he has produced two qualitatively different constructions.

Theorem 1.12. (Lamei Ramandi [20]) It is consistent with ♦ that there is a minimal 

non-σ-scattered linear order L with cardinality ℵ1 which is a dense suborder of a Kurepa 

line.4

Theorem 1.13. (Lamei Ramandi [19]) It is consistent with ♦ that there is a minimal 

non-σ-scattered order with the property that every uncountable suborder contains a copy 

of ω1.

Main results. Up to this point though, all consistent examples of minimal non-σ-scattered 

linear orders are of cardinality ℵ1. In order to state our main result, we need to introduce 

another definition. A linear order L is κ+-Countryman if L has cardinality κ+ and L2

is a union of κ chains.

Theorem 1.14. Assume V = L. For each infinite cardinal κ, there is a κ+-Countryman 

line which is minimal with respect to being non-σ-scattered.

In fact, the construction in Theorem 1.14 factors through the combinatorial principle ♦κ

considered in [3], [28], [29]. This has added interest, because the main result of Rinot’s 

4 A Kurepa line is a linear order of density ℵ1 which has cardinality greater than ℵ1 and does not contain 
a real type. See [39] for more information.
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[28] shows that if μ is a singular cardinal, the principle ♦μ is equivalent to the conjunction 

of �μ and 2μ = μ+. As a corollary, it follows that the failure of ♦μ at a singular strong 

limit cardinal has large cardinal strength: in such a situation, either there is a violation 

of the singular cardinal hypothesis or �μ fails. Either of these possibilities carries large 

cardinal strength [9], [10], [15], [31] and so we obtain, for example, the following striking 

corollary.

Corollary 1.15. Assume that there is no inner model with a measurable cardinal μ of 

Mitchell order μ++. If κ is the successor of a singular strong limit cardinal, then there 

is a minimal non-σ-scattered linear order of cardinality κ.

The κ+-Countryman lines are interesting in their own right. Although they have 

almost exclusively been studied when κ = ℵ0 (in which case they are known simply as 

Countryman lines), their remarkable properties readily generalize to the higher cardinal 

case:

• κ+-Countryman lines do not contain a copy of κ+ or its converse.

• If L is κ+-Countryman and X ⊆ L has cardinality κ+, then there is a family of 

pairwise disjoint intervals of X of cardinality κ+. In particular X has density κ+.

• If L is κ+-Countryman, then no linear order of cardinality κ+ embeds into both L

and L∗.

Our argument for κ = ℵ0 is somewhat simpler and of independent interest as it 

answers Baumgartner’s question mentioned above.

Theorem 1.16. Assume ♦. There is a Countryman line which embeds into all of its 

uncountable suborders.

Organization. Section 2 will contain a review of the basic analysis of trees and linear 

orders which we will need. In Section 3, we will show that ♦ is sufficient to construct a 

minimal Countryman line. Section 4 contains the basic analysis of κ+-Countryman lines 

for arbitrary infinite cardinals κ. A framework for constructing κ+-Countryman lines 

which are minimal with respect to being non-σ-scattered is introduced in Section 5. This 

framework is then put to use in Sections 6 and 7 where we present forcing and axiomatic 

constructions of such linear orders. Finally, Section 8 contains some concluding remarks.

2. Preliminaries

We will begin with a brief review of some notation, terminology, and concepts from 

set theory which we will need. None of the material in this section is new or due to the 

authors. Further information on trees and linear orders can be found in [30] and [39]. 

Both [14] and [16] are standard references for set theory ([14] is encyclopaedic whereas 

[16] is more detail oriented).
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All counting starts at 0. As is standard, we will use ω to denote the set of finite ordinals, 

which we take to coincide with the nonnegative integers. A sequence is a function whose 

domain is an ordinal. The domain of a sequence s is typically referred to as its length

and denoted |s|. If s and t are sequences of ordinals, we define s �lex t if either s is an 

initial part of t or else there is a ξ < min(|s|, |t|) with s(ξ) �= t(ξ) and, for the least such 

ξ, s(ξ) < t(ξ). We will generally identify a function with its graph. In particular if f

and g are functions, f ⊆ g exactly when f is a restriction of g (including the possibility 

f = g).

If s and t are two sequences taking values in Z, we define s + t to be the sequence of 

length min(|s|, |t|) obtained by adding s and t coordinatewise on the restricted domain. 

If t is a sequence taking values in Z, then −t is the sequence of length |t| obtained by 

multiplying t coordinatewise by −1. As is standard, s − t abbreviates s + (−t).

We note that any linear ordering is isomorphic to a set of sequences of ordinals ordered 

by �lex. If one closes this set of sequences under initial segments, the structure of this 

set equipped with the extension partial order captures important aspects of the linear 

order. For this reason, it is fruitful to abstract this concept. A tree is a partially ordered 

set (T, �T ) in which the set {s ∈ T : s <T t} of predecessors of t is well-ordered by <T

for any t ∈ T . The order-type of this set is called the height of t. The collection of all 

elements of T of a given height δ will be denoted by Tδ, referred to as the δth level of 

T . The height of the tree T is the least δ such that T contains no elements of height 

δ. Notation such as T�δ should be given the obvious interpretation. If κ is an infinite 

cardinal, a tree is a κ-tree if the height of T is κ and all levels of T have cardinality less 

than κ.

We say that T is Hausdorff if whenever s, t ∈ T have limit height and are distinct, 

they have distinct sets of predecessors. If T is a set of sequences which is downwards 

closed with respect to �, then (T, �) is a Hausdorff tree and moreover Tα consists of 

the sequences in T of length α; we say that T is a tree of sequences. Conversely, any 

Hausdorff tree is isomorphic to a tree of sequences.

In this paper we will work with trees of sequences which moreover have the property 

that sequences of limit length δ are extended by a unique element of the tree of length 

δ+1. For this reason, we will typically work with trees consisting of sequences of successor 

length and which are closed under taking initial segments of successor length.

An antichain in a tree T is a collection of pairwise incomparable elements. It is worth 

noting that in a tree if s and t are incomparable, they have no common upper bound 

(i.e. they are incompatible). If T is a tree, S is a subtree5 of T if S ⊆ T , S is downward 

closed in T , and S has the same height as T . A subtree of T which is a chain is a branch

of T .

A κ-Aronszajn tree is a κ-tree with no branches. A linear ordering L is a κ-Aronszajn 

line if it does not contain a copy of κ or κ∗ and whenever X ⊆ L has cardinality κ, 

its density is κ. It is a standard fact that the lexicographic ordering on a κ-Aronszajn 

5 This meaning of “subtree” and “branch” are not completely standard.
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tree is a κ-Aronszajn line and any κ-Aronszajn line is isomorphic to the lexicographic 

ordering of some subset of a κ-Aronszajn tree of sequences. If κ = ℵ1, then we just write 

“Aronszajn” instead of “κ-Aronszajn.”

(Note that by Hausdorff’s theorem, any linear order which does not contain κ or κ∗

also does not contain any scattered suborders of cardinality κ. Hence this definition 

of Aronszajn line is equivalent to the one given in the introduction.) A linear order C

is κ-Countryman if C has cardinality κ and C2 is a union of fewer than κ chains (in 

the coordinatewise order); we will write “Countryman” to mean “ℵ1-Countryman.” The 

basic analysis of κ-Countryman lines can be found in Section 4.

Finally, we recall a useful characterization of σ-scattered linear orders which follows 

easily from Galvin’s analysis of M (see [22]). If γ is an infinite ordinal, consider the 

collection Qγ ⊆ Qγ consisting of all x which change their values finitely often: there 

exist 0 = ξ0 < . . . < ξn = γ such that if i < n, x is constantly qi on [ξi, ξi+1). We equip 

Qγ with the lexicographic order. Since |Qγ | = |γ|, neither γ+ nor its converse embed 

into Qγ . It is also easily checked by induction that any interval in Qγ contains copies of 

δ and δ∗ for any ordinal δ < γ+. Thus by Theorem 3.3 of [22], Qγ is σ-scattered and any 

σ-scattered linear order of cardinality |γ| embeds into Qγ (if L is σ-scattered and has 

cardinality at most |γ|, then L × Qγ and Qγ satisfy (i)–(iii) of [22, 3.3] for α = β = γ+

and hence are biembeddable). Rephrasing this, we have the following.

Proposition 2.1. If γ is an infinite ordinal, then a linear order of cardinality at most |γ|

is σ-scattered if and only if it embeds into Qγ. In particular Qγ is biembeddable with 

Q|γ|.

3. Baumgartner’s question

In this section, we prove Theorem 1.16, thus answering Baumgartner’s questions by 

showing that from ♦, one may construct a minimal Countryman line. As already noted, 

such a linear order is Aronszajn but not Souslin.

It will be useful to define some notation and terminology before proceeding.

Definition 3.1. S is the set of all s ∈ <ω1ω of successor length which are finite-to-one.

We will view S as being equipped with the order of extension, making it a tree. Define 

f : S → ω × ω by

f(s) := (s(ξ), |{η < ξ : s(η) = s(ξ)}|)

where |s| = ξ + 1. Observe that if f(s) = f(s′), then s and s′ are incomparable. Thus S

is special.

The next definitions abstract the aspects of the tree of sequences associated to the 

function �2 of [40].
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Definition 3.2. A �2-modifier is a continuous integer-valued sequence of successor length. 

If s, t ∈ S, we say that s is a �2-modification of t if |s| = |t| and s − t is a �2-modifier. If 

X ⊆ S, we will say that X is closed under �2-modifications if whenever s ∈ X and t is 

a �2-modification of s, t ∈ X. We say X is �2-full if it is uncountable and closed under 

initial segments of successor length and �2-modifications.

