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1. Introduction

Risk is a pervasive aspect of the financial industry as every single financial decision carries a certain amount of
risk. Correctly quantifying riskiness is, therefore, of central importance for financial institutions. The idea is often
to consider the profit and loss F(S) resulting from an investment in assets S. A fundamental innovation (that can
be traced back to the work of Markovitz [41] in the 1950s) allowing us to quantify the risk of F(S) was the intro-
duction of the concept of risk measures, which allows us to assign a numerical value p(F(S)) to the profit and
loss F(S) depending on the agent’s risk aversion. In other words, one can focus on a single number to make deci-
sions rather than on the whole distribution of the loss. As a consequence, computing p(F(S)) becomes an essential
task for the risk manager.

For a long time, the value at risk (VaR) has been the industry standard for risk management. As a result,
the numerical simulation of VaR (i.e., of quantiles) is well-understood, and various methods can be found in
Glasserman et al. [24], Hong [27], Jin et al. [29], and Jorion [30] and in their references. However, there are many
criticisms for the VaR,' so much so that the Basel Committee on Banking Supervision [5], which oversees risk
management for financial institutions, has recommended since 2013 to use expected shortfall (also known as
average value at risk (AVaR) or conditional value at risk) as the benchmark risk measure.

Intuitively, the AVaR at level u €(0,1) can be understood as the average of all VaR, over v € (1,1). Thus, it
does not only take into account occurrence of large losses, but also their size. The estimation of AVaR (in the con-
text of portfolio optimization) is, for instance, considered by Rockafellar and Uryasev [48], who fundamentally
use the fact that the AVaR at level u of the loss F(S) can be written as

AVaR,(F(S)) = inf <LE[(F(S) —m) ]+ m). (1.1)
meR\1 — u
This representation shows, in particular, that AVaR is almost risk neutral for very large losses as it is linear in the

tails. This prompted the generalization to convex risk measures that behave nonlinearly in both the tail and the
center of the distribution, including, for instance, the optimized certainty equivalent (OCE) obtained by replacing
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the function x +— ﬁx* in (1.1) by a convex loss function  : R — R (see Ben-Tal and Teboulle [7, 8]) or the short-
fall (SF) risk measure defined in a similar spirit (see Follmer and Schied [18] and Section 2.2 for details).

More generally, a rigorous unifying approach to risk management was initiated by Artzner et. al. [2] and
matured into an impressive theory of risk measures. We refer for instance to the monographs of Féllmer and
Schied [19] and McNeil et al. [42] for excellent expositions. A general convex risk measure is defined as follows.

Definition 1.1 (Convex Risk Measure). A functional p : L* — R over a standard probability space is a convex risk
measure” if

a. p(X+m) = p(X)+mforall Xand m € R and p(0) = 0.

b. p(X) < p(Y) if X <Y almost surely (a.s.).

. p(AX+ (1 -2)Y)<ApX)+ (1 —A)p(Y) for A €[0,1].

The monotonicity condition (b) is natural and models preference for more profits. The condition (a), known as
cash invariance or translation invariance, stems from the desire to interpret p(X) as a capital requirement, that is,
the minimal cash value, which, if added to the position X, would make it acceptable for regulators. The convexity
property (c) means that more diversified positions should be less risky. In practice, for numerical simulation, it is
more convenient to work with the distribution of the loss rather than its observed realization. Therefore, it is often
assumed that risk measures are law-invariant (or law-determined),” meaning that

d. p(X) = p(Y) if X ~ Y, that is, if X and Y have the same distribution.

Observe that most examples of risk measures fulfill this condition. We make the convention that, throughout
this paper, the term “risk measure” always refers to a convex law-invariant risk measure. Consequently, we use
the shorthand notation

p"(F) := p(F(S)) where S~ yu,

that is, p*(F) is the risk of F(S) computed according to the risk measure p when S has the distribution p.

The numerical computation of a law-invariant risk measure depends on the probability distribution p of S. For
AVaR, for instance, one issue is to efficiently approximate the integrals [} (F(x) — m)" u(dx) (assuming S is real-
valued). In some cases, this integral operation is computationally costly. Moreover, in many practical applications,
the distribution u is not precisely known. A natural idea is to approximate the integral by the sample average
%ZnNzl (F(S,) —m)*, where Sy,...,Sy are independent random variables with distribution ¢ and the minimization
over m (see (1.1)) can be reduced to linear programming; see Rockafellar and Uryasev [48, section 3]. When u is not
known, this Monte Carlo simulation can be carried out on historical data.

Example 1.1. For instance, in the context of portfolio optimization, S is a vector of d stock returns S := (Sﬁ —
Si)i1.. 4, and F(S) takes the form F(S) := 327, ¢i(S} — S), where (g1, .. ., g4) are portfolio weights. Strictly speaking,
in practice, the time series formed by historical returns is of course not independent and identically distributed
(ii.d.). It shows patterns of changing volatility. Some workarounds in the literature include working with longer
interval returns series (see McNeil et al. [42, section 4.1]) or using a semiparametric approach to estimate returns as
AS; = X;Z;, where X; is a diagonal volatility matrix modeled by a generalized autoregressive conditional hetero-
skedasticity model and the innovation processes Z; are i.i.d. (see McNeil et al. [42, chapter 2]). Thus, we can make
the simplifying assumption that we are working with i.i.d. observations. In both cases, denoting by

1
HN::NXI:\Iésn where Si,...,S5yv~S iid.
n<

the empirical distribution of the N observations S, ...,Sy, AVaR*~(F) is a nonparametric finite sample estimator
of AVaR¥(F).
This idea extends to general risk measures and arbitrary functions F.

Definition 1.2 (Plug-in Estimator). For every N > 1, denote by
piN(F) = p(F(S)) where § ~ 1
the plug-in estimator of p*(F).

As we observe, this estimator” is consistent (see Corollary 2.1) but typically underestimates the true risk p*(F)
(see Remark 2.3). The latter observation is consequential from the practical standpoint. In fact, the idea of risk
measures is precisely to protect oneself from risky investments; thus, underestimating the risk of an asset is pre-
cisely what risk managers want to avoid. Because the finite sample estimator p*~(F) is the most natural in nonpara-
metric estimations and is widely used in practice, it is, therefore, essential to understand just how much it
underestimates the true risk.
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Thus, the question for the risk manager is
How far is pt~(F) from p"(F) for a fixed sample size N?

This is an essential question because its answer gives theoretical insights allowing risk managers to parsimoni-
ously use data. To make the question rigorous, one, of course, needs to give a meaning to “far” as the estimation
error |pF~(F) — p#(F)| is random (it depends on the observations from S).

The goal of this article is to answer the question by providing nonasymptotic convergence rates on the expected
estimation error and the probability that the estimation error exceeds some prescribed threshold. The difference
between asymptotic and nonasymptotic rates should be underscored: whereas there are instances in which the
asymptotic rates suggest a much faster convergence, this is only true within the asymptotic regime. In particular,
relying on asymptotic rates, for example, for the computation of the needed sample size N to guarantee that the
estimator preforms well with a certain confidence, might give a far too optimistic number. Nonasymptotic rates,
however, hold for every N and give an order of magnitude of the sample size N needed to achieve a desired estima-
tion accuracy.

Our main results show the following: for a general risk measure, the usual 1/VN convergence rate dictated by
the central limit theorem needs not hold true. We introduce a simple and tractable notion of regularity for risk
measures (quantified by a parameter g € (1,0)) and show that this notion of regularity governs the convergence
rates. More precisely, if a risk measure is regular with parameter g, then

* oM~ _ pt L
Ellp™(F) = p* (Bl =
P*[|p#(F) — p*(F)| = €] < C exp(— cN&™) (1.2)

for all N >1 and ¢ > 0, where ¢, C are two positive constants depending on p and (the L*-norm of) F; see Theo-
rem 2.1. Here, E* and P* denote the outer expectation and outer probability, respectively (see, e.g., van der Vaart
and Wellner [50]). They are used because p*v does not necessarily need to be measurable. Notably, we show that
these rates are sharp (at least up to a factor of two); see Proposition 2.1. Whereas this represents the major part of
this work, we also consider three explicit risk measures separately (the average value at risk, the optimized cer-
tainty equivalent, and the shortfall risk) and show that, then, the usual 1/ VN convergence rate dictated by the
central limit theorem can be recovered in a nonasymptotic fashion; namely, (1.2) holds true for all N > 1 and ¢ > 0 with
g=1

In practice, there is much more to risk management than computing the numerical value p(F(S)) for a given loss
F(5): in many situations, risk managers additionally hedge their exposure to F(S) by investing in the stock market,
resulting in a risk based (super)hedging problem or a utility maximization problem. Another important part of our
work focuses on the investigation of these type of problems, and we show that the same rates of convergence
remain valid in this more general situation.

The reader familiar with the theory of sample average approximation likely recognizes the average value at risk
(1.1) as a stochastic programming problem. Finite sample approximation of such problems is extensively studied,
at least as far as asymptotic convergence rates are concerned. We give a few references. Note, however, that, in the
generality of Definition 1.1, risk measures cannot typically be written as the value of a stochastic programming
problem (using Kusuoka’s theorem, we can only write them as a maximum of more and more irregular stochastic
programs). This substantially complicates the analysis. The main contribution of the paper is to consider this gen-
eral situation by balancing the irregularity of the stochastic programs by means of the regularity of the risk mea-
sure. To obtain finite sample rates of convergence, we employ techniques from empirical process theory,
specifically Dudley’s theorem. This allows us to consider the aforementioned case of additional hedging and yields
rates that do not depend on the dimension/number of hedging instruments. Finally, let us stress that F (as well as
the hedging instruments) are not subject to any continuity condition.

