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A maximum entropy approach to
defining geographic bounds on
growth and yield model usage

W. Spencer Peay*, Bronson P. Bullock and Cristian R. Montes

Plantation Management Research Cooperative, Warnell School of Forestry and Natural Resources,
University of Georgia, Athens, GA, United States

Growth and yield models are essential tools in modern forestry, especially for
intensively managed loblolly pine plantations in the southeastern United States.
While model developers often have a good idea of where these models should
be used with respect to geographic location, determining geographic bounds for
model usage can be daunting. Such bounds provide suitable areas where model
predictions are likely to behave as expected or identify areas where models may
do a poor job of characterizing the growth of a resource. In this research, we
adapted a niche model methodology, commonly used to identify suitable spots
for species occurrence (maximum entropy), to identify areas for using growth
and yield models built from plots established in the Lower Coastal Plain and
Piedmont/Upper Coastal Plain in the southeastern United States. The results from
this analysis identify areas with similar climatic envelopes and soil properties to the
areas where data was collected to fit these growth and yield models. These areas
show notable overlap with the areas prescribed for use by the evaluated growth
and yield models and support practitioners use of these models throughout these
regions. Furthermore, this methodology can be applied to different forest models
built using large regional extents as long as climatic and soil values are available
for each site.

KEYWORDS

maximum entropy (MaxEnt), growth and yield, geographic boundaries, southeastern
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1. Introduction

Growth and yield models are used as a tool for forest management to estimate future
conditions of a given stand based on current and/or past information. When coupled with
a cost structure, they are an essential tool for forest management in the southeastern United
States (Weiskittel et al., 2011; Burkhart and Tomé, 2012; Burkhart et al., 2019) and elsewhere
around the world. These models are developed for a wide array of end users, and each
model system may have several different applications based on its intended use. Despite
the sometimes vast differences among models, all growth and yield models are similar in
that they contain some level of prediction uncertainty. This uncertainty stems from various
factors, some of which are related to the data used to fit a model and the local climate or
biophysical variables where this data was collected. These factors, sometimes referred to
as physiographic or climatic measures (Weiskittel et al., 2011), include variables such as
temperature, precipitation, vapor pressure deficit, slope, aspect, nutrient availability, and
water availability. Each of these measures, along with many others, can affect the productivity
of a forested site (Sampson and Allen, 1999; Coble et al., 2001; Jokela et al., 2004; Weiskittel
et al., 20115 Restrepo et al., 2019). However, the mechanisms and the degree to which such
factors affect productivity may differ for various sites, species, and regions.
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Despite the correlation between productivity and some of
the previously listed physiographic, climatic, and edaphic factors,
they can be hard to include in a growth and yield system.
A major difficulty is to collect or estimate such variables for
each plot included in a modeling effort (Weiskittel et al., 2011),
and depending on the scale or resolution of the model, it can
be computationally inefficient to include such information. One
approach model developers can elect to implement is dividing
data into differing physiographic regions where these factors are
similar; they can then fit different parameters or equations to each
region. Examples of this approach are numerous, especially for
loblolly pine plantations in the southeastern United States where
distinctions are often made between the Piedmont and Coastal
Plain physiographic regions (Harrison and Borders, 1996; Borders
et al., 2004, 2014; Burkhart et al., 2008; ForesTech International
LLC, 2009). When this approach is taken, developers often
recommend a model be used in that particular region but make
no statement as to whether a model can be applied throughout the
entire region with similar levels of uncertainty or the uncertainty
associated with using the model outside of a particular region.
Thus, it is desirable to determine geographic bounds on growth and
yield model usage. A similar problem is faced in species distribution
modeling, range mapping, and similar disciplines where presence
only and/or presence/absence data can be used in conjunction
with some of the biophysical factors mentioned above to estimate
the overall range of a species or its probability of occurrence
in a particular area using several different techniques (Elith and
Leathwick, 2009; Evans et al., 2016).

The past 20-30 years have seen dramatic changes in the
modeling of species geographic distributions with the refining of
traditional techniques and the application of newer techniques
applied from a myriad of fields (Elith and Leathwick, 2009; Elith
et al, 2011). One such development has been the use of maximum
entropy modeling, a general-purpose machine learning technique
that can help researchers to generate predictions or draw inferences
from incomplete information such as presence-only data (Phillips
etal, 20065 Elith et al, 2011). This approach works by estimating a
probability distribution with the highest level of uncertainty, or in
essence, estimates the probability distribution that makes the least
amount of assumptions about the data and the probability of an
event occurring while still satisfying a given set of constraints. One
of the most popular tools for maximum entropy modeling is the
MaxEnt framework implemented in Phillips et al. (2018). Over the
past decade, this software has been commonly used in ecological
and wildlife research to model geographic distributions and species’
ranges or niche environments (Phillips and Dudik, 2008; Baldwin,
2009; Elith et al,, 2011; Merow et al., 2013; Yang et al., 2013). This
software has become popular partly due to its ease of use and
predictive accuracy (Merow et al., 2013). Despite its use in these
similar fields, MaxEnt has seen little use in forestry outside of the
typical use to model the spatial distributions of tree species (Kumar
and Stohlgren, 2009; Weber, 2011; Yang et al., 2013; Pollock, 2015;
Qin et al., 2017).

This research focuses on a novel extension of MaxEnt to
determine the geographic bounds of a growth and yield model.
The model used to illustrate the methodology corresponds to one
developed by the Plantation Management Research Cooperative
(PMRC) at the University of Georgia. Using known geographic plot
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locations, biophysical factors such as temperature, precipitation,
and soil properties were used as inputs to describe the niche
that populations were growing into. These points and the
biophysical data become the “species” of interest. The “probability
of occurrence” now offers a pseudo-measure of suitability or
uncertainty associated with using this particular growth and yield
model in any given area within the study range. This measure
of uncertainty is based on the differences in the environmental
envelope between an area in question and the areas where data
was collected to fit the PMRC 2014 growth and yield model
(Borders et al, 2014). Determining suitable areas for model
application is important to both model developers and users. It
can allow parties to tailor model usage to specific geographic
areas where a model may produce the most reliable estimates.
Alternatively, identifying areas where a maximum entropy model
suggests higher uncertainty levels can help inform developers,
users, and forest resource managers where sampling efforts should
be concentrated or increased to reduce this uncertainty in future
model development.

2. Methods
2.1. Background

2.1.1. Maximum entropy principle

As mentioned previously, maximum entropy modeling uses
machine learning algorithms to generate predictions or draw
inferences from incomplete information (Phillips et al., 2006, 2017)
and is based on the Maximum Entropy Principle first proffered

>«

by Jaynes (1957). This principle builds on Laplace’s “Principle of
Insufficient Reason,” an attempt to define the probability of two or
more events based on little to no information. Laplace suggested
that equal probabilities be assigned to two events if there is no
evidence to think otherwise. The Maximum Entropy Principle
builds on the Principle of Insufficient Reason where the probability
distribution is derived as the distribution of maximum entropy
and is thus only constrained by the supplied information; it is
otherwise unaffected by missing information. The full derivation
of the entropy of a probability distribution is presented in Jaynes
(1957).

2.1.2. MaxEnt application to the proposed
problem and associated assumptions

While this proposed use of MaxEnt is seemingly non-
traditional, making several essential assumptions reduces the
growth and yield model application problem to one that is
similar to those currently implementing MaxEnt to model species’
distributions. In our case, we assume the locations where data
was collected to fit the PMRC 2014 growth and yield model are
similar to the recorded presence of a species of interest in other
applications. Absences, in this sense, are very hard to verify and are
not simply all other locations in the study region where data was
not collected. Thus, a presence-only approach, similar to that seen
in Munro et al. (2022), was implemented in this research.

We use environmental variables that have been previously
reported as having an effect on loblolly pine growth in the
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southeastern United States to determine areas with similar
characteristics to our plot locations (Restrepo et al., 2019). If a
specific area returns a high probability of occurrence, we may
conclude that the environmental and soils characteristics are
similar to those occurring at our “presence” locations, and that the
growth and yield model has the potential to characterize growth
patterns for the species, assuming the plantation in question is
similar to those used to fit the growth and yield model. Users
should, of course, keep in mind a particular growth and yield
model’s intended use and take great care if extrapolating outside
what the developers intended.

One major assumption here is that the environmental and
soils variables selected for inclusion have an effect on the growth
of loblolly pine, this is why great care was taken in selecting
the input features. If a variable is unimportant for the growth of
loblolly pine, the model may constrain the distribution based on
this unimportant variable. Conversely, if a truly important variable
is neglected or excluded, we may be somewhat over-confident in the
geographic distribution of areas we believe the 2014 Model should
be used. Both of these issues could potentially result in unreliable
or unrealistic maximum entropy distributions. Additionally, the
maximum entropy model predictions are probability based and
contain error; when coupled with noisy environmental and soils
data, these errors have the potential to compound to produce
meaningless results (Pollock, 2015).