We will sometimes drop the prefix “�2-” from �2-modifier for brevity. Notice that if m

is a �2-modifier of length α+1 for α limit, then m is uniquely determined by its restriction 

to α. In fact any continuous sequence s taking values in Z that is eventually constant 

and having limit length can be uniquely extended to a �2-modifier of length |s| + 1. It 

will sometimes be useful to regard such sequences s as �2-modifiers by identifying them 

with the minimum modifier which extends them.

Proposition 2.1 yields the following proposition.

Proposition 3.3. For any successor ordinal α, the set of modifiers s of length α is σ-

scattered when ordered by �lex.

Definition 3.4. A subset X ⊆ S is �2-coherent if whenever s, t ∈ X with |s| � |t|, t�|s| is 

a �2-modification of s. For ease of reading we will write “full” instead of “�2-full” in the 

context of “�2-coherent.”

Notice that there are only countably many �2-modifications of an element of S and 

therefore any �2-coherent full subset of S is a subtree which has countable levels and 

hence is an Aronszajn tree. The following theorem is essentially due to Todorcevic (see 

[40, 3.4]); see the proof of the more general Proposition 4.3 below.

Theorem 3.5. If C ⊆ S is uncountable and �2-coherent, then (C, �lex) is Countryman.

We will prove Theorem 1.16 by showing that ♦ implies the existence of a full �2-

coherent tree T ⊆ S with the property that for any uncountable antichain X of T and 

any uncountable subset Y of T , there is an embedding of (X, �lex) into (Y, �lex).

Lemma 3.6. Suppose T is a �2-coherent subtree of S such that for any subtree S of T

there is an embedding φ : T → S that preserves both the lexicographic order �lex and 

incompatibility with respect to T ’s tree order. Then given any uncountable antichain X

of T and uncountable subset Y of T , there is an embedding of (X, �lex) into (Y, �lex).

Proof. Observe that by replacing Y with an uncountable subset if necessary, we may 

assume Y is an antichain in T . Let S be the downward closure of Y in T and let φ : T → S

be the hypothesized embedding. We define a function f : X → Y by letting f(x) be some 

element of Y that extends φ(x); this is possible by our choice of S. Given x <lex y in X, 

we know that φ(x) and φ(y) must be incompatible in S, and φ(x) <lex φ(y). But this 

implies f(x) <lex f(y) as well, and we are done. �
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How does this previous lemma help our project? It tells us that it will be sufficient 

to build a �2-coherent T that admits suitable embeddings into any of its subtrees. Our 

strategy is to build T so that every subtree will contain a tree of a canonical form that 

will render the existence of the required φ obvious. This provides the motivation for the 

next set of definitions, which capture a crucial ingredient in our proof.

Definition 3.7. Suppose n < ω and s and t are in S. We say that t is an n-extension of 

s, written s ⊆n t, if s ⊆ t and whenever |s| � ξ < |t|, t(ξ) � n.

Definition 3.8. Suppose that T ⊆ S is �2-coherent and full.

(1) The cone of T determined by s, denoted T [s], is defined as usual by

T [s] := {t ∈ T : t ⊆ s or s ⊆ t}.

(2) The frozen cone of T determined by s and n, denoted T [s, n], is defined by

T [s, n] := {t ∈ T : t ⊆ s or s ⊆n t}.

(3) Given an ordinal δ, we let Tδ[s] denote the elements of T [s] of height δ, and similarly 

for Tδ[s, n].

It is clear that any cone of T is also a frozen cone, as T [s] is just T [s, 0]. Since T is 

�2-full, frozen cones of T are also subtrees of T .

Lemma 3.9. If T ⊆ S is �2-coherent and full, then for any s ∈ T and n < ω there is an 

embedding φ of T into T [s, n] that preserves the lexicographic order �lex and incompati-

bility with respect to the tree ordering.

Before we begin the proof of the lemma, it will be useful to introduce two operations 

on S.

Definition 3.10. If s, t, u ∈ S, |s| < |t| = |u|, and

u(ξ) :=

{

s(ξ) if ξ < |s|, and

t(ξ) if |s| � ξ < |t|

then we say that u is obtained by writing s over t.

Definition 3.11. If t ∈ T , β < |t|, and n < ω, then the sequence v defined by

v(ξ) :=

{

t(ξ) if ξ < β, and

t(ξ) + n if β � ξ < |t|
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is the result of translating t by n beyond β.

Proof of Lemma 3.9. Observe that if T ⊆ S is �2-coherent and full, then it is closed 

under these two operations. We prove the lemma in two stages. First, we prove that for 

any s ∈ T and n < ω there is such an embedding from the (ordinary) cone T [s] into the 

frozen cone T [s, n]. Doing this is straightforward: given t ∈ T [s] extending s, we translate 

t by n beyond |s|. This function has the required properties, and by our assumption on 

T the range is contained in T [s, n].

Next, we show for any s ∈ T that T can be embedded into the (ordinary) cone T [s]

preserving the lexicographic order and incompatibility. To do this, define δ := |s| +ω +1. 

Observe that (Tδ[s], <lex) is a dense linear order. Since T�δ is countable, there is a 

�lex-preserving embedding

φ0 : T�δ → Tδ[s].

Notice that φ0 trivially preserves incompatibility since Tδ[s] is an antichain. We extend 

φ0 to a function φ : T → T [s] by letting φ(t) be the result of writing φ0(t � δ) over t for t

of height greater than δ. Again, our assumptions imply that the range of φ is contained 

in T [s], and the function preserves both �lex and incompatiblity. �

Now we come to the point: if we can build a tree as in Lemma 3.9 with the property 

that any subtree contains a frozen cone, then we will have what we need to establish 

Theorem 1.16.

Proposition 3.12. Suppose that T ⊆ S is �2-coherent, full and has the property that every 

subtree of T contains a frozen cone. If C ⊆ T is any uncountable antichain, then (C, �lex)

is a minimal Countryman line.

We have therefore reduced our task to establishing the following proposition.

Proposition 3.13. Assume ♦. There is a T ⊆ S which is �2-coherent, full, and has the 

property that every subtree of T contains a frozen cone.

We will pause to introduce some notation and terminology which, while a little gra-

tuitous now, anticipates the greater complexities of the higher cardinal constructions 

in later sections. Let ≡ denote the equivalence relation on S defined by s ≡ t if t is a 

�2-modification of s. Define P := {[s] : s ∈ S} to be the collection of all ≡-equivalence 

classes of functions in S, and order P in the natural way: given q and p in P , we define 

q �P p to mean that some element of q extends some element of p in S. We extend the 

notion of “height” to elements of P in the obvious way: the height of p is the height of 

any of its elements.

Our construction will depend on the interplay between the partially ordered sets (S, ⊇)

and (P , �P ), and we explore that relation a little with the following observations. We 
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start by recording some easy facts about the interaction between the equivalence relation 

≡ and the operations on sequences from Lemma 3.9.

Lemma 3.14. The following are true:

(1) Let s0, t0, s1, t1 ∈ S with s0 ≡ s1, t0 ≡ t1 and |s0| = |s1| < |t0| = |t1|. Let ri be the 

result of writing si over ti. Then r0 ≡ r1.

(2) Let t ∈ S, let β < |t| and let r be the result of translating t by n beyond β + 1. Then 

r ≡ t.

(3) For each s ∈ S and countable β � |s|, there is a t ∈ S such that s ⊆ t and |t| = β +1.

Proof. Routine. �

Lemma 3.15. The following are true:

(1) If 〈sn : n < ω〉 is a sequence in S with sn ⊆n sn+1 then (
⋃

n<ω sn)�〈i〉 ∈ S for all 

i < ω.

(2) If s, t ∈ S with s ≡ t � α, then for any n < ω there is an s ⊆n r such that r ≡ t.

(3) Any decreasing sequence 〈pn : n < ω〉 in P has a lower bound.

Proof. For (1), let s = (
⋃

n sn) �〈i〉. Clearly |s| is a countable successor ordinal, so we 

need only verify that s is finite-to-one. For k < n < ω,

s−1({k}) ⊆ s−1
n ({k}) ∪ {|s| − 1}

by the choice of the sequence 〈sn : n < ω〉, and this set is finite because sn ∈ S. To 

see (2), let r′ be the result of writing s over t, and let r be the result of translating r′

by n beyond α. By definition s ⊆n r, and by Lemma 3.14 r ≡ t. For (3), observe that 

by (2), we may recursively choose sn ∈ S such that sn ⊆n sn+1 and pn = [sn]. By (1), 

[(
⋃

n<ω sn)�〈0〉] is a lower bound for 〈pn : n < ω〉. �

Using Lemma 3.15 it is straightforward to build �P -decreasing sequences 〈pα : α < ω1〉

in P such that pα is the ≡-class of some tα : α + 1 → ω. Given such a sequence, define

T := {t ∈ S : t ∈ pα for some α < ω1} =
⋃

α<ω1

pα.

Clearly T is �2-coherent and full and hence an Aronszajn tree by remarks made after 

Definitions 3.1 and 3.4.

Our general strategy to prove Theorem 1.16 now comes into focus. What we need to 

do is to use ♦ to build a sequence 〈tα : α < ω1〉 of elements of S such that:

• tα : α + 1 → ω,
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• the sequence 〈[tα] : α < ω1〉 is �P -decreasing in P , and

• the associated tree has the property that any subtree contains a frozen cone.

If we can do this, then Theorem 1.16 follows.