1.1. Related Literature

The estimation of risk measures is an essential question in quantitative finance and, as such, has received a lot of
attention; we refer, for instance, to the monograph of McNeil et al. [42] for an in-depth treatment. See also the
book of Glasserman [23, chapter 9] for the case of (average) value at risk. In mathematical finance, there is a
growing interest on statistical aspects of quantitative risk management. See Embrechts and Hofert [16] for an
excellent review of the main lines of research in this direction. Concerning statistical estimation of risk measures,
one of the earliest works is that of Weber [51], who considers the problem of estimating p*(F) in an asymptotic
fashion as N — oo. By means of the theory of large deviations, he shows that, if p is sufficiently regular, then
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pi~(F) satisfies a large deviation principle. Along the same lines, Belomestny and Kratschmer [6], Beutner and
Zahle [10], and Chen [11] obtain central limit theorems for p#~(F); see also Shapiro et al. [49, chapter 6].

Aside from large deviation and central limit theorem results, several authors investigate estimation of specific
risk measures and (super)hedging functionals. These include Pal [45, 46], who analyzes hedging under risk
measures that can be written as the finite maxima of expectations. Let us further refer to Guigues et al. [25], Holz-
mann and Zwingmann [26], Kratschmer et al. [38], and Pitera and Schmidt [47] for other (asymptotic) estimation
results, mostly for the average value at risk and expectiles and, under some assumptions, on the distribution u
(see, e.g., Hong et al. [28] for a review). A deviation-type inequality for the value at risk is proposed by Jin et al.
[29]. The problem of strict superhedging is recently considered by Obt6j and Wiesel [44] and the problem of port-
folio optimization under heavy tails by Bartl and Mendelson [3].

When the estimation of p*(F) is performed repeatedly or periodically, it is important that the estimator p#~(F)
be stable, that is, insensitive to small changes of py. Such insensitivity is often referred to as robustness of the
risk measure and is first analyzed by Cont et al. [14], who investigate a concept of robustness essentially equiva-
lent to continuity of p with respect to (w.r.t.) weak convergence of measures. Alternative approaches to robust-
ness are later proposed and analyzed by Claus et al. [13], Krdtschmer and Zahle [35], and Kratschmer et al. [36,
37, 39]. Along the same lines, some authors investigate risk measures (and other stochastic maximization prob-
lems) under model uncertainty to account for the effect of possible misspecification of the estimated model; see,
for example, Bartl et al. [4], Eckstein et al. [15], and Esfahani and Kuhn [17], in which it is often assumed that the
true model belongs to a Wasserstein ball.

Beyond estimation of risk measures, a rich literature in operations research is devoted to the estimation of the
value of stochastic optimization problems similar to OCE through the empirical distribution of the underlying
probability measure. This technique goes under the name sample average approximation as mentioned earlier.
The bulk of the literature in this direction is concerned with convergence issues and questions related to compu-
tational complexity of the estimators; see, for example, Bertsimas et al. [9], Kleywegt et al. [33], and the book
chapter Kim et al. [32] for a recent overview. We also refer to the recent preprint Krdtschmer [34] for asymptotic
estimation results as well as error bound estimations using empirical process theory.

1.2. Organization of the Rest of the Paper

We start by presenting the main results of this article in the next section. The proofs of the moment bounds are
given in Section 3 for special cases of risk measures, and in Section 4, the main part of the paper, convergence
rates for general risk measures, are proved. In these sections, we also state generalizations of our results to
unbounded cases. The deviation inequalities are proved in Section 5. Sharpness of the rates for general risk meas-
ures is discussed in Section 6, and all remaining proofs are presented in Section 7. The paper ends with an appen-
dix on the theory of empirical processes.

2. Main Results

Before presenting our main results, let us generalize the setting of the introduction to the more practically rele-
vant situation in which the risk manager can offset the risk from F(S) by trading. Henceforth, u denotes the distri-
bution of S, which is a probability measure on a Polish space X, and ux denotes the empirical measure of y built
from an i.i.d. sample (S,),<y defined on some abstract probability space (Q, F, P). Moreover, F : X — R is a mea-
surable function. In fact, we can additionally consider (measurable) options G;, ..., G, : ¥ — R available for trad-
ing without loss of generality at price zero (at which e € N). Trading according to a strategy g € R® then yields the
outcome F+>";_, ¢;G;. Thus, assuming the interest rate to be zero throughout, the risk manager’s task is to esti-
mate the minimal risk incurred when trading in the option market, that is, to compute

H(F):=infp ([ F+ 2G|,
7 (F) infp < +;g 1)

where G C R° is the set of all admissible trading strategies. Loosely speaking, the goal here is to “absorb” extreme
outcomes of F by trading. For instance, G ={g€[0,1]°: g1+ --- +g. = 1} corresponds to portfolio optimization; see
Shapiro et al. [49] for some background. Notice that, if zero is the only admissible trading strategy, that is, G = {0},
then we have 7* = p#, and hence, all results obtained for 7t translate to p as introduced in the previous section.

In an effort to simplify the presentation in this section, we state the results for risk measures defined on
bounded random variables and assume throughout this section that F and G are all bounded functions. In the
later sections, we partially replace boundedness by integrability assumptions at the cost of more involved nota-
tion. Moreover, G C R° is assumed to be a bounded” set throughout this article, and this assumption can quickly
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be checked to be necessary (see Proposition A.1). In order to avoid discussions regarding measurability issues,
we assume throughout this article that G is a countable set. As explained in Remark A.1, this assumption can
actually be made without loss of generality.

2.1. Results for General Convex Risk Measures
Let us now present our main results pertaining to the estimation of law-invariant risk measures in the generality
of Definition 1.1. As becomes more and more apparent throughout this article, it is necessary to impose some
form of continuity assumption on the risk measure in order to derive nonasymptotic convergence rates; see Prop-
osition 2.1 and Remark 6.2.

In order to start with a positive result, we define the notion of continuity that we require right away and dis-
cuss its rationale and necessity afterward.

Definition 2.1 (g-Regularity). For g € (1, o), a convex risk measure is said to be g-regular if it satisfies

sup p(X An)<oo
neN
for all random variables X following a Pareto distribution with shape parameter 4.
Recall here that a random variable X has Pareto distribution with scale parameter x > 0 and shape parameter g > 0 if

P[X > f] (x/t)q ift>x,
if £ <x.

As the name suggests, g-regularity reflects a certain notion of continuity, and the familiar reader may recognize it
to be stronger than the two classic notions of regularity for risk measures, namely, the Fatou and Lebesgue proper-
ties. The latter two are, however, not enough to guarantee any convergence rates; see Section 6.

The following is the main result of this article.

Theorem 2.1 (Rates for General Risk Measures). Let g € (1,00) and let p : L™ — R be a g-regular risk measure. Then,
there are constants ¢, C > 0 such that the following hold:
i. We have the moment bound

Bl (F) — (Pl < s

forallN > 1.
ii. We have the matching deviation inequality

P[|*(F) — "~ (F)| > €] < Cexp(— cNe*)
forallN >1andall € > 0.

An important observation is that, throughout this paper, the rates never depend on the number ¢ of options or
on the “dimension” of the underlying space X. The constants ¢ and C depend on p; the maximal range of F, G;
the number of options ¢; and the maximal Euclidean norm in G.

As an immediate consequence of Theorem 2.1, part (ii), and the Borel-Cantelli lemma, we obtain that 7/~ (F) is
a strongly consistent estimator of 7*(F). Note that, under the assumption that F and G are additionally continu-
ous, this is a trivial consequence of weak continuity of v +— 7"(F) and weak convergence of the empirical mea-
sure to the true one. However, this reasoning does not apply in the present setting as F and G are merely
measurable, and thus, v + 7t’(F) can be discontinuous.

Corollary 2.1 (Consistency). In the setting of Theorem 2.1 we have that
I\lfim 7N (F) = i#(F)

P*-almost surely.

Remark 2.1. An interesting by-product of the deviation inequality given in Theorem 2.1 is that it allows us to give
a nonasymptotic estimation of the error in the [ norm. Indeed, using the tail integration E*[|X]'] = f xP~1
P*[IX| > x] dx, it follows from part (ii) in Theorem 2.1 that

Elln(F) — (B < ¢ Vo

This is for every p > 1.
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Let us now come back to the notion of regularity in Definition 2.1 and explain both its rationale and necessity.
This is easiest done with the example of following two risk measures: p, . (X) := ess.supX and p,_ ... (X) := E[X].
Then, ph¥an(F) is just the empirical mean of F(S), and thus, convergence happens at the usual rate 1/VN. On the
other extreme of the spectrum, phx (F) equals the empirical 1-quantile, and it is well-known that, without very spe-
cific assumptions, convergence may happen at arbitrarily slow speed; the unfamiliar reader may skip to Remark
6.1. A simple observation pertaining to the source of this different behavior is that small changes of X result in
small changes of p_ .., whereas this is not the case for p__ . Indeed, changes of X on almost negligible sets can
result in significant changes of p,_ . (X), and (unfortunately) a random sample cannot properly exhibit almost neg-
ligible events. From this perspective, p_ . is very regular (and, indeed, it is g-regular for every g € (1, o)), whereas
Pmax i NOt regular at all (and, indeed, it lacks g-regularity for any g € (1, 0)).

Whereas the preceding discussion focuses only on two very extreme risk measures, it happens that Definition
2.1 actually interpolates between these two examples. Indeed, the following proposition shows that the rates
obtained in Theorem 2.1 are optimal, at least up to a factor of two.

Proposition 2.1 (Sharpness of Rates). Let g € (1, 00) and assume that F takes (at least) two distinct values. Then, there is a
coherent law-invariant risk measure p : L — R that is (q + €)-regular for every € > 0 and a constant ¢ > 0 such that

sup E[[p"(F) — p"S ()] = ——
u

N1/q

forall N > 1.

Currently, the authors do not know whether Proposition 2.1 can be improved to show that the rates obtained
in Theorem 2.1 are actually sharp (i.e., whether Proposition 2.1 holds with N~/27 instead of N~'/9). One indica-
tion that this might be true is the following: for g ~ 1, the lower bound of Proposition 2.1 is approximately 1/N,
but we already know that the actual best possible rate is 1/VN as is dictated by the central limit theorem; see Sec-
tion 6 for a short discussion. That is, for g = 1, the lower bound is off exactly by the factor of two.

