

1 A developmental atlas of male terminalia across twelve species of 2 *Drosophila*

3

4 **Anna Urum^{1,†}, Gavin Rice^{2,†}, William Glassford², Yifat Yanku¹, Boris Shklyar¹, Mark Rebeiz^{2,*}**
5 **and Ella Preger-Ben Noon^{1,*}**

6

7 ¹ Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and
8 Research Institute, Technion - Israel Institute of Technology, Haifa 3109601, Israel.

9 ² Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA
10 15260, USA.

11 [†] These authors contributed equally to this work and share first authorship.

12 *** Correspondence:**

13 Ella Preger-Ben Noon

14 pregere@technion.ac.il

15 Mark Rebeiz

16 rebeiz@pitt.edu

18

19 **Keywords:** Male Genitalia, *Drosophila*, evolution, morphogenesis, pupal terminalia.

20

21 **Abstract**

22 How complex morphologies evolve is one of the central questions in evolutionary biology.

23 Observing the morphogenetic events that occur during development provides a unique perspective on
24 the origins and diversification of morphological novelty. One can trace the tissue of origin,
25 emergence, and even regression of structures to resolve murky homology relationships between
26 species. Here, we trace the developmental events that shape some of the most diverse organs in the
27 animal kingdom – the male terminalia (genitalia and analia) of *Drosophilids*. Male genitalia are
28 known for their rapid evolution with closely related species of the *Drosophila* genus demonstrating
29 vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia

development during metamorphosis in twelve related species of *Drosophila*. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the *D. melanogaster* and the *D. yakuba* clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the *Drosophila* male terminalia evolution and development.

1. Introduction

The evolution of morphology results from genetic changes that are manifested during development. Traditionally, evolutionary genetic studies have concentrated on establishing a causal link between genetic and phenotypic changes (Martin and Orgogozo, 2013; Courtier-Orgogozo, 2023). However, the developmental processes responsible for translating these genetic changes into novel morphologies often remain in the shadows. One significant obstacle exists for studying the development of novel traits that seem to appear out of thin air in the evolutionary record. For these traits, it is frequently difficult to identify species comparisons that are sufficiently close to infer homology but still display highly divergent morphology. The evolution of male genitalia in *Drosophila* presents a unique system to overcome these challenges as it provides a rare opportunity to uncover the developmental pathways and mechanisms responsible for shaping extremely diverse forms observed across closely related species.

Male genitalia are among the most diverse and rapidly evolving organs in the animal kingdom, with sexual selection as the most cited factor (Eberhard, 1985). This trend extends to the model organism *D. melanogaster* and its close relatives, which display dramatic morphological

53 differences posited to contribute to reproductive success (Kopp and True, 2002; Masly, 2012) (Figure
54 1). These striking differences in male genital morphologies have long captivated biologists, who used
55 them as a model to study the genetic basis of morphological evolution (Coyne, 1983; True et al.,
56 1997; Macdonald and Goldstein, 1999; Zeng et al., 2000; Masly et al., 2011; McNeil et al., 2011;
57 Peluffo et al., 2015; Takahara and Takahashi, 2015; Tanaka et al., 2015; Hagen et al., 2019),
58 evolutionary innovations (Kopp and True, 2002; Yassin and Orgogozo, 2013; Glassford et al., 2015;
59 Smith et al., 2020), gene regulatory network (GRN) architecture and co-option (Glassford et al.,
60 2015), and reproductive isolation (Kopp and True, 2002; Masly, 2012; Frazee et al., 2021). In
61 addition, male genital morphologies are often the most reliable means to distinguish between closely
62 related species of *Drosophila* visually and are therefore crucial for taxonomical classification (Bock
63 and Wheeler, 1972). Thus, the striking diversity of *Drosophila* genitalia that has evolved over
64 relatively short evolutionary distances poses unique challenges in determining homology
65 relationships among structures that appear wildly different and the mechanisms that generate such
66 morphological richness.

67 The adult terminalia (that include the genitalia and the analia) develop from the larval genital
68 disc during metamorphosis through extensive cell proliferation and epithelial remodeling (Estrada et
69 al., 2003; Glassford et al., 2015; Smith et al., 2020; Rice et al., 2023). We have recently traced the
70 development of the phallus in eight members of the *D. melanogaster* species group (Rice et al.,
71 2023). We discovered that adult phallic processes originate from three primordia and that in some
72 instances, structurally similar phallic processes arise from the same primordia, while in other cases,
73 apparently homologous processes develop from different primordia and are thus non-homologous
74 (Rice et al., 2023). To date, the cellular processes involved in genital morphogenesis have been
75 investigated for only two specialized genital structures. First, Smith et al. (2020), have shown that the
76 posterior lobe, a copulatory structure unique to the *D. melanogaster* complex, arises through an

77 extreme increase in epithelial cell height that is facilitated by interactions with the apical extracellular
78 matrix (aECM) protein Dumpy (Smith et al., 2020). Second, Green et al. (2019) found that the
79 enlarged ovipositor in females of *D. suzukii* develops through an accelerated expansion of the apical
80 cell area combined with anisotropic cell rearrangements (Green et al., 2019). To date, little to no
81 research on developmental differences in analia, despite evidence of anatomical variation (Kopp and
82 True, 2002). Much more work is needed to determine what other cellular behaviors participate in
83 terminalia morphogenesis and diversification.

84 The genetic pathways that specify the *D. melanogaster* genital disc have been studied
85 predominantly in the context of the larva, where several genes that control the fate of the adult
86 structures were identified (Chen E.H. and Baker B.S., 1997; Keisman and Baker, 2001; Estrada et al.,
87 2003; Chatterjee et al., 2011). Only a handful of studies focused on the genes and networks that
88 pattern the genitalia during metamorphosis (Glassford et al., 2015; Hagen et al., 2019, 2021; Vincent
89 et al., 2019; Smith et al., 2020; Ridgway et al., 2023). For example, Glassford et al. (2015) studied
90 the origin of the posterior lobe and found that it emerged in the *D. melanogaster* clade through the
91 co-option of an ancestral embryonic Hox-regulated GRN that controls the development of the larval
92 posterior spiracle (Glassford et al., 2015). Hagen et al. (2019) used high-resolution genetic mapping
93 to identify genes that are involved in clasper size differences between *D. simulans* and *D. mauritiana*.
94 They found that variations in the expression levels of *tartan*, a gene that encodes a transmembrane
95 protein involved in cell–cell interactions, contribute to clasper size differences between these species
96 (Hagen et al., 2019). Finally, to further our knowledge of GRNs participating in pupal terminalia
97 development, Vincent and Rice et al. (2019) have created an online open database for gene
98 expression patterns in the *D. melanogaster* terminalia (flyterminalia.pitt.edu). This database contains
99 RNA *in situ* hybridization images for 100 transcription factors in male pupal terminalia at two
100 developmental timepoints (Vincent et al., 2019). While these studies represent major advances

101 toward uncovering the genes and pathways that regulate specific structures during male genitalia
102 development in *D. melanogaster* and its closely related species, we are still missing a comprehensive
103 description of pupal terminalia development in most of these species and in other species in more
104 distantly related groups.

105 To gain insights into the developmental processes that diversify male genitalia and analia
106 across evolution, we monitored pupal terminalia development in twelve *Drosophila* species using
107 confocal microscopy. We uncovered multiple morphogenetic events that produce a wide variety of
108 unique genital substructures. In addition, we demonstrate that the posterior lobe emerged in the
109 *melanogaster* subgroup of species prior to the split between the *D. melanogaster* and *D. yakuba*
110 complexes through shared developmental and molecular programs. Our dataset offers a much-needed
111 foundation for researchers in the field to study diverse facets of genitalia development and evolution.

112

113 2. Materials and Methods

114 2.1 Drosophila strains

115 The following stocks were obtained from the National Drosophila Species Stock Center at
116 UCSD (now located at Cornell University): *D. santomea* (14021-0271.01), *D. teissieri* (14021-
117 0257.01), *D. orena* (14021-0245.01), *D. erecta* (14021-0224.01), *D. biarmipes* (14023-0361.09),
118 *D. ananassae* (14024-0371.13). *D. sechellia* (14021-0248.28), *D. melanogaster* OregonR, *D.*
119 *simulans*, *D. mauritiana* and *D. yakuba* wild type strains were a kind gift from Dr. David Stern.
120 *D. malerkotliana* was a kind gift from the lab of Dr. Thomas Williams.