Proof of Theorem 1.16. Let 〈Aα : α < ω1〉 be a ♦-sequence, which we will assume is 

tailored to guess initial segments of ω1-trees from S—i.e. if S ⊆ S is an ω1-tree, then 

there are stationarily many limit ordinals δ < ω1 with Aδ = S<δ, the initial segment of 

S of all levels prior to level δ (see discussion in the proof of Theorem 7.7 below).

Part of the construction is trivial: we let t0 = 〈0〉, and if we are given tα then we set 

tα+1 := tα
�〈0〉. Thus, the interesting case occurs when δ < ω1 is a limit ordinal and we 

have constructed 〈tα : α < δ〉. Under these circumstances, we will know what T looks 

like below level δ, and our choice of tδ : δ +1 → ω will determine which branches through 

this initial segment of T will have continuations at level δ.

The ♦-sequence presents us with a countable subtree Aδ of S, and we ask if Aδ is a 

subtree of T<δ that does not contain a frozen cone of T<δ. If the answer to this question 

is “no,” then we need not worry about Aδ and let tδ : δ + 1 → ω be any element of S

such that [tδ] is a lower bound of 〈[tα] : α < δ〉 in P . If the answer is “yes,” then we will 

need to choose tδ : δ + 1 → ω in S so that for each s ≡ tδ, there is α < δ such that 

s�α + 1 is not in Aδ.

We do this in countably many steps. First, we let 〈δn : n < ω〉 be an increasing 

sequence cofinal in δ. In our construction, we will be choosing ordinals αn and corre-

sponding sn ∈ pαn
such that:

• δn � αn < δ, and

• sn ⊆n sn+1.

This guarantees that

tδ :=

(

⋃

n<ω

sn

)

�〈0〉

will be in S and of the right length.

We start with α0 = δ0, and let s0 = tα0
. Once we have constructed sn and αn, we 

assume that some bookkeeping process hands us a �2-modifier mn : δ + 1 → Z. The 

function mn should be thought of as coding a member of the equivalence class of the tδ

we are building. Thus, we look at the function sn + mn defined on |sn| given by

(sn + mn)(ξ) := sn(ξ) + mn(ξ)

and ask if this is a member of Aδ. If the answer is “no” (this includes the case in which 

sn +mn has negative values), then we choose αn+1 to be greater than δn+1, and let sn+1
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be some n-extension of sn in the ≡-equivalence class [tαn+1
]. If the answer is “yes,” then 

we finally need to use our assumption that Aδ, when considered as a subtree of T<δ, 

does not contain a frozen cone of T<δ.

Define

M := max{|mn(ξ)| : ξ < δ} and N := M + n + 1.

Our assumption says that sn + mn will have an N -extension r in T<δ that is not in Aδ. 

Extending r will not change this situation, so we may assume that |r| = αn+1 + 1 where

αn+1 � δn+1.

Now the idea is that we should define

sn+1 := r − mn.

Notice that if ξ < αn, then

sn+1(ξ) = r(ξ) − mn(ξ) = sn(ξ) + mn(ξ) − mn(ξ) = sn(ξ),

and so sn+1 extends sn. If αn � ξ < αn+1, then r(ξ) � N and hence

sn+1(ξ) = r(ξ) − mn(ξ) � n + 1.

Thus sn+1 is in fact an n-extension of sn. Finally, sn+1 ≡ tαn+1
because sn+1 is equivalent 

to r and r ∈ T<δ. The key point is that if t is any extension of sn+1 in Tδ, then applying 

the modification mn to t results in some s such that s�αn + 1 is not in Aδ.

Since we made sure to arrange sn ⊆n sn+1, we know

tδ :=
(

⋃

n<ω

sn

)

�〈0〉,

is in S and of height δ. Thus, [tδ] will be a lower bound for 〈[tα] : α < δ〉 in P , and the 

�2-modifications of tδ will be the δth level of T .

The construction described above will produce a decreasing sequence 〈[tα] : α < ω1〉

in P . It remains to show that every subtree of T contains a frozen cone. Suppose S ⊆ T

is downward closed and does not contain a frozen cone. By the choice of our ♦-sequence, 

there must be a δ < ω1 such that Aδ = S<δ and (T<δ, <T , S<δ) ≺ (T, <T , S). In 

particular δ is a limit ordinal, Aδ ⊆ T<δ, and Aδ = S<δ contains no frozen cone of T<δ.

It suffices to show that S ⊆ T<δ. This follows from our construction, though: if t is 

any element of level δ of T , then during our construction of tδ there was a stage where 

the function t − tδ appeared as mn. Since S does not contain a frozen cone, sn+1 was 

chosen so that sn+1 + mn is in T<δ \ S<δ. Because t extends sn+1 + mn, t is also not 

in S. Thus, the height of S is at most δ and so S is countable. We conclude that any 

subtree of T contains a frozen cone, as required. �
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4. Countryman lines at higher cardinals

In the remainder of the paper, our aim is to adapt the construction in the previous 

section to higher cardinals. While this is of interest in its own right, our main motivation 

is to produce examples of minimal non-σ-scattered linear orders of cardinality κ+ > ℵ1. 

In fact these orders will be κ+-Countryman lines.

We will begin recording some basic facts about κ+-Countryman lines, when κ is an 

infinite cardinal. Here a linear order C is κ+-Countryman if its cardinality is κ+ and C2

is the union of κ chains with respect to the coordinatewise partial order on C2.

Lemma 4.1. Suppose that L is a linear order of cardinality κ+ and that whenever Z ⊆

L × L is a chain, there are at most κ elements x ∈ L such that

Zx := {y ∈ L : (x, y) ∈ Z}

has cardinality κ+. Then L is not κ+-Countryman.

Proof. Suppose that Z is a collection of chains in L × L with |Z | = κ. Since κ+ is not 

a union of κ sets of cardinality κ, our assumption implies there is an x ∈ L such that for 

every Z ∈ Z , Zx has cardinality at most κ. Again using the regularity of κ+, there is a 

y ∈ L such that y �∈ Zx for every Z ∈ Z . But now (x, y) ∈ L × L is not covered by Z . 

Since Z was arbitrary, L is not κ+-Countryman. �

Proposition 4.2. Suppose that C is κ+-Countryman. The following are true:

(1) C∗ is κ+-Countryman and any suborder of C of cardinality κ+ is κ+-Countryman.

(2) C is not a well order.

(3) C is has no dense suborder of cardinality κ.

(4) C is κ+-Aronszajn.

(5) If L is a linear order which embeds into C and C∗, |L| � κ.

Proof. Item (1) is trivial and (4) is an immediate consequence of (1)–(3). To see (2), 

observe that by (1), it suffices to show that κ+ is not Countryman. Notice that if Z ⊆

κ+ × κ+ is a chain and some section Zα has cardinality κ+, then it is cofinal in κ+ and 

hence Zα′ is empty whenever α < α′. In particular, there is at most one α such that Zα

has cardinality κ+. By Lemma 4.1 κ+ is not Countryman.

To see (3), suppose that C has cardinality κ+ and yet has a dense subset D of 

cardinality κ. If Z ⊆ C × C is a chain, let X be the set of all x ∈ C such that the 

section Zx contains at least two elements ax < bx. As D is dense, whenever x ∈ X we 

may choose dx ∈ D with ax < dx < bx. Since x < x′ implies Zx < Zx′ , it also implies 

dx �= dx′ . Thus |X| � |D| � κ. Again, by Lemma 4.1, C is not κ-Countryman.
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Finally, to see (5), notice that if L is any linear order and f : L → C and g : L → C∗

are order preserving, then {(f(x), g(x)) : x ∈ L} meets any chain in C2 in at most one 

point. In particular, if C is κ+-Countryman, |L| � κ. �

Notice that the definitions of �2-modification and �2-coherent which we made previ-

ously makes sense in the generality of <κ+

ω. A subset X of <κ+

ω is �2-full with respect 

to κ+ if it has cardinality κ+ and is closed under initial segments of successor length and 

�2-modifications. If κ+ is clear from the context, we will sometimes abuse notation and 

write “�2-full” (or just “full”) to mean “�2-full with respect to κ+.” The next proposi-

tion provides a useful criterion for demonstrating that a linear order is κ+-Countryman. 

The proof is a routine modification of arguments of Todorcevic [40] and is included for 

completeness. Recall that a tree of height κ+ is special if it is a union of κ antichains.

Proposition 4.3. Suppose that T ⊆ <κ+

ω is �2-coherent and has cardinality κ+. If T is 

special, then (T, �lex) is κ-Countryman.

Proof. It suffices to cover {(s, t) ∈ T 2 : |s| � |t|} by κ many chains. Given (s, t) ∈ T 2

with |s| � |t|, let n = n(s, t) and ξi = ξi(s, t) for i � n be such that:

• ξ0 = 0 < ξ1 < . . . < ξn = |s|,

• t(ξi) − s(ξi) �= t(ξi+1) − s(ξi+1), and

• if ξi < η < ξi+1, then t(η) − s(η) = t(ξi) − s(ξi).

Let f : T → κ be such that f−1(α) is an antichain for each α < κ. Define σ(s, t) and 

φ(s, t) to be the sequences of length n(s, t) given by

σ(s, t)(i) := t(ξi) − s(ξi) φ(s, t)(i) := f(s�ξi+1)

whenever i < n(s, t).

Since the sets of possible values of σ and φ have cardinality κ, it suffices to show that 

if σ(s, t) = σ(s′, t′) and φ(s, t) = φ(s′, t′), then either:

• s �lex s′ and t �lex t′ or

• s′ �lex s and t′ �lex t.