Let us conclude this section with a comment regarding the proof of Theorem 2.1. As already mentioned, it
builds upon the empirical processes theory; specifically Dudley’s entropy integral theorem (see Appendix A.2).
One could, however, wonder whether the statements of Theorem 2.1 (and Theorem 2.2) follow from some rather
simple-to-obtain continuity in Wasserstein distance of p+— p#(F) in combination with convergence rates of
empirical measure in Wasserstein distance—at least if X' = R? and F, G are Lipschitz continuous. Whereas this
technique certainly works for dimension d = 1, in the present general, multidimensional setting, this approach
forces the convergence rates to be significantly worse: in dimension d > 3, the Wasserstein distance converges
with rate N~1/%; see Fournier and Guillin [20]. Thus, even for q = 1, these arguments give the rate N ~Yd in Theo-
rem 2.1 instead of N~1/2.

2.2. Results for AVaR, OCE, and SF Risk Measures

It turns out that, for all the specific risk measures discussed in the introduction, the optimal rate N ~12 can be
obtained and with easier arguments. We, therefore, state the results for these risk measures separately. For any
measurable F : X — R, recall that the shortfall risk measure (Féllmer and Schied [19]) is defined as

SFH(F) := inf{m € R : E[I(F(S) — m)] < 0}.

Here, I : R — [— 1,00) is a loss function, meaning that / is increasing and convex such that 1 € 9/(0) (the subdiffer-
ential at point zero) and /(0) = 0. In other words, SF*(F) is the smallest capital m by which we should reduce the
loss F to make it acceptable, meaning that the expected loss E[I(F(S) — m)] is below the threshold /(0) = 0.

In a similar spirit, the OCE of Ben-Tal and Teboulle [7, 8] is defined via

OCEH(F) := inf (EII(F(S) — m)] + m). 2.1)

Again, | is a loss function, and the interpretation is similar to that of shortfall risk. Importantly, OCEs cover popu-
lar risk measures, such as the average value at risk obtained with I(x) = x* /(1 — u) or the entropic risk measure
obtained with I(x) = ¢* — 1. The following result gives the convergence rate for these particular examples of risk
measures.

Theorem 2.2 (Rates for AVaR, OCE, and SF). Let p = OCE or p =SF, and in the latter case, assume that | is strictly
increasing. There are constants ¢, C > 0 such that the following hold:
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i. We have the moment bound C
E[|7*(F) — 7*~(F)|] < —=
forall N > 1. W

ii. We have the matching deviation inequality
P[|n*(F) — nv(F)| > €] < Cexp(— cNe?)
forallN >1andall € > 0.

The constants c and C depend on [; the maximal range of F, G; the number of options ¢; and the largest Euclid-
ean norm in G. The rates obtained in both parts of Theorem 2.2 are the usual rates dictated by the central limit
theorem and, in particular, are optimal; see Section 6.

Remark 2.2. Note that 7t~ (F) is readily checked to be measurable, and we do not need to resort to the outer expecta-
tion and probability in Theorem 2.2. In fact, if, for instance, p = OCE, then, by continuity of the function /, we can write

. 1 -

N (F) = geéf‘ﬁe@ﬁgl(ﬂsn) + ; 2iGi(Sn) — m) +m.

Recalling that G is countable, this shows that the random variable ¥~ (F) is measurable.
As before, Theorem 2.2 implies strong consistency.

Corollary 2.2 (Consistency). In the setting of Theorem 2.2, limn_,co 7t~ (F) = 7t# (F) P-almost surely.
Let us conclude this section with a short discussion on the biasedness of p*~(F) claimed in the introduction.

Remark 2.3 (Biasedness). For typical risk measures, p*~(F) underestimates p(F). This is easiest explained by con-
sidering the optimized certainty equivalents. In fact, we have

E[OCE*~(F)] =E [ inﬂg/l(F(x) —m)+ myN(dx)}
me X

< ;Lgﬂng [/XI(F(x) —m)+ myN(dx)}
= OCEX(F),

where the last equality follows as E[ [fduy] = [fdu for every u-integrable function f. The same applies in the
presence of trading, namely, E[n#~(F)] < e#(F).

More generally, a quick inspection of OCE and SF reveals that both are concave considered as mappings of p. As
a matter of fact, this very concavity is the reason for the bias. Indeed, concavity and lower semicontinuity of u
p!(F) implies, thanks to Jensen’s inequality for infinite dimensional random variables (see, e.g., Nonnenmacher
and Zagst [43, theorem 3.1]), that

E[p"N(F)] < pHliI(F) = p*(F),

where we use that the measure-valued random variable ) has mean . Whereas it should be noted that not all
law-invariant risk measures are concave in 1, this is often the case;” see Acciaio and Svindland [1].

We further refer to Pitera and Schmidt [47] for a more in-depth discussion on the issue of biasedness and some
empirical evidence.

2.3. Utility Maximization
It is conceivable that most of the results and methods of the present article extend beyond the estimation of risk
measures. Other issues that seem to fit to our framework and method include the estimation of risk premium
principles in insurance, (see, e.g., Young [52] or Furman and Zitikis [21] for an overview), or estimation of the
value of some stochastic optimization problems.

To illustrate the latter, let us consider another popular approach for quantifying the riskiness of a position, namely,
utility maximization: let U : R — R be a concave increasing function and set u*(F) := EF[U(F(S))]. Similar to before,
allowing the agent to invest in a market (with stock returns Gy, .. ., G,), one obtains the utility maximization problem

e
ub o (F) :=suput (F + Zgl-Gi> .
8¢ i=1

In this case, we have the following.
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Proposition 2.2 (Utility Maximization). There are constants ¢, C > 0 such that

Ellut o (F) — b (F)] < \/%

P[Iumax(P) - umaX(F)| > ‘('] < Cexp( CN&Z)
forall N >1and e > 0.

Again, note that the rates are optimal and do not depend on the dimension of the underlying nor the number e
of available options and uiix(F) is a strongly consistent estimator that typically overestimates its true value (as
we deal with maximization instead of minimization this time).

3. Rates for Average Value at Risk and Optimized Certainty Equivalents

Let us briefly fix our notation: throughout this paper, we make the important convention that C > 0 is a generic
constant. This means that C may depend on all kinds of parameters (such as some L” norms of F and G; features
of the risk measure, such as growth of the loss function [ in the OCE/SF case, etc.) but not on N. Moreover, the
value of C is allowed to increase from line to line; for instance, sup, (xy — y*) = Cx?> < Cx?/2 or CVe+1 < Cv/e for
allee N,butnot N <Cor Ve+1<+/e/C.

To keep the distinction between the analysis for bounded random variables (i.e., random variables in L” for
p = o0) and unbounded random variables (p < o) as light as possible, we use the following conventions: we put
1/00:=0, and for x > 0, x" := 1 and x* := co.

For a metric space (A,dx) and ¢ > 0, denote by N'(A,dy, ¢) the covering numbers at scale ¢; that is, N'(A,dy, €)
is the smallest number for which there is a subset A with that cardinality satisfying that, for every s € A, there is
§ € A with d,(s,3) < e. In other words, N'(A,dy, €), the smallest number of balls of radius ¢ that covers A. The lat-
ter suggests this to be some measurement of compactness, and in fact, it is an important tool in understanding
the behavior of empirical processes; see van der Vaart and Wellner [50].

Recall that e € N is a fixed number and F,Gy,...,G, : X — R are measurable functions. For shorthand notation,
write ¢-G:= Y, ¢;G; for g€ G and |G| := }"¢_, |G;|. Recall that, throughout this article, the set G C R° is assumed
to be countable and bounded. The former assumption is without loss of generality (see Remark A.1), and the lat-
ter is shown to be necessary in Proposition A.1.

The average value at risk also goes under several different names, such as expected shortfall, conditional value
at risk, and expected tail loss, and has equally many different (equivalent) definitions, for instance, as the value
at risk integrated over different levels; see Follmer and Schied [19, section 4.3] for an overview. We only use the
definition of AVaR given in (1.1). Given a loss function /, also recall the definition of OCE given in (2.1). We addi-
tionally assume that lim inf, ,/(x)/x > 1, which, by convexity and 1 € 91(0), is equivalent to the fact that I/(x) > x
for some x > 0. This assumption is there because F and G are possibly not bounded (in contrast to Section 2) but
not needed if this is the case.

We often work under the assumption that /" (the right-continuous derivative of the convex function /) has poly-
nomial growth of degree p — 1, which means that I'(x) < C(1 + |x|"~ YforallxeR. In particular, recalling the con-
vention [x|* := oo for x # 0, we see that polynomial growth of degree oo is no restriction at all; for instance, the
exponential functlon I = exp satisfies this assumption (only) for p = oo.

The goal of this section is to prove Theorem 2.2, part (i), or, rather, the following generalization thereof.

Theorem 3.1. Let p € [1, o] and assume that I' has polynomial growth of degree p — 1 and ||F||L2p(y) and ||G||Lz,,(y) are finite.
Then,

C
<—

VN

forall N > 1. The constant C depends on u only through the size of the L% (u)-norms of F and G on e, p, and the diameter of G.

E|sup|OCE*(F+g-G) — OCE(F+g-G)|
8¢eg

Observe that the measurability of OCE*~(F + g - G) is readily checked; see, for instance, Remark 2.2.

Before presenting the proof of Theorem 3.1, let us shortly elaborate on the integrability conditions therein.
These assumptions cannot be improved in general. In fact, consider the trivial case G = {0} and u = 0 for which
we have AVaR(F(S)) = E[F(S)]. Thus, we have p = 1, and it is well-known that

i

<_

> F(S,) — E[F(9)] NS

n<N




Downloaded from informs.org by [140.180.240.20] on 17 May 2024, at 12:23 . For personal use only, all rights reserved.