121

122 2.2 Light microscopy imaging of the adult genitalia

123 Adult males were dissected in ethanol and their phallic structures were removed. The
124 periphalllic parts were placed on slides in glycerol mounting solution (80% Glycerol, 10% 1M Tris
125 HCl pH 8.0) and imaged at 20X and 10X magnification on a Leica DM 2000 equipped with a Leica
126 DFC450C camera.

127

128 **2.3 Scanning electron microscopy imaging of the adult terminalia**

129 Anesthetized adult males were transferred into 100% ethanol and kept at -20°C for 7 days.
130 Ethanol was replaced every 2 days for dehydration. On the seventh day, the whole abdomens were
131 dissected. After dehydration, the specimens were critical point dried (Quorum K850), and sputter
132 coated with 8 nm of Iridium (Quorum Q150T). The samples were viewed using SE2 detector at
133 accelerating voltage of 1kV on Zeiss Ultra Plus HR Scanning Electron Microscope.

134

135 **2.4 Confocal imaging of pupal terminalia**

136 Flies were incubated at 25°C prior to collection. Male white pre-pupae were collected and aged
137 to the appropriate developmental time point (measured in hours after puparium formation, or hAPF)
138 at 25°C in a petri dish containing a moistened Kimwipe. The formation of a white pre-pupae occurs
139 over a 30-60 minute interval, which introduces slight variations in timing from sample to sample (in
140 addition to individual-to-individual differences in development). The posterior tip of the pupa (20–
141 40% of pupal length) was separated in PBS using micro-dissection spring scissors (Fine Science
142 Tools #15000-04) and washed with PBS to flush out the pupal terminalia. Samples were fixed in 4%
143 paraformaldehyde in PBT (PBS with 0.1% Triton-X-100) at room temperature for 30 minutes, and
144 then washed 4 times with PBT. Fixed samples were maintained in PBT at 4°C for up to two weeks.

145 The fixed samples were stained with anti-E-cadherin (Huang et al., 2012) to visualize apical
146 cell junctions. Briefly, the samples were incubated with rat anti-E-cadherin (DSHB Cat#
147 DCAD2, RRID:AB_528120), 1:100 in PBT, or rabbit anti-Ems (Dalton et al., 1989), 1:200 in PBT,

148 overnight at 4°C, washed several times with PBT and then incubated with donkey anti-rat Alexa 488,
149 1:200 (Thermo Fisher Scientific #A-21208), CyTM3-conjugated AffiniPure Goat Anti-Rat IgG (H+L)
150 (Jackson ImmunoResearch, 112-165-167), 1:100, or donkey anti-rabbit Alexa 647 at 1:400 dilution
151 (Molecular Probes) overnight at 4°C. The samples were mounted on slides covered with poly-L-
152 lysine (Thermo Fisher Scientific #86010 and Sigma-Aldrich P4832), in glycerol mounting solution
153 (80% Glycerol, 10% 1M Tris HCl pH 8.0) and imaged at 20X on Zeiss LSM 900 Airyscan 2 and
154 Leica TCS SP8 confocal microscopes. The confocal images were processed in Imaris[©] Bitplane AG,
155 using the Surfaces visualization function to generate 3D models. At least three samples were
156 analyzed for each data point. Images of pupal terminalia that were previously used in Rice et al. 2023
157 are summarized in Supplementary Table 1.

158

159 **3. Results**

160 **3.1 *D. melanogaster* male terminalia anatomy and development**

161 The adult male terminalia of *Drosophila* is a bilaterally symmetrical anatomical structure
162 located at the posterior end of the adult male abdomen (segments 8-10). It can be subdivided into two
163 parts: the phallic structures and the periphalllic structures (Figure 1 and Figure S1). A standardized
164 nomenclature for these structures has been previously established (Rice et al., 2019a) and any time
165 we break from this standard, the technical term is provided in parentheses. The phallic structures
166 include the phallus and the hypandrium and play important roles during copulation, including
167 participation in genital coupling and sperm transfer. The periphalllic structures consist of the anal
168 plates (cerci), the genital arch (epandrium), a pair of claspers (surstyli), and the subepandrial sclerite
169 that connects the claspers to the anal plates. The epandrium includes the epandrial dorsal lobes, the
170 lateral plates (epandrial ventral lobes), and in species of the *D. melanogaster* complex the posterior

171 lobes (epandrial posterior lobes) that protrude from the lateral plates. The periphalllic structures form
172 physical interactions with the female genitalia, facilitating genital coupling during copulation
173 (Robertson, 1988; Kopp and True, 2002; Acebes et al., 2003; Jagadeeshan and Singh, 2006;
174 Kamimura and Mitsumoto, 2011; Yassin and Orgogozo, 2013; Glassford et al., 2015; Mattei et al.,
175 2015).

176 All adult genital structures develop from the larval genital disc during metamorphosis. The
177 genital disc is unique among other imaginal discs by virtue of its sexual dimorphism and its single,
178 unpaired primordium. The male genital disc is formed by fusion of primordia originated from three
179 embryonic abdominal segments: a reduced A8 primordium that develops into a tiny eighth tergite,
180 and in females gives rise to most genital structures; an A9 primordium that forms the male genitalia;
181 and the A10 primordium that produces the analia (Chen E.H. and Baker B.S., 1997; Gorfinkiel et al.,
182 1999; Keisman and Baker, 2001; Estrada et al., 2003). During metamorphosis, the genital disc grows
183 and remodels through extensive cell proliferation and epithelial remodeling (Estrada et al., 2003;
184 Glassford et al., 2015; Smith et al., 2020). The major morphogenetic events that shape the genitalia in
185 *D. melanogaster* take place between 28 hours and 56 hours after puparium formation
186 (hAPF)(Glassford et al., 2015; Vincent et al., 2019). To monitor these events, we dissected and
187 imaged the terminalia from *D. melanogaster* male pupae at four-hour intervals between 24 and 56
188 hAPF, stained with an anti-E-cadherin antibody that marks the apical cell junctions. We use this time
189 series to propose a new staging scheme for male genital development that is based on characteristic
190 developmental events during *D. melanogaster* pupal terminalia development (Figure 2). The
191 suggested stages are named according to the time after puparium formation in which they occur in *D.*
192 *melanogaster* (for example: m24 - m - for *melanogaster* and 24 for 24 hAPF, see Figure 2).

193 We begin our staging at 24 hAPF (stage m24), when three primordia can be distinguished externally:
194 the dorsal anal plate primordium, the lateral epandrium and clasper primordia, and the ventral

195 hypandrium primordium (Figure 2A). Prior to that, during the first 24 hAPF, the analia primordium
196 everts around the posterior edge of the pupal terminalia and forms the anal tube. This event is
197 followed by the eversion of the epandrium and clasper primordia and their positioning around the anal
198 plate and the genital opening (Epper, 1983). At stage m24, the periphalllic structures and the
199 hypandrium are fully everted, but the phallus is internal and not easily visible from the posterior view
200 (Figure 2A). At stage m28, the phallus everts and becomes visible between the periphalllic structures.
201 In addition, at this stage the future epandrium and clasper begin to physically separate as a cleavage
202 appears between them (Figure 2B). By stage m32, the phallus is fully everted and both the central and
203 lateral phallus primordia (Rice et al., 2023) become visible (Figure 2C). At stage m36 the posterior
204 lobes become clearly distinct and the ventral postgonites of the phallus emerge (Figure 2D). At stage
205 m40 the dorsal tip of the aedeagus changes its shape and becomes pointed (Figure 2E). Stage m44 is
206 characterized by the closure of the phallotrema, the external opening of the aedeagus, that acquires a
207 V shape (Figure 2F). At stage m48, all the genital substructures, including phallic substructures, are
208 easily recognizable and a ridge-like circle forms around the anus (Figure 2G). By stage m56, the anal
209 plates close (Figure 2I). At this stage the major morphogenetic processes that shape the external
210 genitalia conclude and the external tissue becomes chitinized. Using these key diagnostics as a
211 reference, we sought to test whether the same developmental timing is found in other species of the *D.*
212 *melanogaster* species group.

