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Abstract. We consider a generic class of chance-constrained optimization problems with 
heavy-tailed (i.e., power-law type) risk factors. As the most popular generic method for solv
ing chance constrained optimization, the scenario approach generates sampled optimization 
problem as a precise approximation with provable reliability, but the computational complex
ity becomes intractable when the risk tolerance parameter is small. To reduce the complexity, 
we sample the risk factors from a conditional distribution given that the risk factors are in an 
analytically tractable event that encompasses all the plausible events of constraints violation. 
Our approximation is proven to have optimal value within a constant factor to the optimal 
value of the original chance constraint problem with high probability, uniformly in the risk 
tolerance parameter. To the best of our knowledge, our result is the first uniform performance 
guarantee of this type. We additionally demonstrate the efficiency of our algorithm in the con
text of solvency in portfolio optimization and insurance networks.
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1. Introduction
In this paper, we consider the following family of chance constrained optimization problems:

minimize c⊤x

subject to P(φ(x, L) > 0) ≤ δ,

x ∈ Rdx : (CCPδ)

where x ∈ Rdx is a dx-dimensional decision vector and L is a dl-dimensional random vector in Rdl . The elements of 
L are often referred to as risk factors; the function φ : Rdx × Rdl → R is often assumed to be convex in x and often 
models a cost constraint; the parameter δ > 0 is the risk level of the tolerance. Our framework encompasses the 
joint chance constraint of the form P(φj(x, L) > 0, ∃j ∈ {1, : : : , n}) ≤ δ, by setting φ(x, L) � maxj�1, : : : , nφj(x, L).

Chance constrained optimization problems have a rich history in operations research. Introduced by Charnes 
et al. (1958), chance constrained optimization formulations have proved to be versatile in modeling and decision 
making in a wide range of settings. For example, Prekopa (1970) used these types of formulations in the context 
of production planning. The work of Bonami and Lejeune (2009) illustrates how to take advantage of chance con
strained optimization formulations in the context of portfolio selection. In the context of power and energy con
trol the use of chance constrained optimization is illustrated in Andrieu et al. (2010). These are just examples of 
the wide range of applications that have benefited (and continue to benefit) from chance constrained optimiza
tion formulations and tools.
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Consequently, there has been a significant amount of research effort devoted to the solution of chance con
strained optimization problems. Unfortunately, however, these types of problems are provably NP-hard in the 
worst case (Luedtke et al. 2010). As a consequence, much of the methodological effort has been placed into devel
oping (a) solutions in the case of specific models; (b) convex and, more generally, tractable relaxations; (c) combi
natorial optimization tools; and (d) Monte Carlo sampling schemes. Of course, hybrid approaches are also 
developed. For example, as a combination of type b and type d approaches, Hong et al. (2011) show that the solu
tion to a chance constraint optimization problem can be approximated by optimization problems with con
straints represented as the difference of two convex functions. In turn, this is further approximated by solving a 
sequence of convex optimization problems, each of which can be solved by a gradient based Monte Carlo 
method. Another example is Peña-Ordieres et al. (2020), which combines relaxations of type b with sample- 
average approximation associated with type d methods. In addition to the aforementioned types, Hong et al. 
(2021) provides an upper bound for the chance constraint optimization problem using a robust optimization 
with a data-driven uncertainty set, achieving a dimension independent sample complexity.

Examples of type a approaches include the study of Gaussian or elliptical distributions when φ is affine 
both in L and x. In this case, the problem admits a conic programming formulation, which can be efficiently 
solved (Lagoa et al. 2005). Type b approaches include Hillier (1967); Seppälä (1971); Ben-Tal and Nemirovski 
(2000, 2002); Prékopa (2003); Bertsimas and Sim (2004); Nemirovski and Shapiro (2006a); Chen et al. (2010); 
and Tong et al. (2022). These approaches usually integrate probabilistic inequalities such as Chebyshev’s 
bound, Bonferroni’s bound, Bernstein’s approximations, or large deviation principles to construct tractable 
analytical approximations. Type c methods are based on branch and bounding algorithms, which connect 
squarely with the class of tools studied in areas such as integer programming (Ahmed and Shapiro 2008, 
Luedtke et al. 2010, Küçükyavuz 2012, Luedtke 2014, Zhang et al. 2014, Lejeune and Margot 2016). Type d 
methods include the sample gradient method, the sample average approximation, and the scenario approach. 
The sample gradient method is usually combined with a smooth approximation (see Hong et al. (2011) for 
example). The sample average approximations studied by Luedtke and Ahmed (2008) and Barrera et al. 
(2016), although simplifying the constraint’s probabilistic structure via replacing the population distribution 
by sampled empirical distribution, are nevertheless hard to solve due to nonconvex feasible regions. The 
method we consider in this paper is the scenario approach. The scenario approach is introduced and studied 
in Calafiore and Campi (2005) and is further developed in a series of papers, including Calafiore and Campi 
(2006); Nemirovski and Shapiro (2006b).

The scenario approach is the most popular generic method for (approximately) solving chance constrained 
optimization. The idea is to sample a number N of scenarios (each scenario consists of a sample of L) and enforce 
the constraint in all of these scenarios. The intuition is that if for any scenario, say L(i), the constraint φ(L(i), x) < 0 
is convex in x, and δ > 0 is small, we expect that by suitably choosing N the constrained regions can be relaxed 
by enforcing φ(L(i), x) < 0 for all i � 1, : : : , N, leading to a good and, in some sense, tractable (if N is of moderate 
size) approximation of the chance constrained region. Of course, this intuition is correct only when δ > 0 is small 
and we expect the choice of N to be largely influenced by this asymptotic regime.

By choosing N sufficiently large, the scenario approach allows obtaining both upper and lower bounds which 
become asymptotically tighter as δ→ 0. In a celebrated paper, Calafiore and Campi (2006) provide rigorous sup
port for this claim. In particular, given a confidence level β ∈ (0, 1), if N ≥ (2=δ) × log(1=β) + 2d + (2d=δ) × log(2=δ), 
with probability at least 1 � β, the optimal solution of the scenario approach relaxation is feasible for the original 
chance constrained problem and, therefore, an upper bound to the problem is obtained. Unfortunately, the 
required sample size of N grows with (1=δ) × log(1=δ) as δ becomes small, limiting the scope of the scenario 
methods in applications.

Many applications of chance constraint optimization require a very small δ. For example, in the 5G ultra- 
reliable communication system design, the failure probability δ is no larger than 10�5 (Alsenwi et al. 2019); for 
fixed income portfolio optimization, an investment grade portfolio has a historical default rate of 10�4, reported 
by Frank (2008).

Motivated by this, Nemirovski and Shapiro (2006b) developed a method that lowers the required sample size 
to the order of log(1=δ), making additional assumptions on the function φ (which is taken to be biaffine), and the 
risk factors L, which are to be assumed light-tailed. Specifically, the moment generating function E[exp(sL)] is 
assumed to be finite in a neighborhood of the origin. No guarantee is given in terms of how far the upper bound 
is from the optimal value function of the problem as δ→ 0.

In the present paper, we focus on improving the scalability of N in terms of 1=δ for the practically important 
case of heavy-tailed risk factors. Heavy-tailed distributions appear in a wide range of applications in science, 
engineering, and business (Wierman and Zwart 2012, Embrechts et al. 2013) but, in some aspects, are not as well 

Blanchet, Zhang, and Zwart: Efficient Chance Constrained Optimization 
Stochastic Systems, 2024, vol. 14, no. 1, pp. 22–46, © 2023 The Author(s) 23 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

4.
4.

15
0.

15
1]

 o
n 

17
 M

ay
 2

02
4,

 a
t 1

3:
05

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



understood as light-tails. One reason is that techniques from convex duality cannot be applied as the moment 
generating function of L does not exist in a neighborhood of zero. In addition, probabilistic inequalities, exploited 
in Nemirovski and Shapiro (2006b), do not hold in this setting. Only very recently, a versatile algorithm for 
heavy-tailed rare event simulation has been developed in Chen et al. (2019).

The main contribution of our paper is to develop an algorithm that has a sample complexity N uniformly 
bounded in the risk tolerance parameter, assuming a versatile class of heavy-tailed distributions for L. Specifi
cally, we shall assume that L follows a semiparametric class of models known as multivariate regular variation, 
which is quite standard in multivariate heavy-tail modeling (Embrechts et al. 2013, Resnick 2013). Moreover, our 
estimator is shown to be within a constant factor to the solution to (CCPδ) with high probability, uniformly as 
δ→ 0. We are not aware of other approaches that provide a uniform performance guarantee of this type.

The main idea of our algorithm is to construct an analytically tractable event Cδ that uniformly contains the 
violation events {l ∈ Rdl |φ(x, l) > 0} for all x plausible to be feasible. In view of the reformulation of the probabilis
tic constraint in (CCPδ) as P(φ(x, L) > 0 |L ∈ Cδ) ≤ (δ=P(L ∈ Cδ)), the problem (CCPδ) can be solved by the scenario 
approach where L is sampled from the conditional distribution given L ∈ Cδ. The risk tolerance parameter is 
adjusted to δ=P(L ∈ Cδ). The primary challenge is to construct Cδ as tight as possible so that the new risk tolerance 
parameter δ=P(L ∈ Cδ) is bounded. (This is at the heart of Property 1 defined later. This property is facilitated in 
the heavy-tailed setting if we assume that φ(x, L) has appropriate scaling properties, similar to the distribution of 
L uniformly over a suitable compact set of decisions.)

We illustrate our assumptions and our framework with a risk problem of independent interest. This problem 
consists in computing a collective salvage fund in a network of financial entities whose liabilities and payments 
are settled in an optimal way using the Eisenberg-Noe model (Eisenberg and Noe 2001). The salvage fund is 
computed to minimize its size to guarantee a probability of collective default after settlements of less than a small 
prescribed margin. For the sake of demonstrating the broad applicability of our method, we also present a port
folio optimization problem with value-at-risk constraints as an additional running example.

The rest of the paper is organized as follows. In Section 2, we introduce the portfolio optimization problem 
and the minimal salvage fund problem as particular applications of chance constraint optimization. We use both 
problems as running examples to provide a concrete and intuitive explanation for the concepts we introduce 
throughout the paper. In Section 3, we provide a brief review of the scenario approach in Calafiore and Campi 
(2006). The ideas behind our main algorithmic contributions are given in Section 4, where we introduce its intui
tion, rooted in ideas originating from rare event simulation. Our algorithm requires the construction of several 
auxiliary functions and sets, and we summarized the explicit expressions of the sets for the running examples in 
Table 1. How to do this for a more general setting is detailed in Section 5, in which we also present several addi
tional technical assumptions required by our constructions. In Section 5, we also explain that our procedure 
results in an estimate that is within a constant factor of the optimal solution of the underlying chance constrained 
problem with high probability as δ→ 0. In Section 6, we show that the assumptions imposed are valid in our 
motivating example (as well as a second example with quadratic cost structure inside the probabilistic con
straint). Numerical results for the examples are provided in Section 7. Throughout our discussion, in each section 
we present a series of results that summarize the main ideas of our constructions.

To keep the discussion fluid, we present the corresponding proofs in Appendix A unless otherwise indicated. 
In Appendix B, we introduce an importance sampling algorithm to sample from a parametric family of regularly 
varying distribution. We present additional numerical experiments in Appendix C.

