This article was downloaded by: [24.4.150.151] On: 17 May 2024, At: 13:05
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

— Stochastic Systems
\

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

W
[

5

N
'” - Efficient Scenario Generation for Heavy-Tailed Chance
o) Constrained Optimization
i . A Jose Blanchet, Fan Zhang, Bert Zwart
A E
o VA=

To cite this article:
Jose Blanchet, Fan Zhang, Bert Zwart (2024) Efficient Scenario Generation for Heavy-Tailed Chance Constrained Optimization.
Stochastic Systems 14(1):22-46. https://doi.org/10.1287/stsy.2021.0021

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fithess
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2023 The Author(s)

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org



http://pubsonline.informs.org
https://doi.org/10.1287/stsy.2021.0021
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Downloaded from informs.org by [24.4.150.151] on 17 May 2024, at 13:05 . For personal use only, all rights reserved.

'&i.llfg Fﬂ‘r' STOCHASTIC SYSTEMS
s@ Vol. 14, No. 1, March 2024, pp. 22-46

https://pubsonline.informs.org/journal/stsy ISSN 1946-5238 (online)

Efficient Scenario Generation for Heavy-Tailed Chance
Constrained Optimization

Jose Blanchet,? Fan Zhang,>* Bert Zwart™®

aDepartment of Management Science and Engineering, Stanford University, Stanford, California 94305; ® Department of Statistics, Centrum
Wiskunde and Informatica, Amsterdam 1098 XG, Netherlands; ® Department of Mathematics and Computer Science, Eindhoven University of
Technology, 5612 AZ Eindhoven, Netherlands

*Corresponding author

Contact: jose.blanchet@stanford.edu (JB); fzh@stanford.edu, (&) https: // orcid.org/0000-0001-6735-4901 (FZ); bert.zwart@cwi.nl,
(® https: // orcid.org/0000-0001-9336-0096 (BZ)

Received: August 2, 2023 Abstract. We consider a generic class of chance-constrained optimization problems with
Revised: February 6, 2023 heavy-tailed (i.e., power-law type) risk factors. As the most popular generic method for solv-
Accepted: August 2, 2023 ing chance constrained optimization, the scenario approach generates sampled optimization
Published Online in Articles in Advance: problem as a precise approximation with provable reliability, but the computational complex-

September 4, 2023 ity becomes intractable when the risk tolerance parameter is small. To reduce the complexity,

we sample the risk factors from a conditional distribution given that the risk factors are in an
https://doi.org/10.1287/stsy.2021.0021 analytically tractable event that encompasses all the plausible events of constraints violation.
Our approximation is proven to have optimal value within a constant factor to the optimal
value of the original chance constraint problem with high probability, uniformly in the risk
tolerance parameter. To the best of our knowledge, our result is the first uniform performance
guarantee of this type. We additionally demonstrate the efficiency of our algorithm in the con-
text of solvency in portfolio optimization and insurance networks.

Copyright: © 2023 The Author(s)

8 Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International
License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this work
as “Stochastic Systems. Copyright © 2023 The Author(s). https://doi.org/10.1287 /stsy.2021.0021, used
under a Creative Commons Attribution License: https: // creativecommons.org/licenses /by /4.0/.”

Funding: The research of B. Zwart is supported by the NWO (Dutch Research Council) [Grant 639.033.413].
The research of J. Blanchet is supported by the Air Force Office of Scientific Research [Award FA9550-
20-1-0397], the National Science Foundation [Grants 1820942, 1838576, 1915967, and 2118199], Defense
Advanced Research Projects Agency [Award N660011824028], and China Merchants Bank.

Keywords: stochastic optimization « Monte Carlo methods « regular variation « asymptotic optimality

1. Introduction
In this paper, we consider the following family of chance constrained optimization problems:

minimize c¢'x
subject to  P(¢(x,L) > 0) <9,
x € R*. (CCPs)

where x € R* is a d,-dimensional decision vector and L is a d;-dimensional random vector in R%. The elements of
L are often referred to as risk factors; the function ¢ : R% x R — R is often assumed to be convex in x and often
models a cost constraint; the parameter 6 > 0 is the risk level of the tolerance. Our framework encompasses the
joint chance constraint of the form P(q)].(x, L)>0, Jje{l,...,n}) <9, by setting P(x,L) = maxj=y,..., .} j(x, L).

Chance constrained optimization problems have a rich history in operations research. Introduced by Charnes
et al. (1958), chance constrained optimization formulations have proved to be versatile in modeling and decision
making in a wide range of settings. For example, Prekopa (1970) used these types of formulations in the context
of production planning. The work of Bonami and Lejeune (2009) illustrates how to take advantage of chance con-
strained optimization formulations in the context of portfolio selection. In the context of power and energy con-
trol the use of chance constrained optimization is illustrated in Andrieu et al. (2010). These are just examples of
the wide range of applications that have benefited (and continue to benefit) from chance constrained optimiza-
tion formulations and tools.
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Consequently, there has been a significant amount of research effort devoted to the solution of chance con-
strained optimization problems. Unfortunately, however, these types of problems are provably NP-hard in the
worst case (Luedtke et al. 2010). As a consequence, much of the methodological effort has been placed into devel-
oping (a) solutions in the case of specific models; (b) convex and, more generally, tractable relaxations; (c) combi-
natorial optimization tools; and (d) Monte Carlo sampling schemes. Of course, hybrid approaches are also
developed. For example, as a combination of type b and type d approaches, Hong et al. (2011) show that the solu-
tion to a chance constraint optimization problem can be approximated by optimization problems with con-
straints represented as the difference of two convex functions. In turn, this is further approximated by solving a
sequence of convex optimization problems, each of which can be solved by a gradient based Monte Carlo
method. Another example is Pefia-Ordieres et al. (2020), which combines relaxations of type b with sample-
average approximation associated with type d methods. In addition to the aforementioned types, Hong et al.
(2021) provides an upper bound for the chance constraint optimization problem using a robust optimization
with a data-driven uncertainty set, achieving a dimension independent sample complexity.

Examples of type a approaches include the study of Gaussian or elliptical distributions when ¢ is affine
both in L and x. In this case, the problem admits a conic programming formulation, which can be efficiently
solved (Lagoa et al. 2005). Type b approaches include Hillier (1967); Seppala (1971); Ben-Tal and Nemirovski
(2000, 2002); Prékopa (2003); Bertsimas and Sim (2004); Nemirovski and Shapiro (2006a); Chen et al. (2010);
and Tong et al. (2022). These approaches usually integrate probabilistic inequalities such as Chebyshev’s
bound, Bonferroni’s bound, Bernstein’s approximations, or large deviation principles to construct tractable
analytical approximations. Type ¢ methods are based on branch and bounding algorithms, which connect
squarely with the class of tools studied in areas such as integer programming (Ahmed and Shapiro 2008,
Luedtke et al. 2010, Kiigiikyavuz 2012, Luedtke 2014, Zhang et al. 2014, Lejeune and Margot 2016). Type d
methods include the sample gradient method, the sample average approximation, and the scenario approach.
The sample gradient method is usually combined with a smooth approximation (see Hong et al. (2011) for
example). The sample average approximations studied by Luedtke and Ahmed (2008) and Barrera et al.
(2016), although simplifying the constraint’s probabilistic structure via replacing the population distribution
by sampled empirical distribution, are nevertheless hard to solve due to nonconvex feasible regions. The
method we consider in this paper is the scenario approach. The scenario approach is introduced and studied
in Calafiore and Campi (2005) and is further developed in a series of papers, including Calafiore and Campi
(2006); Nemirovski and Shapiro (2006b).

The scenario approach is the most popular generic method for (approximately) solving chance constrained
optimization. The idea is to sample a number N of scenarios (each scenario consists of a sample of L) and enforce
the constraint in all of these scenarios. The intuition is that if for any scenario, say L%, the constraint ¢(L?,x) <0
is convex in x, and 6 > 0 is small, we expect that by suitably choosing N the constrained regions can be relaxed
by enforcing ({)(L(i),x) <0foralli=1,...,N, leading to a good and, in some sense, tractable (if N is of moderate
size) approximation of the chance constrained region. Of course, this intuition is correct only when 6 > 0 is small
and we expect the choice of N to be largely influenced by this asymptotic regime.

By choosing N sulfficiently large, the scenario approach allows obtaining both upper and lower bounds which
become asymptotically tighter as 0 — 0. In a celebrated paper, Calafiore and Campi (2006) provide rigorous sup-
port for this claim. In particular, given a confidence level g € (0,1), if N > (2/0) x log(1/B) + 2d + (2d/0) X log(2/9),
with probability at least 1 — f3, the optimal solution of the scenario approach relaxation is feasible for the original
chance constrained problem and, therefore, an upper bound to the problem is obtained. Unfortunately, the
required sample size of N grows with (1/0) x log(1/0) as 6 becomes small, limiting the scope of the scenario
methods in applications.

Many applications of chance constraint optimization require a very small 0. For example, in the 5G ultra-
reliable communication system design, the failure probability 6 is no larger than 10> (Alsenwi et al. 2019); for
fixed income portfolio optimization, an investment grade portfolio has a historical default rate of 10~*, reported
by Frank (2008).

Motivated by this, Nemirovski and Shapiro (2006b) developed a method that lowers the required sample size
to the order of log(1/6), making additional assumptions on the function ¢ (which is taken to be biaffine), and the
risk factors L, which are to be assumed light-tailed. Specifically, the moment generating function E[exp(sL)] is
assumed to be finite in a neighborhood of the origin. No guarantee is given in terms of how far the upper bound
is from the optimal value function of the problem as 6 — 0.

In the present paper, we focus on improving the scalability of N in terms of 1/6 for the practically important
case of heavy-tailed risk factors. Heavy-tailed distributions appear in a wide range of applications in science,
engineering, and business (Wierman and Zwart 2012, Embrechts et al. 2013) but, in some aspects, are not as well
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understood as light-tails. One reason is that techniques from convex duality cannot be applied as the moment
generating function of L does not exist in a neighborhood of zero. In addition, probabilistic inequalities, exploited
in Nemirovski and Shapiro (2006b), do not hold in this setting. Only very recently, a versatile algorithm for
heavy-tailed rare event simulation has been developed in Chen et al. (2019).

The main contribution of our paper is to develop an algorithm that has a sample complexity N uniformly
bounded in the risk tolerance parameter, assuming a versatile class of heavy-tailed distributions for L. Specifi-
cally, we shall assume that L follows a semiparametric class of models known as multivariate regular variation,
which is quite standard in multivariate heavy-tail modeling (Embrechts et al. 2013, Resnick 2013). Moreover, our
estimator is shown to be within a constant factor to the solution to (CCPs) with high probability, uniformly as
0 — 0. We are not aware of other approaches that provide a uniform performance guarantee of this type.