213 **3.2 A developmental atlas of pupal terminalia development across twelve species of**
214 ***Drosophila***

215 To gain insights into the developmental processes that shape male terminalia across evolution,
216 we expanded our developmental analysis to twelve *Drosophila* species. Our analysis includes the nine
217 species from the *D. melanogaster* subgroup: *D. melanogaster*, *D. simulans*, *D. sechellia*,
218 *D. mauritiana* of the *D. melanogaster* complex, *D. yakuba*, *D. santomea*, *D. teissieri* of the *D. yakuba*

219 complex and *D. orena*, *D. erecta* of the *D. erecta* complex that radiated approximately 3.5 million
220 years ago (MYA); one species from the *D. suzukii* subgroup (*D. biarmipes*); and two species from the
221 *D. ananassae* subgroup (*D. malerkotliana*, *D. ananassae*) that diverged from the *D. melanogaster*
222 clade 11-21 MYA (Obbard et al., 2012) (Figure 1C). We monitored pupal terminalia development for
223 each of these species at four-hour intervals between 28 hAPF and anal plate closure (equivalent to
224 stage m56). The full dataset is presented in Figure S2.

225 We observed substantial heterochrony in pupal terminalia development between species.
226 Nonetheless, we could align developmental timepoints across species based on the morphological
227 characteristics that were used for the staging of pupal terminalia development in *D. melanogaster*
228 (Figure 2 and Figure S3). This task was quite easy for species of the *D. melanogaster* complex, as
229 they share all the temporal landmarks that exist in *D. melanogaster*. Within this group, a
230 heterochronic shift was observed mainly for *D. simulans*, in which the terminalia develops faster than
231 in other species of the group, making it more difficult to identify certain stages that emerge more
232 quickly than our selected 4-hour intervals (Figure S3). Outside of the *D. melanogaster* complex, the
233 task was more challenging as not all developmental landmarks exist, and some substructures develop
234 at different rates in different species. However, many substructures and morphogenetic events are
235 conserved even in distantly related species. These include lateral plate and clasper cleavage (stage
236 m28), phallus eversion (stage m32), shape change of the dorsal tip of the aedeagus (stage m40),
237 closure of phallotrema (stage m44), and closure of the anal plates (stage m56). These developmental
238 landmarks allowed us to align the time series of each of the twelve species (Figure S3).

239 Our dataset provides a rich ground for researchers in the field to study various aspects of genital
240 development and evolution. Here, we highlight developmental events that lead to the formation of
241 genital characteristics we find interesting. However, the reader is invited to carefully examine the full
242 dataset to find their own inspiration. We have previously described the developmental processes that

243 shape the phallic structures (Rice et al., 2023). Here, we focus on the anatomy, development, and
244 diversification of the periphalllic structures sorted by substructures.

245 **3.3 The anal plates (cerci)**

246 The anal plates (cerci) are a pair of tergites that flank the anus from both sides. They form a
247 rather simple and conserved dome-like structure in the *D. melanogaster* complex and exhibit diverse
248 modifications in other species (Figure 1 and Figure S1). The anal plates differ in the number and
249 stoutness of their bristles and some species bear modified bristles that resemble teeth or spines on
250 their ventral cercal lobes. In general, most of the modifications we observed in our analysis are on the
251 ventral cercal lobes (also referred to as “secondary claspers”). For example, *D. teissieri* males have
252 enlarged anal plates that harbor a set of massive teeth on their ventral lobes (Figure 1J and Figure
253 S1G). The ventral cercal lobes in *D. orena* expand ventrally to form large, spined extensions (Figure
254 1L and Figure S1I), while the anal plates of species of the *D. ananassae* subgroup evolved sharp,
255 sclerotized, claw-like spines (Figure 1N-O and Figure S1K-L). It was shown that in *D. ananassae*
256 and its close relative, *D. bipectinata*, these spines are used to grasp the female genitalia to initiate
257 copulation, and thus are important for precopulatory sexual selection (Polak and Rashed, 2010;
258 Grieshop and Polak, 2012, 2014). However, they also reduce the female fecundity, probably due to
259 wounding during copulation (Grieshop and Polak, 2014; Rodriguez-Exposito et al., 2020). Similarly,
260 it was shown that the male anal plates of various species couple with the female oviscape to facilitate
261 genital coupling (Jagadeeshan & Singh, 2006; Kamimura & Mitsumoto, 2011; Yassin & Orgogozo,
262 2013).

263 The anal primordia originate from the embryonic abdominal segment A10 in both males and
264 females and give rise to the anal plates and the hindgut. The fate of these two territories is determined
265 by the complementary expression of *Distal-less* and *caudal* in the analia and *even-skipped* in the

266 hindgut (Gorfinkiel et al., 1999; Moreno and Morata, 1999). In the third-instar larval genital disc, the
267 anal plate primordia flank the hindgut primordium on both sides (Gorfinkiel et al., 1999). During the
268 first 24 hours of metamorphosis the hindgut cells invaginate to form a tube, and the two anal plate
269 primordia fuse to form a donut-like structure with a hole (anus) in the middle (Figure 2A). Figure 3
270 compares the development of the anal plates in six species that evolved specialized modifications on
271 their anal plates, with *D. mauritiana* as a representative of the *D. melanogaster* complex.

272 At stage m32 of genitalia development, the anal plate morphology is quite conserved with
273 some minor size differences between species (Figure 3 and Figure S2, *D. teissieri* and *D. orena* are
274 an exception, see below). At this time point the anal plate bristles start to bud. Species differences in
275 morphology become more evident at stage m36 (Figure S2). As expected, the major species
276 differences are observed on the ventral side of the developing anal plates. For example, in *D.*
277 *teissieri*, the ventro-lateral sides of the anal plates form two enlarged cushion-like structures early on
278 that continue to expand at later stages (Figure 3C). These structures grow two types of bristles: seven
279 robust teeth on each dorso-medial side and around twenty finer and longer bristles on each lateral
280 side of these extensions (Figure 3C'' and 3C'''). In contrast, their sibling species, *D. santomea* and
281 *D. yakuba*, form much smaller square-shaped anal plates (Figure 3B and Figure S2). The ventral
282 cercal lobes of *D. santomea* and *D. yakuba* “bud” from the anal plate at late stages of pupal
283 terminalia development (around stage m56, Figure 3B''' and Figure S2) to form “secondary
284 claspers” ventral to the anal plates (Figure S1E-F). Another striking difference in the morphology of
285 the anal plates is observed among the sibling species *D. erecta* and *D. orena*. At stage m28 they share
286 a conserved donut-like shaped anal plate (Figure S2), but by stage m32, the ventro-lateral sides of the
287 *D. orena* anal plates start to expand, giving the anal plate a crescent-like shape (Figure 3E). The
288 ventral cercal lobes of *D. orena* continue to grow to form two large processes that harbor three large
289 spines on each medial surface and twenty thick bristles more laterally (Figure 3E'''). *D. erecta* males

290 form significantly smaller ventral cercal lobes, but as in *D. orena*, they are covered by stout bristles
291 (Figure 3D’’').

292 Our analysis also captures the development of the large spines on the ventral cercal lobes of
293 *D. ananassae* and demonstrates that they are modified bristles. The spine buds can be first detected at
294 stage m28 at the time the bristles start to emerge (Figure S2). At stage m32, the spine buds look like
295 enlarged bristle buds (Figure 3F). Next, the tissue around the buds start to condense to form a small
296 dome (Figure 3F’). The domes and the spines continue to grow to form the “secondary claspers” and
297 their sclerotized hooks (Figure 3F’’'). A similar process is observed in males of *D. malerkotliana* that
298 develop smaller spines on their ventral cercal lobes (Figure S2). In *D. malerkotliana* the buds of these
299 spines can be detected as early as 28 hAPF (Figure S2).

300 Our results suggest that the anal plates are divided into two domains, a dorsal domain, that
301 exhibits a constrained development and morphology and a ventral domain, that evolves rapidly to
302 form specialized modifications that may facilitate species-specific coupling.