Bartl and Tangpi: Nonasymptotic Rates for the Estimation of Risk Measures
Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2129-2155, © 2022 INFORMS 2137

requires that F(S) has a finite second moment, that is, that ||F[|;(, is finite. We now turn to the proof of Theorem
3.1. In fact, looking at the definition of the optimized certainty equivalent, the reader familiar with the theory of
empirical processes recognizes this as a standard problem covered within this theory. Thus, at some point, an
estimate of the covering numbers with respect to the random L?(y,) norm must be computed. Fortunately, no
geometric arguments are needed, and all randomness can be controlled by some estimates involving moments
only. For this reason, it is useful to keep track of the following quantities:

Ji=1+F+|Gl M:=[llpq and My =il - (3.1)

The first result in this spirit follows.
Lemma 3.1. Assume that I’ has polynomial growth of degree p — 1. Then, we have that

|OCE¥(F+g-G)|<CMP  and (3.2)

OCE¥(F+g-G)= inf /Z(F(x) +g-G(x) — m) +m u(dx) (3.3)

ml<CMP Jy

for every g € G. The same holds true if the pair (u, M) is replaced by (i, My) (with the constant C in (3.2) not depending
on N).

Proof. Assume without loss of generality that M < oo; otherwise, there is nothing to show.
As lis increasing and of polynomial growth with degree p and G is bounded, we have that
CJP ifp<oo,

supl(F+¢-G) < .
gegp( 8-G) {C if p=oco.

(3.4)

In particular, the choice m = 0 (in the definition of OCE) and the fact that/ >— 1 yield
OCE¥(F+g-G) < /l(F(x) +g-G(x)) u(dx) < CMP
X

for all g € G, showing the upper bound in (3.2). Further, as [ >— 1 and M > 1, this also implies that the infimum
over m in the definition of OCE"(F + g - G) can be restricted to m < CM? forall g € G.

On the other hand, by convexity of / and the assumption that liminfy_,./(x)/x > 1, there exista > 1 and b € R such
that/(x) > ax — b for every x € R. This implies

/Z(F(x) + - G(x) — m) +m u(dx)
X

> /a(— CJ(x) —m) — b+ m p(dx)
X
>m(1l —a) — CMP, (3.5)
where we use that [,Jdy <M < MP, which follows from Hélder’s inequality and as M > 1. By the previous part,
we already know that OCE*(F + g - G) < CM? for all g € G. Together with (3.5), this implies that the infimum over
m in OCE!(F + g - G) can be restricted to m >— CM? for all g € G. In turn, using once more that / >— 1, this also
implies that OCE!(F + g - G) >— CM? for all g € G and, thus, completes the proof for (u, M).
Observe that (3.2) and (3.3) with (1, M) replaced by (u,, M) is obtained using exactly the same argument as
before with (1, M) replaced by (i, My). In fact, by (3.4), we have OCE*~(F + ¢ - G) < CMY;, which implies that the

infimum in the definition of OCE~(F + ¢ - G) can be restricted to m < CMf\, P-a.s. for all g € G. On the other hand, as
in (3.5), we have

/Z(F(x) +g-G(x) — m) +m py(dx) > m(1 —a) — CMY,,
X
from which we infer that the infimum in the definition of OCE"¥(F + ¢ - G) can be restricted to m >— CM}; P-a.s.
for all g € G. This, thus, shows OCE'~(F+g-G) >— CMf\/. O
Lemma 3.2. Assume that I’ has polynomial growth of degree p —1, let my € R, and define
H:={l(F+g-G—m)+m:g€Gand me[—my,mp]}.
Then, for every € > 0, we have that
1

)\

NN iz €) < (ﬁ v1

&

ifp < oo, and N(H, |- ll2, ), €) < (C/e)™ v 1ifp = co.
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Proof. Without loss of generality, we work only on the set in which [[]]| 2 1) < (otherwise, there is nothing to
show). We proceed in two steps.
a. Pick two elements H, H € H represented as

H=I(F+g-G—m)+m and
H=I(F+3-G—m)+m

and define the family of functions (¢, )ejo 1) from X to R by
@, =F+g-G—m+t(3 —g)-G+m—rin)
for every t € [0,1]. Then, H = I(p,) +m, and H =I(¢p,) +it. As G is bounded, |p,| < CJ for all € [0, 1]. By convexity
of [, its right derivative I’ is increasing. By the fundamental theorem of calculus, we have
1
/0 I'(p,)0rp, dt
<WECEDAE — &)+ G +m — i)llp2,) + |m — 1.

IH — H“LZ(HN) <

12(y) T 1M — 101

Now, note that

’ C P2

Indeed, for p < oo, this follows from the assumption that /’(x) < C(1 + |x|’ 1 for all x € R and the fact that | > 1.
For p=oco, one has, by assumption, that | is p-almost surely bounded. Hence, P-almost surely, | is also
un-almost surely bounded (by the same constant). As [ is bounded on bounded sets (by convexity), this
implies that I'(J) is un-almost surely bounded.

To conclude, we use once more that G is bounded, and hence, |(§ — g) - G| <|¢ — glJ. Therefore,

CII]II’L]zp(yN)(lg = 8l+Im—ml|) ifp<oco,

3.6
Cllg — g1+ 1m — 1) if p=co. &0

nH—Hmmms{

In the following, we restrict to p < co and leave the obvious changes needed when p = oo to the reader.
b. Fix ¢ > 0 and let A C [— mg, my] be such that

&

20,

for all m € [— mg,mg] thereis 71 € Awith |m— | <

and B C G such that

forall geG thereis §eB with |g—g|< ¢

=200,

Then, if we define exactly as H only with [— mg,m] replaced by A and G replaced by B, then, by (3.6), for
every H € H, there is H € H with ||[H — Hl|pz(, ) < ¢.
This implies that

NH -l ) €) < card(H)
< card(A x B) = card(A)card(B),

where card means cardinality.
The set A can be constructed simply by an equidistant partition of [— myg,mg] at cardinality card(A) <

(@l ||’Z2,,(HN) /€) v 1. In a similar manner, B can be constructed with card(B) < (CJ|] ||i2,,(HN) /e v 1.

Combining both steps yields the proof. O

In order to apply results from theory of empirical processes, we need the following observation.
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Lemma 3.3. The set H defined in Lemma 3.2 satisfies Assumption A.1.
Proof. Let A C [— myg, my] be countable and dense and define
H ={l(F+g-G—m):geGand me A}.

The set H’ is clearly countable. Let H = I(F + g- G — m) € H and let (m"),, C A be a sequence that converges to .
Then, H" := (F+g-G — m") € H' converges pointwise to H and in L?(v) for every measure v such that I(|F| +|G]) €
L*(v) (by dominated convergence). [

Inspecting the proof actually yields the following result, which we state for later reference.

Corollary 3.1. Let mg € R, let f : R — R be locally Lipschitz continuous, and assume that ] is bounded. Then, it holds that”

e+1
N(f(F+g-G—m):geGand me[~moml} |- e) < (f) Vi

for every € > 0.
We are now ready for the following.

Proof of Theorem 3.1. For shorthand notation, set

AN = sup |OCE*(F + g - G) — OCE"~(F + ¢ - G)|
8€g

for every N > 1. With M and My defined in (3.1), we write
E[AN] = E[ANTMy<m+1] + E[ANTMy>M1]

and investigate both terms separately.
a. We start with the first term. Lemma 3.1 guarantees that

/ H(x) (1 — ()
X

ANIpy<my1 < sup
HeH

for every N > 1, where
H:={(F+g-G—m)+m:g€Gand |m| <C(M+1)}.

By Lemma 3.3, the set H satisfies Assumption A.1. Therefore, the “empirical process version” of Dudley’s
entropy-integral theorem (i.e., Theorem A.1) implies that
E lsup

/ H() (1 — i) (%) ]
HeH

\/C_ < [H(S)P] +E { /O m\/log Nl ©) deD

for all N > 1, where H* :=I(F + ¢* - G) € H for some g* € G. By definition of ], we have that E[H*(S)? ] C||]||L2p(y) It
remains to gain control over the entropy integral term.
Assume first that p < co. Then, estimating the covering numbers of H by means of Lemma 3.2 implies that

E { /O \/log NH, |- ||L2(MN),g)dg}

00 C 20,
<CE [/ \J 0g< ”]”L (uy) 1) de}
||]||sz(y )/ Ulog v1 d&],

where the last inequality follows from substltutmg eby &:=¢/C|JIf 20y In a final step, notice that

/ 1/1og vl de<oo and E[Iflfs, )} C
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The second statement follows from Jensen’s inequality. Therefore,
E[An1myemi] < £
VN
for all N > 1, showing that the first term behaves as required. If p = oo, the same arguments apply (with ||J|[’ 120(uy)
replaced by a constant and Corollary 3.1 applied instead of Lemma 3.2), and we again obtain E[An1p<m+1] <

C/VN.
b. As for the second term, applying Holder’s inequality yields

E[AnTatyomsi] < E[AL]Y2P[My > M +1]Y2. (3.7)
N N

We start by estimating P[My > M +1]"/2. For p = o0, one has P[My > M+ 1] =0 for all N. For p < co, using first
that M, My > 1 and then Chebycheff’s inequality, we estimate
P[My — M >1] < P[M, — MP > 1]
< E[(M}, — MPY*].

Further, making use of the fact that the (Sy,...,Sy) are independent with MP = E[](S,)] for all n, one has

2
E[(M}, — MP)] [( ZU(S Y — E[J(Sx )”1))]

- —E[(](Sl)” — EJS )]

2
N

This shows that P[My > M +1]"/% < C/VN.
Regarding E [Ai,], use Lemma 3.1 to estimate

E[A%] < C(M? + E[MY)).

The same arguments as before show that E [MZP 1<0] ||L2p(p) Plugging both estimates into (3.7) shows that

C
E[ANIpmysms1] < VN

forall N > 1.
Putting both estimates together, we obtain E[Ay] < C/VN for all N > 1. This completes the proof. O

4. General Law-Invariant Risk Measures
This section deals with general risk measures, which we start by briefly describing. First, in order to allow for
unbounded F and G, one needs to define risk measures for unbounded functions. A function p: ¥ — R with p €
[1,00] is again called a (convex) law-invariant risk measure if (a)—(d) of Definition 1.1 hold with L* replaced by
L?. Further, recall that p is called “coherent” if, in addition, p(AX) = Ap(X) for all X € L¥ and A > 0.