The main idea of our algorithm is to construct an analytically tractable event Cs that uniformly contains the
violation events {I € R%|¢(x,1) > 0} for all x plausible to be feasible. In view of the reformulation of the probabilis-
tic constraint in (CCPs) as P(¢(x,L) > 0|L € Cs) < (6/P(L € Cs)), the problem (CCPj) can be solved by the scenario
approach where L is sampled from the conditional distribution given L € Cs. The risk tolerance parameter is
adjusted to 6/P(L € C;). The primary challenge is to construct C; as tight as possible so that the new risk tolerance
parameter 6/P(L € Cs) is bounded. (This is at the heart of Property 1 defined later. This property is facilitated in
the heavy-tailed setting if we assume that ¢(x, L) has appropriate scaling properties, similar to the distribution of
L uniformly over a suitable compact set of decisions.)

We illustrate our assumptions and our framework with a risk problem of independent interest. This problem
consists in computing a collective salvage fund in a network of financial entities whose liabilities and payments
are settled in an optimal way using the Eisenberg-Noe model (Eisenberg and Noe 2001). The salvage fund is
computed to minimize its size to guarantee a probability of collective default after settlements of less than a small
prescribed margin. For the sake of demonstrating the broad applicability of our method, we also present a port-
folio optimization problem with value-at-risk constraints as an additional running example.

The rest of the paper is organized as follows. In Section 2, we introduce the portfolio optimization problem
and the minimal salvage fund problem as particular applications of chance constraint optimization. We use both
problems as running examples to provide a concrete and intuitive explanation for the concepts we introduce
throughout the paper. In Section 3, we provide a brief review of the scenario approach in Calafiore and Campi
(2006). The ideas behind our main algorithmic contributions are given in Section 4, where we introduce its intui-
tion, rooted in ideas originating from rare event simulation. Our algorithm requires the construction of several
auxiliary functions and sets, and we summarized the explicit expressions of the sets for the running examples in
Table 1. How to do this for a more general setting is detailed in Section 5, in which we also present several addi-
tional technical assumptions required by our constructions. In Section 5, we also explain that our procedure
results in an estimate that is within a constant factor of the optimal solution of the underlying chance constrained
problem with high probability as 6 — 0. In Section 6, we show that the assumptions imposed are valid in our
motivating example (as well as a second example with quadratic cost structure inside the probabilistic con-
straint). Numerical results for the examples are provided in Section 7. Throughout our discussion, in each section
we present a series of results that summarize the main ideas of our constructions.

To keep the discussion fluid, we present the corresponding proofs in Appendix A unless otherwise indicated.
In Appendix B, we introduce an importance sampling algorithm to sample from a parametric family of regularly
varying distribution. We present additional numerical experiments in Appendix C.

1.1. Notations

In the rest of this paper, R, = [0, + o) is the set of nonnegative real numbers, R, = (0, + o) is the set of positive
real numbers, and R = [—co, + 0] is the extended real line. A column vector with zeros is denoted by 0, and a
column vector with ones is denoted by 1. For any matrix Q, the transpose of Q is denoted by QT; the Frobenius
norm of Q is denoted by ||Q||r. The identity matrix is denoted by I. For « € R and x € R?, we use a-x to denote
the scalar multiplication of x with a. For two column vectors x,y € R?, we say x <y if and only if y — x € R%. For a

Table 1. Examples of Os and Cs That Satisfy Property 1 When L Is Multivariate Regularly

Varying
Examples Outer approximation set Os Uniform conditional event Cj
Portfolio optimization (1) {xeR!, |n-x> f;l,_((‘i)} {leR? [2-171> f;rlL(é)}

Minimal salvage fund (3) ML {xeRLIF, "O) el (1- Q) Mx+m} ULileR:, L > F, o)
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column vector x € R? and a scalar a € R, we say that x <« if and only if x<a-1. Fora e Rand E C RY, we define
a-E = {a-x|x € E}. The optimal value of an optimization problem (Prob) is denoted by Val(Prob). For any real-
Kaluezii_{andom variable X with probability measure P, define the inverse tail distribution function F :[0,1] —
R as Fy (0) = inf{x e R|P(x > X) < 6}. We also use Landau’s notation. In particular, if f(-) and g(-) are nonnegative
real valued functions, we write f(f) = O(g(t)) if f(t) <co % g(t)) for some cy € (0,00) and f(t) = Q(g(t)) if f(t) >
g(#))/co for some ¢y € (0, ).

2. Running Examples

2.1. Portfolio Optimization with Value-at-Risk Constraint

We first introduce a portfolio optimization problem. Suppose that there are d assets to invest. If we invest a dollar
in the jth asset, the investment has mean return y; and a nonnegative random loss L;. Let x = (x1, ..., x;) represent
the amount of dollars invested in different assets, and let u = (p,,...,u,) and L =(Ly,...,Ls). We assume that L
follows a multivariate heavy-tailed distribution.

A precise definition of this concept is rather involved and will be given in Section 5. Intuitively, P(||L||, > x) fol-
lows a power law, and the direction L/||L||, is assumed to converge in a suitable sense on the unit sphere, condi-
tioned on the event that ||L||, is large.

The portfolio manager’s goal is to maximize the mean return of the portfolio, which is equal to u"x, with a
portfolio risk constraint prescribed by a risk measure called value-at-risk (VaR). The VaR atlevel 1 — 6 € (0,1) for
a random variable X is defined as

VaR;_s(X) =min{z e R: Fx(z) > 1 - 6}.

For a given number 7 > 0, we formulate the following portfolio optimization problem.
maximize u'x
subject to  VaR;_s(x"L) <7,
xeRY,.

Using the definition of VaR and the fact that the cumulative distribution function is right continuous, we con-
clude that VaR;_s(x"L) < 17 is equivalent to P(x"L — > 0) < 6. To facilitate the technical exposition, we apply the
change of variable x; — 1/x; to homogenize the constraint function, yielding the following equivalent chance
constrained optimization problem in standard form:

d
maximize Z(y]./xj)
= )
subject to  P(¢p(x,L)>0) <9,

d
xeRY,,

where ¢(x,]) = Zle(lj /x;) — 1. Despite the nonlinear objective, Calafiore and Campi (2005, section 4.3) show that
it admits an epigraphic reformulation with a linear objective so that the standard scenario approach is
applicable.

2.2. Minimal Salvage Fund

In this section, we use chance-constrained optimization to determine the minimal total salvage fund required for
a reinsurance company to control its default probability, where the policy holders have complex liability
structures.

A reinsurance policy is a contract sold to insurance companies for transferring the financial risk exposure and
smoothing the cash flow. In a certain type of reinsurance contract, the reinsurance company is responsible to pay
a fixed percentage of the net liability for its clients (in this paper we assume the percentage is 100% for simplic-
ity). Therefore, the total amount of net liability is the minimal amount of salvage fund required for the reinsur-
ance company to avoid default. However, calculating the distribution of the minimal salvage fund is nontrivial
because the clients may also have insurance contracts with each other.

Suppose that the reinsurance company has 4 clients, each is an entity or an insurance firm. Let L = (Ly,...,Ly) €
R? denote the vector of incurred losses by each firm, where L; denotes the total incurred loss that entity j is
responsible to pay. We assume that L follows a multivariate heavy-tailed distribution as in the previous example.
Let Q=(Q;;:i,j€{1,...,d}) be a deterministic matrix where Q; ; denotes the amount of money received by entity

j when entity i pays one dollar. We assume that Q; ; > 0 and 2}11 Q<1
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Let x = (x1,...,x4) denote the total amount that the salvage fund allocated to each entity, and y* = (v3,...,v)
denote the amount of the final settlement. The amount of final settlement is determined by the following optimi-
zation problem:

v =y'(x,L) =argmax{1'y|0<y <L, (I-Q7)y=x}.

In words, the system maximizes the payments subject to the constraint that nobody pays more than what they
have (in the final settlement), and nobody pays more than what they owe. Notice that y* = y*(x, L) is also a ran-
dom variable (the randomness comes from L) satisfying 0 <y* < L.

Suppose that entity j bankrupts if the deficit L; — y; > m;, where m € RY is a given vector. We are interested in
finding the minimal amount of salvage fund that ensures no bankruptcy happens with probability at least 1 — 6.
The problem can be formulated as a chance constraint programming problem as follows:

minimize 1'x
subject to P(L—y*(x,L)=m)>1-09, )
xeR?,.
Now we write Problem (2) into standard form. Notice that L — y*(x,L) < m if and only if ¢(x,L) <0, where ¢(x,L)
is defined as follows:

(L) = min{b|(L —y —m) <b-1, (I - Qy=x,y >0}
Y

Therefore, Problem (2) is equivalent to
minimize 17x
subject to  P(¢(x,L) > 0) <9, 3)

d
xeRYL,.

3. Review of Scenario Approach

As mentioned in the Introduction, a popular approach to solve the chance constraint problem proceeds by using
the scenario approach developed by Calafiore and Campi (2006). They suggest to approximate the probabilistic
constraint P(¢p(x, L) > 0) < 6 by N sampled constraints gi)(x,L(i)) <0fori=1,...,N, where {LD,..., LV} are inde-
pendent samples. Instead of solving the original chance constraint problem (CCPs), which is usually intractable,
we turn to solve the following optimization problem:

minimize c¢"x
subject to ¢(x,L?)<0, i=1,...,N, (SPn)

x € R%.

The total sample size N should be large enough to ensure the feasible solution to the sampled problem (SPy) is
also a feasible solution to the original problem (CCPs) with a high confidence level. According to Calafiore and
Campi (2006), for any given confidence level parameter § € (0,1), if

1
B

then any feasible solution to the sampled optimization problem (SPy) is also a feasible solution to (CCPs) with
probability at least 1 —p. However, when 6 is small, the total number of sampled constraints is of order
Q((1/6)log(1/6)), which could be a problem for implementation. For example, as we shall see in Section 7, when
B=10",d =15 and 6 = 10>, the number of sampled constraints N is required to be larger than 2 x 10°. In con-
trast, our method only requires sampling 2 x 10° constraints.

2 2d. 2
N>-1 2d +—log—
zs og—+2a+ 5 Ogé,

4. General Algorithmic Idea
To facilitate the development of our algorithm, we introduce some additional notation and a desired technical
property (Property 1).

In our setting, a property is an intermediate assumption that facilitates the construction of an efficient scenario
approach algorithm. We shall impose the technical property for now, and in Section 5, we will provide assumptions
based on more direct model primitives, providing easy-to-verify sufficient conditions for the properties to hold.
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We exploit key intuition borrowed from rare event simulation. A common technique exploited, for example,
in Chen et al. (2019), is the construction of a so-called super set, which contains the rare event of interest. The
super set should be analytically tractable and be constructed with a probability that is of the same order as that
of the rare event of interest. If the conditional distribution given being in the super set is accessible, this can be
used as an efficient sampling scheme. The first part of this section simply articulates the elements involved in set-
ting the stage for constructing such a set in the outcome space of L. Later, in Section 5, we will impose assump-
tions in order to ensure that the probability of the superset, which eventually we will denote by Cs is suitably
controlled as 6 — 0. Simply collecting the elements necessary to construct Cs requires introducing some super
sets involving the decision space, since the optimal decision is unknown.

