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ABSTRACT: With the urgent need for new medical approaches due to increased
bacterial resistance to antibiotics, antimicrobial peptides (AMPs) have been
considered as potential treatments for infections. Experiments indicate that
combinations of several types of AMPs might be even more effective at inhibiting
bacterial growth with reduced toxicity and a lower likelihood of inducing bacterial
resistance. The molecular mechanisms of AMP—AMP synergistic antimicrobial
activity, however, remain not well understood. Here, we present a theoretical
approach that allows us to relate the physicochemical properties of AMPs and their
antimicrobial cooperativity. It utilizes correlation and bioinformatics analysis. A
concept of physicochemical similarity is introduced, and it is found that less similar
AMPs with respect to certain physicochemical properties lead to greater synergy
because of their complementary antibacterial actions. The analysis of correlations
between the similarity and the antimicrobial properties allows us to effectively

Synergistic Combination
AMP1 + AMP2 +

D — X0

Net Charge Data Analysis

AMP1

‘.‘Qa‘n:e (AMP1, AMP2)
! 2'® AMP2
-

Bioinformatics

"Amino Acid
Composition

Antimicrobial Cooperativity

Distance (AMP1, AMP2)

Hydrophobicity

Solvent
Accessibility

Data Analysis

Non-Synerg

 Combinat
AWPT 4+ APz + ( Bacterin ) ey

separate synergistic from nonsynergistic AMP pairs. Our theoretical approach can be used for the rational design of more effective
AMP combinations for specific bacterial targets, for clarifying the mechanisms of bacterial elimination, and for a better
understanding of cooperativity phenomena in biological systems.

B INTRODUCTION

One of the main achievements of modern medicine is the
ability to efliciently eliminate various infections. This is
currently accomplished by using several classes of specific
small organic molecules that are generally called antibiotics.'
However, in the last 30 years, we have witnessed an increasing
resistance to antibiotics in bacteria, which threatens to severely
decrease our ability to protect human health.”™* These
alarming trends stimulated a broad search for novel
antibacterial agents and techniques.” Antimicrobial peptides
(AMPs), which are produced by multicellular organisms as
part of their immune responses to external infections, came out
as promising alternatives to antibiotics.” "> Some organisms,
e.g., frogs, groduce a wide variety of AMPs in their skin
secretions.'”'* AMPs are relatively short peptide-chain
molecules with typically large fractions of separated positively
charged and hydrophobic residues that exhibit activities against
multiple classes of bacteria, fungi, viruses, and even
cancer."” ™" It was also observed that combinations of some
specific types of AMPs fre%uently work much more efficiently
than single-type peptides.2 —2 Although it is known that, in
contrast to single AMPs, AMP combinations are less toxic, can
better hinder the ability of bacteria to develop resistance, and
can associate to bacterial cells faster, the microscopic
mechanisms of AMP—AMP cooperativity remain not well
understood.”* >

AMPs exhibit a wide spectrum of structures and mechanisms
of bacterial removal.”” Nonetheless, it is generally believed that
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the dominating antimicrobial pathway is the association of
AMPs with bacterial membranes and the following pore
formation that leads to the death of the bacterial cell.'”*”**
The efficacy of antimicrobial peptides in eliminating infections
is measured by the minimal inhibitory concentration (MIC),
which is defined as the concentration required to inhibit the
growth of the bacterial population.”**” 1t is interesting that
some AMPs might also sensitize antibiotics in their action
against the previously resistant bacterium.” In addition, like
antibiotics, some AMPs have a broad spectrum of antimicro-
bial activity, targeting multiple different species of bacteria.
Unlike antibiotics, however, AMP-based drugs are powerful
against antibiotic-resistant strains. The combinations of
different types of AMPs might be even more effective in
their antibacterial activities.”"””>**** They show higher
efficacy, reduced toxicity, and a lower likelihood of inducing
bacterial resistance compared to available antibiotics and even
individual AMPs. The efficacy of AMP—AMP combinations is
measured by fractional inhibitory concentrations (FIC), which
reflect the extent to which MIC for a given AMP in
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combination with another AMP is reduced compared to the
MIC of the same AMP when applied individually.*®