2.2. Study area and presence points

The study area encompasses a large portion of the southeastern
United States (Figure 1) and makes use of the county centroid
coordinates where growth and yield data was collected to fit
the PMRC 2014 growth and yield model (Borders et al.,, 2014).
County centroids were used because individual plot coordinates
were not recorded. Despite including data from a large portion
of the southeastern U.S., the developers of the PMRC 2014
growth and yield model do note that the proposed models are
appropriate for second rotation loblolly pine plantations in the
Piedmont/Upper Coastal Plain (PUCP) and Lower Coastal Plain
(LCP) physiographic regions of Alabama, Georgia, Florida, and
South Carolina, despite the fact there were no growth and yield
plots located in the LCP of Alabama. Only these four states were
evaluated for the LCP variant of the growth and yield model
(Figure 1). The study area for this analysis was extended outside of
these four states to that seen in Figure 1 for the PUCP simulations
because a proportion of the data used to fit these models was
collected outside of Alabama, Georgia, Florida, and South Carolina.

Plots used to fit the PMRC 2014 growth and yield model
include both traditional growth and yield installations and control
plots from several different PMRC studies including the Coastal
Plain Culture/Density Study (CPCD; Zhao et al., 2014) and the
Consortium for Accelerated Pine Production Studies (CAPPS;
Kinane, 2014). Plots were split into two different physiographic
regions, PUCP and LCP. Overall, a total of 825 plots were used
to fit the PUCP variant of the 2014 model. These plots are
concentrated in Alabama and Georgia but extend as far west as
Arkansas/Louisiana and as far north and east as Virginia. A total
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of 137 control plots were used the fit the LCP variant of the 2014
model. These plots are concentrated within the coastal plain of
South Carolina, Georgia, and northeastern Florida; an additional
six plots were included from northwestern Florida.

MaxEnt is a correlative modeling technique, hence it required
duplicates within location to be removed to ensure that the
prediction accuracy is not inflated. To achieve this, duplicate plots
were removed from the data set allowing for only one centroid
per county to be included. Duplicate removals reduced the total
number of available centroid locations to 17 and 71 for the LCP and
PUCP, respectively. Euclidean distances between each point in the
two individual sets was calculated to assess the potential for spatial
autocorrelation between the locations, an issue that results in biased
predictions (Anderson, 2015). No occurrence localities were found
to be within 20 km of each other so the collection installations
were not spatially filtered for the LCP or PUCP sets of points.
This threshold is within a range of values defined in similar studies
that use MaxEnt to predict the potential distribution of a species
or evaluated MaxEnt model tuning and selection criteria (Pearson
et al., 2007; Anderson and Gonzalez, 2011; Shcheglovitova and
Anderson, 2013; Boria et al., 2014; Radosavljevic and Anderson,
2014).

2.3. Biophysical data

2.3.1. Climatic information

Climatic data from the University of East Anglia’s Climatic
Research Unit (CRU TS4.01) was used for this analysis alongside
PRISM (Parameter-elevation Relationships on Independent Slopes
Model) climate data from Oregon State University (PRISM Climate
Group, 2015).

2.3.2. CRU climate data

CRU TS4.01 is a gridded climate data set developed using
the Climate Anomaly Method (CAM) to interpolate commonly
used surface climate variables measured from meteorological
stations across the globe into a half-degree, latitude/longitude grid
(Harris et al., 2014). The CAM works by calculating a normal
(average) across a period of time (typically 1961-1990, referred
to as “climatology”) for each weather station that meets the strict
inclusion criteria (Jones, 1994; Peterson et al., 1998; Harris et al.,
2014). If a normal can be calculated for these 30 years, the
station’s series is included in the gridding process, and anomalies
are calculated by differencing the 1961-1990 normal from the
weather station’s monthly data values. Two of the anomalies used
in this analysis, precipitation and rain days, are calculated on a
percent difference basis and do not use the above subtraction
rule (Harris et al., 2014). The percent difference anomalies are
calculated using a different reference period (1995-2002) and are
then converted to the above 1961-1990 normal scale. Triangulated
linear interpolation is then used to grid each anomaly at the half-
degree resolution. Finally, each anomaly is converted back to an
absolute value using one of two formulas depending on if they use
the typical subtraction rule (Equation 1) or the percent difference
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FIGURE 1

Growth and yield model installation location county centroids used to fit the PMRC 2014 growth and yield model. The area of the surrounding
location correlates to the number of plots within that specific county, however only county centroids were used to fit the actual MaxEnt model.

rule (Equation 2):

X=1x5+Xx (1)
XaX

= — 2

=100 T @

where x is the absolute value, x is the normal (as described above),
and x, is the calculated anomaly.

Data for the CRU monthly climate data are primarily supplied
by the World Meteorological Organization (WMO) and the
National Climatic Data Center (NCDC) within the U.S. National
Oceanographic and Atmospheric Administration (Harris et al,
2014). More specifically, data is collected from various data sets
provided by the above organizations including: the CLIMAT
monthly set (WMO), which pulls data from between 2200 and
2800 weather stations worldwide; the Monthly Climatic Data for
the World (MCDW—produced by the NCDC), which collects data
from an additional 1,500-2,600 weather stations; and data from
the World Weather Records (WWR) in the form of decadal data
publications exchanged between National Meteorological Services
and the NCDC archive center. The first two sets, CLIMAT and
MCDW are updated in near-real time, as mentioned WWR is
available in decadal series, which (Harris et al., 2014) notes should
theoretically match the monthly sets, but in practice, is cleaner than
the monthly sets with fewer missing values and outliers.

CRU variables used in this analysis included minimum
temperature (TMN), maximum temperature (TMX), precipitation
total (PRE), vapor pressure (VAP), cloud cover (CLD), rain
day counts (WET), potential evapotranspiration (PET), and the
number of frost day (FRS). Here we offer a brief explanation for
how each variable is calculated. However, in-depth explanations
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for each variable are found in Harris et al. (2014). TMN and
TMX were calculated from absolute values of mean temperature
and diurnal temperature range. PRE was calculated using the
percentage anomalies multiplied by climatology and divided by
100, to which the climatology is added (2). VAP is derived using
a calculated, “synthetic” VAP and station observed values for VAP.
The synthetic VAP was calculated as a function of TMN. CLD is the
cloud percentage cover; it was derived from diurnal temperature
range anomalies coupled with CLD anomalies from the CLD
station database to create 1995-2002 normal. This value was then
adjusted to the 1961-1990 scale, and gridded absolute values were
produced using the percent difference method described above.
WET is calculated in a similar fashion to VAP, where a synthetic
WET value is calculated as a function of precipitation and used in
tandem with station-observed WET values to create the gridded
data set. WET represents counts of wet days with > 0.1 mm of
precipitation. FRS is estimated as a function of mean temperature
and diurnal temperature rangeS and then constrained to ensure
realistic measures alongside TMN. PET was calculated as a function
of the mean temperature, TMN, TMX, VAP, CLD, and fixed wind
speed using a variant of the Penman-Monteith equation.

Each monthly variable from the CRU data set was averaged
from 1981 to 2010 to create a 30-year normal value that coincides
with the 30-year normals from the PRISM data set. Conveniently,
measurement dates for most of the data used to fit the PMRC 2014
Model fall within these 30 years.

2.3.3. PRISM climate data
PRISM (Parameter-elevation Relationships on Independent
Slopes Model) is described as a knowledge-based system to
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interpolate climate data (Daly et al., 2008). It uses a regression-
based approach along with point data from a large number of
weather stations, a digital elevation model (DEM), other sets of
data, and a “spatial climate knowledge base” to generate different
climatic variables across the coterminous United States. Daly et al.
(2008) offers an extensive summary of the methodology used
to develop the 1971-2000 normal values for temperature and
precipitation, while Daly et al. (2015) expands upon this approach
and further describes the development of the 1981-2000 normals
for vapor pressure deficit (both minimum and maximum) used
in this analysis. PRISM uses a large number of weather station
networks to estimate its vapor pressure elements. Because its
normals are used for interpolating other climatic variables, they are
subjected to intense peer review (PRISM Climate Group, 2015).
Only one climatic variable was taken from the PRISM data
set, 30-year normal (1981-2010) average vapor pressure deficit
(AVPD). AVPD was calculated by averaging the minimum vapor
pressure deficit and maximum vapor pressure deficit normals.

2.3.4. Soils data

Three, easily accessible soil-derived predictors were used in
this analysis, bulk density of the fine earth fraction (BD, kg m~3),
percent clay (CLAY, percent weight), and percent organic carbon
(SOC, percent weight). Bulk density was selected because of its
relationship with root growth where it can become limiting once it
crosses a certain threshold (Kelting et al., 1999; Will et al., 2002).
Percent clay was selected because of its relationship with water
(Rawls et al., 2003) and nutrient availability (Sampson et al., 2008).
Soil organic carbon was selected based on its relationship with
soil organic matter which has notable impacts on physical soil
properties as well as chemical and biological composition as well
(Johnsen et al., 2013).

