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Abstract
Using data from cardiovascular surgery patients with long and highly variable post-surgical lengths of stay (LOS), we develop
a modeling framework to reduce recovery unit congestion.We estimate the LOS and its probability distribution using machine
learning models, schedule procedures on a rolling basis using a variety of optimization models, and estimate performance
with simulation. The machine learning models achieved only modest LOS prediction accuracy, despite access to a very rich
set of patient characteristics. Compared to the current paper-based system used in the hospital, most optimization models
failed to reduce congestion without increasing wait times for surgery. A conservative stochastic optimization with sufficient
sampling to capture the long tail of the LOS distribution outperformed the current manual process and other stochastic and
robust optimization approaches. These results highlight the perils of using oversimplified distributional models of LOS for
scheduling procedures and the importance of using optimization methods well-suited to dealing with long-tailed behavior.

Keywords Surgical scheduling · Intensive care unit · Operations research · Optimization · Machine learning · Simulation

Highlights

• Cardiovascular post-surgical lengths of stay (LOS) are
critical in optimizing recovery unit congestion, but
extended LOS are very difficult to predict despite the
use of a wide range of machine learning models and a
rich set of patient characteristics.

• Optimization models that rely on machine learning pre-
dictions of LOS without accounting for extended LOS
did not improve scheduling performance (recovery unit
congestion and wait times of patients) relative to current
paper-based systems in use.

• We show that a data-driven conservative stochastic
optimization approach that accounts for stochasticity
in extended LOS can achieve scheduling performance

Yuan Shi and Saied Mahdian contributed equally to this work.

B David Scheinker
dscheink@stanford.edu

1 Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

2 Stanford University, Stanford, CA 94305, USA

3 Lucile Packard Children’s Hospital,
Palo Alto, CA 94304, USA

improvements, outperforming other stochastic and robust
optimization approaches.

• We apply and evaluate our methodology in the context of
a pediatric academic medical center using real medical
and operational data.

1 Introduction

For hospital-based surgical care, the capacity of the inten-
sive care unit (ICU) is often a crucial downstream bottleneck.
ICU bed shortages are associated with adverse patient out-
comes, lost revenue from cancelled procedures, and a variety
of detrimental spillover issues for numerous parts of the hos-
pital. When the ICU is at capacity, staff may transfer patients
prematurely to the step-down unit or surgical proceduresmay
be cancelled at the last-minutewith adverse impact on patient
and family experience, hospital reputation, finances and staff
morale [5].

While most patients that require an ICU bed require it
urgently, elective surgical procedures are scheduled as far
as a year in advance. Our primary goal in this work was to
develop a scheduling model that would reduce post-surgical
bed congestion in practice in the presence of difficult-to-
predict, long-tailed LOS data. Our secondary goals were
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to address the challenges associated with optimization in
the presence of long-tailed empirical data. Numerous works
have examined how to optimize surgical scheduling in order
to reduce recovery-bed congestion. Despite the importance
of post-surgical LOS, studies commonly use only synthetic
data to evaluate model performance, discarding empirical
LOS data after they have been used to fit the parameters of
a distribution. We illustrate limitations associated with using
synthetic, rather than empirical, data.

1.1 Setting

This work was performed at the heart center of a high sur-
gical volume pediatric academic medical center (PAMC)
in the United States. The heart center uses three operating
rooms, 26 cardiovascular ICU (CVICU) beds shared by elec-
tive and urgent surgical patients, and an acute care unit. In
recent years, growing demand for elective surgical services
and fixed CVICU capacity has resulted in numerous surgical
cancellations. From September 2019 to May 2020, 84% of
cardiovascular surgery cancellations happened on the 40%
of days with 23 or more patients in total in the CVICU. In
particular, 35% of cancellations happen on the 11% of days
with more than 10 elective surgical patients in the CVICU
(See Fig. 1). This suggests that a significant fraction of can-
cellationsmay be prevented if optimized scheduling smooths
elective surgical patient CVICU occupancy.

1.2 Overview

Numerous theoretical works using optimization to schedule
elective surgical cases have demonstrated substantial reduc-
tions to ICU congestion in numerical experiments [20, 22,
27, 35].However, relatively littlework has been implemented
or has demonstrated measurable improvements in practice.
Most existing positive results rely on the use of synthetic

Fig. 1 High ICU occupancy by elective patients is associated with high
rate of surgical cancellations due to limited bed capacity

data, e.g., a log-normal distribution fit to approximate empir-
ical data from the institution studied, to represent procedure
duration and post-operative length of stay. Such common
practice, combined with the lack of real-life implementa-
tions of these algorithms, leaves many real world challenges
of surgical scheduling unaddressed and unidentified. Mean-
while, many works have examined empirical data in order to
predict the length of stay (LOS) of patients in the ICU (see,
for example, [8, 21, 32]), but little has been done in utilizing
such LOS predictions for surgical scheduling.

We examine reducing ICU congestion by optimizing
the scheduling of complex pediatric cardiovascular surgi-
cal procedures, using real data from the hospital for patient
flow and post-operation ICU LOS. Our approach combines
machine learning for LOS forecasting, optimization for sur-
gical scheduling, and simulation for performance evaluation.

To motivate the problem, we first establish the theoretical
upper bound of system performance by running a determinis-
tic optimization formulationwith known a priori information
on post-operation LOS. The results demonstrate significant
reductions in CVICU congestion and patient wait times,
compared to the institution’s current manual and primar-
ily paper-based process. We then develop predictive models
using machine learning for LOS, based on patient data avail-
able at the time the procedure is scheduled. When known
LOSs are replaced with point-predictions based on machine
learning, deterministic optimization is not sufficient to reduce
congestion without increasing wait times. This is despite
access to a very rich set of patient characteristics for LOS
prediction. The key bottleneck is identified to be the lack of
accurate predictions of LOS, especially for a small group of
patients with very long LOS. This has a disproportionately
large impact on optimization performance due to the long tail
of the distribution of LOS.We observe that patients with sim-
ilar characteristics may vary drastically in realized LOS, and
patient populations display temporal non-stationarity, both
suggesting inherent unpredictability of LOS at the time of
scheduling. This inspired the development of stochastic and
robust optimization algorithms that incorporate LOS proba-
bility distributions instead of point estimates.

We develop a novel data-driven modeling framework
for scheduling cardiovascular surgery under uncertain LOS.
The framework combines machine-learning predicted LOS
probability distributions, rolling information update, and
optimization methods. Under this framework, three schedul-
ing algorithms are formulated: two based on stochastic
optimization, Standard-RSO and Conservative-RSO, and
one robust optimization formulation, RRO. The optimal
schedules given by each algorithmare evaluated through sim-
ulation using historical patient arrivals and LOS.

Machine learning models are used to obtain both point-
estimates of LOS and its probability distribution character-
ized by predictive errors. Standard-RSO, which considers
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both under- and over-estimation errors, fails to reduce
ICU congestion versus the status quo. In contrast, both
Conservative-RSO and RRO, with carefully tuned param-
eters, managed to reduce ICU congestion without increasing
average patient wait times.We attribute the promising perfor-
mances of the latter two algorithms to their targeted design
focusing on addressing common under-estimation for pro-
longed LOS by machine learning predictions. Moreover,
Conservative-RSO achieves better average and worst-case
performance compared to RRO in reducing ICU congestion.

The main contributions of our work are two fold. First,
the negative results associated with deterministic optimiza-
tion as well as Standard-RSO offer important lessons that are
generally applicable to others seeking to optimize surgical
scheduling for complex patients. We highlight the impor-
tance of evaluating model performance using empirical data
or simulation that fully captures the long-tailed nature of
patient LOS. In addition, as hospital operations and medical
practices are constantly changing, non-stationarity in LOS
should be taken into accountwhen developing simulating and
evaluating data-drivenmodels. Our negative results, revealed
through simulation with empirical data, provide clear evi-
dence against extrapolating good performance on synthetic
data using standard distributional assumptions (e.g. lognor-
mal distribution) into real world scenarios. These findings
may also explain the dearth of studies reporting success-
ful implementation and measured improvements of similar
approaches.

Our second contribution is to propose a promising algo-
rithm, Conservative-RSO, that is specifically designed to
address the challenge of long-tailed ICU LOS in the sur-
gical scheduling problem. Compared to Standard-RSO,
Conservative-RSO demonstrates that good performance can
be achieved by incorporating careful design choices with-
out increasing computational complexity; the comparison
with RRO further suggests that computationally compli-
cated models do not always translate into better perfor-
mance in practice. We believe the promising performance
of Conservative-RSO helps identify a direction of future
research on data-driven optimization methods to address
one of the most challenging obstacles to efficient hospital
operations.

The remainder of the paper is structured as follows.
Section 2 provides a review of related literature on surgi-
cal scheduling optimization and LOS predictions. Section
3 presents our modeling framework under deterministic
LOS estimations, introducing formulations for both offline
optimization and rolling optimization. These deterministic
models are used to establish performance upper-bounds,
given accurate predictions of patient LOS. Section 4 presents
the development ofmachine learningmodels for LOSpredic-
tions and discusses the poor performance and challenges of
using deterministic optimization with machine learning pre-

diction. Section 5 presents our modeling framework using
predicted LOS distributions, and introduces the three algo-
rithms, Standard-RSO, Conservative-RSO and RRO. The
performances of these algorithms under numerical experi-
ments are presented in Section 6. Section 7 discusses insights
from the design and performance of algorithms, as well as
their limitations and potential extensions. Finally, Section 8
provides concluding remarks on implications of the work,
best practices in applying schedule optimization in practice,
and directions for future research.

Gurobi 9.0.3 [12] and Python were used to implement and
solve all mixed integer optimization algorithms developed in
the paper. All optimization problems were solved using the
compute facility of StanfordResearchComputingCenter and
Stanford University. On this shared facility, each optimiza-
tion problemwas solved with two CPUs and with either 8GB
or 16GB of memory for each CPU.

2 Related work

2.1 Surgery scheduling

Extensive research has been carried out on scheduling of
patients to improve operating room (OR) performance. Most
of the literature on elective surgery scheduling focuses on
OR room capacities without considering the capacity of the
subsequent recovery units. The variability of surgical proce-
dure durations is usually considered as the primary source
of stochasticity and as the primary challenge to surgical
scheduling. We refer to [25, 36] for a comprehensive review
and focus on research that studies the surgical scheduling
problem under the constraint of limited downstream capac-
ity.

Deterministic formulations of surgical schedule optimiza-
tion under limited downstream capacity have been examined
in [9, 11, 13, 24]. Hsu et al., [13] considered optimizing sur-
gical scheduling with limited capacity at the Post Anesthesia
Care Unit (PACU) to minimize the number of nurses needed
for the PACU. The case duration and the recovery times in the
PACU are treated as deterministic. Similarly, [24] considered
the surgical scheduling problem with deterministic recovery
times in the PACU and the ICU for all patients under the
assumptionof perfect information.Guinet andChaabane [11]
also investigates surgery scheduling with downstream PACU
capacity constraints. It proposes a two step optimization pro-
cedure where patients are first assigned to ORs and dates. In
the second step surgery times are assigned to patients. More
recently, [9] developed a combined machine learning and
optimization approach to reduce congestion in the PACU,
where the recovery time in the PACU is estimated using
machine learning predictions. Fairley et al., [9] reports good
results based on simulations using empirical data, but does
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not report the results of implementation. Most of the exist-
ing deterministic formulations focus on the PACU capacity
as the key downstream bottleneck with limited discussions
on the ICU capacity. Compared to the recovery time at the
PACU (which is typically in the order of hours), ICU LOS
may be multiple days or months and involves greater vari-
ance than single-day PACU stays. The substantial difference
in variability between CVICU long-tailed LOS and PACU
recovery time are why the approach in [9] is not applicable
in the present setting.

Given themulti-period nature and significant uncertainties
involved in ICU capacity planning, a number of mathemat-
ical formulations have been proposed in recent years. Min
and Yih [20] provided a well-known benchmark instance
of surgery scheduling with ICU capacity constraints using
a stochastic mixed integer programming model. The work
uses sample average approximation and assumes the LOS
in the ICU to be random with known distributions (arbitrary
with finite support). Zhang et al., [35] proposes a two level
time horizon for surgery scheduling. In the first level, patients
are selected from a waitlist to be scheduled with a timeframe
(e.g. a week) using approximate dynamic programming. In
the second level, selected patients are scheduled using a sam-
ple average approximation method similar to [20]. Other
stochastic programming approaches built on thework in [20];
we refer to [27] for a review of these formulations.