Let Fs € R™ denote the feasible region of the chance constraint optimization problem (CCPs), that is,

Fs = {x e R*|P(¢(x,L) > 0) < 5}. (4)

Here, the subscript 6 is involved to emphasize that the feasible region F; is parametrized by the risk level 0. For
any fixed x € R%, let V, := {L € R"|¢(x, L) > 0} denote the violation event at x.

Property 1. For any & > 0, there exist a set Oy C R%, and an event C; C R that satisfy the following statements.
(@) The feasible set Fy is a subset of Os.
(b) The event Cs contains the violation event V. for any x € Os.
(c) There exist a constant M > 0 independent of 6 such that P(L € Cs) < M- 6.

To visualize our intent with Property 1, keep in mind a feature that is often present in heavy-tailed rare-event
simulation. In particular, if L is a one-dimensional random variable with, for example, power-law tail decay,
then P(L > b) <M x P(L > b/2) for some M < oo for all b. For example, if P(L>b) =b"%,b > 1 we can take M =2°.
In simple terms, “proportional enlargements” translate into “proportional likelihoods.” This sort of feature can
be used to motivate the intent of Property 1 and the selection of event Cs, as it suggests the violation event V,
exhibits “proportional enlargements” when 6 — 0. Specifically, suppose that for some specific x" € F5, we have
that V,» = [b, o) and the safety constraint is active. That is, P(L > b) = 6 and suppose that the enlarged region is of
the form Cs = [b/2,00). Then, if L is regularly varying we will have that (c) in Property 1 holds for all 6 > 0 (which
corresponds to all b large). Generally speaking, if x € F;5, the set V, is the set of “bad” outcomes for such a deci-
sion. One can imagine that in situations of interest, as we will illustrate, the set of all possible bad outcomes,
which is User, Vi, can be conveniently enclosed by a region which is a “proportional enlargement” of the set of
bad outcomes of a suitable feasible decision (as illustrated in the previous one-dimensional situation). Property 1
implies that the likelihood of the set of all bad outcomes is proportional to the constraint parameter 6. In our
algorithms, knowing the constant M will not be relevant, we just need to know that M exists. The sets Os and Cs
are auxiliary sets introduced to enclose the set of all possible bad outcomes. We will explain how to construct
these sets in examples later.

In the rest of this paper, we will refer to Os as the outer approximation set and Cs as the uniform conditional event.
A graphical illustration of Os and Cs is shown in Figure 1.

As hinted in our earlier discussion that motivates Property 1, we shall focus on the case that L follows a multi-
variate regularly varying distribution (i.e. a multidimensional version of a power-law-type distribution). The def-
inition of multivariate regular variation is provided in Section 5. In this case, to illuminate how the sets Os and
Cs can be constructed for different problems, we provide explicit expressions of them for two running examples
in Table 1. In Section 5, we will illustrate how to construct Os and C; for more general settings.

Figure 1. Tlustration of Os and Cs

L Space

{L: ¢p(x’, L) > 0}

[x: P(¢p(x, L) > 0) < 8}
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Now, given Oy and C; that satisfies Property 1, we define the conditionally sampled problem (CSPs n-):
minimize c"x
subject to  ¢(x, Lg)) <0, i=1,...,N. (CSPs,nv)
x € Os.

Here, Lg) are independent and identically distributed (i.i.d.) samples generated from the conditional distribution
(LIL € Cs).

We now present our main result of this section in Lemma 1, which validates (CSP; ) is an effective and sam-
ple efficient scenario approximation by incorporating (Calafiore and Campi 2006, theorem 2) and Property 1. The
proof of Lemma 1 will be presented in Section 4.1.

Lemma 1. Suppose that Property 1 is imposed and let p > 0 be a given confidence level.
1. Let o’ =6/P(L € Cs) > 1/M and N’ be any integer that satisfies
2 1 2d

glog— +2d +

N > —
> 5 %

2
1ogg . ©)

With probability at least 1 — B, if the conditionally sampled problem (CSPs ) is feasible, then its optimal solution x); € F;
and Val(CSP; /) > Val(CCP;).

2. Let N’ be any integer such that N’ < 6 'P(L € Cy). Assume that the chance constraint problem (CCPy) is feasible.
Then, with probability at least 1 — B, (CSPs n+) is feasible and Val(CCPs) > Val(CSPs ).

Remark 1 (Size of Conditionally Sampled Problem). The lower bound of the sample size given in (5) is not greater
than 2Mlog <%) +2d +2dMlog(2M), which is independent of 6. Therefore, Lemma 1 shows that the chance con-

straint problem (CCP;s) can be approximated by (CSP; n/) with sample complexity bounded uniformly as 6 — 0,
as long as Property 1 is satisfied.

Remark 2 (Feasibility of Conditionally Sampled Problem). In Lemma 1, part 1, the conditionally sampled problem
(CSPs,n) is feasible with high probability if there exists small 6 such that (CCP;s) is feasible. In particular, we
claim that

P((CSPs ) is feasible) > (1 — dmin/0), (6)

where Omin = inf{6 € R, : Change Constrained problem (CCP;) is feasible}. Recall from Remark 1 that the N’
can be chosen to be independent of §; thus when O, is small, we have (CSPs n-) is feasible with high probability.
For example, dmin = 0 for both the minimal salvage fund problem and the portfolio optimization problem, which
implies (CSPs, ) is almost surely feasible for these two examples.

We next prove (6). For arbitrarily small € > 0, the feasible region Fs_, +c for problem (CCPs, +¢) is nonempty,
and thus we can pick x € Fs_ 1 such that P(L € V) < Omin + €. If 0 > Omin + €, then V, C Cs and thus P(Le V,|L e
Cs) < (Omin +€)/P(L € Cs) < (Omin + €)/0. Therefore, by the independence of samples,

P(x is feasible for (CSPs n+)) = P(L & Vi |L € Cs)) > (1 — (8min +€)/0)" .
Letting € — 0, we conclude that (6) holds.

Remark 3 (Efficient Sampling Algorithm). Efficiently generating samples of (L|L € Cs) when 6 — 0 requires rare
event simulation techniques. For example, when L is light-tailed, exponential tilting can be applied to achieve
O(1) sample complexity uniformly in 6; when L is heavy-tailed, with the help of specific problem structure, one
can apply importance sampling (Blanchet and Liu 2010) or Markov chain Monte Carlo (Gudmundsson and Hult
2014) to design an efficient sampling scheme. The specific structure of our salvage fund example results in Cs
being the complement of a box, which makes the sampling very tractable if the element of L are independent.
Even if the aforementioned rare event simulation techniques are hard to apply in practice, we can still apply a
simple acceptance-rejection procedure to sample the conditional distribution (L|L € C;). It costs O(1/6) samples
of L on average to get one sample of (L|L € Cs) because P(L € Cs) = O(6). Consequently, the total complexity for

generating L@,i =1,...,N’ and solving (CSPs n') is O(1/6), which is still much more efficient than the scenario

approach in Calafiore and Campi (2006), because it requires computational complexity O(((1/6)log(1/ 0))%) for
solving a linear programming problem with O((1/6)log(1/6)) sampled constraints by the interior point method.
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Although Property 1 seems to be restrictive at first glance, we are still able to construct the sets Oy and Cs for a
rich class of functions ¢(x,L), including the constraint function for the minimal salvage fund problem. As we
shall see in the proof of Lemma 1, once Oy and C;s are constructed the sampled problem (CSPs ) is a tractable
approximation to the problem (CCP;). We explain how to construct the sets Os and C; in the next section under
some additional assumptions. These assumptions relate in particular to the distribution of L. It turns out that, if L
is heavy-tailed, the construction of Oy and Cs becomes tractable.

4.1. Proof of Lemma 1
If Property 1 is satisfied, (CCPs) is equivalent to
minimize c¢'x
subject to P(¢(x,L) >0|L € Cs) <6/P(L € Cy), (7)
x € Oy CR%.
Let 0’ :=6/P(L € Cs) > 1/M denote the risk level in the equivalent problem (7). The sampled optimization prob-
lem related to Problem (7) is given by
minimize c¢'x
subjectto ¢(x, L) <0, i=1,...,N, (CSPsn)
x € Og,
where the Lg) are independently sampled from P(-|L € Cs). Notice that

1 2d. 2

ﬁ+2d+ 5 logé,.

According to Calafiore and Campi (2006, corollary 1 and theorem 2), with probability at least 1 — f, if the sam-
pled problem (CSP; n-) is feasible, then the optimal solution to problem (CSPs nv) is feasible to the chance con-
straint problem (7). Because (7) and (CCP;s) are equivalent, the optimal solution to problem (CSP;s n-) is also
feasible to (CCPs). The proof of the first part of the lemma is complete.

Now we turn to prove the second part of the lemma. The equivalence between (CCPs) and (7) is still valid, so
it is sufficient to compare the optimal values of (7) and (CSPs n). By applying Calafiore and Campi (2006, theo-
rem 2) again, we have with probability at least 1 —  (CSPs ) is feasible and the value of (CSP; n-) is no larger
than the optimal value of

>Elo
25 g

minimize c¢'x
subject to P(¢(x,L)>0|Le Cs) <1—(1—p)"/Y, (8)
xeOsC R%.

The proof is complete by using 1—(1— ﬁ)l/N >B/N" >
Val(7) = Val(CCP%s).

> P(Lec) Therefore, using Val for “value of,” Val(8) <

5. Constructing Outer Approximations and Summary of the Algorithm

In this section, we come full circle with the intuition borrowed from rare event simulation explained at the begin-
ning of Section 4. The scale-free properties of heavy-tailed distributions (to be reviewed momentarily) coupled
with natural (polynomial) growth conditions (like the linear loss) given by the structure of the optimization prob-
lem, provide the necessary ingredients to show that the set Cs has a probability that is of order O(9).

In the discussion immediately following Property 1, we imagined that the uniform conditional set L € Cs was
of the form L € [b/2, 00) for b — oo as 6 — 0. However, Property 1 can still be enforced if this statement applies to
L? or any power of L. This is because power law-type decay (and more generally regular variation) is preserved
under power transformations. We will provide assumptions that will enforce that regular variation properties
can be applied when estimating the likelihood of the uniform conditional event.

We assume that the distribution of L is of multlvarlate regular variation. A definition that we now review. For
background, we refer to Resnick (2013). Let .# +(R \{0}) denote all Radon measures on, the space R" "\{0} (recall
that a measure is Radon if it assigns finite mass to all compact sets). If 1, (-), u(-) € .4 (R™\{0}), then ,, converges

to u vaguely, denoted by y”i u, if for all compactly supported continuous functions f : Rd’\{o} — Ry,

im [ gm0 = [, feopa

n—oo J I\{
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L is multivariate reqularly varying with limit measure j(-) € J%A@d’\{o}) if

7P(x‘1Le-)l> () asx — 00
Pl >x) '

Assumption 1. L is multivariate reqularly varying with limit measure u(-) € MU +(Ed1\{0}).