1.1. Notations
In the rest of this paper, R+ � [0, + ∞) is the set of nonnegative real numbers, R++ � (0, + ∞) is the set of positive 
real numbers, and R � [�∞, + ∞] is the extended real line. A column vector with zeros is denoted by 0, and a 
column vector with ones is denoted by 1. For any matrix Q, the transpose of Q is denoted by Q⊤; the Frobenius 
norm of Q is denoted by ‖Q‖F. The identity matrix is denoted by I. For α ∈ R and x ∈ Rd, we use α · x to denote 
the scalar multiplication of x with α. For two column vectors x, y ∈ Rd, we say x ≼ y if and only if y � x ∈ Rd

+. For a 

Table 1. Examples of Oδ and Cδ That Satisfy Property 1 When L Is Multivariate Regularly 
Varying

Examples Outer approximation set Oδ Uniform conditional event Cδ

Portfolio optimization (1) {x ∈ Rd
++ |η · x ≽ F�1

1⊤L(δ)} {l ∈ Rd
++ |2 · 1⊤l ≥ F�1

1⊤L(δ)}

Minimal salvage fund (3)
\d

j�1{x ∈ Rd
++ |F�1

Lj
(δ) ≤ e⊤

j (I � Q⊤)
�1x + mj}

Sd
j�1{l ∈ Rd

++ |Lj > F�1
Lj

(δ)}
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column vector x ∈ Rd and a scalar α ∈ R, we say that x ≼α if and only if x ≼α · 1. For α ∈ R and E ⊆ Rd, we define 
α · E � {α · x |x ∈ E}. The optimal value of an optimization problem (Prob) is denoted by Val(Prob). For any real- 
valued random variable X with probability measure P, define the inverse tail distribution function F�1

X : [0, 1] →

R as F�1
X (δ) � inf{x ∈ R |P(x > X) ≤ δ}. We also use Landau’s notation. In particular, if f (·) and g(·) are nonnegative 

real valued functions, we write f (t) � O(g(t)) if f (t) ≤ c0 × g(t)) for some c0 ∈ (0, ∞) and f (t) � Ω(g(t)) if f (t) ≥

g(t))=c0 for some c0 ∈ (0, ∞).

2. Running Examples
2.1. Portfolio Optimization with Value-at-Risk Constraint
We first introduce a portfolio optimization problem. Suppose that there are d assets to invest. If we invest a dollar 
in the jth asset, the investment has mean return µj and a nonnegative random loss Lj. Let x � (x1, : : : , xd) represent 
the amount of dollars invested in different assets, and let µ � (µ1, : : : , µd) and L � (L1, : : : , Ld). We assume that L 
follows a multivariate heavy-tailed distribution.

A precise definition of this concept is rather involved and will be given in Section 5. Intuitively, P(‖L‖2 > x) fol
lows a power law, and the direction L=‖L‖2 is assumed to converge in a suitable sense on the unit sphere, condi
tioned on the event that ‖L‖2 is large.

The portfolio manager’s goal is to maximize the mean return of the portfolio, which is equal to µ⊤x, with a 
portfolio risk constraint prescribed by a risk measure called value-at-risk (VaR). The VaR at level 1 � δ ∈ (0, 1) for 
a random variable X is defined as

VaR1�δ(X) � min{z ∈ R : FX(z) ≥ 1 � δ}:

For a given number η > 0, we formulate the following portfolio optimization problem.
maximize µ⊤x
subject to VaR1�δ(x⊤L) ≤ η,

x ∈ Rd
++:

Using the definition of VaR and the fact that the cumulative distribution function is right continuous, we con
clude that VaR1�δ(x⊤L) ≤ η is equivalent to P(x⊤L � η > 0) ≤ δ. To facilitate the technical exposition, we apply the 
change of variable xj ⊢→ 1=xj to homogenize the constraint function, yielding the following equivalent chance 
constrained optimization problem in standard form:

maximize
Xd

j�1
(µj=xj)

subject to P(φ(x, L) > 0) ≤ δ,
x ∈ Rd

++,

(1) 

where φ(x, l) �
Pd

j�1(lj=xj) � η. Despite the nonlinear objective, Calafiore and Campi (2005, section 4.3) show that 
it admits an epigraphic reformulation with a linear objective so that the standard scenario approach is 
applicable.

2.2. Minimal Salvage Fund
In this section, we use chance-constrained optimization to determine the minimal total salvage fund required for 
a reinsurance company to control its default probability, where the policy holders have complex liability 
structures.

A reinsurance policy is a contract sold to insurance companies for transferring the financial risk exposure and 
smoothing the cash flow. In a certain type of reinsurance contract, the reinsurance company is responsible to pay 
a fixed percentage of the net liability for its clients (in this paper we assume the percentage is 100% for simplic
ity). Therefore, the total amount of net liability is the minimal amount of salvage fund required for the reinsur
ance company to avoid default. However, calculating the distribution of the minimal salvage fund is nontrivial 
because the clients may also have insurance contracts with each other.

Suppose that the reinsurance company has d clients, each is an entity or an insurance firm. Let L � (L1, : : : , Ld) ∈

Rd
+ denote the vector of incurred losses by each firm, where Lj denotes the total incurred loss that entity j is 

responsible to pay. We assume that L follows a multivariate heavy-tailed distribution as in the previous example. 
Let Q � (Qi, j : i, j ∈ {1, : : : , d}) be a deterministic matrix where Qi, j denotes the amount of money received by entity 
j when entity i pays one dollar. We assume that Qi, j ≥ 0 and 

Pd
j�1 Qi, j < 1.
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Let x � (x1, : : : , xd) denote the total amount that the salvage fund allocated to each entity, and y∗ � (y∗
1, : : : , y∗

d)

denote the amount of the final settlement. The amount of final settlement is determined by the following optimi
zation problem:

y∗ � y∗(x, L) � arg max{1⊤y |0 ≼ y ≼ L, (I � Q⊤)y ≼ x}:

In words, the system maximizes the payments subject to the constraint that nobody pays more than what they 
have (in the final settlement), and nobody pays more than what they owe. Notice that y∗ � y∗(x, L) is also a ran
dom variable (the randomness comes from L) satisfying 0 ≼ y∗ ≼ L.

Suppose that entity j bankrupts if the deficit Lj � y∗
j ≥ mj, where m ∈ Rd

+ is a given vector. We are interested in 
finding the minimal amount of salvage fund that ensures no bankruptcy happens with probability at least 1 � δ:
The problem can be formulated as a chance constraint programming problem as follows:

minimize 1⊤x
subject to P(L � y∗(x, L) ≼ m) ≥ 1 � δ,

x ∈ Rd
++:

(2) 

Now we write Problem (2) into standard form. Notice that L � y∗(x, L) ≼ m if and only if φ(x, L) ≤ 0, where φ(x, L)

is defined as follows:

φ(x, L) :� min
b,y

{b | (L � y � m) ≼ b · 1, (I � Q⊤)y ≼ x, y ≽ 0}:

Therefore, Problem (2) is equivalent to
minimize 1⊤x
subject to P(φ(x, L) > 0) ≤ δ,

x ∈ Rd
++:

(3) 

3. Review of Scenario Approach
As mentioned in the Introduction, a popular approach to solve the chance constraint problem proceeds by using 
the scenario approach developed by Calafiore and Campi (2006). They suggest to approximate the probabilistic 
constraint P(φ(x, L) > 0) ≤ δ by N sampled constraints φ(x, L(i)) ≤ 0 for i � 1, : : : , N, where {L(1), : : : , L(N)} are inde
pendent samples. Instead of solving the original chance constraint problem (CCPδ), which is usually intractable, 
we turn to solve the following optimization problem:

minimize c⊤x
subject to φ(x, L(i)) ≤ 0, i � 1, : : : , N,

x ∈ Rdx :

(SPN)

The total sample size N should be large enough to ensure the feasible solution to the sampled problem (SPN) is 
also a feasible solution to the original problem (CCPδ) with a high confidence level. According to Calafiore and 
Campi (2006), for any given confidence level parameter β ∈ (0, 1), if

N ≥
2
δ

log 1
β

+ 2d +
2d
δ

log 2
δ

, 

then any feasible solution to the sampled optimization problem (SPN) is also a feasible solution to (CCPδ) with 
probability at least 1 � β. However, when δ is small, the total number of sampled constraints is of order 
Ω((1=δ)log(1=δ)), which could be a problem for implementation. For example, as we shall see in Section 7, when 
β � 10�5, d � 15 and δ � 10�3, the number of sampled constraints N is required to be larger than 2 × 105. In con
trast, our method only requires sampling 2 × 103 constraints.

4. General Algorithmic Idea
To facilitate the development of our algorithm, we introduce some additional notation and a desired technical 
property (Property 1).

In our setting, a property is an intermediate assumption that facilitates the construction of an efficient scenario 
approach algorithm. We shall impose the technical property for now, and in Section 5, we will provide assumptions 
based on more direct model primitives, providing easy-to-verify sufficient conditions for the properties to hold.
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We exploit key intuition borrowed from rare event simulation. A common technique exploited, for example, 
in Chen et al. (2019), is the construction of a so-called super set, which contains the rare event of interest. The 
super set should be analytically tractable and be constructed with a probability that is of the same order as that 
of the rare event of interest. If the conditional distribution given being in the super set is accessible, this can be 
used as an efficient sampling scheme. The first part of this section simply articulates the elements involved in set
ting the stage for constructing such a set in the outcome space of L. Later, in Section 5, we will impose assump
tions in order to ensure that the probability of the superset, which eventually we will denote by Cδ is suitably 
controlled as δ→ 0. Simply collecting the elements necessary to construct Cδ requires introducing some super 
sets involving the decision space, since the optimal decision is unknown.

Let Fδ ⊆ Rdx denote the feasible region of the chance constraint optimization problem (CCPδ), that is,

Fδ :� {x ∈ Rdx |P(φ(x, L) > 0) ≤ δ}: (4) 

Here, the subscript δ is involved to emphasize that the feasible region Fδ is parametrized by the risk level δ. For 
any fixed x ∈ Rdx , let Vx :� {L ∈ Rdl |φ(x, L) > 0} denote the violation event at x.

Property 1. For any δ > 0, there exist a set Oδ ⊆ Rdx , and an event Cδ ⊆ Rdl that satisfy the following statements. 
(a) The feasible set Fδ is a subset of Oδ.
(b) The event Cδ contains the violation event Vx for any x ∈ Oδ.
(c) There exist a constant M > 0 independent of δ such that P(L ∈ Cδ) ≤ M · δ.

To visualize our intent with Property 1, keep in mind a feature that is often present in heavy-tailed rare-event 
simulation. In particular, if L is a one-dimensional random variable with, for example, power-law tail decay, 
then P(L > b) ≤ M × P(L > b=2) for some M < ∞ for all b. For example, if P(L > b) � b�α, b ≥ 1 we can take M � 2α. 
In simple terms, “proportional enlargements” translate into “proportional likelihoods.” This sort of feature can 
be used to motivate the intent of Property 1 and the selection of event Cδ, as it suggests the violation event Vx 
exhibits “proportional enlargements” when δ→ 0. Specifically, suppose that for some specific x′ ∈ Fδ, we have 
that Vx′ � [b, ∞) and the safety constraint is active. That is, P(L > b) � δ and suppose that the enlarged region is of 
the form Cδ � [b=2, ∞). Then, if L is regularly varying we will have that (c) in Property 1 holds for all δ > 0 (which 
corresponds to all b large). Generally speaking, if x ∈ Fδ, the set Vx is the set of “bad” outcomes for such a deci
sion. One can imagine that in situations of interest, as we will illustrate, the set of all possible bad outcomes, 
which is 

S

x∈FδVx, can be conveniently enclosed by a region which is a “proportional enlargement” of the set of 
bad outcomes of a suitable feasible decision (as illustrated in the previous one-dimensional situation). Property 1
implies that the likelihood of the set of all bad outcomes is proportional to the constraint parameter δ. In our 
algorithms, knowing the constant M will not be relevant, we just need to know that M exists. The sets Oδ and Cδ 
are auxiliary sets introduced to enclose the set of all possible bad outcomes. We will explain how to construct 
these sets in examples later.

In the rest of this paper, we will refer to Oδ as the outer approximation set and Cδ as the uniform conditional event. 
A graphical illustration of Oδ and Cδ is shown in Figure 1.

As hinted in our earlier discussion that motivates Property 1, we shall focus on the case that L follows a multi
variate regularly varying distribution (i.e. a multidimensional version of a power-law-type distribution). The def
inition of multivariate regular variation is provided in Section 5. In this case, to illuminate how the sets Oδ and 
Cδ can be constructed for different problems, we provide explicit expressions of them for two running examples 
in Table 1. In Section 5, we will illustrate how to construct Oδ and Cδ for more general settings.