Notice that this is vacuously true if either s = s′ or t = t′. For ease of reading, we 

will write ξi for ξi(s, t) and ξ′
i for ξi(s

′, t′). Let i � n be maximal such that ξi = ξ′
i. If 

i = n and s = s′, then the desired conclusion follows. Otherwise set ζ = |s| if i = n and 

ζ = min(ξi+1, ξ′
i+1) if i < n.

Claim 4.4. s�ζ �= s′�ζ.
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Proof. If i = n then ξn = ξ′
n = |s| = |s′| = ζ, and we are done since s �= s′. Thus we 

may assume that i < n. Since s�ξi+1 �= s′�ξ′
i+1 and f(s�ξi+1) = f(s′�ξ′

i+1), it follows 

that s�ξi+1 is incompatible with s′�ξ′
i+1 and therefore that s�ζ �= s′�ζ. �

By exchanging the roles of s and s′ if necessary assume that s <lex s′. Observe that 

since σ(s, t) = σ(s′, t′),

t(η) − s(η) = t′(η) − s′(η)

and hence

t(η) − t′(η) = s(η) − s′(η) (4.1)

whenever η < ζ. Let δ be minimal such that s(δ) �= s′(δ). Since δ < ζ, (4.1) implies 

t�δ = t′�δ and t(δ) < t′(δ). Thus t <lex t′, as desired. �

Proposition 4.5. Suppose that C ⊆ <κ+

ω is �2-coherent and full. If X ⊆ C has cardinality 

at most κ, then (X, �lex) is σ-scattered.

Proof. By adding 1 to all of the values of elements of X if necessary, we may assume 

that no element of X takes the value 0. Let t ∈ C be such that |t| is an upper bound 

for the lengths of elements of X, and let Y be the set of all �2-modifications of t. Define 

f : X → Y by

f(s)(ξ) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s(ξ) if ξ < |s|

0 if ξ = |s|

t(ξ) if ξ > |s|

and observe that f preserves �lex (since we’ve arranged s only takes positive values, 0

effectively serves as a terminating symbol for the sequence and we’ve defined �lex so that 

the terminating symbol is less than all other symbols). Since y �→ y−t also preserves �lex

and maps Y into the set of �2-modifiers of length |t|, we are done by Proposition 3.3. �

5. Higher �2-coherence and the tree Sκ

In order to apply Proposition 4.3, it will be helpful to construct an analog Sκ ⊆ <κ+

ω

of S for higher cardinals κ such that any T ⊆ Sκ which is �2-coherent and full is special. 

Toward this end, let us assume that κ is a (possibly singular) infinite cardinal. If there is 

a �κ-sequence, then the tree T (�2) defined using minimal walks down the �κ-sequence 

has many nice coherence properties. Our plan is to capture some of this structure in an 

abstract way.
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Definition 5.1. Define Sκ to consist of all functions t ∈ <κ+

ω which satisfy the following 

conditions:

(1) |t| = δ + 1 for some δ < κ+ (which we denote as top(t)),

(2) for each integer n � −1, the set Ct
n := {α < |t| : t(α) � n} is closed,

(3) if α < |t| is a limit ordinal, then t(α) is the least n such that Ct
n is unbounded in α

(noting that Ct
−1 = ∅), and

(4) if I is a maximal open interval of |t| that is disjoint to Ct
n−1 then

otp(Ct
n ∩ I) < κ · ω.

If t ∈ Sκ, then we let last(t) (the last value of t) be given by

last(t) := t(top(t)).

Setting n = 0 and I = |t| in (4), otp(Ct
0) < κ · ω. An easy induction (break up |t| into 

blocks demarcated by elements of the closed set Ct
n) now shows that otp(Ct

n) < (κ ·ω)n+1

for all n < ω.

Observe that if s �= t are in Sκ, last(s) = last(t) =: n, and s ⊆ t, then Cs
n is a proper 

initial segment of t and hence otp(Cs
n) < otp(Ct

n). In particular,

s �→ (last(s), otp(Cs
last(s)))

is a specializing function for Sκ. (The use of the specific ordinal κ · ω in the definition 

is not critical: κ · ω is large enough to guarantee that Sκ will be closed under certain 

types of increasing unions, but small enough to ensure that our specializing function 

takes values in a set of cardinality κ.)

The definition of ⊆n given in Section 3 generalizes without change to Sκ, as does the 

definition of frozen cone. The following proposition summarizes what we have shown so 

far; the proof of the later statement is obtained from the arguments in Section 3 mutatis 

mutandis.

Proposition 5.2. If T ⊆ Sκ is �2-coherent and full, then (T, �lex) is a κ+-Countryman 

line and any suborder of cardinality at most κ is σ-scattered. Moreover, if every subtree 

of T contains a frozen cone, then (C, �lex) is a minimal non-σ-scattered linear order, 

whenever C ⊆ T is an antichain of cardinality κ+.

Unlike in Section 3, it need not be the case that in a given model of set theory that 

there is a subset T of Sκ which is �2-coherent and full when κ > ℵ0—after all such a T is 

a κ+-Aronszajn tree and hence witnesses the failure of the tree property at κ+ (see [24]). 

On the other hand, if �2 is defined from a �κ-sequence as in [40], then the collection of 

all �2-modifications of
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{�2(·, β)�α + 1 : α < β < κ+}

is a subset of Sκ which is �2-coherent and full [40].

We will now establish some basic properties of Sκ and define some terminology and 

notation.

Lemma 5.3. Suppose t ∈ Sκ and δ = top(t).

(1) The sequence 〈Ct
n : n < ω〉 is an increasing sequence of closed sets with union 

δ + 1 = |t|.

(2) If α < |t| is a limit ordinal, then t(α) = n implies that t is constant with value n on 

a closed unbounded subset of α.

(3) For each n < ω the set nacc(Ct
n) of non-accumulation points of Ct

n consists of 

successor ordinals.

(4) The function t is determined by its values on successor ordinals.

Proof. Item (1) is immediate from the definitions. For (2), assume that t(α) = n. Both 

Ct
n−1 ∩ α and Ct

n ∩ α are closed in α, but the former is bounded below α while the latter 

is not. Thus Ct
n ∩α\sup(Ct

n−1) is closed and unbounded in α. But since this is contained 

in the set of β < α for which t(β) = n, we are done. Statements (3) and (4) now follow 

immediately. �

The collection Sκ is closed under some natural operations. For example, it is clear 

that this set is closed under restrictions to successor ordinals. Also if t ∈ Sκ, then so is 

t�〈n〉 for every n < ω. Most important for us, though, is that Sκ is essentially closed 

under certain types of increasing unions. The next definition will help us analyze the 

situation.

Definition 5.4. Given a limit ordinal δ < κ+, a function t : δ → ω is an Sκ-limit if 

t � α + 1 is in Sκ for every α < δ.

The point is that any strictly ⊆-increasing union of elements of Sκ is an Sκ-limit. 

If t is an Sκ-limit with domain some limit ordinal δ, then t will possess many of the 

characteristics of an element of Sκ automatically. For example, the definition of Ct
n

makes sense for each n, and these sets will each be closed in δ because all of their proper 

initial segments are closed. We also note that if t does have an extension s ∈ Sκ with 

top(s) = δ, then in fact this extension is unique, because the value s(δ) must be the least 

n for which Ct
n+1 is unbounded in δ. We will encounter this idea many times, so it will 

be convenient to give this particular n a name.

Definition 5.5. Suppose t : δ → ω for some limit ordinal δ < κ+. The limit infimum of 

t, denoted lim inf(t) is defined to be the least n < ω with pre-image unbounded in δ if 

such an n exists, and is said to be ∞ otherwise.
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Notice that if δ has uncountable cofinality, then any t : δ → ω will have a finite limit 

infimum by a simple counting argument. Thus, the situation lim inf(t) = ∞ is possible 

only if cf(δ) = ω.

For an Sκ-limit t, the question of whether t can be extended to an element of Sκ

hinges on the existence of a finite limit infimum whose pre-image is not too large. The 

following lemma makes this precise.

Lemma 5.6. Suppose t is an Sκ-limit with domain some limit ordinal δ < κ+. Then the 

following two statements are equivalent:

• t has an extension s ∈ Sκ with top(s) = δ.

• lim inf(t) is some finite n < ω, and the pre-image of n under t has a tail of order-type 

less than κ · ω.

In particular, if t is an Sκ-limit and |t| = δ has uncountable cofinality, then t has an 

extension s ∈ Sκ with top(s) = δ.

Proof. For the forward implication, suppose s ∈ Sκ is an extension of t with top(s) = δ. 

Since s ∈ Sκ, lim inf(t) = s(δ) is finite. If α < δ is such that t � s(δ) on the interval 

(α, δ], then

otp({η ∈ (α, δ) : t(η) = s(δ)}) < κ · ω

because s satisfies requirement (4) in Definition 5.1.

For the reverse implication assume t satisfies lim inf(t) = n. We want to show that the 

function s := t�〈n〉 is in Sκ. Since t is an Sκ-limit and s(δ) = lim inf(t) = n, requirements 

(1)–(3) of Definition 5.1 are easily satisfied.

For requirement (4), let m be given and I ⊆ δ +1 be an open interval on which s > m. 

If m � n, then since s−1(n) is cofinal in δ, it must be that β := sup(I) < δ. Since t�β + 1

is in Sκ, it follows that

otp(Cs
m+1 ∩ I) = otp(Ct�β+1

m+1 ∩ I) < κ · ω.