Here are some intuitions behind the definition of multivariate regularly varying. Suppose that L is written in
terms of polar coordinates, with R being the radius and © being a random variable taking values on the unit
sphere. The radius R = ||L||, has a one-dimensional regularly varying tail (i.e., we can write P(R > x) = L(x)x* for
a slowly varying function L and a > 0). The angle ©, conditioned on R being large, converges weakly (as R — o)
to a limiting random variable. The distribution of this limit can be expressed in terms of the measure p. For a
recent application of multivariate regular variation in operations research, see Kley et al. (2016).

In this section, we present two methods for the construction of Os and C; satisfying Property 1. We mostly
focus on our “scaling method” which is presented in Section 5.1, which is facilitated precisely by the scale-free
property that we will impose on L. After showing the construction of the outer sets under the scaling method,
we summarize the algorithm at the end of Section 5.1. We supply a lower bound guaranteeing a constant approx-
imation for the output of the algorithm in Section 5.2. Our second method for outer approximation constructions
is summarized in Section 5.3. This method is simpler to apply because is based on linear approximations; how-
ever, it is less general because it assumes that ¢(x, L) is jointly convex.

5.1. Scaling Method

We start by analyzing the feasible region Fs when 6 — 0. Intuitively, if the violation probability P(¢(x,L) > 0) has
a strictly positive lower bound in any compact set, then Fs will ultimately be disjoint with the compact set when
0 — 0. Thus, the set F; is expelled to infinity when 6 — 0 in this case. Fs is moving toward the direction that
¢(x,L) becomes small such that the violation probability becomes smaller. For instance, if x is one dimensional
and ¢(x, L) is increasing in x, then F; is moving toward the negative direction. Consider the portfolio optimiza-
tion problem as another example, in which min;lzlxj — +o0as 6 — 0.

With such intuition, now we begin to construct the outer approximation set Os. To this end, we need to intro-
duce an auxiliary function which we shall call a level function. We assume the existence of a level function in
Assumption 2, and the level function needs to be explicitly computable to construct the outer approximation set
Os.

Definition 1. We say that 7t : R — [0, + 0] is a level function if
1. Foranya >0and x € R%, we have nt(a - x) = a - (x),
2. The function 7(x) is coersive, i.e., lims_pinfyer, 7(x) + 0.
For a given level function 7, we define its unit level set as I1 = {x € R* |7e(x) = 1}.

Assumption 2. There exists an explicitly computable level function 1 and its unit level set I1.

The unit level set I is used to characterize the moving direction of Fs as 6 — 0. The shape of I is chosen in
accordance with the moving direction of Fs to reduce the size of O; to achieve better sample complexity. The
outer approximation set Ojs is constructed as

Os = U (a-TI) 2 Fs,
aza
where a; characterizes the scaling rate of F5. We will explain how to choose a5 in the proof of Lemma 2. Here are
several examples of the level functions and unit level sets:

e Suppose that ¢(x,L) = —||x|[> — L, then the level function 7t can be chosen as the Euclidean norm and IT can be
chosen as the unit sphere in R%.

e For the portfolio optimization problem, the level function can be chosen as m(x) = minlexj +oo-I(x ¢ R%) in
accordance with our intuition that minj’:lxj — 00, and the unit level set can be chosen as IT = {x € R* |m1'nf=1x]- =1}.

To analyze the asymptotic shape of the uniform conditional event Cs, we connect the asymptotic distribution
of L to the asymptotic distribution of ¢(x,L). Keep in mind that we wish to preserve the scaling property of the
tail of L, when considering ¢ (x, L), so that Property 1 can be ensured. We pick a continuous nondecreasing func-
tion /1 : Ry — Ry such that lim,—,1e/1(@r) = +00 to characterize the scaling rate of L. In addition, we pick another
positive function r : Ry, — R, to characterize the scaling rate of ¢(« - x, h(@) - L). Intuitively, the scaling function

r(-) and h(-) should ensure the condition that the collection of probability measures of {ﬁ(p(a -xh(a) - L)} is

a>1
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tight. For the minimal salvage fund problem with fixed 6, as the deficit ¢(x,L) is asymptotically linear with
respect to the salvage fund x and the loss L, we can simply pick r(«) = h(a) = a in this problem. We next intro-
duce two auxiliary functions W, and W_.

Definition 2. Let W, : R — R, W_:R% — R be two Borel measurable functions. We say W, (respectively, c) is
the asymptotic uniform upper (respectively, lower) bound of ﬁc{)(a -x,h(a) - 1) over the unit level set x € IT if for
any compact set K C R,

liljtrgigf }g(f (‘}H(Z) - il:g {% oa-x, h(a)- l)} ) >0, (9a)
. . 1
hglsoljp SI::I? (‘I/(l) - ;g_fl [@ P(a-x,h(a)- l)] ) <0. (9b)

We would like to have lower and upper bounds W_ and W, so that ¢ is of the order r(a) for every decision x,
and in every direction / of the random vector L, whenever the norm of the latter is large (i.e., of the size h(a)). A
stronger assumption would have been to require an actual limit (rather than a liminf and a limsup), but this is
not needed to provide big-O bounds for the complexity of our algorithm.

The functions W, and W_ are used to define the event C, _ and C, ., which serve as the inner and outer
approximation of the event UyeriVy, where V, = {l € R% |d(x,I) > 0} is the violation event at x.

Definition 3. For ¢ > 0, let C, , (respectively, C, ) be the e-outer (respectively, inner) approximation event:
Cer ={leR"|W, () > —¢}, (10a)
Ce_={{eR"|W_(I) > +¢}. (10b)

We now define Oy := Ups,,a - I1. The following property ensures that the shape of Il is appropriate and a; is large
enough; hence, O; is an outer approximation of Fj.

Property 2. There exist & such that for any 6 < &, we have an explicitly computable constant as that satisfies

P(ILll, > h(a)) = O@©)  and  Fs< | J a-TT=: 0.

azag

If the violation probability is easy to analyze, we will directly derive the expression of as and verify Property 2.
Otherwise, we resort to Lemma 2, which provides a sufficient condition of Property 2 by analyzing the asymp-
totic probability of the violation event as 6 — 0.

Lemma 2. Suppose that Assumptions 1 and 2 hold. If there exists an asymptotic uniform lower bound function W_(-) as
given in (9b) and € > 0 such that u(C,,_) > 0, then Property 2 is satisfied.

The high-level idea of Lemma 2 is to show that F; is disjoint from « - IT for small a. To this end, the asymptotic
scaling (9b) is used to demonstrate that the violation probability is no less than P(L € h(«) - C, —), which is approx-
imately equal to P(||L||, > h(as)) - u(Ce,—) according to the regularly varying property of L. The detailed proof of
Lemma 2 is deferred to Appendix A.1.

We impose the following Assumption 3 on the asymptotic uniform upper bound W, (-) so that we can use the
multivariate regular variation of L to estimate P(L € « - C,, ) for large scaling factor a.

Assumption 3. There exist an event S C R with 1(S°) < oo such that
Sca-S, VY. ()sW(a-]), VieS, a>1.

In addition, there exist some ¢ > 0 such that C, , is bounded away from the origin, that is, infiec, ||/l > 0.
Moreover, both S and C,, .. have explicit expressions.

For the minimal salvage fund problem, because the deficit function ¢(x,L) is coordinate-wise nondecreasing
with respect to the loss vector L, it is reasonable to assume that its asymptotic bound W, (:) is also coordinate-
wise nondecreasing. For this example, the closed form expression of W, (-) and the detailed verification of all the
assumptions are deferred to Proposition 2. Our next result summarizes the construction of the outer approxima-
tion sets.
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Theorem 1. Suppose that Property 2 and Assumption 3 are imposed. Then there exist 5y > 0 such that the following sets
Os=Ja I, Co=hias) (CerUKUS) (11)

a>ay
satisfy Property 1 for all & < &g. Here, S is given in Assumption 3 and K is a ball in R with u(K°) < co.

The main idea for proving Theorem 1 is as follows: If L lies in a “well-behaved” compact region, then by
applying Assumption 3 and the asymptotic uniform lower bound (9b), the violation events Uy, Vy is uniformly
enclosed in h(as) - Cy,+. Otherwise L lies in the “ill-behaved” region h(as) - (K°US¢). Combining these two cases
inspires that definition of Cs:=h(as) - (C,+UKUS), and the probability of L € Cs is O(6) because of P(||L||, >
h(as)) = O(6) and L is regularly varying. The detailed proof of Theorem 1 is deferred to Appendix A.1.

With the aid of Lemma 1 and Theorem 1, we provide an algorithm for approximating (CCP;s) in which the
sampled optimization problem is bounded in 1/0.

Algorithm 1 (Scenario Approach with Optimal Scenario Generation)

input: Risk tolerance parameter 0, confidence level §, and all the elements and constants appearing in Property
2 and Assumption 3, including level function 7 or unit level set I, constant a;, scaling function , and
explicit expression of C; ;,K and S.

1 Compute the expression of sets Os and Cs by (11);

2 Compute required number of samples N’ by (5);

3 fori=1,...,N' do

4 | Sample Lg) using acceptance-rejection or importance sampling.

5 end

6 Solve the conditionally sampled problem (CSPs n-).

5.2. Constant Approximation Guarantee
In Section 5.2, our objective is to show that the output of the previous algorithm is guaranteed to be within a con-
stant factor of the optimal solution to (CCP;) with high probability, uniformly in 6.

We shall work under the setting of Theorem 1, so we enforce Property 2 and Assumptions 3. We want to show
that there exist some constant A > 1 independent of 6, such that Val(CCP;s) < Val(CSP; nv) < A X Val(CCPs) with
high probability. This indicates that our result guarantees a constant approximation to (CCPs) for regularly vary-
ing distributions (under our assumptions) in O(1) sample complexity when 6 — 0 with high probability.

Note that (CSPs n) < A x Val(CCPs) is meaningful only if Val(CCPs) > 0. We assume that the outer approxi-
mation set is good enough such that the following natural assumption is valid.

Assumption 4. There exist 6 > 0 such that minyep,c’x > 0.

The previous assumption will typically hold if ¢ has strictly positive entries. Theorem 1 and the form of O;
guarantee that the norm of the optimal solution of (CSP;s n+) grows in proportion to a5, so we also assume the fol-
lowing scaling property for ¢(x,1).

Assumption 5. There exist a function ¢, : (R¥\{0}) x (R*\{0}) — R such that for every compact set E C R"\{0}, we
have
1
lim sup | —¢(a - x,h(a) 1) — ¢, (x,1)| = 0.
a—00 le}? r(a)(P ( ¢1 ( )
In addition, ¢y, (x,!) is continuous in one.