Bulk density, percent clay, and soil organic carbon were selected
from the data set created by Ramcharan et al. (2018) using a
point data/machine learning approach to predict soil properties
across the United States at seven different depths (0, 5, 15, 30,
60, 100, and 200 cm). Training data for this project was collected
from three sources, the National Cooperative Soil Survey (NCSS)
Characterization Database, the National Soil Information System
(NASIS), and the Rapid Carbon Assessment (RaCA) Project.
Data from these sources were used with various environmental
covariates to develop 100 x 100 m predictive soil maps using two
machine learning methods for classification, random forests, and
gradient boosting. For the purpose of this analysis, the first four
depths (0, 5, 15, and 30 cm) were combined to create an average
bulk density to 30 cm depth (BD30), average percent clay to 30
cm depth (CLAY30), and an average percent organic carbon to
30 cm depth (SOC30). The 30 cm depth threshold was selected
based on studies about loblolly pine rooting depth (Mou et al., 1995;
Parker and Van Lear, 1996). For the reader’s convenience, a table of
commonly used abbreviations is listed below (Table 1).

2.3.5. Combining the climatic and soils data layers

Each set of predictors was first projected using the World
Global Mercator—Spherical Mercator. This projection system was
used to ensure that each cell was the same size across the
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TABLE 1 Table of common abbreviations used throughout the paper.

Abbreviation Explanation

LCP Lower coastal plain

PMRC Plantation management research cooperative

PUCP Piedmont/Upper coastal plain

AUC Area under the receiver operating characteristic (ROC)
curve

OR Omission rate (minimum training presence [MTP] or 10%)

AVPD Average vapor pressure deficit

BD30 Bulk density of the fine earth fraction averaged over the first
30 cm of soil

CLAY30 Percent clay averaged over the first 30 cm of soil

CLD Cloud cover

FRS Frost day frequency

PET Potential evapotranspiration

PRE Precipitation

SOC30 Percent organic carbon averaged over the first 30 cm of soil

VAP Vapor pressure

WET Wet day frequency

entire study region as the half-degree resolution of the gridded
climate data changes sizes with differing degrees of latitude. After
reprojecting both data sets, the CRU climatic data (half-degree
resolution), PRISM data (0.8 km resolution), and the soils data
(initially at the 0.1 km resolution) were re-sampled to a 1 x 1
km resolution using bilinear interpolation. This was done because
MaxEnt requires all predictors to have the same resolution. Bilinear
interpolation was used for both data sets and produced reasonable
smoothed surfaces, especially for the gridded climate data (Wang
et al., 2006).

Each individual variable was then cropped and masked to the
appropriate study areas previously described. The LCP variant
of the model only included biophysical factors from Alabama,
Florida, Georgia, and South Carolina. The PUCP variant included
biophysical factors from the entire region shown in Figure 1. This is
important because it also determines the landscape over which the
evaluation background points are drawn.

Pearson’s Correlation Coefficient (r) was used to examine
the correlation between predictor variables. Though MaxEnt is
equipped to handle highly correlated predictors (Elith et al,
2011; Merow et al,, 2013), variables with correlation coefficients
> 0.90 were excluded from the model. Correlation coefficients
for the original set of predictors are presented in Table 2. After
evaluating correlation coeflicients, the minimum temperature and
maximum temperature were dropped from the analysis. These
two variables were dropped because the number of frost days
closely resembles the spatial patterns of both the minimum and
maximum temperatures and because potential evapotranspiration
includes average temperature in its calculation. Summary statistics
for each potential predictor are presented in Table 3. All work in
this section was completed using the raster package version 2.6-7
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TABLE 2 Pearson Correlation Coefficients (r) for 12 environmental and soils variables.

avpd bd30 clay30 cld frs pet pre soc30 tmn tmx vap wet
avpd 1.00 0.22 031 —0.56 —0.77 0.78 0.15 0.03 0.73 0.84 0.62 —0.38
bd30 1.00 —0.13 —0.17 0.06 —0.01 —0.14 —-0.75 —0.16 —0.04 0.17 —0.40
clay30 1.00 0.19 0.19 —0.26 0.11 —0.05 —0.20 —0.28 —-0.23 —0.06
cd 1.00 0.60 —0.75 —0.17 0.12 —0.58 —0.58 —0.72 0.72
frs 1.00 —0.88 —0.54 —0.16 —0.96 —0.97 —0.51 0.48
pet 1.00 0.27 0.11 0.92 0.89 0.79 —0.52
pre 1.00 —0.04 0.50 0.43 —0.25 —0.32
s0c30 1.00 0.20 0.16 —0.07 035
tmn 1.00 0.95 057 —0.39
tmx 1.00 0.57 —0.39
vap 1.00 —0.48
wet 1.00

Variables include average vapor pressure deficit (avpd, hPA); bulk density of the fine earth fraction averaged over the first 30 cm of soil (bd30, kg m~3); percent clay averaged over the first 30 cm
of soil (clay30, percent weight); cloud cover (cld, percent); frost day frequency (frs, days month ~!); potential evapotranspiration (pet, mm day~'); precipitation (pre, mm month™'); percent
organic carbon averaged over the first 30 cm of soil (soc30, percent weight); minimum temperature (tmn, degrees C); maximum temperature (tmx, degrees C); vapor pressure (vap, hPA); wet
day frequency (days month™!).

TABLE 3 Thirty year normal (1981-2010) climatic and soil variables used for the MaxEnt model for the Lower Coastal Plain (LCP) and Piedmont/Upper

Coastal Plain (PUCP).

Variable Variable

avpd 4.7 9.0 10.9 0.8 avpd 34 8.4 10.9 1.0
bd30 175.7 12335 1551.8 152.0 bd30 175.7 1250.2 1580.7 145.1
clay30 0.0 14.6 71.9 8.5 clay30 0.0 18.1 77.7 9.1
dd 552 58.9 62.6 1.6 dd 50.9 59.1 68.0 24
frs 0.0 3.0 8.3 1.8 frs 0.0 43 10.9 24
pet 79.2 100.0 122.4 7.6 pet 69.2 96.3 122.4 8.1
pre 89.2 109.4 138.1 10.6 pre 82.8 108.7 142.7 11.8
5030 19.4 86.5 450.0 426 5030 17.3 752 4859 417
vap 9.8 25.1 416 55 vap 6.7 235 416 55
wet 8.9 9.6 111 0.3 wet 7.6 9.4 12.2 0.7

Values presented include the minimum (Min.), mean, maximum (Max.), and standard deviation (SD) for each individual variable in both study areas as previously defined. Variables include
average vapor pressure deficit (avpd, hPA); bulk density of the fine earth fraction averaged over the first 30 cm of soil (bd30, kg m~3); percent clay averaged over the first 30 cm of soil (clay30,
percent weight); cloud cover (cld, percent); frost day frequency (frs, days month ~!); potential evapotranspiration (pet, mm day~!); precipitation (pre, mm month~!); percent organic carbon

averaged over the first 30 cm of soil (soc30, percent weight); vapor pressure (vap, hPA); wet day frequency (days month™?).

(Hijmans, 2017) in Microsoft R Open statistical software version
3.5.0 (Microsoft R Core Team, 2017).

2.4. Maximum entropy models

Each maximum entropy model was trained using the MaxEnt
algorithm version 3.4.1 (Phillips et al., 2018) in the dismo package
version 1.1-4 (Hijmans et al., 2017) in Microsoft R Open statistical
software version 3.5.0 (Microsoft R Core Team, 2017). The default
model settings were used for the regularization multiplier (8 =
1), convergence threshold, 10~°, maximum number of iterations,
500, and random background points used in the evaluation,
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10,000. Feature types were included in the model based on the
software’s default rules relating to the number of provided presence
points and included linear (L), quadratic (Q), and hinge (H)
classes—product and threshold feature types were not included
in this analysis. It is important to note that background points
for the LCP simulations were drawn from only Alabama, Florida,
Georgia, and South Carolina; background points from the PUCP
simulations were drawn from the entire region depicted in
Figure 1.

A detailed explanation of the software and all equations
referenced in this section can be found in Dudik et al. (2004),
Phillips et al. (2006), and Phillips et al. (2017). The Maxent software
(Phillips et al., 2018) uses the principle described in the previous
section along with a deterministic, sequential-update algorithm to
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estimate a probability distribution by determining the distribution
of maximum entropy with respect to a set of constraining features
(Dudik et al., 2004; Phillips et al., 2006). Applied to presence-only
data, a user-specified study area is supplied to the software in the
form of a pixelated or rasterized landscape along with recorded
presence points and covariates such as environmental, soils, and
physiographic data; the software then generates the maximum
entropy distribution and overlays it across the pixels of the study
area (Phillips et al, 2006). The entropy of the approximated
distribution is written as:

H(#) = - ) #(x) In#(x) (3)

xel

where 7 represents the unknown, target distribution and 7
represents its approximation over a finite set of pixels L. L
represents the entire, user-defined landscape, and is composed of
individual elements or points x.

The following represents an unconditional maximum entropy
model and presents it through a machine learning framework.
Though less common than conditional models in machine learning,
the unconditional method must be used here due to a lack of
absence data (Phillips et al., 2006). It should be noted that there
are several papers that attempt to describe Maxent in a statistical
framework that is much more similar to that seen in the statistical
and ecological modeling literature (Elith et al., 2011; Merow et al,
2013) though these explanations are not presented here.