Besides stochastic optimization models, [22, 27] develop
optimization methods for robust performance of surgery
scheduling under worst-case realizations of LOS or LOS dis-
tributions. Most relevant to our work is [22]. The authors
formulated a two-stage robust optimization approach to
reduce congestion in downstream capacities, and developed
solution techniques which we adapt and apply to our setting.
Shehadeh and Padman [27] proposes an alternative approach
towards uncertainties using distributionally robust optimiza-
tion.

All of the above-mentioned papers on stochastic or robust
optimization evaluated model performance using synthetic
data based on strong distributional assumptions, and none
has been implemented in practice. In contrast, we use real
LOS data in evaluating our model performance.

In addition, [10] considered a surgery scheduling problem
focusing on minimizing downstream costs including overca-
pacity costs at the ICU. Models for this problem proposed in
[10] and others such as [1] are concerned with the tactical
problem of allocating OR block of times to surgical special-
ties to optimize patient flow into the downstream units. In
contrast, our work and others’ mentioned above focus on
the operational problem of assigning individual patients to
surgical time blocks.

To our knowledge, we are the first to study a combined
machine learning and optimization approach for schedule
optimization to reduce congestion at the CVICU: an environ-

ment that includes non-stationary, long-tail LOS behavior.
We are also the first to propose a stochastic formulation for
surgical scheduling that is specifically designed to address
significant variability in the tail of the LOS distribution. We
use real world post-operation LOS data for LOS predic-
tion, model parameter tuning and performance evaluation,
reflecting the difficulties of working in a setting with non-
stationary operations and patient volumes and long-tailed
LOS distributions.

Lastly, to ensure that our model can be effectively applied
in real-world settings, we utilize a rolling schedule optimiza-
tion approach that involves sequential decision-making as
new information on patient LOS and arrivals become avail-
able. Similar rolling horizon policies have been studied in
many healthcare service scheduling settings, for example, in
[2, 3, 14, 26]. In comparison to existing work, we further
integrate such policies with our LOS prediction procedure:
uncertainties in LOS are updated overtime during patients’
stay in the ICU. Such integrated rolling schedule optimiza-
tion approach improves predictive accuracy overtime and
addresses the dynamic nature of ICU patient scheduling for
real-world applications.

2.2 Post-surgery LOS prediction

In developing our machine learning models for LOS pre-
diction, we refer to a separate line of literature focusing on
predictions of post-surgery (in particular cardiac surgeries)
LOS in the intensive care units.

Most work suggests that post-surgery LOS prediction at
admission time - either using predictive modeling or by
expert opinion - is challenging especially in the case of pro-
longed ICU LOS.

One common way to predict prolonged ICU LOS is
through binary classification, such as in [8, 32]. However,
binary classification does not provide the level of granularity
required for optimizing surgical scheduling in our context.

For regression-based models, [33] builds and evaluates
multivariate regression models using data from 246 hospi-
tals for heart failure patients. The model achieves a modest
R2 value of 4.8%, where only 1.2% of variation is explained
by patient characteristics. Similarly, [6] shows through uni-
variate regression that only 12% of the variation could
be explained by patient characteristics and general hospi-
tal characteristics in aggregate for patients with a primary
diagnosis of acute myocardial infarction. More complicated
LOS regression models using machine-learning for cardiac
surgery patients are artificial neural networks developed in
[17, 29] and adaptive neuro-fuzzy systems explored in [19].
Although machine-learning based models generally result in
a higher R2 value, predictive accuracy for patients with pro-
longed LOS remains low. For instance, the neural network in
[29] achieves an overall accuracy of over 60% but is unable
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to predict any LOS above 15 days, and the model in [17] with
R2 = 0.41 underestimates the LOS for almost all patients
with actual LOS of longer than 100 hours.

More generally, [21, 31] demonstrate that prolonged LOS
predictions are challenging even for experienced physicians.
In addition, [16] suggests that information gathered at admis-
sion did not have a significant impact on the identification of
patients with prolonged ICU LOS. The variables that had
the greatest impact on prolonged ICU LOS were those mea-
sured on day 5 of ICU stays. Although LOS prediction using
patient features collected during and after surgery tends to
achieve a higher level of accuracy [16, 28, 34], most of these
data are not available when a procedures is being scheduled
weeks to months in advance.

In our attempt to develop a predictive model for post-
operation LOS, we identified the same difficulty as observed
by the others in dealing with the long-tailed, non-stationary
distribution of LOS for complex cardiovascular surgeries.
This challengemotivated our design of a stochastic optimiza-
tion formulation that specifically addresses the unpredictabil-
ity and the consistent underestimation of prolonged LOS by
predictive models. We discuss the formulation in detail in
Section 5.

3 Deterministic formulations
for schedule optimization

We first study the problem of surgical scheduling where the
LOS in the ICU are treated as deterministic. We develop
two optimization models - offline and rolling deterministic
optimization - given operational constraints at the PAMCand
some a priori information on patient LOS.

3.1 Offline deterministic optimization

We formulate the offline surgery scheduling problem as a
mixed integer program (MIP)with the objective of smoothing
out CVICU elective census overtime to reduce cancellations
without creating excessive delays.

Define set D = {1, 2, . . . , Nd} as the set of available
dates in the time period of interest, and define set P =
{1, 2, . . . , Np} as the set of all elective surgical patients that
are to be scheduled within the time period. We define binary
decision variables,

x = {xd,p : d ∈ D, p ∈ P},

where xd,p = 1 if patient p is scheduled for surgery on day
d and otherwise xd,p = 0.

For the offline problem, it is assumed that both patient
arrivals, P , and the LOS of each patient, l p, are known in
advance. Given x and {l p : p ∈ P}, the ICU overflow vari-

able, ud for all d ∈ D, counts the number of elective patients
on day d that exceed ICU capacity, c.

The offline deterministic optimization problem is formu-
lated as below.

min
x

∑

p∈P

Nd∑

d=1

(d − dmin
p )+xd,p + β

Nd∑

d=1

f (ud) (1a)

∑

d∈D
xd,p = 1 ∀p ∈ P (1b)

yd,p =
d∑

d ′=max(d−l p+1,1)

xd ′,p, ∀p ∈ P, d ∈ D (1c)

∑

p∈P

yd,p ≤ c + ud ∀d ∈ D (1d)

x ∈ Qop (1e)

yd,p, xd,p ∈ {0, 1}, ud ≥ 0 (1f)

We use the notation (·)+ = max(·, 0).
In the offline problem, the first term of the objective func-

tion 1a represents the total wait time for all patients. Here,
dmin
p denotes the earliest date bywhich patient pwill be ready

for his surgery. The second term, β
∑

d∈D f (ud), is the total
cost associated with ICU overflow, weighted by constant β.
We set the function f (·) to be a convex, piece-wise linear
function of ud such that it approximates the quadratic cost
function, u2d . The purpose of the convex cost function is to
impose higher penalty for greater overflow in order to smooth
out and minimize large peaks in ICU occupancy. This also
reflects the highly non-linear increase in the possibility of
cancellation as elective ICU occupancy increases, as demon-
strated in Fig. 1. We provide the exact MIP formulation of
f (·) in Appendix A.
Constraint Eq. 1b enforces the assignment of every patient

to exactly one date of surgery. The second constraint Eq.
1c calculates if a patient needs an ICU bed on a given day
based on her assignment and LOS. The third constraint 1d
calculates the ICU overflow, ud , on each day given ICU bed
capacity, c.

For the last constraint 1e, we use Qop to represent
any remaining institution-specific operational constraints.
Scheduling for complexprocedures is commonly constrained
by single surgeon-patient matches, surgeon and OR room
availability, which may differ depending on the context. For
our formulation, Qop is tailored to the context of the PAMC
as explained below.

Patient availability.When scheduling patients for surgery,
there is often a clinically determined upper bound on patient
wait time and also a corresponding lower bound that accounts
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for surgical delays due to patient availability, travel arrange-
ment and necessary insurance or health checks. We incor-
porate this constraint by imposing windows of availability
for individual patients as hard constraints in our formula-
tion, similar to [11]. In practice, the window of availability
of patients can be estimated case by case upon arrival and
hence used as inputs for optimization.

For the purpose of simulation, since a patient’s actual win-
dow of availability at the time of arrival is not recorded in
historical census and surgery data from the PAMC, we use
the following heuristics to obtain an estimation. The earliest
available date of patient p for surgery, denoted as dmin

p ∈ D,
is set to be date that is half of the lead time prior to her
originally scheduled surgery date. The latest available date,
denoted as dmax

p ∈ D, is set to be 90 days after the actual
surgery date. This heuristic ensures that the set of feasible
scheduling solutions is not too restricted, and any resultant
increase in wait time will be penalized by the first term in the
objective function.

Surgeon and OR Room availability. Each procedure
requires one OR room and takes a pre-specified amount of
time for the patient’s assigned surgeon to complete.We incor-
porate the following constraints imposed at the institution
and observed in the data. First, a maximum of 45 hours of
surgery in OR is available on every weekday, where each sur-
geon performs operations for no longer than 15 hours every
day1. During implementation, we also incorporate surgeon-
specific day-offs in the formulation. For example, one of the
surgeons does not perform surgeries on Mondays.

While many past work focused their attention on the
stochastic nature of surgical durations (see, for example,
[22]), we do not consider uncertainty in surgery duration in
this work. In our setting and in similar highly specialized sur-
gical settings, there is a dedicatedOR roomandOR teamwith
a charge to accommodate procedures that run well beyond
standard operating hours. Uncertainty in surgical duration is
thus not a bottleneck in our setting; surgical duration is treated
as deterministic and uses the actual length of procedure in
optimization2.

Complex surgeries. On top of the regular capacity con-
straints above, special arrangements are often required for
complex, full-day procedures. At the PAMC, Pulmonary
Artery Reconstruction (PAR) surgery is a type of highly
complexprocedure that requires special treatment in the algo-
rithm. The surgeons only perform PAR surgeries on certain
weekdays (‘PAR days’) and not the others. If a PAR surgery

1 Surgeries that took longer than 15 hours in reality were treated as 15
hours for feasibility.
2 Alternatively, we also estimated each patients’ surgical duration using
the average surgical duration for each procedure type in the empirical
data. This approach produces similar results to that using the actual
surgical durations.

is scheduled for a surgeon on any day, no other surgery can be
performed by the same surgeon on the same day. In addition,
the surgeons need to take at least a one-day break in between
PAR surgeries, i.e., PAR surgeries cannot be scheduled on
two consecutive days for the same surgeon.

Full mathematical formulations of Qop for our context
and implementation details are provided in Appendix A.

Here, the weight for ICU overflow, β, and ICU bed capac-
ity, c are parameters to be tuned. For the value of β, we select
a value among

β ∈ {5, 10, 25, 50, 100, 200}

so that the model achieves the the most reduction on ICU
overflow without excessively lengthening the average and
median patient wait times compared to the original surgical
schedule. Meanwhile, we determine the value of c based on
the minimum achievable ICU occupancy upper bound given
true historical on LOS, i.e.,

c = min
x

max
d∈D

∑

p∈P

yd,p (2)

s.t. Constraints (1b), (1c), (1e), and (1f)

Solving optimization problem 2 yields c = 8 at the PAMC,
which is used for all numerical experiments for the rest of
the paper.

3.2 Rolling deterministic optimization (RDO)

In practice, the arrival and LOS of incoming patients are
unknown and performing offline optimization over a one-
year horizon is not practical. We thus develop a rolling-
horizon alternative to the offline formulation, where patients
are scheduled in batches with estimated LOS at the time of
scheduling. Meanwhile, we dynamically observe the realiza-
tion of LOS for patients who have undergone surgery in the
previous period and update LOS estimates for these patients.

