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Abstract

This paper studies a stochastic utility maximisation game under relative performance
concerns in finite- and infinite-agent settings, where a continuum of agents interact
through a graphon (see definition below). We consider an incomplete market model
in which agents have CARA utilities, and we obtain characterisations of Nash equi-
libria in both the finite-agent and graphon paradigms. Under modest assumptions on
the denseness of the interaction graph among the agents, we establish convergence
results for the Nash equilibria and optimal utilities of the finite-player problem to the
infinite-player problem. This result is achieved as an application of a general back-
ward propagation of chaos type result for systems of interacting forward–backward
stochastic differential equations, where the interaction is heterogeneous and through
the control processes, and the generator is of quadratic growth. In addition, char-
acterising the solution of the graphon game gives rise to a novel form of infinite-
dimensional forward–backward stochastic differential equation of McKean–Vlasov
type, for which we provide well-posedness results. An interesting consequence of
our result is the computation of the competition indifference capital, i.e., the capital
making an investor indifferent between whether or not to compete.
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1 Introduction

We consider agents investing in a common riskless bond and a vector of stocks
of their own choosing. Each agent aims to maximise their utility as a function of
their terminal wealth, benchmarked by the industry average. In addition, agents’ util-
ity functions are exponential. This problem was first investigated by Espinosa and
Touzi [15, 14] in the setting of a complete market with a finite number of agents. In
these works, the benchmark for a particular agent was taken to be an empirical av-
erage of the other players’ terminal wealth, multiplied by a constant factor between
0 and 1 representing the sensitivity of this particular agent to their peers’ perfor-
mance. Such a utility maximisation problem under relative performance concerns has
since been explored extensively using various techniques; see for instance Frei [16],
Frei and dos Reis [17], Lacker and Zariphopoulou [28], Fu et al. [18], Lacker and
Soret [26], Hu and Zariphopoulou [21] and references therein for a small sample of
works on the question. We also refer to Dos Reis and Platonov [12], Anthropelos
et al. [1], dos Reis and Platonov [13] for more recent articles studying relative
performance concerns through the lens of the forward criteria of Musiela and
Zariphopoulou [36]. The papers [15, 16, 17, 18] approach the problem from a purely
probabilistic perspective through characterising the solution of the game using sys-
tems of (forward–)backward stochastic differential equations ((F)BSDEs). In partic-
ular, Fu et al. [18] explore an extension of the game in an incomplete market frame-
work in the following sense: all agents there invest in the same vector of stocks (with
dimension d) and their strategies can take values in Rd . In addition to having a com-
mon Brownian motion W ∗ representing the market uncertainty or “common noise”
in the price dynamics of all stocks, they allow each stock to be driven by a separate
Brownian motion representing the “idiosyncratic noise”. These Brownian motions
are i.i.d. and independent of W ∗. In this setting, the characterising system of BSDEs
has the particular feature that it is quadratic in the control variable. As first observed
in the work of Frei and dos Reis [17], such systems are not always globally solvable,
making the analysis of the problem in full generality particularly challenging. For
instance, Frei and dos Reis [17, 16] provide specific counterexamples when equilib-
ria do not exist even in the case of a complete market where stocks are driven by
idiosyncratic noise only. Frei [16] showed that multidimensional quadratic BSDEs
are in general only locally solvable (i.e., the solutions exist only on small time in-
tervals), and he provided equilibria for the original game of Espinosa and Touzi [15]
using the existence of local solutions to the characterising BSDEs. Fu et al. [18] es-
tablished existence and uniqueness of the characterising BSDEs in an incomplete
market framework where all investors invest in two stocks only and the strategies are
unconstrained.

Recent developments in mean field games provide new avenues to approach the
above described utility maximisation game by considering the infinite-population
case. In fact, standard mean field games heuristics of Lasry and Lions [30], Huang
et al. [23] and Carmona and Delarue [10] suggest that in a homogeneous game, that
is, when agents are symmetric and identical, the infinite-population analogue of the
game can be solved by considering a single representative player whose best response
is obtained as solution of a (one-dimensional) McKean–Vlasov BSDE. More pre-
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cisely, one thus expects to bypass the subtleties coming with studying multidimen-
sional quadratic BSDEs by analysing a one-dimensional McKean–Vlasov quadratic
BSDE. Despite also having quadratic growth, the latter equation seems much eas-
ier to analyse (both analytically and numerically) than the former, making the mean
field game paradigm particularly attractive for this game. The mean field setting was
first considered by Lacker and Zariphopoulou [28] and Lacker and Soret [26] in the
Markovian setting with deterministic, constant coefficients, and equilibria were de-
rived using Hamilton–Jacobi–Bellman SPDE methods. More recently, probabilistic
techniques were proposed by Fu et al. [18] and dos Reis and Platonov [13].

In the present paper, we rigorously study the link between the finite- and infinite-
population games. Our main modelling assumptions can be summarised as follows:
we consider an incomplete market in which

– agents are allowed to invest in different vectors of stocks with random coeffi-

cients, driven by idiosyncratic noise and common noise;
– agents’ strategies are constrained to take values in a closed, convex set;
– agents benchmark their performance by a weighted average of other agents’

terminal wealth.
Let us elaborate on the last and probably less studied model feature mentioned above.
For a particular agent i, instead of having a single factor λi representing their sensitiv-
ity to a plain average of the other agents’ terminal wealth, we allow this agent to have
different sensitivity factors (λij )j �=i towards each agent. This assumption is a lot more
realistic in the sense that funds usually aim to outperform a small, specific group of
competitors and are usually completely indifferent to the performance of other funds
that are for example on a much smaller or larger scale, utilise completely different
strategies or operate in a widely different market sector. This leads to a heteroge-

neous game set on a (random) graph and deviates from the standard symmetric agent
interaction assumption, which is arguably the main limitation of the mean field game
formulation. Following the seminal works of Lovász [33, Chap. 11] and Lovász and
Szegedy [34] on the convergence of graphs to so-called graphons (see precise defini-
tion and discussion below), the natural infinite-population analogue of the game we
consider in the present heterogeneous setting is a utility maximisation graphon game.
It is worth pointing out that in addition to the methodology, the main modelling dif-
ference between the present work and [18] resides in the heterogeneous interactions
among agents and the consideration of constrained strategies here. These give rise
to infinite-dimensional McKean–Vlasov type (F)BSDEs with quadratic generators,
making the analysis more demanding and requiring new techniques.

Similarly to mean field games, graphon games provide an alternative to study large
scale network games that in general suffers less from the curse of dimensionality.
However, unlike mean field games, agents in a graphon game are no longer anony-
mous, as mentioned by Carmona et al. [9]. The benefit associated with a graphon in-
teraction is that agents are now aware of who their neighbours are, and are allowed to
possess different preference metrics towards different neighbours. As a result, when
deriving the optimal strategy for a specific agent, one needs to take into account (an
aggregation of) a continuum of infinitely many other agents, where the aggregation
is established through the graphon. The analysis of graphon games has gained trac-
tion in recent years, mostly in the engineering community. Parise and Ozdaglar [38]
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were the first to analyse equilibria for static graphon games. Caines and Huang [7, 8]
studied decentralised control for graphon mean field games and established an
ε-Nash theory that relates the equilibria for an infinite-population game to that of
a finite-population game. Gao et al. [19] explored linear–quadratic Gaussian mean
field games. Outside of the engineering community, Carmona et al. [9] studied var-
ious static graphon games. Aurell et al. [2] studied stochastic graphon games in a
linear–quadratic setting. We also refer to the recent works of Lacker and Soret [27]
and Bayraktar et al. [6] for recent results on generic games. The main contributions
of the present work can be summarised as follows:

– We derive explicit characterisation properties of the Nash equilibria in the finite
and the graphon utility maximisation games.

– We show that if the sensitivity matrix in the finite-agent game stems from a
graphon and follows a Bernoulli distribution, then the heterogeneous finite-agent
game converges to the graphon game in the sense that every sequence of Nash
equilibria converges (up to a subsequence) to a graphon equilibrium along with the
associated value functions.

– We prove solvability of the graphon utility maximisation game.
For the characterisation properties, we adopt an extension of a well-known

methodology proposed by Hu et al. [22]. The convergence and existence results are
more involved. Convergence is obtained as a byproduct of a general backward prop-

agation of chaos type result which appears to be of independent interest. Consider
a general system of weakly interacting FBSDEs in which the interaction is given
through a random graph (appropriately) stemming from a graphon. We prove strong
convergence of the interacting particle system to a limit consisting of infinitely many
coupled particles. Backward propagation of chaos type results and their link to the
mean field game convergence problem were first developed in recent works by Lau-
rière and Tangpi [31], Luo and Tangpi [35] and Possamaï and Tangpi [39]. Note
that in these works, generators are Lipschitz-continuous. Our work contributes to the
theory by extending it to systems in heterogeneous interactions through the control
processes and where the generators are of quadratic growth. A case of FBSDEs with
heterogeneous interactions was posted on arXiv a week before the present work by
Bayraktar et al. [6]. See also Bayraktar et al. [4], Bayraktar and Wu [5] for results
along the same lines for forward particle systems. The results and methods of the
present work further allow us to introduce and compute the so-called competition
indifference capital, which is the capital allowing to make the investor indifferent
between being concerned by their peers’ performance or not.

The paper is organised as follows. In Sect. 2, we first introduce the probabilistic
setting and the market model, followed by the finite-agent and the graphon models
and lastly the main result of this paper, namely the convergence of the finite-agent
Nash equilibrium to the graphon Nash equilibrium. The BSDE characterisations of
the finite-agent game and the graphon game are presented in Sects. 3.1 and 3.2, re-
spectively. Section 4 is dedicated to the proofs of the existence results. In Sect. 5, we
prove the main results which are propagation of chaos for heterogeneous particle sys-
tems. Section 6 establishes existence and uniqueness for solutions of general graphon
FBSDEs of McKean–Vlasov type which then allows deriving existence of solutions
to the graphon game.
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2 Probabilistic setting andmain results

Let us now present the probabilistic setting underpinning this work. In this section,
we also describe the market model as well as the finite- and infinite-population games
under consideration. At the end of the section, we present the main results of the
article.

2.1 Themarket model

We fix a finite time horizon T > 0 and integers n, d ∈ N. Let (W i)i≥1 be a sequence
of independent d-dimensional Brownian motions on [0, T ] supported on the probabil-
ity space (�,F ,P). In addition, this probability space supports another independent
one-dimensional Brownian motion W ∗ on [0, T ] and independent R-valued random
variables (ξ i)i≥1. We denote by Fn := (Fn

t )t∈[0,T ] the P-completion of the natu-
ral filtration of ((W i)i=1,...,n,W

∗, ξ1, . . . , ξn). Let us define spaces and norms used
throughout the paper. Fix a generic finite-dimensional normed vector space (E, | · |),
let G be a filtration and G a sub-σ -algebra of F .

• For p ∈ [1,∞], Lp(E,G) is the space of E-valued, G-measurable (equivalence
classes of) random variables R such that

‖R‖Lp(E,G) := (E[|R|p])
1
p < ∞ for p < ∞,

‖R‖L∞(E,G) := inf{� ≥ 0 : |R| ≤ � P-a.s.} < ∞.

• For p ∈ [1,∞), Hp(E,G) is the space of (equivalence classes of) E-valued,
G-predictable processes Z with

‖Z‖
p

Hp(E,G)
:= E

[( ∫ T

0
|Zs |

2 ds

)p/2]
< ∞.

• The space L2(E,G) consists of all (equivalence classes of) E-valued,
G-predictable processes Z such that

∫ T

0
|Zs |

2 ds < ∞ P-a.s.

• For p ∈ [1,∞], Sp(E,G) is the space of (equivalence classes of) E-valued,
continuous, G-adapted processes Y such that

‖Y‖Sp(E,G) :=

∥∥∥ sup
t∈[0,T ]

|Yt |

∥∥∥
Lp(E,GT )

< ∞.

When the probability measure in the definition of these norms is another Q on
(�,F), we specify this by writing Lp(E,G,Q), Hp(E,G,Q) and Sp(E,G,Q).

The financial market consists of n agents trading in a common riskless bond with
interest rate r = 0 and n×d stocks. In particular, each agent trades in a d-dimensional
vector of stocks Si with price evolution following the dynamics

dSi
t = diag(Si

t )(μ
i
tdt + σ i

t dW i
t + σ ∗i

t dW ∗
t ), i = 1, . . . , n,



502 L. Tangpi, X. Zhou

where we denote by diag(x) the d × d matrix with entries x ∈ Rd on the diagonal
and 0 everywhere else. The coefficients μi , σ i and σ ∗i are predictable stochastic pro-
cesses assumed to be bounded. Let �i

t := (σ i
t , σ

∗i
t ). We assume throughout that for

all i ∈ {1, . . . , n}, the matrix �i�i	 is uniformly elliptic, that is, x	�i�i	x ≥ ε|x|2

P-a.s. for some constant ε > 0 and all x ∈ Rd . Let us introduce the process θ i by

θ i
t := �i	

t (�i
t �

i	
t )−1μi

t .

2.2 The n-agent game

A portfolio strategy is an Fn-predictable, Rd -valued process (πt )t∈[0,T ], with each
component representing the amount invested in the corresponding stock at time t .
Let X

i,π
t denote the wealth of agent i at time t when starting with the initial position

ξ i and employing the trading strategy π , which we assume to be self-financing. Then
X

i,π
t satisfies

dX
i,π
t = πt · (�i

t θ
i
t dt + σ i

t dW i
t + σ ∗i

t dW ∗
t ), X

i,π
0 = ξ i .

Each agent aims at maximising their own utility from terminal wealth, and we as-
sume the utility function to be exponential. In addition, each agent is concerned with
the relative performance of their peers; see e.g. Espinosa and Touzi [15], Frei and
dos Reis [17], Espinosa [14] for early works on such problems. Thus the terminal
wealths are benchmarked by a weighted average of the other agents’ terminal values,
namely 1

n−1

∑
j �=i

λij

βn
X

j,π

T , where here and throughout this work, we use
∑

j �=i xj as

a shorthand notation for
∑

j∈{1,...,n}\{i} xj . The main modelling novelty considered in

the present work is the addition of the term
λij

βn
which measures agent i’s sensitivity

to agent j ’s wealth. The point is that each agent will try to perform better than the
average of the other agents in the market, but they are not concerned with the per-
formance of all agents. Think for instance of hedge funds which typically compete
with “similar” hedge funds, for instance those raising capital from the same investors.
Thus we always have λij = 1 if agent i is concerned with agent j ’s performance and
λij = 0 if not. Denote for simplicity

λn
ij :=

1

n − 1

λij

βn

with λn
ii := 0.

The utility of agent i takes the form

Ui

(
X

i,π i

T ,
∑

j �=i

λn
ijX

j,πj

T

)
:= − exp

(
−

1

ηi

(
X

i,π i

T − ρ
∑

j �=i

λn
ijX

j,πj

T

))
,

where ηi > 0 measures the risk aversion for agent i and ρ models the interaction
weight. Since we are interested in competition, we fix ρ ∈ (0, 1] throughout the

article; see e.g. Hu and Zariphopoulou [21]. Let Ai denote the set of admissible
strategies for agent i (which we define shortly). To avoid bulky notations, we use the
abbreviated π i for the rest of this section with the understanding that the strategy
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depends on the size n of the game. The optimisation problem for agent i thus takes
the form

V
i,n
0 := V

i,n
0

(
(π j )j �=i

)

:= sup
π∈Ai

E

[
− exp

(
−

1

ηi

(
X

i,π
T − ρ

∑

j �=i

λn
ijX

j,πj

T

))]
. (2.1)

Definition 2.1 Let Ai be a closed convex subset of Rd that we call constraint set. A
strategy π i for player i is admissible if π i ∈ H2(Ai,Fn) and for every j ∈ {1, . . . , n},
there is p > 2 such that the family

{
e

p

ηi

ρλij
βn

X
i,πi

τ
: τ is an Fn-stopping time with values in [0, T ]

}

is uniformly integrable. In this case, we write π i ∈ Ai .

We are interested in Nash equilibria, whose definition we recall.

Definition 2.2 A vector (π̃1, π̃2, . . . , π̃n) ∈ A1×A2×· · ·×An is a Nash equilibrium

if for every i = 1, . . . , n, the strategy π̃ i is a solution to the portfolio optimisation
problem given in (2.1). That is, for each i,

V
i,n
0

(
(π̃ j )j �=i

)
= E

[
− exp

(
−

1

ηi

(
X

i,π̃ i

T − ρ
∑

j �=i

λn
ijX

j,π̃j

T

))]
.