Figure 1. Illustration of Oδ and Cδ 
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Now, given Oδ and Cδ that satisfies Property 1, we define the conditionally sampled problem (CSPδ, N′ ):

minimize c⊤x
subject to φ(x, L(i)

δ ) ≤ 0, i � 1, : : : , N′:

x ∈ Oδ:
(CSPδ, N′ )

Here, L(i)
δ are independent and identically distributed (i.i.d.) samples generated from the conditional distribution 

(L |L ∈ Cδ).
We now present our main result of this section in Lemma 1, which validates (CSPδ, N′ ) is an effective and sam

ple efficient scenario approximation by incorporating (Calafiore and Campi 2006, theorem 2) and Property 1. The 
proof of Lemma 1 will be presented in Section 4.1.

Lemma 1. Suppose that Property 1 is imposed and let β > 0 be a given confidence level. 
1. Let δ′ � δ=P(L ∈ Cδ) ≥ 1=M and N′ be any integer that satisfies

N′ ≥
2
δ′ log 1

β
+ 2d +

2d
δ′ log 2

δ′ : (5) 

With probability at least 1 � β, if the conditionally sampled problem (CSPδ, N′ ) is feasible, then its optimal solution x∗
N ∈ Fδ 

and Val(CSPδ, N′ ) ≥ Val(CCPδ):
2. Let N′ be any integer such that N′ ≤ βδ�1P(L ∈ Cδ). Assume that the chance constraint problem (CCPδ) is feasible. 

Then, with probability at least 1 � β, (CSPδ, N′ ) is feasible and Val(CCPδ) ≥ Val(CSPδ, N′ ).

Remark 1 (Size of Conditionally Sampled Problem). The lower bound of the sample size given in (5) is not greater 
than 2M log 1

β

� �
+ 2d + 2dM log(2M), which is independent of δ. Therefore, Lemma 1 shows that the chance con

straint problem (CCPδ) can be approximated by (CSPδ, N′ ) with sample complexity bounded uniformly as δ→ 0, 
as long as Property 1 is satisfied.

Remark 2 (Feasibility of Conditionally Sampled Problem). In Lemma 1, part 1, the conditionally sampled problem 
(CSPδ, N′ ) is feasible with high probability if there exists small δ such that (CCPδ) is feasible. In particular, we 
claim that

P((CSPδ, N′ ) is feasible) ≥ (1 � δmin=δ)N′

, (6) 

where δmin � inf{δ ∈ R++ : Change Constrained problem (CCPδ) is feasible}: Recall from Remark 1 that the N′

can be chosen to be independent of δ; thus when δmin is small, we have (CSPδ, N′ ) is feasible with high probability. 
For example, δmin � 0 for both the minimal salvage fund problem and the portfolio optimization problem, which 
implies (CSPδ, N′ ) is almost surely feasible for these two examples.

We next prove (6). For arbitrarily small ɛ > 0, the feasible region Fδmin+ɛ for problem (CCPδmin+ɛ) is nonempty, 
and thus we can pick x ∈ Fδmin+ɛ such that P(L ∈ Vx) ≤ δmin + ɛ. If δ > δmin + ɛ, then Vx ⊆ Cδ and thus P(L ∈ Vx |L ∈

Cδ) ≤ (δmin + ɛ)=P(L ∈ Cδ) ≤ (δmin + ɛ)=δ. Therefore, by the independence of samples,

P(x is feasible for (CSPδ, N′ )) ≥ P(L ∉ Vx |L ∈ Cδ))N′

≥ (1 � (δmin + ɛ)=δ)N′

:

Letting ɛ → 0, we conclude that (6) holds.

Remark 3 (Efficient Sampling Algorithm). Efficiently generating samples of (L |L ∈ Cδ) when δ→ 0 requires rare 
event simulation techniques. For example, when L is light-tailed, exponential tilting can be applied to achieve 
O(1) sample complexity uniformly in δ; when L is heavy-tailed, with the help of specific problem structure, one 
can apply importance sampling (Blanchet and Liu 2010) or Markov chain Monte Carlo (Gudmundsson and Hult 
2014) to design an efficient sampling scheme. The specific structure of our salvage fund example results in Cδ 
being the complement of a box, which makes the sampling very tractable if the element of L are independent.

Even if the aforementioned rare event simulation techniques are hard to apply in practice, we can still apply a 
simple acceptance-rejection procedure to sample the conditional distribution (L |L ∈ Cδ). It costs O(1=δ) samples 
of L on average to get one sample of (L |L ∈ Cδ) because P(L ∈ Cδ) � O(δ). Consequently, the total complexity for 
generating L(i)

δ , i � 1, : : : , N′ and solving (CSPδ, N′ ) is O(1=δ), which is still much more efficient than the scenario 
approach in Calafiore and Campi (2006), because it requires computational complexity O(((1=δ)log(1=δ))3

) for 
solving a linear programming problem with O((1=δ)log(1=δ)) sampled constraints by the interior point method.
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Although Property 1 seems to be restrictive at first glance, we are still able to construct the sets Oδ and Cδ for a 
rich class of functions φ(x, L), including the constraint function for the minimal salvage fund problem. As we 
shall see in the proof of Lemma 1, once Oδ and Cδ are constructed the sampled problem (CSPδ, N′ ) is a tractable 
approximation to the problem (CCPδ). We explain how to construct the sets Oδ and Cδ in the next section under 
some additional assumptions. These assumptions relate in particular to the distribution of L. It turns out that, if L 
is heavy-tailed, the construction of Oδ and Cδ becomes tractable.

4.1. Proof of Lemma 1
If Property 1 is satisfied, (CCPδ) is equivalent to

minimize c⊤x
subject to P(φ(x, L) > 0 |L ∈ Cδ) ≤ δ=P(L ∈ Cδ),

x ∈ Oδ ⊆ Rdx :

(7) 

Let δ′ :� δ=P(L ∈ Cδ) ≥ 1=M denote the risk level in the equivalent problem (7). The sampled optimization prob
lem related to Problem (7) is given by

minimize c⊤x
subject to φ(x, L(i)

δ ) ≤ 0, i � 1, : : : , N′,
x ∈ Oδ,

(CSPδ;N′ )

where the L(i)
δ are independently sampled from P(· |L ∈ Cδ). Notice that

N′ ≥
2
δ′ log 1

β
+ 2d +

2d
δ′ log 2

δ′ :

According to Calafiore and Campi (2006, corollary 1 and theorem 2), with probability at least 1 � β, if the sam
pled problem (CSPδ, N′ ) is feasible, then the optimal solution to problem (CSPδ, N′ ) is feasible to the chance con
straint problem (7). Because (7) and (CCPδ) are equivalent, the optimal solution to problem (CSPδ, N′ ) is also 
feasible to (CCPδ). The proof of the first part of the lemma is complete.

Now we turn to prove the second part of the lemma. The equivalence between (CCPδ) and (7) is still valid, so 
it is sufficient to compare the optimal values of (7) and (CSPδ, N′ ). By applying Calafiore and Campi (2006, theo
rem 2) again, we have with probability at least 1 � β (CSPδ, N′ ) is feasible and the value of (CSPδ, N′ ) is no larger 
than the optimal value of

minimize c⊤x
subject to P(φ(x, L) > 0 |L ∈ Cδ) ≤ 1 � (1 � β)1=N′

,
x ∈ Oδ ⊆ Rdx :

(8) 

The proof is complete by using 1 � (1 � β)1=N′

≥ β=N′ ≥ δ
P(L∈Cδ). Therefore, using Val for “value of,” Val(8) ≤

Val(7) � Val(CCPδ).

5. Constructing Outer Approximations and Summary of the Algorithm
In this section, we come full circle with the intuition borrowed from rare event simulation explained at the begin
ning of Section 4. The scale-free properties of heavy-tailed distributions (to be reviewed momentarily) coupled 
with natural (polynomial) growth conditions (like the linear loss) given by the structure of the optimization prob
lem, provide the necessary ingredients to show that the set Cδ has a probability that is of order O(δ).

In the discussion immediately following Property 1, we imagined that the uniform conditional set L ∈ Cδ was 
of the form L ∈ [b=2, ∞) for b → ∞ as δ→ 0. However, Property 1 can still be enforced if this statement applies to 
L2 or any power of L. This is because power law-type decay (and more generally regular variation) is preserved 
under power transformations. We will provide assumptions that will enforce that regular variation properties 
can be applied when estimating the likelihood of the uniform conditional event.

We assume that the distribution of L is of multivariate regular variation. A definition that we now review. For 
background, we refer to Resnick (2013). Let M +(Rdl

\{0}) denote all Radon measures on the space Rdl
\{0} (recall 

that a measure is Radon if it assigns finite mass to all compact sets). If µn(·), µ(·) ∈ M +(Rdl
\{0}), then µn converges 

to µ vaguely, denoted by µn→
v

µ, if for all compactly supported continuous functions f : Rdl
\{0} → R+,

lim
n→∞

Z

R
dl \{0}

f (x)µn(dx) �

Z

R
dl \{0}

f (x)µ(dx):
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L is multivariate regularly varying with limit measure µ(·) ∈ M +(Rdl
\{0}) if

P(x�1L ∈ ·)

P(‖L‖2 > x)
→

v
µ(·), as x → ∞:

Assumption 1. L is multivariate regularly varying with limit measure µ(·) ∈ M +(Rdl
\{0}).

Here are some intuitions behind the definition of multivariate regularly varying. Suppose that L is written in 
terms of polar coordinates, with R being the radius and Θ being a random variable taking values on the unit 
sphere. The radius R � ‖L‖2 has a one-dimensional regularly varying tail (i.e., we can write P(R > x) � L(x)x�α for 
a slowly varying function L and α > 0). The angle Θ, conditioned on R being large, converges weakly (as R → ∞) 
to a limiting random variable. The distribution of this limit can be expressed in terms of the measure µ. For a 
recent application of multivariate regular variation in operations research, see Kley et al. (2016).

In this section, we present two methods for the construction of Oδ and Cδ satisfying Property 1. We mostly 
focus on our “scaling method” which is presented in Section 5.1, which is facilitated precisely by the scale-free 
property that we will impose on L. After showing the construction of the outer sets under the scaling method, 
we summarize the algorithm at the end of Section 5.1. We supply a lower bound guaranteeing a constant approx
imation for the output of the algorithm in Section 5.2. Our second method for outer approximation constructions 
is summarized in Section 5.3. This method is simpler to apply because is based on linear approximations; how
ever, it is less general because it assumes that φ(x, L) is jointly convex.

5.1. Scaling Method
We start by analyzing the feasible region Fδ when δ→ 0. Intuitively, if the violation probability P(φ(x, L) > 0) has 
a strictly positive lower bound in any compact set, then Fδ will ultimately be disjoint with the compact set when 
δ→ 0. Thus, the set Fδ is expelled to infinity when δ→ 0 in this case. Fδ is moving toward the direction that 
φ(x, L) becomes small such that the violation probability becomes smaller. For instance, if x is one dimensional 
and φ(x, L) is increasing in x, then Fδ is moving toward the negative direction. Consider the portfolio optimiza
tion problem as another example, in which mind

j�1xj → +∞ as δ→ 0.
With such intuition, now we begin to construct the outer approximation set Oδ. To this end, we need to intro

duce an auxiliary function which we shall call a level function. We assume the existence of a level function in 
Assumption 2, and the level function needs to be explicitly computable to construct the outer approximation set 
Oδ.

Definition 1. We say that π : Rdx → [0, + ∞] is a level function if 
1. For any α ≥ 0 and x ∈ Rdx , we have π(α · x) � α ·π(x),
2. The function π(x) is coersive, i.e., limδ→0infx∈Fδπ(x) + ∞.
For a given level function π, we define its unit level set as Π � {x ∈ Rdx |π(x) � 1}.

Assumption 2. There exists an explicitly computable level function π and its unit level set Π.

The unit level set Π is used to characterize the moving direction of Fδ as δ→ 0. The shape of Π is chosen in 
accordance with the moving direction of Fδ to reduce the size of Oδ to achieve better sample complexity. The 
outer approximation set Oδ is constructed as

Oδ :�
[

α≥αδ

(α ·Π) ⊇ Fδ, 

where αδ characterizes the scaling rate of Fδ. We will explain how to choose αδ in the proof of Lemma 2. Here are 
several examples of the level functions and unit level sets: 

• Suppose that φ(x, L) � �‖x‖2 � L, then the level function π can be chosen as the Euclidean norm and Π can be 
chosen as the unit sphere in Rdx .