303 **3.4 The claspers (surstyli) and the lateral plates (epandrial ventral lobes)**

304 The lateral plates (epandrial ventral lobes) are a pair of protrusions that extend ventrally from
305 the genital arch (epandrium) on opposite sides of the genitalia (Figure 1A-B). In species of the *D.*
306 *melanogaster* complex, they harbor the posterior lobes that extend out of their dorsal plane posteriorly
307 (see below). The claspers are paired sclerotized lobes that extend ventrally from the subepandrial
308 sclerite and surround the phallus (Figure 1A-B). They vary from rather simple hook-shaped
309 outgrowths of variable size in the *D. melanogaster* complex (Figure 1D-G and Figure S1A-D) to
310 robust structures in *D. teissieri* (Figure 1J and Figure S1G) and highly complex spoon-like structures
311 in *D. biarmipes* (Figure 1M and Figure S1J). The claspers are characterized by species-specific arrays
312 of stout setae that are directed medially and exhibit remarkable differences in their number,

313 distribution, and morphology. As the name suggests, the claspers participate in clutching the female
314 genitalia during copulation (Jagadeeshan and Singh, 2006; Kamimura and Mitsumoto, 2011; Yassin
315 and Orgogozo, 2013). In species that lack posterior lobes, such as *D. orena* and *D. erecta*, the lateral
316 plates participate together with the claspers and the anal plates in grasping onto the female genitalia
317 (Yassin & Orgogozo, 2013).

318 The lateral plates and the claspers develop from shared primordia that originate from
319 abdominal segment A9. During stage m24, the primordia can be seen flanking the anal plate
320 primordium on both sides (Figure 2A). By stage m28 the lateral plate and the clasper begin their
321 physical separation as a cleavage forms between the two territories (Figure 2B and Figure S2). The
322 clasper territory can be distinguished prior to the physical separation from the lateral plate by the
323 expression of *odd paired (opa)*, while *empty spiracles (ems)* marks the position of the cleavage
324 (Vincent et al., 2019). The location of the cleavage between the lateral plate and clasper may
325 influence the relative sizes of the adult structures and may represent a tradeoff in resource allocation.
326 For example, in species of the *D. melanogaster* complex that develop enlarged posterior lobes on
327 their lateral plates, the lateral plate territory seems to be relatively large (Figure 4A and Figure S2). A
328 similar trend is observed in *D. erecta* which possesses extended lateral plates and short claspers
329 (Figure 1K and Figure 4C). In contrast, in *D. teissieri*, their robust clasper territory expands to the
330 seeming expense of the lateral plate (Figure 1J and Figure 4B). Besides the differences in territory
331 sizes, the morphologies of the claspers and lateral plates at early developmental stages (i.e. stage m32
332 and earlier) are quite conserved (Figure 4 and Figure S2). Following the separation from the lateral
333 plates (at around stage m36), the claspers form similar rounded elliptical structures in which the
334 future medial surfaces face posteriorly. This surface carries species-specific arrays of bristles that can
335 be first detected even prior to the separation from the lateral plates (Figure 4 and Figure S2). As

336 development proceeds, the claspers take their final shape while condensing and rotating medially, so
337 that the bristle arrays face medially.

338 As noted above, species differences in clasper morphology include differences in size and
339 shape, as well as bristle number and morphology. Size differences can be seen even between closely
340 related species. For example, species of the *D. melanogaster* complex share similar clasper
341 morphogenesis but differ in clasper size and in the number and stoutness of the bristles they carry.
342 The size differences can be detected from the initiation of clasper development, where *D. mauritiana*
343 males form broad claspers and *D. simulans* form narrow ones (Figure 4A and Figure S2). A parallel
344 trend is observed in *D. santomea* and *D. yakuba* which share similar clasper shape but differ in size:
345 *D. yakuba* develop significantly smaller claspers compared to *D. santomea* (Figure S2). In contrast,
346 the third member of the *D. yakuba* complex, *D. teissieri*, forms enlarged claspers that are covered by
347 dozens of stout bristles (Figure 4B). *D. teissieri* also contains a morphology not found in any other
348 species analyzed in this study. The ventral medial portion of the clasper of *D. teissieri* houses a small
349 finger-like extension that is somewhat obscured by the many bristles that cover the clasper and can
350 be best seen at stage m44, when the bristles are still in the process of extending (Figure S1G and
351 Figure 4B’’). Additionally, we find that *D. biarmipes* has evolved a lobe shaped extension in the
352 ventral lateral region of the clasper, which develops at m40 hAPF and houses a row of darkly
353 pigmented bristles (Figure S1J and Figure 4D*). We did not observe any outgrowths or modifications
354 in the ventral lateral region of the clasper in any other species analyzed.

355 In general, the claspers of all the species in our dataset are decorated with many sensory
356 bristles with varied sizes and shapes. The number of bristles varies substantially, from 8 bristles on
357 the medial surface of the claspers of *D. biarmipes* to the 56 bristles that cover the broad claspers of
358 *D. teissieri*. These bristles start to extend out from the surface between stages m28-36. In addition to
359 these sensory bristles, all species we analyzed contain thick darkly pigmented bristles on their

360 claspers (Figure S1). These structures were previously described as bristles or teeth in different
361 species from several subgroups, including *D. biarmipes*, *D. suzukii*, *D. takahashii* (Kopp and True,
362 2002). Interestingly, these clasper bristles, especially those found in *D. biarmipes*, *D. ananassae*, and
363 *D. malerkotliana* (Figure S1J-L), resemble the sex combs that characterize the first pair of legs in
364 males of the *D. melanogaster* and *D. pseudoobscura* species groups. While the shape, the number of
365 teeth and the location of the two sets of sex comb-like structures vary between species, the striking
366 similarity in the “teeth” morphology suggests that these structures are homologous. Our confocal
367 images demonstrate that these structures indeed, develop in a comparable way regardless of their
368 exact position within the clasper (Figure 4D-E and Figure S2).

369 Finally, our 3D confocal images have revealed uncharacterized outgrowths on the dorso-
370 lateral side of the claspers of *D. teissieri*, *D. ananassae*, and *D. malerkotliana* (Figure 4B*, 4E* and
371 Figure S2). These outgrowths were first observed at relatively late stages of pupal terminalia
372 development (48, 44 and 40 hAPF, respectively) and they develop into a fold on the lateral side of
373 the claspers (Figure 1J and N-O). While *D. ananassae* and *D. malerkotliana* both represent the *D.*
374 *ananassae* species subgroup and have similar morphology, *D. teissieri* belongs to the *D.*
375 *melanogaster* subgroup, which is fully represented in the current study and where no such clasper
376 outgrowths were observed. Considering the phylogenetic relations of *D. ananassae* and
377 *D. malerkotliana* and the similarities in their clasper development, these substructures seem to be
378 homologous in these two species. However, the clasper outgrowth in *D. teissieri* is unique within the
379 *D. melanogaster* subgroup and likely evolved independently.

380 **3.5 The posterior lobes (epandrial posterior lobes)**

381 The most dramatic differences in genitalia morphology among species of the *D. melanogaster*
382 complex is in the shape and size of the posterior lobes (Coyne, 1983; Jagadeeshan and Singh, 2006;

383 Yassin and Orgogozo, 2013). The posterior lobes protrude from the lateral plates and are used for
384 grasping the female genitalia during copulation (Kamimura and Mitsumoto, 2011; Yassin and
385 Orgogozo, 2013). They vary from small “hook-like” projections in *D. melanogaster* (Figure 1D) to
386 elaborated “clamshell” shape in *D. simulans* (Figure 1E, Sturtevant, 1919) and “finger-like” structures
387 in *D. mauritiana* (Figure 1G). They have been the subject of numerous evolutionary, functional,
388 genetic, and developmental studies and are considered an evolutionary innovation in the *D.*
389 *melanogaster* complex (Coyne, 1983; Masly et al., 2011; Frazee and Masly, 2015; Glassford et al.,
390 2015; Smith et al., 2020; Frazee et al., 2021; Ridgway et al., 2023). Nonetheless, species of the *D.*
391 *yakuba* complex also exhibit small projections on their lateral plates that might be homologous to the
392 posterior lobes (Figure 1H-J and Figure S1E-G) (Jagadeeshan and Singh, 2006; Yassin and Orgogozo,
393 2013).