In this work, we assume that (λij )1≤i,j≤n are realisations of i.i.d. random vari-
ables which are independent of the randomness in (W i,W ∗, ξ i)i∈{1,...,n}. In particu-
lar, (λij )1≤i,j≤n is defined on a different probability space (D,F,P) and results are
proved for almost every realisation of the graph. Therefore, we are actually working
on the product space (� × D,F ⊗ F,P ⊗ P). We often use P to simplify the ex-
position. The interaction parameters (λij )1≤i,j≤n give rise to an undirected random

graph. Notice at this point already that our setting will include Erdős–Renyi graphs
and the traditional complete graph.

Let us conclude this subsection by introducing some more notation used in the
paper. Given a vector y = (y1, . . . , yn), we define

yi :=
∑

j �=i

λn
ijy

j ,

the weighted average of the vector y (taking out yi). Let Xπ i

t be shorthand

notation for X
i,π i

t , and given a Nash equilibrium (π̃1, π̃2, . . . , π̃n), denote by

X
i

t :=
∑

j �=i λn
ijX

π̃j

t the weighted average of the portfolio values for agents j �= i

when they all use the Nash equilibrium strategy π̃ j . These notations are used in the
statement of the main results.



504 L. Tangpi, X. Zhou

2.3 The graphon game

Let I = [0, 1] denote the unit interval. Intuitively, in the context of an infinite-player
graphon game, we label by u ∈ I a given agent amid a continuum. The following
probabilistic setup models the infinite-population game.

Let BI be the Borel σ -field of I and μI Lebesgue measure on I . Given a probabil-
ity space (I, I, μ) which is an extension of the usual Lebesgue space (I,BI , μI ), and
the sample space (�,F ,P), consider a rich Fubini extension (I ×�, I�F , μ�P) of
the product space (I×�, I⊗F , μ�P). Unfamiliar readers can consult Sun [41] for a
self-contained presentation of the theory of rich Fubini extensions. Let C([0, T ];Rd)

denote the space of continuous functions from [0, T ] to Rd . By Sun [41], we can
construct I � F-measurable processes (W, ξ) : I × � → C([0, T ];Rd) × R with
essentially pairwise independent (e.p.i.) and identically distributed random vari-
ables (Wu, ξu)u∈I such that for each u ∈ I , the process Wu = (Wu

t )0≤t≤T is a
d-dimensional Brownian motion supported on the probability space (�,F ,P) and
ξu represents the starting wealth of agent u. Here, following [41, Definition 2.7],
essentially pairwise independent means that for μ-almost all u, v ∈ I , the pro-
cesses (Wu, ξu) and (W v, ξv) are independent. Suppose that in addition to (Wu)u∈I ,
the probability space (�,F ,P) supports the independent one-dimensional Brownian
motion W ∗.

Throughout the paper, unless otherwise stated, we identify families of random
variables on (I × �, I � F , μ � P) which are equal (μ � P)-almost surely.

Remark 2.3 By [41, Lemma 2.3], we have the usual Fubini property on the rich prod-
uct space (I ×�, I�F , μ�P), i.e., we are free to exchange the order of integration.
That is, given a measurable and integrable function f on (I × �, I �F , μ� P), we
can write

∫

I×�

f (u, ω)(μ � P)(dω, du) =

∫

I

E[f (u)]μ(du) = E

[ ∫

I

f (u)μ(du)

]
.

This is used often in proofs without further mention. Moreover, we write

μ(du) = du

to lighten the notation.

Let Fu denote the completion of the filtration generated by (Wu,W ∗, ξu) and F

the completion of the filtration generated by ((Wu)u∈I ,W
∗, (ξu)u∈I ). As above, we

assume to be given a continuum of stocks Su with dynamics

dSu
t = diag(Su

t )(μu
t dt + σ u

t dWu
t + σ ∗u

t dW ∗
t ), u ∈ I,

so that the wealth process for agent u when employing strategy π follows the
dynamics

dXu
t = πt · (�u

t θu
t dt + σ u

t dWu
t + σ ∗u

t dW ∗
t ), Xu

0 = ξu,
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where �, θ , σ and σ ∗ are B([0, T ]) ⊗ I � F-measurable stochastic processes on
[0, T ] × I × �, bounded uniformly in u ∈ I , with

�u
t := (σ u

t , σ ∗u
t ) and θu

t := �u
t

	
(�u

t �u
t

	
)−1μu

t ,

with �u
t �u

t
	 assumed to be uniformly elliptic and where for almost every u ∈ I ,

σ u, σ ∗u and μu are Fu-predictable.
We finally assume that (σ u)u∈I , (σ ∗u)u∈I and (μu)u∈I are e.p.i. and identically

distributed.

Definition 2.4 A strategy profile is a family (πu)u∈I of Fu-progressive processes
taking values in Rd and such that (u, t, ω) �→ πu

t (ω) is I⊗B([0, T ])⊗F-measurable.

Let the mapping η : I → (0,∞) be I-measurable, bounded and bounded away
from zero uniformly in u. Assume that the agent u is an exponential utility max-
imiser with risk aversion parameter ηu and is additionally concerned with the perfor-
mance of their peers. The interaction among the continuum of agents is modelled by
a graphon, which is a symmetric and measurable function

G : I × I → I.

Throughout the paper, we fix a graphon G. The utility function of an agent u

is exponential with risk aversion parameter ηu. Let F∗ := (F∗
t )t∈[0,T ] denote the

P-completion of the filtration generated by W ∗.
Given u ∈ I , consider the utility maximisation problem

V
u,G
0

:= V
u,G
0

(
(πv)v �=u

)

:= sup
πu∈AG

E

[
− exp

(
−

1

ηu

(
X

u,πu

T − E

[
ρ

∫

I

X
v,πv

T G(u, v)dv

∣∣∣F∗
T

]))]
. (2.2)

The set AG of admissible strategies in the infinite-population game is defined as
follows.

Definition 2.5 Let u ∈ I and let Au be a closed convex subset of Rd . A strategy
profile (πu)u∈I is admissible if for μ-almost every u ∈ I , it holds πu ∈ H2(Au,Fu)

and
∫
I
‖πu‖H2(Au,Fu)du < ∞.

Taking inspiration from the theory of mean field games, see e.g. Carmona and
Delarue [10, Chaps. 1 and 3] or Lasry and Lions [30], we are interested in graphon

Nash equilibria defined as follows.

Definition 2.6 A family of admissible strategy profiles (π̃u)u∈I is called a graphon

Nash equilibrium if for μ-almost every u, the strategy π̃u is optimal for (2.2) with
(πv)v �=u replaced by (π̃v)v �=u, that is,

V
u,G
0

(
(π̃v)v �=u

)
= E

[
− exp

(
−

1

ηu

(
X

u,π̃u

T − E

[
ρ

∫

I

X
v,π̃v

T G(u, v)dv

∣∣∣F∗
T

]))]
.
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2.4 Main results

Let us now present the main results of this work. These are essentially the existence
of solutions to graphon games, the convergence of the finite-population game to the
graphon game and a new notion of competition indifference capital.

2.4.1 Existence of solutions to the graphon game

We begin with the solvability of the graphon utility maximisation problem. Existing
results on well-posedness of solutions to graphon games largely focus on linear–
quadratic or static games, see e.g. Aurell et al. [2] and Carmona et al. [9]; we also
refer to the more recent works by Lacker and Soret [27] and Bayraktar et al. [6] for
more general settings. Moreover, the case of games with common noise has remained
untouched. The existence result given here relies on general solvability of graphon
BSDEs and FBSDEs discussed in the final section of the paper.

Theorem 2.7 Assume that ξu ∈ L2(μ � P). Then the following hold:
(i) If Au = Rd for all u ∈ I and ρ satisfies

ρ < e−(2‖θ‖∞+ 1
2 )T (2‖�‖∞ ∨ ‖θ‖∞)−1,

then the graphon game admits a graphon Nash equilibrium.
(ii) If σ ∗u = 0 for all u ∈ I , then the graphon game admits a graphon Nash

equilibrium.

In the existence result in Theorem 2.7, we consider two cases. The first is the
common noise case. Here, we make the simplifying assumption that the strategies are
unconstrained. This is a standard assumption in the literature. We additionally require
the competition parameter ρ to be sufficiently small. The second case is the case
without common noise. Here, existence of a solution is obtained in full generality.

2.4.2 Convergence

The second main result states that as n → ∞, the n-agent problem converges in

the strong sense to the graphon problem, of course given some link between the
sensitivity parameters (λij )1≤i,j≤n of the n-agent problem and its counterpart G(u, v)

in the graphon problem. Essentially, we assume below that (λij )1≤i,j≤n forms the
adjacency matrix of a (random) graph converging in an appropriate sense to the graph
represented by the graphon G. See for instance Lovász [33, Chap. 11] and Lovász
and Szegedy [34] for extensive accounts on convergence of graphs as well as the link
between graphs and graphons. Here we recall for readers the definition of the cut
metric which is used in the main results.

Definition 2.8 The cut norm for a graphon G is defined by

‖G‖� := sup
E,E′∈BI

∣∣∣∣
∫

E×E′

G(u, v)dudv

∣∣∣∣,
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and the corresponding cut metric for two graphons G1 and G2 is defined by

d�(G1,G2) := ‖G1 − G2‖�.

Although ‖ · ‖� is not exactly a norm, we can make it one by identifying graphons
which agree ( du × du)-almost everywhere. Let us consider the usual L2-norm on
graphons, which is defined as

‖G‖2 :=

( ∫

I×I

|G(u, v)|2 du dv

)1/2

.

We make the following assumptions.

Condition 2.9 1) There is a sequence (βn)n≥1 in R+ such that limn→∞ nβ2
n = ∞.

2) There exists a sequence (Gn)n≥1 of graphons such that

2a) the graphons Gn are step functions, i.e., they satisfy

Gn(u, v) = Gn

(
�nu�

n
,
�nv�

n

)
for (u, v) ∈ I × I,

and for every n ∈ N, it holds

n‖Gn − G‖2 −→ 0 as n → ∞;

2b) λij = λji ∼ Bernoulli(βnGn(
i
n
,

j
n
)) are independent for 1 ≤ i, j ≤ n and

independent of (ξu, σ u, θu, σ u∗, ηu)u∈I , W ∗ and (Wu)u∈I .

The graphons Gn introduced above are called step graphons because they are
piecewise constant. The conditions 1) and 2) are the important modelling condi-
tions. By Lovász [33, Theorem 11.22], 2b) says that the graph on which the finite-
population game is written converges (in the cut metric) to an infinite-population
graph. Condition 2b) implicitly implies that βnGn(

i
n
,

j
n
) ∈ [0, 1] and means that the

finite-population graph is a simple graph with weights {0, 1} depending on the out-
come of a “coin toss”. The parameter βn can be seen as a density parameter on the
graph, and our condition 1) allows the graph to become more and more sparse as n

becomes large. In fact, we have in mind the situation limn→∞ βn = 0.
Before stating the results, we start by putting the n-agent problem and the graphon

problem in the same probabilistic setting.

Remark 2.10 We re-brand the d-dimensional Brownian motions (W i)i∈{1,...,n} from
Sect. 2.2 by (Wui )i∈{1,...,n} so that the completion of the natural filtration gener-
ated by (Wui )i∈{1,...,n} and W ∗ is now a subfiltration of F. Consequently, all in-
dices i ∈ N that appeared in Sect. 2.2 should be interpreted as ui . The coefficients for
the price evolution in the n-agent game, namely (σ i, σ ∗i, θ i)i∈{1,...,n} which are now
(σ ui , σ ∗ui , θui )i∈{1,...,n} after this re-branding, should obey the same conditions im-
posed on (σ u, σ u∗, θu)u∈I as stated in Sect. 2.3. To avoid unnecessarily complicated
notations, we keep the original indexing in the following sections. This re-branding
comes up again in the proofs of the main convergence theorem.
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The following result is the main contribution of this work. It proves convergence
of the heterogeneous n-player game to the graphon game.

Theorem 2.11 Let Condition 2.9 be satisfied, assume that E[e
2ρ

ηiβn
|ξ i |

] < ∞ for

all (i, n) and that ξ ∈ L2(μ � P). Further assume that one of the following two

conditions is satisfied:

(i) Au = Rd for all u ∈ I and δ satisfies δ < e−(2‖θ‖∞+ 1
2 )T (2‖�‖∞ ∨ ‖θ‖∞)−1.

(ii) σ ∗u = 0 for all u ∈ I .
If the n-agent problem (2.1) admits a Nash equilibrium (π̃ i,n)i∈{1,...,n}, then for each

i, the control π̃ i,n converges to π̃u for some u and a graphon Nash equilibrium

(π̃u)u∈I in the sense that up to a subsequence, as n → ∞,

|π̃
i,n
t − π̃

ui
t |2 −→ 0 (dt ⊗ P)-a.e.,

∣∣V i,n
0

(
(π̃ j,n)j �=i

)
− V

ui ,G
0

(
(π̃v)v �=ui

)∣∣ −→ 0.

Theorem 2.11 will follow as a consequence of a general propagation of chaos
result for (quadratic) FBSDEs with non-homogeneous interaction. These propagation
of chaos results seem to be first of the kind; we devote Sect. 5 to them.

Before going any further, let us present an example where Theorem 2.11 becomes
easy in that propagation of chaos is not needed, at least granted our characterisation
results to come in Remark 3.3 and Corollary 3.5 below. This example deals with the
case of a market with constant coefficients and further motivates the analysis of the
random coefficients case done in this paper.

Proposition 2.12 Assume for all u ∈ I that Au = Rd , σ ∗u = 0 and σ u, μu are de-

terministic measurable functions of time. Consider a slight modification of the utility

maximisation problem (2.1) where λii �= 0, i.e., agent i takes into account a weighted

average of all agents’ final wealths as their benchmark. Under this modification, the

utility maximisation problem for agent i now reads

V
i,n
0 := V

i,n
0

(
(π j )j �=i

)

:= sup
π∈Rd

E

[
− exp

(
−

1

ηi

(
X

i,π
T −

ρ

nβn

n∑

j=1

λijX
j,πj

T

))]
.

Then for all n ∈ N, there is a Nash equilibrium (π̃ i,n)i∈{1,...,n} given by

σ i
t π̃

i,n
t =

nβn

nβn − ρλii

ηi
t θ

i
t for all (n, i) ∈ N × {1, . . . , n} and a.a. t.

Furthermore, there is a graphon Nash equilibrium (π̃u)u∈I given by

σ u
t π̃u

t = ηuθu
t for a.e. (u, t) ∈ I × [0, T ].
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In particular, π̃ i,n and π̃u are deterministic and we have

|σ i
t π̃

i,n
t − σ ui

t π̃
ui
t | ≤

ρλii

nβn − ρλii

‖ηiθ i‖∞ for all (n, i) ∈ N × {1, . . . , n}

and a.a. t. (2.3)

In addition to providing an easy way to prove convergence results, Proposi-
tion 2.12 is interesting in that it shows that in the present heterogeneous game, when
the coefficients are constant, the Nash equilibria (both in the finite and the graphon
games) are constant as well, at least up to the randomness of the graph. This is in line
with the homogeneous case studied by Lacker and Zariphopoulou [28] using PDE
techniques and by Espinosa and Touzi [15] using BSDE techniques.

2.4.3 Competition indifference capital

To conclude this section on the presentation of our main result, we use the rich lit-
erature on exponential utility maximisation to assess the effect of competition on
an individual investor. As said repeatedly, our results build on characterisations of
the Nash and graphon equilibria by systems of (F)BSDEs. However, in order to nu-
merically simulate equilibria, one still needs to simulate the solutions (notably the
control process) of a high-dimensional system of (F)BSDEs or of McKean–Vlasov
type equations. As is well known in the numerical simulation literature, efficient sim-
ulation of the control process is much harder than that of the value process. One
might then wonder whether appropriately choosing the initial capital could make the
investor indifferent between being concerned with the relative performance of their
peers or not. That is, denoting

J i,n(ξ i, F ) := sup
π∈Ai

E

[
− exp

(
−

1

ηi
(X

i,π
T − F)

)]
, where X

i,π
0 = ξ i,

we should like to compute pi,n such that

J i,n(ξ i − pi,n, 0) = J i,n

(
ξ i, ρ

n∑

j �=i

λn
ijX

j,π̃j,n

T

)
, (2.4)

where (π̃ i,n)i∈{1,...,n} is a Nash equilibrium. (In the definition of J when F = 0, we
take the elements of Ai to be Fi-progressive instead of Fn-progressive since in this
case, the agent is not concerned with the performance (and thus investments) of other
market participants.) This is precisely the (spirit of the) utility indifference pricing of
Hodges and Neuberger [20]. In the infinite-population game, this indifference capital
takes the form

J u(ξu − pu, 0) = J u

(
ξu, ρE

[ ∫

I

X
v,π̃v

T G(u, v)dv

∣∣∣∣F
∗
T

])

with

J u(ξu, F ) := sup
π∈Au

E

[
− exp

(
−

1

ηu
(X

u,π
T − F)

)]
, where X

u,π
0 = ξu.
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We thus have the following corollary. In the statement below and throughout the

paper, we denote by P i
t (ζ ) the projection of a vector ζ onto the constraint set �i

t A
i .