We define a sequence of scheduling days, sb ∈ D, for
b ∈ {1, 2, . . . , B} in chronological order.On each scheduling
day sb, scheduling is performed for all patients who arrived
between sb−1 and sb − 1. We use Pb to denote the batch of
patients who are scheduled on day sb. These patients may
be scheduled for surgery any time during the scheduling
horizon, sb, sb + 1, . . . , smax

b , where smax
b ∈ D is the lat-

est date that any patient in Pb can be scheduled for surgery,
i.e., smax

b = maxp∈Pb d
max
p . Then, the scheduling horizon

is rolled forward one period at the next scheduling day, for
patients who arrived between sb and sb+1 −1. Figure 2 illus-
trate the timeline of such rolling schedule optimization. To
simplify implementation, we set smax

b = Nd for all b, where
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Fig. 2 Timeline visualization for rolling schedule optimization

Nd is sufficiently large to cover the scheduling horizon for
all batches.3

Note that scheduling decisions for patients in Pb are also
influenced by past patients, P past

b = ⋃b−1
k=1 Pk who are still in

the system. This includes all patients who arrived before day
sb−1 who are currently staying in the ICU on day sb, as well
as those who have their surgery scheduled for days within
the current scheduling horizon. Surgical and ICU capacities
are adjusted accordingly to account for these past scheduling
decisions.

To introduce the mathematical formulation, we use the
same set of notations as the offline problem. Note that the
binary decision variables xd,p, yd,p are now defined for all
d ∈ D and p ∈ Pb ∪ P past

b . Since scheduling decisions
for patients in P past

b are already made, we let constants
x̃ = {x̃d,p : d ∈ D, p ∈ P past

b } denote previous schedul-
ing decisions. This constraint implicitly updates surgical and
ICU capacities available for incoming patients by accounting
for patients who have been previously scheduled. The deter-
ministic batch optimization problem (BOP) on scheduling
day sb is formulated as below.

min
x

∑

p∈Pb

Nd∑

d=sb

(d − dmin
p )+xd,p + β

Nd∑

d=sb

f (ud) (3a)

xd,p = x̃d,p ∀p ∈ P past
b , d ∈ D (3b)

Nd∑

d=sb

xd,p = 1,
sb−1∑

d=1

xd,p = 0 ∀p ∈ Pb (3c)

yd,p =
d∑

d ′=max(d−l p+1,1)

xd ′,p ∀p ∈ Pb ∪ P past
b , d ∈ D

(3d)

3 Note that we still enforce the constraint that each patient is scheduled
no later than dmax

p through Qop .

∑

p∈Pb∪P past
b

yd,p ≤ c + ud ∀d ∈ D (3e)

x ∈ Qop (3f)

yd,p, xd,p ∈ {0, 1}, ud ≥ 0 (3g)

The objective function 3a mirrors that of the offline for-
mulation in objective function 1a. Constraint Eq. 3b requires
that patients scheduled previously are not re-scheduled for a
different date. Constraint Eq. 3c requires that every patient
in Pb is scheduled for one surgery day no earlier than sb.
Constraints 3d-3gmirror constraints 1c-1f in the offline prob-
lem. Note that constraints 3e and 3f are influenced by both
patients in Pb and those in P past

b . This is because the latter
may also undergo surgery and/or need ICU beds after the
scheduling date sb, thus competing for ICU resources and
other resources in Qop (e.g. surgeon and OR room avail-
ability) with patients in Pb. Full mathematical formulation
with our context-specific Qop and implementation details are
provided in Appendix A.1.

Surgical schedule optimization can thus be operational-
ized in practice by solving deterministic BOP sequentially
for b = 1, 2, . . . , B, with an appropriately chosen sequence
of scheduling days, {sb} and estimates of patient LOS, {l p :
p ∈ Pb ∪ P past

b }. For patients in Pb, estimations of l p can
be made based on patient features at the time of arrival (see
Section 4). For patients in P past

b who have received their
surgeries, l p estimates can be progressively updated as uncer-
tainties in LOS realize.We formalize this information update
procedure below.

Information Update Procedure for deterministic BOP. At
the start of each batch b, the value of l p for all p ∈ P past

b is
updated as follows.

(a) If the patient has undergone surgery and has been dis-
charged from ICUby scheduling day sb, her realizedLOS
is observed and we update l p to be the true LOS.

(b) If the patient is in the ICU on day sb having stayed for m
days, then l p is updated based on partially realized LOS
and any additional post-operations information.

(c) If the procedure of the patient is scheduled after sb, there
is no change to l p.

For simulation purpose only, we use a simplified heuristic for
patients under (b). We assume the true LOS can be evaluated
with certainty for those soon to be discharged (within 5 days),
and thus update l p to be the true LOS for those patients. For
the remaining patients, we set l p ← max{m + 10, l p}. In
practice, l p can be re-evaluated on a case-by-case basis for
each patient based on any new information available.

On every scheduling day, patient arrivals Pb and any real-
izationof additionalLOS information for P past

b are observed.
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An optimal solution of deterministic BOP is then obtained
and implemented for all patients in Pb. The existing schedule
and required surgical resources are updated accordingly. We
describe this rolling optimization process in Algorithm 1.

Algorithm 1 Rolling Deterministic Optimization (RDO)

1: Initialize with b = 1, P past
b = ∅, x̃ = ∅.

2: for b = 1 to B do

3: 1. InformationUpdate. Patient arrival Pb is realized between sb−1
and sb − 1; obtain LOS estimates, {l p : p ∈ Pb}.

4: for p ∈ P past
b do

5: Update LOS estimate l p using the Information Update
Procedure.

6: end for
7: 2. Schedule Optimization. Solve deterministic BOP with sb, Pb,

P past
b , x̃ , l p ∀p ∈ Pb ∪ P past

b ; implement the optimal solution x∗
for all p ∈ Pb.

8: 3. Schedule and Capacity Update.
9: P past

b+1 ← P past
b ∪ Pb

10: x̃ ← x̃ ∪ x∗
11: end for

In practice, the sequence of sb is an additional design
choice that canbe set basedonhospital practices andnature of
different procedures. In all our experiments (both the deter-
ministic formulation and stochastic or robust formulations
in later sections), we set scheduling days to be the start
of every month, and schedule patients in monthly batches
given our context. For complex, elective cardiovascular pro-
cedures, there is usually a significant lead time between
patient referral and when a patient undergoes surgery. For
our patient cohort, the median lead time is 59 days and the
average lead time is 79 days. Therefore, monthly scheduling
is chosen as an example and proof of concept given the con-
text: although patients need to wait for being scheduled, the
effect of this additional wait time is limited in this case as
the total wait time is being minimized under our optimiza-
tion algorithms. In Appendix C, we also re-run our numerical
experiments for biweekly scheduling days and show that the
resultant insights are similar. For other types of procedures
that require faster scheduling, sb can be adjusted accordingly
such that scheduling can happen more frequently in smaller
batches. We discuss the implications of this design further in
Section 7.

3.3 Model performance under perfect information

Before introducing machine learning approaches for estima-
tion of LOS, we first evaluate the performance of our models
in the real world setting of the PAMC, using true historical
LOS as model inputs, {l p}. The purpose of this exercise is
to identify the upper bound of the achievable level of oper-
ational performance versus the status quo, which sets the

optimal performance benchmark for remaining numerical
experiments.

We evaluate the performance of our scheduling model
by considering the 596 elective cardiovascular surgeries that
were carried out at the PAMC fromSeptember 2018 toMarch
2020. Patient arrivals are modeled using deterministic, his-
torical arrivals. An optimal schedule was generated using the
optimization models given the true LOS of each patient, and
the resultant daily CVICU census was simulated based on
the optimal surgical schedule and the actual LOS.

The performance of the optimization models is assessed
using two metrics: 1) percentage reduction in the number
of high ICU occupancy days (10 or more elective patients)
in the ICU versus the historical status quo, and 2) median
and average reduction in patient wait times compared to the
original schedule. Good performance corresponds to a mea-
surable reduction in the number of high ICU occupancy days
without increasing patient wait times.

When evaluating our models, we treat the first six months
of the time period (Sept 2018 - March 2019) as a warm-
up period4 and focus on model performance in the one-year
period from March 2019 to March 2020.

The performance of offline and rolling deterministic opti-
mization is visualized in Figs. 3a and 3b. In both figures,
we use β = 100 for offline deterministic optimization and
β = 25 for rolling deterministic optimization. With perfect
information on LOS, both models are able to eliminate the
number of days with 10 or more elective patients in the ICU
(Fig. 3a). Meanwhile, the offline model schedules 83.8% of
the patients no later than the status quo (Fig. 3b), and the
median and average reductions in wait time are 51.0 days
and 66.1 days respectively. Rolling scheduling in monthly
batches results in slightly longer wait times as the patients
are not scheduled until the start of the following month. Still,
60.4% of the patients are scheduled no later than the stat-
ues quo (Fig. 3b)), and the median and average reductions in
wait time are 10.0 and 21.94 days respectively. Overall, both
models achieve significant reduction in both high occupancy
days in the ICU and patient wait times.

The above results show that it is theoretically possible
to eliminate the number of days with more than 10 elective
patients in the ICU given perfect information on LOS at the
time of scheduling. Such performance improvement can be
achieved along with a reduction in average and median wait
times.

4 86 out of the 596 surgeries performed from September 2018 toMarch
2020 are associated with patient arrivals prior to September 2018. For
these patients, the earliest possible surgery dates are adjusted so that
their procedures are always scheduled on or after September 1st 2018.
This modified constraint is an artifact of the fixed optimization time
window and is tighter than what is realistically feasible. The first six
months is treated as the warm up period for this reason.
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Fig. 3 Schedule optimization
eliminates days with 10 or more
elective patients in the ICU
given perfect information in
LOS (left). Both offline and
rolling monthly scheduling
schedule the majority of the
patients no later than their
original surgery date (right)

Having established the performance upper bound under
perfect information, we next proceed to consider incorpo-
rating machine learning predictions of LOS in schedule
optimization, and the impact of inaccurate predictions on
deterministic optimization models.

4 Predicting LOS withmachine learning

Having established the performance upper bound of schedule
optimization using accurate LOS predictions in the previous
section,we nowpresent the development ofmachine learning
models for LOS prediction in this section, as well as the
schedule optimization results using the predicted LOS.

We discuss both regression and classification models for
LOS prediction. 5-fold cross validation is used for hyper-
parameter tuning and model selection during the training
process. The model with the highest cross-validation score
is selected for validation on the test set. The sklearn library
[23] in Python was used to train and implement the selected
models.

ThepredictedLOS is thenused as input forRDO.Schedul-
ing optimization is only performed on the test set and not on
the training set. This simulates the real world setting where
the incoming patients are prospectively scheduled based on
LOS predictions at the time of admission. We compare the
schedule optimization result with the status quo.

4.1 The dataset

Our data set consists of medical records, surgery data and
CVICUcensus data for 2,352 elective cardiovascular surgical
patients at the PAMC from 2014 to 2020. It is split into a
training set with 1,738 patients from January 2014 to mid-
June 2018, and a test set with 614 surgical patients from
mid-June 2018 to May 2020.

The patient features are chosen based on clinical knowl-
edge of the experienced surgeons at the unit, as detailed
below.

Categorical Features:

• Surgeon: The assigned surgeon for the surgery
• Procedure: The type of surgical procedure
• Month: The month when the surgery is performed
• GeneticDisorder: The type of genetic disorder the patient
has prior to the surgery, if any

• Ventilator Status: whether the patient is on a ventilator
prior to the surgery

• Respiratory Status: the type of respiratory diseases the
patient has, if any, prior to the surgery

Continuous Features:

• Age: The age of the patient at the time of the surgery
• Weight: The weight of the patient at the time of surgery
• Height: The height of the patient at the time of surgery

Themissing values in the data are imputed using the mean
for continuous features and the mode for categorical features
from the training set.

To compare our data quality with the existing litera-
ture, we first train a binary classification model to identify
patients with risks of prolonged stays of more than 5 or
10 days, making up 28% and 12.8% of the training set
respectively. Candidate machine learning models considered
include logistic regression, random forest and gradient boost-
ing machine. Gradient boosting machine is selected based on
cross-validation AUC.