As already mentioned, by Jouini et al. [31], every law-invariant risk measure automatically satisfies the Fatou
property as well as the spectral representation®

p(X) = sup (/{0 1)AVaRu(X) y(du) — ﬁ(y)) for X e L7, 4.1)

YEM

See Gao et al. [22] for the case of unbounded random variables. Here, M is a subset of probability measures on
[0,1) armed with its Borel o-field, f: M — [0,00) is a convex function, and AVaR is the average value at risk
defined in (1.1). Note that AVaR is evidently a coherent law-invariant risk measure. Recall the definition of | :=
1+ |F| +|G] already given in (3.1).
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Before we are ready to state the generalization of part (i) of Theorem 2.1, the treatment of unbounded F, G
requires one last definition: for every parameter p € [1, 0] and x > 0 set

wy(x) := sup{p(X) : Xl < x}.

Note that w), is convex, nonnegative, and w, grows at least linearly. Moreover, in the important case of a coherent
risk measure or if p = oo, the function w,, is linear.

Theorem 4.1. Let 1 <g<p<ooandlet p:LF — R be a law-invariant risk measure that is q-regular. Assume that G is
bounded and that
a. ||w,,(t]”)||L2(H) < oo for every t > 0 in the case that p < co.

b. ] is bounded in the case that p = .
Then,

1 L C
E|sup|pt(F+g-G) — p"(F+g-G)l| £ —p

8€g N2z
forallN > 1.

Note that, if w), is linear, then ||wp(t]p)||L2(y) < oo simply means that ||]||sz(y) is finite. In general, ||wp(t]7’)||L2(H) <00
always implies that ||/]| 2 w < o0 (by convexity of wy). For convenience, we compute in Table 1 some values of the
convergence rates obtained in Theorem 4.1.

Further observe that the rate R, ; is increasing in p and decreasing in g. The idea of the proof of Theorem 4.1 is
the following: by Section 3, we understand the behavior of the mean error for the average value at risk (being a
special case of the optimized certainty equivalents). By the spectral representation (4.1), AVaR forms the building
block of every law-invariant risk measure, and we conclude via a (multiscale) approximation, keeping track of
the risk-aversion parameter u of the average value at risk (which makes all constants explode when approaching
u ~ 1) and the growth of measures y(du) in the spectral representation (4.1) (which only puts little mass on u ~ 1).

The preparatory work needed is done in the next few lemmas.

Lemma 4.1. Let the assumptions of Theorem 4.1 be satisfied. Let X* be Pareto-distributed with scale parameter one and shape
parameter q. Then, we have that

1

oo 4
AVaR,(X") = ——— —
o q=1(1 —u)

for every u € [0,1).
Proof. The proof follows from an elementary calculation, for example, by involving the quantile representation
1 1
AVaR,(X") = —/ gx-(f) dt
1—-uyj,

of the average value at risk (Follmer and Schied [19, proposition 4.51]), where gx-(t) denotes the t-quantile of X*. O
Lemma 4.2. Let the assumptions of Theorem 4.1 be satisfied. For every p € (1, 00] and X € L?, we have that

|AVdRAXMS—JEﬂ@%—

(1 —u)'?

for every u € [0,1).

Proof. For p = oo, the claim is trivial. For p < oo, we again involve the quantile representation of the average value

at risk and apply Holder’s inequality
p-1 1
T (e
<— tydt) .
1—u [o,1]qX( )

Table 1. Convergence rates for different values of p and 4.

1
AVaR,(X)| = ——
[AVaR, (X)| = ;—

/ L1y (Hgx(t) dt
[0,1]

As the last integral equals || X]|;,, this completes the proof. O

q=1 =2 q=p p=oo

. 1q-1/2p
Ryq ="

[T
IS
<
|
N
)
5
'G‘ =
=
19
5
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Lemma 4.3. Let the assumptions of Theorem 4.1 be satisfied. For every fixed a > O, there exists a constant b > 0 such that

p(X) = sup < 0 1)AVaRu(X) y(du) — ﬁ(y))
M: s.t. \<b ,
for all X € LP with ||X]|,, < a. yeM: st (y)

Proof. Let X* be the random variable of Lemma 4.1.
a. In a first step, we show that [p(X)| < C for all X € L” with ||X||;, < a. For such X, by Lemmas 4.1 and 4.2, one has that

a < a
A—w? =@ —u

for every u € [0,1). Here, we use that g < p; hence, (1 — u)? > (1 — ). Therefore,

p(X]) < sup ( /[ | AVaR () a) — ﬁ(y))

yeM 0

AVaR,(|X]) < = AVaR,(CX") 42)

<sup ([ AVaR,/(CX)yta0) - )
yeM [0,1)

< supsup ( AVaR,(CX* A n)y(du) — ﬁ(y)) =sup p(CX* A n)
neN yeM [0,1) neN

for every X with ||X]|;, <a, where the latter inequality follows by monotone convergence. Note that CX* again follows
a Pareto distribution with shape parameter g, and hence, sup, .,,p(CX* A 1) is finite by definition of g-regularity.

It further follows by convexity and monotonicity of p together with p(0) = 0 that |p(X)| < p(|X]) for all X € L?. This
implies that, indeed, |p(X)| < C for all X € L7 with || X||;, <a.

b. We proceed to prove the claim. Define

@ :Ry = [0,00] by o¢(y):=sup (xy — sup p(xX* A n)).

xeR, neN

Then, ¢ is convex, increasing, and as sup, p(xX" A n) < oo for all x € R,, one can verify that ¢(y)/y — o as
y — co. Now note that the (spectral) representation of p in (4.1) implies that

sup p(xX* A n) = / AVaR, (xX") y(du) — B(y)
neN [0,1)
for all x > 0 and y € M. Therefore, one has

B(y) = sup ( AVaR,(xX") y(du) — p(xX*))
[0,1)

x>0

=@ </ AVaR,(X") y(du))
[0,1)
for every y € M. For every X with [|X||;, <a, by (4.2), one has

/ AVaR,(X)y(du) — B(y) < C / AVaR,(X") y(du) — (y)
[0,1) [0,1)

<Co ' (B(y) = B,
where ¢! denotes the (right)-inverse of .
As ¢(y)/y — oo when y — oo, one has that ¢ !(x)/x — 0 when x — oo, which implies that
Co~(B(y)) = B(y) »—co  when B(y) — co. (4.4)

Now recall that p(X) equals the supremum over y € M of the left-hand side of (4.3) and that |p(X)| < C for all X
with [|X]|;; < a by the first part of this proof. Therefore, (4.4) implies that there is some constant b such that only y €
M for which B(y) < bneed to be considered in the computation of p(X). O

(4.3)

Lemma 4.4. Let the assumptions of Theorem 4.1 be satisfied. For every fixed b € R.., we have

I,([r,1)):= sup  p(r,1)<CA—n'
yeM s.t.\ B(y)<b

for every r € [0,1).
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Proof. Let X" be the random variable of Lemma 4.1. Then, it follows from interchanging two suprema in the spec-
tral representation (4.1) (one over n and one over y), monotone convergence (applied under each y), and Lemma
4.1 that

sup p(X* A n) =supsup </ AVaR, (X" A n)y(du) — ﬁ(y))
YEM n [0,1)

q
z}/EMig(}%K /[O D1 )w y(du )—ﬁ(y)) (4.5)

By assumption sup, p(X* A n) € R, which implies that

1 -1
su (du) < (su X /\n)+b+1) C.
yeM st‘pﬁ()/)<b/[01) (1- u)l/q y q pp

In particular, this implies that

_ 1/
ins s 1)(1 ') ) < C1— .

yeM s.t. B(y)<b T-u

which proves the claim. O

Lemma 4.5. Let the assumptions of Theorem 4.1 be satisfied. Let 0 < b < a < 1. Then, it holds that
S T2 (a2 A2 < Cx v )
nx1

for every x € [0, c0) (where C does not depend on x).

Proof. For x =0, there is nothing to prove. We now consider the case x € (0, 1], denote by s,, the summand, and set

log(1/x)

Then, a quick computation reveals
s = 2" i <y,
" 2b-a) if n>ny.
By properties of the geometric series, one has

_ nN(l a)
Z Sy = CXZ ond-a) < Cx < Cy2w(1-a)

n<ny n<ny

Moreover, as 5% ! = t°85 for s, t > 0, the definition of 1, implies that

2nN(1fﬂ) — (2(17}&&2 2)10g(1/X)

= X1, (4.6)

(1> log (2“’117);12%2)

x
Putting everything together, this implies
an<Cx x5 = Cxi.

n<ny

For the tail of the sum, the same computation as in (4.6) shows that 2"V¢=9 = xt%. Therefore, another application of
the geometric series properties implies that

Z Sp = Z 2n(b7u)

nxny n>ny

onn(b—a)

. 2[; < C2”N(b a) _ C




Downloaded from informs.org by [140.180.240.20] on 17 May 2024, at 12:23 . For personal use only, all rights reserved.

Bartl and Tangpi: Nonasymptotic Rates for the Estimation of Risk Measures
2144 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2129-2155, © 2022 INFORMS

Hence, adding the sums over 1 < ny and n > ny and noting that (a — b)/(1 — b) € (0,1) and, hence, x < x@~)/(1-0)
for x € [0,1] yields the claim for x € (0,1].
For x > 1, we have x > x(@~0/(1-b) apd

Do (a2 A2 <xy 27 (2" A2 <Cx,

n>1 n>1
where the last inequality follows from convergence of the geometric series/the previous step. O
For every N > 1 and u € [0, 1), define

55 :=sup|AVaRi(F+g-G) — AVaRiN (F+g-G). 4.7)
8€g

The following lemma controls uniformly the behavior of 6. Observe that measurability of AVaR,"(F+g-G) is
addressed in Remark 2.2. In particular, &) is measurable for every u € [0,1), and a quick argument shows that
SUP,e(0,0] 6 remains measurable for every v € [0, 1).

