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ABSTRACT Climate change jeopardizes human health, global biodiversity, and 
sustainability of the biosphere. To make reliable predictions about climate change, 
scientists use Earth system models (ESMs) that integrate physical, chemical, and 
biological processes occurring on land, the oceans, and the atmosphere. Although 
critical for catalyzing coupled biogeochemical processes, microorganisms have 
traditionally been left out of ESMs. Here, we generate a “top 10” list of priorities, 
opportunities, and challenges for the explicit integration of microorganisms into 
ESMs. We discuss the need for coarse-graining microbial information into functionally 
relevant categories, as well as the capacity for microorganisms to rapidly evolve in 
response to climate-change drivers. Microbiologists are uniquely positioned to collect 
novel and valuable information necessary for next-generation ESMs, but this requires 
data harmonization and transdisciplinary collaboration to effectively guide adaptation 
strategies and mitigation policy.
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F or more than a century, scientists have been developing models to understand and 
predict the complexity of Earth system dynamics (1). Earth system models (ESMs) 

are built from a collection of submodels that represent interactions among processes 
occurring on land, in the oceans, and in the atmosphere. ESMs are intended to capture 
emergent properties and feedbacks that operate at large scales, ranging from biomes 
to the full planetary system. However, there is continuous effort and ongoing debate 
concerning if, how, and when smaller-scale processes should be incorporated into ESMs.

First and foremost, ESMs must capture the physics and chemistry of the planet. 
Thus, the models encode thermodynamics, turbulence, fluid dynamics, radiation, and 
the multiphasic transitions of water. These features are combined with biogeochemical 
processes and are represented on a three-dimensional grid (2). Once an ESM is devel­
oped, it needs to be validated with respect to historical trends in data that might span 
seasonal to millennial time scales before being used to project the future effects of 
natural and anthropogenic changes (Fig. 1) (3).

With advances in computational power, ESMs have become more complex over the 
past few decades. Many biological processes are now represented in ESMs. On land, this 
includes the modeling of energy and mass exchanges mediated by vegetation, such as 
evapotranspiration and photosynthesis, and the dynamics of plant-soil carbon stocks (7). 
In the oceans, ESMs typically include carbonate chemistry, plankton interactions, nutrient 
limitation, and processes that export particulate organic carbon to the deep sea (8). 
These efforts have confirmed that biological agents interact with and mediate many 
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chemical and physical processes, and that they generate feedbacks that can influence 
the biosphere under current and future climate-change scenarios.

FIG 1 Microbes in models. (A) ESMs consist of submodels that represent physical, chemical, and biological interactions that control processes on land, in 

the ocean, and in the atmosphere with grid scales that are typically 100 km × 100 km, or approximately one degree of latitude and longitude. (Map image 

from reference 4.) (B) A microbially informed ESM might contain equations that describe how cells process carbon (C) which includes estimates for uptake 

(U), respiration (R), exudation (E), and growth (G), which can also include categorical or continuous traits, such as enzyme kinetics or temperature sensitivities that 

act as rate modifiers with effects on ecosystem functioning that can generate potential feedback. (C) Equations in ESM need to be parameterized, ideally with 

information collected from experiments and comparative studies that capture key environmental drivers associated with climate change on relevant temporal 

and spatial scales. Pictured here in the winter are plots from a long-term warming experiment at the Harvard Forest in Massachusetts, USA (copyright Audrey 

Barker Plotkin), where microbial data have been critical for understanding soil carbon feedback to climate systems (5). (D) The incorporation of microbes into 

ESMs can provide mechanistic insight into how traits and functional groups affect biogeochemical processes. For example, lignin is a complex polymer derived 

from the cell wall of plants that is important for understanding soil carbon dynamics. Comprising cross-linked lignols (L), its degradation is initiated by microbial 

depolymerization followed by funneling pathways that catabolize different aromatic compounds depending on distinct classes of fungal and bacterial enzymes 

(6), which can be affected by environmental conditions that are associated with climate change.
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ESMs have the potential to make better predictions with a more explicit representa­
tion of key microbial processes (9, 10). As the most abundant and diverse forms of 
life on Earth, microorganisms catalyze biogeochemical processes that affect the storage 
and transformation of carbon and nitrogen at the global scale. In addition to control­
ling the turnover of other important elements, microorganisms produce and consume 
trace gases that directly contribute to climate forcing. Although it is widely understood 
that microorganisms play a significant role in global biogeochemistry, only recently 
have some attempts been made to include them into ESMs. However, consensus is 
currently lacking on how best to accomplish this in a way that improves model accuracy 
under different climate-change scenarios. In this Opinion piece, we identify priorities, 
challenges, and opportunities with the goal of facilitating the integration of microbial 
data into effective modeling frameworks.