Assumption 5 is satisfied by both running examples. For the portfolio optimization problem, we have
o(x,1) = Z}izl (Li/xj) =1, thus ¢ (x,I) = ¢(x,I). For the minimal salvage fund problem, we have ¢, (x,])=
¢(x, 1) —msuch that [a'Pp(a-x,a-1) — ¢, (x, )| < tmand |y (x,1) — ¢y, (x, 1) < =Ty

We define the following optimization problem, which will serve as an asymptotic upper bound of (CSP; ) in
stochastic order when 6 — 0:

minimize c¢x

subjectto ¢y, (x, L, 0)<0, i=1,...,N’, (CSPiimn+)

XGUa-H,

a>1
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where L « are ii.d. samples from a random variable Ly, whose distribution is characterized by P(Lym €
(Ce,+UKUS®)) =1 and P(Lyy € E) = u(E)/u(C,, s UK U S®) for all measurable set E C C,, UK USE.

Theorem 2. Let > 0 be a given confidence level and N’ be a fixed integer that satisfies (5). If Assumptions 4 and 5 are
enforced, and (CSPyy, nv) satisfies Slater’s condition with probability one, then there exist 8o > 0 and A > 0 such that

P(Val(CCP;) < Val(CSPs nv) < A x Val(CCPs)) >1-28, V6 < 8.

In Theorem 2, the Slater’s condition (see section 5.2.3 in Boyd and Vandenberghe (2004) for reference) can be ver-
ified directly on the problem (CSPyim nv). This condition is satisfied in the salvage fund problem by standard lin-
ear programming duality. We also remark that Assumptions 4 and 5 only require the existence rather than the
explicit knowledge of {6|min,co,c"x > 0} and function ¢y, .

5.3. Linear Approximation Method
Suppose that the constraint function ¢(x,[) is jointly convex in (x, /), and L is multivariate regularly varying. We
will develop a simpler method in this section to construct the outer approximation set Os and the uniform condi-
tional event Cs.

We first introduce a crucial assumption in the construction of Oy and Cs.

Assumption 6. There exist a convex piecewise linear function ¢_(x,1) : R* x R — R of the form

¢o_(x,1) =j=?§xNa;l + b]-Tx +c, @€ Rd’,b]- e R* and cgeRforj=1,...,N.

such that
1. The inequality ¢_(x,I) < ¢(x,1), holdsforall (x,[) € R x R%;
2. There exist some constant C € Ry such that ¢(x,1) <0 if ¢_(x,1) < —C.

If ¢(x,1) itself is a piecewise affine function, then Assumption 6 is satisfied by simply taking ¢_(x,1) = ¢(x, ).
For general jointly convex functions, the following lemma verifies Assumption 6 if ¢(x, ) has a compact zero sub-
level set.

Lemma 3. If the constraint function ¢(x,L) : R x R* — R is convex and twice continuously differentiable, and it has a
compact zero sublevel set Zy 1= {(x,1) € R% x RY | ¢p(x,1) < 0}, then Assumption 6 is satisfied.

With Assumption 6 enforced, we are now ready to provide our main result in this section to fully summarize
the construction of O and Cs.

Theorem 3. If Assumptions 1 and 6 hold, we can construct Oy and C; that satisfy Property 1 as

N N
Op =[x e R* b x +¢+ F;L(a) <0}, Cy=|J{LeR"|a]L+C> R?L((S)},
j=1 j=1

where I_Z;TlL(é) =inf{x € R|P(x >aL) < o}.
]

6. Verifying the Assumptions in Examples

In this section, we verify the elements required to apply our algorithm. We provide explicit expressions for sets
Os and Cs in the statement of the propositions. The detailed verification process and the steps for constructing
sets Oy and C; are presented as the proofs in Appendix A.2.

6.1. Portfolio Optimization with VaR Constraint
In this section, we will verify that Theorem 1 is applicable to an equivalent form of the portfolio optimization
problem (2).

Proposition 1. The portfolio optimization problem (1) satisfies all assumptions required by Theorem 1, such that the sets
Os and Cs admit the following explicit expressions: . )
Os={xeR?, |n-x=F; ()}, Cs={leR?, |2-1TI1>F; ()}

6.2. Minimal Salvage Fund
The key observation to solve the minimal salvage fund problem (3) is the following lemma, which provides a
closed form piecewise linear expression for the constraint function ¢(x, L).
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Lemma 4. In the minimal salvage fund problem (3), we have

¢(x,L) = rlnax Li—e TI—Q") 'x— m;,

where e; denote the unit vector on the jth coordinate.
Now we prove that Theorem 3 is applicable to the minimal salvage fund problem (4).

Proposition 2. The minimal salvage fund problem (3) satisfies all assumptions required by Theorem 3, such that the sets
Os and Cy admit the following explicit expressions:

d d
=1 - =1
Op =[x eRYF, () <e/(I-Q") am,  Co=|JUerY,> Fi, (0)}.
j=1 j=1
6.3. Quadratic Model
In this section, we consider a model with a quadratic control term in x as an additional example. Suppose that
the constraint function ¢(x,1) : R% x R" — R is defined as

Ox, 1) =x"Qx+xTAl (12)

where Q € R4 jg o symmetric matrix and A € R i a matrix with rank(A) = d,; that is, there exists ¢ > 0 such
that [|AT x|, > ol[x]],.

Proposition 3. Consider the chance constraint optimization model with constraint function defined as (12).

1. If Q is a positive semidefinite matrix and L has a positive density, there exist some O such that the problem is infeasible.

2. If Q has a negative eigenvalue and L is multivariate reqularly varying, the model satisfies all the assumptions required by
Theorem 1.

7. Numerical Experiments
To empirically study the computational complexity and compare the quality of the solutions, in this section, we
conduct numerical experiments for two scenario generation algorithms:

1. The efficient scenario generation approach proposed in this paper (abbreviated as Eff-Sc)

2. The scenario approach in Calafiore and Campi (2006) (abbreviated as CC-Sc)

In Section 7.1, we present the results for the portfolio optimization problem. In Section 7.2, we present the
results for the minimal salvage fund problem. The numerical experiment is conducted using a Laptop with a 2.2-
GHz Intel Core i7 CPU, and the sampled linear programming problem is solved using CVXPY (Diamond and
Boyd 2016) with the MOSEK solver (MOSEK ApS 2020).

7.1. Portfolio Optimization with VaR Constraint

First, we present the parameter selection and the implement details for the numerical experiment of portfolio
optimization problem (1). Suppose that there are d = 10 assets to invest, and the parameters of the problem are
chosen as follows:

e The mean return vector is u =(1.0,1.5,2.0,2.5,3,1.6,1.2,1.1,1.8,2.2).

e The random variable L, are i.i.d. with Pareto cumulative distribution function P(L; > I) = (¢;/1), for [ > ¢;.

e The parameter £ = ({1,...,€;)=(2.1,1.3,1.6,2.5,2.7,1.3,1.9,1.5,2.2,2.3).

e The loss threshold 1 = 1,000.

Now we explain the implementation detail of Eff-Sc. Recall the expression of Os and C;s from Proposition 1, which
involves the analytically unknown quantity F 1TL(6) Because quantile estimation is much more computationally effi-
cient than solving the sampled optimization problem, we generate samples of L to estimate a confidence interval of

1TL(6) with large enough confidence level 1 — o(f), and we denote the resulting confidence interval by (LB, UB). We
replace the expressions of Os and C; by their sampled version conservative approximations, that is,

Os={xeR%, |n-x>UB}, Cs={leR’ [2-171>LB}.

The value of P(L € Cy) is also estimated using the generated samples. We compute the required number of sam-
ples N’ using Lemma 1, and the samples of L; is generated via acceptance-rejection.

In Figure 2, we compare the efficiency between Eff-Sc and CC-Sc. Figure 2(a) presents the required number of
samples for both algorithms, in which one can quickly remark that Eff-Sc requires significantly fewer samples
than CC-Sc, especially for the problems with small 6. In Figure 2(b), we compare the running time for both mod-
els. Whereas Eff-Sc costs slightly more time for 6 around 0.1 due to the overhead cost of computing Os and Cs,
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Figure 2. Comparison of Computational Efficiency for the Portfolio Optimization Problem
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Notes. (a) Terms of the required number of samples. (b) Used CPU time. We test 6 € {0.001,0.002,0.005,0.01,0.02,0.05,0.1}.

the computational time stays nearly constant uniformly in 6, indicating that Eff-Sc is a substantially more effi-
cient algorithm than CC-Sc.

Finally, we compare Eff-Sc and CC-Sc for the optimal values of the sampled problems and the violation proba-
bilities of the optimal solutions. Because both methods require generating random samples, the generated solu-
tions are also random. Thus, the optimal values and the violation probabilities are also random. To compare the
distributions of the random quantities, we conduct 10° independent experiments. In each experiment, we execute
both algorithms and get two solutions, then we evaluate the solutions’ violation probabilities using 10° samples
of L. We use boxplots (McGill et al. 1978) to depict the samples’ distribution through their quantiles. A boxplot is
constructed of two parts: a box and a set of whiskers. The box is drawn from the 25% quantile to the 75% quan-
tile, with a horizontal line drawn in the middle to denote the median. Two whiskers indicate 5% and 95% quan-
tiles, respectively, and the scatters represent all the rest sample points beyond the whiskers.

In Figure 3, we present (a) the optimal values and (b) the violation probabilities. One can quickly remark from
Figure 3(a) that the optimal value of Eff-Sc is stochastically larger than the optimal value of CC-Sc, whereas Figure
3(b) indicates that the optimal solutions produced by both methods are feasible for all the 10° experiments. Overall,
with both methods successfully and conservatively approximating the probabilistic constraint, Eff-Sc is more com-
putationally efficient and less conservative, producing solutions with better objective values than its counterpart.

7.2. Minimal Salvage Fund
In this section, we conduct a numerical experiment for the minimal salvage fund problem (3). In the experiment,
we pick d € {10,15,20} to test the performance of the problem in different dimensions.

Figure 3. Comparison of the Quality of Optimal Solutions for the Portfolio Optimization Problem
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Notes. (a) Optimal value. (b) Solutions’ violation probabilities. Here 6 € {0.001,0.002,0.005,0.01,0.02,0.05,0.1}, and the box plots are generated
using 1,000 experiments.
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Figure 4. Comparison of Computational Efficiency for the Minimal Salvage Fund Problem

(a) (b)

1 103 3
N % -®- CC-Sc,d =10 E -®- CCSc,d=10
NN —#— Eff-Sc,d = 10 ] . —#— Eff-Sc,d = 10
105+ SSITwiSe CC-Sc,d =15 » S~ cC-Sc,d =15
0 E e TSy Eff-Sc, d = 15 S S~o Eff-Sc, d = 15
g < N , S
= S8 ~&- CC-Sc,d =20 — 10%= Se. RS -&- CC-Sc,d =20
Q \\\ S ¢, a= 7 3 S ~< ©,
£ .~ ~fe— Eff-Sc, d = 20 by S~ Sve_ ~fe— Eff-Sc,d = 20
& \\‘\\ € ‘~\\ RN
8 10* E \\\ \g\\ = \\.\ ‘\\\\
£ NN 2 100
3 S~ >~ O e e . - e
g . 4 e - SN e D * % S Sso
o | - o \\ ] = SO
3 \\‘\\ \'\\
07 — **—\*\* 10°: ge—k e 4.\,‘\\;
T ' ' [ O | ' ' oy T ' ' L A | ' ' [ |
1073 1072 107t 1073 1072 1071
) 0

Notes. (a) Required number of samples. (b) Used CPU time. We test d € {10,15,20} and 6 € {0.001,0.002,0.005,0.01,0.02,0.05,0.1}.