• For the portfolio optimization problem, the level function can be chosen as π(x) � mind
j�1xj + ∞ · I(x ∉ Rdx

++) in 
accordance with our intuition that mind

j�1xj → ∞, and the unit level set can be chosen as Π � {x ∈ Rdx |mind
j�1xj � 1}.

To analyze the asymptotic shape of the uniform conditional event Cδ, we connect the asymptotic distribution 
of L to the asymptotic distribution of φ(x, L). Keep in mind that we wish to preserve the scaling property of the 
tail of L, when considering φ(x, L), so that Property 1 can be ensured. We pick a continuous nondecreasing func
tion h : R++ → R++ such that limα→+∞h(α) � +∞ to characterize the scaling rate of L. In addition, we pick another 
positive function r : R++ → R++ to characterize the scaling rate of φ(α · x, h(α) · L). Intuitively, the scaling function 
r(·) and h(·) should ensure the condition that the collection of probability measures of 1

r(α)
φ(α · x, h(α) · L)

n o

α≥1 
is 
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tight. For the minimal salvage fund problem with fixed δ, as the deficit φ(x, L) is asymptotically linear with 
respect to the salvage fund x and the loss L, we can simply pick r(α) � h(α) � α in this problem. We next intro
duce two auxiliary functions Ψ+ and Ψ�.

Definition 2. Let Ψ+ : Rdl → R, Ψ� : Rdl → R be two Borel measurable functions. We say Ψ+ (respectively, c) is 
the asymptotic uniform upper (respectively, lower) bound of 1

r(α)
φ(α · x, h(α) · l) over the unit level set x ∈Π if for 

any compact set K ⊆ Rdl ,

liminf
α→∞

inf
l∈K
Ψ+(l) � sup

x∈Π

1
r(α)
φ(α · x, h(α) · l)

� �� �

≥ 0, (9a) 

limsup
α→∞

sup
l∈K

Ψ�(l) � inf
x∈Π

1
r(α)
φ(α · x, h(α) · l)

� �� �

≤ 0: (9b) 

We would like to have lower and upper bounds Ψ� and Ψ+ so that φ is of the order r(α) for every decision x, 
and in every direction l of the random vector L, whenever the norm of the latter is large (i.e., of the size h(α)). A 
stronger assumption would have been to require an actual limit (rather than a liminf and a limsup), but this is 
not needed to provide big-O bounds for the complexity of our algorithm.

The functions Ψ+ and Ψ� are used to define the event Cε, � and Cε, +, which serve as the inner and outer 
approximation of the event Sx∈ΠVx, where Vx � {l ∈ Rdl |φ(x, l) > 0} is the violation event at x.

Definition 3. For ε > 0, let Cε, + (respectively, Cε, �) be the ε-outer (respectively, inner) approximation event:

Cε, + :� {l ∈ Rdl |Ψ+(l) ≥ �ε}, (10a) 

Cε, � :� {l ∈ Rdl |Ψ�(l) ≥ +ε}: (10b) 

We now define Oδ :�
S

α≥αδα ·Π. The following property ensures that the shape of Π is appropriate and αδ is large 
enough; hence, Oδ is an outer approximation of Fδ.

Property 2. There exist δ0 such that for any δ < δ0, we have an explicitly computable constant αδ that satisfies

P(‖L‖2 > h(αδ)) � O(δ) and Fδ ⊆
[

α≥αδ

α ·Π≕ Oδ:

If the violation probability is easy to analyze, we will directly derive the expression of αδ and verify Property 2. 
Otherwise, we resort to Lemma 2, which provides a sufficient condition of Property 2 by analyzing the asymp
totic probability of the violation event as δ→ 0.

Lemma 2. Suppose that Assumptions 1 and 2 hold. If there exists an asymptotic uniform lower bound function Ψ�(·) as 
given in (9b) and ε > 0 such that µ(Cε, �) > 0, then Property 2 is satisfied.

The high-level idea of Lemma 2 is to show that Fδ is disjoint from α ·Π for small α. To this end, the asymptotic 
scaling (9b) is used to demonstrate that the violation probability is no less than P(L ∈ h(α) · Cε, �), which is approx
imately equal to P(‖L‖2 > h(αδ)) · µ(Cε, �) according to the regularly varying property of L. The detailed proof of 
Lemma 2 is deferred to Appendix A.1.

We impose the following Assumption 3 on the asymptotic uniform upper bound Ψ+(·) so that we can use the 
multivariate regular variation of L to estimate P(L ∈ α · Cε, +) for large scaling factor α.

Assumption 3. There exist an event S ⊆ Rdl with µ(Sc) < ∞ such that

S ⊆ α · S, Ψ+(l) ≤Ψ+(α · l), ∀l ∈ S, α ≥ 1:

In addition, there exist some ε > 0 such that Cε, + is bounded away from the origin, that is, infl∈Cε,+
‖l‖2 > 0:

Moreover, both S and Cε, + have explicit expressions.

For the minimal salvage fund problem, because the deficit function φ(x, L) is coordinate-wise nondecreasing 
with respect to the loss vector L, it is reasonable to assume that its asymptotic bound Ψ+(·) is also coordinate- 
wise nondecreasing. For this example, the closed form expression of Ψ+(·) and the detailed verification of all the 
assumptions are deferred to Proposition 2. Our next result summarizes the construction of the outer approxima
tion sets.
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Theorem 1. Suppose that Property 2 and Assumption 3 are imposed. Then there exist δ0 > 0 such that the following sets

Oδ �
[

α≥αδ

α ·Π, Cδ � h(αδ) · (Cε, +

[Kc[Sc) (11) 

satisfy Property 1 for all δ < δ0. Here, S is given in Assumption 3 and K is a ball in Rdl with µ(Kc) < ∞.

The main idea for proving Theorem 1 is as follows: If L lies in a “well-behaved” compact region, then by 
applying Assumption 3 and the asymptotic uniform lower bound (9b), the violation events Sx∈OδVx is uniformly 
enclosed in h(αδ) · Cε, +. Otherwise L lies in the “ill-behaved” region h(αδ) · (KcSSc). Combining these two cases 
inspires that definition of Cδ :� h(αδ) · (Cε, +

SKcSSc), and the probability of L ∈ Cδ is O(δ) because of P(‖L‖2 >

h(αδ)) � O(δ) and L is regularly varying. The detailed proof of Theorem 1 is deferred to Appendix A.1.
With the aid of Lemma 1 and Theorem 1, we provide an algorithm for approximating (CCPδ) in which the 

sampled optimization problem is bounded in 1=δ.

Algorithm 1 (Scenario Approach with Optimal Scenario Generation)
input: Risk tolerance parameter δ, confidence level β, and all the elements and constants appearing in Property 

2 and Assumption 3, including level function π or unit level set Π, constant αδ, scaling function h, and 
explicit expression of Cε, +, K and S. 

1 Compute the expression of sets Oδ and Cδ by (11);
2 Compute required number of samples N′ by (5);
3 for i � 1, : : : , N′ do
4 Sample L(i)

δ using acceptance-rejection or importance sampling.
5 end
6 Solve the conditionally sampled problem (CSPδ, N′ ).

5.2. Constant Approximation Guarantee
In Section 5.2, our objective is to show that the output of the previous algorithm is guaranteed to be within a con
stant factor of the optimal solution to (CCPδ) with high probability, uniformly in δ.

We shall work under the setting of Theorem 1, so we enforce Property 2 and Assumptions 3. We want to show 
that there exist some constant Λ > 1 independent of δ, such that Val(CCPδ) ≤ Val(CSPδ, N′ ) ≤ Λ × Val(CCPδ) with 
high probability. This indicates that our result guarantees a constant approximation to (CCPδ) for regularly vary
ing distributions (under our assumptions) in O(1) sample complexity when δ→ 0 with high probability.

Note that (CSPδ, N′ ) ≤Λ × Val(CCPδ) is meaningful only if Val(CCPδ) > 0. We assume that the outer approxi
mation set is good enough such that the following natural assumption is valid.

Assumption 4. There exist δ > 0 such that minx∈Oδc⊤x > 0.

The previous assumption will typically hold if c has strictly positive entries. Theorem 1 and the form of Oδ 
guarantee that the norm of the optimal solution of (CSPδ, N′ ) grows in proportion to αδ, so we also assume the fol
lowing scaling property for φ(x, l).

Assumption 5. There exist a function φlim : (Rdx \{0}) × (Rdl \{0}) → R such that for every compact set E ⊆ Rdl \{0}, we 
have

lim
α→∞

sup
l∈E

�
�
�
�

1
r(α)
φ(α · x, h(α) · l) �φlim(x, l)

�
�
�
� � 0:

In addition, φlim(x, l) is continuous in one.
Assumption 5 is satisfied by both running examples. For the portfolio optimization problem, we have 

φ(x, l) �
Pd

j�1(Lj=xj) � η, thus φlim(x, l) � φ(x, l). For the minimal salvage fund problem, we have φlim(x, l) �

φ(x, l) � m such that |α�1φ(α · x,α · l) �φlim(x, l) | ≤ α�1m and |φlim(x, l) �φlim(x, l′) | ≤ ‖l � l′‖1.
We define the following optimization problem, which will serve as an asymptotic upper bound of (CSPδ, N′ ) in 

stochastic order when δ→ 0:
minimize c⊤x

subject to φlim(x, Llim(i) ) ≤ 0, i � 1, : : : , N′, (CSPlim;N′ )

x ∈
[

α≥1
α ·Π, 
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where Llim(i) are i.i.d. samples from a random variable Llim, whose distribution is characterized by P(Llim ∈

(Cε, +
SKcSSc)) � 1 and P(Llim ∈ E) � µ(E)=µ(Cε, +

SKcSSc) for all measurable set E ⊆ Cε, +
SKcSSc.

Theorem 2. Let β > 0 be a given confidence level and N′ be a fixed integer that satisfies (5). If Assumptions 4 and 5 are 
enforced, and (CSPlim, N′ ) satisfies Slater’s condition with probability one, then there exist δ0 > 0 and Λ > 0 such that

P(Val(CCPδ) ≤ Val(CSPδ, N′ ) ≤ Λ × Val(CCPδ)) ≥ 1 � 2β, ∀δ < δ0:

In Theorem 2, the Slater’s condition (see section 5.2.3 in Boyd and Vandenberghe (2004) for reference) can be ver
ified directly on the problem (CSPlim, N′ ). This condition is satisfied in the salvage fund problem by standard lin
ear programming duality. We also remark that Assumptions 4 and 5 only require the existence rather than the 
explicit knowledge of {δ |minx∈Oδc⊤x > 0} and function φlim.

5.3. Linear Approximation Method
Suppose that the constraint function φ(x, l) is jointly convex in (x, l), and L is multivariate regularly varying. We 
will develop a simpler method in this section to construct the outer approximation set Oδ and the uniform condi
tional event Cδ.

We first introduce a crucial assumption in the construction of Oδ and Cδ.

Assumption 6. There exist a convex piecewise linear function φ
�

(x, l) : Rdx × Rdl → R of the form

φ
�

(x, l) � max
j�1, : : : ,N

a⊤
j l + b⊤

j x + cj, aj ∈ Rdl , bj ∈ Rdx and cj ∈ R for j � 1, : : : , N:

such that 
1. The inequality φ�(x, l) ≤ φ(x, l), holds forall (x, l) ∈ Rdx × Rdl ;
2. There exist some constant C ∈ R+ such that φ(x, l) ≤ 0 if φ

�
(x, l) ≤ �C.

If φ(x, l) itself is a piecewise affine function, then Assumption 6 is satisfied by simply taking φ
�

(x, l) � φ(x, l). 
For general jointly convex functions, the following lemma verifies Assumption 6 if φ(x, l) has a compact zero sub
level set.