If m < n − 1, then s−1(m + 1) = t−1(m + 1) is bounded by some β < δ and we are again 

done by virtue of t�β + 1 being in Sκ. Finally, if m = n − 1, then by our hypothesis we 

may write I ∩ δ = I0 ∪ I1, where I0 is an initial segment of I ∩ δ which is bounded in δ, 

and I1 is a tail of I ∩ δ such that otp({η ∈ I1 : t(η) = n}) < κ · ω. Since t is an Sκ-limit, 

we have otp({η ∈ I0 : t(η) = n}) < κ · ω. Since κ · ω is closed under ordinal addition, it 

follows that otp({η ∈ I : s(η) = n}) < κ · ω as required. �

This simplifies the project of building ⊆-increasing sequences in Sκ immensely: we just 

need to worry about what happens at limit stages of countable cofinality. In particular, 

we need to guarantee that the limit infimum is finite and that the order-type of its 
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pre-image does not grow to ordertype κ · ω. This turns out to be relatively easy to 

arrange provided we are careful at successor stages. The following definition formulates 

a straightforward way of doing this.

Definition 5.7. Suppose s, t ∈ Sκ. We say that t is a capped extension of s if:

• s ⊂ t (so t properly extends s),

• last(t) = 0 (so t terminates with the value 0), and

• t(ξ) > 0 for all |s| � ξ < |t| − 1 (so top(t) is the only place beyond s where t returns 

the value 0).

The motivation for this definition is as follows. Suppose that 〈sn : n < ω〉 is a sequence 

of elements of Sκ and that sn+1 is a capped extension of sn for all n < ω. The definition 

guarantees that the union t of the chain will satisfy lim inf(t) = 0, and

otp(t−1({0})) = otp(s−1
0 ({0})) + ω < κ · ω.

Thus, the sequence 〈sn : n < ω〉 can be continued in a canonical way: we can define

sω := t�〈0〉.

The function sω so defined is in fact a least upper bound for the sequence in Sκ, as any 

such extension must take on the value 0 at top(s). We now extend this notion to longer 

sequences in the obvious way.

Definition 5.8. A ⊂-increasing sequence s̄ = 〈sβ : β < α〉 of elements of Sκ is capped if:

• sβ+1 is a capped extension of sβ for all β < α.

• for γ < α a limit ordinal, we have

sγ =
(

⋃

β<γ

sβ

)

�〈0〉.

(So for limit γ, sγ is the canonical extension of the sequence 〈sβ : β < γ〉 in Sκ.)

We now have all the pieces we need to easily get our sufficient condition for building 

⊆-increasing sequences in Sκ that are guaranteed to have upper bounds.

Lemma 5.9. A capped sequence in Sκ of length at most κ has a least upper bound in 

(Sκ, ⊆).

Proof. Let 〈sα : α < γ〉 be a capped sequence in Sκ for γ � κ and let t =
⋃

α<γ sα. Let 

δα = |sα| and observe that {δα : α < γ} is a closed unbounded set in |t| and moreover is a 
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tail of t−1(0). In particular, lim inf t = 0 and a tail of t−1(0) has ordertype γ � κ < κ ·ω. 

By Lemma 5.6, t�〈0〉 is in Sκ. �

Next we turn to modifications of elements of Sκ. For the sake of simplicity, in the 

context of Sκ, all modifiers will have length κ+ + 1 and will be identified with their 

restriction to κ+ as per our remark in Section 3.

It will be helpful to define some notation and terminology associated to a given mod-

ifier.

Definition 5.10. Suppose m : κ+ → Z is a modifier.

(1) The height of m, denoted ht(m), is the least ζ < κ+ for which h is constant on 

[ζ, κ+).

(2) The norm of m, denoted ‖m‖, is the maximum value of the form |m(ξ)|. Equivalently 

‖m‖ is the least N such that every value of m is in [−N, N ].

(3) We define the change set of m, denoted ∆(m), to consist of the ordinals ξ0 = 0 <

ξ1 < · · · ξn = ht(m) such that m is constant on [ξi, ξi+1) for each i < n and m(ξi+1) �=

m(ξi); the ordinals ξi for 0 < i � n are the change points of m.

We say that a modifier t is legal for s ∈ Sκ if the values of s + t are nonnegative. The 

motivation for this definition is the following lemma.

Lemma 5.11. If s ∈ Sκ and m is a �2-modifier which is legal for s, then s + m ∈ Sκ.

Proof. Clearly |s + m| = |s| is a successor ordinal and s + m takes values in ω, so 

requirement (1) of Definition (5.1) is satisfied. To verify requirements (2) and (3), let 

α < |s| with α limit, and let s(α) = k and m(α) = l. Since m is continuous m(β) = l for 

all large β < α, and since s ∈ Sκ, s(β) � k for all large β < α and s(β) = k for cofinally 

many β < α. It follows that (s + m)(α) = k + l, (s + m)(β) � k + l for all large β < α, 

and (s + m)(β) = k + l for cofinally many β < α.

As for requirement (4), let I be an interval such that (s +m)(α) � n for all α ∈ I, and 

break up I into finitely many disjoint subintervals Ii for i < k such that m is constant 

on Ii with value li. For α ∈ Ii we have that s(α) = (s + m)(α) − li � n − li, so that

otp({α ∈ Ii : s(α) = n − li}) < κ · ω,

which implies that otp({α ∈ Ii : (s +m)(α) = n}) < κ ·ω. Since the ordinal κ ·ω is closed 

under finite sums, otp({α ∈ I : s(α) = n}) < κ · ω and we have verified requirement 

(4). �

Notice that it follows immediately from Lemma 5.11 that if s ∈ Sκ and m is legal for 

s, then −m is legal for s + m, in which case (s + m) − m = s.
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Proposition 5.12. Suppose s : δ + 1 → ω is in Sκ and let α < δ.

(1) The sequence s has a modification t that extends s � α and satisfies t(δ) = 0.

(2) If δ is a successor ordinal, then s has a modification that is a capped extension of 

s � α.

Proof. Part (1) is immediate except for the case where δ is a limit ordinal for which 

n := s(δ) > 0. Since s ∈ Sκ, n is the least element of ω whose pre-image is unbounded in 

δ. Increasing α if necessary, we may assume that s(ξ) � n for ξ � α. Now we can define 

a function m : κ+ → Z by

m(ξ) =

{

0 if ξ � α, and

−n if α < ξ < κ+.

The function m is a modifier, and by the choice of α we know that it is legal for s. The 

function t := s + m has all the required properties.

Now suppose δ = γ + 1. Part (2) is easy if α = γ, so let us assume α < γ and define 

a modifier m : κ+ → ω by

m(ξ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if ξ � α,

1 if α < ξ � γ, and

−s(δ) if ξ = δ.

Now m is legal for s, and s + m is a capped extension of s � α that is equivalent to s. �

6. Forcing an example

Recall that in Section 3 we derived a poset P from the set S, investigated the properties 

of P as a forcing poset, and then used ♦ and P to construct a subtree of S which 

permitted us to answer Baumgartner’s question. The argument of Section 3 easily shows 

that forcing with P adds a suitable tree, and indeed we may view the ♦ construction as 

building an ω1-sequence of elements which generates a sufficiently generic filter.

By analogy with the definition of P from S, we let [s] be the set of legal modifications 

of s for s ∈ Sκ, let Pκ = {[s] : s ∈ Sκ}, and order Pκ by ruling that [t] � [s] if and only 

if |s| � |t| and [s] = [t�|s|]. In this section we investigate Pκ as a notion of forcing, and 

show that Pκ is a (κ + 1)-strategically closed notion of forcing that adjoins a tree of the 

sort we desire.

Definition 6.1. Let P be a notion of forcing and let α be an ordinal. The game Gα(P )

involves two players, Odd and Even, who take turns playing conditions from P for α

many moves. Odd chooses their move at odd stages, and Even chooses their move at even 

stages (including all limit stages). Even is required to play 1P (the maximal element of 
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P ) at move zero. If pβ is the condition played at move β, the player who played pβ loses 

immediately unless pβ � pγ for all γ < β. If neither player loses at any stage β < α, 

then Even wins the game.

Definition 6.2. Let P be a notion of forcing and γ be an ordinal. The notion of forcing 

P is γ-strategically closed if and only if Even has a winning strategy in Gγ(P ).

We come now to one of our main points.

Theorem 6.3. Pκ is (κ + 1)-strategically closed.

Proof. The strategy for Even in the game is simple, and involves building a capped 

sequence 〈tβ : β < κ〉, where tβ is an element of p2β. In the end, Even’s victory will be 

assured by applying Lemma 5.9.

Whenever Odd chooses their move p2β+1, Even will choose a t ∈ p2β+1 that is a 1-

extension of tβ, and define tβ+1 = t�〈0〉 and p2(β+1) = [tβ+1]. At a limit stage δ � κ, 

the capped sequence 〈tβ : β < δ〉 will have a least upper bound tδ in Sκ, and Even will 

then play the condition pδ = [tδ]. �

Note that this game is very easy for Even to win: if they are building a capped sequence 

〈tξ : ξ < κ〉 in the background, then all that is required at successor stages is that their 

response to p2β+1 must contain a capped extension of tβ. If this is done, then Even will 

always be able to play at limit stages. This flexibility will be an important ingredient for 

us, as part of our proof relies on the fact that Even has many winning moves available 

at successor stages.

The fact that Pκ is (κ + 1)-strategically closed tells us that it adds no κ-sequences 

of ordinals, and therefore preserves all cardinals up to and including κ+. If we assume 

2κ = κ+ as well, then all cardinals and cofinalities will be preserved.

The forcing also adds a κ+-tree. Given a generic filter G ⊆ Pκ, let us step into the 

extension V[G]. An easy density argument shows us that G will consist of a decreasing 

sequence 〈pδ : δ < κ+〉 of elements of Pκ, which we enumerate so that pδ consists of 

sequences of length δ + 1.