For each fixed d, the parameters of Problem (3) are chosen as follows:

e The matrix Q = (Q;;:i,j €{1,...,d}) where Q; ; = 1/d if i # j and otherwise Q; ; = 0.

e The vector m = (m;:j€{1,...,d}) where m; = 10 for each .

e The random variables L; are i.i.d. with Pareto cumulative distribution function P(L; > I) = (1/1), for [ > 1.

Recall the explicit expressions for sets Os and Cs from Proposition 2. To solve the conditionally sampled prob-
lem (CSPb ), it remains to sample L and compute N’, the required number of samples. When 6 is small, when
6 <107, solving the optimization problem (CSPs, ) costs much more time than simulating L(5 , despite that a
simple acceptance rejection scheme is applied to sample LY 5 in our experiments. We fix the confidence level
parameter f = 10> and set &’ = 6/P(L € Cs) > d~!, and then we can compute N’ by the first part of Lemma 1.

Similar to Figure 2 of the portfolio optimization problem, we compare the efficiency between Eff-Sc and CC-Sc
for different d and 6 in Figure 4, in terms of (a) the required number of samples and (b) the CPU time for solving
the sampled approximation problem. We observe that the Eff-Sc has uniformly smaller sample complexity and
computational complexity than CC-Sc, where the superiority becomes significant for small 6. In particular, the
required number of samples and the used CPU time are bounded for Eff-Sc, whereas they quickly deteriorate for
CC-5c when 6 becomes smaller. It is also worth noting that Eff-Sc is consistently more efficient than CC-Sc for all
the tested dimensions.

Finally, we compare optimal values of the sampled problems and violation probabilities of the optimal solu-
tions in Figure 5. We present in Figure 5(a) the optimal values and in Figure 5(b) the violation probabilities, with
fixed dimension d =15 (we provide additional results for 4 = 5 and d = 10 in Appendix C.3). One can quickly

Figure 5. Comparison of the Quality of Optimal Solutions for the Minimal Salvage Fund Problem
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Notes. (a) Optimal value. (b) Solutions’ violation probabilities. Here d = 15, 6 € {0.001,0.002,0.005,0.01,0.02,0.05,0.1}, and the box plots are gen-
erated using 1,000 experiments.
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remark from Figure 5(a) that the optimal value of Eff-Sc is stochastically smaller than the optimal value of CC-Sc,
whereas Figure 5(b) indicates that the optimal solutions produced by both methods are feasible for all the 10°
experiments. Therefore, we are able to draw the same conclusion as we have from the portfolio optimization
experiment: Eff-Sc efficiently produces less conservative solutions.
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Appendix A. Proofs of Technical Results
A.1. Proofs for Section 5

Proof of Lemma 2. We will derive an expression of as to ensure that Fs C U, IT for 6 small enough. Because of
Assumption 2, for any ag > 0, there exist some 6 small enough such that Fs C U, - I1. Therefore, it suffices to prove that
Fs and U, - IT are disjoint. In other words,

P(¢p(a-x,L)>0)>0, VYa<as xell, 6<0dp. (A1)
Let ¢ be a positive number such that y(C,,_) > 0. Pick the set K in (9b) as a compact set such that 0 < u(KNC,,_) < oco. It
follows from Inequality (9b) that there exist a constant a; such that

W ()—e< )I(Ielrfr {%M& -x,h(a) - l)] VieK, a>a. (A.2)

Therefore, for any a > a;, we have

_ (1
P(rglrrsqb(a -x,L) > 0) = P(r'?ell_?@q)(a x,L) > 0)
(Due to (A.2)) > P(W_(L/h(a)) > ;L /h(a) € K)
=P(Leh(a) (KNC,-)). (A.3)
Recall that L is regularly varying from Assumption 1,

_ P(Leh(@)-(KNC, )
A B, > hay - KOG

Therefore, there exist a number a, such that

P(L € h(a) - (KNC,,_)) > %P(HLHZ > h@)u(KNCe,), Va2 a. (A4)

The right-hand side of (A.4) is nondecreasing in a. Thus, if 61 := P(||L|l, > h(a2))u(KNC,,-), for any 6 <&y, there exists as
satisfying
%P(||L||2 > h(as))(KNCe,—)=06.  Va,0 st. my<a<as, 0<6<0. (A5)

Substituting (A.5) into (A.3), we have

P(¢(x, L) > 0) > P(r%g_rs ¢(a-x,L) > 0) > 0.
Va,x,0 s.t. max(a;, ) <a<as,x€Il,0<0<0.
Moreover, Assumption 2 guarantees the existence of 6, such that
P(¢p(a-x,L)>0)>0, Va<max(ar,az),x€ll,d <.
Consequently (A.1) is proved with 6y = min(61,67). O
Proof of Theorem 1. We construct the uniform conditional event Cs that contains all the V, for x € Os. Because of Defini-

tion (9) and lims_,gas = o0, there exists 0y such that for all 6 < &,

W, () +e> ilelllij {%cj)(a -x,h(a) - l)} VIeK, a> as. (A.6)

For any x € O, there exists an a, > @ such that x € a, - IT. Consequently, it follows from (A.6) that

I
ox,)>0= W, (M) > —¢, Vx € Os, L€ h(ay)-K.
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Applying Assumption 3 yields that

1 ]
q”(HEJ)un(H55>Z_ﬁ Vx e O, 1€ h(a) - (KNS).

Recall that K is a ball in R* (thus, K C (h(ay) /h(a)) - K) and that S C (h(ay)/h(a,)) - S from Assumption 3, it follows that
h(as) - (KNS) C h(ay) - (KNS). Consequently, whenever [ €V, for some x € O;s, we either have € h(a,)-(KNS) implying

W, (@) > —¢, or we have [ € (h(a,) - (KNS))* C (h(as) - (KNS))°. Summarizing these two scenarios,

l (o
xgﬁ V. C {l e R4 |, <m) > *S}U(h(afé) . (Kﬂs))
= h(as) - (Ce,-UKUS).

Thus, we define the conditional set Cs as
Co :=h(as) - (C.,+ UKUS").
It remains to analyze the probability of the uniform conditional event Cs. As L is multivariate regularly varying,

i PLEC)
6—0 P(”L”2 > h(aé))

Recalling, P(||L|, > h(as)) = O(0) and invoking Property 2, we get

= u(C,, \UKUSO).

limsup 6~ 'P(L € Cs) < co.
6—0

Hence, the proof is complete. O

Proof of Theorem 2. Using Lemma 1, we immediately have P(Val(CCP;) < Val(CSP; n+)) > 1 — 3, it remains to show that
there exist A >0 such that P(Val(CSP;s n/) < A X Val(CCPs)) > 1 —B.

For simplicity, in the proof, we will use Ls as a shorthand for (L|L € Cs), the random variable with conditional distribu-
tion of L given L € Cs. By a scaling of x by a factor a; in (CSP; ), we have an equivalent optimization problem:

minimize chx
bjectto ——(as-x, L) <0, i=1,...,N,
subject to r(%)qb(aé x,Lg’) i

X € Ua-H.

(A7)

where Lg) are i.i.d. samples from Ls. Notice that Val(CSP;s n/) = a5 X Val(A.7).
For any compact set E C Cs, because L is multivariate regularly varying,

. P(Le(han)E)
P(L€ (h(as)-E)) iMoo prsnay  w(E)

P(L € Ca) hméao 7P(|\Il)jéi(}fgz)¥o)) “(C£,+UKCU SC) .

. -1 1
UmP((h(as))”"Ls € E) = lim

Thus, (h(ag,))’lLé 1>Lhm. As the limiting measure is a probability measure, the family {h(a(s))flL(; |6 >0} is tight and con-

sequently (h(aé))71L5 i)Llim follows directly from the vague convergence (Resnick 2013). Consequently, because all the
samples are ii.d, we also have

_ N
(has) " (L, L) S Ly L.

lim *7 " lim

Now we define a family of deterministic optimization problem, denoted by (DP(ly,...,In’)), which is parameterized by
(I1,...,In) as follows:

minimize c'x

subject to ¢, (x, ;) <0, i=1,..., N,

X € Ua-H.

a1

(DP(L,..., 1))

Then, there exist a compact set E; C RN guch that
1. Problem (DP(l4,...,In/)) satisfies Slater’s condition if (l4,...,In/) € Ey;

2. The probability P((h(as) " (Lfsl), . .,Lfle)) €E))>1—pforall6>0;
For every (I3,...,In) €E; and € >0, due to the Slater’s condition, there exists a feasible solution x € U,s1a such that
Sup.;, N Oum (%, 1)) < —€.Because ¢, (x,]) is continuous in /, there exists an open neighborhood U around (I1, ..., Ix-) such that

.....

v Piim (X, [j) < —€/2. Such a feasible solution x and neighborhood U exist for every (Iy, ..., IN') € E1.

-----



Downloaded from informs.org by [24.4.150.151] on 17 May 2024, at 13:05 . For personal use only, all rights reserved.

Blanchet, Zhang, and Zwart: Efficient Chance Constrained Optimization
Stochastic Systems, 2024, vol. 14, no. 1, pp. 22-46, © 2023 The Author(s) 39

There exists a finite open cover {U;}!.; of E; due to its compactness. Let {x;}!.; be the corresponding feasible solutions

to the open cover {U;}};.
From Assumption 5, there exists 61 > 0 such that for all 6 < 01, we have
1
sup sup  sup | ——P(as-x;, h(as) ) — oy, (x5, 1) <€/2. (A.8)
(l1,..., I )€Ey i=1,...,mj=1,...,N’ r(as)
Therefore, by the triangle inequality, it follows that if 6 < 01,
1
su sup ——d(as - x5, has) - 1) <O0.
et Han P\ !
Consequently, x; is a feasible solution for Optimization Problem (A.7) if (h(as)) ™ - (ijl), . .,LéN )Y e U;, which further
implies that agl x Val(CSPs nv) < cTx;. As a result, we have

Val(CSPs,n) < as X j:llm.?.XmCij’ if (h(a(;))*1 . (Lg),. . .,LgN/)) € E;.