Lemma 3. If the constraint function φ(x, L) : Rdx × Rdl → R is convex and twice continuously differentiable, and it has a 
compact zero sublevel set Zφ :� {(x, l) ∈ Rdx × Rdl |φ(x, l) ≤ 0}, then Assumption 6 is satisfied.

With Assumption 6 enforced, we are now ready to provide our main result in this section to fully summarize 
the construction of Oδ and Cδ.

Theorem 3. If Assumptions 1 and 6 hold, we can construct Oδ and Cδ that satisfy Property 1 as

Oδ :�
\N

j�1
{x ∈ Rdx |b⊤

j x + cj + F�1
a⊤

j L(δ) ≤ 0}, Cδ :�
[N

j�1
{L ∈ Rdl |a⊤

j L + C > F�1
a⊤

j L(δ)}, 

where F�1
a⊤

j L(δ) � inf{x ∈ R |P(x > a⊤
j L) ≤ δ}.

6. Verifying the Assumptions in Examples
In this section, we verify the elements required to apply our algorithm. We provide explicit expressions for sets 
Oδ and Cδ in the statement of the propositions. The detailed verification process and the steps for constructing 
sets Oδ and Cδ are presented as the proofs in Appendix A.2.

6.1. Portfolio Optimization with VaR Constraint
In this section, we will verify that Theorem 1 is applicable to an equivalent form of the portfolio optimization 
problem (2).

Proposition 1. The portfolio optimization problem (1) satisfies all assumptions required by Theorem 1, such that the sets 
Oδ and Cδ admit the following explicit expressions:

Oδ � {x ∈ Rd
++ |η · x ≽ F�1

1⊤L(δ)}, Cδ � {l ∈ Rd
++ |2 · 1⊤l ≥ F�1

1⊤L(δ)}:

6.2. Minimal Salvage Fund
The key observation to solve the minimal salvage fund problem (3) is the following lemma, which provides a 
closed form piecewise linear expression for the constraint function φ(x, L).
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Lemma 4. In the minimal salvage fund problem (3), we have

φ(x, L) � max
j�1, : : : , d

Lj � e⊤
j (I � Q⊤)

�1x � mj, 

where ej denote the unit vector on the jth coordinate.

Now we prove that Theorem 3 is applicable to the minimal salvage fund problem (4).

Proposition 2. The minimal salvage fund problem (3) satisfies all assumptions required by Theorem 3, such that the sets 
Oδ and Cδ admit the following explicit expressions:

Oδ �
\d

j�1
{x ∈ Rd |F�1

Lj
(δ) ≤ e⊤

j (I � Q⊤)
�1x + mj}, Cδ �

[d

j�1
{l ∈ Rd | lj > F�1

Lj
(δ)}:

6.3. Quadratic Model
In this section, we consider a model with a quadratic control term in x as an additional example. Suppose that 
the constraint function φ(x, l) : Rdx × Rdl → R is defined as

φ(x, l) � x⊤Qx + x⊤Al, (12) 

where Q ∈ Rdx×dx is a symmetric matrix and A ∈ Rdx×dl is a matrix with rank(A) � dx; that is, there exists σ > 0 such 
that ‖A⊤x‖2 ≥ σ‖x‖2.

Proposition 3. Consider the chance constraint optimization model with constraint function defined as (12). 
1. If Q is a positive semidefinite matrix and L has a positive density, there exist some δ such that the problem is infeasible.
2. If Q has a negative eigenvalue and L is multivariate regularly varying, the model satisfies all the assumptions required by 

Theorem 1.

7. Numerical Experiments
To empirically study the computational complexity and compare the quality of the solutions, in this section, we 
conduct numerical experiments for two scenario generation algorithms: 

1. The efficient scenario generation approach proposed in this paper (abbreviated as Eff-Sc)
2. The scenario approach in Calafiore and Campi (2006) (abbreviated as CC-Sc)
In Section 7.1, we present the results for the portfolio optimization problem. In Section 7.2, we present the 

results for the minimal salvage fund problem. The numerical experiment is conducted using a Laptop with a 2.2- 
GHz Intel Core i7 CPU, and the sampled linear programming problem is solved using CVXPY (Diamond and 
Boyd 2016) with the MOSEK solver (MOSEK ApS 2020).

7.1. Portfolio Optimization with VaR Constraint
First, we present the parameter selection and the implement details for the numerical experiment of portfolio 
optimization problem (1). Suppose that there are d � 10 assets to invest, and the parameters of the problem are 
chosen as follows: 

• The mean return vector is µ � (1:0, 1:5, 2:0, 2:5, 3, 1:6, 1:2, 1:1, 1:8, 2:2).
• The random variable Lj are i.i.d. with Pareto cumulative distribution function P(Lj > l) � (ℓj=l), for l ≥ ℓj.
• The parameter ℓ � (ℓ1, : : : ,ℓd) � (2:1, 1:3, 1:6, 2:5, 2:7, 1:3, 1:9, 1:5, 2:2, 2:3).
• The loss threshold η � 1,000.
Now we explain the implementation detail of Eff-Sc. Recall the expression of Oδ and Cδ from Proposition 1, which 

involves the analytically unknown quantity F�1
1⊤L(δ). Because quantile estimation is much more computationally effi

cient than solving the sampled optimization problem, we generate samples of L to estimate a confidence interval of 
F�1

1⊤L(δ) with large enough confidence level 1 � o(β), and we denote the resulting confidence interval by (cLB,dUB). We 
replace the expressions of Oδ and Cδ by their sampled version conservative approximations, that is,

Oδ � {x ∈ Rd
++ |η · x ≽ dUB}, Cδ � {l ∈ Rd

++ |2 · 1⊤l ≥ cLB}:

The value of P(L ∈ Cδ) is also estimated using the generated samples. We compute the required number of sam
ples N′ using Lemma 1, and the samples of Lδ is generated via acceptance-rejection.

In Figure 2, we compare the efficiency between Eff-Sc and CC-Sc. Figure 2(a) presents the required number of 
samples for both algorithms, in which one can quickly remark that Eff-Sc requires significantly fewer samples 
than CC-Sc, especially for the problems with small δ. In Figure 2(b), we compare the running time for both mod
els. Whereas Eff-Sc costs slightly more time for δ around 0.1 due to the overhead cost of computing Oδ and Cδ, 
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the computational time stays nearly constant uniformly in δ, indicating that Eff-Sc is a substantially more effi
cient algorithm than CC-Sc.

Finally, we compare Eff-Sc and CC-Sc for the optimal values of the sampled problems and the violation proba
bilities of the optimal solutions. Because both methods require generating random samples, the generated solu
tions are also random. Thus, the optimal values and the violation probabilities are also random. To compare the 
distributions of the random quantities, we conduct 103 independent experiments. In each experiment, we execute 
both algorithms and get two solutions, then we evaluate the solutions’ violation probabilities using 106 samples 
of L. We use boxplots (McGill et al. 1978) to depict the samples’ distribution through their quantiles. A boxplot is 
constructed of two parts: a box and a set of whiskers. The box is drawn from the 25% quantile to the 75% quan
tile, with a horizontal line drawn in the middle to denote the median. Two whiskers indicate 5% and 95% quan
tiles, respectively, and the scatters represent all the rest sample points beyond the whiskers.

In Figure 3, we present (a) the optimal values and (b) the violation probabilities. One can quickly remark from 
Figure 3(a) that the optimal value of Eff-Sc is stochastically larger than the optimal value of CC-Sc, whereas Figure 
3(b) indicates that the optimal solutions produced by both methods are feasible for all the 103 experiments. Overall, 
with both methods successfully and conservatively approximating the probabilistic constraint, Eff-Sc is more com
putationally efficient and less conservative, producing solutions with better objective values than its counterpart.

7.2. Minimal Salvage Fund
In this section, we conduct a numerical experiment for the minimal salvage fund problem (3). In the experiment, 
we pick d ∈ {10, 15, 20} to test the performance of the problem in different dimensions.

Figure 2. Comparison of Computational Efficiency for the Portfolio Optimization Problem 

(a) (b)

Notes. (a) Terms of the required number of samples. (b) Used CPU time. We test δ ∈ {0:001, 0:002,0:005, 0:01, 0:02,0:05, 0:1}:

Figure 3. Comparison of the Quality of Optimal Solutions for the Portfolio Optimization Problem 

(a) (b)

Notes. (a) Optimal value. (b) Solutions’ violation probabilities. Here δ ∈ {0:001, 0:002, 0:005,0:01, 0:02,0:05,0:1}, and the box plots are generated 
using 1,000 experiments.
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For each fixed d, the parameters of Problem (3) are chosen as follows: 
• The matrix Q � (Qi, j : i, j ∈ {1, : : : , d}) where Qi, j � 1=d if i ≠ j and otherwise Qi, j � 0.
• The vector m � (mj : j ∈ {1, : : : , d}) where mj � 10 for each j.
• The random variables Lj are i.i.d. with Pareto cumulative distribution function P(Lj > l) � (1=l), for l ≥ 1.
Recall the explicit expressions for sets Oδ and Cδ from Proposition 2. To solve the conditionally sampled prob

lem (CSPδ, N′ ), it remains to sample L(i)
δ and compute N′, the required number of samples. When δ is small, when 

δ ≤ 10�3, solving the optimization problem (CSPδ, N′ ) costs much more time than simulating L(i)
δ , despite that a 

simple acceptance rejection scheme is applied to sample L(i)
δ in our experiments. We fix the confidence level 

parameter β � 10�5 and set δ′ � δ=P(L ∈ Cδ) ≥ d�1, and then we can compute N′ by the first part of Lemma 1.
Similar to Figure 2 of the portfolio optimization problem, we compare the efficiency between Eff-Sc and CC-Sc 

for different d and δ in Figure 4, in terms of (a) the required number of samples and (b) the CPU time for solving 
the sampled approximation problem. We observe that the Eff-Sc has uniformly smaller sample complexity and 
computational complexity than CC-Sc, where the superiority becomes significant for small δ. In particular, the 
required number of samples and the used CPU time are bounded for Eff-Sc, whereas they quickly deteriorate for 
CC-Sc when δ becomes smaller. It is also worth noting that Eff-Sc is consistently more efficient than CC-Sc for all 
the tested dimensions.

Finally, we compare optimal values of the sampled problems and violation probabilities of the optimal solu
tions in Figure 5. We present in Figure 5(a) the optimal values and in Figure 5(b) the violation probabilities, with 
fixed dimension d � 15 (we provide additional results for d � 5 and d � 10 in Appendix C.3). One can quickly 

Figure 4. Comparison of Computational Efficiency for the Minimal Salvage Fund Problem 

(a) (b)

Notes. (a) Required number of samples. (b) Used CPU time. We test d ∈ {10, 15, 20} and δ ∈ {0:001, 0:002,0:005, 0:01, 0:02,0:05, 0:1}:

Figure 5. Comparison of the Quality of Optimal Solutions for the Minimal Salvage Fund Problem 

(a) (b)

Notes. (a) Optimal value. (b) Solutions’ violation probabilities. Here d � 15, δ ∈ {0:001, 0:002,0:005, 0:01, 0:02,0:05, 0:1}, and the box plots are gen
erated using 1,000 experiments.
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remark from Figure 5(a) that the optimal value of Eff-Sc is stochastically smaller than the optimal value of CC-Sc, 
whereas Figure 5(b) indicates that the optimal solutions produced by both methods are feasible for all the 103 

experiments. Therefore, we are able to draw the same conclusion as we have from the portfolio optimization 
experiment: Eff-Sc efficiently produces less conservative solutions.
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Appendix A. Proofs of Technical Results
A.1. Proofs for Section 5

Proof of Lemma 2. We will derive an expression of αδ to ensure that Fδ ⊆
S
α≥αδα ·Π for δ small enough. Because of 

Assumption 2, for any α0 > 0, there exist some δ small enough such that Fδ ⊆
S
α≥α0α ·Π. Therefore, it suffices to prove that 

Fδ and Sα<αδα ·Π are disjoint. In other words,
P(φ(α · x, L) > 0) > δ, ∀α < αδ, x ∈Π, δ < δ0: (A.1) 