We refer toEttema et al. (2010) [8] for performance bench-
marks. The authors of [8] reviewed and validated 14 models
for the prediction of prolonged LOS in the ICU after cardiac
surgery using data from 11,395 surgeries, and found that the
area under the curve (AUC) scores of the best performing
models range from 0.71 to 0.75. Our model achieves an AUC
score of 0.77 for stays more than 5 days and 0.73 for stays
more than 10 days on the test set, which is inline with that of
the best-performing models identified in [8] (See Table 1).
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Table 1 Model performance in
binary classification vs
benchmarks

Model AUC Score

>5 days 0.77

>10 days 0.73

Benchmarks 0.71-0.75[8]

Although a direct comparison with existing literature is
difficult due to different patient populations and different
definitions of prolonged stay, our model and features can
achieve high levels of distinguishing performance compared
to the benchmarks.

4.2 Model development

We now train machine learning models for LOS with the
objective of using the predictions for surgical scheduling.

We first consider classification models that classify LOS
into ordinal buckets: 0-1 day, 2-5 days, 6-10 days and > 10
days. For each LOS bucket, we define twometrics to evaluate
model performance. ‘Accuracy 1’ is calculated as the exact
number of true predictions in the bucket divided by the actual
number of patients in the bucket. ‘Accuracy 2’ extends the
definition of true prediction to include the scenario where the
patient is predicted to be in the LOS bucket adjacent to his
or her true bucket.

Candidate models include gradient boosting machine
(GBM), random forest and ordinal regression models. GBM
achieves the best cross-validated accuracy score onLOSclas-
sification with multiple LOS buckets. The model achieves an
overall accuracy of 53%, and88%of the predictedLOSeither
fall in the true bucket or the adjacent buckets. The most sig-
nificant predictors according to the impurity-based feature
importance are procedure types (0.47), weight (0.22), height
(0.17) and the surgeon (0.07).

A breakdown of the predictive accuracy on each buck-
ets of the test set is presented in Table 2. While predictive
accuracy for the first three patient groups with LOS ≤ 10
days is relatively high based on Accuracy 2, predictive accu-
racy drops sharply for the group of patients with longer than
10 days of LOS, where the majority of the patients’ LOS is
being under-estimated. Similar behavior is observed under
other choices of bucketing, such as using finer buckets for
the LOS> 10 patient group.

We use the predicted buckets of LOS are as inputs for
RDO in Algorithm 1. Given each patient’s predicted LOS
bucket, the upper bound of the first three buckets is used
as the LOS point estimates l p, and l p = 30 is used for the
> 10 bucket because 95% of the patients left the CVICU in
less than or equal to 30 days. Although the machine learn-
ing model uses month of surgery from historical data, this
feature was studied and had little effect on LOS predic-

Table 2 Model performance (GBM) on LOS classification using the
coarse LOS buckets

Bucket (% of Test Set) Accuracy 1 Accuracy 2

0-1 days (26%) 0.33 0.96

2-5 days (41%) 0.89 0.97

6-10 days (15%) 0.11 1.00

> 10 days (18%) 0.33 0.43

Overall 0.53 0.88

tion. Optimization performance on ICU occupancy and wait
times is shown in red in Fig. 4, in comparison with per-
formance upper bounds in grey assuming the classification
algorithmachieves 100%accuracy.Here,we consider a range
of weights on the cost of ICU overflow relative to the cost
of total wait times: β ∈ {200, 100, 50, 25, 10, 5}. With per-
fect predictions of each patient’s LOS bucket (grey bars), the
optimization model significantly reduces the number of high
ICU occupancy days without pushing back surgeries when
β = 10 and 5. In contrast, the machine learning predicted
outcomes show only slight improvement in both objectives
for β = 50 (red bars). The trade off between the two objec-
tives becomes significant as β decreases. When the weight
on the cost of ICU overflow is sufficiently high, optimization
reduces the number of high ICU occupancy days at the cost
of increasing patient wait times and vice versa.

Compared to classification models, generating point-
forecast for individual patients using regression models is
even more challenging especially for those with prolonged
LOS (see, for example, [30]). We follow the same pro-
cedure to select and train a variety of regression models
including OLS regression, Lasso regression, gradient boost-
ing machine, quantile regression and more. However, when
the generated point-predictions are combined with deter-
ministic optimization, there is still no model that achieves
performance improvement on both metrics of interest. Sim-
ilar to the classification model above, the main difficulty
comes from significant under-estimation of prolonged LOS.
Figure 5 plots the density distribution of relative predictive
errors, defined as the ratio between true LOS and predicted
LOS, for training and testing set. The distribution is heavily
right-skewed with a long-tail of very large relative errors (i.e.
true LOS >> predicted LOS). We explore this issue further
in the following section.

4.3 Identifying the challenges

Results in Section 4.2 show that the major challenge in LOS
prediction and achieving measurable improvements through
optimization is predicting prolonged LOS at the time of
admission. This is consistent with what many past studies
have observed. For example, neither linear regression or arti-
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Fig. 4 RDO performance
comparison using 100%
accurate classification
predictions (grey) and actual
machine learning predictions
(red)

ficial neural network developed in [30] is able to predict
patient LOS of greater than 15 days. The neural network pro-
posed in [17] is unable to predict patient LOS of greater than
150 hours on the validation set. Yang et al., [34] concluded
that the predictive accuracy of most existing prediction tech-
niques is expected to be inferior in the tail of the distribution
to that in the middle due to imbalanced data. Furthermore,
[16] shows that after 5 days in the ICU, the most significant
predictors of the remaining LOS are features collected on
day 5 instead of those at the time of admission.

Poor predictions of prolonged LOS have a significant
impact on optimization performance, especially in the con-
text of cardiovascular surgeries where LOS in the ICU tends
to have a long tail distribution. As shown in Fig. 6b, 5.7%
of the patients with LOS of greater than 30 days in the ICU
makes up 42% of the total CVICU daily census count in the
test set aggregated from 2018 to 2020. This small group of
patients thus has a disproportionately large influence on ICU
resource use and operational performance.

A closer examination of our data also reveals the non-
stationary nature of hospital operations, another challenge to
developing and evaluating predictive models in real life. A
comparison between Figs. 6b and 6a highlights the shift in
patient population in terms of LOS distributions from 2014-
2018 to 2018-2020 at the PAMC. The most notable change

Fig. 5 Relative predictive errors of the GBM regression model,
true LOS

predicted LOS . The distribution is right-skewed

is an increase in cases with extended LOS in the CVICU,
driven by the hospital’s decision to admit a larger fraction of
complex cases in recent years. Such shifts in hospital oper-
ations make prospective predictions of LOS based on past
data even less reliable. We split the training and test set in
chronological order instead of randomly to reflect the impact
of such inherent non-stationarity on model development and
performance in practice.

5 Data-driven surgical scheduling with
machine learning under uncertain LOS

While combining machine learning with a deterministic
formulation of optimization can provide significant per-
formance improvement in theory, we have shown that the
unpredictability of the long-tailedLOSalongwith other chal-
lenges can lead to poor performance in practice. A natural
next step is to consider optimization methods that directly
incorporate the uncertainties in LOS.

In this section, we propose a data-driven surgical schedul-
ing framework, designed to address the identified challenges
in the previous sections. Our framework combines opti-
mization under uncertainty with machine-learning predicted
distribution of LOS, and rolling information update.

Under this general framework, we develop three algo-
rithms: Standard-RSO, Conservative-RSO and RRO.
Standard-RSO and Conservative-RSO apply stochastic opti-
mization using the predicted LOS distributions to mini-
mize the expected cost, where the latter further adjusts the
predicted LOS distribution to target under-estimations for
prolonged LOS. RRO uses robust optimization to produce
solutions that are robust against under-estimations for pro-
longed LOS.

5.1 Estimating LOS probability distribution using
machine learning

Instead of relying on deterministic predictions of LOS for
optimization,we nowusemachine learningmodels to predict
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Fig. 6 The fraction of patients with extended LOS (> 30 days) doubled
in the test set (right) compared to the train set (left). 5.7% of the patients
with LOS of > 30 days make up 42% of the CVICU census count from

2018 to 2020. Training set is from January 2014 to mid-June 2018. Test
set is from mid-June 2018 to May 2020

the probability distribution of LOS. We start by generating
point-wise prediction of LOS for each patient using conven-
tional machine learning models discussed in Section 4. For
each patient p, let vp be the value of LOS point prediction
from the machine learning model for the true LOS, L p, and
define the relative prediction error

Rp = L p/vp. (4)

L p and Rp are randomvariables and vp is known.We assume
that the random variables Rp’s are independent and identi-
cally distributed across patients from a distributions S, i.e.,

Rp
iid∼ S ∀p ∈ P.

Note that Rp > 1 represents an under-prediction of LOS and
Rp < 1 means an over-prediction. We choose to model rel-
ative prediction errors so that the absolute prediction errors,
|L p − vp|, tend to be larger for patients with prolonged real-
ized LOS. This is in accordance with our finding in Section
4 that prediction is more challenging for prolonged LOS.

The distribution S is approximated using the empiri-
cal distribution of predictive errors of the machine learning
model during training and validation. Figure 5 provides an
example of this distribution.

Given estimated S, the distribution of L p for individual
patient p is estimated using

L p = round(vp · Rp) Rp ∼ Ŝ.

5.2 Rolling stochastic optimization (RSO)

Building on the rolling deterministic optimization frame-
work introduced in Section 3.2, we first explore stochastic

optimization approaches that utilize estimated probability
distributions of patient LOS.

Let the randomvariable L p denote theLOSof each patient
p, and a LOS realization trace,

ω = {l p : p ∈ Pb ∪ P past
b },

denote a sequence of realized LOS for all patients who have
arrived at the system at the start of period b. We use μb to
denote the discrete probability distribution of ω over the set
of all possible traces for batch b, denoted as �b. We assume
that each patient’s LOS is independent of other patients, and
henceμb is the joint distribution of independent randomvari-
ables L p, for all p ∈ Pb ∪ P past

b .
Using the same set of notations as deterministicBOP intro-

duced in Section 3.2, stochastic optimization formulations
aim to minimize the expected cost taken over the distribution
μb:

min
x

∑

p∈Pb

Nd∑

d=sb

(d−dmin
p )+xd,p+β ·Eω∼μb

Nd∑

d=sb

f (ud(x, ω))

(5)

Objective function 5 parallels the objective function 3a of the
deterministic BOP. The distinction is that the ICU overflow
variable, ud is now a random variable that is a function of x
and ω.

Following the approach used in [20], we approximate the
objective function 5 using Sample Average Approximation
(SAA). Specifically, we randomly sample N� traces of ω

from�b, according to probability distributionμb. Each trace
of ω is sampled by independently sampling l p from the esti-
mated distribution of L p for each patient, p ∈ Pb ∪ P past

b .
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Denote sampled traces as {ω(n) : n = 1, . . . , N�} and
sampled LOS {l(n)

p : n = 1, . . . , N�, p ∈ Pb ∪ P past
b }. For

each sampled trace, we introduce auxiliary binary variables
y(n)
d,p that indicate if patient p needs an ICUbedondayd given

l(n)
p . Similarly, we use u(n)

d to denote ICU overflow on day
d given ω(n). The stochastic BOP with SAA is formulated
below.

min
x

∑

p∈Pb

Nd∑

d=sb

(d − dmin
p )+xd,p + β

N�

N�∑

n=1

Nd∑

d=sb

f (u(n)
d ) (6a)

xd,p = x̃d,p ∀p ∈ P past
b , d ∈ D (6b)

Nd∑

d=sb

xd,p = 1,
sb−1∑

d=1

xd,p = 0 ∀p ∈ Pb (6c)

y(n)
d,p =

d∑

d ′=max(d−l(n)
p +1,1)

xd ′,p ∀p ∈ Pb ∪ P past
b ,

∀d ∈ D, n = 1, . . . , N�

(6d)

∑

p∈Pb∪P past
b

y(n)
d,p ≤ c + u(n)

d ∀d ∈ D, n = 1, . . . , N� (6e)

x ∈ Qop (6f)

y(n)
d,p, xd,p ∈ {0, 1}, ud ≥ 0 (6g)

The objective function 6a formulates the SAA approxima-
tion of the objective function 5. The constraints 6d and 6e
formulate the stochastic parallel to constraints 3d and 3e in
deterministic BOP, creating a replica of variables yd,p and
ud,p for every sample traceω(n). The other constraints remain
identical to their deterministic counterpart. Note that we
focus on surgical scheduling problems where different real-
izations of ω only affect daily ICU occupancy and overflow,
and do not affect feasibility of a schedule, x . In practice, ICU
overflow can be accommodated by setting up temporary ICU
beds or utilizing spare resources from other ICUs. Feasibil-
ity is thus determined exclusively by operational constraints
such as OR room capacity, surgeon and patient availability,
which remain unchanged.