TOP 10 PRIORITIES, OPPORTUNITIES, AND CHALLENGES

Determine when explicit microbial representation is required

A priority for Earth system science is to determine how sensitive model predictions 
are to the inclusion of microorganisms. Many existing ESMs do a reasonably good job 
of representing large-scale ecosystem dynamics without explicitly encoding microorgan­
isms. This raises questions about whether or not incorporating more microbial informa­
tion will add value to ESMs. As an example, consider rice paddies, which cover more 
than 150 million hectares of Earth’s surface, mostly in South Asia (11). During the wet 
seasons, pore spaces in paddy soils become saturated leading to oxygen depletion 
and a concomitant increase in CH4 efflux to the atmosphere. Methods exist to predict 
these greenhouse gas emissions using satellite data and meteorological information 
(12) without extensive measurements of methanogen and methanotroph dynamics 
that would be needed to parametrize a microbially explicit ESM. In this scenario, an 
argument could be made that explicit microbial representation may not be critical for 
understanding how hydrology and agricultural practices in one region of the world 
influence CH4 dynamics so long as functions can be adequately represented. Therefore, 
a major challenge is to identify what types of information can better inform ESMs and 
reconcile explicit process representation at the microbial scale with ecosystem scale 
functional responses.

Establish the optimal degree of model complexity

While existing models may perform reasonably well under some scenarios, there 
are compelling reasons to build ESMs that explicitly represent microorganisms. Their 
omission is at odds with the knowledge that microbes play a key role in virtually all food 
webs and ecosystems on the planet. While their contributions to Earth system dynamics 
can sometimes be implicitly captured in ESMs, microorganisms may create unexpected 
feedbacks owing to non-linear and interactive responses to multiple climate-change 
drivers. Furthermore, while existing models may be adequate for capturing past or 
current Earth system dynamics, it is unclear whether they will perform well in the future 
under conditions for which models are not sufficiently parameterized. In fact, soil models 
that incorporate aspects of microbial physiology (i.e., growth efficiency) have been 
shown to do a better job of predicting decomposition and global-scale carbon storage 
than models that represent microbial activities only implicitly (13) (Fig. 1). Likewise, the 
representation of different growth rates and thermal traits for microbial phototrophs in 
marine ecosystems has consequences not only for species diversity and biogeography 
but also rates of primary production and the export of silica from surface waters of the 
global ocean (14). However, there are costs to adding too many microbial features to 
ESMs. Already, most ESMs are complex, computationally intensive, and have an excess 
of free parameters. Therefore, when adding new microbial variables, it is a priority and 
challenge to carefully consider parameterization and the degrees of freedom that are 
introduced, which can otherwise lead to unconstrained output and more variability in 
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model projections (15). Coordination among research teams is needed to determine the 
optimal balance between additional microbial information and model complexity.

Identify microbial functional groups for inclusion in ESMs

Microbial communities are extremely complex. When building a microbially explicit 
ESM, it would not be practical or desirable to resolve all species or metabolic path­
ways for the billions of individuals that are commonly found in a gram of soil or a 
liter of seawater. Some degree of coarse-graining is required. This can be achieved by 
grouping organisms together based on their functional traits, which are the morpholog­
ical, physiological, and behavioral characteristics that influence the performance of an 
organism under a set of environmental conditions (16). For decades, a functional-group 
framework has been used to simplify biological complexity in ESMs. On land, modelers 
may represent different types of biomes based on plant leaf properties (deciduous 
vs evergreen) or photosynthetic pathways (C3 vs C4). In the oceans, some models 
capture important trade-offs in organismal function such as the ability to fix atmosphere 
nitrogen, sequester silica, or produce aerosols (e.g., dimethyl sulfide) that can affect 
cloud condensation (17). Similar trait-based approaches could be extended to model 
other microbial functions in different ecosystems (18). Taxa can be grouped according to 
their metabolism (e.g., sulfate reducers, iron oxidizers, anaerobic phototrophs), resource 
use, stress response strategies, or capacity to emit greenhouse gasses (19). In a less 
categorical fashion, microbial activities can be expressed as a continuous function of 
climatically relevant environmental drivers, such as temperature, oxygen, or moisture, 
which is akin to the rate modifiers that are already implemented into ESMs. However, the 
currently used modifiers are derived from empirical observations that do not account for 
microbial responses (e.g., acclimation or adaptation) to changing environments. While 
there are opportunities to leverage existing trait-based approaches and data, additional 
work is needed to further refine the relevant microbial traits and functional groups to 
include in ESMs.