The
distribution by imposing a set of constraints on the unknown
probability distribution, the
(transformed environmental variables, soils variables, etc.), )5

Maxent software estimates the target probability

7, through use of features
on L. Here, f; assigns a real value, f;(x) to all points x in L; the
expectation of this feature under 7 is symbolized using 7 [f;]. Such
expectations can be approximated by sampling from L, drawing
X, number of points, independently. The probability distribution
of maximum entropy is then defined as the approximated
distribution, 77, with the constraint all features, f;, have the same

mean under 77 written as:

7[fj] = 2 [f;], for each feature f; 4)

i i fi(xi)

and 7 represents the uniform distribution on the sample points.

where the empirical mean of f; is expressed as 77 [f;] =

This expectation is somewhat unrealistic and results in over-fit
models as empirical feature means typically do not equal true
feature means. The solution to this issue is addressed below.

A dual characterization of 7 may also be defined using
principles from mathematical optimization theory and convex
duality (Della Pietra et al., 1997; Phillips et al., 2006; Elith et al.,
2011). Considering probability distributions of the following form:

A )

Zy,

p(x) =

where A is a vector of n feature weights, f is a vector of all real
features, and Z) ensures that gy equals 1. This type of distribution
is formally classified as a Gibbs distribution. Convex duality proves
that the maximum entropy distribution, 7 is equivalent to the gy
distribution that maximizes the likelihood of the m sample points,
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or minimizes the negative log likelihood of the sample points,
described as the log loss function and written as:

7[—In(q)]

or,
1 m
InZy — — Y A flx)
m
i=1

Relaxing the constraint in Equation (4) using a regularization
multiplier allows the means under 7 to vary slightly from the
empirical mean (Dudik et al., 2004; Phillips et al., 2006). Doing so
changes Equation (4) to:

17 ;] — 7 [fi]l < Bj, for each feature f;

where B; are some constants. Relaxing the constraint in Equation
(4) also changes the log loss function from Equation (2.4) to a
regularized log loss function of the form:

#[=In(@)] + > _ BilAjl
j

the second term here is a penalty and forces Maxent to focus on
the most important features thus penalizing features with minimal
contribution to the model. The goal of regularization here is to
reduce model complexity to ensure that the model is not overly
specific (Elith et al., 2011). Maxent uses a form of regularization
known as [;-regularization that results in the reduction of overall
terms in a model (Phillips et al., 2006; Elith et al., 2011), thus
lowering its overall complexity and producing sparse models
(James et al.,, 2013). Using the above loss function, Maxent starts
from the uniform probability distribution and iteratively adjusts the
weights to minimize the log loss function in order to compute the
maximum entropy probability distribution.

The above formulation is equivalent to maximizing the
likelihood of a parametric exponential distribution (Phillips et al,
2017). A recent evaluation of this formulation found that the
same exact model can be derived from an inhomogeneous Poisson
process (IPP) (Aarts et al, 2012; Fithian and Hastie, 2013;
Renner and Warton, 2013; Phillips et al., 2017). Phillips et al.
(2017) discusses the implications of this finding for modeling in
great detail. For the purpose of this thesis, the most important
implication is that the “raw” model output can now be interpreted
as a model of relative abundance and can be transformed
using a complimentary log-log (cloglog) transformation. This
transformation is deemed appropriate because the predicted mean
abundance in any given cell across the user defined landscape is
modeled as a Poisson variable:

Predicted mean abundance = cpA exp(o + B'x(2))

according to the Poisson distribution and as stated in Phillips et al.
(2017), the probability of presence is therefore:

Probability of presence = 1 — exp(—cpA exp(o + B'x(2)))

The above is a Bernoulli generalized model with a cloglog link
function (Phillips et al., 2017). The largest caveat here is that the
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presence points are independent. This assumption should hold true
for this analysis, although it is frequently violated in other studies
relating to wildlife species based on sampling designs, etc., (Fithian
etal, 2015; Renner et al., 2015). The cloglog transformation of the
Maxent estimates is then:

Probability of presence = 1 — exp(—exp(H)p;.(2))

where H represents the entropy, H = —E,[In(p,)], and p, is
the probability distribution. As previously mentioned this further
extension of Maxent and its description as an IPP are discussed at
great length in Phillips et al. (2017).

The models for each physiographic region were trained using
a different occurrence partitioning method. The LCP model was
fit using a jackknife technique (k — 1 jackknife); this partitioning
method is suitable for small data sets (Pearson et al., 2007; Kumar
and Stohlgren, 2009; Shcheglovitova and Anderson, 2013) and was
selected because of the small number of occurrence localities for
this region. For the LCP, 17 different models were fit using 16
occurrence localities; the 17th locality was withheld and used as
a test point to assess the model’s performance. Thus, 17 different
predictions were computed and then combined. The PUCP model
was fit using the more traditional k-fold cross-validation, in this
case five-fold cross-validation. Once again, model predictions were
combined for all 5 models. Neither method considers the potential
spatial autocorrelation between testing and training localities
because none of the data collection locations were within 20 km
of each other.

The area under the receiver operator curve (AUC) metric was
used to assess the ability of both models as classifiers and is a rank-
based, non-parametric measure of how well a model can distinguish
presence points from random background points (Fielding and
Bell, 1997; Phillips et al., 2006, 2017). This threshold-independent
measure has an upper bound of 1 (Fielding and Bell, 1997) and
considers both the sensitivity (probability of correct classification,
P) and the specificity (probability of incorrect classification, 1-
P) of a model; the AUC value’s interpretation is, therefore, the
probability that a model can correctly classify a random occurrence
or a random background point (Phillips et al., 2006). An AUC value
of 0.5 is no better than a random guess. A model producing a value
of 0.75 is considered an adequate model (Graham and Hijmans,
2006; Pollock, 2015), though this threshold is somewhat arbitrary
and is subject to change given a user’s specific objectives. Two
types of AUC values were evaluated, both AUC\y,jn, calculated using
the training points, and AUCicy, calculated using the occurrence
localities withheld from the training set for testing. Both AUC
metrics were averaged across the k iterations; each was evaluated
because AUC,i, is typically inflated for models with many
parameters (Warren and Seifert, 2011). Because each model was fit
to a different geographic extent, the LCP and PUCP model’s AUC
values are not comparable (Peterson et al., 2011), and the author
acknowledges that AUC does not asses the overall fit of a model
(Lobo et al., 2008; Peterson et al., 2011; Muscarella et al., 2014).

In an attempt to quantify overfitting, three different metrics
were evaluated. All three were calculated following the procedures
described in Muscarella et al. (2014). The first is the threshold-
independent, average difference AUC metric (AUCg;f), calculated
as the average difference between AUCrain and AUCe across all
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k folds (Warren and Seifert, 2011; Boria et al., 2014; Muscarella
et al,, 2014; Radosavljevic and Anderson, 2014). This metric is
based on the premise that overly complex models should fit training
data well but not necessarily testing data. Therefore, models with
high AUCgs values are positively correlated with overfitting.
The other two methods are threshold-dependent metrics; the
minimum training presence omission rate (ORyp) and the 10%
training omission rate (ORjo; Pearson et al, 2007; Boria et al,
2014; Muscarella et al., 2014; Radosavljevic and Anderson, 2014).
Omission rates are the proportion of testing locations incorrectly
predicted when converted to a 0, 1 binary scale (Boria et al., 2014).
The minimum training threshold sets the threshold value at the
lowest prediction value for a training locality; if a locality in the test
data set yields a prediction above this threshold it is identified as
“suitable;” and assigned a value of 1 (Radosavljevic and Anderson,
2014). The omission rate is the proportion of testing locations
with values below this threshold. The 10% threshold is similar
except that the threshold value is set at whatever omits the 10%
of training sites with the lowest predicted values. Lower omission
rates typically express high model performance. Omission rates
greater than the theoretical expected values are possibly subject to
overfitting (Shcheglovitova and Anderson, 2013; Muscarella et al.,
2014; Radosavljevic and Anderson, 2014).

3. Results

The MaxEnt model for the LCP had an AUCi, value of
0.9524, and the average AUCe across all jackknife simulations
was 0.9080 with a corrected variance estimate of 0.0989 (Table 4).
This variance is corrected for the non-independence of testing
data across the jackknife simulations using the method described
in Shao and Wu (1989) and discussed in Shcheglovitova and
Anderson (2013) and Muscarella et al. (2014). AUCq;g for this
model was 0.0547 with a corrected variance estimate of 0.0860. The
minimum training presence threshold omission rate for this model
was 0.2353, while the 10% training presence threshold omission
rate for this model was 0.3529. These two values are higher than
the expected theoretical values, implying that the LCP model might
suffer from overfitting.

The estimated MaxEnt model for the LCP variant of the 2014
model utilized the soil organic carbon, percent clay, frost day
frequency, cloud cover, precipitation, bulk density, average vapor
pressure deficit, and wet day frequency predictors. Bulk density,
precipitation, average vapor pressure deficit, and wet day frequency
contributed <1% to the model. Potential evapotranspiration and
vapor pressure were not used. The highest contributing variable
for this model, as ranked by percent contribution, was soil organic
carbon. Percent contribution and permutation importance for each
predictor are presented in Table 5. The percent contribution is
a heuristic estimate determined by the increase in gain to the
model with respect to each individual variable (Baldwin, 2009). To
determine the permutation importance the values for each variable
are permuted randomly and the model is reevaluated using the
new data, the drop in AUCy,i, is calculated as a percent (Phillips
etal, 2017). While they reveal pertinent information, especially the
overall rank, these contributions can be heavily influenced by highly
correlated variables and depend on the path the algorithm takes to
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the final solution. Because of this, the MaxEnt jackknife analysis
for each variable included in the model was also evaluated. Results
of the jackknife test of variable importance concur with those
of the percent contribution values and are presented in Figure 2.
This test revealed that the environmental variable that contains the
most helpful information for the distribution is soil organic carbon
because it increases the overall model gain when used by itself (blue
bars in Figure 2). This same variable also results in the highest
decrease in gain when omitted from the model, meaning it contains
information not present in the other nine predictors (green bars
in Figure 2). Thus, leaving this variable out notably changes the
MaxEnt predictions (Pollock, 2015).