If we now define

T (G) :=
⋃

δ<κ+

pδ

then it is straightforward to see that T (G) forms a tree under extension. Moreover, by 

construction T (G) is �2-coherent and full.

We will need to work with certain elementary submodels of cardinality κ. In the case 

when κ is regular and κ<κ = κ we could use such models which are closed under sequences 

of length < κ, but if κ is singular this is impossible because in this case κcf(κ) > κ, and 
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in any case we do not want to make cardinal arithmetic assumptions. We will make a 

standard move and use a certain type of “internally approachable” model.

If χ be a sufficiently large regular cardinal, we will mildly abuse notation by writing 

“N ≺ H(χ)” as a shorthand for “N ≺ (H(χ), ∈, ≺χ)” where ≺χ is some fixed wellordering 

of H(χ). We claim that any parameter x ∈ H(χ), we can find an elementary submodel 

M ≺ H(χ) satisfying the following:

• x ∈ M ;

• M is of cardinality κ with κ + 1 ⊆ M ;

• M ∩ κ+ is some ordinal δ < κ+;

• for every X ∈ M with |X| � κ, there is an enumeration �x = 〈xi : i < κ〉 of X ∩ M

such that �x�j ∈ M for all j < κ.

Let cf(κ) = μ. We construct M as the union of a μ-chain (Mi)i<μ where:

• x, κ ∈ M0;

• for all i < μ, Mi ≺ H(χ) and |Mi| < κ;

• for all i and j with i < j < μ, Mi ⊆ Mj and Mi ∈ Mj ;

• for all j < μ, 〈Mi : i � j〉 ∈ Mj+1;

• for all γ < κ there is i < μ such that γ ⊆ Mi.

This is all possible if we choose χ sufficiently large.

We verify that if we set M :=
⋃

i<μ Mi then M is as required. By construction κ ⊆ M , 

and so M ∩κ+ ∈ κ+. Now suppose X ∈ M with |X| � κ. To build �x, we assume without 

loss of generality that X ∈ M0. We start by choosing 〈xi : i < γ0〉 to be the <χ-least 

enumeration of X ∩ M0, noting that γ0 < κ because |M0| < κ and 〈xi : i < γ0〉 ∈ M1

because X, M0 ∈ M1. We will now proceed inductively for μ steps, choosing 〈xi : i < γj〉

enumerating X ∩ Mj with γj < κ and 〈xi : i < γj〉 ∈ Mj+1. Given 〈xi : i < γj〉, we 

choose 〈yi : i < δj〉 to be the <χ-least enumeration of X ∩ (Mj+1 \ Mj), and then set 

γj+1 = γj + δj and xγj+i = yi for i < δ. Since X, Mj , Mj+1 ∈ Mj+2 it follows that 

〈yi : i < δj〉 ∈ Mj+2, and so 〈xi : i < γj+1〉 ∈ Mj+2. When j is limit let γj = supj0<j γj0
, 

then γj < κ because j < μ = cf(κ), and 〈xi : i < γj〉 ∈ Mj+1 because it can be defined 

from 〈Mi : i < j〉 and we have 〈Mi : i � j〉 ∈ Mj+1.

Observation 6.4. If we require that the set X ∩ M be enumerated with repetitions, then 

we replace X by κ × X and let 〈(αi, xi) : i < κ〉 be an enumeration of (κ × X) ∩ M with 

all its proper initial segments in M . Then 〈xi : i < κ〉 enumerates X with repetitions 

and all its proper initial segments lie in M .

Let M be a submodel of this type, and note that since κ ∈ M any set which is 

definable from the parameter κ is also in M : in particular the set Sκ, the forcing poset 

Pκ, the winning strategy for the game Gκ+1(Pκ), the set of �2-modifiers of length κ+, 
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and the set of all dense subsets of Pκ are all elements of M . Given any p ∈ M ∩ Pκ, we 

can use our game Gκ+1(Pκ) to build an (M, Pκ)-generic subset G of M ∩ Pκ together 

with a lower bound for G, that is to say a totally (M, Pκ)-generic condition. To this 

we fix an enumeration �D of the dense subsets of Pκ which lie in M in order type κ, 

such that every proper initial segment of �D is in M . We then build a run of the game 

Gκ+1(Pκ) where Even uses the winning strategy, and player Odd plays by choosing p2β+1

as the <χ-least extension of p2β that lies in Dβ . The key point is that for every γ < κ, 

the sequence of moves up to γ is defined from the strategy and an initial segment of �D, 

hence it is in M : in particular pγ ∈ M for all γ < κ. It is now clear that the final move 

pκ is totally (M, Pκ)-generic. In particular, pκ induces an (M, Pκ)-generic filter which 

determines our generic tree up to level δ = M ∩ κ+, and the same will occur if Ṡ is a 

name in M for a subtree of Ṫ . We leverage this to establish that the generic tree T (G)

added by Pκ is such that all of its subtrees contain a frozen cone.

Theorem 6.5. Every subtree of the generic tree T (G) adjoined by Pκ contains a frozen 

cone. Thus, there is a minimal non-σ-scattered linear order of cardinality κ+ in the 

generic extension.

Proof. Let Ṫ be a Pκ-name for the generic tree T (G), and suppose

p � “Ṡ is a subtree of Ṫ that does not contain a frozen cone”. (6.1)

We will find δ < κ+ and q � p such that

q � “Ṡ ⊆ Ṫ<δ.” (6.2)

Let χ be some sufficiently large regular cardinal, and let M be an elementary submodel 

of H(χ) as discussed above, containing all parameters of interest to us. We let δ be 

M ∩ κ+. As in the preceding discussion let �D = 〈Di : i < κ〉 be an enumeration of the 

dense open subsets of Pκ that lie in M with every proper initial segment of �D in M , and 

let �m = 〈mi : i < κ〉 be an enumeration with repetitions of the modifiers that lie in M

with every proper initial segment of �m in M . We play the game Gκ+1(Pκ) to produce 

the required q. The initial moves are as expected: Even must open with [∅], and we let

Odd respond with p.

Suppose now that we are playing the game, and it is Odd’s turn to play. In this 

situation, we have collaboratively built 〈pγ : γ � 2β〉, while Even has been building 

their auxiliary sequence 〈tγ : γ � β〉 on the side. Our construction will be guided by �D

and �m, so that as in our prior construction of a totally generic condition we have that 

〈pγ : γ � 2β〉 and 〈tγ : γ � β〉 are both in M . The sequence 〈tγ : γ � β〉 will be topped, 

in particular last(tβ) = 0.

We now consider the modifier mβ, noting that since mβ ∈ M we have h(mβ) < δ. 

We ask first if mβ is legal for tβ with h(mβ) < top(tβ). If the answer is “no,” then Odd
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doesn’t need to take any special action, and chooses p2β+1 := p2β . In this case Even

responds by choosing tβ+1 := tβ .

If the answer is “yes,” then we will ask Odd to do some additional work. Note that 

tβ + mβ ∈ M because mβ, tβ ∈ M . Also observe that the eventual constant value of 

mβ is non-negative because mβ is legal for tβ , h(mβ) < top(tβ) and last(tβ) = 0. In 

particular mβ is automatically legal for any extension of tβ. We choose q � p2β to be the 

<χ-minimal extension of p2β deciding “tβ +mβ ∈ Ṡ.” Since q is definable from parameters 

in M , it is in M . If q forces “tβ + mβ /∈ Ṡ” we let p2β+1 = q. In this case Even choose 

tβ+1 as the <χ-least capped extension of tβ with [tβ+1] � q.

If q forces “tβ + mβ ∈ Ṡ” we take q and follow the procedure described above to 

extend it to a totally (M, Pκ)-generic condition, generating an (M, Pκ)-generic filter Gβ

on M ∩Pκ. Of course Gβ itself is not in M , but we see shortly that this is not a problem. 

Using Gβ we can interpret names for the initial segments of Ṡ and Ṫ that are in M and 

thus decide the identities of T<δ and S<δ: these objects will depend on Gβ , but for any 

α < δ there will be a condition in Gβ forcing that the information is valid through level 

α. Since q ∈ Gβ we have that tβ + mβ ∈ S<δ.

Since p ∈ Gβ , our assumption (6.1) implies that for any s ∈ T<δ and n < ω there is an 

n-extension t of s in T<δ that is not in S<δ. This is the key ingredient of our argument. 

Let N be the norm of our modifier mβ. Since tβ +mβ ∈ S<δ, tβ +mβ has an N -extension 

s in T<δ such that s /∈ S<δ. This situation is forced to be true for this particular s by 

some condition in Gβ which extends q.

We have shown that there exist an N -extension s of tβ + mβ and an extension r of q

such that r forces “s /∈ Ṡ.” Let (s′, r′) be the <χ-least pair with these properties, where 

as usual this pair is in M , and let p2β+1 = r′. We note that there is no reason to believe 

that p2β+1 ∈ Gβ or that s′ = s. Note also that we can just look at s′ and tell that it is an 

N -extension of tβ + mβ without reference to the forcing at all, so the point is that p2β+1

contains enough information to determine that s′ is in T but not in S. This has some 

consequences, because the only way p2β+1 can force s′ to be in T is if p2β+1 extends the 

equivalence class of s′ in Pκ.

By the closure properties of p2β+1, p2β+1 contains an N -extension s′′ of s′. By the 

definition of T , p2β+1 forces that s′′ ∈ T and since S is forced to be downwards closed, 

p2β+1 forces that s′′ /∈ S. In summary, p2β+1 contains an N -extension s′′ of tβ +mβ that 

is forced by p2β+1 to lie outside of S.