The microscopic origin of antibacterial cooperativity
between different types of AMPs is unclear. Bacterial resistance
to individual AMPs is rare yet possible,”’ —>* while bacterial
resistance is less probable to AMP—AMP combinations.””*’
This is one of the reasons why AMP—AMP combinations are
more likely to not only be more effective than individual
AMPs** ™" but also serve as long-term antimicrobials in
contrast to traditional antibiotics.””~*' Several possible sources
of cooperativity have been proposed. It was suggested, based
on experimental findings, that two AMPs might be synergistic
because they individually target different types of bacteria [e.g.,
Gram-positive and Gram-negative*”. Thus, their combinations
are more effective against both types of bacteria.”’
Furthermore, two AMPs might have different mechanisms of
action to disrupt the bacterial function,"*~*"°" or they might
perform different antimicrobial functions (e.g, one AMP
sensitizes the bacterium cell to the other AMP). Then, the
existence of multiple antimicrobial mechanisms can prevent
the development of resistance to the combination since
bacteria are not able to simultaneously respond to both of
them.* Also, two AMPs with different secondary structures
(for example, one has mostly a-helices and the other one has
mostly f-sheets) might also better inhibit bacterial
growth,”’™> and the difference in their structures can prevent
the peptide aggregation that is associated with a decrease in
antibacterial properties.

It is clear that possible synergy between two different types
of AMPs is a result of direct and/or indirect molecular
interactions. It was already suggested that this interaction
might appear due to similarity in the structures of the
peptides.”” However, recent experimental studies of individual
AMPs determined that other physicochemical properties, and
not structures, correlate better with higher antimicrobial
activity and a lower likelihood of bacterial resistance.”*° In
addition, for two AMPs to be a synergistic pair, it was shown
that they must have very different degrees of hydro-
phobicity.***"*” Furthermore, it was proposed that the larger
differences in physicochemical properties for AMP combina-
tions might be needed to prevent bacterial resistance. This is
because bacteria are less likely to transfer resistance from an
AMP in one class characterized by certain physicochemical
features to an AMP in a different class (characterized by
different physicochemical features than the first class), a
phenomenon known as cross-resistance.”* *° Nonetheless,
experimental tests of this idea exhibit mixed results. Synergy
and lack of cross-resistance are evident in the example of food-
preservative AMPs curvaticin-13 and nisin,’ while AMPs
microcins showed cross-resistance and lack of synergistic
antimicrobial activity.**

In this paper, we postulate that two classes of AMPs will
cooperate if they have very different physicochemical proper-
ties relevant to their antimicrobial activity because they will
complement each other in removing bacterial infections. To
test this hypothesis, we introduce the concept of phys-
icochemical similarity, defined as Euclidean distance in the
space of more than 1500 physicochemical descriptors. This
quantitative approach explicitly evaluates the correlations
between physicochemical similarities and FICs of different
AMP—AMP combinations. This allows us to select the most
important features that contribute to synergistic antimicrobial
activity. Applying principal component analysis (PCA), it is
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found that it is possible to distinguish between effective and
ineffective AMP—AMP combinations only when similarity is
calculated in terms of the selected features. We argue that
greater physicochemical dissimilarity between AMPs in certain
features is associated with stronger cooperative antimicrobial
activity. Possible mesoscopic arguments to support these
observations are presented. Our computational approach can
be used to rationalize the design of effective and bacteria-
specific AMP—AMP combinations as potential drugs, and it
can also assist in clarifying a more microscopic picture of
bacterial removal by AMPs.

B MATERIAL AND METHODS

Physicochemical Similarity of AMP Pairs. There are
1547 descriptors in total that are broadly divided into the
following groups:63 autocorrelations (Moreau-Broto, Moran,
and Geary coeflicients for hydrophobicity, polarizability, free
energy, and other features); amino acid compositions (single,
for example, the percentage of valine in the peptide or
dipeptide, for example, the percentage of valine adjacent to
lysine); physicochemical compositions (composition and
transition values for polarizability, charge, van der Waals
forces, and other properties), pseudoamino acid compositions,
and quasi-sequence order. Importantly, we view each peptide
as a point in d-dimensional space of all physicochemical
properties where each dimension represents a specific
descriptor.