Corollary 2.13 If E[e
2ρ

ηiβn
|ξ i |

] < ∞, the competition indifference capital is given by

pi,n = ηi log
γ

i,n
0

γ0
,

where γ i,n is the value process of the FBSDE system (3.2) below and (γ, ζ, ζ ∗) solves

the BSDE

γt =

∫ T

t

(
−

(
ζs

ζ ∗
s

)
· θ i

s −
ηi

2
|θ i

s |
2 +

1

2ηi

∣∣∣∣(Id − P i
s )

((
ζs

ζ ∗
s

)
+ ηiθ i

s

)∣∣∣∣
2)

ds

−

∫ T

t

ζs · dW i
s −

∫ T

t

ζ ∗
s dW ∗

s .

Moreover, if the conditions of Theorem 2.11 are satisfied, then we have

|pi,n − pui | −→ 0 as n → ∞,

where pu is the competition indifference capital of player u in the graphon game.

The gist here is that pi,n is given in terms of the value process of a system of
BSDEs, so that an investor starting with capital ξ i −pi,n (only) needs to simulate the
control process of a one-dimensional BSDE in order to compute the optimal trading
strategy.

Proof of Corollary 2.13 The proof starts with the general duality result of Delbaen
et al. [11] which asserts that

sup
π∈Ai

E

[
− exp

(
−

1

ηi

(
X

i,π
T − ρ

n∑

j �=i

λn
ijX

j,π̃j,n

T

))]

= − exp

(
1

ηi
sup
Q∈Q

(
EQ

[
ρ

n∑

j �=i

λn
ijX

j,π̃j,n

T

]
− ξ i − ηiH(Q|P)

))
,

where H(Q|P) is the relative entropy given by

H(Q|P) :=

{
EQ[log dQ

dP ] if Q � P,

+∞ else,

and Q is the set of probability measures Q that are absolutely continuous with
respect to P and such that the stock price processes are local Q-martingales and
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H(Q|P) < ∞. Applying this result to both sides of (2.4) yields

pi,n = sup
Q∈Q

(
EQ

[
ρ

n∑

j �=i

λn
ijX

j,π̃j,n

T

]
− ξ i − ηiH(Q|P)

)
− sup

Q∈Q

(
− ξ i − ηiH(Q|P)

)

= ηi log

(
− sup

π∈Ai

E

[
− exp

(
−

1

ηi

(
X

i,π
T − ρ

n∑

j �=i

λn
ijX

j,π̃j,n

T

))])

− ηi log

(
− sup

π∈Ai

E

[
− exp

(
−

1

ηi
X

i,π
T

)])

= ηi log
γ

i,n
0

γ0
,

where the last equality follows by Theorem 3.1 and Hu et al. [22, Theorem 7]. The
above argument also shows that pu = ηu log(γ u

0 /γ ′
0), where Y u satisfies (3.6) and

(γ ′, ζ ′, ζ ∗′) solves

γ ′
t =

∫ T

t

(
−

(
ζ ′
s

ζ ∗′
s

)
· θu

s −
ηu

2
|θu

s |2 +
1

2ηu

∣∣∣∣(Id − P u
s )

(( ζ ′
s

ζ ∗′

s

)
+ ηuθu

s

)∣∣∣∣
2)

ds

−

∫ T

t

ζ ′
s · dWu

s −

∫ T

t

ζ ∗′
s dW ∗

s .

The convergence statement therefore follows from Theorem 2.11. �

The rest of the paper is dedicated to the proofs of the convergence and existence
results.

3 Characterisations of solutions to the utility maximisation games

This section provides characterisations of the Nash equilibria of the two games pre-
sented above in terms of solutions of backward SDEs. These characterisations will
play a key role in the proofs of our main results.

3.1 FBSDE characterisation of the n-agent problem

The following result provides an FBSDE characterisation for the n-agent utility max-
imisation problem (2.1). In particular, it expresses the Nash equilibrium and the asso-
ciated utilities as functions of solutions to a system of (quadratic) FBSDEs. This ex-
tends the main result of Espinosa and Touzi [15] to the case where both common noise

and idiosyncratic noise are considered. Recall the notation X
i

t :=
∑

j �=i λn
ijX

j,π̃j

t .
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Theorem 3.1 Assume that E[e
2ρ

ηiβn
|ξ i |

] < ∞. If the n-player game admits a Nash

equilibrium (π̃ i,n)i∈{1,...,n}, then it holds

π̃
i,n
t = (�i

t �
i
t

	
)−1�i

t P
i
t

((
ζ ii
t

ζ ∗i
t

)
+ ηiθ i

t

)
(dt ⊗ P)-a.e.,

V
i,n
0

(
(π̃ j,n)j �=i

)
= −e

− 1
ηi (ξ i−ρξ

i
−γ i

0 )
for i ∈ {1, . . . , n}, (3.1)

with (Xi, γ i, ζ ij , ζ ∗i) ∈ S1(R,Fn) × S1(R,Fn) × H2
loc(R

d ,Fn) × H2
loc(R,Fn) for

(i, j) ∈ {1, . . . , n}2 solving the FBSDE

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dγ i
t =

(( ζ ii
t

ζ ∗i
t

)
· θ i

t +
ηi

2
|θ i

t |
2 −

1

2ηi

n∑

j �=i

|ζ
ij
t |2

−
1

2ηi

∣∣∣∣(Id − P i
t )

(( ζ ii
t

ζ ∗i
t

)
+ ηiθ i

t

)∣∣∣∣
2)

dt

+

n∑

j=1

ζ
ij
t · dW

j
t + ζ ∗i

t dW ∗
t , γ i

T = ρ(X̄i
T − ξ̄ i),

dXi
t = π̃

i,n
t · (�i

t θ
i
t dt + σ i

t dW i
t + σ ∗i

t dW ∗
t ), Xi

0 = ξ i .

(3.2)

The reader might wonder why our characterising equation is a multidimensional
coupled FBSDE in contrast to the BSDEs usually derived in the literature; see for
instance Espinosa and Touzi [15], Frei and dos Reis [17]. We can achieve a charac-
terisation by a BSDE by “shifting” the value process γ i and through introducing a
function ψt : Rn → Rn allowing to decouple the FBSDEs (3.2) into the BSDE (3.4)
given in the next corollary.

Corollary 3.2 Assume that

∑

j �=i

λn
ij ∈ [0, 1]. (3.3)

If the n-player game admits a Nash equilibrium (π̃ i,n)i∈{1,...,n}, then we have

�i
t

	
π̃

i,n
t = P i

t

((
Zii

t

ψi
t (Z

∗
t )

)
+ ηiθ i

t

)
=: f i

t

(
Zii

t ,ψi(Z∗
t )

)
,

V
i,n
0

(
(π̃ j,n)j �=i

)
= −e

− 1
ηi (ξ i−ρξ

i
−Y i

0)
,
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with (Y i, Zij , Z∗i) ∈ S1(R,Fn)×H2
loc(R

d ,Fn)×H2
loc(R,Fn) for (i, j) ∈ {1, . . . , n}2

solving the n-dimensional BSDEs

Y i
t =

∫ T

t

(
−

ηi

2
|θ i

s |
2 −

(
Zii

s

ψi
s(Z

∗
s )

)
· θ i

s +
1

2ηi

∣∣∣∣(Id − P i
s )

((
Zii

s

ψi
s(Z

∗
s )

)
+ ηiθ i

s

)∣∣∣∣
2

+
1

2ηi

n∑

j �=i

∣∣Zij
s + ρλn

ijσ
j
s f

j
s

(
Z

jj
s ,ψ

j
s (Z

∗
s )

)∣∣2

+

n∑

j �=i

ρλn
ij

(
f

j
s

(
Z

jj
s ,ψ

j
s (Z

∗
s )

)
· �

j
s θ

j
s

))
ds

−

n∑

j=1

∫ T

t

Z
ij
s · dW

j
s −

∫ T

t

Z∗i
s dW ∗

s , t ∈ [0, T ], (3.4)

where for every fixed t ∈ [0, T ], ψt (ζ
∗) = ψt (ζ, ζ ∗), where ψt (ζ, · ) is the inverse

of the mapping φt (ζ, · ) : Rn → Rn given by

φi
t (ζ, ζ ∗) = ζ i,∗ −

n∑

j �=i

ρλn
ijσ

j∗
t · (�

j
t �

j
t

	
)−1�

j
t P

j
t

((
ζ jj

ζ j∗

)
+ ηj θ

j
t

)

for all (ζ, ζ ∗) ∈ Rnd ×Rn. Here with abuse of notation, φi
t (ζ, · ) maps from Rn to R

up to fixing a single trajectory of (�
j
t )j∈{1,...,n} and (θ

j
t )j∈{1,...,n}. Furthermore, for

n ≥ 3, ψt is Lipschitz-continuous in ζ ∗ with a constant depending on n.

Observe that the dimension of the domain of the function ψ depends on n. Thus
ψt will undoubtedly present a major obstacle when studying the limit of the game
as n → ∞. For instance, in the infinite-population game, this decoupling procedure
does not seem to work. Furthermore, the condition (3.3) also presents an obstacle to
the fact that we should like to consider the limit of the game on a relatively sparse
graph. To avoid these difficulties while studying the limit, we rather work with the
FBSDE (3.2).

Remark 3.3 In the absence of the common noise W ∗ (i.e., when σ ∗u = 0 for all
u ∈ I ), the complications associated with ψt discussed above vanish. In fact, the
system of BSDEs in Corollary 3.2 then takes the much simpler form
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Y i
t =

∫ T

t

(
−

ηi

2
|θ i

s |
2 − Zii

s · θ i
s +

1

2ηi
|(Id − P i

s )(Zii
s + ηiθ i

s )|
2

+
1

2ηi

n∑

j �=i

|Z
ij
s + ρλn

ijP
j
s (Z

jj
s + ηj θ

j
s )|2

+

n∑

j �=i

ρλn
ijP

j
s (Z

jj
s + ηj θ

j
s ) · θ

j
s

)
ds

−

n∑

j=1

∫ T

t

Z
ij
s · dW

j
s , t ∈ [0, T ], (3.5)

and the equilibrium strategy now takes the form

π̃
i,n
t = (σ i

t )
−1P i

t (Zii
t + ηiθ i

t ) (dt ⊗ P)-a.e.

3.2 FBSDE characterisation of solutions to the graphon problem

Similarly to the n-player game just discussed, we also derive (F)BSDE characteri-
sations of solutions to the graphon game. This time, the characterisation obtained is
with respect to a system of (infinitely many) McKean–Vlasov (F)BSDEs. We call
these equations graphon (F)BSDEs to stress the fact that the dependence between the
equations occurs through the graphon G. As above, we use the notation P u

t (ζ ) for
the projection of a vector ζ onto the constrain set �u

t Au.

Proposition 3.4 Assume that ξ ∈ L2(μ � P) and that a solution

(Xu, Y u, Zu, Z∗u) ∈ S2(R,Fu) × S2(R,Fu) × H2(Rd ,Fu) × H2(R,Fu)

such that (u, t, ω) �→ Xu
t (ω) is measurable exists for the graphon FBSDE

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXu
t = π̃u

t · (�u
t θu

t dt + σ u
t dWu

t + σ ∗u
t dW ∗

t ), Xu
0 = ξu,

π̃u
t = (�u

t �u
t

	
)−1�u

t P u
t

(( Zu
t

Z∗u
t

)
+ ηuθu

t

)
(dt ⊗ μ � P)-a.e.,

dY u
t =

(( Zu
t

Z∗u
t

)
· θu

t +
ηu

2
|θu

t |2 −
1

2ηu

∣∣∣∣(Id − P u
t )

(( Zu
t

Z∗u
t

)
+ ηuθu

t

)∣∣∣∣
2)

dt

+ Zu
t · dWu

t + Z∗u
t dW ∗

t ,

Y u
T = E

[ ∫

I

ρ(Xv
T − ξv)G(u, v)dv

∣∣∣∣F
∗
T

]
.

(3.6)

Then the graphon game in (2.2) admits a graphon Nash equilibrium (π̃u)u∈I such

that for almost every u ∈ I , we have

V
u,G
0 = − exp

(
−

1

ηu

(
ξu −

∫

I

ρE[ξv]G(u, v)dv − Y u
0

))
(3.7)
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and

π̃u
t = (�u

t �u
t

	
)−1�u

t P u
t

((
Zu

t

Z∗u
t

)
+ ηuθu

t

)
(dt ⊗ μ � P)-a.e. (3.8)

The above result characterises the solutions to the graphon game with common
noise in the sense that solvability of the game reduces to solvability of the sys-
tem (3.6). Moreover, the value function as well as the equilibrium strategies in the
infinite-population game are given explicitly in terms of solutions to (3.6). In the case
where there is no common noise, i.e., σ ∗u = 0 for almost all u ∈ I , the above result
simplifies as follows.

Corollary 3.5 Assume that the graphon BSDE

dY u
t =

(
ηu

2
|θu

t |2 + Zu
t · θu

t −
1

2ηu
|(Id − P u

t )(Zu
t + ηuθu

t )|2

− E

[ ∫

I

ρP v
t (Zv

t + ηvθv
t ) · θv

t G(u, v)dv

])
dt + Zu

t · dWu
t ,

t ∈ [0, T ],

Y u
T = 0 (3.9)

admits a solution (Y u, Zu)u∈I such that (u, t, ω) �→ Zu
t (ω) is measurable and we

have (Y u, Zu) ∈ S2(R,Fu) × H2(Rd ,Fu) for almost every u ∈ I . Then the graphon

game described in (2.2) admits a graphon Nash equilibrium (π̃u)u∈I such that for

almost every u ∈ I , we have

π̃u
t = (σ u

t )−1P u
t (Zu

t + ηuθu
t ) (dt ⊗ μ � P)-a.e., (3.10)

V
u,G
0 = − exp

(
−

1

ηu

(
ξu −

∫

I

E[ρξv]G(u, v)dv − Y u
0

))
. (3.11)

4 Proofs of existence and characterisation results

The proof of Theorem 2.11 is based on general propagation of chaos results that are
given in Sect. 5. The existence result in Theorem 2.7 is a consequence of existence for
solutions to graphon BSDEs discussed in Sect. 6, where we present existence results
for graphon (F)BSDEs.

4.1 Proof of the existence result in Theorem 2.7

We distinguish two cases: the case with common noise and the case without.
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(i) Case with common noise: In this case, when Au = Rd for all u, the FBSDE
(3.6) becomes

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dXu
t = bu(t, Zu

t , Z∗u
t )dt + hu

1(t, Zu
t , Z∗u

t )dWu
t + hu

2(t, Zu
t , Z∗u

t )dW ∗
t ,

dY u
t = −gu(t, Zu

t , Z∗u
t )dt + Zu

t · dWu
t + Z∗u

t dW ∗
t ,

Xu
0 = ξu, Y u

T = E

[ ∫

I

ρ(Xv
T − ξv)G(u, v)dv

∣∣∣∣F
∗
T

]
,

with

bu(t, z, z∗) = (�u
t �u

t
	
)−1�u

t

((
z

z∗

)
+ ηuθu

t

)
�u

t θu
t ,

hu
1(t, z, z∗) = (�u

t �u
t

	
)−1�u

t

((
z

z∗

)
+ ηuθu

t

)
· σ u

t ,

hu
2(t, z, z∗) = (�u

t �u
t

	
)−1�u

t

((
z

z∗

)
+ ηuθu

t

)
· σ ∗u

t ,

gu(t, z, z∗) =

(
z

z∗

)
· θu

t +
ηu

2
|θu

t |2.

In particular, because the processes �u, μu are bounded, the coefficients of this equa-
tion satisfy the conditions of Proposition 6.1. Thus it follows that (3.6) admits a
unique square-integrable solution. Therefore the result follows from Proposition 3.4.