Reconcile the spatial scales of microorganisms and the Earth system

Integrating spatial processes is a major challenge when attempting to incorporate 
microorganisms into ESMs. At the scale of a typical microbial cell (1 µm2), important 
processes take place, including the uptake of growth-limiting resources; the diffusion 
of substrates, enzymes, and signaling molecules to and from neighboring cells; and 
stochastic encounters with infectious viruses. At large scales, other processes such 
as dispersal are critical for understanding the biogeographic distribution of microbial 
functional groups. Therefore, the scale-dependence of processes and patterns must be 
considered when incorporating microorganisms into ESMs, which are often resolved at 
100 km2 grid sizes or larger. For example, the mathematical structure used to model 
the non-linear kinetics of soil respiration changes when moving from small to large 
scales owing to environmental heterogeneity (20). Fortunately, there are opportunities 
to resolve these problems. For example, hierarchical approaches have been used by 
biologists, physicists, and engineers for dealing with the challenges that are associated 
with spatial scaling, some of which have already been implemented into ESMs (21).

Reconcile the temporal scales of microorganisms and the Earth system

Temporal scale is also a challenge when incorporating microorganisms into ESMs. 
Many microbial processes—including gene regulation, substrate diffusion, and even cell 
division times—occur rapidly, on the order of seconds to minutes. Although measure­
ments of such phenomena represent snapshots in time, some of these processes could 
have carry-over effects that extend for longer periods of time. Moreover, microbial 
metabolism is energetically or nutritionally constrained for vast portions of the globe 
and this can greatly prolong the persistence and lifespan of cells with consequences for 
biomass turnover, a process that is highly relevant for modeling ecosystem dynamics 
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(22). A priority for future ESMs is to capture recurring patterns of microbial change 
associated with seasonality or succession. More information is needed to accurately 
describe the time scale at which microbial communities respond to and recover from 
stressors associated with climate change. Most models assume that microbes can 
instantaneously acclimate to fluctuations in their environment, but lags and memory 
may contribute to their responsiveness to perturbations (23). Such information is not 
only important for making model predictions but also for management decisions aimed 
at mitigating the effects of climate change. Last, it is important to note that microbial 
responses may depend on the temporal dynamics of the stressor in question, with 
dynamics differing from episodic extreme events to chronic long-term changes in 
environmental conditions (24). Fortunately, components of existing ESMs are already 
capable of updating chemical, physical, and biological processes on relatively short time 
scales (e.g., minutes to hours), which can, in principle, accommodate the dynamics of 
many microbial phenomena.

Account for rapid evolutionary change

In nature, populations can evolve when confronted by novel environmental conditions, 
but this is generally not represented in most ESMs. Compared to other taxa, microorgan­
isms may be somewhat unique in their ability to adapt to climate change owing to 
large effective population sizes, short generation times, and the capacity to horizontally 
transfer genetic material among distantly related lineages. While most examples of rapid 
evolution come from studies where microorganisms have been maintained under highly 
controlled laboratory conditions, there is growing evidence that genetic changes arise 
in wild populations when they are challenged by climate-change drivers (25). It remains 
to be determined whether these evolutionary changes demonstrably affect ecosystem 
functioning. If so, then scientists will need to grapple with how best to mathematically 
embed adaptive and nonadaptive evolutionary dynamics into ESM structures. While this 
may represent a computational challenge, it is also an opportunity for using modeling 
platforms to test hypotheses about the importance of evolutionary processes and their 
feedback at the global scale. Efforts are already underway to tackle such problems, for 
example, using adaptive dynamics modeling of phytoplankton at spatial and temporal 
scales that are potentially relevant to ESM predictions (26).