The MaxEnt model for the PUCP had an AUCi, value of
0.8580, and the average AUCes across all 5 replicates was 0.8055
with a corrected variance estimate of 0.0196 (Table 4). AUCy; for
this model was 0.0625 with a corrected variance estimate of 0.0217.

TABLE 4 Model information for each region (LCP and PUCP).

LCP PUCP
Partition method Jackknife 5-fold Cross-validation
Train points 16 57
Test points 1 14
AUCipain 0.9524 0.8580
AUC,eqt 0.9080 (0.0989) 0.8055 (0.0196)
AUCqgt 0.0547 (0.0860) 0.0625 (0.0217)
ORysrp 0.2353 (2.8789) 0.0429 (0.0294)
ORyg 0.3529 (3.6540) 0.1562 (0.0284)

Included are partition method, the number of training points for each iteration of the model,
the number of testing points for each iteration of the model (17 total replicates for the LCP and
5 for the PUCP). Metrics include AUCiqin, AUCest, AUCif, Minimum Training Presence
omission rate (ORyrp), and 10% training omission rate (ORg). Corrected variance values are
in parenthesis and were calculated using the methodology described in Shao and Wu (1989)
and Shcheglovitova and Anderson (2013).

10.3389/ffgc.2023.1215713

The minimum training presence threshold omission rate for the
PUCP model was 0.0429, while the 10% training presence threshold
omission rate for this model was 0.1562.

The estimated MaxEnt model for the PUCP variant of the 2014
model utilized all ten available predictor variables; precipitation,
bulk density, potential evapotranspiration, and vapor pressure
all contributed <1%. Percent clay, cloud cover, and average
vapor pressure deficit contributed <10%. The highest contributing
variable for this model, as ranked by percent contribution, was
the number of frost days. Percent contribution and permutation
importance for each predictor are presented in Table 5. Once again,
the jackknife test of variable importance was also evaluated for the
PUCP model. Results from this test are illustrated in Figure 3. These
results agree with the results of the percent contribution results. The
variable that results in the highest gain when used by itself is the
frost day frequency, conversely, it decreases the gain the most when
excluded from the model.

Finally, complementary log-log (cloglog) prediction maps
based on the selected models are illustrated for both regions in
Figures 4, 5. As previously described, this transformation of the
raw output values represents the “probability of occurrence” for
that particular cell (Phillips et al., 2017), or for this particular use
of MaxEnt it represents our level of confidence that the PMRC
2014 growth and yield model has the potential to characterize the
growth that loblolly pine plantations correctly could experience
across the given landscape. Warm-colored regions represent areas
with similar environmental and soil characteristics to those at the
occurrence localities.

4. Discussion

Analyzing the output predictions for each individual model
(Figures 4, 5) both seem to provide adequate predictions for
the respective regions of the PMRC 2014 model. Unlike other
approaches that typically label growth and yield models suitable

TABLE 5 Percent (%) contribution and permutation (Permu.) importance for each variable (Var.) in the MaxEnt model for each region.

LCP PUCP
% contribution Permu. importance % contribution Permu. importance
s0c30 55.2 52.6 frs 48.6 407
cld 14.4 227 wet 229 14.4
clay30 14.4 3.9 s0c30 15.2 15.1
frs 14.1 18.6 clay30 84 84
bd30 0.9 15 cd 2.1 7.2
pre 0.7 0.7 avpd 1.5 43
avpd 0.2 0.0 pre 0.5 1.2
wet 0.1 0.0 bd30 04 L1
pet 0.0 0.0 pet 0.2 5.9
vap 0.0 0.0 vap 0.2 1.8

Values presented are averaged across all replicates (17 and 5 for the LCP and PUCP, respectively) and are presented in order of decreasing importance based on percent contribution. Variables
include average vapor pressure deficit (avpd, hPA); bulk density of the fine earth fraction averaged over the first 30 cm of soil (bd30, kg m~3); percent clay averaged over the first 30 cm of soil
(clay30, percent weight); cloud cover (cld, percent); frost day frequency (frs, days month ~!); potential evapotranspiration (pet, mm day~!); precipitation (pre, mm month~!); percent organic
carbon averaged over the first 30 cm of soil (soc30, percent weight); vapor pressure (vap, hPA); wet day frequency (days month™1).
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Results of the jackknife test of variable importance for regularized training gain in the LCP. Values shown are averages across all 17 replicates.
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Results of the jackknife test of variable importance for regularized training gain in the PUCP. Values shown are averages across all five replicates.
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for use in wide physiographic areas simply based on where
data was collected to fit a growth and yield model, this
technique provides explicit estimates of uncertainty for any
location within the specified region. Users can then extract
these estimates to determine how suitable the PMRC 2014
model might be for a given area allowing them to make
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better informed decisions based on their model predictions
and projections.

The LCP model shows that many areas across the lower coastal
plain of Georgia and parts of North Florida are very similar to
the areas where data was collected to fit the model. Observers also
note that the model is isolating the Okefenokee Swamp in South
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FIGURE 4
Cloglog probability of occurrence predictions for the best LCP model. Occurrence localities (county centroids) are shown in black.

Georgia, which shows a very low probability of occurrence, a trend
we would expect to see. Upon further investigation, this area has
likely been omitted due to its notably different soil organic carbon
levels in comparison with the rest of the region. Interestingly, the
northern portion of the South Carolina LCP shows lower predicted
suitability meaning that one or some of the environmental variables
or an interaction between them is different from the other regions
showing higher predicted values. Further evaluation of PMRC 2014
model predictions and projections should be conducted for this
area to determine if any discrepancies exist in model predictions
compared to growth data from this region. Another region that
should be investigated is the southwestern portion of Florida and
Alabama where despite being very small, there are some areas that
show high suitability predictions. These locations have similar soil
organic carbon values, cloud cover, frost day frequencies as the
areas used to fit the model. Again, more work should be done to
determine the validity of PMRC model predictions in these areas
that are well outside the area described for this model’s use.

The PUCP MaxEnt model shows high predicted values across
the PUCP of Alabama, Georgia, and the upstate of South Carolina,
despite the fact that only one installation in South Carolina was
used to fit the PUCP variant of the PMRC 2014 model. The model
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also shows high predicted values for the southern Upper Coastal
Plain of eastern Mississippi and some very small areas along the
coast of southeastern Virginia and northeastern North Carolina;
areas not prescribed for application in the model publication, but
that have similar frost day frequencies and seasonal temperatures
as the areas where data was collected to fit the PMRC PUCP
model. The model shows low predicted values for the Ridge and
Valley, Blue Ridge, and Appalachian Plateau physiographic region
of Georgia; it also shows low predicted values for the Highland
Rim and parts of the Cumberland Plateau in Alabama. The black-
belt region and a majority of Louisiana and Arkansas were also
identified as having low predicted values. These trends are expected
and also make biological sense with respect to how loblolly pine
plantations would be expected to grow differently in each of these
regions (Hasenauer et al, 1994; Gallagher et al, 2019) based
on their differing geologic formations, climates, and many other
factors that influence growth.

AUC values for both models were above the previously
described threshold of 0.75 at 0.9080 and 0.8055 for the LCP and
PUCP models, respectively. Though the use of AUC to evaluate
models has been argued both for and against, it does at least provide
some measure of a model’s overall ability as a classifier. The fact
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Cloglog probability of occurrence predictions for the best PUCP model. Occurrence localities (county centroids) are shown in black.

that both models returned average AUC values above the threshold
supports the rationality behind each model (Pollock, 2015).

Results from both models show different conclusions with
respect to overfitting. The LCP model, despite having a relatively
high AUC4es value and a low AUCg;g value, appears to suffer from
overfitting based on the ORyrp and ORjg metrics (Table 4). Both of
these values are well above the theoretically expected values of 0.00
and 0.10 for the ORyrp and OR;g metrics, respectively. Were the
regularization multiplier to be increased above the default value,
these omission rates would likely drop as the model constraints
would be loosened, however, no attempt was made to increase the
regularization multiplier because of the context of use for the results
from this maximum entropy model. In this case, an overfit model
simply represents a conservative estimate of the areas we feel the
PMRC 2014 model could be applied.

Unlike the LCP model, the PUCP model does not suggest
overfitting with a low AUCy;g value and omission rate values close
to the theoretical expectations (Table 4). The PUCP model also
shows much lower levels of variability when compared with the
LCP model for all four metrics evaluated in this study, this is likely
in part due to the higher number of training localities available to
fit the PUCP MaxEnt model.