(ii) Case without common noise: When σ ∗ = 0, the proof is similar. In fact,
it follows by Proposition 6.2 that the graphon BSDE (3.9) admits a unique solu-
tion such that (Y u, Zu) ∈ S∞(Fu,Rd) × HBMO(Fu,Rd) for almost every u ∈ I

with (u, t, ω) �→ Zu
t (ω) measurable and supu ‖Zu‖H2(Rd ,Fu) < ∞. Then the result

follows by Corollary 3.5. �

4.2 Proof of Proposition 2.12

Under the given assumptions which include deterministic coefficients, the system of
FBSDEs (3.2) characterising the n-agent optimisation problem simplifies to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dγ i
t =

(
ζ ii
t · θ i

t +
ηi

2
|θ i

t |
2 −

1

2ηi

n∑

j �=i

|ζ
ij
t |2

)
dt

+

n∑

j=1

ζ
ij
t · dW

j
t , t ∈ [0, T ],

γ i
T = ρ(X̄i

T − ξ̄ i) = ρ

n∑

j=1

λn
ij

∫ T

0
π̃

j,n
t · σ

j
t (θ

j
t dt + dW

j
t ),

dXi
t = π̃

i,n
t σ i

t (θ
i
t dt + dW i

t ), Xi
0 = ξ i,

(4.1)

with the equilibrium strategies given by

σ i
t π̃

i,n
t = ζ ii

t + ηiθ i
t (dt ⊗ P)-a.e.
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Let Y i
t = γ i

t −ρ
∑n

j=1 λn
ij

∫ t

0 π̃
j,n
s σ

j
s (θ

j
s ds +dW

j
s ). Recall that λn

ij = λij/nβn. Then

we have Y i
T = 0 and we can rewrite the FBSDE (4.1) as

Y i
t =

∫ T

t

(
− ζ ii

s · θ i
s −

ηi

2
|θ i

s |
2 +

1

2ηi

n∑

j �=i

|ζ
ij
s |2 + ρ

n∑

j=1

λn
ij (ζ

jj
s + ηj θ

j
s )θ

j
s

)
ds

−

n∑

j=1

∫ T

t

(
ζ

ij
s − ρλn

ij (ζ
jj
s + ηj θ

j
s )

)
dW

j
s .

Observe that choosing

ζ ii
t =

ρλn
ii

1 − ρλn
ii

ηiθ i
t , ζ

ij
t =

ρλn
ij

1 − ρλn
jj

ηj θ
j
t

makes the stochastic integral in the above BSDE vanish, leaving Y i a deterministic
process. Thus

Y i
t =

∫ T

t

(
− ζ ii

s · θ i
s −

ηi

2
|θ i

s |
2 +

1

2ηi

n∑

j �=i

|ζ
ij
s |2 +

n∑

j=1

λn
ij (ζ

jj
s + ηj θ

j
s )θ

j
s

)
ds

with

ζ ii
t =

ρλn
ii

1 − ρλn
ii

ηiθ i
t , ζ

ij
t =

ρλn
ij

1 − ρλn
jj

ηj θ
j
t for i �= j

is a (deterministic) solution to the above BSDE.
Similarly, the BSDE (3.9) characterising the solution to the graphon game simpli-

fies to

Y u
t =

∫ T

t

(
−

ηu

2
|θu

s |2 − Zu
s · θu

s + E

[
ρ

∫

I

(Zv
s + ηvθv

s ) · θv
s G(u, v)dv

])
ds

−

∫ T

t

Zu
s · dWu

s , (4.2)

with the equilibrium strategy given by

σ u
t π̃u

t = Zu
t + ηuθu

t .
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Using a change of measure argument, we can rewrite (4.2) as

Y u
t =

∫ T

t

(
−

ηu

2
|θu

s |2 + E

[
ρ

∫

I

(Zv
s + ηvθ

v
s ) · θv

s G(u, v)dv

])
ds

−

∫ T

t

Zu
s · (dWu

s + θu
s ds)

=

∫ T

t

(
−

ηu

2
|θu

s |2 + E

[
ρ

∫

I

(Zv
s + ηvθv

s ) · θv
s G(u, v)dv

])
ds

−

∫ T

t

Zu
s · dWu,Q

s ,

where Wu,Q is a standard Brownian motion under a new probability measure Q

such that dQ
dP = e

∫ T
t −θu

s ·dWu
s − 1

2

∫ T
t |θu

s |2du. Noting that Zu ∈ H2(Rd ,Fu,P), taking
Q-conditional expectations with respect to Fu

t on both sides, we can now con-
clude that

Y u
t =

∫ T

t

(
−

ηu

2
|θu

s |2 + E

[
ρ

∫

I

ηv|θv
s |2G(u, v)dv

])
ds,

Zu
t = 0, σ u

t π̃u
t = ηuθu

t ,

is a (deterministic) solution to the BSDE (4.2). The convergence results (2.3) thus
follow from the boundedness of η and θt . �

4.3 Proofs for Sect. 3.1

We now present the proof of the characterisation result for the n-player game. This
section consists of the proof for Theorem 3.1 and two auxiliary results in Lemmas
4.1 and 4.2.

Proof of Theorem 3.1 Assume (π̃ i,n)i∈{1,...,n} is a Nash equilibrium of problem (2.1).

First note that our assumptions on σ i
t , σ ∗i

t and μi
t imply that X

i

t ∈ L2(R,Fn
t ). Let

T be the set of all Fn-stopping times valued in [0, T ]. Define the family of random
variables

J i,π (τ ) := E
[
− e

− 1
ηi (

∫ T
τ πs ·(�

i
sθ

i
s ds+σ i

s dW i
s +σ ∗i

s dW ∗
s )−ρ(X

i
T −ξ

i
))∣∣Fn

τ

]
,

and let

V i(τ ) := ess sup
π∈Ai

J i,π (τ ) for all τ ∈ T

so that

V i(0) = e
1
ηi (ξ i−ρξ

i
)
V

i,n
0

(
(π̃ j )j �=i

)
.
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Now let

βi,π
τ := e

1
ηi

∫ τ
0 πu·(�i

uθ i
udu+σ i

udW i
u+σ ∗i

u dW ∗
u )

.

Then it can be checked as in the proof of Espinosa and Touzi [15, Lemma 4.13] that
for all π ∈ Ai ,

βi,π
τ1

V i(τ1) ≥ E[βi,π
τ2

V i(τ2)|F
n
τ2

] for all stopping times τ1 ≤ τ2, (4.3)

and by Karatzas and Shreve [24, Proposition I.3.14], the process V i has a càdlàg
modification again denoted by (V i

t )t∈[0,T ]. Moreover, this process also satisfies (4.3)
so that for any π ∈ Ai , the process βi,πV i is a P-supermartingale. Now the definition
of a Nash equilibrium implies that π̃ i,n is optimal for agent i. In other words,

V i
0 = sup

π∈Ai

E
[
− e

− 1
ηi (X

i,π
T −ξ i−ρ(X

i
T −ξ

i
))]

= E
[
− e

− 1
ηi (X

i,π̃ i,n

T −ξ i−ρ(X
i
T −ξ

i
))]

.

The above implies that βi,π̃V i is a P-martingale, where we write βi,π̃ as a shorthand
notation for βi,π̃ i,n

. Denote M̃ i := βi,π̃V i . We now proceed to show that the adapted
and continuous process

γ i
t = Xπ̃ i,n

t − ξ i + ηi ln(−M̃ i
t ), t ∈ [0, T ], (4.4)

solves a BSDE. Note already that by the definitions of V i
t and M̃ i

t , we have

V
i,n
0

(
(π̃ j,n)j �=i

)
= −e

− 1
ηi (ξ i−ρξ

i
−γ i

0 )
.

This proves the representation (3.1) of V
i,n
0 ((π̃ j,n)j �=i).

We first need to check that γ i is in S1(R,Fn). On the one hand, using Jensen’s
inequality, we have

1

ηi
E[X

i,π̃ i,n

T − ξ i − ρ(X
i

T − ξ
i
)|Fn

t ] ≤ ln(−M̃ i
t ). (4.5)

On the other hand, by the definition of V i , we have

−M̃ i
t = −β

i,π̃
t V i

t ≤ β
i,π̃
t E

[
e

ρ

ηi (X
i
T −ξ

i
)∣∣Fn

t

]
.

Thus using the inequality ln x ≤ x, we have

ln(−M̃ i
t ) ≤ lnβi,π̃

t + lnE
[
e

ρ

ηi (X
i
T −ξ

i
)∣∣Fn

t

]

≤
1

ηi

∫ t

0
π̃ i,n

u · (�i
uθ

i
udu + σ i

udW i
u + σ ∗i

u dW ∗
u ) + E

[
e

ρ

ηi (X
i
T −ξ

i
)∣∣Fn

t

]
.
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Now, combining this with (4.5) and the definition of βi,π̃
t , we obtain

E

[
sup

t∈[0,T ]

| ln(−M̃ i
t )|

]

≤ E

[
sup

t∈[0,T ]

1

ηi
E

[
|Xπ̃ i,n

t − ξ i − ρ(X
i

T − ξ
i
)|
∣∣Fn

t

]]

+ E

[
sup

t∈[0,T ]

1

ηi
|Xπ̃ i,n

t − ξ i |

]
+ E

[
sup

t∈[0,T ]

E
[
e

ρ

ηi (X
i
T −ξ

i
)∣∣Fn

t

]]

≤
1

ηi
E

[
sup

t∈[0,T ]

E
[
|Xπ̃ i,n

T |
∣∣Fn

t

]]
+ E

[
sup

t∈[0,T ]

|Xπ̃ i,n

t |
]

+ 2E[ξ i]

+ E

[
sup

t∈[0,T ]

1

ηi
E

[
|ρ(X

i

T − ξ
i
)|
∣∣Fn

t

]]
+ E

[
sup

t∈[0,T ]

E
[
e

ρ

ηi (X
i
T −ξ

i
)∣∣Fn

t

]]
.

It is then sufficient to bound the last term. The Jensen and Hölder inequalities give

E

[
sup

t∈[0,T ]

E
[
e

ρ

ηi (X
i
T −ξ

i
)∣∣Fn

t

]]

≤
1

n − 1

n∑

j �=i

E
[
e

2ρ

ηi

λij
βn

ξ j ] 1
2 E

[
sup

t∈[0,T ]

E
[
e

2ρ

ηi

λij
βn

Xπ̃j

T
∣∣Fn

t

] 1
2
]
.

By the admissibility condition on π , it follows that ln(−M̃ i) ∈ S1(R,Fn). It thus
follows that γ i ∈ S1(R,Fn) for every i ∈ {1, . . . , n}. For an arbitrary π ∈ Ai , define

M
i,π
t := e

− 1
ηi (Xπ

t −ξ i−γ i
t )

= M̃ i
t e

− 1
ηi (Xπ

t −Xπ̃ i,n

t )
.

It follows from the same argument as in Espinosa and Touzi [15, Theorem 4.7, 2(b)]
that M i,π is a supermartingale. Now by (4.4), the Doob–Meyer decomposition and
Itô’s formula, there is (ζ i, ζ ∗i) ∈ H2

loc(R
nd ,F) × H2

loc(R
d ,F) such that

dγ i
t = −bi

t dt +

n∑

j=1

ζ
ij
t · dW

j
t + ζ ∗i

t dW ∗
t .

We first compute bi , γ i and π̃ i and then derive the BSDEs satisfied by (γ i, ζ i, ζ ∗i).
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By Itô’s formula, we have

− de
− 1

ηi (Xπ
t −ξ i−γ i

t )

= e
− 1

ηi (Xπ
t −ξ i−γ i

t )

×

(
1

ηi

(
(σ i

t π
i
t ) · dW i

t +

n∑

j=1

ζ
ij
t · dW

j
t + (σ ∗i

t · π i
t + ζ ∗i

t )dW ∗
t

)

+
1

ηi
(bi

t + π i
t · �i

t θ
i
t )dt +

1

(ηi)2
(σ i

t π
i
t · ζ ii

t + σ ∗i
t π i

t ζ
∗i
t )dt

−
1

2(ηi)2

(
|σ i

t πt |
2 + |σ ∗i

t πt |
2 +

n∑

j=1

|ζ
ij
t |2 + |ζ ∗i

t |2
)

dt

)
. (4.6)

Using the supermartingale property of M i,π , the martingale property of M̃ i together
with (4.6), keeping in mind that �i

t := (σ i
t , σ

∗i
t ) and writing ζ i

t := (ζ ii
t , ζ ∗i

t ), we get

bi
t ≤

1

2ηi
|�i

t

	
π i

t − (ζ i
t + ηiθ i

t )|
2 +

1

2ηi

n∑

j �=i

|ζ
ij
t |2 −

ηi

2
|θ i

t |
2 − ζ i

t · θ i
t , (4.7)

bi
t =

1

2ηi
|�i

t

	
π̃ i

t − (ζ i
t + ηiθ i

t )|
2 +

1

2ηi

n∑

j �=i

|ζ
ij
t |2 −

ηi

2
|θ i

t |
2 − ζ i

t · θ i
t .

Thus π̃
i,n
t minimises the function (in π i) on the right-hand side of (4.7). Therefore

we can express π̃
i,n
t and bi

t as

π̃ i
t = (�i

t �
i
t

	
)−1�i

t P
i
t (ζ i

t + ηiθ i
t ),

bi
t =

1

2ηi
dist(ζ i

t + ηiθ i
t , �

i
t A

i)2 +
1

2ηi

n∑

j �=i

|ζ
ij
t |2 −

ηi

2
|θ i

t |
2 − ζ i

t · θ i
t .

Therefore, (γ i, ζ i, ζ ∗i) ∈ S1(R,F) × H2
loc(R

nd ,F) × H2
loc(R

d ,F) solves the BSDE

dγ i
t =

(
ζ i
t · θ i

t +
ηi

2
|θ i

t |
2 −

1

2ηi

n∑

j �=i

|ζ
ij
t |2 −

1

2ηi
|(Id − P i

t )(ζ i
t + ηiθ i

t )|
2
)

dt

+

n∑

j=1

ζ
ij
t · dW

j
t + ζ ∗i

t dW ∗
t ,

γ i
T = ρ(X

i

T − ξ
i
) = ρ

∑

j �=i

λn
ij

∫ T

0
π̃

j
s · (�

j
s θ

j
s ds + σ

j
s dW

j
s + σ

j∗
s dW ∗

s ). �
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Proof of Corollary 3.2 The proof of this corollary builds upon that of Theorem 3.1,
with exactly the same notation. Define the process

Y i
t := γ i

t −
∑

j �=i

ρλn
ij

∫ t

0
π̃

j
s · (�

j
s θ

j
s ds + σ

j
s dW

j
s + σ

j∗
s dW ∗

s )

as well as

Z
ij
t := ζ

ij
t − ρλn

ijσ
j
t π̃

j
t , Z∗i

t := φi
t (ζ

∗
t ) := ζ ∗i

t −

n∑

j �=i

ρλn
ijσ

j∗
t · π̃

j
t . (4.8)

Here, φt is a mapping from Rn to Rn defined componentwise as in (4.8). Moreover,
notice that Zii

t = ζ ii
t since λn

ii = 0, and that γ i
0 = Y i

0 . The processes (Y i, Zij , Z∗i)

thus satisfy

Y i
t =

∫ T

t

(
−

ηi

2
|θ i

s |
2 − ζ i

s · θ i
s +

1

2ηi
|(Id − P i

s )(ζ
i
s + ηiθ i

s )|
2 +

1

2ηi

n∑

j �=i

|ζ
ij
s |2

+

n∑

j �=i

ρλn
ij (π̃

j
s · �

j
s θ

j
s )

)
ds −

n∑

j=1

∫ T

t

Z
ij
s · dW

j
s −

∫ T

t

Z∗i
s dW ∗

s .

By Lemma 4.2 below, φt has an inverse ψt so that ζ ∗i
t = ψi

t (Z
∗
t ). We can thus

express the equilibrium strategy for player i as

�i
t

	
π̃ i

t = P i
t

((
Zii

t

ψi
t (Z

∗
t )

)
+ ηiθ i

t

)
=: f i

t

(
Zii

t ,ψi(Z∗
t )

)
, t ∈ [0, T ],

and

V
i,n
0

(
(π̃ j )j �=i

)
= −e

1
ηi (ξ i−ρξ

i
−γ i

0 )
.

By construction, (Y i, Zi, Z∗i) ∈ S1(R,Fn) × H2
loc(R

nd ,Fn) × H2
loc(R,Fn) solves

the BSDE (3.4). �

Lemma 4.1 For any t ∈ [0, T ], fixed α ∈ Rd and β ∈ Rd+1, the map

Hα,β(x) = x +
1

n − 1
σ ∗i

t

	
(�i

t �
i
t

	
)−1�i

t · P i
t

((
α

x

)
+ β

)

is a bijection on R for every i. Furthermore, its inverse is a contraction.

Proof Fix t ∈ [0, T ] and i. The mapping Hα( · ) is a bijection if and only if the map

My(x) = y −
1

n − 1
σ ∗i

t

	
(�i

t �
i
t

	
)−1�i

t · P i
t

((
α

x

)
+ β

)
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has a unique fixed point. Notice that since the projection operator is 1-Lipschitz,

|My(x) − My(x′)| ≤
1

n − 1
|σ ∗i

t

	
(�i

t �
i
t

	
)−1�i

t ||x − x′|.