Data Normalization. Since the scales of physicochemical
properties for each peptide are different, it is important as a
first step to normalize them to have their values to be between
0 and 1. To normalize this quantity in the range 0 and 1, we
use

min)

_ (z-2z

2
(Zma.x -

(1)
Euclidean Distance as the Measure of Similarity
between Two Peptides. There are different methods for
defining the similarity between any two molecules.*** We
chose the Euclidean distance in the space of all physicochem-
ical descriptors so that the properties with greater distance
would have greater weight in the calculation of overall distance.
For each AMP—AMP combination, the Euclidean distance is
calculated in terms of N different sets of descriptors

Z (Ai - Bi)2

z min)

d(aHN features)(A) B) —

(2)
and for M selected features
| M
d(M selected features)(A, B) — \/Z (Al _ Bi)Z
i=1 (3)
while for individual descriptors, we have
d(individual feature)(A’ B) — I(Al _ Bl)z — |A1 _ Bll (4)

The Euclidean distance has already been successfully utilized in
several bioinformatics investigations, including quantifying the
relations between genes and proteins.”® We postulate that the
physicochemical similarity of two AMPs is inversely propor-
tional to the Euclidean distance between them in the space of
physicochemical properties
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1
d(A, B) (5)

Fractional Inhibitory Concentration. The quantitative
measure of the efficiency of single-type AMPs against a
bacterial species is MIC, which is the minimum concentration
of an antimicrobial agent required to completely inhibit the
growth of a bacterium population. The corresponding
quantitative measure for AMP—AMP combinations is frac-
tional inhibitory concentration (FIC), which is the sum of the
ratios of each peptide’s MIC in the combination to individual
MIC

Similarity(A, B) =

MIC in presence o: C
FIC, = (1inp £2) _ 1
MIC(I alone) CI,MIC (6)
FIC2 _ MIC(Z in presence of 1) _ C2
MIC(Z alone) C'2,MIC (7)
FIC = FIC, + FIC, (8)

To better understand the cooperativity of two types of
AMPs, it is convenient to look into a schematic view of a
checkboard assay, shown in Figure 1, which is typically utilized
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Figure 1. Schematic view of the checkerboard assay in which AMP—
AMP combinations are tested. Each circle represents different sets of
concentrations of AMPs. The solid black curve describes the
conditions at which bacterial growth stops.

in experiments on measuring synergy of AMPs.%” In this graph,
the concentrations of peptides are presented as fractions of
their corresponding MICs for single-type AMP measurements,
and each circle corresponds to a specific combination of AMPs.
Different curves describe the conditions at which bacterial
growth is stopped.

For all curves below the black curve (e.g, green circles), we
have FIC < 0.5, and this describes the synergistic action of
AMP pairs in the elimination of bacterial infection. The
presence of the second type of AMP enhances the antibacterial
efficiency of the first type of AMP. For all curves above the
black curve (red circles), we have FIC > 0.5, and these
conditions are viewed in our method as nonsynergistic for
AMP combinations. In other words, the presence of the second
type of AMP lowers or does not affect the antimicrobial
efficiency of the first type of AMP.
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Spearman’s Rank Correlation Coefficient for Calcu-
lating Correlations between FIC Values and Euclidean
Distances. Each AMP—AMP combination is characterized by
a Euclidean distance d (eq 4) and total FIC (eq 8 values). To
elucidate the relationship between the Euclidean distance and
FIC values of AMP—AMP pairs, we utilize the Spearman’s rank
correlation coefficient, which is defined as the Pearson’s
correlation coefficient between the ranks of distance, R(d), and
ranks of FIC values, R(FIC)

. (R(d)R(FIC)) — (R(d)){R(FIC))
T J®R(@) - (R()P {(R(FIC)) — (R(FIC)Y

€)

The Spearman’s rank correlation coeflicient estimates how well
the relationship between two variables can be described by a
monotonic function, and, thus, it is a convenient measure to
evaluate the correlations between two quantities. For
computing Spearman’s correlation, one has to sort the values
from least to greatest, and rank is the position of each sorted
value in the list.

B RESULTS AND DISCUSSION

Feature Selection Procedure Based on Correlations
between FIC Values and Physicochemical Similarity of
AMP Pairs. For practical purposes, one is always searching for
strong synergistic pairs of AMPs, and then some arbitrary
thresholds are utilized to define this region of antimicrobial
activities. Moreover, to simplify the statistical analysis, it is
convenient to have similar numbers of synergistic and
nonsynergistic pairs. In our work, FIC = 0.47 is chosen as
the threshold for synergistic pairs, and AMP—AMP pairs with
FIC > 0.47 are considered as effectively nonsynergistic, and
pairs with FIC < 0.47 are viewed as synergistic. We collapsed
data across weakly synergistic, additive, and antagonistic
categories together because there was not enough data to
examine each case separately, and our focus is on strongly
synergistic pairs."*” It is also important to note that the exact
choice of the threshold value does not affect our main
conclusions, as we explicitly checked in our calculations.