394 Smith et al. (2020) have recently provided a detailed analysis of the *D. melanogaster* posterior
395 lobe morphogenesis. They revealed that the posterior lobes start to emerge from the lateral plates at
396 stage m36 following the separation between the lateral plates and the claspers. The posterior lobes
397 then extend to their final shape through apico-basal cell elongation facilitated by interactions with the
398 aECM protein Dumpy (Smith et al., 2020). Most of this elongation takes place at the final steps of
399 posterior lobe morphogenesis between 48-52 hAPF, in which the posterior lobes double their height.
400 Our analysis reveals that *D. sechellia* and *D. mauritiana* posterior lobes follow a similar
401 developmental timeline as the *D. melanogaster* posterior lobes. In both species, the posterior lobes
402 protrude from the lateral plates at a more ventral position compared to *D. melanogaster* (compare
403 Figure 5A’ and Figure 5C’-D’). In *D. sechellia*, a broader field of cells projects out of the surrounding
404 epithelium early on, and the posterior lobes elongate faster and further compared to those of *D.*
405 *melanogaster* and *D. mauritiana*. As the *D. sechellia* posterior lobes develop they narrow to form
406 long, thin, and flat structures (Figure 5C’-C’’’). The posterior lobes of *D. mauritiana* develop from a

407 comparably sized cell primordium as in *D. sechellia* (Figure 5D'). They however acquire their
408 “finger-like” shape through extensive elongation and narrowing, similar to the *D. sechellia* posterior
409 lobes (Figure 5D''-D''').

410 Among the species of the *D. melanogaster* complex, *D. simulans* stands out due to its
411 distinctive and elaborated posterior lobes. The development of their large “clamshell” shaped
412 posterior lobes exhibits both heterochronic and morphogenetic differences when compared to other
413 species in the group. The *D. simulans* lateral plates start to separate from the claspers prior to 28
414 hAPF. By stage m28, the *D. simulans* posterior lobes are already apparent (Figure 5B). The field of
415 cells that project to form the posterior lobes extend from the dorsal part of the lateral plates ventrally
416 to encompass almost two thirds of the medial lateral plates (Figure 5B'). The posterior lobes continue
417 to grow while adopting their characteristic shape by stage m40 (Figure 5B''), and soon after, they
418 acquire their final shape and size. Future analyses will determine what kind of cell behaviour(s)
419 participate in the shaping of these structures.

420 While species of the *D. melanogaster* complex possess distinct posterior lobes, some species of
421 the *D. yakuba* complex have small processes that extend from the apical ends of the lateral plates.
422 These processes vary from very small extensions in *D. yakuba* (Figure 1H), to larger extensions in *D.*
423 *santomea* (Figure 1I), to enlarged spikes in *D. teissieri* (Figure 1J). These processes start to emerge
424 from the lateral plates relatively late at stage m40, compared with the posterior lobes of species in the
425 *D. melanogaster* complex. In addition, they form at a more ventral position relative to the posterior
426 lobes of the *D. melanogaster* complex from much smaller cell primordia. Nonetheless, the
427 morphogenesis of these processes closely resembles the developmental events shaping the posterior
428 lobes of the *D. melanogaster* complex, suggesting that they are homologs.

429

430 **3.6 The emergence of the posterior lobe preceded the split between the *D. melanogaster* and**
431 **the *D. yakuba* complexes.**

432 Our developmental analyses suggest that the small processes in the *D. yakuba* complex are
433 homologous to the enlarged posterior lobes observed in the *D. melanogaster* complex. Another way
434 to ascertain homology is by looking at shared genetic signatures in the homologous structures. The
435 posterior lobe emerged in part through the co-option of an *Abdominal-B* (*Abd-B*) and *Pox-neuro*
436 (*Poxn*)-regulated network that ancestrally controls the formation of the larval posterior spiracles
437 during embryogenesis (Glassford et al., 2015). One of the downstream targets of this network is the
438 *ems* gene that encodes a homeodomain transcription factor involved in spiracle morphogenesis and
439 posterior lobe formation. *Ems* is expressed in two waves during genitalia development. In the first
440 wave it is expressed in the cleavage between the lateral plate and clasper, prior to posterior lobe
441 emergence in both lobed and non-lobed species such as *D. biarmipes* and *D. ananassae* (Glassford et
442 al., 2015). In the second wave, it is expressed in the developing posterior lobe of *D. melanogaster*
443 (Glassford et al., 2015). We therefore used *Ems* as a marker for the posterior lobe fate. *Ems* exhibits
444 strong expression in the posterior lobes of all four species from the *D. melanogaster* complex (Figure
445 6A-D). On the other hand, *D. biarmipes* and *D. ananassae* show only faint expression of *Ems* in the
446 dorso-medial side of the lateral plates that represents the first wave of *Ems* expression (Figure 6F-G).
447 Interestingly, in *D. yakuba*, *Ems* is strongly expressed in the small processes that protrude from the
448 lateral plates. Thus, molecularly, the small protrusions observed on the lateral plates of *D. yakuba*
449 seem to be homologous to the posterior lobes of the *D. melanogaster* complex. These results suggest
450 that a small posterior lobe emerged in the *D. melanogaster* group before the split between the *D.*
451 *melanogaster* and *D. yakuba* complexes. It is possible that the absence of projections on the lateral
452 plates of *D. erecta* resulted from a subsequent loss as observed for other morphological traits (Stern
453 and Frankel, 2013; Ling et al., 2023). Future work investigating the expression and the regulatory

454 sequences of the posterior lobe network within the *D. melanogaster* group will be necessary to
455 distinguish between repeated loss or repeated gain.

456

457 **4. Discussion**

458 Reproductive structures are amongst the most rapidly evolving anatomical features in the
459 animal kingdom. Here, we have described the developmental trajectories of terminalia across a wide
460 range of species that include the well-studied model organism *D. melanogaster*. Doing so with high
461 resolution three-dimensional confocal imaging has revealed a treasure trove of novel processes and
462 hidden homology relationships between structures that would otherwise appear to have evolved
463 independently. Our results highlight how novel traits may arise from barely recognizable rudiments
464 that can only be visualized through a careful analysis of tissue formation in a comparative
465 framework. Below, we discuss approaches to further trace the evolutionary history of these structures
466 at the molecular level. The seemingly endless diversity of genital structures implies that many new
467 morphogenetic processes await discovery in these systems.

468 Our comparative developmental analyses permitted the discovery of previously undefined
469 structures and allowed us to trace their cellular origins. For example, we identified uncharacterized
470 outgrowths on the border between the lateral plates and the claspers that develop into a fold on the
471 lateral side of the claspers in *D. teissieri*, *D. ananassae*, and *D. malerkotliana*. These outgrowths may
472 have evolved through convergence, differential retention, or a cryptic atavism that reactivates an
473 ancestral potential. In addition, we detected a small finger-like extension on the ventral medial
474 portion of the clasper of *D. teissieri*. These structures likely went unnoticed due to the two-
475 dimensional nature of taxonomic descriptions in past decades. Key taxonomic texts used two-
476 dimensional camera lucida drawings based upon flattened adult cuticle preparations visualized by

477 brightfield microscopy (e.g. Bock and Wheeler, 1972). Scanning EM micrographs of many of these
478 species have been published, but subsuperficial structures are often obscured and are difficult to
479 resolve. Three dimensional confocal images offer several advantages: 1) the imaging can often
480 resolve structures that are obscured by other structures; 2) using advanced imaging software (e.g.
481 Imaris or morphographX), the resulting three dimensional images can be rotated and resliced to
482 examine particular substructures during a developmental trajectory; 3) developmental time courses
483 can capture the formation and regression of substructures, providing a more accurate phylogenetic
484 interpretation of homology relationships. While it is not clear if these substructures have function,
485 their presence highlights the remarkable plasticity of genitalia primordia and their tendency to
486 activate new developmental programs to allow rapid diversification.

487 Our analyses also help to distinguish the origin of substructures that were previously associated
488 with another structure. The male genitalia in the *D. ananassae* complex bear structures known as
489 secondary claspers. Our developmental analysis identifies that these are, in fact, extensions of the
490 ventral cercal lobes of the anal plates, as had been hypothesized in previous studies (Polak and
491 Rashed, 2010; Kamimura and Polak, 2011). While the ventral anal plates exhibit such diversity, the
492 dorsal cercal lobes of the anal plates are quite conserved. During development, a division is formed
493 between the dorsal and ventral portions of the anal plate that essentially separates the anal plate into
494 two distinct segments. We predict that this division will also be reflected molecularly. Although our
495 previous studies (Vincent et al., 2019) did not find transcription factors that clearly delaminate the
496 uniform *D. melanogaster* anal plate into dorsal and ventral sections, we predict that species with
497 distinct ventral morphologies have evolved ventral-specific regulatory factors. Interestingly, Ems,
498 which is presented in this study as a marker for posterior lobe development, is also expressed in the
499 ventral anal plates in all the species we analyzed, including *D. ananassae* that form “secondary

500 claspers" (Figure 6). Further study will determine the relevance of Ems expression to the
501 morphogenesis of the ventral cercal lobes.