It is thus sufficient to show that |σ ∗i
t

	
(�i

t �
i
t

	
)−1�i

t | < 1. For notational conve-

nience, let us omit all subscripts t . First notice that �i�i	 = σ iσ i +σ ∗iσ ∗i	. Using
the Sherman–Morrison formula in Bartlett [3], which gives conditions on a matrix A

and vectors a, b under which the matrix A + ab	 is invertible, we have that

(�i�i	)−1 = σ−iσ−i −
σ−iσ−iσ ∗iσ ∗i	σ−iσ−i

1 + σ ∗i	σ−iσ−iσ ∗i

and

σ ∗i	(�i�i	)−1�i

=
(
σ ∗i	(�i�i	)−1σ iσ ∗i	(�i�i	)−1σ ∗i

)

=

((
1 −

σ ∗i	σ−iσ−iσ ∗i

1 + σ ∗i	σ−iσ−iσ ∗i

)
σ ∗i	σ−i σ ∗i	σ−iσ−iσ ∗i

1 + σ ∗i	σ−iσ−iσ ∗i

)
.

Thus

|σ ∗i	(�i�i	)−1�i | =
σ ∗i	σ−iσ−iσ ∗i

1 + σ ∗i	σ−iσ−iσ ∗i
< 1,

where the last line follows from the fact that σ i is uniformly elliptic for every i. We
now proceed to show that the inverse H−1

α of Hα is a contraction. For x �= x′, we
have

∣∣∣∣x − x′ +
1

n − 1
σ ∗i	(�i�i	)−1�i ·

(
P i

((
α

x

)
+ β

)
− P i

((
α

x′

)
+ β

))∣∣∣∣
2

= |x − x′|2

+
2

n − 1
(x − x′) · σ ∗i	(�i�i	)−1�i ·

(
P i

((
α

x

)
+ β

)
− P i

((
α

x′

)
+ β

))

+
1

(n − 1)2

∣∣∣∣σ
∗i	(�i�i	)−1�i ·

(
P i

((
α

x

)
+ β

)
− P i

((
α

x′

)
+ β

))∣∣∣∣
2

≥ |x − x′|2, (4.9)

since the property of projection onto closed convex sets implies that the middle term
is nonnegative. �
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Lemma 4.2 Define the map φt : Rn → Rn componentwise by

φi
t (ζ

∗
t ) = ζ

i,∗
t −

n∑

j �=i

λn
ijσ

j∗
t · (�

j
t �

j
t

	
)−1�

j
t P

j
t

((
Z

jj
t

ζ
j∗
t

)
+ ηj θ

j
t

)
. (4.10)

If
∑

j �=i λn
ij ∈ [0, 1], then for t ∈ [0, T ], the mapping φt is a bijection on Rn and

has an inverse that we denote by ψt . Furthermore, ψt is measurable and Lipschitz-

continuous with a constant that depends only on n when n ≥ 3.

Proof Omit all subscripts t for notational convenience. Let Z∗ and ζ ∗ denote the
column vectors (Z1,∗, . . . , Zn,∗)	 and (ζ 1,∗, . . . , ζ n,∗)	, respectively. Further, let

Pj := σ j∗ · (�j�j 	
)−1�jP j

((
Zjj

ζ j∗

)
+ ηj θ j

)
.

Let V denote the column vector with the j th component equal to Pj . Let � be the
matrix (λij )0≤i,j,≤n. By (4.8), we have

Z∗ = ζ ∗ −
1

n − 1
�V

and

1

n − 1
1̄i(� + Id)V + Zi,∗ = HZii ,ηiθ i (ζ

i,∗),

where 1̄i denotes the n-dimensional vector with 1 at the ith position and 0 in all other
positions. By Lemma 4.1, HZjj ,ηj θj (ζ i,∗) is invertible. Using (4.8) again, we have

ζ i,∗ = Zi,∗ +

n∑

j �=i

λn
ijσ

j∗ · (�j�j 	
)−1�j

× P j

(( Zjj

H−1
Zjj ,ηj θj (

1
n−1 1̄j (� + I )[Pk] + Zi,∗)

)
+ ηj θ

j

)

=: N i,Z∗

(ζ ∗). (4.11)

We then proceed to show that N i,Z∗
(ζ ∗) has a unique fixed point. Notice that for

x �= y, following the inequality in (4.9),

|HZjj ,ηj θj (x) − HZjj ,ηj θj (y)|2

≥

(
1 +

1

n − 1

)2∣∣∣∣
(

P j

((
Zjj

x

)
+ ηj θ j

)
− P j

((
Zjj

y

)
+ ηj θ j

))∣∣∣∣
2

.
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Thus for fixed Zjj and ηj θ j , the map P j ((
Zjj

H−1
Zjj ,ηj θj ( · ) ) + ηj θ j ) is Lipschitz with

constant 1/(1 + 1
n−1 ). For x, y ∈ Rd and x �= y,

|N i,Z∗

(x) − N i,Z∗

(y)| ≤

n∑

j �=i

λn
ij

|σ̃ j∗|
∑

k �=j λn
jk|(x − y)k|

n
+

n∑

j �=i

λn
ij

|σ̃ j∗||x − y|

n

≤
1

n − 1
|x − y|,

where the last inequality follows since
∑

j �=i λn
ij ∈ [0, 1] for all i and |σ̃ j∗| < 1

for all j (see the proof of Lemma 4.1). We can now conclude that for n ≥ 3, N i,Z∗

admits a unique fixed point which we denote by ψi(Z∗), and that ζ ∗ = ψ(Z∗) is the
unique solution to (4.10).

Finally, we prove that ψ is Lipschitz with a constant that depends only on n when
n ≥ 3. From (4.11), we have that for all i and n ≥ 3,

|ψi(Z∗
1) − ψi(Z∗

2)| ≤ |Z∗i
1 − Z∗i

2 | +
2|ψi(Z∗

1) − ψi(Z∗
2)|

n(n − 1)

+
1

n
sup

1≤j≤n

|Z
∗j

1 − Z
∗j

2 |.

Then we have sup1≤j≤n |ψj (Z∗
1)−ψj (Z∗

2)| ≤ n−1
n−2 sup1≤i≤n |Z

∗j

1 −Z
∗j

2 |. Therefore
the function ψ is Lipschitz-continuous and hence Borel-measurable. �

4.4 Proofs for Sect. 3.2

We now prove results pertaining to the characterisation of solutions to the infinite-
population game. These are direct consequences of the work of Hu et al. [22].

Proof of Proposition 3.4 Consider a solution

(Xu, Y u, Zu, Z∗u) ∈ S2(R,Fu) × S2(R,Fu) × H2(Rd ,Fu) × H2(R,Fu)

to (3.6). Then for almost every u ∈ I , the process (Y u, Zu, Z∗u) solves the BSDE

dY u
t =

(
ηu

2
|θu

t |2 +
(

Zu
t

Z∗u
t

)
· θu

t −
1

2ηu

∣∣∣∣(Id − P u
t )

((
Zu

t

Z∗u
t

)
+ ηuθu

t

)∣∣∣∣
2)

dt

+ Zu
t · dWu

t + Z∗u
t dW ∗

t ,

Y u
T = F

with F := E[ρ
∫
I
(X

v,π̃v

T − ξv)G(u, v)dv|F∗
T ]. Thus it follows from [22, Theorem

7] that π̃u given by (3.8) is an optimal strategy for the utility maximisation problem
(2.2), while the value function satisfies (3.7). By linear growth of the projection op-
erator, it follows that π̃u ∈ H2(Au,Fu) for almost every u ∈ I , and by measurability
of Zu, we have that π̃u is measurable. �
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Remark4.3 Hu et al. [22, Theorem 7] assumes a bounded terminal condition F . How-
ever, examining the proof reveals that boundedness is needed only to guarantee exis-
tence of a solution to the BSDE and the BMO property of

∫
Zu · dWu +

∫
Z∗u dW ∗.

Proof of Corollary 3.5 Let (Y u, Zu)u∈I solve (3.9) and introduce the processes

γ u
t := Y u

t +

∫ t

0
E

[
ρ

∫

I

P v
s (Zv

s + ηvθv
s ) · θv

s G(u, v)dv

]
ds.

Then (γ u, Zu) satisfies

dγ u
t =

(
−

ηu

2
|θu

t |2 − Zu
t · θu

t +
1

2ηu
|(Id − P u

t )(Zu
t + ηuθu

t )|2
)

dt − Zu
t · dWu

t

(μ � P)-a.s. for t ∈ [0, T ], and it follows by Fubini’s theorem and the martingale
property of

∫ t

0 Zu
s · dWu

s that

γ u
t = Y u

t + E

[ ∫

I

ρ(Xv
t − ξv)G(u, v)dv

]
.

In particular, γ u
T = E[

∫
I
ρ(Xv

T − ξv)G(u, v)dv] because Y u
T = 0 in (3.9). Thus by

[22, Theorem 7], the value function of the utility maximisation problem (2.2) (when
σ ∗ = 0) satisfies (3.11) and the process π̃u given by (3.10) is an optimal strategy that
is square-integrable. In the present case, we even have that

{
exp

(
−

1

ηu
Xπ̃u

τ

)
: τ is an Fu-stopping time

}

is uniformly integrable. In particular, (π̃u)u∈I is admissible. �

5 General backward propagation of chaos theorem: proof of
Theorem 2.11

In this section, we present backward propagation of chaos results that are central in
the proof of our main convergence result. We start by proving the case with com-
mon noise and then come back to the case without common noise. The two proofs
are similar, but the case with common noise is slightly more involved because the
representing backward particle system if fully coupled with a forward process.

5.1 Proof of Theorem 2.11: the common noise case

Consider an interacting particle system (Xi,n, Y i,n, Zij,n, Z∗i,n). Within this sys-
tem, the processes (Y 1,n, Y 2,n, . . . , Y n,n) evolve backward in time, and the processes
(X1,n, X2,n, . . . , Xn,n) evolve forward in time and characterise the Nash equilibrium,
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i.e., this particle system is such that

π̃
i,n
t = (�i

t �
i
t

	
)−1�i

t P
i
t

((
Z

ii,n
t

Z
∗i,n
t

)
+ ηiθ i

t

)
(dt ⊗ P)-a.e.,

V
i,n
0

(
(π̃ j,n)j �=i

)
= −e

− 1
ηi (ξ i−ρξ

i
−Y

i,n
0 )

for i ∈ {1, . . . , n};

see Theorem 3.1. We can find functions h and g such that the particle system satisfies
the FBSDEs

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX
i,n
t = hi(t, Z

ii,n
t , Z

∗i,n
t )(θ i

t dt + σ i
t dW i

t + σ ∗i
t dW ∗

t ), X
i,n
0 = ξ i,

dY
i,n
t = −

(
gi(t, Z

ii,n
t , Z

∗i,n
t ) +

1

2ηi

n∑

j �=i

|Z
ij,n
t |2

)
dt

+

n∑

j=1

Z
ij,n
t · dW

j
t + Z

∗i,n
t dW ∗

t ,

Y
i,n
T = ρ

∑n
j �=i λn

ij (X
j,n

T − X
j,n

0 ).

(5.1)

Observe that due to the graph (λij )1≤i,j≤n, the particles in the above system are not
indistinguishable as in the homogeneous case considered by Laurière and Tangpi [31,
32] and Possamaï and Tangpi [39]. Our goal here is to show that as the number of
particles in the system approaches infinity, the above particle system converges to the
infinite particle system (Xu, Y u, Zu, Z∗u)0≤u≤1 given by

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dXu
t = hu(t, Zu

t , Z∗u
t )(θu

t dt + σ u
t dWu

t + σ ∗u
t dW ∗

t ), Xu
0 = ξu,

dY u
t = −gu(t, Zu

t , Z∗u
t )dt + Zu

t dWu
t + Z∗u

t dW ∗
t ,

Y u
T = E

[
ρ

∫

I

Xv
T G(u, v)dv

∣∣∣∣F
∗
T

]
−

∫

I

ρXv
0G(u, v)dv.

(5.2)

As above, this system is understood in the sense that the mapping

(u, t, ω) �→ (Xu
t , Y u

t , Zu
t , Z∗u

t )(ω)

is measurable and for almost every u ∈ I , we have

(Xu, Y u, Zu, Z∗u) ∈ S2(R,Fu) × S2(R,Fu) × H2(Rd ,Fu) × H2(R,Fu).

In particular, if we consider a specific particle u = ui in the continuum, we show that
(Y

i,n
t , Z

ii,n
t , Z

∗i,n
t ) and (Y

ui
t , Z

ui
t , Z

ui∗
t ) are “close” when n → ∞. We consider the

following assumption on the coefficients of the FBSDEs.

Condition 5.1 The functions hu : [0, T ] × � × Rd × R → Rd and

gu : [0, T ] × � × Rd × R → R are such that there exist nonnegative constants �g
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and �h such that for almost every u ∈ I , we have

‖hu(t, x, z∗)‖∞ ≤ �h(1 + |z| + |z∗|),

|hu(t, z, z∗) − hu(t, z′, z∗′)| ≤ �h

(
|z − z′| + |z∗ − z∗′|

)
,

|gu(t, z, z∗) − gu(t, z′, z∗′)| ≤ �g(|z − z′| + |z∗ − z∗′|)

for all (t, z, z′, z∗, z∗′) ∈ [0, T ] × (Rd)2 × R2.

Remark 5.2 Recall that we use the same probability setting as in Remark 2.10. In
other words, the indices in (5.1) should be considered as ui . Further recall the link
between λij and βn > 0 and the graphon G made in Condition 2.9.

Theorem 2.11 (i) is then a direct corollary of the following result.

Theorem 5.3 Assume that Conditions 2.9 and 5.1 are satisfied. Further assume that

the FBSDEs (5.1) and (5.2) admit respective solutions

(Xi,n, Y i,n, Zij,n, Z∗i,n) ∈ S2(R,Fn) × S2(R,Fn) × H2(Rd ,Fn) × H2(R,Fn),

(Xu, Y u, Zu, Z∗u) ∈ S2(R,Fu) × S2(R,Fu) × H2(Rd ,Fu) × H2(R,Fu)

for every (i, j) ∈ {1, . . . , n}2 and almost every u ∈ I . Then for every i ∈ N, we have

|Y
i,n
0 − Y

ui

0 | −→ 0 as n → ∞. (5.3)

Moreover, up to a subsequence, we have for almost every t ∈ [0, T ] that

E
[
|Z

ii,n
t − Z

ui
t | + |Z

∗i,n
t − Z

∗ui
t |

]
−→ 0 as n → ∞. (5.4)

Proof Using Condition 5.1, Remark 2.3 and the definition of F∗
T , we have that for

almost all (t, v) ∈ [0, T ] × I ,

E

[ ∫

I

Xv
t G(u, v)dv

∣∣∣∣F
∗
T

]

=

∫

I

E[Xv
0 ]G(u, v)dv +

∫ t

0
E

[ ∫

I

hv(s, Zv
s , Z∗v

s )θv
s G(u, v)dv

∣∣∣∣F
∗
T

]
ds

+ E

[ ∫ t

0

∫

I

hv(s, Zv
s , Z∗v

s )σ v
s G(u, v)dvdW v

s

∣∣∣∣F
∗
T

]

+ E

[ ∫ t

0

∫

I

hv(s, Zv
s , Z∗v

s )σ ∗v
s G(u, v)dv

∣∣∣∣F
∗
T

]
dW ∗

s

=

∫

I

E[Xv
0 ]G(u, v)dv +

∫ t

0
E

[ ∫

I

hv(s, Zv
s , Z∗v

s )θv
s G(u, v)dv

∣∣∣∣F
∗
T

]
ds

+

∫ t

0
E

[ ∫

I

hv(s, Zv
s , Z∗v

s )σ ∗v
s G(u, v)dv

∣∣∣∣F
∗
T

]
dW ∗

s
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where the first equality uses that Xu
0 is independent of W ∗, and the second follows

from Lacker et al. [29, Lemma B.1]. Let us now introduce the “shifted” processes

Z∗u
t := Z∗u

t − E

[
ρ

∫

I

hv(t, Zv
t , Z∗v

t )σ ∗v
t G(u, v)dv

∣∣∣∣F
∗
T

]
,

Zu
t := Zu

t ,

Yu
t := Y u

t − ρ

(
E

[ ∫

I

Xv
t G(u, v)dv

∣∣∣∣F
∗
T

]
−

∫

I

E[Xv
0 ]G(u, v)dv

)
,

so that using (5.2), the processes (Yu,Zu,Z∗u) satisfy

Yu
t =

∫ T

t

gu(s, Zu
s , Z∗u

s ) + E

[
ρ

∫

I

hv(Zv
s , Z∗v

s )θv
s G(u, v)dv

∣∣∣∣F
∗
T

]
ds

−

∫ T

t

Zu
s · dWu

s −

∫ T

t

Z∗u
s dW ∗

s .