To obtain a quantitative description of the antibacterial
efficiency of AMPs pairs, the data were extracted from the
DBAASP database,”® and we ensured that the data included in
the analysis were collected under the same experimental
conditions. These data contain FIC values for AMP—AMP
combinations for three different bacterial species (Escherichia
coli, Micrococcus luteus, and Pseudomonas ueruginosa) and in
which both peptides in the combination consisted of only
natural amino acids with an overall sequence length of at least
11 (see Table 1). The latter requirement is needed for the
subsequent proper extraction of physicochemical descriptors of
peptides.

We extracted a comprehensive set of 1547 physicochemical
properties for each peptide sequence using a bioinformatic
package propy.”’ These physicochemical features include
amino acid compositions (percentage of each amino acid in
the peptide), net charge, hydrophobicity, polarizability,
polarity, van der Waals forces, solvent accessibility, and many
others.

The first calculated quantity was the Euclidean distance
between the AMPs in each pair in terms of all features to arrive
at a single value.”*®* In our analysis, it is viewed as the inverse
of the similarity between two peptides. Then, we evaluated the
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Table 1. Overview of the Datasets for AMP—AMP
Combinations Extracted from DBAASP Database”

Bacteria Synergistic AMP-AMP  Non-synergistic AMP-AMP
combinations combinations
E. coli 12 50
M. Luteus 6 12
P. Aeruginosa 4 11

“Specifically, the number of synergistic and non-synergistic AMP pairs
for each bacterium is presented.

Table 2. (a) Various Tritrpticin and Temporin Peptides and
Their Corresponding Sequences; (b) Various Magainin-2
Peptides and Their Corresponding Sequences

a)
Peptide Sequence
Tritrpticin VRRFPWWWPFLRR
TWF VRRFPFFFPFLRR
TPA VRRFAWWWAFLRR
Temporin A FLPLIGRVLSGIL
Temporin B LLPIVGNLLKSLL
Temporin L FVQWFSKFLGRIL
b)
MAG2-WT e GIGKFLHSAKKFGKAFVGEIMNS
MAG2-F5A Phe5 GIGK-Ala-LHSAKKFGKAFVGEIMNS
MAG2-L6A Leué GIGKF-Ala-HSAKKFGKAFVGEIMNS
MAG2-F12A Phe12 GIGKFLHSAKK-Ala-GKAFVGEIMNS
MAG2-G13 Gly13 GIGKFLHSAKKF-Ala-KAFVGEIMNS
MAG2-F16 Phe16 GIGKFLHSAKKFGKA-Ala-VGEIMNS
MAG2-V17 Val17 GIGKFLHSAKKFGKAF-Ala-GEIMNS
MAG2-G18 Gly18 GIGKFLHSAKKFGKAFV-Ala-EIMNS
MAG2-120A lle20 GIGKFLHSAKKFGKAFVGE-Ala-MNS

Spearman’s rank correlation coefficients’"’”> between the
Euclidean distances and FIC values for each AMP pair (see
Materials and Methods for details of the calculations).

Since there were no significant correlations between FIC and
Euclidean distance for any pairs of peptides in terms of all
descriptors, p > 0.05, we analyzed this relationship separately
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in terms of each of the 1547 physicochemical features. The
corresponding histograms of correlation coefficients for three
species of bacteria are shown in Figure 2. We decided to
choose only those features for which the Spearman correlation
coeflicient was statistically significant, i.e., Irl is large.
Furthermore, a statistical analysis with a p-value of less than
0.005 was applied to filter out irrelevant features. This
corresponds to features with r, smaller than the red dashed
lines for r; < 0 and features with r, larger than the red dashed
lines for r, > 0; see Figure 2. Based on these criteria, we
obtained the features shown in Figure 3a for E. coli, in Figure
3b for M. luteus, and in Figure 3c for P. aeruginosa. Then, the
physicochemical similarity for AMP pairs has been computed
utilizing only the selected features to result in a single Euclidean
distance value for each AMP pair, and the relationship between
the FIC values and the distances has been analyzed (see Figure
S1 in the Supporting Information). One can see that the
distance in the space of selected physicochemical features
between two peptides can be utilized to separate synergistic
from nonsynergistic AMP pairs.