502 One of the most diverse characteristics of genital structures are the bristles that decorate them.
503 We see the gain and loss of large, heavily pigmented bristles across the anal plates and the claspers.
504 All species analyzed in this study show this morphology in at least a subset of the bristles within the
505 clasper. *D. mauritiana*, and all members of the *D. yakuba* and *D. erecta* complexes also contain
506 bristles with a tooth-like morphology in the ventral anal plate. The gain of the tooth-like morphology
507 in the anal plate may have been caused by the expansion of the clasper tooth genetic network to the
508 neighboring anal plate. This tooth morphology is also shared with another well-studied bristle, that of
509 the sex comb of the male foreleg. It has been posited that the sex comb may have co-opted the
510 genetic network needed for this morphology from the bristles of the terminalia (Kopp, 2011). One
511 candidate gene for this co-option event is the transcription factor *doublesex*, which is known to
512 control the sex comb morphology in the leg and is expressed in the *D. melanogaster* clasper teeth as
513 well (Robinett et al., 2010; Tanaka et al., 2011; Rice et al., 2019b).

514 So far, the genes and GRNs that participate in terminalia morphogenesis and diversifications
515 have been studied almost exclusively in the context of *D. melanogaster* and its sibling species. While
516 the powerful genetic toolkit of *D. melanogaster* allows interrogating these pathways at high
517 resolution, working in species outside *D. melanogaster* is both necessary and more challenging.
518 Focusing on too few species may overlook more complex ancestral processes that have been
519 simplified in the focal species (Church and Extavour, 2020; Rice et al., 2023). Studying the
520 developmental events that shape the structures we traced in the current study at the molecular level
521 will require new experimental strategies. In this aspect, single-cell genomics and CRISPR/Cas9-
522 mediated genome editing provide a promising avenue. Single-cell RNA sequencing holds the
523 potential to access transcriptomes of cells in specific substructures of the pupal terminalia and to

524 compare them across species. Our developmental time course can be used to choose the appropriate
525 developmental timepoints for such analysis. Such experiments could, for example, differentiate
526 molecularly between the dorsal and the ventral segments of the anal plates in species with modified
527 ventral cercal lobes. Additionally, they may reveal shared ventral genetic signatures among these
528 species. Subsequently, CRISPR/Cas9-mediated genome editing can be used for functional validation
529 of potential regulators identified in single-cell experiments.

530

531 **5. Conflict of Interest**

532 *The authors declare that the research was conducted in the absence of any commercial or financial
533 relationships that could be construed as a potential conflict of interest.*

534 **6. Author Contributions**

535 A.U, G.R.R, M.R. and E.P.B.N conceived the experimental plan. A.U. and G.R.R. performed most of
536 the experiments with technical assistance from B.S. and Y.Y. W.G performed the Ems
537 immunostainings. A.U., G.R.R., M.R. and E.P.B.N. wrote the manuscript.

538 **7. Funding**

539 This study was funded by a Short-Term Personal Grant from The Rappaport Family Institute for
540 Research in the Bio Medical Sciences to E.P.B.N and by an NSF-BSF collaborative grant to E.P.B.N
541 and M.R. (BSF 2021661 and NSF 2129903). A.U. was supported by a scholarship from the Israeli
542 Ministry of Immigrant Absorption. G.R.R. was supported by a post-doctoral fellowship from the
543 National Institutes of Health (1K99GM147343).

544 **8. Acknowledgments**

545 We thank David Stern, Thomas Williams, and the National Drosophila Species Stock Center stock
546 center for fly stocks and Bill McGinnis for the kind gift of the Ems antibody. We are grateful to the
547 Imaging Unit at the Biomedical Core Facility (BCF) at the Technion Faculty of Medicine and the
548 University of Pittsburgh Microscopy and Imaging Suite for help with imaging and image processing.
549 Special thanks to Lihi Shaulov of the EM Unit of the BCF for technical help in preparing and
550 processing EM samples. We thank members of the Preger-Ben Noon and Rebeiz labs for helpful
551 discussion. We thank two anonymous reviewers for their comments.

552 **9. Supplementary Material**

553 Supplementary Material includes one table and three figures.

554 **10. References**

555 Acebes, A., Cobb, M., and Ferveur, J. F. (2003). Species-specific effects of single sensillum ablation
556 on mating position in *Drosophila*. *Journal of Experimental Biology* 206, 3095–3100. doi:
557 10.1242/jeb.00522.

558 Bock, I., and Wheeler, M. (1972). *The Drosophila melanogaster species group*. The University of
559 Texas Publication.

560 Chatterjee, S. S., Uppendahl, L. D., Chowdhury, M. A., Ip, P. L., and Siegal, M. L. (2011). The
561 female-specific Doublesex isoform regulates pleiotropic transcription factors to pattern genital
562 development in *Drosophila*. *Development* 138, 1099–1109. doi: 10.1242/dev.055731.

563 Chen E.H., and Baker B.S. (1997). Compartmental organization of the *Drosophila* genital imaginal
564 discs . *Development* 124, 205–218. Available at: <https://pubmed.ncbi.nlm.nih.gov/9006081/>
565 [Accessed March 3, 2021].

566 Church, S. H., and Extavour, C. G. (2020). Null hypotheses for developmental evolution.
567 *Development (Cambridge)* 147. doi: 10.1242/DEV.178004.

568 Courtier-Orgogozo, V. (2023). The loci of insect phenotypic evolution. *Curr Opin Insect Sci* 60.

569 Coyne, J. A. (1983). Genetic basis of differences in genital morphology among three sibling species
570 of *Drosophila*. *Evolution (N Y)* 37, 1101–1117.

571 Dalton, D., Chadwick, R., and McGinnis, W. (1989). Expression and embryonic function of empty
572 spiracles: a *Drosophila* homeo box gene with two patterning functions on the anterior-posterior
573 axis of the embryo. *Genes Dev* 3. doi: 10.1101/gad.3.12a.1940.

574 Eberhard, W. G. (1985). *Sexual selection and animal genitalia*. Cambridge, Mass.: Harvard
575 University Press.

576 Epper, F. (1983). The evagination of the genital imaginal discs of *Drosophila melanogaster*. *Wilhelm
577 Roux' Archiv* 192, 280–284. doi: 10.1007/BF00848661.

578 Estrada, B., Casares, F., and Sánchez-Herrero, E. (2003). Development of the genitalia in *Drosophila
579 melanogaster*. *Differentiation* 71, 299–310. doi: 10.1046/j.1432-0436.2003.03017.x.

580 Frazee, S. R., Harper, A. R., Afkhami, M., Wood, M. L., McCrory, J. C., and Masly, J. P. (2021).
581 Interspecific introgression reveals a role of male genital morphology during the evolution of
582 reproductive isolation in *Drosophila*. *Evolution (N Y)*. doi: 10.1111/evo.14169.

583 Frazee, S. R., and Masly, J. P. (2015). Multiple sexual selection pressures drive the rapid evolution of
584 complex morphology in a male secondary genital structure. *Ecol Evol* 5, 4437–50. doi:
585 10.1002/ece3.1721.

586 Glassford, W. J., Johnson, W. C., Dall, N. R., Smith, S. J., Liu, Y., Boll, W., et al. (2015). Co-option
587 of an Ancestral Hox-Regulated Network Underlies a Recently Evolved Morphological Novelty.
588 *Dev Cell* 34, 520–531. doi: 10.1016/j.devcel.2015.08.005.

589 Gorfinkiel, N., Sánchez, L., and Guerrero, I. (1999). *Drosophila* terminalia as an appendage-like
590 structure. *Mech Dev* 86, 113–123. doi: 10.1016/S0925-4773(99)00122-7.

591 Green, J. E., Cavey, M., Médina Caturegli, E., Aigouy, B., Gompel, N., and Prud'homme, B. (2019).
592 Evolution of Ovipositor Length in *Drosophila suzukii* Is Driven by Enhanced Cell Size
593 Expansion and Anisotropic Tissue Reorganization. *Current Biology* 29, 2075-2082.e6. doi:
594 10.1016/j.cub.2019.05.020.

595 Grieshop, K., and Polak, M. (2012). The precopulatory function of male genital spines in *drosophila
596 ananassae*[doleschall] (Diptera: Drosophilidae) revealed by laser surgery. *Evolution (N Y)* 66,
597 2637–2645. doi: 10.1111/j.1558-5646.2012.01638.x.