Note that Val(CCP;s) > infyep,cTx = as X inf{c"x|x € Uyz1 - IT}. Therefore, let

-1
A= <inf{ch|x € U a~1‘[}> X ( max ch]») > 0.
m

ax1 J=L e

It follows that
P(Val(CSP;s nv) < A X Val(CCPy)) = P((h(as)) " - (LY, ...,LN)) € E) = 1 - .

The statement is concluded by using the union bound, combining the lower bound together with the upper bound implied
by Lemma 1 and Theorem 1, hence obtaining factor 2. O

Proof of Lemma 3. Without loss of generality, assume that R is an integer such that
Zy = {(x,]) € R* x R¥|¢p(x,]) < 0} C [-R R]“**),
Let Ny = 2R+ 1)“* and let (x,19),i=1,...,N; be the integer lattice points in [—R,R]“*")_ In addition, let aj = %(x("),
afl+bx+c;. Because the function ¢(x,I) is convex, we can invoke the supporting hyperplane theorem to deduce that
u].Tl +b]7x+cj <¢(x1) for i=1,...,Ny, and consequently ¢, _(x,I) <¢(x,]). In addition, because ¢(x,I) >0 at the boundary
of the cube [—R,R](d”dl), there exist a constant C; such that —C;-R=Cq-x; < ¢p(x,]) for i=1,...,dy and —C1-R=Cq-[; <
o(x,1) for i=1,...,d, for all (x,1)€ R%* x R%. Therefore, with qbzﬁ(x, I) being the maximum of the aforementioned N, =
2(dy +dy) linear functions, we have ¢, _(x,]) < ¢(x,), and we also have that ¢, _(x,]) <0 implies (x,]) € [—R, R]“+®),
Define ¢_(x,1) = max{¢; _(x,1),¢, (x,])}. We can conclude the property of ¢ _(x,]) as follows: (1) ¢_(x,]) is a piecewise
linear function of form max;,. ., Na].Tl + b]Tx +¢j, where N=N;+Ny; (2) ¢_(x,])<p(x,1]); and (3) ¢_(x,1) <0 implies

(x,1) € [-R,R]**_To complete the proof, it remains to verify for ¢_(x,]) the second statement of Assumption 6.
As ¢_(x,1) <0 implies (x,]) € [fR,R](d”d’), it suffices to prove that there exist some universal constant C € R, such that

P(x,1) —d_(x,1) < C for all (x,1) € [-R R]““*. For an arbitrary point (x,I) € [~R,R]“**), there exist a lattice point (x?,1()
such that ||(x,1) — (x@,1D)|l, < Vdy +d;/2. Next, because ¢(x,1) is twice continuously differentiable, the gradient V¢ (x,1) is
Lipschitz over [fR,R](d”d’ ) with Lipschitz constant denoted by M. Therefore, for any (x,[) € [-R K] (tdr)

O~ 9 (5D <PleD) ~ ¢y ()< _min (GxL)— @ L+bx+q) < M,

The proof is now complete. O

Proof of Theorem 3. Because ¢_(x,L) < ¢(x,L), the probability constraint P(¢(x,L) >0) <0 im_pllies that P(¢p_(x,L)>0) <9,
which further implies P(a]-TL + b]-Tx +¢;>0)<06 for i=1,...,N. Therefore, we have fb]-Tx —¢;>F,7(6) fori=1,...,N, which
implies Fs C Os. !

Then, consider x € Oy and L€V, ={LeR¥|¢(x,L)>0}. It follows from the second statement of Assumption 6 that
¢o(x,L) > Oiiimplies that ¢_(x,L) + C > 0. Thus, there exist an index i such that a]-TL + b]-Tx+ cj+C>0. As x € Oy implies that
bix+c+ Fa]TL((S) <0, so

ajL— f;/TlL(é) +C2a/L+b/x+c¢+C>0.

Therefore, the condition set Cs can be constructed as

N
Co=| J{LeRrR? la/L+C> f;TlL((S)}.
=1
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Thus, as the distribution 4L is regularly varying in dimension one for each j, we have lim sups_0 'P(L € Cs) <N, com-
pleting the proof. O

A.2. Proofs for Section 6

Proof of Proposition 1. Let ¢(x,]) = Zle(lj/xj) —n and m(x) = min;':lxj. The unit level set is IT= {x e R?, |minj_y, 4% =1}
Let h(a) = a and r(a) =1, it follows that @qb(ac -x,h(a)-1) = ¢(x,1). In view of the inequalities ¢(x,1) <17[—n and ¢(x,1) >
— 1 when x €I, we choose the asymptotic uniform bounds as

o, ()=1"1-1, D_(I) = rlmn Li—n.
=

-----

Furthermore, by definition, we construct two approximation sets as
Cer={leR, |1TI2n—¢}, Ce_={leRi,| {nindLj >+ e}
=y

With all the elements that we have already defined, Assumption 1 follows directly from the assumption on distribution
of L. Now we turn to verify Assumption 2. As 7m(a-x) =a-7n(x) due to the definition of m(x), it suffices to prove that
limy_pinfyer, (x) = +00. In view of ¢(x,L) <1TL/m(x) — 1, we have

Fy={xeR:, | P(¢(x,[)>0) <5} C{xeR, | P(1TL > q-n(x)) <6}
={xeR?, | n-n(x)> F}lL(é)}.

Consequently, we have infyer, 7(x) > r]*lfl?l 1(0). Taking limit for 6 — 0, we conclude that lims_,ginfyer, 77(x) = +oo.

As Assumptions 1 and 2 are both satisfied, and we also have u(C,_)>0, Property 2 is verified due to Lemma 2. In
addition, if ¢ € (0,7), we have C,,; is bounded away from the origin. Thus, Assumption 3 is verified with S = RY.

Finally, we provide closed form expressions for O; and Cs. Define as=1n"1-F;=;(5); then it follows that Oy = Uysa,
a-TI={xeR%, |n-n(x) > Fy (6)}, and Cs=h(as)- (CeUKUS)=ay-Cer={l€RL, 171> (1—e/n)-Fyr ()} By setting
€ =1/2, we get the expression in the statement of the theorem. O

Proof of Lemma 4. We start by showing some properties of I — Q'. Because Q is a nonnegative matrix and the row sum is
less than one, it is a substochastic rnatrlx and all of its eigenvalues must be less than one in magnitude. This further implies (1)
I— QT is invertible, and (2) (1 QN =1+ S, (QT)" is a nonnegative matrix with strictly positive diagonal terms.

Notice that y = (I — Q") 'x is the unique vector such that (I — QT)y = x. Let (y/,b’) be the optimal solution of

cj)(x,L)=m1bn{b|(L—y—m)jb~1, (I-QMy=x,yeR?,beR}.
y/

We have (I—QT)y’ <(I—Q")y =x, and we multiply the nonnegative matrix (I— Q)" on both sides, yielding y’ <y. Obvi-
ously, let b =max;-y, .., d(L yj) such that (y, b) is a feasible solution to above problem. Obviously, it follows from y’ <y that

b" =maxiy,. . 4(Lj —y; —m;) 2 max;_1,... 4(Lj —y; — m;) = b; thus, (y, b) is also optimal, which completes the proof. [

Proof of Proposmon 2. Assumption 1 follows directly from the assumptions of the example. Now we turn to verify
Assumption 6. Using Lemma 4, we defme ¢_(x, 1) =P(x,]) =maxj=1, aL;—ef (I— Q) 'x— m;. Therefore, Assumption 6 is
satisfied with n = d, aj=e;, bj = —(I — Q! e, cj=—mjand C = 0. Pluggmg the previous values into the expressions of Os
and Cs given in Theorem 3, we get the expressions shown in the statement of the proposition. O

The following lemma is used in the proof of Proposition 3.

Lemma A.1. There exist sets Si,...,Sy, C R with positive Lebesgue measure such that for any z € RY with ||zll, = 1, there exist
some S; C{l € R%|zT1>1}.

Proof of Lemma A.1. Let e; denote the unit vector on the jth coordinate in R% for j=1,...,d;. Fix z=(z1,.. zdl) eRY
with [z]l, = 1, define 0; be the angle between z and ej, which satisfies cos(6;) =z "e;. Because we have Z] 1 COS(Q) =1, so
there exist some i such that cos(@) >1/n; thus, z; € [-1, —1/+/n]U[1/+/n,1]. Then, define

521',1 = {l= (ll,...,ld,) ERd1|L]- >0, 12 2(11—1)2112},

i

Soi = {l =(h,...,13) ER|L; <0, > (n— 1)21}}.
i
We have either Sy 1 € {{ € R%|z7]> 1} or Sy C {{ € R%|zT] > 1}. Thus, the proof is complete. [J
Proof of Proposition 3. For the first statement, because x"Qx >0 and ATx € R%, and invoking the assumption that L has
a positive density:

min P(y'L>0)> mm P(yTL >0)>0.
yeRm\ {0} yllyll
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For the second statement, Assumption 1 is easy to verify. Notice that a2¢(a - x,a - L) = ¢(x, L) for all a > 0, so we pick the
scaling rate function as h(a) =« and r(a) = a?. Let Amax denote the maximal eigenvalue of Q, and A, denote the minimal
eigenvalue of Q. The rest of the proof will be divided into two cases.

Case 1 (Amax < 0): We pick the unit level set as IT = {x € R% ||x||, = 1}. Because lims_inf.cr,
fied. Next, we directly show Property 2 instead of using Lemma 2. For any x € « - IT, we have

x|, = oo, Assumption 2 is veri-

min P(x"Qx +x" AL > 0) > min P(@Amin +xT AL > 0)
XE

xea- Tl
. xTAL —O(Amm)
=minP >
xell (”ATx”Z AT ]l

> min P(z"L > —ao " Apin)
z:|[z]|=1

(Apply Lemma A.1)> min P(Le — 0 AminS).

=1, 20,

Thus, a; can be chosen such that as = O(0), and min;—q, . ,P(L € —as0  AminS;) > 0. As a result, Property 2 is verified.
We next turn to derive the asymptotic uniform bound W.. Observing that

sup ¢(x, L) < Amax + [|AllE LI,
xell

we define W, (L) := Amax + [|A|g||L|l,. Assumption 3 now follows from the definition of W,.
Case 2 (Amax >0): The unit level set IT is chosen as an unbounded set IT={xe€R%|xTQx = —||x|,,}, and we have
minyer||x|l, = 1/|Amin|. For any x € a - T, we have

min P(x"Qx +xTAL > 0) > miﬁq P(xTAL > a),

xea Il xe

—minP(xTAL> a )
el \[|ATxll  [|AT x|

> min P(z'L > —ac ' Apmin)
z:|lz||l=1

(Apply Lemma A.1)> min P(Le —a0 " AminS).

i=1,...,2d;
Thus, we can pick an a; that satisfies Property 2. Now, sup, ;¢(x,L) is bounded by

1 _
sup ¢(x, L) < sup x|, (IALIL, = 1) < =5 [ Amin| ' - I(IALI < 1/2) + 00 - I(JAL|l, > 1),
xell xell 2

so we can pick W, (L) := —% [Amin| I(JJAL]l, £1/2) 4+ oo - I(J|ALl, > 1). Consequently Assumption 3 follows immediately. O

Appendix B. Importance Sampling for Multivariate Regularly Varying Distribution

B.1. Multivariate Regularly Varying Distribution with Gaussian Copula
In this section, we assume that the correlation structure of the random vector L is characterized by Gaussian Copula.