We combine stochastic BOP with the rolling optimiza-
tion framework introduced previously for RDO. Under this
framework, stochastic BOP is solved sequentially for a
sequence of schedule days, {sb : b = 1, . . . , B}. Meanwhile,
the probability distributions of LOS L p are progressively

updated for every patients as uncertainty realizes. We intro-
duce the information update procedure for stochastic BOP
below.

Information Update Procedure for Stochastic BOP.At the
start of each batch b, the distribution of L p for all p ∈ P past

b
is updated as follows.

(a) If the patient has undergone surgery and has been dis-
charged from ICU by scheduling day sb, her realized
LOS is observed and we update L p to be a constant
equal to the true LOS.

(b) If the patient is in the ICU on day sb having stayed
for m days, then we update the distribution of L p

using the conditional distribution of L p|L p ≥ m. To
obtain the resultant distribution, we update the distribu-
tion of prediction errors, Rp ∼ S by conditioning on
round(vp · Rp) ≥ m while fixing vp.

(c) If the procedure of the patient is scheduled after sb, there
is no change to the distribution of L p.

We develop two rolling stochastic optimization algo-
rithms, Standard-RSO and Conservative-RSO. Both algo-
rithms adopt the same framework combining stochastic
optimization, machine-learning predicted distribution and
rolling information update.

The two algorithms differ from each other on how LOS
realization traces ω are sampled for SAA. In Standard-RSO,
realizations of l(n)

p are generated by sampling the relative

prediction error r (n)
p directly from S and setting

l(n)
p = round(vp · r (n)

p ).

In contrast, in Conservative-RSO, we generate conservative
realizations of l(n)

p by rounding any r (n)
p < 1 drawn from S

to one, i.e.,

l(n)
p = round(vp · max{r (n)

p , 1}).

In other words, Standard-RSO draws LOS realizations from
a distribution derived from two-way predictive errors, S;
Conservative-RSO draws LOS realizations from an adjusted
distribution of S, where only one-way errors from LOS
under-predictions (i.e. rp > 1) are retained, and any over-
prediction errors rp < 1 are rounded up to 1. Conservative-
RSO is designed such that the algorithm focuses on stochas-
ticity arising from difficult-to-predict extended LOS for
cardiovascular surgeries, where machine learning models
consistently yield under-predictions.

We formalize the two rolling stochastic optimization algo-
rithms in Algorithms 2 and 3 below.

When implementing Standard-RSO and Conservative-
RSO, we set N� = 10 to obtain our numerical results. Large
values of N� can lead to very large numbers of variables and
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Algorithm 2 Standard-RSO

1: Initialize with b = 1, P past
b = ∅, x̃ = ∅.

2: for b = 1 to B do

3: 1. Information Update. Patient arrival Pb is realized between
sb−1 and sb − 1; obtain point-prediction of LOS, {vp : p ∈ Pb}.

4: for p ∈ P past
b do

5: Update LOS distribution L p and S using the Information
Update Procedure for stochastic BOP.

6: end for
7: 2. SAA Sampling
8: for n = 1, 2, . . . , N� do
9: Sample theLOS realization trace,ω(n) = {l(n)

p : p ∈ Pb∪P past
b }

by randomly sampling relative prediction error r (n)
p from S and

setting l(n)
p = round(r (n)

p · vp) for all p. In the case where

L p = l p is a constant, set l
(n)
p = l p .

10: end for
11: 3. Schedule Optimization. Solve stochastic BOP with SAA

given sb, Pb, P
past
b , x̃ , {ω(n): n = 1, 2, . . . , N�}; implement the

optimal solution x∗ for all p ∈ Pb.
12: 4. Schedule and Capacity Update.
13: P past

b+1 ← P past
b ∪ Pb

14: x̃ ← x̃ ∪ x∗
15: end for

Algorithm 3 Conservative-RSO

1: Initialize with b = 1, P past
b = ∅, x̃ = ∅.

2: for b = 1 to B do

3: 1. Information Update. Patient arrival Pb is realized between
sb−1 and sb − 1; obtain point-prediction of LOS, {vp : p ∈ Pb}.

4: for p ∈ P past
b do

5: Update LOS distribution L p and S using the Information
Update Procedure for stochastic BOP.

6: end for
7: 2. Conservative SAA Sampling
8: for n = 1, 2, . . . , N� do
9: Sample theLOS realization trace,ω(n) = {l(n)

p : p ∈ Pb∪P past
b }

by randomly sampling relative prediction error r (n)
p from S and

setting l(n)
p = round(vp · max{r (n)

p , 1}) for all p. In the case

where L p = l p is a constant, set l
(n)
p = l p .

10: end for
11: 3. Schedule Optimization. Solve stochastic BOP with SAA

given sb, Pb, P
past
b , x̃ , {ω(n): n = 1, 2, . . . , N�}; implement the

optimal solution x∗ for all p ∈ Pb.
12: 4. Schedule and Capacity Update.
13: P past

b+1 ← P past
b ∪ Pb

14: x̃ ← x̃ ∪ x∗
15: end for

constraints under constraints 6d and 6e. We thus limit the
value of N� due to computational constraints. We discuss
the computational limitations further in Section 7.

5.3 Rolling robust optimization (RRO)

Robust optimization formulations provide an alternative to
stochastic optimization for scheduling under uncertainty.

Robust optimization aims to minimize the worst-case cost
defined over an uncertainty set, Ub, which is a chosen subset
of all possible realized traces ω = {l p : p ∈ Pb ∪ P past

b }.
Using the same notations as before, the formulation of robust
BOP for a pre-defined uncertainty set Ub can be written as
follows.

min
x

∑

p∈Pb

Nd∑

d=sb

(d − dmin
p )+xd,p + β · θ(x) (7a)

s.t.

xd,p = x̃d,p ∀p ∈ P past
b , d ∈ D (7b)

Nd∑

d=sb

xd,p = 1,
sb−1∑

d=1

xd,p = 0 ∀p ∈ Pb (7c)

x ∈ Qop, xd,p ∈ {0, 1} (7d)

where θ(x) is the worst-case cost associated with ICU over-
flow for all possible LOS realization traces in the uncertainty
set,

θ(x) = max
{l p :p∈Pb∪P past

b }∈Ub

min
y,u

Nd∑

d=sb

f (ud) (7e)

s.t.

yd,p =
d∑

d ′=max(d−l p+1,1)

xd ′,p ∀p ∈ Pb ∪ P past
b , d ∈ D

(7f)

∑

p∈Pb∪P past
b

yd,p ≤ c + ud ∀d ∈ D (7g)

yd,p ∈ {0, 1}, ud ≥ 0. (7h)

Apart from the uncertainty set Ub, the remaining constraints
of robust BOP are similar to those of deterministic BOP in
optimization problem 3. It is worth noting that in Eq. 7f, xd,p

are now constant model parameters passed on from the outer
minimization problem, and l p are now decision variables to
be optimized.

To formulate the uncertainty set Ub for scheduling day sb,
let lmin

p and lmax
p denote the lower andupper boundofLOS for

patient p. and Ab the subset of patients where lmax
p − lmin

p >

0, i.e., Ab = {p ∈ Pb ∪ P past
b : lmax

p − lmin
p > 0}. The uncer-

tainty set, Ub is defined to be the set of possible realizations
of ω ∈ �b that satisfy the following two constraints:

lmin
p ≤ l p ≤ lmax

p ∀p ∈ Pb ∪ P past
b , (8)
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and, for some chosen constant 0 ≤ η ≤ 1,

∑

p∈Ab

[
l p − lmin

p

lmax
p − lmin

p

]
≤ η · |Ab|. (9)

Constraint 9 enforces a budget of uncertainty, η · |Ab|, which
limits the total possible normalized deviations (i.e., extended
ICU days) from the lower bound lmin

p . Following the termi-
nology in robust optimization literature (see, e.g., [4]), we
refer to η as the uncertainty budget, and tune the value of η

among {0.5, 0.75, 1.0} based on performance of numerical
experiments.

Instead of using stylized assumptions to set values for
lmin
p and lmax

p and construct the uncertainty set (see, e.g.,
[22]), we tailor the values of lmin

p and lmax
p for individual

patients usingmachine-learning predictedLOSdistributions.
For all incoming patients, p ∈ Pb, we set lmin

p to be the point-
prediction givenby themachine learningmodel,vp . TheLOS
upper-bound lmax

p , on the other hand, is determined using the
100(1 − α) percentile of relative predicted error under the
estimated distribution, S:

lmax
p = round(vp · rmax ), rmax = F−1

S (1 − α),

where F−1
S denotes the inverse cumulative distribution func-

tion of S. For our numerical experiments, we present results
with α = 0.2 (i.e., the 80th percentile), chosen among
{0.1, 0.15, 0.2, 0.25} based on simulated robust optimization
performance for our data set.

As uncertainties of LOS realize overtime for previously
scheduled patients, P past

b , we update the distributions ofLOS
and parameters used for the uncertainty set dynamically as
follows.

Information Update Procedure for Robust BOP. At the
start of each batch b, update the distributions of L p for all
p ∈ P past

b using the update procedure for stochastic BOP
introduced inSection 5.Given the updated distributions, lmin

p ,
lmax
p are updated as follows.

(a) If the patient has undergone surgery and has been dis-
charged from ICU by scheduling day sb, update lmin

p =
lmax
p to be equal to the true LOS.

(b) If the patient is in the ICU on day sb having stayed
for m days, update lmin

p = max{m, vp}, and lmax
p =

round(vp · rmax ), where rmax = F−1
S (1 − α) using the

updated S.
(c) If the procedure of the patient is scheduled after sb, there

is no change to lmin
p , lmax

p .

We develop an adapted column and constraint generation
approach (AC&CG) to solve robust BOP in optimization
problem 7 with the above definition of Ub. The method of

AC&CG for surgical scheduling with ICU capacity con-
straints was first proposed in [22], which was designed for
linear cost functions f (ud) only. Our AC&CG approach
extends the algorithm in [22] to accommodate convex, piece-
wise linear formulations of f (ud).

At a high level, the AC&CG approach involves iteratively
solving aMain problem and a Recourse problem. Every iter-
ation t , the Main problem solves for a temporary optimal
scheduling decision, xt∗, that minimizes the worst-case cost
over a subset of the uncertainty set, �t ⊂ Ub. The opti-
mal objective value provides a lower bound to that of the
original BOP. The Recourse problem then finds a worst-case
LOS realization trace, ωt∗ ∈ Ub, that maximizes the cost
of ICU overflow under the temporary scheduling decision,
xt∗. The optimal objective value provides an upper bound to
that of the original BOP. When the upper and lower bounds
obtained are equal, the temporary scheduling decision xt∗
obtained from the Main problem is also optimal to robust
BOP, and the algorithm terminates. Otherwise, we update
the set �t to include ωt∗ obtained from the Recourse prob-
lem, �t+1 ← �t ∪{ωt∗}, and re-solve the updated the Main
problem with �t+1.

We formalize the above AC&CG algorithm for solving
robust BOP in Algorithm 5 in Appendix B. Note that each
iteration of AC&CG adds a LOS realization trace, ωt∗ to the
set �t . This process adds a significant number of new vari-
ables and related constraints to the Main problem.5 As the
number of iterations increases, the size of the Main problem
can therefore grow quickly. When implementing AC&CG,
we thus terminate the algorithm after at most 10 iterations
due to computational constraints. In Appendix C, we show
that the optimally gaps, UB−LB

LB , are reduced to under 1% for
almost all batches after 10 iterations. We discuss the compu-
tational challenges further in Section 7.

The full rolling robust optimization algorithm (RRO)
combining information update and AC&CG is presented in
Algorithm 4.