598 Grieshop, K., and Polak, M. (2014). Evaluating the post-copulatory sexual selection hypothesis for
599 genital evolution reveals evidence for pleiotropic harm exerted by the male genital spines of
600 *Drosophila ananassae*. *J Evol Biol* 27, 2676–2686. doi: 10.1111/jeb.12524.

601 Hagen, J. F. D., Mendes, C. C., Blogg, A., Payne, A., Tanaka, K. M., Gaspar, P., et al. (2019). *tartan*
602 underlies the evolution of *Drosophila* male genital morphology. *Proceedings of the National
603 Academy of Sciences*, 201909829. doi: 10.1073/PNAS.1909829116.

604 Hagen, J. F. D., Mendes, C. C., Booth, S. R., Figueras Jimenez, J., Tanaka, K. M., Franke, F. A., et
605 al. (2021). Unraveling the Genetic Basis for the Rapid Diversification of Male Genitalia
606 between *Drosophila* Species. *Mol Biol Evol* 38, 437–448. doi: 10.1093/molbev/msaa232.

607 Huang, J., Huang, L., Chen, Y. J., Austin, E., Devor, C. E., Roegiers, F., et al. (2012). Differential
608 regulation of adherens junction dynamics during apical-basal polarization. *Development* 139,
609 4001–4013. doi: 10.1242/jcs.086694.

610 Jagadeeshan, S., and Singh, R. S. (2006). A time-sequence functional analysis of mating behaviour
611 and genital coupling in *Drosophila*: Role of cryptic female choice and male sex-drive in the
612 evolution of male genitalia. *J Evol Biol* 19, 1058–1070. doi: 10.1111/j.1420-9101.2006.01099.x.

613 Kamimura, Y., and Mitsumoto, H. (2011). Comparative copulation anatomy of the *Drosophila*
614 melanogaster species complex (Diptera: Drosophilidae). *Entomol Sci* 14, 399–410. doi:
615 10.1111/j.1479-8298.2011.00467.x.

616 Kamimura, Y., and Polak, M. (2011). Does surgical manipulation of *drosophila* intromittent organs
617 affect insemination success? *Proceedings of the Royal Society B: Biological Sciences* 278. doi:
618 10.1098/rspb.2010.2431.

619 Keisman, E. L., and Baker, B. S. (2001). The *Drosophila* sex determination hierarchy modulates
620 wingless and decapentaplegic signaling to deploy dachshund sex-specifically in the genital
621 imaginal disc. *Development* 128, 1643–56. Available at:
622 <http://www.ncbi.nlm.nih.gov/pubmed/11290302> [Accessed August 13, 2016].

623 Kopp, A. (2011). *Drosophila* sex combs as a model of evolutionary innovations. *Evol Dev* 13. doi:
624 10.1111/j.1525-142X.2011.00507.x.

625 Kopp, A., and True, J. R. (2002). Evolution of male sexual characters in the Oriental *Drosophila*
626 melanogaster species group. *Evol Dev* 4, 278–291. doi: 10.1046/j.1525-142X.2002.02017.x.

627 Ling, L., Mühling, B., Jaenichen, R., and Gompel, N. (2023). Increased chromatin accessibility
628 promotes the evolution of a transcriptional silencer in *Drosophila*. *Sci Adv* 9. doi:
629 10.1126/sciadv.ade6529.

630 Macdonald, S., and Goldstein, D. (1999). A quantitative genetic analysis of male sexual traits
631 distinguishing the sibling species *Drosophila simulans* and *D. sechellia*. *Genetics* 153.

632 Martin, A., and Orgogozo, V. (2013). The Loci of repeated evolution: a catalog of genetic hotspots of
633 phenotypic variation. *Evolution (N Y)* 67, 1235–1250. doi: 10.1111/evo.12081.

634 Masly, J. P. (2012). 170 Years of “Lock-and-Key”: Genital Morphology and Reproductive Isolation.
635 *Int J Evol Biol* 2012, 247352. doi: 10.1155/2012/247352.

636 Masly, J. P., Dalton, J. E., Srivastava, S., Chen, L., and Arbeitman, M. N. (2011). The genetic basis
637 of rapidly evolving male genital morphology in *Drosophila*. *Genetics* 189, 357–374. doi:
638 10.1534/genetics.111.130815.

639 Mattei, A. L., Riccio, M. L., Avilaa, F. W., Wolfner, M. F., and Denlinger, D. L. (2015). Integrated
640 3D view of postmating responses by the *Drosophila melanogaster* female reproductive tract,
641 obtained by micro-computed tomography scanning. *Proc Natl Acad Sci U S A* 112, 8475–8480.
642 doi: 10.1073/pnas.1505797112.

643 McNeil, C. L., Bain, C. L., and Macdonald, S. J. (2011). Multiple Quantitative Trait Loci Influence
644 the Shape of a Male-Specific Genital Structure in *Drosophila melanogaster*. *G3 (Bethesda)* 1,
645 343–51. doi: 10.1534/g3.111.000661.

646 Moreno, E., and Morata, G. (1999). Caudal is the Hox gene that specifies the most posterior
647 Drosophila segment. *Nature* 400. doi: 10.1038/23709.

648 Obbard, D. J., MacLennan, J., Kim, K. W., Rambaut, A., O'Grady, P. M., and Jiggins, F. M. (2012).
649 Estimating divergence dates and substitution rates in the drosophila phylogeny. *Mol Biol Evol*
650 29, 3459–3473. doi: 10.1093/molbev/mss150.

651 Peluffo, A. E., Nuez, I., Debat, V., Savisaar, R., Stern, D. L., and Orgogozo, V. (2015). A Major
652 Locus Controls a Genital Shape Difference Involved in Reproductive Isolation Between
653 Drosophila yakuba and Drosophila santomea. *G3 (Bethesda)* 5, 2893–901. doi:
654 10.1534/g3.115.023481.

655 Polak, M., and Rashed, A. (2010). Microscale laser surgery reveals adaptive function of male
656 intromittent genitalia. *Proceedings of the Royal Society B* 277, 1371–1376. doi:
657 10.1098/rspb.2009.1720.

658 Rice, G., David, J. R., Kamimura, Y., Masly, J. P., McGregor, A. P., Nagy, O., et al. (2019a). A
659 standardized nomenclature and atlas of the male terminalia of *Drosophila melanogaster*. *Fly*
660 (*Austin*) 13, 51–64. doi: 10.1080/19336934.2019.1653733.

661 Rice, G. R., Barmina, O., Luecke, D., Hu, K., Arbeitman, M., and Kopp, A. (2019b). Modular tissue-
662 specific regulation of doublesex underpins sexually dimorphic development in drosophila.
663 *Development (Cambridge)* 146. doi: 10.1242/dev.178285.

664 Rice, G. R., David, J. R., Gompel, N., Yassin, A., and Rebeiz, M. (2023). Resolving between novelty
665 and homology in the rapidly evolving phallus of Drosophila. *J Exp Zool B Mol Dev Evol* 340.
666 doi: 10.1002/jez.b.23113.

667 Ridgway, A. M., Hood, E., Jimenez, J. F., Nunes, M. D. S., and McGregor, A. P. (2023). Sox21b
668 underlies the rapid diversification of a novel male genital structure between Drosophila species.
669 *bioRxiv*, 2023.08.17.552955. doi: 10.1101/2023.08.17.552955.

670 Robertson, H. M. (1988). Mating Asymmetries and Phylogeny in the Drosophila melanogaster
671 species complex. *Pac Sci* 42, 1–2.

672 Robinett, C. C., Vaughan, A. G., Knapp, J. M., and Baker, B. S. (2010). Sex and the single cell. II.
673 there is a time and place for sex. *PLoS Biol* 8. doi: 10.1371/journal.pbio.1000365.

674 Rodriguez-Exposito, E., Garcia-Gonzalez, F., and Polak, M. (2020). Individual and synergistic
675 effects of male external genital traits in sexual selection. *J Evol Biol* 33, 67–79. doi:
676 10.1111/jeb.13546.

677 Smith, S. J., Davidson, L. A., and Rebeiz, M. (2020). Evolutionary expansion of apical extracellular
678 matrix is required for the elongation of cells in a novel structure. *eLife* 9. doi:
679 10.7554/eLife.55965.