Lemma 4.6. Let the assumptions of Theorem 4.1 be satisfied. We have that

C C
E| sup &) < A
Le[o,v] “] (1-—0)VN  (1-o)"%
for every v e (0,1).
Proof. We start with the easier estimate, namely, that
C
E|lsup )| < — . (4.8)
LE[O,v] 1T a-o

As |F+g-G| < (] for every g € G, monotonicity of AVaR, implies AVaR!/(F + g-G) < AVaR!/(CJ) for every g€ G
and similarly with p replaced by . Now, Lemma 4.2 implies

SN < ICT N2y + ICT 2o
sup o, = 1/2p .
uel0,v] (1 — U)

Further, Jensen’s inequality implies E[[|C]|zz )] < [IC] |24, and thus, we get (4.8).
To conclude the proof, we are left to prove that

C
E| su 6{?]3, (4.9)
[Hﬁ] (1-0)VN

which we do in several steps.
a. Define

H:={p(F+g-G):¢:R— R is 1-Lipschitz, ¢(0) = 0 and g € G}.

Then, it holds that
1
-0

sup o < 1 . (4.10)

uel0,v]

JH = e

sup
HeH

Indeed, every function appearing in the definition of AVaR, is of the form @(F+g-G)/(1 —u) for a 1-Lipschitz
function; see (1.1). Subtracting ¢(F(0) + g- G(0))/(1 — u) does not change the value of the difference of two inte-
grals, which yields the claim.

b. We proceed to compute the covering numbers of 7. First, observe that because G is bounded, there is a cons-
tant Cp such that |F+¢- G| < CoJ and |(g — §) - G| < CyJ for all g,§ € G U {0}. The value of Cy is kept fixed throughout
this proof. Let ¢ > 0 and set

1y ’ <o, (4.11)

6Co) Pl
”]”L‘X’(HN)/ if p = co.
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First, let L. be a set of 1-Lipschitz functions from R to R that vanish at zero such that, for every 1-Lipschitz
function ¢, there is ¢ € L, satisfying sup;| ¢, coa|9(t) — @(£)| < &/3. Such a set L, can be constructed with

card(L,) < exp ((e/a.%)’. (4.12)

we detail this in step (c). Moreover, let G. € G be such that, for every g € G, there is § € G, satisfying |g — 3| <
€/(3Cpa.). Such a set G, can be constructed with

- C €
Card(gé-) < <(£/aé)/\1> , (413)

using an equidistant grid of the bounded set G c R®.
Now, set

H.={p(F+g-G):pel, 3€G.}.
We claim that, for every H = ¢(F + ¢- G) € H, there is H= PF+3-G)e H such that ||[H — H”LZ(yN) < e¢. If this is
true, then

N N, €) < card(H,) < card(L,)card(G.)

<ex ¢ . ¢ C (4.14)
= P\ Ml ) A1)\ g ) AL '

for every ¢ > 0, where the last inequality holds by (4.12), (4.13), and the choice of 4, in (4.11).
To prove this claim, let ¢ € L, be such that sup,; ¢, c,..1IP(t) — @) <€/3, g € G, such that |§ — g < ¢/(3Coa.)
and write

I~ gy < Wz, (H = EDlzguy + 10psa, (H = Bl - (4.15)

To estimate the first term in the right-hand side of (4.15), recall that ¢ is 1-Lipschitz, and hence,
1<, (H = F)llp2gu,) < Nj<a, (@(F + 8 - G) = @(F + 8- G))llr2(py)
< (P(F+8-G) — @(F+3 - G2y
N ., 2
< sup  |p(t) — @+ Conclg — &l <+
te[—Coa,,Coa, |

by choice of ¢ and g. As for the second term in the right-hand side of (4.15), first note that it is zero in case p = o
because 1j5,, =0 un-almost surely by the choice of 4, in (4.11). Otherwise, if p < oo, recalling that |H|,|H| < Co],
Markov’s inequality and the choice of 4, imply that
s (H = FDll2 ) < 2Coll 1o T2
< ZCOHIPJJLZ(PN) < f
This proves our claim that ||H — H ||L2(HN) <e. e 3

c. It remains to argue that the set L, in step (b) exists. To that end, denote by L the set of all 1-Lipschitz functions
¢ : R — R satisfying ¢(0) = 0. Further, for ¢ € L, denote by

@(Coﬂsf)
Co&le

its rescaled restriction. Then, R(L) consists of 1-Lipschitz functions that are bounded by one, and van der Vaart and

Rlp):[-1,1] >R, t+>

Wellner [50, theorem 2.7.1] imply that there exists a set R/ with cardinality at most exp (W} such that, for every
@ € R(L), thereis ¢’ € R, with SUPe(_11] lp(t) — @’ (t)| < €/(6Coa,). By the triangle inequality, there is a set Re c R(L) of
the same cardinality as R/ such that, for every ¢ € R(L), there is ¢ € R, satisfying supt€[71’1]|¢(t) — @(H) < ¢e/(BCoac).
Now, extend every ¢ € R, to a function with domain R via

Ep):R—-R, tl—>C0a£(p((— 1)v (C(fa- A 1))
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and note that

sup  |p(t) = E(@(D)] = Coae sup [Rip)(t) — P(t)].
fe[*coﬂucoﬂf] tE[*l,l]

Hence, L. := £(R,) is the desired set.

d. The set H satisfies Assumption A.l. Indeed, first observe that the set of continuous functions from R to R
endowed with the topology of uniform convergence on compacts’ is separable; hence, the subset of 1-Lipschitz
functions is separable as well w.r.t. this topology. The rest of the argument follows from similar arguments as pre-
sented in Lemma 3.3.

e. We use the empirical process version of Dudley’s entropy integral theorem, that is, Theorem A.1. Note that
H*:=0 € H, and therefore, Theorem A.1 implies

C oo
[ ] e VT
C

uel0,v]
. C C Y\ -
= \/—NE “]“sz(yN)/o \/log (eXp (E'(p+1)/p A 1) <5(P+1)/P A 1) ) dé‘| ’

where the last line follows from using (4.14) and substituting ¢ by & = ¢/[|CJP ||1/ P . Tt remains to notice that the
(now deterministic) integral over dg is finite. Moreover, Jensen’s inequality 1mp11es E[NI sz(‘uN)] < 12(u)- and the
latter term is finite by assumption.

In conclusion, we show (4.9), and the proof is complete. O

Proof of Theorem 4.1. Recall the definition of M := [|][| () and My := [|[l|s(,, ) given in (3.1). As in the proof of The-
orem 3.1, we set

Ay :=sup|pt(F+g-G) — p"(F+g-G)|
8€g

and consider both terms in
E'[An] = E'[ANIMmy<mis1] + E'[AN LMy s M1 ]

separately (note that linearity of the outer expectation holds here because {My <M + 1} is a measurable set).
a. As Gis bounded, we have ||F + g - G|| W < CM. Therefore, by Lemma 4.4, there exists some b such that

pH(F+g-G)= sup ( AVaR!(F+g-G)y(du) — ,3(7/))
yeM s.t. B(y)<b [0,1)

for all g € G. Possibly making b larger, the same reasoning implies that, on the set My < M + 1, the same represen-
tation holds true if u is replaced by py. Recalling the definition of 6" in (4.7) and the definition of T, given in
Lemma 4.4, we can write

AnTpy<msr < sup / SN y(du)
yeM s.t. B(y)<b/[0,1)

< Z Ty(I,) sup oy,

n>1 u€l,

where I, := [1 — 27"*1,1 — 27") for every n, that is, I; = [0,1/2), I, = [1/2,3/4), and so forth
Now, estimate T(I,) < C27"/7 by means of Lemma 4.4 and E[sup,.; 0N < C(Z"\/_ ) A 2"% by means of
Lemma 4.6. Then, an application of Lemma 4.5 implies that

2}1
E[ANIpy<mn ] < CZ 27 (\/_N A 2”/2p>

n>1
C C C
—<

| -
- 1/9-1/2p NT 1/q-1/2p 7
/N 1-1/2p N /N 1-1/2p

where the last inequality holds as 1{‘:%;’7 €(0,1).
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b. The second term is controlled in a similar way as in the proof of Theorem 3.1; namely, we first estimate

E'[AnIyomi] < E[AY]V2P[My > M +1]'2
L CEIARI"
VN

It, therefore, remains to check that E*[AIZ\,] <C. In fact, if p = 0o, then My <M almost surely, and there is noth-
ing left to prove. So assume that p < co. Using monotonicity of p and the fact that G is bounded, this boils
down to checking that E[p“N(C])2] < C. To that end, by definition of w, and as | > 1, one has that

1
P (CI) < wy (ClMlirey)) < wp CNZI(Sn)p> :
n<N
By convexity of x — w,(x)?, we may further estimate

ETp(CIP) <53 Elwy (]S ]

n<N
- /X w0, (CJ(x) ) (),

and the last term is finite by assumption.
Combining both steps completes the proof. O

5. Deviation Inequalities
In the following, we prove (a generalization of) part (ii) of Theorem 2.1 and part (ii) of Theorem 2.2.

Theorem 5.1. Assume that F and G are bounded functions and that the set G is bounded. Moreover, let q € (1, 00) and assume
that p is q-regular. Then, there are constants ¢, C > 0 such that

P*|sup|pt(F+g-G) — p!'N(F+g-G)| > e} < Cexp(— cNe?)
89
forall e >0and N > 1.

Proof.
a. In a first step, recall that F, G, and G are bounded; hence, there is a constant 2 such that |F+g- G| <a for all
g € G. As the optimal m in the definition of the average value at risk is given by a respective quantile, it follows that

AVaRl(F+g-G) = ‘ir|1f ﬁ/(P+g- G —m), + (1 — u)m pu(dx) (6.1)
m|i<a L — X

for every u €10,1) and g € G, and (5.1) remains true if y is replaced by uy. Further, as [.(1 — u)m (u — py)(dx) =0

for all m € R and u € [0, 1), this implies that

N

|AVaR“(F +¢-G) — AVaR,¥(F+¢-G)| < 16_0 - (5.2)

where we set

on =

sup [ H(x)(u — uy)(dx)| and
HeH JX
H:={(F+g-G—m), :|m<aand geg}.