Observe that the drift term is not written with respect to the newly defined processes
(Yu,Zu,Z∗u), but rather with respect to the original (Y u, Zu, Z∗u). Similarly, for
the prelimits, consider

Z
∗i,n
t := Z

∗i,n
t − ρ

n∑

j �=i

λn
ijσ

∗j
t hj (t, Z

jj,n
t , Z

∗j,n
t ),

Z
ij,n
t := Z

ij,n
t − ρλn

ijσ
j
t hj (t, Z

jj,n
t , Z

∗j,n
t ),

Y
i,n
t := Y

i,n
t − ρ

n∑

j �=i

λn
ij (X

j,n
t − X

j,n

0 ),

so that using (5.1), the processes (Y i,n,Z ij,n,Z∗i,n) satisfy

Y
i,n
t =

∫ T

t

gi(s, Zii,n
s , Z∗i,n

s ) +
1

2ηi

n∑

j �=i

‖Z
ij,n
s ‖2

+ ρ

n∑

j �=i

λn
ijh

j (s, Z
jj,n
s , Z

∗j,n
s )θ

j
s ds −

n∑

j=1

∫ T

t

Z
ij,n
s · dW

j
s −

∫ T

t

Z∗i,n
s dW ∗

s .

To further simplify the notation, let us put

�Y
i,n
t := Y

i,n
t − Y

ui
t , �Y

i,n
t = Y

i,n
t − Y

ui
t ,

�Z
∗i,n
t := Z

∗i,n
t − Z

∗ui
t , �Z

∗i,n
t := Z

∗i,n
t − Z

∗ui
t ,

�Z
ij,n
t = Z

ij,n
t − δijZ

ui
t , �Z

ij,n
t = Z

ij,n
t − δijZ

ui
t .
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Let t ∈ [0, T ] be fixed. We now define stopping times τk for k ∈ N by

τk := T ∧ inf

{
s ≥ t :

∫ s

t

n∑

j=1

(
|�Z

ij,n
r |2 + |�Z

jj,n
r | + |�Z

∗j,n
r |2

+ |hj (r, Z
jj,n
r , Z

∗j,n
r )|2

)
dr + sup

r∈[t,s]

|�Y i,n
r |2 ≥ k

}
.

Observe that τk depends on i and n, but this dependence is omitted to simplify
notation. Since

(Xi,n, Y i,n, Zij,n, Z∗i,n) ∈ S2(R,Fn) × S2(R,Fn) × H2(Rd ,Fn) × H2(R,Fn)

and (Xu, Y u, Zu, Z∗u) ∈ S2(R,Fu) × S2(R,Fu) × H2(Rd ,Fu) × H2(R,Fu), it
follows that for each n and i, τk converges to T P-a.s as k → ∞. Furthermore, put

�i,n
s := ρ

n∑

j �=i

λn
ijh

uj (s, Z
uj
s , Z

∗uj
s )·θ

uj
s −ρE

[ ∫

I

hv(s, Zv
s , Z∗v

s )·θv
s G(ui, v)dv

∣∣∣∣F
∗
T

]

and

�∗i,n
s := ρ

n∑

j �=i

λn
ijh

uj (s, Z
uj
s , Z

∗uj
s ) · σ

∗uj
s

− ρE

[ ∫

I

hv(s, Zv
s , Z∗v

s ) · σ ∗v
s G(ui, v)dv

∣∣∣∣F
∗
T

]
.

Now, applying Itô’s formula to |�Y
i,n
t |2, we get

|�Y
i,n
t |2 +

∫ τk

t

( n∑

j=1

|�Z
ij,n
s |2 + |�Z∗i,n

s |2
)

ds

= |�Y i,n
τk

|2

+

∫ τk

t

2�Y i,n
s

(
gi(s, Zii,n

s , Z∗i,n
s ) − gui (s, Zui

s , Z∗ui
s ) +

n∑

j �=i

|Z
ij,n
s |2

)
ds

+

∫ τk

t

2�Y i,n
s ρ

∑

j �=i

λn
ij θ

j
s

(
hj (s, Z

jj,n
s , Z

∗j,n
s ) − huj (s, Z

uj
s , Z

∗uj
s )

)
ds

+

∫ τk

t

2�Y i,n
s �i,n

s ds

−

n∑

j=1

∫ τk

t

2�Y i,n
s �Z

ij,n
s · dW

j
s −

∫ τk

t

2�Y i,n
s �Z∗i,n

s dW ∗
s . (5.5)
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Recall that we have �Z ij,n = �Zij,n −
ρ

nβn
λijσ

jhj (Zjj,n, Z∗j,n) for i �= j and

�Z ii,n = �Zii,n. Equation (5.5) now takes the form

|�Y
i,n
t |2 +

∫ τk

t

( n∑

j=1

|�Z
ij,n
s |2 + |�Z∗i,n

s |2
)

ds

= |�Y i,n
τk

|2 +

∫ τk

t

2�Y i,n
s

(
gi(s, Zii,n

s , Z∗i
s ) − gui (s, Zui

s , Z∗ui
s )

)
ds

+

∫ τk

t

2�Y i,n
s ρ

n∑

j �=i

λn
ij θ

j
s

(
hj (s, Z

jj,n
s , Z

∗j,n
s ) − huj (s, Z

uj
s , Z

∗uj
s )

)
ds

+

∫ τk

t

2�Y i,n
s �i,n

s ds +

∫ τk

t

2�Y i,n
s �∗i,n

s ds

+

n∑

j �=i

ρλn
ij

∫ τk

t

2�Y i,n
s hj (s, Z

jj,n
s , Z

∗j,n
s )σ

j
s · �Z

ij,n
s ds

−

n∑

j �=i

∫ τk

t

2�Y i,n
s �Z

ij,n
s · (dW

j
s − �Z

ij,n
s ds)

−

∫ τk

t

2�Y i,n
s �Zii,n

s · dW i
s −

∫ τk

t

2�Y i,n
s �Z∗i,n

s dW ∗
s . (5.6)

Let Q be the probability measure with density

dQ

dP
= exp

( n∑

j �=i

∫ τk

t

�Z
ij,n
s · dW

j
s −

1

2

n∑

j �=i

∫ τk

t

|�Z
ij,n
s |2ds

)
.

The probability measure Q depends on i and n, but its density has a second moment
bounded by a constant Ck depending on k, but not on i and n. Taking conditional
expectations under Q with respect to Fn

t in (5.6), we obtain
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|�Y
i,n
t |2 + EQ

[ ∫ τk

t

( n∑

j=1

|�Z
ij,n
s |2 + |�Z∗i,n

s |2
)

ds

∣∣∣∣F
n
t

]

≤ EQ
[
|�Y i,n

τk
|2

∣∣Fn
t

]
+ EQ

[ ∫ τk

t

2�2
g

ε
|�Y i,n

s |2 + ε|�Z ii,n
s |2 + ε|�Z∗i,n

s |2 ds

∣∣∣∣F
n
t

]

+ EQ

[ ∫ τk

t

2�Y i,n
s �i,n

s ds

∣∣∣∣F
n
t

]
+ EQ

[ ∫ τk

t

2�Y i,n
s �∗i,n

s ds

∣∣∣∣F
n
t

]

+ CEQ

[ ∫ τk

t

(
|�Y i,n

s |2

+
ρ

(n − 1)2β2
n

( n∑

j=1

λ2
ij

)

×

n∑

j �=i

|θ
j
s |2|hj (s, Z

jj,n
s , Z

∗j,n
s ) − huj (s, Z

uj
s , Z

∗uj
s )|2

)
ds

∣∣∣∣F
n
t

]

+ CEQ

[ n∑

j �=i

∫ τk

t

2ρλn
ij |�Y i,n

s ||hj (s, Z
jj,n
s , Z

∗j,n
s )σ

j
s · �Z

ij,n
s |ds

∣∣∣∣F
n
t

]
.

Recall P from after Definition 2.2. Using EP[λ2
ij ] ≤ βn and by the definition of the

stopping time τk , this estimate can be simplified to

|�Y
i,n
t |2 + (1 − ε)EQ

[ ∫ τk

t

( n∑

j=1

|�Z
ij,n
s |2 + |�Z∗i,n

s |2
)

ds

∣∣∣∣F
n
t

]

≤ EQ
[
|�Y i,n

τk
|2

∣∣Fn
t

]
+ EQ

[ ∫ τk

t

(
1 +

2�2
g

ε

)
|�Y i,n

s |2 ds

∣∣∣∣F
n
t

]

+ EQ

[ ∫ τk

t

2|�Y i,n
s |(|�i,n

s | + |�∗i,n
s |)ds

∣∣∣∣F
n
t

]
+

Cρ,θ,h,k

(n − 1)βn

+ CEQ

[ n∑

j �=i

∫ τk

t

2ρλn
ij |�Y i,n

s ||hj (Z
jj,n
s , Z

∗j,n
s )σ

j
s · �Z

ij,n
s |ds

∣∣∣∣F
n
t

]
. (5.7)

Applying Young’s inequality and recalling the definition of τk , the last term above
can be estimated as
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EQ

[ n∑

j �=i

∫ τk

t

2ρλn
ij |�Y i,n

s ||hj (Z
jj,n
s , Z

∗j,n
s )σ

j
s · �Z

ij,n
s |ds

∣∣∣∣F
n
t

]

≤
ρ‖σ‖∞

(n − 1)βn

× EQ

[
sup

t≤s≤τk

|�Y i,n
s |

∫ τk

t

n∑

j �=i

(
|hj (s, Z

jj,n
s , Z

∗j,n
s )|2 + |�Z

ij,n
s |2

)
ds

∣∣∣∣F
n
t

]

≤
Cρ,σ,h,T ,k

(n − 1)βn

.

Thus choosing ε < 1 and subsequently using in (5.7) Gronwall’s inequality, taking
expectations with respect to P and using the Cauchy–Schwarz and Doob inequalities,
we are left with

E[|�Y
i,n
t |2] ≤ E

[
EQ

[
|�Y i,n

τk
|2

∣∣Fn
t

]]

+ Ck,T E

[(
dQ

dP

)4] 1
4

E

[ ∫ T

0
(|�i,n

s |2 + |�∗i,n
s |2)ds

] 1
2

+
Cρ,σ,θ,h,T ,k

(n − 1)βn

. (5.8)

Observe that using again Cauchy–Schwarz gives

E

[
EQ

[
|�Y i,n

τk
|2

∣∣Fn
t

]]
≤ CE

[(
dQ

dP

)2] 1
2

E[|�Yτk
|4]

1
2 .

To proceed, first notice that for every n, (|�Y i,n
τk

|4)k≥1 converges to 0 in probability as
k → ∞, since τk converges to T P-a.s. Thus there exists a subsequence (�Y i,n

τk,m
)m≥1

such that

P[|�Y i,n
τk,m

|4 > ε] ≤
e−k3

m
.

Therefore, for every ε > 0, we have

E[|�Y i,n
τk,m

|4] = E
[
|�Y i,n

τk,m
|41

{|�Y
i,n
τk,m

|4≤ε}

]
+ E

[
|�Y i,n

τk,m
|41

{|�Y
i,n
τk,m

|4>ε}

]

≤ ε + k2 e−k3

m
.

Our definition of τk implies that all moments of dQ
dP are bounded by eCk2

for some
constant C > 0 independent of k. Thus coming back to (5.8), we continue the
estimation as
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E[|�Y
i,n
t |2] ≤ CeCk2

(
ε + k2 e−k3

m

) 1
2

+ Ck,T E

[ ∫ T

0
|�i,n

s |2ds

] 1
2

+ Ck,T E

[ ∫ T

0
|�∗i,n

s |2ds

] 1
2

+
Cρ,σ,θ,h,T ,k

(n − 1)βn

. (5.9)

Applying Lemma 5.4, first fix k and let n → ∞, followed by letting m → ∞ and
ε → 0. We then conclude that

E[|�Y
i,n
t |2] −→ 0 as n → ∞.

In particular, starting with t = 0, it follows that the sequence (�Y
i,n
0 )n≥1 converges

to zero, and we obtain (5.3) since �Y
i,n
0 = �Y

i,n
0 .

Let us now turn to the convergence of the control processes. By (5.7), (5.9), the
Cauchy–Schwarz inequality and the above estimates, we have

E

[ ∫ τk,m

t

(|�Z ii,n
s | + |�Z∗i,n

s |) ds

]

≤ TE

[(
dQ

dP

)2] 1
2

EQ

[ ∫ τk,m

t

(|�Z ii,n
s |2 + |�Z∗i,n

s |2) ds

] 1
2

≤ T eCk2
(

ε + k2 e−k3

m
+ Ck,T E

[ ∫ T

0
|�i,n

s |2ds

] 1
2

+ Ck,T E

[ ∫ T

0
|�∗i,n

s |2ds

] 1
2

+
Ch,θ,T ,k

(n − 1)βn

) 1
2

.

Using Lemma 5.4, first fix k and let n → ∞, followed by letting m → ∞ and ε → 0.
We then conclude that up to a subsequence, we have

lim
m→∞

lim
n→∞

|�Z ii,n
s |1{s≤τk,m} + |�Z∗i,n

s |1{s≤τk,m} = 0 P-a.s. for a.e. s ∈ [t, T ].

Since P[τk,m ≥ t] = 1, this shows that

|�Z
ii,n
t | + |�Z

∗i,n
t | −→ 0 P-a.s. as n → ∞.
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By the identity �Z ii,n = �Zii,n, we have thus obtained that (�Z
ii,n
t )n≥1 converges

to zero. For the convergence of �Z
∗i,n
t , observe that

|�Z∗i,n
s | ≤ |�Z∗i,n

s | + |�∗i,n
s |

+
ρ

nβn

n∑

j �=i

λij |σ
∗

j
n

s ||hj (s, Z
jj,n
s , Z

∗j,n
s ) − hj (s, Z

uj
s , Z

∗uj
s )|

≤ |�Z∗i,n
s | + |�∗i,n

s |

+ ρ‖σ ∗i‖∞ �h

1

(n − 1)βn

n∑

j �=i

λij (|�Z
jj,n
s | + |�Z

∗j,n
s |).

Thus we get

E

[ ∫ τk,m

0
|�Z∗i,n

s | ds

]
≤ E

[ ∫ τk,m

0
(|�Z∗i,n

s |2 + |�∗i,n
s |2) ds

]
+

Cρ,σ ∗,h,k

(n − 1)βn

.

Therefore, arguing as above and using again Lemma 5.4, we have that up to a
subsequence,

|�Z
∗i,n
t | −→ 0 P-a.s. as n → ∞.

Therefore (5.4) follows by dominated convergence. This concludes the proof. �

Lemma 5.4 Under the conditions of Theorem 5.3, we have

E

[ ∫ T

0
|�∗i,n

s |2ds

]
+ E

[ ∫ T

0
|�i,n

s |2ds

]
−→ 0 as n → ∞ for every i ∈ N.

Proof We consider only the term �i,n; the term �∗i,n is dealt with similarly. Using
Condition 2.9, especially that λij are i.i.d. and defined on a separate probability space
from (�,F ,P) and (W 1, . . . ,W n,W ∗), we have
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E
[
|�i,n

s |2
]

= E

[∣∣∣∣
1

(n − 1)βn

n∑

j �=i

λijh
j (s, Z

uj
s , Z

∗uj
s ) · θ

uj
s

− E

[ ∫

I

hv(s, Zv
s , Z∗v

s ) · θv
s G(ui, v)dv

∣∣∣F∗
T

]∣∣∣∣
2]

≤ 2E

∣∣∣∣
1

n − 1

n∑

j �=i

(
λij

βn

hj (s, Z
uj
s , Z

∗uj
s )θ

uj
s

− huj (s, Z
uj
s , Z

∗uj
s )θ

uj
s Gn(ui, uj )

)∣∣∣∣
2

+ 2E

[∣∣∣∣
1

n − 1

n∑

j �=i

huj (s, Z
uj
s , Z

∗uj
s )θ

uj
s Gn(ui, uj )

− E

[ ∫

I

hv(s, Zv
s , Z∗v

s ) · θv
s G(ui, v)dv

∣∣∣F∗
T

]∣∣∣∣
2]

.