Now define t := s′′ − mβ . Since N is the norm of mβ and s′′ is an N -extension of 

tβ + mβ , we know −mβ is legal for s′′ and t will be a 1-extension of tβ . Now Even defines

tβ+1 := t�〈0〉

and p2(β+1) := [tβ+1], and play continues. As we observed above, mβ is legal for tβ+1.

We summarise the results of this round of the construction, keeping in mind that there 

were various cases. We claim that in all cases where mβ is legal for tβ with h(mβ) <

top(tβ), tβ+1 is a capped extension of tβ and
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p2(β+1) � “tβ+1 + mβ /∈ Ṡ.”

If we are in the case where q forces “tβ + mβ /∈ Ṡ,” then we set p2β+1 := q and the 

claim is immediate because tβ+1 + mβ extends tβ + mβ . If we are in the case where q

forces “tβ +mβ ∈ Ṡ,” then we arranged that tβ+1 +mβ extends s′′ and that p2β+1 forces 

“s′′ /∈ S.”

Because we were careful to make all choices at the successor stages using the wellorder-

ing <χ, 〈pγ : γ � 2β〉 and 〈tγ : γ � β〉 are both in M for all γ < κ. If Even follows this 

strategy, then they will end up winning the game by Lemma 5.9, because the sequence 

〈tβ : β < κ〉 is a capped sequence. Let q be the corresponding final move pκ for Even, 

and now we claim

q � “Ṡ ⊆ Ṫ<δ.”

To see this, let us define

t :=
(

⋃

β<κ

tβ

)

�〈0〉.

Observe that t ∈ Sκ is a bound of the capped sequence 〈tβ : β < κ〉 that Even built 

during our run of the game. We know q = [t], so it suffices to show for any �2-modifier 

m that is legal for t that

q � “t + m /∈ Ṡ.”

It suffices to check this for modifiers m that are in M , as t +m is completely determined 

by m � δ and m must be constant on a tail of δ. Since we enumerated the modifications 

in M with repetitions, during our play of the game we came to a stage 2β + 1 for which 

mβ = m and ht(mβ) < top(tβ). Since m is legal for t, we know m is legal for tβ and 

therefore tβ+1 was selected so that

p2(β+1) � “ tβ+1 + mβ /∈ Ṡ.”

Hence

q � “ t + m /∈ Ṡ”

as required. �

7. Building many examples

Our goal in this section is to prove that if V = L then there is a minimal non-σ-

scattered linear order of cardinality κ+ for every infinite cardinal κ. This will be achieved 
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by showing that such linear orders can be constructed using the “diamond in the square” 

principle ♦κ. Principles of this type, which combine ♦κ+ and �κ for some infinite cardinal 

κ, were first introduced by Gray [11] for κ = ω1 in his dissertation, and first appeared 

in the literature in work of Abraham, Shelah, and Solovay [3]. The paper [3] develops 

several “diamond in the square” principles: the principle now known as ♦κ appears there 

in a slightly different (but equivalent) form under the name SDκ. If V = L, then ♦κ

holds for every infinite cardinal κ [3, Section 2].

We recall the definition of ♦κ. If C is a set of ordinals, let acc(C) denote the set of 

elements of C which are limit points of C.

Definition 7.1. The principle ♦κ asserts the existence of a sequence

〈(Cδ, Xδ) : δ < κ+〉

such that:

(1) for limit δ < κ+ the set Cδ is a closed unbounded subset of δ of order-type at most 

κ,

(2) Xδ ⊆ δ for all δ < κ+,

(3) if α ∈ acc(Cδ) then:

• Cα = Cδ ∩ α,

• Xα = Xδ ∩ α,

(4) for every subset X ⊆ κ+ and every club C ⊆ κ+ there is a limit ordinal δ ∈ C such 

that:

• Cδ ⊆ C,

• otp(Cδ) = κ, and

• X ∩ δ = Xδ.

We will need the following lemma due to Assaf Rinot; see Remark 7.6 below.

Lemma 7.2. Suppose that �C := 〈Cδ : δ < κ+〉 is a �κ-sequence. Then there exists a 

sequence 〈fδ : δ < κ+〉 of functions fδ : Cδ → δ such that for every limit ordinal δ < κ+:

• for every γ ∈ acc(Cδ), fγ = fδ�γ, and

• if otp(Cδ) = κ, then fδ maps Cδ onto δ.

Proof. This may be extracted from the proof of [18, Lemma 3.8], but we prove this 

simplified case from scratch. Fix a map e : [κ+]2 → κ such that if α < β < γ then 

e(α, γ) �= e(β, γ). Let π : κ → κ × κ be a surjection such that the preimage of any 

singleton is cofinal in κ. For every δ ∈ acc(κ+), define a function fδ : Cδ → δ, by letting 

for all β ∈ Cδ:

fδ(β) := min({α < β : π(otp(Cδ ∩ β)) = (otp(Cδ ∩ α), e(α, min(Cδ \ (α + 1))))} ∪ {β}).
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Claim 7.3. Let δ ∈ acc(κ+) and γ ∈ acc(Cδ). Then fγ = fδ�γ.

Proof. As �C is a �κ-sequence, Cγ = Cδ ∩ γ. So, for all α < β < γ, Cδ ∩ β = Cγ ∩ β, 

Cδ ∩ α = Cγ ∩ α and Cδ \ (α + 1) = Cγ \ (α + 1). Consequently, fγ = fδ�γ. �

Claim 7.4. Let δ ∈ acc(κ+) with otp(Cδ) = κ. Then fδ maps Cδ onto δ.

Proof. Let α < δ. Set η := min(Cδ \ (α + 1)) and (i, j) := (otp(Cδ ∩ α), e(α, η)). By the 

choice of the surjection π, {ε < κ : π(ε) = (i, j)} is a cofinal subset of otp(Cδ), so we 

may fix some β ∈ Cδ above α such that π(otp(Cδ ∩ β)) = (i, j). By the definition of fδ, 

it now follows that if fδ(β) �= α, then there exists some ᾱ < α such that otp(Cδ ∩ ᾱ) = i

and e(ᾱ, min(Cδ \ (ᾱ + 1))) = j. Towards a contradiction, suppose that ᾱ < α is such an 

ordinal. But as otp(Cδ ∩ ᾱ) = i = otp(Cδ ∩ α), it is the case that min(Cδ \ (ᾱ + 1)) =

min(Cδ \ (α + 1)) = η, so, e(ᾱ, η) = j = e(α, η), contradicting the fact that the fiber 

e(·, η) is injective. �

This completes the proof. �

The following formal strengthening of ♦κ—which is an equivalent by Lemma 7.2—will 

be useful in carrying out our construction below.

Definition 7.5. If 〈(Cδ, Xδ) : δ < κ+〉 is a ♦κ-sequence and 〈fδ : δ < κ+〉 satisfies the 

conclusion of Lemma 7.2 with respect to 〈Cδ : δ < κ+〉, then we say that 〈(Cδ, Xδ, fδ) :

δ < κ+〉 is a ♦+ε
κ -sequence. The hypothesis ♦+ε

κ postulates the existence of a ♦+ε
κ -

sequence.

Remark 7.6. By Lemma 7.2, ♦κ implies ♦+ε
κ . The first circulated draft of this paper 

derived ♦+ε
κ from the stronger hypothesis ♦∗

κ introduced by Rinot and Schindler in [29]

and which also holds if V = L. Following the third author’s presentation of the results 

of this paper in the Toronto Set Theory Seminar in February 2023, Rinot informed us 

that ♦+ε
κ already followed from ♦κ. He has generously given us permission to include 

above his formulation of Lemma 7.2 and its proof.

We now turn to the task of using ♦κ to construct a minimal non-σ-scattered linear 

order of cardinality κ+.

Theorem 7.7. If κ is an infinite cardinal for which ♦κ holds, then there is a T ⊆ Sκ

which is �2-coherent and full. Consequently, there is a minimal non-σ-scattered linear 

ordering of cardinality κ+ which is moreover κ+-Countryman.

Proof. Applying Lemma 7.2, let 〈(Cδ, Xδ, fδ) : δ < κ+〉 be a ♦+ε
κ -sequence, and fix an 

enumeration 〈mδ : δ < κ+〉 of all �2-modifiers, subject to the conditions that ht(mδ) < δ

and that each modifier appears in the enumeration unboundedly often.
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We need to give a little attention to how we use our ♦+ε
κ -sequence to guess κ+-trees. 

This will be done in a completely straightforward way, but at one point in the proof the 

specificity will be convenient. Since ♦(κ+) is a consequence of ♦+ε
κ , we know κκ = κ+

and so we can fix an enumeration 〈σα : α < κ+〉 of Sκ in order-type κ+. Given any 

κ+-tree S ⊆ Sκ we can code S with a set X ⊆ κ+ by setting

X := {α < κ+ : σα ∈ S}.

What we need to observe is that if we do this, then there will be a closed unbounded set 

of δ < κ+ for which

S<δ = {σα : α ∈ X ∩ δ}. (7.1)

This observation will help us later when we try to apply ♦+ε
κ .

The tree is built via a construction of length κ+, and we build a sequence 〈tα : α < κ+〉

of elements of Sκ with top(tα) = α that further satisfy

tβ ≡κ tα � β + 1

whenever β < α < κ+. At a typical stage α of our construction, we will have available 

the sequence 〈tβ : β < α〉 (hence we will know T<α) and will need to produce a suitable 

tα with domain α + 1.

The particular choice of tα will matter only in cases where α is a limit ordinal, because 

if α is a successor ordinal γ + 1 then we set

tα := tγ
�〈0〉.