Let ε be a positive number such that µ(Cε, �) > 0. Pick the set K in (9b) as a compact set such that 0 < µ(K
T

Cε, �) < ∞. It 
follows from Inequality (9b) that there exist a constant α1 such that

Ψ�(l) � ε ≤ inf
x∈Π

1
r(α)
φ(α · x, h(α) · l)

� �

∀l ∈ K, α > α1: (A.2) 

Therefore, for any α ≥ α1, we have

P min
x∈Π
φ(α · x, L) > 0

� �

� P min
x∈Π

1
r(α)
φ(α · x, L) > 0

� �

(Due to (A:2)) ≥ P(Ψ�(L=h(α)) ≥ ε; L=h(α) ∈ K)

� P(L ∈ h(α) · (K
\

Cε, �)): (A.3) 

Recall that L is regularly varying from Assumption 1,

lim
α→∞

P(L ∈ h(α) · (K
T

Cε, �))

P(‖L‖2 > h(α))
� µ(K

\

Cε, �):

Therefore, there exist a number α2 such that

P(L ∈ h(α) · (K
\

Cε, �)) ≥
1
2 P(‖L‖2 > h(α))µ(K

\

Cε, �), ∀α ≥ α2: (A.4) 

The right-hand side of (A.4) is nondecreasing in α. Thus, if δ1 :� 1
2 P(‖L‖2 > h(α2))µ(K

T
Cε, �), for any δ ≤ δ1, there exists αδ 

satisfying
1
2 P(‖L‖2 > h(αδ))µ(K

\

Cε, �) � δ: ∀α,δ s:t: α2 ≤ α < αδ, 0 < δ ≤ δ1: (A.5) 

Substituting (A.5) into (A.3), we have

P(φ(x, L) > 0) ≥ P min
x∈Π
φ(α · x, L) > 0

� �

> δ:

∀α, x, δ s:t: max(α1,α2) ≤ α < αδ, x ∈ Π, 0 < δ ≤ δ1:

Moreover, Assumption 2 guarantees the existence of δ2 such that
P(φ(α · x, L) > 0) > δ, ∀α < max(α1,α2), x ∈ Π, δ < δ2:

Consequently (A.1) is proved with δ0 � min(δ1,δ2). w

Proof of Theorem 1. We construct the uniform conditional event Cδ that contains all the Vx for x ∈ Oδ. Because of Defini
tion (9) and limδ→0αδ � ∞, there exists δ0 such that for all δ < δ0,

Ψ+(l) + ε ≥ sup
x∈Π

1
r(α)
φ(α · x, h(α) · l)

� �

∀l ∈ K, α > αδ: (A.6) 

For any x ∈ Oδ, there exists an αx ≥ αδ such that x ∈ αx ·Π. Consequently, it follows from (A.6) that

φ(x, l) > 0 ⇒Ψ+

l
h(αx)

� �

≥ �ε, ∀x ∈ Oδ, l ∈ h(αx) · K:
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Applying Assumption 3 yields that

Ψ+

l
h(αδ)

� �

≥ Ψ+

l
h(αx)

� �

≥ �ε, ∀x ∈ Oδ, l ∈ h(αx) · (K
\

S):

Recall that K is a ball in Rdl (thus, K ⊆ (h(αx)=h(αα)) · K) and that S ⊆ (h(αx)=h(αα)) · S from Assumption 3, it follows that 
h(αδ) · (K

T
S) ⊆ h(αx) · (K

T
S). Consequently, whenever l ∈ Vx for some x ∈ Oδ, we either have l ∈ h(αx) · (K

T
S) implying 

Ψ+
l

h(αδ)

� �
≥ �ε, or we have l ∈ (h(αx) · (KTS))

c
⊆ (h(αδ) · (K

T
S))

c. Summarizing these two scenarios,

[

x∈Oδ

Vx ⊆ l ∈ Rdl |Ψ+

l
h(αδ)

� �

≥ �ε

� �
[

(h(αδ) · (K
\

S))
c

� h(αδ) · (Cε, +

[Kc[Sc):

Thus, we define the conditional set Cδ as
Cδ :� h(αδ) · (Cε, +

[Kc[Sc):

It remains to analyze the probability of the uniform conditional event Cδ. As L is multivariate regularly varying,

lim
δ→0

P(L ∈ Cδ)
P(‖L‖2 > h(αδ))

� µ(Cε, +

[Kc[Sc):

Recalling, P(‖L‖2 > h(αδ)) � O(δ) and invoking Property 2, we get

limsup
δ→0

δ�1P(L ∈ Cδ) < ∞:

Hence, the proof is complete. w

Proof of Theorem 2. Using Lemma 1, we immediately have P(Val(CCPδ) ≤ Val(CSPδ, N′ )) ≥ 1 � β, it remains to show that 
there exist Λ > 0 such that P(Val(CSPδ, N′ ) ≤Λ × Val(CCPδ)) ≥ 1 � β.

For simplicity, in the proof, we will use Lδ as a shorthand for (L |L ∈ Cδ), the random variable with conditional distribu
tion of L given L ∈ Cδ. By a scaling of x by a factor αδ in (CSPδ, N′ ), we have an equivalent optimization problem:

minimize c⊤x
subject to 1

r(αδ)
φ(αδ · x, L(i)

δ ) ≤ 0, i � 1, : : : , N′,

x ∈
[

α≥1
α ·Π:

(A.7) 

where L(i)
δ are i.i.d. samples from Lδ. Notice that Val(CSPδ, N′ ) � αδ × Val(A:7).

For any compact set E ⊆ Cδ, because L is multivariate regularly varying,

lim
δ→0

P((h(αδ))
�1Lδ ∈ E) � lim

δ→0

P(L ∈ (h(αδ) · E))

P(L ∈ Cδ)
�

limδ→0
P(L∈(h(αδ)·E))

P(‖L‖2>h(αδ))

limδ→0
P(L∈Cδ)

P(‖L‖2>h(αδ))

�
µ(E)

µ(Cε, +
SKcSSc)

:

Thus, (h(αδ))
�1Lδ→

v Llim. As the limiting measure is a probability measure, the family {h(αδ))
�1Lδ |δ > 0} is tight and con

sequently (h(αδ))
�1Lδ→

d Llim follows directly from the vague convergence (Resnick 2013). Consequently, because all the 
samples are i.i.d, we also have

(h(αδ))
�1

· (L(1)

δ , : : : , L(N′)

δ ) →
d

(Llim(1) , : : : , Llim(N′ ) ):

Now we define a family of deterministic optimization problem, denoted by (DP(l1, : : : , lN′ )), which is parameterized by 
(l1, : : : , lN′ ) as follows:

minimize c⊤x
subject to φlim(x, li) ≤ 0, i � 1, : : : , N′,

x ∈
[

α≥1
α ·Π:

(DP(l1, : : : , lN′ ))

Then, there exist a compact set E1 ⊆ Rdl×N′ such that 
1. Problem (DP(l1, : : : , lN′ )) satisfies Slater’s condition if (l1, : : : , lN′ ) ∈ E1;
2. The probability P((h(αδ))

�1
· (L(1)

δ , : : : , L(N′)

δ ) ∈ E1) ≥ 1 � β for all δ > 0;
For every (l1, : : : , lN′ ) ∈ E1 and ɛ > 0, due to the Slater’s condition, there exists a feasible solution x ∈

S
α≥1α such that 

supj�1, : : : , N′φlim(x, lj) < �ɛ. Because φlim(x, l) is continuous in l, there exists an open neighborhood U around (l1, : : : , lN′ ) such that 
sup

(l1, : : : , lN′ )∈Usupj�1, : : : , N′φlim(x, lj) < �ɛ=2. Such a feasible solution x and neighborhood U exist for every (l1, : : : , lN′ ) ∈ E1.
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There exists a finite open cover {Ui}
m
i�1 of E1 due to its compactness. Let {xi}

m
i�1 be the corresponding feasible solutions 

to the open cover {Ui}
m
i�1.

From Assumption 5, there exists δ1 > 0 such that for all δ < δ1, we have

sup
(l1, : : : , lN′ )∈E1

sup
i�1, : : : ,m

sup
j�1, : : : ,N′

�
�
�
�

1
r(αδ)

φ(αδ · xj, h(αδ) · lj) �φlim(xj, lj)
�
�
�
� < ɛ=2: (A.8) 

Therefore, by the triangle inequality, it follows that if δ < δ1,

sup
(l1, : : : , lN′ )∈Ui

sup
j�1, : : : ,N′

1
r(αδ)

φ(αδ · xj, h(αδ) · lj) < 0:

Consequently, xj is a feasible solution for Optimization Problem (A.7) if (h(αδ))
�1

· (L(1)

δ , : : : , L(N′)

δ ) ∈ Ui, which further 
implies that α�1

δ × Val(CSPδ, N′ ) ≤ c⊤xj. As a result, we have

Val(CSPδ, N′ ) ≤ αδ × max
j�1, : : : ,m

c⊤xj, if (h(αδ))
�1

· (L(i)
δ , : : : , L(N′)

δ ) ∈ E1:

Note that Val(CCPδ) ≥ infx∈Oδc⊤x � αδ × inf{c⊤x |x ∈
S
α≥1α ·Π}. Therefore, let

Λ � inf{c⊤x |x ∈
[

α≥1
α ·Π}

 !�1

× max
j�1, : : : ,m

c⊤xj

� �

> 0:

It follows that

P(Val(CSPδ, N′ ) ≤ Λ × Val(CCPδ)) ≥ P((h(αδ))
�1

· (L(1)

δ , : : : , L(N′)

δ ) ∈ E1) ≥ 1 � β:

The statement is concluded by using the union bound, combining the lower bound together with the upper bound implied 
by Lemma 1 and Theorem 1, hence obtaining factor 2β. w

Proof of Lemma 3. Without loss of generality, assume that R is an integer such that

Zφ � {(x, l) ∈ Rdx × Rdl |φ(x, l) ≤ 0} ⊆ [�R, R]
(dx+dl):

Let N1 � (2R + 1)
(dx+dl), and let (x(i), l(i)), i � 1, : : : , N1 be the integer lattice points in [�R, R]

(dx+dl). In addition, let aj �
∂φ
∂L (x(i), 

l(i)), bj �
∂φ
∂x (x(i), l(i)) and cj � φ(x(i), l(i)) �

∂φ
∂L (x(i), l(i))⊤l(i) �

∂φ
∂x (x(i), l(i))⊤x(i) for i � 1, : : : , N1, then define φ1, �

(x, l) � maxj�1, : : : , N1 

a⊤
j l + b⊤

j x + cj. Because the function φ(x, l) is convex, we can invoke the supporting hyperplane theorem to deduce that 
a⊤

j l + b⊤
j x + cj ≤ φ(x, l) for i � 1, : : : , N1, and consequently φ1, �

(x, l) ≤ φ(x, l). In addition, because φ(x, l) ≥ 0 at the boundary 
of the cube [�R, R]

(dx+dl), there exist a constant C1 such that �C1 · R 6 C1 · xi ≤ φ(x, l) for i � 1, : : : , dx and �C1 · R 6 C1 · li ≤

φ(x, l) for i � 1, : : : , dl, for all (x, l) ∈ Rdx × Rdl . Therefore, with φ2, �
(x, l) being the maximum of the aforementioned N2 �

2(dx + dl) linear functions, we have φ2, �
(x, l) ≤ φ(x, l), and we also have that φ2, �

(x, l) ≤ 0 implies (x, l) ∈ [�R, R]
(dx+dl).

Define φ
�

(x, l) � max{φ1, �
(x, l),φ2, �

(x, l)}. We can conclude the property of φ
�

(x, l) as follows: (1) φ
�

(x, l) is a piecewise 
linear function of form maxj�1, : : : , Na⊤

j l + b⊤
j x + cj, where N � N1 + N2; (2) φ

�
(x, l) ≤ φ(x, l); and (3) φ

�
(x, l) ≤ 0 implies 

(x, l) ∈ [�R, R]
(dx+dl). To complete the proof, it remains to verify for φ

�
(x, l) the second statement of Assumption 6.