Our analysis suggests that most physicochemical features do
not affect the correlations between the FIC and the similarity.
The features that we selected are shown in Figure 3a for E. coli
bacterium. More specifically, the distance between AMPs in
the space of only selected features against the FIC values is
presented in Figure SI. One can see that, in contrast to the
case when all features are included (not shown), there is a
visible separation between synergistic and nonsynergistic AMP
pairs. Similar results are obtained for other analyzed bacterial
species (see Figure S2 in the Supporting Information). It is
interesting to note that most selected physicochemical
properties are distinct for each bacterium (Figure 3), but
there was also overlap in certain properties, including
hydrophobicity and polarizability, suggesting that there might
be some universal physicochemical features of AMPs that are
important for eliminating any bacteria.

Analysis of Specific Selected Features: Autocorrela-
tion Functions. Our theoretical method indicates that among
the important selected physicochemical features for all types of
investigated bacteria, there are several autocorrelation
functions, which measure the variation of different phys-
icochemical properties for any pair of amino acid residues
along the peptide sequence. Three versions of autocorrelation
functions, known as Geary, Moran, and Moreau-Broto, are
considered here.”””* Although there is no fundamental
difference between these functions, unlike Moreau-Broto,
Geary and Moran autocorrelation parameters utilize averages
and variances for each property. For example, the Moreau-
Broto autocorrelation coefficient, which measures the
correlation between physicochemical properties of residue i
and residue i + d (along the peptide contour), is given by *

N—-d

y D PR,

i=1 (10)

MB(d) =

1
N —

where P; and P, ; are physicochemical properties of residue i

and residue i + d, respectively. Alternatively, we can define
. . 74

Geary autocorrelation function’” as

1 N-d 2
=g Zim (B~ Bid)
1 N ( > p)Z

i=1

N-1

G(d) =
(11)
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Figure 2. Distribution of Spearman correlation coefficients between fractional inhibitory concentration (FIC) values and the corresponding
distances between paired AMPs in terms of individual physicochemical features [lndividual featare) (A * BY] for (a) E. coli, (b) M. luteus, (c) P.
aeruginosa. Vertical red dashed lines show threshold values of Spearman’s correlations above which the corresponding features are selected.

where P = %Zf\i | b is the average physicochemical property
of the sequence. Finally, one can define the Moran
autocorrelation function, which is similar to Pearson’s
correlation between the physicochemical property of residue
i and residue i + d”*

M(d) — ﬁ fi_ld (Pz - p)(P;+d - 13)

1 N 5\2
ﬁz,:l(Pi_P)

(12)

Considering physicochemical features important for E. coli,
one can notice that the dissimilarity of two AMPs in terms of
autocorrelation in hydrophobicity contributes to the syner-
gistic activity of their combination. In this case, a positive
autocorrelation corresponds to a peptide, which is either totally
hydrophobic or totally hydrophilic, i.e., it has the same sign of
hydrophobicity for different amino acids along the peptide
chain. A negative autocorrelation describes amphiphaticity
when one side of the peptide is hydrophobic and the other side
is hydrophilic, i.e., a change of sign in hydrophobicity along the
peptide chain. Accordingly, a large difference in hydro-
phobicity autocorrelation coeflicients between two peptides
in a combination suggests that in the synergistic combination
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one peptide is most probably amphipathic, while the other is
predominantly hydrophobic or hydrophilic.