6 Numerical experiments and results

In this section, we evaluate the three algorithms introduced
in Section 5 based on numerical simulations with real-world
data. Using the dataset and procedures described in Section
4, we develop a regression model for LOS prediction using
GBM on historical training data from 2014 to 2018. We use
the machine learning model to generate LOS predictions for
all patients in the test set, {v1, v2, . . . , v|P|}. The empirical
distribution of predicative errors on both the training set and

5 See constraints 23d and 23e in Appendix B.
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Algorithm 4 Rolling Robust Optimization (RRO)

1: Initialize with b = 1, P past
b = ∅, x̃ = ∅.

2: for b = 1 to B do

3: 1. Information Update. Patient arrival
4: Pb is realized between sb−1 and sb − 1; evaluate lmin

p , lmax
p for all

p ∈ Pb.
5: for p ∈ P past

b do
6: Update LOS distributions and lmin

p , lmax
p using the Information

Update Procedure for robust BOP.
7: end for
8: 2. Schedule Optimization. Solve robust BOP with AC&CG

given sb, Pb, P
past
b , x̃ , lmin

p , lmax
p ∀P ∈ Pb ∪ P past

b ; implement
solution x∗ for all p ∈ Pb.

9: 3. Schedule and Capacity Update.
10: P past

b+1 ← P past
b ∪ Pb

11: x̃ ← x̃ ∪ x∗

12: end for

the test set6, are used as the estimated distributionS. TheLOS
predictions and S are then used as inputs to Algorithms 2, 3
and 4 to generate optimal surgical schedules. Performances
of the optimal schedules are simulated and evaluated using
historical patient arrivals and actual LOS data in the test set
from September 2018 to March 2020.

Our numerical results indicate that both Conservative-
RSO and RRO outperform the status quo, while Standard-SP
fails to achieve consistent performance improvement. More-
over, Conservative-RSO achieves the best overall perfor-
mance despite its relative computational simplicity compared
to RRO. The results highlight the importance of tailoring
algorithm for long-tailed distributions and reveals short-
comings of complex algorithms in practical settings. The
best-performing algorithm, Conservative-RSO, provides a
promising direction for designing efficient CVICU schedul-
ing algorithms.

6.1 Performance on historical true LOS

We first simulate the performance of Standard RSO,
Conservative-RSO and RRO on historical patient arrivals.

Each run of either stochastic optimization algorithmsmay
produce a different scheduling policy, because the objective
function involves random sampling. For this reason, both
Standard-RSO and Conservative-RSO are run 90 times each
on the testing period for each values of β ∈ {1, 5, 10, 20},

6 In practice, prediction errors of the test set will not be available at
the time of scheduling. The test errors are included in constructing S
so that, if the LOS of an incoming patient in the test set surpasses all
cases in the training set, conditional sampling described in the previous
section (see Step 2(b) of Method 1 still works as intended. Although
this is not ideal, the scheduling process should not benefit much from
it and it helps simplify our simulations. In practice, if the LOS of a
patient surpasses all previous cases, one approach is to consult health
providers.

where greater values of β mean more weight on the cost of
ICU overflow compared to wait time.

In contrast, the solution of RRO is deterministic for the
same set of model parameters. When evaluating RRO, we
thus only run the algorithm once for each set of parameters.
For RRO, we tune both values of β ∈ {1, 5, 10, 20} and
the uncertainty budget, η ∈ {0.5, 0.75, 1.0}. Greater values
of η mean a larger uncertainty set containing longer LOS
realizations.

Performance of each optimal policy is simulated using the
historical true LOS trace, i.e., the actual realized values of
LOS for each patient in the testing period. The change in wait
times and the number of high ICUoccupancy days in the ICU
for each experiments are evaluated in comparison to those of
the original schedule (i.e. the status quo). Good performance
corresponds to an improvement on both metrics.

Performance of the Standard-RSO, Conservative-RSO
and RRO are presented in Figs. 8, 7, and 9 respectively. Each
run of experiments is plotted using the average or median
change in wait time (the y coordinate) and the simulated
reduction in high ICU occupancy days in the ICU (the x
coordinate). The quadrant shaded in blue in each plot indi-
cates performance improvement on both metrics. Different
values of β indicated by color, and different values of η (for
RRO only) are indicated by marker type.

Standard-RSO shows poor performance in reducing ICU
overflow regardless of the value of β,7 as illustrated in
Figs. 7a and 7b.Despite considering the stochasticity in LOS,
Standard-RSO tends to aggressively schedule most patients
much earlier and is unable to effectively handle the trade off
between ICU overflow and patient wait times.

In contrast, Conservative-RSO demonstrates consistent
improvement of performance in both metrics compared to
the status quo in Fig. 8a in terms of the average change in
wait time and the reduction in high ICU occupancy days
for β ∈ {5, 10}. Relatively weaker performance is observed
when themedian change in wait times is examined in Fig. 8b.
This is likely because the formulation of the objective func-
tion specifically minimizes the sum of wait times instead of
the median. As expected, higher values of β lead to less high
ICU occupancy days but longer wait times.

RRO also achieves good performance shown in Fig. 9. In
particular, performance improvement on bothmetrics param-
eter are achieved under parameter combinations (η = 1, β =
10) and (η = 0.75, β ∈ {5, 10, 20}). Higher values of β and
uncertainty budget η tend to result in less high ICU occu-
pancy days but longerwait times, in linewith our expectation.

7 For consistency, we present performance for β ∈ {1, 5, 10, 20} for all
algorithms. It is worth noting that increasing the value ofβ for Standard-
RSO does not lead to meaningful improvement in performance. One
example is provided in Fig. 13 of Appendix C.
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Fig. 7 Performance trade-off of
Standard-RSO between patient
wait times and ICU congestion
using different values of β,
compared to the status quo. ICU
congestion is measured using
the number of high ICU
occupancy days with at least 10
elective patients in the ICU
(ud ≥ 2)

AlthoughConservative-RSOandRROaremore conserva-
tive in its ICU occupancy forecasts and lead to longer patient
wait times, there is enough slack in the original system so that
both are able to effectively reduce ICU congestion without
excessively pushing back surgeries compared to the original
schedule. In addition, the contrast in performance between
Standard-RSO and Conservative-RSO further reflects that,
with careful design choices targeting the challenges specific
to the problem, performance improvement can be achieved
in practical settings without increasing complexity of the
algorithm.

6.2 Performance on bootstrapped traces of LOS

In order to obtain confidence intervals for the relative perfor-
mances of the three methods, we now use bootstrapping [7]
to generate multiple evaluation traces of LOS realization for
all patient arrivals in the test data.

Let {v1, v2, . . . , v|P|} be the historical sequence of pre-
dicted LOS values for all patients to be scheduled during the
test period, P = ⋃B

b=1 Pb. The procedure of evaluating each
method on bootstrapped evaluation traces is as follows.

Performance evaluation with bootstrapping. Repeat the
following steps to sample NE evaluation tracesω′(i) = {l ′(i)p :
p ∈ P} for i = 1, 2, . . . , NE :

• Step 1: Generate a bootstrapped patient arrival sequence.
The historical arrival sequence is defined by a list of
patient arrival times, {t1, t2, . . . , t|P|}with predicted LOS
{v1, v2, . . . , v|P|}. We uniformly sample with replace-
ment to obtain a new sequence of arrival with predicted
LOS {v′(i)

1 , v
′(i)
2 , . . . , v

′(i)
|P| } while fixing the arrival times

{t1, t2, . . . , t|P|}.
• Step 2. Generate predicted LOS distributions for the new
arrival sequence using {v′(i)

1 , v
′(i)
2 , . . . , v

′(i)
|P| } and S.

– Use the new arrival sequence and its predicted LOS
distributions as common inputs for Standard and
Conservative RSO, and RRO.

– Use the same arrival sequence and set l p = v
′(i)
p ∀p

as inputs for the deterministic formulation, RDO.

Each algorithm produces one optimal schedule x∗ for the
sequence.

• Step 3: Generate a trace of realized LOS for the new
arrival sequence by randomly sampling from the pre-
dicted LOS distributions. Specifically, for patient arrivals
at {t1, t2, . . . , t|P|}, sample the sequence of prediction

errors {r ′(i)
1 , r ′(i)

2 , . . . , r ′(i)
|P| } independently from S and

obtain the trace of realized LOS,

ω′(i) = {l ′(i)1 , l ′(i)2 , . . . , l ′(i)|P| }

Fig. 8 Performance trade-off of
Conservative-RSO between
patient wait times and ICU
congestion using different
values of β, compared to the
status quo. ICU congestion is
measured using the number of
high ICU occupancy days with
at least 10 elective patients in
the ICU (ud ≥ 2

123



Surgical Scheduling via Optimization and Machine Learning with Long-Tailed Data 709

Fig. 9 Performance trade-off of
RRO between patient wait times
and ICU congestion using
different values of β, η

compared to the status quo. ICU
congestion is measured using
the number of high ICU
occupancy days with at least 10
elective patients in the ICU
(ud ≥ 2)

by setting l ′(i)p = round(v
′(i)
p · r ′(i)

p ) for all p.
• Step 4. Simulate the performance of the optimal schedule
by each algorithm under the LOS realization scenario
described byω′(i). Compare relative performance on both
metrics. Performance of RDO is used as a benchmark for
comparison.

Similar to Section 6.1, Step 1-4 are repeated for 100 itera-
tions (NE = 100) on each value of β for each algorithm. For
RRO, η = 0.75 is used because of its good performance on
the historical trace shown in Fig. 9.We compare the change in
wait times relative to the original schedule, and compare the
number of high ICU occupancy days of the three algorithms
relative to that of deterministic optimization, RDO.

Figure 10 presents the performance of Standard-RSO,
Conservative-RSO and RRO in reducing ICU congestion on
bootstrapped patient arrivals in comparison to the perfor-
mance benchmark set by RDO.

Standard-RSO manages to achieve some overflow reduc-
tion for β ≥ 10. When β is small, however, Standard-RSO
tends to under-perform compared to the deterministic bench-
mark. In contrast, the interquartile ranges of Conservative-
RSO (blue) and RRO (red) both show more significant
reduction in the number of high ICU occupancy days com-
pared to RDO for all values of chosen β.

The median of changes in patient wait time compared to
the status quo are presented in Fig. 11. Standard-RSOdemon-
strates similar behaviors to its deterministic counterpart,
with the tendency to aggressively schedule patients earlier.
In contrast, Conservative-RSO strategically delays proce-
dures so that ICU overflow can be effectively avoided. For
β ∈ {1, 5, 10}, the Conservative-RSO is able to consistently
reduce ICU overflowwithout pushing back amajority of pro-
cedures compared to the original calendar. RRO, on the other
hand, achieves comparable performance to Conservative-
RSO and is able to reduce ICU overflow without pushing
back procedures for all values of β.

Comparing Conservative-RSO and RRO, both algorithms
utilize conservative LOS estimates to address under-
predictions for long-tailed LOS. Both achieves promising
reductions in ICU congestion without excessive increase in
wait times. However, Conservative-RSO demonstrates better
average and worst-case performance (upper caps of the box
plots) in ICU overflow for all selected values of β.

The relative poorer performance of RRO in reducing ICU
overflow may be a result of its sensitivity towards the choice
of other parameters, such as the uncertainty budget η, the
choice of lmin

p and the percentile 1− α used for setting lmax
p .

During our effort to calibrate the uncertainty set, the perfor-
mance of RRO is observed to be drastically different under

Fig. 10 Difference in the
number of high ICU occupancy
days using RRO,
Conservative-RSO and
Standard-RSO relative to the
deterministic benchmark by
RDO, for different values of β.
High ICU occupancy days in (a)
are days with at least 10 elective
patients in the ICU, and those in
(b) are days with at least 12
elective patients. Each box plot
shows the median, the
interquartile range, minimum
and maximum of 100
experiments
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Fig. 11 Median change in wait times relative to the status-quo using
RRO, Conservative-RSO, Standard-RSO and RDO respectively for dif-
ferent values of β

different parameter choices. While there remains room for
potential performance improvement with better parameter
tuning, finding the optimal combination of all parameters
can be a very difficult task in practice given the large number
of possibilities and the long computation time required for
each run of the AC&CG algorithm. This reveals a shortcom-
ing of using robust optimization approaches that involve a
large number of parameters, and demonstrates that increas-
ing algorithmic complexity does not always leads to better
performance in practice. To improve practicality of robust
optimization, further research is needed to develop new for-
mulations less sensitive to parameter choices.