Resolve microbial processes at the land-water interface

Climate change is expected to have strong effects at the land-water interface. In addition 
to its devastating socioeconomic consequences, sea-level rise will alter the biology 
of coastal ecosystems. For example, saltwater intrusion modifies the composition and 
productivity of plant communities, as well as the biogeochemistry of wetlands and 
upland soils (6). In the opposite direction, large quantities of fertilizers, pesticides, and 
plastics are exported from terrestrial to aquatic ecosystems. Collectively, these fluxes at 
the land-water interface may create microbially mediated feedbacks that are relevant 
for Earth system dynamics. However, modelers and microbiologists often treat land and 
water as separate entities, which overlooks important linkages between these systems. 
Thus, a priority is to further develop microbially explicit ESMs that also account for 
cross-system fluxes of material and energy. Such models will foster intellectual exchange 
between scientific communities, while also generating basic knowledge that can help 
address the climate crisis.

Collect the right information

Often, climate-change models are in need of more basic biological data that directly 
relates to Earth system processes. For example, estimates of microbial abundance, 
biomass, and productivity at higher spatial and temporal resolutions would be most 
relevant for ESMs. While these methods have been well-vetted for decades, we are in 
an era where cutting-edge molecular technologies are greatly advancing the field of 
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microbiology. Large volumes of metagenomic, metatranscriptomic, metaproteomic, and 
metabolomic data are being generated from diverse habitats across the globe. While 
these efforts have provided novel insight into the structure and function of microbial 
communities, the raw information is not particularly useful for modelers whose primary 
aim is to predict Earth system dynamics (27, 28). Microbiologists will often attempt 
to reduce the dimensionality of large omics data sets using multivariate statistics or 
network analyses. The products from these commonly used approaches cannot easily 
be translated into quantities that inform ESMs, but there are opportunities to generate 
composite metrics or use omics data in other creative ways to better model ecosys­
tem dynamics (29). For example, oxidative and hydrolytic enzymes estimated from 
gene abundance data have been incorporated into decomposition models to predict 
soil respiration (30). In addition, metagenomic approaches have been used to project 
nutrient stress in the global ocean (31). Ultimately, ESM development will be advanced 
by microbiologists, ecologists, and modelers working together to design experimen­
tal and comparative approaches that synthesize data from large-scale climate-change 
studies (32).

Promote data harmonization

The data needed for developing new ESMs come from many sources and are collec­
ted by researchers spanning a range of disciplines. Data harmonization can facilitate 
the integration and efficient use of such information. Ontologies are needed so that 
researchers have a shared list of categories and concepts with clearly defined relation­
ships (33). Such structures will help ensure that data are obtained and processed in a 
standardized and compatible fashion for the construction and sharing of databases that 
are used in ESM development. It is essential that the microbial information in these 
databases be accompanied by metadata (34). Geographic coordinates, temperature, 
redox potential, and other environmental data are priorities for modelers whose goal 
may be to relate microbial processes to state variables and transformations in an ESM. 
Ultimately, data harmonization requires a data-centered community of practice that will 
reinforce transdisciplinary collaboration and facilitate the development of microbially 
informed ESMS.

Develop models to advance microbial knowledge

From an Earth system modeling perspective, microbes are important to consider when 
they create feedbacks and modify predictions for a given climate-change scenario. 
Regardless of the magnitude of their effect, there is still value in attempting to include 
microorganisms in ESMs. In addition to generating synthetic knowledge of the microbial 
biosphere and its role in biogeochemical cycles, such efforts will help with the quanti­
tative and cross-disciplinary training of early career scientists, the building of research 
networks, and the organization of complex data. Even if the effects are most pronounced 
at local or regional scales, updated models will yield new insight into how climate 
change affects the distribution, abundance, and functionality of microbial life, which is 
important for the stability of managed and natural ecosystems and the services that they 
provide.

CONCLUSION

While there are many challenges and considerations, the inclusion of microbial 
information into ESMs provides opportunities for developing more realistic and useful 
climate-change predictions. From the opposite direction, ESMs have the potential to 
identify microbial processes and relationships that generate model uncertainty, which 
could inspire and guide the pursuit of biological discovery and knowledge. To attain 
these goals, greater transdisciplinary research coordination and communication are 
needed (35), which can be facilitated with new working groups, restructured conferen­
ces, and the initiation of multi-institutional centers supported by universities, industry, 
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national laboratories, and federal funding agencies. Collaborative teams made up of 
climate scientists and modelers will be well-positioned to design and execute research 
projects that will generate suitable types of data needed to construct microbially 
informed ESMs that can guide future policy and climate-change mitigation strategies.
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