The variables with the most significant impact for each
model, as determined from both the percent contribution values
(Table 5) and the jackknife contribution tests (Figures 2, 3), make
biological sense when thinking about environmental and soils
factors that influence the growth of loblolly pine in the southeastern
United States. This is important because if a variable significantly
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contributes to a model, it likely contains differences across the
region not found in the other predictor variables. Thus, ideally,
these variables should have known importance for, or be related to
a variable of importance for the species being evaluated.

In this case, both models found the soil organic carbon and frost
day frequency predictors important in determining the maximum
entropy distribution. SOC is directly related to soil organic matter
(SOM), which helps to shape soil structure, chemistry, and biology
(Johnsen et al., 2013) and is related to several important factors
and processes in forest soils that can influence and regulate growth
(Binkley and Fisher, 2013). These functions include water storage
capacity (Rawls et al., 2003; Binkley and Fisher, 2013) along with
nutrient pooling and cycling. It is also related to a site’s drainage
class. Frost day frequency follows a very similar geographic pattern
to a minimum temperature which relates to growing season length
and many physiologic processes that affect the growth of loblolly
pine in the Southern United States (Nedlo et al., 2009).

Additionally, the LCP model found both the percent clay and
cloud cover predictor variables to be important. Clay content can
affect and influence many soil properties that affect loblolly pine,
either directly or through complex interactions with many other
soil factors. These processes and properties are related to soil
chemistry (Binkley and Fisher, 2013), structure (Allen et al., 1990;
Parker and Van Lear, 1996; Carlson et al., 2006), nutrient holding
capacity (Fox et al., 2007), water storage capacity (Willett and Bilan,
1990), and many others. The cloud cover percentage variable is
calculated using the diurnal temperature range alongside observed
sun hours (Harris et al., 2014). While a bit less intuitive, this variable
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is related to solar radiation intensity and availability at Earth’s
surface (Matuszko, 2012) and thus the amount of solar radiation
available for use by living organisms as photosynthetically active
radiation (Cannell, 1989).

Similarly, the PUCP model also included percent clay, however,
it also notably incorporated the wet day frequency predictor
variable. The wet day frequency predictor variable shows the
overall frequency of precipitation on a monthly basis (average
days month™ yr ~!). When analyzed in conjunction with the
precipitation layer used here, one can draw inferences about the
intensity of overall rainfall events by comparing the wet day
frequency and average precipitation for a given area. While this
variable may have no seemingly direct link with loblolly pine,
rainfall frequency, and intensity can affect a site’s hydrological
characteristics (Amatya et al., 2000; Amatya and Skaggs, 2001) such
as excess water storage and soil saturation levels. The intensity of
rainfall events may also influence nutrient cycling as well (Schreiber
et al., 1990).

5. Conclusion

The work presented here uses a novel approach for defining
the geographic bounds on growth and yield model usage based
on different biophysical variables at the locations where data was
collected to fit the model and across an area of interest. Using
MaxEnt models for both the LCP and PUCP variants of the PMRC
2014 growth and yield model, this approach is able to better define
geographic bounds on where we feel confident in the potential
of the PMRC 2014 model to correctly characterize the growth
experienced by loblolly pine plantations. This of course depends on
these plantations being similar to those used to fit the model with
respect to factors such as genetic material and silvicultural regimes.

The regularization multipliers were not adjusted for either
model, hence the estimated ranges presented here represent
conservative estimates of where the models should be used,
especially for the LCP variant because its evaluation metrics suggest
some level of overfitting. If an area falls outside of the predicted
ranges presented here, it does not necessarily mean the PMRC
2014 model would not produce accurate growth predictions and
projections for these areas as well, it simply means the predictor
variables included in this work differ from those where data was
collected to fit the models. Of course, regardless of the confidence
one has in their growth and yield models, users should continually
evaluate model outputs to ensure the most appropriate growth and
yield model is being used for any area.

Further work needs to be completed to improve the tuning
of MaxEnt models for this specific use. Additionally, a large-scale
evaluation of PMRC 2014 growth and yield model predictions
in areas the MaxEnt models are predicting as suitable vs. areas
with lower prediction values could further validate the results
of these MaxEnt models. Users may also use current and future
environmental variables to project the areas suitable for PMRC
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model usage in the future. Adding in this temporal component
could prove very useful for future management decisions and
model deployment.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: The exact locations of the growth and yield
plots are proprietary; however, county level information has been
provided. Additionally, the climatic and soils datasets are publicly
available and how to access these datasets is described in the
article. Requests to access these datasets should be directed to WP,
spencer.peay@uga.edu.

Author contributions

WP: conceptualization, methodology, validation, analysis,
visualization, writing—original draft, and writing—review and
editing. BB: conceptualization, methodology, validation, analysis,
supervision, project administration, writing—review and editing,
and funding acquisition. CM: conceptualization, methodology,
validation, analysis, and writing—review and editing. All authors
contributed to the article and approved the submitted version.

Funding

This work was provided by the Plantation Management
Research Cooperative at the University of Georgia.

Acknowledgments

The authors would like to thank the Plantation Management
Research Cooperative and its associated members.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/ffgc.2023.1215713
mailto:spencer.peay@uga.edu
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org

Peay et al.

Aarts, G., Fieberg, J., and Matthiopoulos, J. (2012). Comparative interpretation of
count, presence-absence and point methods for species distribution models. Methods
Ecol. Evol. 3,177-187. doi: 10.1111/j.2041-210X.2011.00141.x

Allen, H. L., Dougherty, P. M., and Campbell, R. G. (1990). Manipulation of water
and nutrients - practice and opportunity in southern U.S. pine forests. For. Ecol.
Manage. 30, 437-453. doi: 10.1016/0378-1127(90)90153-3

Amatya, D. M., Gregory, J. D., and Skaggs, R. W. (2000). Effects of controlled
drainage on storm event hydrology in a loblolly pine plantation. J. Am. Water Resour.
Assoc. 36, 175-190. doi: 10.1111/j.1752-1688.2000.tb04258.x

Amatya, D. M., and Skaggs, R. W. (2001). Hydrologic modeling of a drained pine
plantation on poorly drained soils. For. Sci. 47, 103-114.

Anderson, R. P. (2015). Modeling niches and distributions: It's not just “Click, Click,
Click”. Biogeografia 8, 11-16.

Anderson, R. P., and Gonzalez, 1. (2011). Species-specific tuning increases
robustness to sampling bias in models of species distributions: an implementation with
Maxent. Ecol. Model. 222, 2796-2811. doi: 10.1016/j.ecolmodel.2011.04.011

Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research.
Entropy 11, 854-866. doi: 10.3390/e11040854

Binkley, D. and Fisher, R. F. (2013). Ecology and Management of Forest Soils.
Hoboken, NJ: Wiley.

Borders, B. E., Harrison, W. M., Shiver, B. D., and Daniels, R. F. (2014). Growth and
Yield Models for Second/Third Rotation Loblolly Pine Plantations in the Piedmont/Upper
Coastal Plain and Lower Coastal Plain of the Southeastern. U.S. Technical report.
Athens, GA: University of Georgia.

Borders, B. E., Harrison, W. M., Zhang, Y., Shiver, B. D., Clutter, M., Cieszewski,
C., etal. (2004). Growth and Yield Models for Second Rotation Loblolly Pine Plantations
in the Piedmont/Upper Coastal Plain and Lower Coastal Plain of the southeastern U.S. -
2004. PMRC Technical Report, 63.

Boria, R. A., Olson, L. E., Goodman, S. M., and Anderson, R. P. (2014). Spatial
filtering to reduce sampling bias can improve the performance of ecological niche
models. Ecol. Model. 275, 73-77. doi: 10.1016/j.ecolmodel.2013.12.012

Burkhart, H. E., Amateis, R. L., Westfall, J. A., and Daniels, R. F. (2008).
PTAEDA4.0: Simulation of Individual Tree Growth, Stand Development and Economic
Evaluation in Loblolly Pine Plantations. Technical report, Forest Modeling Research
Cooperative, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Burkhart, H. E., Avery, T. E., and Bullock, B. P. (2019). Forest Measurements, 6th
Edn. Long Grove, IL: Waveland Press.

Burkhart, H. E., and Tomé, M. (2012). Modeling Forest Trees and Stands. New York,
NY: Springer. doi: 10.1007/978-90-481-3170-9

Cannell, M. (1989). Physiological basis of wood production: a review. Scand. J. For.
Res. 4, 459-490. doi: 10.1080/02827588909382582

Carlson, C. A, Fox, T. R, Colbert, S. R, Kelting, D. L., Allen, H. L., and
Albaugh, T. J. (2006). Growth and survival of Pinus taeda in response to surface and
subsurface tillage in the southeastern United States. For. Ecol. Manage. 234, 209-217.
doi: 10.1016/j.foreco.2006.07.002

Coble, D. W., Milner, K. S., and Marshall, J. D. (2001). Above- and below-ground
production of trees and other vegetation on contrasting aspects in western Montana: a
case study. For. Ecol. Manage. 142, 231-241. doi: 10.1016/S0378-1127(00)00353-4

Daly, C., Halbleib, M., Smith, J. I, Gibson, W. P., Doggett, M. K., Taylor, G. H.,
et al. (2008). Physiographically sensitive mapping of climatological temperature and
precipitation across the coterminous United States. Int. J. Climatol. 28, 2031-2064.
doi: 10.1002/joc.1688

Daly, C., Smith, J. I, and Olson, K. V. (2015). Mapping atmospheric moisture
climatologies across the conterminous United States. PLoS ONE 10:¢141140.
doi: 10.1371/journal.pone.0141140

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). Inducing features of random
fields. IEEE Trans. Pattern Anal. Mach. Intell. 19, 380-393. doi: 10.1109/34.588021

Dudik, M., Phillips, S. J., and Schapire, R. E. (2004). “Performance guarantees
for regularized maximum entropy density estimation,” in 17th annual Conference on

Computational Learning Theory, 15.