As φ
�

(x, l) ≤ 0 implies (x, l) ∈ [�R, R]
(dx+dl), it suffices to prove that there exist some universal constant C ∈ R+ such that 

φ(x, l) �φ
�

(x, l) ≤ C for all (x, l) ∈ [�R, R]
(dx+dl). For an arbitrary point (x, l) ∈ [�R, R]

(dx+dl), there exist a lattice point (x(i), l(i))
such that ‖(x, l) � (x(i), l(i))‖2 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dx + dl

√
=2: Next, because φ(x, l) is twice continuously differentiable, the gradient ∇φ(x, l) is 

Lipschitz over [�R, R]
(dx+dl) with Lipschitz constant denoted by Mφ. Therefore, for any (x, l) ∈ [�R, R]

(dx+dl),

φ(x, l) �φ
�

(x, l) ≤ φ(x, l) �φ1, �
(x, l) ≤ min

j�1, : : : ,N1
(φ(x, L) � (a⊤

j L + b⊤
j x + cj)) ≤

1
4 M2

φ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dx + dl

p
:

The proof is now complete. w

Proof of Theorem 3. Because φ
�

(x, L) ≤ φ(x, L), the probability constraint P(φ(x, L) > 0) ≤ δ implies that P(φ
�

(x, L) > 0) ≤ δ, 
which further implies P(a⊤

j L + b⊤
j x + cj > 0) ≤ δ for i � 1, : : : , N. Therefore, we have �b⊤

j x � cj ≥ F�1
a⊤

j L(δ) for i � 1, : : : , N, which 
implies Fδ ⊆ Oδ.

Then, consider x ∈ Oδ and L ∈ Vx � {L ∈ Rdl |φ(x, L) > 0}. It follows from the second statement of Assumption 6 that 
φ(x, L) > 0 implies that φ

�
(x, L) + C > 0. Thus, there exist an index i such that a⊤

j L + b⊤
j x + cj + C > 0. As x ∈ Oδ implies that 

b⊤
j x + cj + F�1

a⊤
j L(δ) ≤ 0, so

a⊤
j L � F�1

a⊤
j L(δ) + C ≥ a⊤

j L + b⊤
j x + cj + C > 0:

Therefore, the condition set Cδ can be constructed as

Cδ :�
[N

j�1
{L ∈ Rdl |a⊤

j L + C > F�1
a⊤

j L(δ)}:
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Thus, as the distribution a⊤
j L is regularly varying in dimension one for each j, we have lim supδ→0δ

�1P(L ∈ Cδ) ≤ N, com
pleting the proof. w

A.2. Proofs for Section 6

Proof of Proposition 1. Let φ(x, l) �
Pd

j�1(lj=xj) � η and π(x) � mind
j�1xj. The unit level set is Π � {x ∈ Rd

++ |minj�1, : : : , dxj � 1}. 
Let h(α) � α and r(α) � 1, it follows that 1

r(α)
φ(α · x, h(α) · l) � φ(x, l). In view of the inequalities φ(x, l) ≤ 1⊤l � η and φ(x, l) ≥

minj�1, : : : , dlj � η when x ∈Π, we choose the asymptotic uniform bounds as
Φ+(l) � 1⊤l � η, Φ�(l) � min

j�1, : : : ,d
Lj � η:

Furthermore, by definition, we construct two approximation sets as
Cε, + � {l ∈ Rd

++ |1⊤l ≥ η� ε}, Cε, � � {l ∈ Rd
++ | min

j�1, : : : , d
Lj ≥ η + ε}:

With all the elements that we have already defined, Assumption 1 follows directly from the assumption on distribution 
of L. Now we turn to verify Assumption 2. As π(α · x) � α ·π(x) due to the definition of π(x), it suffices to prove that 
limδ→0infx∈Fδπ(x) � +∞. In view of φ(x, L) ≤ 1⊤L=π(x) � η, we have

Fδ � {x ∈ Rd
++ | P(φ(x, L) > 0) ≤ δ} ⊆ {x ∈ Rd

++ | P
�

1⊤L > η ·π(x)
�

≤ δ}

� {x ∈ Rd
++ | η ·π(x) ≥ F�1

1⊤L(δ)}:

Consequently, we have infx∈Fδπ(x) ≥ η�1F�1
1⊤L(δ). Taking limit for δ→ 0, we conclude that limδ→0infx∈Fδπ(x) � +∞.

As Assumptions 1 and 2 are both satisfied, and we also have µ(Cε, �) > 0, Property 2 is verified due to Lemma 2. In 
addition, if ε ∈ (0,η), we have Cε, + is bounded away from the origin. Thus, Assumption 3 is verified with S � Rd.

Finally, we provide closed form expressions for Oδ and Cδ. Define αδ � η�1 · F�1
1⊤L(δ); then it follows that Oδ �

S
α≥αδ 

α ·Π � {x ∈ Rd
++ |η ·π(x) ≥ F�1

1⊤L(δ)}, and Cδ � h(αδ) · (Cε, +
SKcSSc) � αδ · Cε, + � {l ∈ Rd

++ |1⊤l ≥ (1 � ε=η) · F�1
1⊤L(δ)}: By setting 

ε � η=2, we get the expression in the statement of the theorem. w

Proof of Lemma 4. We start by showing some properties of I � Q⊤. Because Q is a nonnegative matrix and the row sum is 
less than one, it is a substochastic matrix, and all of its eigenvalues must be less than one in magnitude. This further implies (1) 
I � Q⊤ is invertible, and (2) (I � Q⊤)

�1
� I +

P∞
n�1 (Q⊤)

n is a nonnegative matrix with strictly positive diagonal terms.
Notice that y � (I � Q⊤)

�1x is the unique vector such that (I � Q⊤)y � x. Let (y′, b′) be the optimal solution of
φ(x, L) � min

y,b
{b | (L � y � m) ≼ b · 1, (I � Q⊤)y ≼ x, y ∈ Rd

+, b ∈ R}:

We have (I � Q⊤)y′ ≼ (I � Q⊤)y � x, and we multiply the nonnegative matrix (I � Q⊤)
�1 on both sides, yielding y′ ≼ y. Obvi

ously, let b � maxj�1, : : : , d(Lj � yj) such that (y, b) is a feasible solution to above problem. Obviously, it follows from y′ ≼ y that 
b′ � maxj�1, : : : , d(Lj � y′

j � mj) ≥ maxj�1, : : : , d(Lj � yj � mj) � b; thus, (y, b) is also optimal, which completes the proof. w

Proof of Proposition 2. Assumption 1 follows directly from the assumptions of the example. Now we turn to verify 
Assumption 6. Using Lemma 4, we define φ

�
(x, l) � φ(x, l) � maxj�1, : : : , d Lj � e⊤

j (I � Q⊤)
�1x � mj. Therefore, Assumption 6 is 

satisfied with n � d, aj � ej, bj � �(I � Q)
�1ej, cj � �mj and C � 0. Plugging the previous values into the expressions of Oδ 

and Cδ given in Theorem 3, we get the expressions shown in the statement of the proposition. w

The following lemma is used in the proof of Proposition 3.

Lemma A.1. There exist sets S1, : : : , S2dl ⊆ Rdl with positive Lebesgue measure such that for any z ∈ Rdl with ‖z‖2 � 1, there exist 
some Si ⊆ {l ∈ Rdl |z⊤l > 1}.

Proof of Lemma A.1. Let ej denote the unit vector on the jth coordinate in Rdl for j � 1, : : : , dl. Fix z � (z1, : : : , zdl ) ∈ Rdl 

with ‖z‖2 � 1, define θj be the angle between z and ej, which satisfies cos(θj) � z⊤ej. Because we have 
Pn

j�1 cos(θj)
2

� 1, so 
there exist some i such that cos(θj)

2
≥ 1=n; thus, zj ∈ [�1, � 1=

ffiffiffi
n

√
]
S

[1=
ffiffiffi
n

√
, 1]. Then, define

S2i�1 � l � (l1, : : : , ldl ) ∈ Rdl |Lj > 0, l2i ≥ (n � 1)
X

j≠i
l2j

( )

,

S2i �

�

l � (l1, : : : , ldl ) ∈ Rdl |Lj < 0, l2i ≥ (n � 1)
X

j≠i
l2j
�

:

We have either S2i�1 ⊂ {l ∈ Rdl |z⊤l > 1} or S2i ⊂ {l ∈ Rdl |z⊤l > 1}. Thus, the proof is complete. w

Proof of Proposition 3. For the first statement, because x⊤Qx ≥ 0 and A⊤x ∈ Rdl , and invoking the assumption that L has 
a positive density:

min
y∈Rdl \{0}

P(y⊤L > 0) ≥ min
y:‖y‖2�1

P(y⊤L > 0) > 0:
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For the second statement, Assumption 1 is easy to verify. Notice that α�2φ(α · x,α · L) � φ(x, L) for all α > 0, so we pick the 
scaling rate function as h(α) � α and r(α) � α2. Let λmax denote the maximal eigenvalue of Q, and λmin denote the minimal 
eigenvalue of Q. The rest of the proof will be divided into two cases. 

Case 1 (λmax < 0): We pick the unit level set as Π � {x ∈ Rdx | ‖x‖2 � 1}. Because limδ→0infx∈Fδ‖x‖2 � ∞, Assumption 2 is veri
fied. Next, we directly show Property 2 instead of using Lemma 2. For any x ∈ α ·Π, we have

min
x∈α·Π

P(x⊤Qx + x⊤AL > 0) ≥ min
x∈Π

P(αλmin + x⊤AL > 0)

� min
x∈Π

P x⊤AL
‖A⊤x‖2

>
�αλmin

‖A⊤x‖2

� �

≥ min
z:‖z‖�1

P(z⊤L > �ασ�1λmin)

(Apply Lemma A:1) ≥ min
i�1, : : : , 2dl

P(L ∈ �ασ�1λminSi):

Thus, αδ can be chosen such that αδ � O(δ), and mini�1, : : : , 2dl P(L ∈ �αδσ�1λminSi) > δ. As a result, Property 2 is verified. 
We next turn to derive the asymptotic uniform bound Ψ+. Observing that

sup
x∈Π

φ(x, L) ≤ λmax + ‖A‖F‖L‖2, 

we define Ψ+(L) :� λmax + ‖A‖F‖L‖2. Assumption 3 now follows from the definition of Ψ+. 
Case 2 (λmax ≥ 0): The unit level set Π is chosen as an unbounded set Π � {x ∈ Rdx |x⊤Qx � �‖x‖2}, and we have 

minx∈Π‖x‖2 � 1= |λmin | . For any x ∈ α ·Π, we have

min
x∈α·Π

P(x⊤Qx + x⊤AL > 0) ≥ min
x∈Π

P(x⊤AL > α),

� min
x∈Π

P x⊤AL
‖A⊤x‖2

>
α

‖A⊤x‖2

� �

≥ min
z:‖z‖�1

P(z⊤L > �ασ�1λmin)

(Apply Lemma A:1) ≥ min
i�1, : : : , 2dl

P(L ∈ �ασ�1λminSi):

Thus, we can pick an αδ that satisfies Property 2. Now, supx∈Πφ(x, L) is bounded by

sup
x∈Π

φ(x, L) ≤ sup
x∈Π

‖x‖2(‖AL‖2 � 1) ≤ �
1
2 |λmin |

�1
· I(‖AL‖2 ≤ 1=2) + ∞ · I(‖AL‖2 > 1), 

so we can pick Ψ+(L) :� � 1
2 |λmin |

�1
· I(‖AL‖2 ≤ 1=2) + ∞ · I(‖AL‖2 > 1). Consequently Assumption 3 follows immediately. w

Appendix B. Importance Sampling for Multivariate Regularly Varying Distribution
B.1. Multivariate Regularly Varying Distribution with Gaussian Copula
In this section, we assume that the correlation structure of the random vector L is characterized by Gaussian Copula.