To illustrate the idea that for two AMPs to cooperate in
removing the bacteria they must be very different in terms of
autocorrelations in hydrophobicity, let us analyze a specific
example of AMP—AMP combinations that target E. coli
bacteria. Three different types of peptides, tritrpticin and its
two derivatives labeled as TPA and TWF, are considered
first.”> Bacterial killing assays showed that the combination of
tritrpticin and TPA was not synergistic, while tritrpticin—TWEF
and TPA—TWF pairs successfully cooperated against E. coli.
To elucidate the relationship between the physicochemical
similarity of these AMP pairs and their antibacterial activity, we
computed the Moran autocorrelation parameter for hydro-
phobicity (which characterizes the degree of amphiphaticity of
the peptide) at different distances along the peptide chain
using the information from the propy package. The parameter d
specifies the distance between amino acids along the peptide
chain. As one can see in Figure 4a, tritrpticin is similar to TPA
in terms of the lack of amphiphaticity, but it is different from
TWE. Thus, the synergistic activity of TPA—TWEF and
tritrpticin—TWEF combinations might be attributed to the
fact that TWF is highly amphiphatic in contrast to both
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Figure 3. Relative importance of physicochemical features in terms of which AMP—AMP similarity is highly correlated with the corresponding FIC

values (a) for E. coli, (b) for M. luteus, and (c) for P. aeruginosa.

tritrpticin and TPA. At the same time, the amphiphaticity is
absent in both tritrpticin and TPA so that they are
physicochemically more similar, making their combination
ineffective against E. coli.

In another example, we consider AMPs in the temporin
family, namely temporins A, B, and L.”® Microbroth dilution
assays to measure the inhibition of bacterial growth showed
that against E. coli, temporin L was synergistic with temporins
A and B separately, while temporins A and B together were not
synergistic. As shown in Figure 4b, the Moran hydrophobicity
autocorrelations are closer to each other for temporins A and
B, and both of them exhibit relatively weak amphipathicity, as
indicated by the slightly negative correlations at d = 9.
However, there is a larger difference between the hydro-
phobicity autocorrelation parameters for temporin L and the
other temporins A and B. The larger negative correlation
reflects the greater amphipathicity for temporin L compared to
the other temporins. These results suggest that the synergy
between temporin L and the other temporins could be related
to the differences in amphipathicity, while the similar levels of
ampbhipathicity between temporins A and B lead to the lack of
synergy.

In the final example, we consider the peptide magainin-2,
originating from the Xenopus laevis frog, and several synthetic
single-amino-acid-substituted analogues of magainin-2 that are
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all synergistic with the peptide PGLA in killing E. coli
bacteria.’” Figure 4c presents the Moran autocorrelation
parameters for two distances d for all magainin-2 species and
for the PGLA peptide. One can see that autocorrelation
parameters for PGLA are very different from all other
magainin-2 species. PGLA is nonamphipathic, while the
negative correlations of different magainin-2 peptides demon-
strate strong amphipathicity. Conversely, it can be predicted
that when the magainin-2 peptides are combined in pairs, none
of the pairs will be synergistic against E. coli. This is because
the magainin-2 peptides are all strongly amphipathic and thus
too similar in this important physicochemical characteristic.
Therefore, PGLA and all considered magainin-2 peptides are
very different physicochemically, and this explains the observed
antibacterial cooperativity in this system.

B SUMMARY AND CONCLUSIONS

Recent experimental studies revealed that bacteria are more
susceptible to combinations of some specific types of
antimicrobial peptides. In this work, we present a theoretical
investigation that allows us to identify synergistic pairs of
AMPs based on their physicochemical properties. It is
proposed that cooperating AMPs are those peptides that are
the most different in their physical—chemical properties
relevant to bacterial elimination. In other words, the more
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Figure 4. Calculation of Moran autocorrelation coefficient in hydrophobicity for (a) tritrpticin and its derivatives, TWF and TPA. TPA was
synergistic with tritrpticin and TWF separately, but tritrpticin and TWF were not synergistic.”> (b) Temporins A, B, and L. Temporins A and B are
nonsynergistic, while temporin L is synergistic with temporins A and B separately. (c) PGLa and different mutants of magainin-2 (MAG2). PGLA
was synergistic with all variants of MAG2, but the strongest synergy was between PGLA and MAG2-G13A and MAG2-G18A separately.”” See

Table 2 for more details.

dissimilar the AMPs are, the more cooperative they are in their
antibacterial action. To test our hypothesis, we developed a
computational framework that allowed us to quantify the
physicochemical similarity and analyze its correlations with
cooperativity in antibacterial activities. To illustrate our
theoretical method, the synergy of AMP—AMP combinations
acting against three different types of bacteria, namely E. colj,
M. luteus, and P. aeruginosa, has been specifically considered.