Elith, J., and Leathwick, J. R. (2009). Species distribution models: ecological
explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40,
677-697. doi: 10.1146/annurev.ecolsys.110308.120159

Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., and Yates, C. J.
(2011). A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57.
doi: 10.1111/§.1472-4642.2010.00725.x

Evans, M. E., Merow, C., Record, S., McMahon, S. M., and Enquist, B. J. (2016).
Towards process-based range modeling of many species. Trends Ecol. Evol. 31,
860-871. doi: 10.1016/j.tree.2016.08.005

Frontiersin

14

10.3389/ffgc.2023.1215713

Fielding, A. H., and Bell, J. F. (1997). A review of methods for the assessment of
prediction errors in conservation presece/absence models. Environ. Conserv. 24, 38-49.
doi: 10.1017/S0376892997000088

Fithian, W., Elith, J., Hastie, T., and Keith, D. A. (2015). Bias correction in species
distribution models: pooling survey and collection data for multiple species. Methods
Ecol. Evol. 6, 424-438. doi: 10.1111/2041-210X.12242

Fithian, W., and Hastie, T. (2013). Finite-sample equivalence in statistical models
for presence-only data. Ann. Appl. Stat. 7, 1917-1939. doi: 10.1214/13-AOAS667

ForesTech International LLC (2009). SiMS 2009 Suite of Software Products - Growth
Model Documentation. ForesTech International LLC.

Fox, T. R, Jokela, E. J., and Allen, H. L. (2007). The development of pine plantation
silviculture in the southern United States. J. For. 105, 337-347.

Gallagher, D. A., Bullock, B. P., Montes, C. R., and Kane, M. B. (2019). Whole stand
volume and green weight equations for loblolly pine in the western Gulf Region of the
United States through age 15. For. Sci. 2019:fxy068. doi: 10.1093/forsci/fxy068

Graham, C. H., and Hijmans, R. J. (2006). A comparison of methods for
mapping species ranges and species richness. Glob. Ecol. Biogeogr. 15, 578-587.
doi: 10.1111/j.1466-8238.2006.00257.x

Harris, 1., Jones, P. D., Osborn, T. J., and Lister, D. H. (2014). Updated high-
resolution grids of monthly climatic observations - the CRU TS3.10 dataset. Int. J.
Climatol. 34, 623-642. doi: 10.1002/joc.3711

Harrison, W. M., and Borders, B. E. (1996). Yield Prediction and Growth Projection
for Site-Prepared Loblolly Pine Plantations in the Carolinas, Georgia, Alabama and
Florida. PMRC Technical Report. Athens, GA: University of Georgia.

Hasenauer, H., Burkhart, H. E., and Sterba, H. (1994). Variation in potential volume
yield of loblolly pine plantations. For. Sci. 40, 162-176.

Hijmans, R. J. (2017). raster: Geographic Data Analysis and Modeling. R Package
Version 2.6-7.

Hijmans, R. J., Phillips, S. J., Leathwick, J. R., and Elith, J. (2017). dismo: Species
Distribution Modeling. R Package Version 1.1-4.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to
Statistical Learning With Applications in R. New York, NY: Springer Texts in Statistics.
doi: 10.1007/978-1-4614-7138-7

Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106,
620-630. doi: 10.1103/PhysRev.106.620

Johnsen, K. H., Samuelson, L. J., Sanchez, F. G., and Eaton, R. J. (2013).
Soil carbon and nitrogen content and stabilization in mid-rotation, intensively
managed sweetgum and loblolly pine stands. For. Ecol. Manage. 302, 144-153.
doi: 10.1016/j.foreco.2013.03.016

Jokela, E. J., Dougherty, P. M., and Martin, T. A. (2004). Production dynamics
of intensively managed loblolly pine stands in the southern United States: a
synthesis of seven long-term experiments. For. Ecol. Manage. 192, 117-130.
doi: 10.1016/j.foreco.2004.01.007

Jones, P. D. (1994). Hemispheric surface air temperature
a reanalysis and an update to 1993. J. Clim. 7,
doi: 10.1175/1520-0442(1994)007&lt;1794:HSAT VA &gt;2.0.CO;2

Kelting, D. L., Burger, J. A, Patterson, S. C., Aust, W. M., Miwa, M., and Trettin, C.
C. (1999). Soil quality assessment in domesticated forests - A southern pine example.
For. Ecol. Manage. 122, 167-185. doi: 10.1016/S0378-1127(99)00040-7

Kinane, S. M. (2014). Consortium for accelerated pine production studies (CAPPS)
25 years of intensive loblolly pine plantation management (Master’s thesis). University
of Georgia, Athens, GA, United States.

variations:
1794-1802.

Kumar, S., and Stohlgren, T. J. (2009). Maxent modeling for predicting suitable
habitat for threatened and endangered tree Canacomyrica monticola in New
Caledonia. J. Ecol. Nat. Environ. 1, 94-98.

Lobo, J. M., Jiménez-valverde, A., and Real, R. (2008). AUC: a misleading measure
of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145-151.
doi: 10.1111/j.1466-8238.2007.00358.x

Matuszko, D. (2012). Influence of the extent and genera of cloud cover on solar
radiation intensity. Int. J. Climatol. 32, 2403-2414. doi: 10.1002/joc.2432

Merow, C., Smith, M. J., and Silander, J. A. (2013). A practical guide to MaxEnt
for modeling species” distributions: what it does, and why inputs and settings matter.
Ecography 36, 1058-1069. doi: 10.1111/j.1600-0587.2013.07872.x

Microsoft R Core Team (2017). Microsoft R Open. Version 3.5.0. Microsoft R Core
Team.

Mou, P., Jones, R. H., Mitchell, R. J., and Zutter, B. (1995). Spatial distribution of
roots in sweetgum and loblolly pine monocultures and relations with above-ground
biomass and soil nutrients. Br. Ecol. Soc. 9, 689-699. doi: 10.2307/2390162


https://doi.org/10.3389/ffgc.2023.1215713
https://doi.org/10.1111/j.2041-210X.2011.00141.x
https://doi.org/10.1016/0378-1127(90)90153-3
https://doi.org/10.1111/j.1752-1688.2000.tb04258.x
https://doi.org/10.1016/j.ecolmodel.2011.04.011
https://doi.org/10.3390/e11040854
https://doi.org/10.1016/j.ecolmodel.2013.12.012
https://doi.org/10.1007/978-90-481-3170-9
https://doi.org/10.1080/02827588909382582
https://doi.org/10.1016/j.foreco.2006.07.002
https://doi.org/10.1016/S0378-1127(00)00353-4
https://doi.org/10.1002/joc.1688
https://doi.org/10.1371/journal.pone.0141140
https://doi.org/10.1109/34.588021
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1016/j.tree.2016.08.005
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1111/2041-210X.12242
https://doi.org/10.1214/13-AOAS667
https://doi.org/10.1093/forsci/fxy068
https://doi.org/10.1111/j.1466-8238.2006.00257.x
https://doi.org/10.1002/joc.3711
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1016/j.foreco.2013.03.016
https://doi.org/10.1016/j.foreco.2004.01.007
https://doi.org/10.1175/1520-0442(1994)007&lt;1794:HSATVA&gt;2.0.CO;2
https://doi.org/10.1016/S0378-1127(99)00040-7
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1002/joc.2432
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.2307/2390162
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org

Peay et al.