Lastly, we note that there is still a notable performance gap
between our best-performingmodel, Conservative-RSO, and
the theoretical upper bound established in Section 3 with
rolling deterministic optimization under perfect informa-
tion. This implies significant room for further development
of more efficient data-driven optimization methods, with

Conservative-RSO serving as a stepping tone towards a
promising direction.

6.3 Summary of numerical results and additional
approaches

We examined a variety of optimization formulations in con-
junction with data-driven LOS predictions. All approaches
are developed under similar frameworks combining machine
learning, rolling information update and optimization meth-
ods, but they differ significantly in their simulation perfor-
mances, strengths and weaknesses. We provide a summary
of these algorithms in Table 3.

Numerous alternative formulations of each of the these
approaches were examined:

• For stochastic optimization, estimating the distribution of
true LOS L p using the historical empirical distribution of
LOSwithin the same procedure type, instead of sampling
prediction errors.

• For robust optimization, using an uncertainty budget that
scales with

√|Ab| instead of |Ab| (see constraint 24f),
and various values of 1 − α for the LOS upper bound,
including α ∈ {0.1, 0.15, 0.2, 0.25, 0.3}.

• Various alternative optimization formulations, such as
linear f (ud), penalizing under-utilization of OR blocks
or minimizing maximum wait times, etc.

• Various alternative machine learning models. In partic-
ular, We used H2O AutoML [18] to search for other
promisingmodels from itswide range of built-inmachine
learning and deep learning algorithms.

None of the above alternatives result in consistent perfor-
mance improvements compared to results presented in this
section.

Table 3 Comparison of
different algorithms

Algorithm Performance Challenges

RDO Does not reduce ICU
congestion without
increasing patient wait
times

Weak predictive accuracy
for prolonged LOS

Standard-RSO Does not reduce ICU
congestion without
increasing patient wait
times

Insufficient sampling on
rare occurrences of
prolonged LOS

Conservative-RSO Promising reductions in
both ICU congestion and
wait time

Can be overly conservative
without precise LOS
prediction

RRO Promising reductions in
both ICU congestion and
wait time

Slow and difficult to tune
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7 Insights and discussions

Among all the practical formulations considered, Conser-
vative-RSO and RRO both achieved reduction in both ICU
congestion and patient wait times. The key driver of their
promising performance is the focus on under-estimates of
long-tailed, extendedLOSof cardiovascular surgery patients,
through the design of either SAA sampling of LOS realiza-
tions, or the uncertainty set of LOS. Good performance also
relies on precise choices of the trade-off coefficient β, and
several other model parameters in the case of robust opti-
mization. To achieve the desired optimization performance
in practice, all model parameters need to be carefully tuned
to balance reduced ICU congestion with longer wait times.

On each scheduling day, possible LOS outcomes for
patients currently in the ICU are updated based on how
long they have been in the ICU. Patients that have been
in the ICU longer than expected have their projected prob-
ability distribution of LOS is updated accordingly. This
information update procedure further corrects for potential
under-estimates of prolonged LOS at the time of scheduling
and improves optimization performance.

The fact that the optimization outcomes are highly sensi-
tive to these nuanced design choices underscores the oper-
ational challenges of surgical scheduling with long-tailed
LOS. Any solution will need to be tailored and fine-tuned
to suit the context of specific institutions in order to reach
the desired outcome.

Although our proposed scheduling framework has demon-
strate promising performance, there remains room for poten-
tial extensions and future work to address some of its
limitations.

First, under our rolling optimization framework, patients
who arrived in-between two scheduling days need to wait
until the next scheduling day to be scheduled. In our sim-
ulations, we have chosen the scheduling days sb to be one
month apart for elective procedures based on our context,
as explained at the end of Section 3.2. However, for other
types of procedures, scheduling may need to happen on a
daily bases.While ourmodeling frameworknaturally extends
to the case of daily scheduling (by setting sb as consecu-
tive days), managing ICU overflow in this case can become
more difficult, since scheduling is performedwith less patient
arrival information. This is a limitation of our framework
to be addressed in future works. For instance, authors of
[15] propose an alternative rolling horizon framework for
surgical scheduling that takes into account uncertain future
patient arrivals. With a forward-looking, rolling arrival hori-
zon, scheduling decisions can be made more frequently for

realized patient arrivals, in anticipation of stochastic future
arrivals. Incorporating designs of this kind with our current
framework has the potential to improve practicality and per-
formance for procedures that require faster scheduling.

Second, a challenge of both Conservative-RSO and RRO
that has not been addressed is their computational limitations.
In our numerical experiments, we have limited the number
of sampled traces, N� for SAA to 10 and the number of
iterations of AC&CG to 11. As mentioned in Section 5.2 and
5.3, the memory and run time required to solve the optimal
schedule for each batch of patients can grow quickly when
N� and the number ofAC&CGiterations increase. In the case
of SAA for Standard andConservative-RSO, it typically took
4 to 8 hours to run each numerical experiment for N� = 10
with 19 batches with two CPUs and 16GBmemory per CPU.
For N� = 30, at least 21 hours were required to run one
such numerical experiment with four CPUs and 16GB of
memory per CPU. Meanwhile, AC&CG for RRO requires
even longer run time: it took typically 7 to 12 hours to run
each experiment for 11 iterations with two CPUs and 16GB
memory per CPU. The authors of [22] also point out that the
proposed algorithm may be computationally inefficient for
larger uncertainty sets. Developing a better understanding of
how the choice of N� and the maximum number of AC&CG
iterations impacts optimization performance is a meaningful
subject of further research.

Finally, ourmodels focus on uncertainties in LOS and ICU
capacity, treating surgical duration and the corresponding
OR capacity as deterministic while respecting the constraints
at the institution studied (see Section 3.1). In environments
where OR capacity is also a bottleneck or overtime is consid-
ered as part of the objective (see, e.g., [20, 22]), developing
data-driven models that incorporate both uncertainty sources
will be useful.

8 Concluding remarks

Using seven years of data from an academic medical center,
we developed machine learning models to predict post-
surgical length of stay, optimization models to schedule
procedures to minimize post-surgical bed congestion, and
simulated the results of the use of these models on the
most recent 18 months of held-out empirical test data. We
established an upper bound on performance with an offline
optimization model of historical data with access to actual
LOS.

A conservative stochastic program with sufficient sam-
pling of the LOS distribution to capture tail behavior man-
aged to achieve the best overall performance in reducing ICU
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congestion without increasing wait times for surgery. Com-
pared to the hospital’s current paper-based system, the deter-
ministic and standard stochastic optimization approaches,
along with numerous variants of machine learning and opti-
mization formulations, failed to improve performance. The
failure of most models to improve over the status quo, illus-
trate the importance of using empirical data, rather than
synthetic parametric data, especially for long-tailed distribu-
tions. Several lessons for dealing with such data are offered
by the contrast between the models that did and did not
improve performance.

The prevalent null results highlight the challenge of the
unpredictability and non-stationarity of prolonged LOS in
practical settings. This challenge is rarely addressed in pre-
vious works, most of which follow the common practice of
using synthetic LOS data generated based on strong distribu-
tional assumptions. For example, in [20, 27], the distribution
of the LOS in the ICU is assumed to have amean and standard
deviation of nomore than 3.5 days. In the robust optimization
approach discussed in [22], the worst-case deviation of the
uncertainty set is assumed to be 4 days, which the authors
admit can be far from reality. Despite the positive results
obtained in simulation, the actual performance of these opti-
mizationmodels can be drastically different in practice in the
presence of significant LOS estimation errors.

We proposed a novel formulation of stochastic optimiza-
tion, Conservative-RSO, which demonstrated most consis-
tent improvements with empirical data despite of its relative
algorithmic simplicity. Our results show that Conservative-
RSO is a promising first step towards addressing the unpre-
dictability and long-tailed behavior of LOS to improve sur-
gical scheduling, and they provide meaningful directions for
future work. First, much work is needed to explore and eval-
uate alternative designs of data-driven optimization formula-
tions, calibrated and evaluated using empirical data of LOS.
For instance, onemaywant to explore alternative uncertainty
sets for robust optimization, or ambiguity sets for distribu-
tionally robust optimization (see, e.g., [27]). When empirical
data are not available, any distributional assumptions should
incorporate the long-tailed, non-stationary nature of LOS
distributions to minimize the bias present in using standard
distributional assumptions. Furthermore, learning over long-
tailed distributions has not been fully examined in prior
research. We highlight its central importance in tackling
the general problem of surgical scheduling with constrained
downstream capacities. Obtaining accurate and precise LOS
predictions is one way to push the Pareto frontier of opti-
mization closer to the theoretical performance upper bound
using full information. Settings where patient characteristics
available at the time of scheduling fail to explain themajority
of variation in LOS offer exciting challenges to be tackled by
innovative approaches that combine the power of prediction,
optimization, and information update.

Appendix A: Mathematical formulations for
f (ud),Qop

Solving the quadratic objective, f (ud) = u2d of the mixed-
integer program can be slow. To reduce the runtime required
to solve the problem, we implement the quadratic term in the
objective function, f (ud) = ud , using a piece-wise linear
approximation,

f (ud) = e1u
(1)
d + e2u

(2)
d + e3u

(3)
d + e4u

(4)
d + e5u

(5)
d , (10)

and add additional constraints

∑

p∈Pb∪P past
b

yd,p ≤ c + m − 1 + u(m)
d ∀d,m

u(m)
d ≥ 0 ∀d,m

In words, u(m)
d counts ICU overflow above c + m − 1

for m = 1, . . . , 5. Here, em are constant coefficients for the
piecewise linear function.

In our formulation, we set e1 = 1, e2 = e3 = e4 = e5 =
2. Since ud only takes integer values, this coefficient choice
leads to f (ud) ≡ u2d for any ud ≤ 5. The piece-wise linear
approximation is 20 times faster than the quadratic form in
our numerical experiments.

The above approximation is used in all our algorithms.
The formulations for stochastic and robust algorithms are
analogous (e.g. copies of u(m)

d are created for different LOS
realizations), and we thus omit the details here.

Next, we introduce the full mathematical formulation of
Qop in constraint 1e for offline optimization below.

Sets

• D = {1, 2, . . . , Nd}: index for days
• P = {1, 2, . . . , Np}: index for patients
• P par ⊂ P: set of PAR patients
• K : set of surgeons

Parameters

• c: number of ICU beds reserved for elective patients, set
to 8

• qp: operation duration for p ∈ P .
• l p: post-op length of stay in CVICU for p ∈ P
• hd,k : number of hours surgeon k is available to perform
surgery on day d, for s ∈ S. hd,k = 15 if k operates on
day d, 0 otherwise.

• par_dayd,k : indicator variable for PAR days.
par_dayd,k = 1 if surgeon k can perform PAR surg-
eries on day d, 0 otherwise.
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• original_datep ∈ D: the original date that a surgery is
scheduled for for p ∈ P

• actual_datep ∈ D: the actual date that a surgery takes
place for p ∈ P; can be different from original_datep
if the surgery was rescheduled.

• arrived_on p: the arrival date for p ∈ P , i.e., when a
patient is first being scheduled for surgery; can be nega-
tive (i.e. outside the set D) if the surgery was scheduled
before September 2018

• leadp: the lead time of a surgery, i.e.

original_datep − arrived_on p

• mk,p: binary, 1 if patient p is assigned to surgeon k and
0 otherwise

Decision Variables

• ud : integer, the number of additional elective patients in
the ICU on day d above c

• xd,p: binary, xd,p = 1 if patient p is scheduled to have
her surgery on day d; otherwise 0

• dp: the date when the surgery of patient p is scheduled
by the model

• yd,p: binary, yd,p = 1 if patient p stays in the CVICU
on day d; otherwise 0

• zd,p: continuous, number of hours that the surgery of p
lasts on day d. zd,p = qp if xd,p = 1, otherwise 0

Indicator Function

• Assumed feasible window where patient p is available
for surgery:

g(d, p) = 1{dmin
p ≤ d < dmax

p }

where dmax
p = min(actual_datep + 90, Nd),

dmin
p =

{
max[1, original_datep − leadp

2 ], leadp > 20

max[1, arrived_on p], leadp ≤ 20

(11)

Next we describe the optimization constraints 12-16 that
are equivalent to x ∈ Qop.