Continuing the estimation above,

E
[
|�i,n

s |2
]

≤
Cθ

(n − 1)2β2
n

Var[λij ]E

[ n∑

j �=i

|hj (s, Z
uj
s , Z

∗uj
s )|2

]

+ 4E

[∣∣∣∣
1

n

n∑

j �=i

huj (s, Z
uj
s , Z

∗uj
s )θ

uj
s Gn(ui, uj )

− E

[1

n

n∑

j=1

huj (s, Z
uj
s , Z

∗uj
s )θ

uj
s Gn(ui, uj )

∣∣∣F∗
T

]∣∣∣∣
2]

+ E

[∣∣∣∣E
[1

n

n∑

j=1

huj (s, Z
uj
s , Z

∗uj
s )θ

uj
s Gn(ui, uj )

∣∣∣F∗
T

]

− E

[ ∫

I

hv(s, Zv
s , Z∗v

s ) · θv
s G(ui, v)dv

∣∣∣F∗
T

]∣∣∣∣
2]

.

Using that the step function F n
s given by

F n
s (u) :=

n∑

j=1

huj (s, Z
uj
s , Z

∗uj
s )θ

uj
s 1{u∈(uj ,uj+1]}

approximates the function Fs : v �→ hv(s, Zv
s , Z∗v

s ) · θv
s in L2(I,B(I ), μ), we have
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E
[
|�i,n

s |2
]

≤
Cθ

(n − 1)2β2
n

Var[λij ]E

[ n∑

j �=i

|hj (s, Z
uj
s , Z

∗uj
s )|2

]

+
4

(n − 1)2

n∑

j �=i

E
[∣∣huj (s, Z

uj
s , Z

∗uj
s )θ

uj
s − E[huj (s, Z

uj
s , Z

∗uj
s )θ

uj
s |F∗

T ]
∣∣2]

+ E

[∣∣∣∣
∫

I

F n
s (v)Gn(ui, v) dv −

∫

I

hv(s, Zv
s , Z∗v

s ) · θv
s Gn(ui, v)dv

∣∣∣∣
2]

+ E

[∣∣∣∣
∫

I

hv(s, Zv
s , Z∗v

s ) · θv
s Gn(ui, v)dv −

∫

I

hv(s, Zv
s , Z∗v

s ) · θv
s G(ui, v)dv

∣∣∣∣
2]

≤
Cθ

(n − 1)2β2
n

E

[∣∣∣∣
n∑

j �=i

(λij − E[λij ])h
j (s, Z

uj
s , Z

∗uj
s )

∣∣∣∣
2]

+
Cθ

(n − 1)2

n∑

j �=i

E
[
|(huj (s, Z

uj
s , Z

∗uj
s )|2

]
+ ‖F n

s − Fs‖L2(I,B(I ),μ)

+ CθE

[ ∫

I

|hv(s, Zv
s , Z∗v

s )|2
(

Gn(ui, v) − G(ui, v)

)2

dv

]
. (5.10)

Because the Lipschitz constants of hu and gu do not depend on u, standard FBSDE
estimates show that supu∈I ‖(Zu, Z∗u)‖H2(Rd+1,Fu) < ∞. Hence integrating on both
sides above and using Condition 5.1, we have
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1

n

n∑

i=1

E

[ ∫ T

0
|�i,n

s |2 ds

]

≤

(
Ch,θ,T

(n − 1)β2
n

+
Cθ

(n − 1)

)(
sup
u∈I

‖(Zu, Z∗u)‖H2(Rd+1,Fu) + 1
)

+ CT ‖F n
s − Fs‖L2(I,B(I ),μ)

+ �2
hCθ

(
sup
u∈I

‖(Zu, Z∗u)‖H2(Rd+1,Fu) + 1
)

×
1

n

n∑

i=1

∫

I

(
Gn(ui, v) − G(ui, v)

)2

dv

≤
Ch,θ,T ,Z

(n − 1)β2
n

+
Cθ,Z

(n − 1)
+ CT ‖F n

s − Fs‖L2(I,B(I ),μ)

+ �2
hCθ,Z

∫

I

∫

I

(
Gn(ω, v) − G(ω, v)

)2
dv du

≤
Ch,θ,T ,Z

(n − 1)β2
n

+
Cθ,Z

(n − 1)
+ CT ‖F n

s − Fs‖L2(I,B(I ),μ)

+ �2
hCθ,Z‖Gn − G‖2

2. (5.11)

Therefore, since n‖Gn − G‖2
2 → 0, it follows that for each i, we have

E

[ ∫ T

0
|�i,n

s |2ds

]
−→ 0 as n → ∞. �

Remark 5.5 If the function h is bounded (which is the case when the graphon equi-
librium (π̃u)u∈I is bounded), it is enough the require that n‖Gn − G‖� → 0, which
is weaker that L2-convergence. This is due to the fact that the last term in (5.10) can
be estimated as

E

[(∫

I

hv(s, Zv
s , Z∗v

s ) · θu
s

(
Gn(ui, v) − G(ui, v)

)
dv

)2]

≤ Ch,θ

∣∣∣∣
∫

I

(
Gn(ui, v) − G(ui, v)

)
dv

∣∣∣∣
2

.

Taking the average, we obtain the estimation

(
1

n

n∑

i=1

∣∣∣∣
∫

I

Gn(ui, v) − G(ui, v)dv

∣∣∣∣
)2

=

( ∫

I

∣∣∣∣
∫

I

(
Gn(u, v) − G(u, v)

)
dv

∣∣∣∣du

)2

≤ 4‖Gn − G‖2,
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where ‖G‖ is the so-called operator norm given by

‖G‖ := sup
‖h‖∞≤1

∫

I

∣∣∣∣
∫

I

h(u)G(u, v) dv

∣∣∣∣ du.

It follows from Lovász [33, Lemma 8.11] that ‖G‖� and ‖G‖ are equivalent norms.
Therefore the last term in (5.11) can be replaced by �2

hCθ,Z‖Gn − G‖2
�

. �

5.2 Proof of Theorem 2.11: the case without common noise

Let us now present the proof of Theorem 2.11 (ii). Throughout this subsection, we
assume σ ∗u = 0 for all u ∈ I . By Theorem 3.1 and Remark 3.3, the Nash equilibrium
(π̃ i,n)i∈{1,...,n} is characterised by the BSDE (3.5). That is, we have

π̃
i,n
t = (σ i

t )
−1P i

t (Zii
t + ηiθ i

t )

and

V
i,n
0

(
(π̃ j,n)j �=i

)
= −e

− 1
ηi (ξ i−ρξ

i
−Y i

0)
(dt ⊗ P)-a.e.

with (Y i,n, Zij,n)(i,j)∈{1,...,n}2 solving the BSDE (3.5). Moreover, by Corollary 3.5
and Proposition 6.2, there is a graphon equilibrium (π̃u)u∈I such that

π̃u
t = (σ u

t )−1P u
t (Zu

t + ηuθu
t ) (dt ⊗ μ � P)-a.e.

and

V
u,G
0 = − exp

(
−

1

ηu

(
ξu −

∫

I

E[ρξv]G(u, v)dv − Y u
0

))

with (Y u, Zu)u∈I solving (3.9). It thus suffices to show that

|Y
i,n
0 − Y

ui

0 |2 + |Z
ii,n
t − Z

ui
t |2 −→ 0 (dt ⊗ P)-a.e. as n → ∞.

Let us put �Y i,n := Y i,n − Y ui and �Zij,n := Zij,n − Zui δij . Let t ∈ [0, T ] be
fixed and consider the stopping time

τk := inf

{
s ≥ t :

∫ s

t

( n∑

j=1

|P
j
r (Z

jj,n
r + ηj θ

j
r )|2 + |�Z

jj,n
r |2

)
dr

+ sup
t≤r≤s

|�Y i,n
r |2 ≥ k

}
∧ T .
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Observe that for each i, n, the sequence (τk)k≥1 converges to T P-a.s. Applying Itô’s
formula to eκt (�Y

i,n
t )2 for some κ > 0 to be chosen, we have

eκt (�Y
i,n
t )2

= eκτk (�Y i,n
τk

)2 +

∫ τk

t

2eκs�Y i,n
s

×

(
θ i
s · �Zii,n

s +
1

2ηi

(
|(Id − P i

s )(Zii,n
s + ηiθ i

s )|
2

− |(Id − P ui
s )(Zui

s + ηui θui
s )|2

))
ds

+

∫ τk

t

2eκs�Y i,n
s

n∑

j �=i

|Z
ij,n
s + σ jλn

ijρP
j
s (Z

jj,n
s + ηiθ i

s )|
2 ds

+

∫ τk

t

2eκs�Y i,n
s ρ

( n∑

j �=i

λn
ijP

j
s (Z

jj,n
s + ηj θ

j
s )θ

j
s

− E

[ ∫

I

P v
s (Zv

s + ηvθv
s )θv

s G(u, v) dv

])
ds

−

∫ τk

t

κeκs(�Y i,n
s )2 ds −

n∑

j=1

∫ τk

t

eκs |�Z
ij,n
s |2 ds

−

n∑

j=1

∫ τk

t

2eκs�Y i,n
s �Z

ij,n
s dW

j
s .

Let us introduce the measure Q with density

dQ

dP
= E

( ∫ τk

t

(
θ i
s +

1

2ηi
γs(Z

ii,n
s , Zui

s )
)

· dW i
s

+

n∑

j �=i

∫ τk

t

(
Z

ij,n
s + 2Z

ij,n
s σ

j
s λn

ijρP
j
s (Z

jj,n
s + ηj θ

j
s )

)
· dW

j
s

)
,

where γs is the (linearly growing) function defined by

|(Id − P i
s )(Zii,n

s + ηiθ i
s )|

2 − |(Id − P ui
s )(Zui

s + ηui θui
s )|2 = γs(Z

ii,n
s , Zui

s )�Zii,n
s .

The existence of such a function follows by the Lipschitz-continuity of the projec-
tion operator since Aj is convex (also recall the rebranding from i to ui). Thus by
Girsanov’s theorem, the BMO martingale property of Zui and square-integrability of
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Zij,n, we have

eκt (�Y
i,n
t )2

= EQ

[
eκτk (�Y i,n

τk
)2

+

∫ τk

t

2eκs�Y i,n
s

n∑

j �=i

ρ2
λ2

ij

n2β2
n

|σ
j
s |2|P

j
s (Z

jj,n
s + θ

j
s ηj )|2 ds

∣∣∣∣F
n
t

]

+ EQ

[ ∫ τk

t

2eκs�Y i,n
s ρ

(
1

nβn

n∑

j �=i

λijP
j
s (Z

jj,n
s + ηj θ

j
s )θ

j
s

−
1

nβn

n∑

j �=i

λijP
uj
s (Z

uj
s + ηuj θ

uj
s )θ

uj
s

)
ds

+

∫ τk

t

(
2eκs�Y i,n

s ρ�i,n
s − κeκs(�Y i,n

s )2 −

n∑

j=1

eκs |�Z
ij,n
s |2

)
ds

∣∣∣∣F
n
t

]
,

where �i,n is the process given by

�i,n
s :=

1

nβn

n∑

j �=i

λijP
uj
s (Z

uj
s + ηuj θ

uj
s )θ

uj
s − E

[ ∫

I

P v
s (Zv

s + ηvθv
s )θv

s G(ui, v) dv

]
.

Using Lipschitz-continuity of the projection operator and boundedness of �, we
continue the estimation as

eκt (�Y
i,n
t )2 + EQ

[ n∑

j=1

∫ τk

t

eκs |�Z
ij,n
s |2 ds

∣∣∣∣F
n
t

]

= EQ

[
eκτk (�Y i,n

τk
)2 +

Ck,ρ,σ

n2β2
n

+

∫ τk

t

eκs

(
Cθ,σ,ρ

ε
− κ

)
|�Y i,n

s |2 ds

∣∣∣∣F
n
t

]

+ εEQ

[ ∫ τk

t

(
eκs

( 1

nβn

n∑

j �=i

λij |�Z
jj,n
s |

)2
+ eκs |�i,n

s |2
)

ds

∣∣∣∣F
n
t

]
,

where we also used Young’s inequality with some ε > 0. Choosing κ > 0 large
enough and using the Cauchy–Schwarz inequality, it follows
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that

EQ

[
eκt (�Y

i,n
t )2 +

n∑

j=1

∫ τk

t

eκs |�Z
ij,n
s |2 ds

]

≤ EQ[eκτk (�Y i,n
τk

)2] +
Ck,ρ

n2β2
n

+ εEQ

[ ∫ τk

t

(
eκs 1

nβ2
n

( n∑

j �=i

λ2
ij

)1

n

n∑

j �=i

|�Z
jj,n
s |2 + eκs |�i,n

s |2
)

ds

]

≤ EQ[eκτk (�Y i,n
τk

)2] +
Ck,ρ

n2β2
n

+
Ck,κ

nβn

+ εEQ

[ ∫ τk

t

eκs |�i,n
s |2 ds

]
,

where we used that λij is independent of W 1, . . . , W n with EP[λ2
ij ] ≤ βn and the

definition of the stopping time τk . As (�Y i,n
τk

)k≥1 converges to 0 in P-probability and
thus in Q-probability for each n, we can find a subsequence (�Y i,n

τk,m
)m≥1 such that

Q[|�Y i,n
τk,m

| ≥ ε] ≤
e−k2

m
.

Thus for every ε > 0, we have

EQ[|�Y i,n
τk,m

|2] ≤ ε + k
e−k2

m
.

Hence, using again the definition of τk ,

EQ

[
eκt (�Y

i,n
t )2 +

n∑

j=1

∫ τk,m

t

eκs |�Z
ij,n
s |2 ds

]

≤ ε + k
e−k2

m
+

Ck,ρ,σ

nβn

+ εEQ

[ ∫ τk

t

eκs |�i,n
s |2 ds

]
.

Using the Cauchy–Schwarz inequality, we further have

E

[
eκt |�Y

i,n
t | +

∫ τk,m

t

eκs |�Zii,n
s | ds

]

≤ 2TE

[(
dQ

dP

)2]1/2

EQ

[
eκt (�Y

i,n
t )2 +

∫ τk,m

t

eκs |�Zii,n
s |2 ds

] 1
2

≤ Ck

(
ε + k

e−k2

m
+

Ck,ρ,σ

nβn

+ εEQ

[ ∫ τk,m

t

eκs |�i,n
s |2 ds

]) 1
2

.

We show below that for each fixed k, we have

EQ

[ ∫ τk,m

t

|�i,n
s |2 ds

]
−→ 0 as n → ∞. (5.12)
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Thus first taking the limit in n, then in m and then letting ε → 0, it follows that

E

[
eκt |�Y

i,n
t | +

∫ τk,m

t

eκs‖�Zii,n
s ‖ ds

]
−→ 0 as m, n → ∞.

We thus obtain that �Y
i,n
0 → 0 as n → ∞ and, up to a subsequence,

|�Zii,n
s |1{s≤τk,m} −→ 0 for almost every s ∈ [t, T ],P-a.s., as m, n → ∞.

In particular, because P[τk,m ≥ 1] = 1, we get �Z
ii,n
t → 0 P-a.s. as n → ∞.

Let us now come back to (5.12). Since the random variables (Zu)u∈I are e.p.i., it
follows by the exact law of large numbers, see Sun [41, Corollary 3.10], that

|�i,n
s | ≤

∣∣∣∣
1

nβn

n∑

j �=i

λijP
uj
s (Z

uj
s + ηuj θ

uj
s )θ

uj
s −

∫

I

P v
s (Zv

s + ηvθv
s )θv

s G(ui, v) dv

∣∣∣∣.

Therefore, using the triangle inequality and the fact that

∫

I

F n
s (v)Gn(ui, v)(v) dv =

1

n

n∑

j=1

P
uj
s (Z

uj
s + ηuj θ

uj
s )θ

uj
s Gn(ui, uj )

with

F n
s (u) :=

n∑

j=1

P
uj
s (Z

uj
s + ηuj θ

uj
s )θ

uj
s 1{u∈(uj ,uj+1]},

it follows that

|�i,n
s | ≤

∣∣∣∣
1

nβn

n∑

j=1

λijP
uj
s (Z

uj
s + ηuj θ

uj
s )θ

uj
s

−
1

n

n∑

j=1

P
uj
s (Z

uj
s + ηuj θ

uj
s )θ

uj
s Gn(ui, uj )

∣∣∣∣

+

∣∣∣∣
∫

I

F n
s (v)Gn(ui, v)(v) dv −

∫

I

F n
s (v)G(ui, v)(v) dv

∣∣∣∣

+

∣∣∣∣
∫

I

F n
s (v)G(ui, v) dv −

∫

I

P v
s (Zv

s + ηvθv
s )θv

s G(ui, v) dv

∣∣∣∣.