Munro, H. L., Montes, C. R., Gandhi, K. J., and Poisson, M. A. (2022). A comparison
of presence-only analytical techniques and their application in forest pest modeling.
Ecol. Inform. 68:101525. doi: 10.1016/j.ecoinf.2021.101525

Muscarella, R., Galante, P. ., Soley-Guardia, M., Boria, R. A, Kass, J. M., Uriarte, M.,
et al. (2014). ENMeval: an R package for conducting spatially independent evaluations
and estimating optimal model complexity for Maxent ecological niche models. Methods
Ecol. Evol. 5,1198-1205. doi: 10.1111/2041-210X.12261

Nedlo, J. E., Martin, T. A., Vose, ]. M., and Teskey, R. O. (2009). Growing season
temperatures limit growth of loblolly pine (Pinus taeda L.) seedlings across a wide
geographic transect. Trees 23, 751-759. doi: 10.1007/s00468-009-0317-0

Parker, M. M., and Van Lear, D. H. (1996). Soil heterogeneity and root distribution
of mature loblolly pine stands in piedmont soils. Soil Sci. Soc. Am. J. 60, 1920-1925.
doi: 10.2136/ss52j1996.03615995006000060043x

Pearson, R. G., Raxworthy, C. J., Nakamura, M., and Townsend Peterson,
A. (2007). Predicting species distributions from small numbers of occurrence
records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102-117.
doi: 10.1111/§.1365-2699.2006.01594.x

Peterson, A. T. Soberon, J., Pearson, R. G. Anderson, R. P,
Martinez-Meyer, E., Nakamura, M. et al. (2011). Ecological Niches and
Geographic Distributions, Vol. 49. Princeton, NJ: Princeton University Press.
doi: 10.23943/princeton/9780691136868.003.0003

Peterson, T. C., Karl, T. R, Jamason, P. F., Knight, R, and Easterling, D. R.
(1998). First difference method: maximizing station density for the calculation of
long-term global temperature change. J. Geophys. Res. Atmos. 103, 25967-25974.
doi: 10.1029/98]D01168

Phillips, S. J., Anderson, R. P., Dudik, M., Schapire, R. E., and Blair, M. E. (2017).
Opening the black box: an open-source release of Maxent. Ecography 40, 887-893.
doi: 10.1111/ecog.03049

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum
entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259.
doi: 10.1016/j.ecolmodel.2005.03.026

Phillips, S. J. and Dudik, M. (2008). Modeling of species distribution with
Maxent: new extensions and a comprehensive evalutation. Ecograpy 31, 161-175.
doi: 10.1111/j.0906-7590.2008.5203.x

Phillips, S. J., Dudik, M., and Schapire, R. E. (2018). Maxent Software for Modeling
Species Niches and Distributions (Version 3.4.1).

Pollock, J. J. (2015). A Maxent-based model for identifying local-scale tree species
richness patch boundaries in the Lake Tahoe Basin of California and Nevada (Master’s
thesis). University of Southern California, Los Angeles, CA, United States.

PRISM Climate Group (2015). Descriptions of PRISM Spatial Climate Datasets for
the Conterminous United States. Technical report, PRISM Climate Group.

Qin, A,, Liu, B., Guo, Q., Bussmann, R. W., Ma, F,, Jian, Z., et al. (2017). Maxent
modeling for predicting impacts of climate change on the potential distribution of
Thuja sutchuenensis Franch. An extremely endangered conifer from southwestern
China. Glob. Ecol. Conserv. 10, 139-146. doi: 10.1016/j.gecc0.2017.02.004

Radosavljevic, A., and Anderson, R. P. (2014). Making better Maxent models of
species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629-643.
doi: 10.1111/jbi.12227

Ramcharan, A., Hengl, T., Nauman, T., Brungard, C., Waltman, S., Wills, S., et al.
(2018). Soil property and class maps of the conterminous United States at 100-meter
spatial resolution. Soil Sci. Soc. Am. J. 82, 186-201. doi: 10.2136/ss52j2017.04.0122

Frontiersin

15

10.3389/ffgc.2023.1215713

Rawls, W. J., Pachepsky, Y. A, Ritchie, J. C., Sobecki, T. M., and Bloodworth, H.
(2003). Effect of soil organic carbon on soil water retention. Geoderma 116, 61-76.
doi: 10.1016/S0016-7061(03)00094-6

Renner, I. W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S. J., et al.
(2015). Point process models for presence-only analysis. Methods Ecol. Evol. 6, 366-379.
doi: 10.1111/2041-210X.12352

Renner, I. W., and Warton, D. I. (2013). Equivalence of MAXENT and Poisson Point
Process models for species distribution modeling in ecology. Biometrics 69, 274-281.
doi: 10.1111/j.1541-0420.2012.01824.x

Restrepo, H. I, Bullock, B. P., and Montes, C. R. (2019). Growth and yield drivers of
loblolly pine in the southeastern U.S.: a meta-analysis. For. Ecol. Manage. 435, 205-218.
doi: 10.1016/j.foreco.2018.12.007

Sampson, D. A., and Allen, H. L. (1999). Regional influences of soil available
water-holding capacity and climate, and leaf area index on simulated loblolly pine
productivity. For. Ecol. Manage. 124, 1-12. doi: 10.1016/S0378-1127(99)00054-7

Sampson, D. A, Wynne, R. H,, and Seiler, J. R. (2008). Edaphic and climate effects
on forest stand development, net primary production, and net ecosystem productivity
simulated for Coastal Plain loblolly pine in Virginia. J. Geophys. Res. 113, 1-14.
doi: 10.1029/2006]G000270

Schreiber, J. D., Dufty, P. D., and McDowell, L. L. (1990). Nutrient leaching of a
loblolly pine forest floor by simulated I. rainfall intensity effects. For. Sci. 36, 765-776.

Shao, J., and Wu, C. F. J. (1989). A general theory for jackknife variance estimation.
Ann. Stat. 17, 1176-1197. doi: 10.1214/a0s/1176347263

Shcheglovitova, M., and Anderson, R. P. (2013). Estimating optimal complexity for
ecological niche models: a jackknife approach for species with small sample sizes. Ecol.
Model. 269, 9-17. doi: 10.1016/j.ecolmodel.2013.08.011

Wang, T., Hamann, A., Spittlehouse, D. L., and Aitken, S. N. (2006). Development
of scale-free climate data for western Canada for use in resource management. Int. J.
Climatol. 26, 383-397. doi: 10.1002/joc.1247

Warren, D. L., and Seifert, S. N. (2011). Ecological niche modeling in Maxent: the
importance of model complexity and the performance of model selection criteria. Ecol.
Appl. 21, 335-342. doi: 10.1890/10-1171.1

Weber, T. C. (2011). Maximum entropy modeling of mature hardwood
forest distribution in four U.S. States. For. Ecol. Manage. 261, 779-788.
doi: 10.1016/j.foreco.2010.12.009

Weiskittel, A. R., Hann, D. W., Kershaw, J. A., and Vanclay, J. K. (2011). Forest
Growth and Yield Modeling, 1st Edn. Hoboken, NJ: Wiley. doi: 10.1002/9781119998518

Will, R. E., Wheeler, M. J., Markewitz, D., Jacobson, M. A., and Shirley, A. M.
(2002). I1. Early loblolly pine stand response to tillage on the Piedmont and Upper
Coastal Plain of Georgia: tree allometry, foliar nitrogen concentration, soil bulk
density, soil moisture, and soil nitrogen status. Southern J. Appl. For. 26, 190-196.
doi: 10.1093/sjaf/26.4.190

Willett, R. L., and Bilan, M. V. (1990). “Soil properties relating to height growth
of loblolly pine on four major soil series in East Texas,” in Sixth Biennial Southern

Silvicultural Research Conference (Memphis, TN), 458-469.

Yang, X. Q. Kushwaha, S. P, Saran, S, Xu, J, and Roy, P. S. (2013).
Maxent modeling for predicting the potential distribution of medicinal plant,
Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 51, 83-87.
doi: 10.1016/j.ecoleng.2012.12.004

Zhao, D., Kane, M., and Wang, M. (2014). Coastal Plain Culture/Density Study: Age
18 Analysis for Loblolly Pine. Technical report, University of Georgia, Athens, GA.


https://doi.org/10.3389/ffgc.2023.1215713
https://doi.org/10.1016/j.ecoinf.2021.101525
https://doi.org/10.1111/2041-210X.12261
https://doi.org/10.1007/s00468-009-0317-0
https://doi.org/10.2136/sssaj1996.03615995006000060043x
https://doi.org/10.1111/j.1365-2699.2006.01594.x
https://doi.org/10.23943/princeton/9780691136868.003.0003
https://doi.org/10.1029/98JD01168
https://doi.org/10.1111/ecog.03049
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1111/j.0906-7590.2008.5203.x
https://doi.org/10.1016/j.gecco.2017.02.004
https://doi.org/10.1111/jbi.12227
https://doi.org/10.2136/sssaj2017.04.0122
https://doi.org/10.1016/S0016-7061(03)00094-6
https://doi.org/10.1111/2041-210X.12352
https://doi.org/10.1111/j.1541-0420.2012.01824.x
https://doi.org/10.1016/j.foreco.2018.12.007
https://doi.org/10.1016/S0378-1127(99)00054-7
https://doi.org/10.1029/2006JG000270
https://doi.org/10.1214/aos/1176347263
https://doi.org/10.1016/j.ecolmodel.2013.08.011
https://doi.org/10.1002/joc.1247
https://doi.org/10.1890/10-1171.1
https://doi.org/10.1016/j.foreco.2010.12.009
https://doi.org/10.1002/9781119998518
https://doi.org/10.1093/sjaf/26.4.190
https://doi.org/10.1016/j.ecoleng.2012.12.004
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org

	A maximum entropy approach to defining geographic bounds on growth and yield model usage
	1. Introduction
	2. Methods
	2.1. Background
	2.1.1. Maximum entropy principle
	2.1.2. MaxEnt application to the proposed problem and associated assumptions

	2.2. Study area and presence points
	2.3. Biophysical data
	2.3.1. Climatic information
	2.3.2. CRU climate data
	2.3.3. PRISM climate data
	2.3.4. Soils data
	2.3.5. Combining the climatic and soils data layers

	2.4. Maximum entropy models

	3. Results
	4. Discussion
	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