Constraint 12 ensures each patient is scheduled exactly
once within that patient’s window of availability.

∑

d∈D
xd,p · g(d, p) = 1, ∀p ∈ P (12)

Constraints 13-16 incorporate daily availability of surgeons.
Constraint Eq. 13 includes number of hours a surgeon is

available on each day for (non PAR) surgeries.

zd,p = xd,pqp, ∀d ∈ D, p ∈ P (13)

∑

p∈P

zd,pmk,p ≤ hd,k, ∀d ∈ D, k ∈ K (14)

Constraint 15 captures that PAR surgeries can only be done
on pre-specified days.

∑

p∈P par

xd,pmk,p ≤ par_dayd,k, ∀d ∈ D, k ∈ K (15)

Constraint 16 ensures each surgeon is not scheduled for PAR
surgeries in subsequent days.

∑

p∈P par

xd,pmk,p +
∑

p∈P par

xd+1,pmk,p ≤ 1,

∀d ∈ D \ {Nd}, k ∈ K

(16)

Appendix A.1:Qop for batch optimization problem

When solving BOP for rolling scheduling, Qop is adjusted
accordingly. In addition to the Sets and Parameters specified
in Section A, we use the following sets and parameters.

Sets

• Pb ⊂ P: index of batch patients of period b
• P past

b = ⋃b−1
k=1 Pk : set of patients prior to period b

• P par
b = P par ∩ Pb

Parameters

• sb: start date/day of batch b
• dmin

p,b = max(dmin
p , sb)

• x∗
d,p: solutions obtained from previous periods

Since the definition of dmin
p,b may restrict the original time

window of availability for some patients, we also adjust the
last available date, dmax

p , to at least 90 days after the start of
the period, i.e.,

dmax
p,b = max(dmax

p ,min(sb + 90, Nd)) (17)

This adjustment allows flexible scheduling as described in
Section 3.1. In practice, the definition ofdmax

p,b will not include
Nd ;we included it for our simulation runs.Although the latter
adjustment could potentially increase wait time, it is neces-
sary in ensuring that the set of feasible scheduling solutions
is not too restricted, and any resultant increase in wait time
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will be penalized by the objective function.

Indicator Function

• Adjusted feasibility window for each patient.

gb(d, p) = 1{dmin
p,b ≤ d < dmax

p,b }
Constraints 18-22 give the equivalent formulation of x ∈

Qop in all deterministic, stochastic and robust BOPs.

∑

d∈D
xd,pgb(d, p) = 1, ∀p ∈ Pb (18)

zd,p = xd,pqp, ∀d ∈ D, p ∈ Pb (19)

∑

p∈Pb

zd,pms,p ≤ hd,s, ∀d ∈ D, s ∈ S (20)

∑

p∈P par
b

xd,pms,p ≤ par_dayd,s, ∀d ∈ D, s ∈ S (21)

∑

p∈P par
b

xd,pms,p +
∑

p∈P par
b

xd+1,pms,p ≤ 1,

∀d ∈ D \ {Nd}, s ∈ S.

(22)

Appendix B: Solving AC&CG for robust BOP

In the following, we introduce the AC&CG algorithm used
for solving the robust BOP.

1. Main problem. We start with a subset of traces in the
uncertainty set, �t = {ω(n) : n = 1, . . . , |�t |} ⊆ Ub.
Instead of minimizing the worst-case cost over the entire
uncertainty set U , the Main problem of AC&CG minimizes
the worst-case cost over the subset, �t :

min
x

∑

p∈Pb

Nd∑

d=sb

(d − dmin
p )+xd,p + β · θ (23a)

s.t.

xd,p = x̃d,p ∀p ∈ P past
b , d ∈ D (23b)

Nd∑

d=sb

xd,p = 1,
sb−1∑

d=1

xd,p = 0 ∀p ∈ Pb (23c)

y(n) =
∑

d ′=max(d−l(n)
p +1,1)

xd ′,p ∀p ∈ Pb ∪ P past
b

∀d ∈ D, n = 1, . . . , |�t |
(23d)

∑

p∈Pb∪P past
b

y(n)
d,p ≤ c+u(n)

d ∀d ∈ D, n = 1, . . . , |�t | (23e)

x ∈ Qop, xd,p ∈ {0, 1} (23f)

θ ≥
Nd∑

d=sb

f (u(n)
d ) ∀n = 1, . . . , |�t |. (23g)

Constraint 23g sets the variable θ to be equal to the max-
imum cost of overflow among all traces of LOS realization,
ω(n). The objective 23a thus minimizes the weighted sum
of total wait time and the maximum cost of overflow for
all ω(n) ∈ �t . The remaining constraints mirror those for
BSOP-SAA in optimization problem6, only replacing the set
of sampled traces with set �t . The optimal objective value
of the Main problem provides a lower bound to the optimal
objective value of robust BSOP in optimization problem 7.

2. Recourse problem. At each iteration t , after the Main
problem is solved with �t , an optimal solution xt∗ is
obtained. TheRecourse problemaims tofind a traceωt∗ ∈ Ub

that maximizes the cost of ICU overflow under the given
schedule xt∗. Since xt∗ and ωt∗ are feasible under the origi-
nal BOP, solving the Recourse problem finds an upper bound
of the objective value of robust BOP.

max
ω={l p :p∈Pb∪P past

b }
min
y,u

Nd∑

d=sb

f (ud) (24a)

s.t.

yd,p =
d∑

d ′=max(d−l p+1,1)

xt∗d ′,p ∀p ∈ Pb ∪ P past
b , d ∈ D

(24b)

∑

p∈Pb∪P past
b

yd,p ≤ c + ud ∀d ∈ D (24c)

yd,p ∈ {0, 1}, ud ≥ 0. (24d)
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lmin
p ≤ l p ≤ lmax

p ∀p ∈ Pb ∪ P past
b (24e)

∑

p∈Ab

[
l p − lmin

p

lmax
p − lmin

p

]
≤ η · |Ab|. (24f)

This formulation follows from expressions 7e-7h, and con-
straints 24e and 24f use the definition of Ub in expressions 8
and 9.

One key difficulty of solving the Recourse problem in
its current form is that the decision variable l p appears in
the boundary of the summation in constraint Eq. 24b. We
follow the reformulation approach in [22] and extend it to
convex, piece-wise linear forms of f (ud). The reformulated
Recourse problem is provided in Appendix B.1. We present
the full AC&CG algorithm in Algorithm 5.

Algorithm 5 AC&CG for Robust BOP

1: Initialize with x∗ = 0, t = 1, LB = −∞, UB = ∞, �1 = {ω(1)},
where ω(1) = {lmin

p : p ∈ Pb ∪ P past
b }.

2: while t ≤ T and UB − LB > ε do

3: 1. Main Problem.
4: Solve the Main problem in optimization problem 23 with �t ;

Obtain optimal solution xt∗ with objective value μt∗.
5: Update x∗ ← xt∗, LB ← μt∗.
6: 2. Recourse Problem.
7: Solve the recourse problem in optimization problem 24 with x∗;

Obtain optimal solution ωt∗ with objective value νt∗.

8: Update UB ← min{UB, νt∗}.
9: ifUB − LB > ε then
10: �t+1 ← �t ∪ {ωt∗}
11: t ← t + 1
12: end if
13: end while

14: return x∗

Appendix B.1: Solving the recourse problem

The Recourse problem, denoted as Q(xt∗), involves con-
straints including l p decision variables in the boundary of
summations. Here, we introduce our MIP reformulation that
is readily solvable by Gurobi. We refer readers to [22] for
more details and proofs of its validity.

As in [22] we define the variables vd,p, wd,p ∈ {0, 1} for
d ∈ D, p ∈ P . The variable vd,p is 1 only if patient p is
admitted in the ICU by d. Given the temporary solution xt∗,
vd,p are constant parameters determined by xt∗. The decision
variable wd,p is 1 only if patient p leaves the ICU by day d.
So, yd,p = vd,p − wd,p.

The inner minimization problem of Q(xt∗) is

min
u≥0

∑

d∈D
e1u

(1)
d + e2u

(2)
d + e3u

(3)
d + e4u

(4)
d + e5u

(5)
d

∑

p∈Pb∪P past
b

(vd,p − wd,p) ≤ c + m − 1 + u(m)
d ∀d,m

where e1 = 1, e2 = e3 = e4 = e5 = 2.
We apply strong duality to reformulate the inner mini-

mization as a maximization problem and also substitute for
the definition of uncertainty set Ub. Let dp denote the date
of scheduled procedure for patient p according to xt∗, i.e.,
dp = ∑

d∈D d · xt∗d,p. Q(xt∗) is reformulated below with

decision variables λ
(m)
d and wd,p.

max
λ,w

∑

d∈D

5∑

m=1

⎡

⎢⎣
∑

p∈Pb∪P past
b

(vd,p−wd,p)−c−m+1)

⎤

⎥⎦ λ
(m)
d

dp =
∑

d∈D
d · xt∗d,p ∀p ∈ Pb ∪ P past

b

wd,p ≥ 1, p ∈ Pb ∪ P past
b , d = dp + lmax

p , . . . , T

wd,p ≤ 0, p ∈ Pb ∪ P past
b , d = 0, . . . , dp + lmin

p − 1

wd,p ≤ wd+1,p ∀d ∈ D, p ∈ Pb ∪ P past
b

∑

d∈D
(vd,p − wd,p) = l p, ∀p ∈ Pb ∪ P past

b where p /∈ Ab

∑

p∈Ab

[∑
d∈D(vd,p − wd,p) − lmin

p

lmax
p − lmin

p

]
≤ η · |Ab|.

0 ≤ λ
(m)
d ≤ em ∀d,m

wd,p ∈ {0, 1}, ∀d, p

For the optimal solution, we must have λ
(m)
d ∈ {0, em}.

The formulation above involves a bilinear term,wd,pλ
(m)
d .

Since wd,p ∈ {0, 1}, we can reformulate the problem by

using q(m)
d,p = wd,pλ

(m)
d for all d, p,m. The final reformula-

tion of the Recourse problem is the following.

Q(xt∗) =max
λ,w

∑

d∈D

5∑

m=1

∑

p∈Pb∪P past
b

vd,pλ
(m)
d −

∑

d∈D

5∑

m=1

∑

p∈Pb∪P past
b

q(m)
d,p−

∑

d∈D

5∑

m=1

(c + m − 1)λ(m)
d
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dp =
∑

d∈D
d · xt∗d,p ∀p ∈ Pb ∪ P past

b

wd,p ≥ 1, p ∈ Pb ∪ P past
b , d = dp + lmax

p , . . . , T

wd,p ≤ 0, p ∈ Pb ∪ P past
b , d = 0, . . . , dp + lmin

p − 1

wd,p ≤ wd+1,p ∀d ∈ D, p ∈ Pb ∪ P past
b

∑

d∈D
(vd,p − wd,p) = l p, ∀p ∈ Pb ∪ P past

b where p /∈ Ab

∑

p∈Ab

[∑
d∈D(vd,p − wd,p) − lmin

p

lmax
p − lmin

p

]
≤ η · |Ab|

q(m)
d,p ≥ λ

(m)
t − em(1 − wd,p) ∀d, p,m

q(m)
d,p ≤ emwd,p, q(m)

d,p ≤ λ
(m)
d ∀d, p,m

q(m)
d,p ≥ 0, λ(m)

d ∈ {0, em}, wd,p ∈ {0, 1} ∀d, p,m.

Appendix C: Additional numerical results

This section presents additional results on the optimality gap
of AC&CG and biweekly scheduling.

Fig. 12 The optimality gap, UB−LB
LB , of most batches are below 1%

after 10 iterations of BROP-AG&CG
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Fig. 13 (Biweekly Scheduling)
Performance trade-off of
Standard-SRO between patient
wait times and ICU congestion
using different values of β

compared to the status quo. We
also include greater values of β

to show that increasing β further
leads to longer wait times but
insignificant reduction in ICU
congestion

Fig. 14 (Biweekly Scheduling)
Performance trade-off of
Conservative-SRO between
patient wait times and ICU
congestion using different
values of β compared to the
status quo

Fig. 15 (Biweekly Scheduling)
Performance trade-off of RRO
between patient wait times and
ICU congestion using different
values of β, η compared to the
status quo
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