Proceeding as in the proof of Lemma 5.4, we have
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EQ

[ ∫ τk

0
|�i,n

s |2 ds

]

≤
Var[λij ]

nβ2
n

‖θ‖∞(‖Zui · Wui ‖BMO + Cθ,η)

+ EQ

[ ∫

I

∫ τk

0
|F n

s (v)|2 ds
(
Gn(ui, v) − G(ui, v)

)2
dv

]

+ EQ

[ ∫ τk

0

∫

I

|F n
s (v) − P v

s (Zv
s + ηvθv

s )θv
s |2 dv ds

]

≤
Cθ,η

nβ2
n

+

∫

I

(
Gn(ui, v) − G(ui, v)

)2
EQ

[ ∫ T

0
|F n

s (v)|2 ds

]
dv

+ E

[(
dQ

dP

)2]1/2

E

[ ∫ T

0

( ∫

I

|F n
s (v) − P v

s (Zv
s + ηvθv

s )θv
s |2 dv

)2

ds

]1/2

.

Since the intervals (uj , uj+1] form a partition of I and by using the linear growth of
the projection operator, it follows that

|F n
s (u)|2 ≤

n∑

j=1

|Z
uj
s |21{u∈(uj ,uj+1]} + Cθ,A.

Thus using ‖ · ‖H2(Rd ,Fu) ≤ ‖ · ‖H2
BMO(Rd ,Fu), the fact that the BMO-norms under

P and under Q are equivalent (due to the definition of the stopping time τk; see
Kazamaki [25, Theorem 3.6]), and further supu∈I ‖Zu‖H2

BMO(Rd ,Fu) < ∞, we have

EQ

[ ∫ T

0
|F n

s (u)|2 ds

]
≤

n∑

j=1

‖Zui ‖H2
BMO(Rd ,Fu)1{u∈(uj ,uj+1]} + Cθ,A ≤ C.

Hence we have

EQ

[ ∫ τk

0
|�i,n

s |2 ds

]

≤
Cθ,η

nβ2
n

+ C

∫

I

(
Gn(ui, v) − G(ui, v)

)2
dv + CkE

[ ∫ T

0
‖F n

s − Fs‖
2
L2(I,μ)

ds

]1/2

,

where Fs(v) := P v
s (Zv

s + ηvθv
s )θv

s . Since the sequence (F n)n≥1 of step functions
converges to F in L2(I, μ), it follows by dominated convergence that, fixing k, we
have (5.12). The convergence to zero of the term

∫
I
(Gn(ui, v) − G(ui, v))2 dv is

proved as at the end of the proof of Lemma 5.4. This concludes the proof. �

6 Well-posedness of graphonMcKean–Vlasov BSDEs and FBSDEs

We conclude the article by the two existence results for graphon McKean–Vlasov
(F)BSDEs used in the proof of existence of graphon equilibria. In the ensuing state-
ments and proofs, we use the space Sp(F,Rd , I ) of families of (equivalence classes
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of) processes (Y u)u∈I such that (u, t, ω) �→ Y u
t (ω) is B([0, T ])⊗I�F-measurable

and for almost every u, we have Y u ∈ Sp(Fu,Rd). This space is equipped with the
norm

‖Y‖Sp(F,Rd ,I ) :=

∫

I

‖Y u‖Sp(Fu,Rd )du

which makes it a Banach space. We similarly define Hp(F,Rd , I ). We further denote
by HBMO(Fu,Rd) the space of Fu-predictable processes Z with values in Rd such
that the process

∫
ZdWu is a (P,Fu)-BMO martingale. The space HBMO(F,Rd , I )

is defined analogously to Sp(F,R, I ) with the norm

‖Z‖HBMO(F,Rd ,I ) :=

∫

I

‖Zu‖HBMO(Fu,Rd )du.

6.1 GraphonMcKean–Vlasov FBSDEs

We start by proving existence of a solution to the graphon McKean–Vlasov FBSDEs
with Lipschitz coefficients. Observe that this is a system involving a continuum of
coupled equations, where the coupling is due to the graphon term.

Proposition 6.1 Let g : I ×[0, T ]×Rd ×R → R, b, h2 : I ×[0, T ]×�×Rd+1 → R

and h1 : I × [0, T ] × � × Rd+1 → Rd be measurable functions, where the

sets I , [0, T ], Rd are equipped with their Borel-σ -algebras, and assume they are

Lipschitz-continuous in the sense that for (t, z, z̄, z∗, z̄∗) ∈ [0, T ] × (Rd)2 × R2 and

f ∈ {gu, bu, hu
1, hu

2}, we have

|f (t, z, z∗) − f (t, z̄, z̄∗)| ≤ C(|z − z̄| + |z∗ − z̄∗|)

for some C > 0 which does not depend on (u, ω), where we write C =: �g for

f = gu and C =: �h for f ∈ {bu, hu
1, hu

2). Moreover, we assume that

∫ 1

0
E

[ ∫ T

0
|gu(t, 0, 0)|2dt

]
du < ∞. (6.1)

Further assume that we are given a family (ξu)u∈I such that ξ ∈ L2(μ � P). Then if

ρ < 1
2�h

e−(2�2
g+ 1

2 )T , the graphon system

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dXu
t = bu(t, Zu

t , Z∗u
t )dt + hu

1(t, Zu
t , Z∗u

t )dWu
t + hu

2(t, Zu
t , Z∗u

t )dW ∗
t ,

dY u
t = −gu

t (Zu
t , Z∗u

t )dt + Zu
t dWu

t + Z∗u
t dW ∗

t ,

Y u
T = E

[
ρ

∫

I

Xv
T G(u, v)dv

∣∣∣∣F
∗
T

]
,

Xu
0 = ξu

(6.2)

admits a unique solution (Xu, Y u, Zu, Z∗u)u∈I such that

(Xu, Y u, Zu, Z∗u)u∈I ∈ S2(F,R, I ) × S2(F,R, I ) × H2(F,Rd , I ) × H2(F,R, I ).
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Proof Let (zu, z∗u)u∈I ∈ H2(F,Rd , I ) ×H2(F,R, I ) be a given family of processes
and consider (Xu, Y u, Zu, Z∗

u)u∈I which satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xu
t := ξu +

∫ t

0
b(s, zu

s , z∗u
s )ds

+

∫ t

0
h1(s, z

u
s , z∗u

s )dWu
s +

∫ t

0
h2(s, z

u
s , z∗u

s )dW ∗
s ,

Y u
t = E

[
ρ

∫

I

Xv
T G(u, v)dv

∣∣∣∣F
∗
T

]
+

∫ T

t

gu(s, Zu
s , Z∗u

s )ds

−

∫ T

t

Zu
s dWu

s −

∫ T

t

Z∗u
s dW ∗

s .

(6.3)

It follows by Stricker and Yor [40, Sect. 4] that (u, t, ω) �→ Xu
t (ω) is measurable and

thus that
∫
I
Xv

T G(u, v)dv is well defined. Arguing as in the proof of [40, Sect. 4] (in
particular using Picard iteration), one establishes that (u, t, ω) �→ (Y u

t , Zu
t , Z∗u

t )(ω)

is measurable. Moreover, since Xu
T is square-integrable, it follows by the standard

result of Pardoux and Peng [37] on Lipschitz BSDEs that (Y u, Zu) exists and is
unique in S2(Fu,R)×H2(Fu,Rd)×H2(Fu,R) for almost every u. Thus the function

�
(
(zu, z∗u)u∈I

)
:= (Zu, Z∗u)u∈I

maps the Banach space H2(F,Rd , I )×H2(F,R, I ) into itself. This follows from the
fact that the H2(Fu,Rd+1)-norm of (Zu, Z∗,u) depends only on the second moment
of E[ρ

∫
I
Xv

T G(u, v)dv|F∗
T ] as well as of E[

∫ T

0 |gu(t, 0, 0)dt |2]. Thus integrating
over u and using (6.1) guarantees the claim. It remains to show that � admits a
unique fixed point.

Let (zu, z∗u)u∈I , (z̄
u, z̄∗u)u∈I ∈ H2(F,Rd , I ) × H2(F,R, I ) be given. Put

�
(
(zu, z∗u)u∈I

)
= (Zu, Z∗u)u∈I , �

(
(z̄u, z̄∗u)u∈I

)
= (Z̄u, Z̄∗u)u∈I ,

where (Xu, Y u, Zu, Z∗
u)u∈I and (X̄u, Ȳ u, Z̄u, Z̄∗

u)u∈I both satisfy (6.3). Introduce
the shorthand notations �Xu := Xu − X̄u, �Y u := Y u − Ȳ u, �Zu := Zu − Z̄u

and �Z∗u := Z∗u − Z̄∗u. Given some constant κ > 0, we apply Itô’s formula to
eκt |�Y u

t |2 to obtain

eκt |�Y u
t |2 ≤ eκT ρ2E

[ ∫

I

|�Xv
T |2G(u, v)2dv

∣∣∣∣F
∗
T

]
+

∫ T

t

eκs

(
2
�2
g

ε
− κ

)
|�Y u

s |2

+ (ε − 1)

∫ T

t

eκs(|�Zu
s |2 + |�Z∗u

s |2)ds

−

∫ T

t

eκs�Y u
s �Zu

s dWu
s −

∫ T

t

eκs�Y u
s �Z∗u

s dW ∗
s .
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Taking expectations on both sides and choosing κ = 2�2
g/ε, we have

E

[
eκt |�Y u

t |2 + (1 − ε)

∫ T

t

(eκs |�Zu
s |2 + eκs |�Z∗u

s |2)ds

]

≤ eκT ρ2
∫

I

E[|�Xv
T |2]dv.

Applying Itô’s formula to eκt |�Xu
t |2 and using Lipschitz-continuity of bu, hu

1 and
hu

2 , we obtain via Young’s inequality that

E[eκt |�Xu
t |2]

≤ E

[ ∫ t

0

(
2eκs�h(|z

u
s − z̄u

s | + |z∗u
s − z̄∗u

s |)|�Xu
s |

+ �2
heκs(|zu

s − z̄u
s |

2 + |z∗u
s − z̄∗u

s |2)
)
ds

]
+ κE

[ ∫ t

0
eκs |�Xu

s |2 ds

]

≤ E

[
(1 + κ)

∫ t

0
eκs |�Xu

s |2ds

]
+ 2�2

hE

[ ∫ t

0
eκs(|zu

s − z̄u
s |

2 + |z∗u
s − z̄∗u

s |2)ds

]
.

Thus by Gronwall’s inequality, we have

E[eκt |�Xu
t |2] ≤ 2�2

he(κ+1)T E

[ ∫ t

0
eκs(|zu

s − z̄u
s |

2 + |z∗u
s − z̄∗u

s |2)ds

]
.

So if ε = 1/2, we get

∫

I

E

[ ∫ T

0
eκs |�Zu

s |2 + eκs |�Z∗u
s |2ds

]
du

≤ 4�2
he(4�2

g+1)T ρ2
∫

I

E

[ ∫ T

0
eκs(|zu

s − z̄u
s |

2 + |z∗u
s − z̄∗u

s |2)ds

]
du.

Thus by the choice of ρ and the Banach fixed point theorem, the mapping � admits a
unique fixed point, implying that the graphon FBSDE (6.2) admits a unique solution
in S2(F,R, I ) × S2(F,R, I ) × H2(F,Rd , I ) × H2(F,R, I ). �

6.2 GraphonMcKean–Vlasov BSDE

Let us now turn to the well-posedness of graphon McKean–Vlasov BSDEs with
Lipschitz-continuous coefficients.

Proposition 6.2 Assume that g : I ×[0, T ]×Rd → R and f : I × [0, T ] × Rd → R

are Borel-measurable functions satisfying the local and global Lipschitz-continuity

conditions, with some constants �g, �f > 0 that do not depend on (u, ω),

|gu(t, z) − gu(t, z′)| ≤ �g(|z| + |z′|)|z − z′|, |gu(t, z)| ≤ �g(1 + |z|2)
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and

|f u(t, z) − f u(t, z′)| ≤ �f |z − z′|, |f u(t, z)| ≤ �f (1 + |z|)

for every (t, z, z′) ∈ [0, T ] × (Rd)2 and almost all u ∈ I . Further assume that we are

given Fu
T -measurable random variables F u such that (u, ω) �→ F u(ω) is measurable

and uniformly bounded. Then the graphon system

Y u
t = F u +

∫ T

t

(
gu(s, Zu

s ) +

∫

I

E[f v(s, Zv
s )]G(u, v)dv

)
ds −

∫ T

t

Zu
s dWu

s

admits a unique solution (Y u, Zu)u∈I in S∞(F,R, I ) × HBMO(F,Rd , I ) and such

that supu∈I ‖Zu‖HBMO(F,Rd ) < ∞.

Proof Let (yu, zu)u∈I ∈ S∞(F,Rd , I ) × HBMO(F,Rd , I ) be given and consider the
(decoupled) quadratic BSDEs

Y u
t = F u +

∫ T

t

(
gu(s, Zu

s ) +

∫

I

E[f v(s, zv
s )]G(u, v)dv

)
ds −

∫ T

t

Zu
s dWu

s .

It follows by Hu et al. [22] that for almost every u ∈ I , this equation admits a unique
solution (Y u, Zu) ∈ S∞(Fu,R) × HBMO(Fu,Rd). Moreover, it follows by the argu-
ments of Stricker and Yor [40, Sect. 4] that (u, t, ω) �→ (Y u

t , Zu
t )(ω) is measurable.

Thus the function

�
(
(yu, zu)u∈I

)
:= (Y u, Zu)u∈I

is well defined and maps the Banach space S∞(F,R, I )×HBMO(F,Rd , I ) into itself.
This follows because by Huang et al. [23], the S∞(Fu,R) × FBMO(Fu,Rd)-norm of
(Y u, Zu) depends only on �f , �g and the bound of F u. Since these constants are
uniform in u, this yields the claim. It therefore remains to show that this mapping
admits a unique fixed point.

Let (yu, zu)u∈I , (ȳ
u, z̄u)u∈I ∈ S∞(F,R, I ) × HBMO(F,Rd , I ) be given. Put

�
(
(yu, zu)u∈I

)
= (Y u, Zu)u∈I , �

(
(ȳu, z̄u)u∈I

)
= (Ȳ u, Z̄u)u∈I .
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Let κ > 0 be a constant to be determined and τ an Fu-stopping time. Apply Itô’s
formula to eκt |�Y u

t |2 := eκt |Y u
t − Ȳ u

t |2 to obtain

eκτ |�Y u
τ |2 =

∫ T

τ

2eκs�Y u
s

(
gu(s, Zu

s ) − gu(s, Z̄u
s )

+

∫

I

E[f v(s, zv
s ) − f v(s, z̄v

s )]G(u, v)dv

)
ds

− κ

∫ T

τ

eκs |�Y u
s |2ds −

∫ T

τ

eκs |�Zu
s |2ds −

∫ T

t

2eκs�Y u
s �Zu

s dWu
s

≤

(
1

ε
− κ

) ∫ T

τ

eκs |�Y u
s |2ds + ε�2

f

∫ T

τ

eκs

∫

I

E[|�zu
s |

2]G(u, v)2ds

−

∫ T

τ

eκs |�Zu
s |2ds −

∫ T

τ

2eκs�Y u
s �Zu

s dWu,Q
s ,

where we used the shorthand notations �Zu := Zu − Z̄u and �zu := zu − z̄u and
Wu,Q is a Brownian motion under the probability measure defined by

dQ

dP
:= E

(∫ ·

0
βu(s, Zu

s , Z̄u
s )dWu

s

)

for a linearly growing function β such that gu(s, z) − gu(s, z̄) = βu(s, z, z̄) · (z − z̄).
Choose κ > 1

ε
. Taking conditional expectations on both sides yields

eκτ |�Y u
τ |2 + EQ

[ ∫ T

τ

eκs |�Zu
s |2ds

∣∣∣∣F
u
τ

]
≤ ε�2

f

∫

I

E

[ ∫ T

τ

eκs |�zv
s |

2ds

∣∣∣∣F
u
τ

]
dv.

Taking the supremum over τ and integrating on both sides in u therefore gives

‖�Y‖2
S∞(R,F,I ) + ‖�Z‖2

H2
BMO(Rd ,F,I )

≤ εC�2
f ‖δz‖2

H2
BMO(Rd ,F,I )

,

where we used as before that the BMO-norms under P and Q are equivalent and that
‖ · ‖H2(Rd ,F) ≤ ‖ · ‖2

H2
BMO(Rd ,F)

. Choosing ε > 0 small enough allows to conclude

that � is a contraction, and thus it follows by the Banach fixed point theorem that �

admits a unique fixed point in S∞(R,F, I ) × H2
BMO(Rd ,F, I ). �
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