Let ®:R — [0,1] be the standard univariate Gaussian cumulative distribution function (CDF), and @y : R? — [0,1] be
the joint CDF of multivariate Gaussian CDF with mean of zero, variance of one, and covariance matrix of X. The Gauss-
ian Copula Cy : [0,1]9 = [0,1] is defined as Cs (i1, ..., uz) = P (P (1), ..., D (uy)). Suppose that the random vector L has
marginal CDF F;, :R — [0,1] for i=1,...,d, we assume that U := (Us,...,Uy) = (F1,(L1),...,Fr,(Lg)) has joint CDF Cyx.

Algorithm B.1 (Sampling of Multivariate Regularly Varying Distribution with Gaussian Copula)

Input: The covariance matrix of Gaussian Copula £, the marginal CDFs Fy,.

1 Apply Cholesky decomposition or singular value decomposition to compute the matrix A such that Z = ATA.

2 Sample a d-dimensional multivariate standard normal vector Z, compute the linear transform X = ATZ.

3 Foreachi=1,...,d, compute L; = F }(D(X;)).

In the importance sampling algorithm developed later, we need to sample the random vector L conditional on the
value of one coordinate, for example, L; = I, Without loss of generality, we assume that the value of the last coordinate

i 2  where Iy € Ré-Dx@-1)
Y1 1

Yoo € RU-DX 3 e R*E-D and ¥, = Y., Suppose that X is a random vector with normal distribution N(0,X), then the
conditional distribution of (Xj,...,X4_1) given X; = x, is jointly normal distributed with mean x,-Xi, and covariance
L11 — Z12Xp1. In Algorithm B.2, we describe the conditional sampling method for L.

is given, and the covariance matrix X admits the blockwise representation X =
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Algorithm B.2 (Sampling of Multivariate Regularly Varying Distribution with Gaussian Copula Conditional on Ly = )
Input: The covariance matrix of Gaussian Copula L, the marginal CDFs F;, the conditional value of the last coordinate
Ld = ld.
1 Map the observation into the Gaussian space: x; = o Y(F, L1a).
2 Sample a d — 1-dimensional multivariate normal vector (Xj, ..., Xy_1), with mean x, - X1, and covariance X1; — L12X01.
3 Foreachi=1,...,d — 1, compute L; = F, | (D(X)).

B.2. Importance Sampling
In this section, we present an importance sampling method to sample from the conditional distribution (L|L € Cs), where
Cs is the uniform conditional event.

B.2.1. Minimal Salvage Fund. Recall from Proposition 2 that the uniform conditional event for the minimal salvage
fund problem is Cs = UL {l e R!|l; > F, L (6)} To simplify the notation, let us define w;(6) =F,, L (6) fori=1,...,d. It follows
that P(L; > w;(6)) =0 fori=1,...,d.

The algorithm is a combination of acceptance rejection and importance sampling. Suppose that P(d/) is the probability
measure corresponding to the random vector L, then the target measure Piarger(dl) corresponding to the conditional distri-
bution (L|L € Cs) can be expressed as

H{Z € C(s}
P(L € Cé)

Now we describe how to sample from the proposal distribution with importance sampling. For each fixed i€ {1,...,d},
the conditional distribution (L|L; > w;(9)) can be sampled using the importance sampling: We first sample L; conditional

on L; > w;(6) by the inverse CDF method and then apply Algorithm B.2 to sample L; for j # i conditional on L;. The result-

I{li>wi(0)}
P(Li>wi(0))

{1,...,d} instead of using the fixed index, the proposal distribution becomes

1 d
Pproposal(dl) = %;H{l, > a),(é)}P(dl)

Ptarget(dl) = P(dl)

ing random vector L has probability measure P(dl). Then, if we uniformly sample the random index i from

The likelihood ratio is

Ptarget(dl) _ do ]I{Z € Cs}
Pproposal(dl) P(L € Cr‘)) Z'-j,l]l{li > a),-((S)} '

The proposal distribution guarantees that there exist at least an index i such that L; > w;(6); thus, we have I{le Cs} =1
and Z, 1 {l; > wi(0)} = 1. In addition, the definition of Cs implies that P(L € Cs) > P(L; > w;(6)) = 6. Consequently, the like-
lihood ratio is upper bounded by d.

To conclude this section, we summarize the detail of the importance sampling in Algorithm B.3.

Algorithm B.3 (Importance Sampling Algorithm for Minimal Salvage Fund Problem)
Input: The covariance matrix of Gaussian Copula X, the marginal CDFs Fy,, the risk level of tolerance 6.
1 Uniformly sample a random indexi e {1,...,d}.
2 Sample a uniform random variable U; ~ Unif(0,1). Set L; = Fil((l —0)+0-U).
3 Apply Algorithm B.2 to sample the rest coordinates L; for j # i conditional on the value of L;.
4 Sample a uniform random Varlable U, ~ Unif(0,1).
5 If U, > (ZZ 1Ly > wr@®MH7, output L = (Ly, ..., Ly); otherwise, return to step 1.

B.2.2. Portfolio Optimization with VaR Constraint. Recall from Proposition 1 that the uniform conditional event for the
portfolio optimization problem is Cs = {l € RY, 12-171> FlTL((S)} It is not hard to see that

CsC U{l eRY|l;> 2d) " Fyry (0)),

i=1

where the right-hand side has a similar form to Cs in the minimal salvage fund problem. Define @;(0) := (2d)~* -Fi.(0),
and we construct the proposal distribution as

d
Pproposal (dl) o Z H{li > wl(é)}P(dl)
=1
Because the target distribution is still Piarget(dl) = I]EEZL'Z%})P(dl), the likelihood ratio is
Ptarget(dl) o H{l € CD}
Pproposal(dl) Z?:l]l{li > w,(é)} B

To conclude this section, we summarize the detail of the importance sampling in Algorithm B.4.
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Figure C.1. Correlation Matrix for Gaussian Copula

Correlation Matrix for Gaussian Copula
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Algorithm B.4 (Importance Sampling Algorithm for Portfolio Optimization with VaR Constraint)
Input: The covariance matrix of Gaussian Copula L, the marginal CDFs Fy,, the risk level of tolerance 6.
1 Sample a random index i € {1,...,d} with probability propotional to P(L; > @;(0)), where @;(0) = )" Fl‘r L (0).
2 Sample a uniform random varlable Uy ~Unif(0,1). SetL; = F Lll(F L (@i(0)) + (1 — Fr,(w:(0))) - Uy).
3 Apply Algorithm B.2 to sample the rest coordinates L, for j # i conditional on the value of L,.
4 Sample a uniform random variable U ~ Umf(O 1).
5IfLeCs(ie,2-1TL> FITL((S)) and U, > (Zk T H{Lg > w®D 7, output L = (Ly, ..., Ly); otherwise, return to step 1.

Appendix C. Additional Numerical Results

C.1. Portfolio Optimization with Dependent Loss

In this section, we conduct additional numerical experiments for the portfolio optimization problem (2). We still consider
the portfolio optimization problem with d = 10 assets and use the same mean return vector y and loss threshold 1 as Sec-
tion 7.1. Although we also assume the same marginal distribution for the loss vector L, we apply the Gaussian Copula
(see Appendix B.1) to impose the dependence structure between different coordinates of L. In particular, we assume the
correlation matrix of Gaussian Copula as in Figure C.1.

To solve the change constraint problem using Eff-Sc. We adopt the same construction of Os and Cs as Section 7.1 and
compute the required number of samples N’ using Lemma 1. The samples of Ls is generated via the importance sample
method (see Algorithm B.4 for detail).

In Figure C.2, we compare the efficiency between Eff-Sc and CC-Sc. As shown in Figure C.2(a), the required number of
samples for Eff-Sc is substantially less than CC-Sc, especially when 6 is small. In Figure C.2(b), we compare the running

Figure C.2. Comparison of Computational Efficiency for the Portfolio Optimization Problem
(a) (b)
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Notes. (a) Required number of samples. (b) Used CPU time. We test 6 € {0.001,0.002,0.005,0.01,0.02,0.05,0.1}.
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Figure C.3. Comparison of the Quality of Optimal Solutions for the Portfolio Optimization Problem with Dependent Loss Gen-

erated Using Gaussian Copula
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Figure C.4. Comparison of Computational Efficiency for the Minimal Salvage Fund Problem with Dependent Loss
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Figure C.5. Comparison of the Quality of Optimal Solutions for the Minimal Salvage Fund Problem with Dependent Loss
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Figure C.6. Comparison of the Quality of Optimal Solutions Given by Eff-Sc and CC-Sc for d = 5
(a) (b)
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time for both models. We remark that the computational time for Eff-Sc stays nearly constant for different 6, and that
Eff-Sc needs less time to solve than CC-Sc for small 6.

In Figure C.3, we compare the optimal value and the conservativeness of the solutions generated by Eff-Sc and CC-Sc.
From the figure, we can conclude that the solutions for Eff-Sc and CC-Sc are both feasible, and the Eff-Sc solution is less
conservative with better optimal value.

C.2. Minimal Salvage Fund with Dependent Loss
In this section, we test the performance of the minimal salvage fund problem (2) in which the loss vector L has depen-
dent structure characterized by the Gaussian copula.

In the experiment, we fixed d = 10, and use the same parameters Q and m and the same marginal distribution of L; as
introduced in Section 7.2. We assume that the dependence structure of different coordinates of L is prescribed by the
Gaussian Copula with correlation matrix shown in Figure C.1.

In Figure C.4, we compare the efficiency between Eff-Sc and CC-Sc for solving the minimal salvage fund problem. In
particular, we compare the required number of samples in Figure C.4(a) and the total required CPU time in Figure
C.4(b). Despite slightly larger CPU time for Eff-Sc for large 6, the CPU time for Eff-Sc becomes significantly smaller than
CC-S5c when 6 <0.01, and the required number of samples for Eff-Sc is also universally smaller.

In Figure C.5, we also compare the quality of the solutions generated by Eff-Sc and CC-Sc. Once again, we found that
the solutions generated by Eff-Sc are less conservative with better optimal value on average.

C.3. Minimal Salvage Fund for d = 5 and d = 10
In this section, we demonstrate the quality of the solutions produced by Eff-Sc is better than CC-Sc when the dimension

of the problem is d = 5 or d = 10. See Figure C.6 for dimension d = 5 and Figure C.7 for d = 10.

Figure C.7. Comparison of the Quality of Optimal Solutions Given by Eff-Sc and CC-Sc for d = 10
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