粘土を含む水が花崗岩質岩盤の透水特性に及ぼす影響

奈良 禎太'柏谷 公希" 桶谷 和生" 藤井 宏和"" 趙 越"" 加藤 昌治"" 青柳 和平***** 尾崎 裕介***** 松井 裕哉***** 河野 勝宣******

Influence of Clay-Doped Water on Permeability in Granite Rock Mass

by

Yoshitaka Nara*, Koki Kashiwaya**, Kazuki Oketani***, Hirokazu Fum****, Yue Zhao****, Masaji Kato*****, Kazuhei Aoyagt*****, Yusuke Ozaki*****, Hiroya Matsut**** and Masanori Конко******

It is important to understand the long-term migration of radionuclides when considering long-lasting rock engineering projects such as the geological disposal of radioactive waste. The network of fractures and pores in a rock mass plays a major role in fluid migration as it provides pathways for fluid flow. The geometry of such a network can change due to fracture sealing by fine-grained material over extended periods of time. Groundwater commonly contains fine-grained material such as clay minerals, and it is probable that such minerals accumulate within rock fractures during groundwater flow, thereby decreasing fracture apertures and bulk permeability. It is therefore essential to conduct permeability measurements using water that includes fine-grained minerals in order to understand the evolving permeability characteristics of rock. However, this has not been studied to date in in-situ rock mass. Therefore, in the present study, we perform permeability measurements in a granite rock mass to investigate the change of permeability that occurs under the flow of water that includes clays. Our findings show that clay particles accumulate in fractures and that the permeability (hydraulic conductivity) of the granite rock mass decreases over time. The decrease was more significant in the earlier time. We conclude that the accumulation of clay minerals in the fracture decreases the permeability of a rock mass. Furthermore, we consider that the filling and closure of fractures in rock is possible under the flow of groundwater that contains clay minerals.

Key words:

Permeability, Granite rock mass, Clay-doped water, Fracture

放射性廃棄物処分や二酸化炭素地中貯留等の岩盤工学 に関するプロジェクトを考える上では、流れに関する情 報、特に材料の透水係数に関する情報を集積することが 必須である. 特に岩盤内では、き裂や空隙のネットワーク が流路となり、流れにおいて主要な役割を果たすため り、 き製や空隙が及ぼす影響を理解する必要がある.

これまで多くの研究者により、岩石の透水特性に関す る研究が行われてきた. 例えば、き裂や空隙の連結性が高 い場合、透水係数が高くなることが知られているスルヨ、ま た、き裂の導入により透水係数が増大することや、封圧が 上昇するにつれてき裂が閉塞し、透水係数の低下が生じ ることもよく知られている 4%. さらに、粘土のような細 粒物質がき裂を充填することによって、岩石の透水係数 が低下することが室内試験によって報告されている ^^9. 近年では、粘土を含む水が流れる条件下に岩石が置かれ た場合、時間の経過とともに、粘土の集積によって岩石の 透水係数が徐々に低下することが報告されている 10).

上記の粘土の集積による岩石の透水係数の変化は、室 内試験によって調べられたものである. 工学プロジェク トへ貢献することを考えると、原位置岩盤スケールで同 様の現象が起こすことができるか否かを調べることが極 めて重要であると考えられるが、現状では原位置岩盤に おいて調べられた例はない.

そこで本研究では、粘土を含む水を流すことによって、 岩盤の透水係数が変化するか否かを調べることとした. 特に、対象を花崗岩質岩盤とし、その中に含まれるき裂内 で粘土を含む水が流れた場合に透水係数がどのように変 化するかを調べることとした.

2 試験方法

本研究は、日本原子力開発機構の瑞浪用地(旧瑞浪超深 地層研究所) の研究坑道を利用して行った. ここの地下岩 盤は、新第三紀中新世以降の堆積岩(鮮新世の瀬戸層群お よび中期中新世の瑞浪層群) が表層部を構成し、その下部 にあたるおよそ深度 200m より白亜紀の土岐花崗岩で構

[↑] 原稿受理 令和5年8月9日 Received Aug. 9, 2023 @2024 The Society of Materials Science, Japan

正 会 員 京都大学 大学院工学研究科 〒615-8540 京都市西京区京都大学桂, Graduate School of Eng., Kyoto University, Nishikyo ku, Kyoto, 615-8540

^{**} 京都大学 大学院工学研究科 〒615-8540 京都市西京区京都大学桂, Graduate School of Eng., Kyoto University, Nishikyoʻku, Kyoto, 615-8540

^{***} 元・京都大学 大学院工学研究科 〒615-8540 京都市西京区京都大学柱, Graduate School of Eng., Kyoto University, Nishikyoʻku, Kyoto, 615-8540

^{**** (}株)レーザック 〒124-0002 東京都募飾区西亀有, Razoc Inc., Nishikameari, Katsushika ku, Tokyo, 124-0002

^{*****} 正 会 員 北海道大学 大学院工学研究院 〒060-8628 札幌市北区北13条西8, Faculty of Eng., Hokkzido University, Kita 13 Nishi 8, Kita ku, Sapporo, Holdraido 060-8628

^{******} 日本原子力研究開発機構 〒998-3224 北海道天塩郡幌延町北進, Japan Atomic Energy Agency, Horonobe-cho, Teshio-gun, Hokkaido, 098-3224 ******* 正 会 員 鳥取大学 学術研究院 工学系部門 〒680-8552 鳥取市湖山町南, Faculty of Eng., Tottori University, Koyama-Minami, Tottori, 680-8552