Let Φ : R → [0, 1] be the standard univariate Gaussian cumulative distribution function (CDF), and ΦΣ : Rd → [0, 1] be 
the joint CDF of multivariate Gaussian CDF with mean of zero, variance of one, and covariance matrix of Σ. The Gauss
ian Copula CΣ : [0, 1]

d
→ [0, 1] is defined as CΣ(u1, : : : , ud) �ΦΣ(Φ�1(u1), : : : ,Φ�1(ud)): Suppose that the random vector L has 

marginal CDF FLi : R → [0, 1] for i � 1, : : : , d, we assume that U :� (U1, : : : , Ud) � (FL1 (L1), : : : , FLd (Ld)) has joint CDF CΣ.

Algorithm B.1 (Sampling of Multivariate Regularly Varying Distribution with Gaussian Copula)
Input: The covariance matrix of Gaussian Copula Σ, the marginal CDFs FLi . 
1 Apply Cholesky decomposition or singular value decomposition to compute the matrix A such that Σ � A⊤A.
2 Sample a d-dimensional multivariate standard normal vector Z, compute the linear transform X � A⊤Z.
3 For each i � 1, : : : , d, compute Li � F�1

Li
(Φ(Xi)).

In the importance sampling algorithm developed later, we need to sample the random vector L conditional on the 
value of one coordinate, for example, Li � li. Without loss of generality, we assume that the value of the last coordinate 
is given, and the covariance matrix Σ admits the blockwise representation Σ �

�
Σ11 Σ12
Σ21 1

�

, where Σ11 ∈ R(d�1)×(d�1), 
Σ12 ∈ R(d�1)×1, Σ21 ∈ R1×(d�1) and Σ12 � Σ⊤

21. Suppose that X is a random vector with normal distribution N(0,Σ), then the 
conditional distribution of (X1, : : : , Xd�1) given Xd � xd is jointly normal distributed with mean xd ·Σ12 and covariance 
Σ11 �Σ12Σ21. In Algorithm B.2, we describe the conditional sampling method for L.
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Algorithm B.2 (Sampling of Multivariate Regularly Varying Distribution with Gaussian Copula Conditional on Ld 5 ld)
Input: The covariance matrix of Gaussian Copula Σ, the marginal CDFs FLi , the conditional value of the last coordinate 

Ld � ld. 
1 Map the observation into the Gaussian space: xd � Φ�1(FLd (ld)).
2 Sample a d � 1-dimensional multivariate normal vector (X1, : : : , Xd�1), with mean xd ·Σ12 and covariance Σ11 �Σ12Σ21.
3 For each i � 1, : : : , d � 1, compute Li � F�1

Li
(Φ(Xi)).

B.2. Importance Sampling
In this section, we present an importance sampling method to sample from the conditional distribution (L |L ∈ Cδ), where 
Cδ is the uniform conditional event.

B.2.1. Minimal Salvage Fund. Recall from Proposition 2 that the uniform conditional event for the minimal salvage 
fund problem is Cδ �

Sd
i�1{l ∈ Rd | li > F�1

Li
(δ)}: To simplify the notation, let us define ωi(δ) � F�1

Li
(δ) for i � 1, : : : , d. It follows 

that P(Li > ωi(δ)) � δ for i � 1, : : : , d.
The algorithm is a combination of acceptance rejection and importance sampling. Suppose that P(dl) is the probability 

measure corresponding to the random vector L, then the target measure Ptarget(dl) corresponding to the conditional distri
bution (L |L ∈ Cδ) can be expressed as

Ptarget(dl) �
I{l ∈ Cδ}
P(L ∈ Cδ)

P(dl):

Now we describe how to sample from the proposal distribution with importance sampling. For each fixed i ∈ {1, : : : , d}, 
the conditional distribution (L |Li > ωi(δ)) can be sampled using the importance sampling: We first sample Li conditional 
on Li > ωi(δ) by the inverse CDF method and then apply Algorithm B.2 to sample Lj for j ≠ i conditional on Li. The result
ing random vector L has probability measure I{li>ωi(δ)}

P(Li>ωi(δ))
P(dl). Then, if we uniformly sample the random index i from 

{1, : : : , d} instead of using the fixed index, the proposal distribution becomes

Pproposal(dl) �
1
dδ
Xd

i�1
I li > ωi(δ){ }P(dl):

The likelihood ratio is

Ptarget(dl)
Pproposal(dl)

�
dδ

P(L ∈ Cδ)
I{l ∈ Cδ}

Pd
i�1I{li > ωi(δ)}

:

The proposal distribution guarantees that there exist at least an index i such that Li > ωi(δ); thus, we have I{l ∈ Cδ} � 1 
and 

Pd
i�1 I{li > ωi(δ)} ≥ 1. In addition, the definition of Cδ implies that P(L ∈ Cδ) ≥ P(Li > ωi(δ)) � δ. Consequently, the like

lihood ratio is upper bounded by d.
To conclude this section, we summarize the detail of the importance sampling in Algorithm B.3.

Algorithm B.3 (Importance Sampling Algorithm for Minimal Salvage Fund Problem)
Input: The covariance matrix of Gaussian Copula Σ, the marginal CDFs FLi , the risk level of tolerance δ. 
1 Uniformly sample a random index i ∈ {1, : : : , d}:

2 Sample a uniform random variable U1 ~ Unif(0, 1). Set Li � F�1
Li

((1 � δ) + δ · U):

3 Apply Algorithm B.2 to sample the rest coordinates Lj for j ≠ i conditional on the value of Li.
4 Sample a uniform random variable U2 ~ Unif(0, 1).
5 If U2 > (

Pd
k�1 I{Lk > ωk(δ)})

�1, output L � (L1, : : : , Ld); otherwise, return to step 1.

B.2.2. Portfolio Optimization with VaR Constraint. Recall from Proposition 1 that the uniform conditional event for the 
portfolio optimization problem is Cδ � {l ∈ Rd

++ |2 · 1⊤l ≥ F�1
1⊤L(δ)}: It is not hard to see that

Cδ ⊆
[d

i�1
{l ∈ Rd | li > (2d)

�1
· F�1

1⊤L(δ)}, 

where the right-hand side has a similar form to Cδ in the minimal salvage fund problem. Define -i(δ) :� (2d)
�1

· F�1
1⊤L(δ), 

and we construct the proposal distribution as

Pproposal(dl) ∝
Xd

i�1
I{li > -i(δ)}P(dl):

Because the target distribution is still Ptarget(dl) � I{l∈Cδ}
P(L∈Cδ) P(dl), the likelihood ratio is

Ptarget(dl)
Pproposal(dl)

∝
I{l ∈ Cδ}

Pd
i�1I{li > -i(δ)}

≤ 1:

To conclude this section, we summarize the detail of the importance sampling in Algorithm B.4.
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Algorithm B.4 (Importance Sampling Algorithm for Portfolio Optimization with VaR Constraint)
Input: The covariance matrix of Gaussian Copula Σ, the marginal CDFs FLi , the risk level of tolerance δ. 
1 Sample a random index i ∈ {1, : : : , d} with probability propotional to P(Li > -i(δ)), where -i(δ) � (2d)

�1
· F�1

1⊤L(δ):
2 Sample a uniform random variable U1 ~ Unif(0, 1). Set Li � F�1

Li
(FLi (-i(δ)) + (1 � FLi (-i(δ))) · U1):

3 Apply Algorithm B.2 to sample the rest coordinates Lj for j ≠ i conditional on the value of Li.
4 Sample a uniform random variable U2 ~ Unif(0, 1).
5 If L ∈ Cδ (i.e., 2 · 1⊤L ≥ F�1

1⊤L(δ)) and U2 > (
Pd

k�1 I{Lk > ωk(δ)})
�1, output L � (L1, : : : , Ld); otherwise, return to step 1.

Appendix C. Additional Numerical Results
C.1. Portfolio Optimization with Dependent Loss
In this section, we conduct additional numerical experiments for the portfolio optimization problem (2). We still consider 
the portfolio optimization problem with d � 10 assets and use the same mean return vector µ and loss threshold η as Sec
tion 7.1. Although we also assume the same marginal distribution for the loss vector L, we apply the Gaussian Copula 
(see Appendix B.1) to impose the dependence structure between different coordinates of L. In particular, we assume the 
correlation matrix of Gaussian Copula as in Figure C.1.

To solve the change constraint problem using Eff-Sc. We adopt the same construction of Oδ and Cδ as Section 7.1 and 
compute the required number of samples N′ using Lemma 1. The samples of Lδ is generated via the importance sample 
method (see Algorithm B.4 for detail).

In Figure C.2, we compare the efficiency between Eff-Sc and CC-Sc. As shown in Figure C.2(a), the required number of 
samples for Eff-Sc is substantially less than CC-Sc, especially when δ is small. In Figure C.2(b), we compare the running 

Figure C.1. Correlation Matrix for Gaussian Copula 

Figure C.2. Comparison of Computational Efficiency for the Portfolio Optimization Problem 

(a) (b)

Notes. (a) Required number of samples. (b) Used CPU time. We test δ ∈ {0:001, 0:002,0:005, 0:01, 0:02,0:05, 0:1}:
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Figure C.3. Comparison of the Quality of Optimal Solutions for the Portfolio Optimization Problem with Dependent Loss Gen
erated Using Gaussian Copula 

(a) (b)

Notes. (a) Optimal value. (b) Solutions’ violation probabilities. Here δ ∈ {0:001, 0:002, 0:005, 0:01, 0:02, 0:05,0:1}, and the box plots are generated 
using 1,000 experiments.

Figure C.4. Comparison of Computational Efficiency for the Minimal Salvage Fund Problem with Dependent Loss 

(a) (b)

Notes. (a) Required number of samples. (b) Used CPU time. We test d � 10 and δ ∈ {0:001, 0:002, 0:005,0:01, 0:02,0:05, 0:1}:

Figure C.5. Comparison of the Quality of Optimal Solutions for the Minimal Salvage Fund Problem with Dependent Loss 

(a) (b)

Notes. (a) Optimal value. (b) Solutions’ violation probabilities. Here d � 10, δ ∈ {0:001, 0:002,0:005, 0:01, 0:02,0:05, 0:1}, and the box plots are gen
erated using 1,000 experiments.
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time for both models. We remark that the computational time for Eff-Sc stays nearly constant for different δ, and that 
Eff-Sc needs less time to solve than CC-Sc for small δ.

In Figure C.3, we compare the optimal value and the conservativeness of the solutions generated by Eff-Sc and CC-Sc. 
From the figure, we can conclude that the solutions for Eff-Sc and CC-Sc are both feasible, and the Eff-Sc solution is less 
conservative with better optimal value.

C.2. Minimal Salvage Fund with Dependent Loss
In this section, we test the performance of the minimal salvage fund problem (2) in which the loss vector L has depen
dent structure characterized by the Gaussian copula.

In the experiment, we fixed d � 10, and use the same parameters Q and m and the same marginal distribution of Lj as 
introduced in Section 7.2. We assume that the dependence structure of different coordinates of L is prescribed by the 
Gaussian Copula with correlation matrix shown in Figure C.1.

In Figure C.4, we compare the efficiency between Eff-Sc and CC-Sc for solving the minimal salvage fund problem. In 
particular, we compare the required number of samples in Figure C.4(a) and the total required CPU time in Figure 
C.4(b). Despite slightly larger CPU time for Eff-Sc for large δ, the CPU time for Eff-Sc becomes significantly smaller than 
CC-Sc when δ < 0:01, and the required number of samples for Eff-Sc is also universally smaller.

In Figure C.5, we also compare the quality of the solutions generated by Eff-Sc and CC-Sc. Once again, we found that 
the solutions generated by Eff-Sc are less conservative with better optimal value on average.

C.3. Minimal Salvage Fund for d 5 5 and d 5 10
In this section, we demonstrate the quality of the solutions produced by Eff-Sc is better than CC-Sc when the dimension 
of the problem is d � 5 or d � 10. See Figure C.6 for dimension d � 5 and Figure C.7 for d � 10.

Figure C.6. Comparison of the Quality of Optimal Solutions Given by Eff-Sc and CC-Sc for d � 5 

(a) (b)

Notes. (a) Optimal value. (b) Solutions’ violation probabilities.

Figure C.7. Comparison of the Quality of Optimal Solutions Given by Eff-Sc and CC-Sc for d � 10 

(a) (b)

Notes. (a) Optimal value. (b) Solutions’ violation probabilities.
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