Note that, by Lemma 3.3, the set 7 satisfies Assumption A.1.

b. In a second step, notice that the same arguments (again, actually simpler as ] is bounded) as in the proof of
Theorem 2.1 imply that there is some b > 0 such that the supremum over y € M in the spectral representation (4.1)
of p can be restricted to those y for which p(y) < b. This implies

lp“(F+g-F) — p*v(E+g - G)l

|AVaR!(F + g - G) — AVaR}V(F + ¢ - G)| y(du)
1

< sup [0,
yeMst p(y)<b

N
< Zl"b(ln) (suplé_0 ” A C1>,

n>1 uely
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where I, :=[1 —27"",1 —27") for every n and the constant C; appears because F, G, and G are bounded. Without
loss of generality, we may assume that C; > 1. Then, estimating T',(I,,) < C;27"/7 by Lemma 4.4, we obtain

sup|pt(F+g-F) — p'N(F+g-G)| < C@Z 2’””((2”66\]) AT)
8€G n>1

< CC1GAB)) v 8Y),

for all N > 1 almost surely, and the last inequality follows from Lemma 4.5. Finally, as 8} < C; almost surely, we
conclude that

sup|pt(F+g-F) — p"(F+g-G)| < C(6))"/". (5.3)
8€g

c.In a last step, it remains to estimate &) . By Corollary 3.1, one has that

e+1
N lore) < (f) vi

for all € > 0. Hence, because H satisfies Assumption A.1, Theorem A.2 implies that

2
P[6) > €] < Cexp <— Nce)

for all ¢ > 0 and N > 1. The proof is completed by plugging the last estimate into Equation (5.3). O
Theorem 5.2. Assume that F and G are bounded functions, that the set G is bounded, and let p = OCE be the optimized cer-
tainty equivalent risk measure. Then, there are constants ¢, C > 0 such that

P|sup|pt(F+g-G) — p"N(F+g-G)| > s} < Cexp(— cNe?)
8€g
forall e >0and N > 1.

Proof. The proof is similar to the one given for Theorem 5.1, and we keep it short. By Lemma 3.1, one has

=: 56\]

/ H(x) (1 — ) ()
X

lp"(F+g-G) — p*(F+g-G) < sup
HeH

almost surely for the set
H:={(F+g-G—m)+m:g€qand |m| <a}

with a such that [F + g- G| < a for all ¢ € G. By Lemma 3.3, the set H satisfies Assumption A.1. Thus, an application
of Theorem A.2 again implies that P[5} > ¢] < Cexp(— cNe?) for some constants c,C > 0. This concludes the
proof. O

6. Sharpness of Rates

Whenever investigating average errors involving a (linear) dependence on i.i.d. phenomena, the central limit the-
orem assures that the 1/VN rate cannot be improved. Indeed, take, for instance, p(X) := E[X] = AVaRy(X). Then,
if 1 is a probability on [0,1] and F is a (bounded) function that is equal to the identity on [0, 1], one has that

pt~(F) = %ZF(S,,) approximately has the distribution A (P“(F), Varg(s))>

n<N
for large N by the central limit theorem, in which A/ denotes the normal distribution and Var(F(S)) is the variance
of F(S). In particular, E[|p"(F) — p*~(F)|] asymptotically behaves like /Var(F(S))/N, and P[|p*(F) — p*~(F)| > €]
asymptotically behaves like 2d(— ¢2N/Var(F(S))), where @ is the cumulative distribution function of the stan-
dard normal distribution. We refer to Belomestny and Kratschmer [6], Beutner and Zahle [10], and Chen [11] for
central limit theorems for risk measures.

In comparison with the 1/VN rate, the rates obtained for general risk measures, for example, in Theorem 2.1
are worse. As the proofs are presented, they depend on the notion of regularity of the risk measure given in Defi-
nition 2.1, and this section is devoted to showing the necessity of regularity; we prove Proposition 2.1. To that
end, to ease the notation, for probabilities ;1 on R with bounded support, we write

p(u):=p(X) where X~ p.
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Remark 6.1. Without the assumption that p is g-regular, the proof of Proposition 2.1 becomes rather trivial: take
p(X) := ess.supX and let u be some probability with support [0,1]. As p(uy) = max,<nX, (Where (X,) is an i.i.d.
sample of 1), one has

Pllp) — plu) > €] = P maxX, <1 ¢] = uif0.1- )"

For suitable choices of u, the latter term can converge arbitrarily slowly to zero. Therefore, E[|p(u) — p(uy)ll =
J; 3 u([0,1— eV de converges arbitrarily slowly as well.

The proof of Proposition 2.1 mimics the idea of Remark 6.1, simultaneously enforcing regularity of p. To ease
notation, denote by

Ber(p) := (1 — p)oo + po1 (6.1)

the Bernoulli distribution with parameter of success p € [0, 1]. Then, for u = Ber(p), the empirical measure iy of u
satisfies

A R 1
iy = Ber(p)y = Ber(p,) where p, := NZX" (6.2)
n<N

(almost surely), where (X,,) are i.i.d. Ber(p) distributed. This simple formula is actually the reason why we stick
to the Bernoulli distribution as computations become a lot easier.
We start with two simple lemmas and leave their simple proofs to the reader.

Lemma 6.1. Let p € (0,1). Then,

AVaR, (Ber(p)) = % Al

for every u € [0,1).
Lemma 6.2. It holds that
sup((1 —x )a+x°((ax) A 1)) = (1 — a®)a +a°

x>1

for every a € [0,1] and 6 > 0.
Proof of Proposition 2.1. For shorthand notation, set 6 := 1/g. Define p : L* — R by
p(X) :=sup((1 — x°)AVaRy(X) + x °AVaR;_;,(X)). (6.3)

x>1

As AVaRis a law-invariant coherent risk measure, p inherits all those properties.

To check that p is (g + ¢)-regular for every ¢ > 0, fix such € and denote by X* a random variable with the Pareto
distribution with scale parameter one and shape parameter g + ¢. Then, X* has finite gth moment, and the defini-
tion of p together with Lemma 4.2 imply that

p(X* An) < ||X7|| sup((1 — x0)1 + x0x1/1T) < 0o

x>1

for all n € N. As the right-hand side does not depend on 7, this shows that p is (g + ¢)-regular.
Now, let py := 1/N and let (X)) be an i.i.d. sample of Ber(py), that is, P[X} = 1] = py = 1/N for all n and N. Fur-
ther, recall that the empirical measure of Ber(py) is Ber(p ), where p := 43", . XN. We show that

1]
p(Ber(pn)) — E[p(Ber(py))] = %N

for all N. Using the triangle inequality, this clearly implies the statement of the proposition.
By Lemmas 6.1 and 6.2, we compute

p(Ber(pn)) = Su§((1 —x 0y +x7((xpN) A 1))

= (1= ppn + 1%

and similarly,

p(Ber(py)) = (1 — p2)py + P



Downloaded from informs.org by [140.180.240.20] on 17 May 2024, at 12:23 . For personal use only, all rights reserved.

Bartl and Tangpi: Nonasymptotic Rates for the Estimation of Risk Measures
2150 Mathematics of Operations Research, 2023, vol. 48, no. 4, pp. 2129-2155, © 2022 INFORMS

Now, recall that E[j,] = pn, and by Jensen’s inequality, E[35,] = pXpn; hence,

p(Ber(pn)) — E[p(Ber(py))] > p} — E[pY].
For the set
Av:={py=0}={X) =0 forall n<N},

one computes
P[AN] =(1 — pN)N = exp (N log <1 — ;)) > exp(— 2)

for N > 2. Moreover E[p%] = E[p%1 4] and an application of Holder’s inequality (with exponents p=1/6 and
g=1/(p —1)=1/(1 - 9)) gives

E[py] < E[py1 PIAR]
< pf{,(l —exp(— 2))1_5 =: p}ijc

for all N > 2. Here, we also use that E[f;] = py and the previous computation for (the limit of) P[Ay].
In particular,

p(Ber(px)) — E[p(Ber(py)] > pi(1 — )
forall N > 2. As c € (0,1), this completes the proof (considering the case n = 1 separately). O

Remark 6.2. In the theory of risk measures, two continuity properties are often considered: the Fatou property and
the stronger Lebesgue property. We refer the unfamiliar reader to Follmer and Schied [19, section 4.2]. A result of
Jouini et al. [31] ensures that every law-invariant risk measure automatically satisfies the Fatou property, and it is
easy to see that a g-regular law-invariant risk measure satisfies the Lebesgue property.

Small modifications in the proof of Proposition 2.1 actually give the existence of a law-invariant risk measure
that satisfies the Lebesgue property but for which no polynomial convergence rate holds true.

7. Additional Proofs

7.1. Remaining Proofs for Theorem 2.1

We finally provide the proof of Theorem 2.1 for the case that p is the shortfall risk measure.
a. Define the function ] : R — R by

Jom) = inf [1F-+g-G - m)u(as),

and in the same way, define the (random) function [ with p replaced by uy. Further, let a > 0 such that |[F+g- G| <a
for every g € R. Then, |t#(F)| < a, or in other words,

7" (F) = inf{m € [a,a] : J(m) < 0}

The same is true if u is replaced by uy and | by [y (almost surely).

b. We claim that there is ¢ > 0 such that (/i) < J(m) — c(in — m) for all m, 71 € [— a,a] with m < /1. Indeed, as | is
convex and strictly increasing, its (right) derivative I’ is strictly positive. Now, let g € G be optimal for J(171) (for nota-
tional simplicity, otherwise, use some e-optimal g), that is, J(m) = [I(F + g- G — m)du. The fundamental theorem of
calculus then implies

](ﬁz)S/l(F+g-G—ﬁ1)dy

=/l(F+g-G—m)—(ﬁ1—m)/ll’(F+g-G—m+t(ﬁ1—m))dtdy.
0

The term inside the second integral is larger than c := infy <y, (t) > 0. So J(i1) < J(m) — c(in — m), which is what
we claim.

c. We claim that | and [y are continuous. Indeed, this is an easy consequence of the continuity of (m,g) —
JUF +g -G — m)du together with the fact that G is relativity compact (similarly for Jy); we spare the details.
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d. Step (b), in particular, implies that ] is strictly increasing. Combining this with the continuity of | yields that
it (F) is the unique number satisfying J(rt#(F)) = 0. Similarly, 7t#~ (F) is the unique number satisfying Jy(mt!~(F)) =0,
and therefore,

(et (F)) = J(r*(F))| = (e (F)) — Jn (e~ (F))|
< sup [J(m) — In(m)] =: An.

|m|<a

Making use of step (a), this implies |/~ (F) — 7 (F)| < cAn, and so it remains to gain control over Ay. As
AN <sup

[~ 1w
HeH
H:={l(F+g-G—m):|m|<aand g€ G},

for

we can use Lemma 3.3, Corollary 3.1, and Dudley’s theorem as in the proof of Theorem 2.2 to obtain E[Ay] <
C/VN for all N > 1. Similarly, Corollary 3.1 and the arguments given for the proof of Theorem 5.1 imply that
P[Ay > €] < Cexp(— cNe?) for all € >0, N>1, where ¢ > 0 is some (new) small constant. This completes the
proof.