A concept of physicochemical similarity between two
peptides as inverse Euclidean distance in the space of properly
normalized physicochemical features has been introduced and
discussed. It has been found that there is a relatively small
number of properties that is most relevant for supporting the
synergy of AMP—AMP combinations. Theoretical analysis
shows that measuring similarity using only the selected features
inversely correlates with the antibacterial efficiency of AMP
pairs, allowing us to separate synergistic and nonsynergistic
AMP combinations. These observations clearly support our
hypothesis that the most physicochemically dissimilar (in
terms of the most relevant features) AMP pairs lead to
cooperativity in the removal of bacterial infections, while
similar AMP combinations do not exhibit cooperativity at all.
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Generally, the selected physicochemical features for different
bacteria do not coincide, although there are some common
properties. It was found that several autocorrelation functions,
including but not limited to hydrophobicity, play an important
role in supporting the synergistic action of AMP combinations.
For example, the autocorrelation in hydrophobicity is related
to the amphipathicity of AMPs, which enables the AMP
molecule to faster enter the bacteria cell.”””® Calculating these
properties, such as autocorrelation in hydrophobicity, allowed
us to explicitly illustrate the correlations between the
physicochemical similarity and the antibacterial efficiency.
The association between the selected physicochemical features
for each species of bacteria and the cooperative activity of
AMP—AMP combinations against the bacteria was also
supported by additional analyses, including PCA, as shown
in the Supporting Information (see Figures S1 and S2). In the
several examples considered of AMP combinations acting
against E. coli bacteria, cooperativity was observed only for
peptides with very different autocorrelation parameters, while
peptides with similar autocorrelation parameters never
produced synergistic combinations. Similar results were
found for antimicrobial dimers, specific types of AMPs in
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which two AMPs are linked to act as a single AMP:
autocorrelation in hydrophobicity was related to the efficacy
of dimers against Enterococcus faecalis (see Figure S3). These
results again are fully consistent with our hypothesis about the
relation between physicochemical similarity and antibacterial
efficiency. We illustrated that this hypothesis can be used to
generate predictions for untested AMP—AMP combinations
because AMP—AMP combinations with greater distance in
specific properties, such as autocorrelation in hydrophobicity,
are more likely to be synergistic (see Figure S4).

Although our theoretical approach connects the selected
physicochemical properties of AMPs with their ability to
cooperate, it does not provide a microscopic picture of the
underlying processes that lead to antibacterial synergy. At the
same time, some of the obtained results allow us to present
some speculations about possible molecular mechanisms of
AMPs cooperativity. Our main idea is that this is a result of
complementarity in the antimicrobial properties of peptides.
The possible microscopic picture is that one type of AMPs is
affecting the bacterial membrane in such a way that it makes it
easier for the second type of AMPs to disrupt the membrane,
though some AMPs might also act on intracellular targets such
as ribosomes to disrupt bacteria cell functioning.” Since both
activities are, in some sense, “orthogonal” to each other, this
leads to stronger effective cooperativity. Those AMPs that are
similar in their physicochemical properties do not exhibit
complementarity because in this case peptides compete with
each other for the same regions of bacterial cellular membranes
in order to disrupt them.

Cooperativity is one of the main organizational principles in
chemistry and biology required to support the functioning of
living systems.””®" Examples include multiple phenomena
ranging from ligand binding to cellular receptors and enzyme
activities to molecular machines made of complex protein
complexes. In many cases, the molecular mechanisms of the
processes that lead to cooperativity are still not fully
understood. Although our theoretical approach provides a
possible mechanistic explanation for the synergistic action of
AMPs, it seems reasonable to suggest that similar ideas can
also be extended to other biological processes. We propose
that in some systems, cooperating biological molecules might
be complementary in their activities to perform their biological
functions.

While our theoretical approach is successful in predicting the
cooperativity of AMPs acting against bacteria, it is important to
discuss its limitations. First, the method will work if there is
enough data on synergistic and nonsynergistic combinations
for the given bacteria to identify the most relevant features and
evaluate the physicochemical similarity. Second, it does not
clarify the microscopic origin of cooperativity since it only
detects the correlations but not their sources. Despite these
limitations, however, this theoretical approach provides a
powerful method for designing more efficient AMP drugs, and
it also gives the starting point for uncovering what molecular
forces are responsible for the synergetic effects of peptides. In
addition, this method can be easy to extend to other biological
systems, e.g., to investigate cooperativity in protein—protein
systems.
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