At a limit stage α of our construction, we commit to building a tα ∈ Sκ which 

corresponds to a cofinal branch through T<α and satisfies the following two conditions:

β ∈ acc(Cα) =⇒ tβ ⊆ tα, (7.2)

and

acc(Cα) ⊆ t−1
α ({0}) ⊆ acc(Cα) ∪ {β + 1 : β ∈ nacc(Cα))}. (7.3)

Notice that this last condition will guarantee that the set of β < α for which tα(β) = 0

will have order-type at most κ. Since α is a limit ordinal, membership of tα to Sκ requires 

a condition along the lines of (7.3) to allow us to define tα(α) = 0.

We have no freedom if acc(Cα) happens to be unbounded in α, as (7.2) will force us 

to define

tα :=
(

⋃

β∈acc(Cα)

tβ

)

�〈0〉,
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and this will be an element of Sκ with the required properties. Thus, the only leeway 

in our construction occurs when the set acc(Cα) is bounded below α, and whatever 

substantive action we take must occur at these stages.

Suppose then that our construction has arrived at a limit ordinal α for which γ :=

sup(acc(Cα)) is less than α. In such a situation, we know that Cα \ γ + 1 must have 

order-type ω, so we can list it in increasing order as 〈αn : n < ω〉. When we choose 

tα ∈ Sκ, we will want to make sure that it satisfies the following structural requirements:

• top(tα) = α,

• tγ ⊆ tα

• tα � β + 1 ∈ T<α for all β < α, and

• there is an m < ω such that

t−1
α ({0}) ∩ (γ, α) = {αn + 1 : m � n < ω}.

As long as tα satisfies these requirements, our construction can proceed. They are not 

difficult to arrange: if s is any 1-extension of tγ in T<α at all, then we can extend s to a 

suitable tα by means of a capped sequence of length ω whose tops consist of the ordinals 

αn + 1 for m � n < ω.

Our work at stage α will depend on the set Xα presented to us by the ♦+ε
κ -sequence. 

Let us agree to call α an active stage if the following three criteria are satisfied:

• Xα codes an unbounded subtree Yα of T<α,

• Yα does not contain a frozen cone of T<α, and

• there is a ξ ∈ Cγ for which tγ + mfγ(ξ) is in Yα.

If α is an active stage, then let ζ ∈ Cγ be the least ξ as above. We say that this ζ is 

targeted for action at stage α, and our task will be to find an extension tα of tγ that 

satisfies all the structural requirements with the additional property that

(tα + mfγ(ζ)) � α is not a cofinal branch through Yα. (7.4)

If on the other hand α is not an active stage, then we can simply let tα ∈ Sκ be any 

extension of tγ that satisfies the structural requirements.

Suppose now that α is an active stage, and ζ ∈ Cγ is the corresponding target. It 

suffices to produce a 1-extension s of tγ in T<α with the property that s + mfγ(ζ) is not 

in Yα, as such an s can be extended to the tα we need. To do this, let N be the norm 

of the modifier mfγ(ζ). Since Yα does not contain a frozen cone of T<α, we know that 

tγ + mfγ(ζ) has an N -extension t in T<α that is not in Yα. By definition, the modifier 

−mfγ(ζ) will be legal for t, and

s := t − mζ
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will be a 1-extension of tγ in T<α of the sort we seek, and therefore we can find tα which 

satisfies (7.4) in addition to the structural requirements. This completes stage α.

Why does this construction succeed? We let T be the κ+-tree determined by our 

sequence 〈tα : α < κ+〉, so that level α of T will consist of all the legal modifications 

of tα. Our task is to show that any unbounded subtree of T contains a frozen cone, so 

assume by way of contradiction that S ⊆ T is a counterexample, and let X ⊆ κ+ code 

S.

There is a closed unbounded set E of ordinals δ < κ+ satisfying the following two 

statements:

• if s is in S<δ and n < ω, then s has an n-extension in T<δ that is not in S;

• if δ ∈ E then S<δ is coded by X ∩ δ.

Notice that this last is where we use the property of our coding mechanism discussed in 

the context of (7.1).

If χ is some sufficiently large regular cardinal, we can find an elementary submodel 

M of H(χ) of cardinality κ that contains S, T , and E such that:

• M ∩ κ+ = δ < κ+,

• Cδ ⊆ E,

• Xδ = X ∩ δ, and

• fδ maps Cδ onto δ.

This can be achieved because of the properties of our ♦+ε
κ -sequence: note that the defini-

tion implies that there will be a stationary set of δ satisfying the last three requirements 

above, hence we can find δ satisfying the first.

Since S contains an element from level δ of T , there is at least one legal modification 

of tδ in S. Since δ is a limit ordinal, we may assume that the relevant modifier m satisfies 

ht(m) < δ, and hence the modifier m will be in the model M and therefore will appear 

before stage δ in our enumeration of Sκ.

Since the function fδ maps Cδ onto δ, the modifier m guarantees that there is some 

least ζ ∈ Cδ for which

tδ + mfδ(ζ) � δ is a cofinal branch through S<δ. (7.5)

Now turn our focus to the way our construction proceeds through the stages indexed 

by acc(Cδ). Suppose now that α is in acc(Cδ). By the coherence of our ♦+ε
κ -sequence, 

we know

Xα = Xδ ∩ α = X ∩ α

and since α is also in E, we conclude that Xα codes S<α. We also know that S<α does 

not contain a frozen cone of T<α, as this fact will reflect to α by our choice of E. Thus, 
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any α ∈ acc(Cδ) will satisfy the first two requirements needed to be an active stage of 

our construction.

We now show that all sufficiently large elements of nacc(acc(Cδ)) will be active stages 

of our construction. More specifically, if α ∈ acc(Cδ) and

ζ < γ := sup(acc(Cδ) ∩ α) < α,

then α will satisfy the third requirement of being an active stage of our construction. To 

see this, note that since we are working with a ♦+ε
κ -sequence we have

ζ ∈ Cγ = Cδ ∩ γ, (7.6)

and

fγ(ζ) = fδ(ζ). (7.7)

Since tδ + mfδ(ζ) � δ is a cofinal branch through S<δ, we know

tγ + mfγ(ζ) � γ is a cofinal branch through S<γ ,

and therefore α must be an active stage of the construction.

Said another way, we have shown that all sufficiently large α ∈ nacc(acc(Cδ)) are 

active stages. This is enough to get a contradiction: since otp(Cδ) = κ we know

otp(nacc(acc(Cδ)) \ (γ + 1)) = κ,

and our construction guarantees that once an ordinal has been targeted at such a stage 

α, it will never be targeted again at any future stage from acc(Cδ). Thus, we must 

eventually arrive at an active stage α ∈ Cδ where ζ will be targeted for action, but the 

choice of tα then contradicts (7.5). We conclude that S must contain a frozen cone, and 

the theorem is established. �

8. Concluding remarks

We feel that it is likely that the methods of this paper can be adapted to show that 

in L, there is a κ-Aronszajn line which is minimal with respect to being non-σ-scattered 

whenever κ is an uncountable regular cardinal which is not weakly compact.6 Presumably 

if κ is regular uncountable and not weakly compact, L satisfies a suitable principle ♦(κ), 

which in turn implies that there is a κ-Aronszajn tree T ⊆ ω<κ with the following 

properties:

6 Update: In July 2023 at a workshop in CMO, Oaxaca, Roy Shalev announced he has a proof of this 
statement. He has since posted a preprint with this result on the arXiv [32].



J. Cummings et al. / Advances in Mathematics 441 (2024) 109540 35

• T is �2-coherent and full;

• every subset of T of cardinality κ contains an antichain of cardinality κ;

• every subtree of T contains a frozen cone.

The arguments presented in this paper then show that the lexicographic ordering on any 

antichain in T of cardinality κ is minimal with respect to not being σ-scattered.

Galvin asked whether there is a minimal non-σ-scattered linear order with the addi-

tional property that every uncountable suborder contains a copy of ω1—this is equivalent 

to being minimal with respect to not being a countable union of well orders (see [6, 

Problem 4]). As noted in the introduction, Ishiu and the third author have shown that a 

negative answer follows from PFA+ [13] and Lamei Ramandi has shown that a positive 

answer is consistent [19]. It remains an open problem whether there are consistent ex-

amples of linear orders of cardinality greater than ℵ1 which are minimal with respect to 

not being a countable union of well orders. Such orders necessarily are not κ-Aronszajn 

and hence the methods of this paper do not seem to shed much light on this problem. 

Todorcevic has shown that �ℵω
implies that there is a linear order of cardinality ℵω+1

of density ℵω such that every suborder of cardinality ℵω is a countable union of well 

orders [37, 7.6]. Note, however, that the construction of Dushnik and Miller [8] gener-

alizes to show that if 2κ = κ+, then there is no minimal linear order of cardinality κ+

and density κ. Thus at least consistently, Todorcevic’s example [37, 7.6] does not solve 

Galvin’s problem; one would need an analog of Baumgartner’s model [4] at the level of 

ℵω+1, which seems beyond the reach of current methods.

A minimal non-σ-scattered ordering of cardinality λ > ℵ1 is a “non-reflecting” object, 

in the sense that it enjoys a property which is not enjoyed by any of its properly smaller 

suborders. This phenomenon is ruled out by large cardinal assumptions. For instance if λ

is weakly compact, then any non-σ-scattered order of cardinality λ has a non-σ-scattered 

suborder of smaller cardinality. Similarly if κ is supercompact, then any non-σ-scattered 

linear order has a non-σ-scattered suborder of cardinality less than κ. The proofs of these 

statements are routine modifications of arguments in [6, §7].
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