7.2. The Proof of Proposition 2.2

We only sketch the proof of Proposition 2.2 as it is very similar to that of Theorem 2.1 on the optimized certainty
equivalents. The only difference is the absence of the component m (in the definition of OCE), which actually
makes the proof even simpler. In particular, we have

NH{UF+g-G):g€eGhl e ) < (g) v1

for all € >0 by Corollary 3.1. To conclude the proof, copy the arguments given for the proofs of Theorems 3.1
and 5.2.
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Appendix. Supplementary Results

In this appendix, we provide an additional result pertaining to the boundedness assumption on G. Recall that G is said to
be bounded as a subset of R equipped with the Euclidean norm. Further, we state two results from empirical process
theory that we use in this article and comment on the measurability of the plug-in estimator.

A.1. The Set G Needs to be Bounded
Our setup also includes the case of risk-based hedging, in which case one rather writes

n'(F) = inf{m € R : there is some g € G such that p*(F — m +g-G) < 0}.

(This expression follows from additivity on the constants of p").

In prose, n#(F) is the minimal capital m needed such that, possibly after trading, the loss F reduced by m becomes
acceptable. In this setting, one typically does not restrict to bounded strategies, that is, one takes G = R°.

The goal of this section is to prove the next proposition, which states that requiring G to be bounded is not just a tech-
nical simplification we made but, in fact, necessary.

One precaution needs to be made though: assume, for instance, that G; = 0 for all i; then, clearly g+— p*(F+g-G) does
not depend on g, and the size of G does not matter. To exclude such cases (without too much effort), we assume that
(i, G) is nondegenerate in the sense that, for every g € R\ {0}, one has u(g-G <0) > 0.

Proposition A.1. Let p: L* — R be any law-invariant risk measure, let F and each G; be bounded, and let (1, G) be nondegenerate
in the preceding sense. Assume that 7#(F) € R and

E[|m*(F) = v (F)[] = 0
as N — oo. Then, the set G needs to be bounded.

Proof. We show the negation, namely, that, if G is unbounded, convergence cannot be true. To that end, let (¢") be a
sequence in G witnessing that G is unbounded. After passing to a subsequence, there exists g* € R® with |g*| =1 such that
§"/Ig"| = . By assumption, u(g*-G <0) >0, and hence, there is ¢ > 0 such that

pU) >0 where U:={xeX:¢"-G(x)<—¢}.
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By definition of 77, one has
N (F) < p"~(F + " - G)
for every n € N. Moreover, it holds that

F+g"-G<supF+supg”-G=a, pyas.on{uyU)=1}
u u

for every n € N. By assumption, the first term in the definition of a, is bounded. Further, as g"/|g"| converges to g, one

has that
g-G= Ig”l(g‘~G+ (&—g*) -G)

g Ig"|e
<8 —e+C| = — <—2—
'g'( ‘|g"| g) 2

p'(F+g¢"-G) < ptN(a,) =a, ——oco  on {uy(U) =1}

on U for all large n. By monotonicity of p#v, this implies

as n — oo. Finally, as
Pluy) =1]=1—(1 - )" >0

for every N >1, we conclude that 7t#~(F) =— co with positive probability. In particular, E[|rt*(F) — ntN(F)|] = oo for every
N > 1, which proves the claim. O

Remark A.1. Let us argue that our standing assumption that G is a countable set (which is there to circumvent issues
regarding measurability) can be made without loss of generality. If G is not necessarily countable, we take a subset G’ ¢ G
that is countable and dense. If p¥ is a risk measure that is finite on L(v) for p € [1,o0], then it is automatically continuous
w.r.t. |||l In particular, if F and |G| are in LP(v), then for every g€ G and (g"), € G’ that converges to g, we have that
F+g¢"-G— F+g-Gin LP(v). As a consequence, under these assumptions,

n'(F) = infp"(F+g-G) = inf p"(F +g - G).
8€g g€q’
This shows that, in all considerations made in this paper, the set G can be replaced by the set G'.

A.2. Two Inequalities from Empirical Process Theory

Recall that S,(S,),s; are ii.d. random variables taking their values in a Polish space X distributed according to y and
that py =%, \0s, is the associated empirical measure. Moreover, let F be a set of measurable, u-square integrable
functions from X to R, and recall that N'(F,||-[l1»(,), €) is the covering number of F w.r.t. the L”-norm at scale ¢. Finally,
we present results only under the following assumption regarding measurability.

Assumption A.1. There is a countable set F' C F such that, for every f € F, there is a sequence (fn), in F' such that f, —f
pointwise and in L2(u).

Note that Assumption A.1 implies that

1
2 f(Sn) —ELFS)];

n<N

1
N 2 f(Sn) — ELFS)]

n<N

sup
feF

= sup
feF’

in particular, the term on the right-hand side is measurable. Moreover, a set F that satisfies Assumption A.1 is pointwise
measurable in the sense of van der Vaart and Wellner [50, section 2.3.3].
We first state Dudley’s entropy integral theorem in the form needed here.

Theorem A.1. Suppose that Assumption A.1 is satisfied and let f* € F be an arbitrary but fixed function in F. Then, we have that

L3 S~ EIFS) H

n<N

E [sup
feF

C . 1 «
< PP E| [\ lop N s e

for all N> 1, where C is an absolute constant.

Proof. For completeness, we provide the proof of this standard fact. Note that, in all of the following arguments, the set
F can be replaced without loss of generality by F’, ensuring that no measurability issues occur. By the symmetrization
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|

where the (¢,), are i.i.d. random signs (i.e., P[e, = =1] =1/2), which are stochastically independent of (S,),.. Now, Hoeffd-
ing’s inequality (van der Vaart and Wellner [50, lemma 2.2.7]) implies that, conditionally on (S,),, the process (Xf)fef,
where X := -1 SN €4f(S,) is sub-Gaussian w.r.t. to the L?(u,,) norm. Hence, Dudley’s entropy integral theorem (van der

lemma (see van der Vaart and Wellner [50, lemma 2.3.1]), we have that

(s

n<N

E {sup ] LS (s~ ELAS)] H <oF [sup

feF n<N feF

Vaart and W‘glner [50, corollary 2.2.8]) for sub-Gaussian processes applied conditionally on (S,), gives
E [sup |Xf|'(sn>n1 < Enxf»l’(sn)n] +C [\ log N E, i) (A1)
feF

Finally, as the ¢, f*(S,) s are i.i.d. zero mean random variables, Holder’s inequality assures that

2712
1 1
E[IX:[1 < E <TNZ enf*<sn>) = ELf ()"

n<N
Thus, the statement of the theorem follows by integrating (A.1). O
Theorem A.2. Suppose that Assumption A.1 is satisfied, that there is M such that |f| <M for all f € F, and that

NEN o< (D) v (a2)

for all € >0, where a,b> 0 are two constants. Then, there is a constant C depending only on a, b, M such that

N A6~ BN | <Cexp(- N%Z)

n<N
Proof. The goal is to apply van der Vaart and Wellner [50, theorem 2.14.10]. To that end, we may assume without loss
of generality that 0 <f <1 for every f € F. In a first step, note that (A.2) implies that

P|sup

feF

forall e >0 and N> 1.

K
suplog N'(F, || llrzqy €) < -
Q

for all € >0, where K is a constant depending only on a and b, and the supremum is taken over all probability measures.
This is exactly van der Vaart and Wellner [50, equation (2.14.8)], which is the assumption needed to apply van der Vaart
and Wellner [50, theorem 2.14.10]. Hence, with the notation of that theorem, we have U =5/3 <2 so that, for 6 =1/6, there
are constants @ and $ depending only on K such that

LS A~ EIFS)

n<N

P {sup > €:| <a exp(ﬁ(\/ﬁe)mé)exp(— 2(VNe)?)

feF

for every € >0 and N > 1. Recalling that U+ 6 =11/12 <2, a quick computation shows that
2
a exp(B(VNe)"")exp(— 2(VNe)?) < Cexp <f N%),

for some constant C depending on a and f. This completes the proof. O

Endnotes
1 See, for instance, McNeil et. al. [42, section 2.2] for ample discussion.

2 Observe that, in contrast to the original definition (Artzner et al. [2], Follmer and Schied [19]), we take risk measures to be increasing. This
means that X models the (discounted) loss, and p(X) is the capital to be added to a position with loss X to make it acceptable; see, for exam-
ple, McNeil et. al. [42, chapter 6] for a similar framework and more details. This is done for notational convenience and does not affect gener-
ality. In fact, putting p(X) := p(— X), the functional p is a risk measure in the sense of Artzner et al. [2] and Follmer and Schied [19].

3 Actually “law-determined” might be a more sensible term to describe this property, but in accordance with the literature, we use the term
“law-invariant” because it is predominantly used.

4 The issue of numerical simulation of the estimator pt'~(F) is considered in Chu and Tangpi [12].
5 That is, there is a constant Cg > 0 such that sup, ¢ |x] £ Cg, where | -| denotes the Euclidean norm on R°.
8 For instance, this is always true for the law-invariant comonotonic risk measure; see Acciaio and Svindland [1, corollary 10]

7 Observe that || flleo := sup, | f(x)| represents the supremum norm of f and not the essential supremum norm that we denote || - || .
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8t also goes under the name “Kusuoka representation” as the L*-version was discovered by Kusuoka [40].

9 That is, w.r.t. to the topology induced by the metric d(p,P) := >, (1 A Supep_yule(t) — (B 27k
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