680 Stern, D. L., and Frankel, N. (2013). The structure and evolution of cis-regulatory regions: the
681 shavenbaby story. *Philos Trans R Soc Lond B Biol Sci* 368, 20130028. doi:
682 10.1098/rstb.2013.0028.

683 Sturtevant, A. H. (1919). A New Species Closely Resembling *Drosophila Melanogaster*. *Psyche*
684 (*Camb Mass*) 26, 153–155. doi: 10.1155/1919/97402.

685 Takahara, B., and Takahashi, K. H. (2015). Genome-Wide Association Study on Male Genital Shape
686 and Size in *Drosophila melanogaster*. *PLoS One* 10, e0132846. doi:
687 10.1371/journal.pone.0132846.

688 Tanaka, K., Barmina, O., Sanders, L. E., Arbeitman, M. N., and Kopp, A. (2011). Evolution of sex-
689 specific traits through changes in HOX-dependent doublesex expression. *PLoS Biol* 9,
690 e1001131. doi: 10.1371/journal.pbio.1001131.

691 Tanaka, K. M., Hopfen, C., Herbert, M. R., Schlötterer, C., Stern, D. L., Masly, J. P., et al. (2015).
692 Genetic architecture and functional characterization of genes underlying the rapid diversification
693 of male external genitalia between *Drosophila simulans* and *Drosophila mauritiana*. *Genetics*
694 200, 357–69. doi: 10.1534/genetics.114.174045.

695 True, J. R., Liu, J., Stam, L. F., Zeng, Z. B., and Laurie, C. C. (1997). Quantitative genetic analysis of
696 divergence in male secondary sexual traits between *Drosophila simulans* and *Drosophila*
697 *mauritiana*. *Evolution (N Y)* 51, 816–832.

698 Vincent, B. J., Rice, G. R., Wong, G. M., Glassford, W. J., Downs, K. I., Shastay, J. L., et al. (2019).
699 An Atlas of Transcription Factors Expressed in Male Pupal Terminalia of *Drosophila*
700 *melanogaster*. *G3 Genes|Genomes|Genetics*, g3.400788.2019. doi: 10.1534/g3.119.400788.

701 Yassin, A., and Orgogozo, V. (2013). Coevolution between Male and Female Genitalia in the
702 *Drosophila melanogaster* Species Subgroup. *PLoS One* 8, e57158. doi:
703 10.1371/journal.pone.0057158.

704 Zeng, Z., Liu, J., Stam, L., Kao, C.-H., Mercer, J., and Laurie, C. (2000). Genetic architecture of a
705 morphological shape difference between two *Drosophila* Species. *Genetics* 154.

706

707 **11. Figure legends**

708 **Figure 1: The male terminalia of *D. melanogaster* species group undergo rapid evolution.** (A)
709 Light microscopy image of *D. melanogaster* adult male terminalia. (B) Schematic representation of
710 the major terminal substructures of adult *D. melanogaster*. The different substructures are color-
711 coded according to the index on the right. Adapted from Vincent and Rice et al. (2019). (C)
712 Phylogeny for twelve species of the *D. melanogaster* species group based on (Obbard et al., 2012).
713 Boxes indicate subgroups within this species group. (D-O) Scanning electron micrographs of adult
714 male terminalia of the twelve species presented in the phylogeny in (C). The frame color of each
715 panel corresponds to the color highlighting the species name in (C). Arrowhead in (L) indicates the

716 enlarged ventral cercal lobes of *D. orena*. Dorso-Ventral (D-V) axis direction is indicated in panel
717 (A). Scale bars: 20 μ m.

718 **Figure 2: An overview of male genitalia development in *D. melanogaster*.**

719 (A-I) 3D surface images of male pupal terminalia from *D. melanogaster* at the indicated
720 developmental time points. The 3D surfaces were generated from confocal images of pupal
721 terminalia stained with anti-E-cadherin using Imaris (See Materials and Methods). False coloring
722 marks the major substructures of the terminalia as follows: yellow - anal plate; blue - epandrium
723 (lateral plates); pink - clasper, purple - epandrium and clasper primordium; red - phallus; and green -
724 hypandrium. Scale bar: 50 μ m. The morphological landmark described in (J) for each timepoint is
725 marked with an arrowhead. (J) Suggested staging scheme. Each stage is represented by a dot
726 positioned at the corresponding timepoint of *D. melanogaster* development, with a description of the
727 developmental event that characterizes this stage.

728 **Figure 3: The development of the anal plate in six species of the *D. melanogaster* species group.**

729 (A-F'') 3D surface images of male pupal terminalia of the species indicated on the top. The anal
730 plate is highlighted in yellow. In stage m56 images, the ventral cercal lobe is highlighted in dark
731 yellow. (A-F) Early in development, at stage m32, the anal plate morphology is relatively conserved,
732 except for *D. teissieri* (C), which exhibits developed ventral cercal lobes. (A'-F') At stage m40,
733 differences in the shape and the size of the anal plate become clear. (A''-F'') At stage m44, species-
734 specific modifications on the ventral cercal lobe, such as the outgrowths in *D. teissieri* (C'') and
735 *D. orena* (E'') and the large pair of bristles in *D. ananassae* (F'') can be easily detected. (A'''-F''')
736 By stage m56, when the anal plates close over the gap between them, the anal plate is almost fully
737 developed and resemble their adult shape. The modifications on the ventral cercal lobes of

738 *D. santomea* (B'''), *D. teissieri* (C'''), *D. erecta* (D'''), *D. orena* (E''') and the spines on the ventral
739 cercal lobes of *D. ananassae* (F''') are clearly visible. Scale bar: 50 μ m.

740 **Figure 4: The development of the epandrium and the claspers in five species of the *D.***
741 ***melanogaster* species group.**

742 (A-E*) 3D surface images of male pupal terminalia of the species indicated on the top. The right
743 epandrium and the clasper of the pupal terminalia are highlighted in blue and pink, respectively. (A-
744 E) At stage m28, the epandrium and clasper primordium start to divide as a cleavage appears between
745 the epandrium and clasper domains. (A'-E') At stage m32, the epandrium and claspers continue their
746 separation. Specific characters, like the posterior lobes on the lateral plates of *D. mauritiana* (A'), the
747 robust claspers of *D. teissieri* (B') or the sex comb-like structures in *D. ananassae* (E') appear. (A''-
748 E'') At stage m44, the claspers display diverse morphologies including size differences (for example,
749 *D. teissieri* (B'') and *D. erecta* (C''), shape differences, variable outgrowth (For example, *D.*
750 *biarmipes* (D'') and *D. ananassae* (E'')) and differences in bristle size, number, and patterns. (A'''-
751 E''') At stage m56, the epandrium and claspers adopt their final shape and proportions. (A*-E*) A
752 side view of the m56 stage shows the clasper outgrowths (purple) in *D. teissieri* (B*) and
753 *D. ananassae* (E*) and the unique bristle pattern in *D. biarmipes* (D*). Scale bars: 50 μ m.

754 **Figure 5: The development of the posterior lobes in the *D. melanogaster* subgroup.**

755 (A-G*) 3D surface side views of male pupal terminalia of the species indicated on the top. The right
756 epandrium and posterior lobe of the pupal terminalia are highlighted in blue and purple, respectively.
757 (A-G) At an early developmental stage m28, *D. simulans* (B) is the only species that shows initiation
758 of posterior lobe growth. (A'-G') At stage m32, the posterior lobe initiation appears in
759 *D. melanogaster* (A'), *D. sechellia* (C') and *D. mauritiana* (D'). (A''-G'') At stage m40, the
760 posterior lobes of the *D. melanogaster* complex (A''-D'') continue to grow and shape, as the

761 posterior lobes of the *D. yakuba* (E''), *D. santomea* (F''), and *D. teissieri* (G'') begin to protrude
762 from their lateral plates. (A'''-G''') At stage m44, the posterior lobe continues to grow, and begins to
763 shrink at the dorso-ventral axis to acquire its specific shape in *D. melanogaster* (A'''), *D. simulans*
764 (B'''), *D. sechellia* (C'''), and *D. mauritiana* (D'''). (A''''-G''''') At stage m56, the posterior lobes
765 acquire their final shapes. Scale bar: 50 μ m.

766 **Figure 6: Ems marks the posterior lobe in the *D. melanogaster* subgroup of species.**

767 (A-G) Confocal images of 48 hAPF pupal terminalia dissected from the lobed species
768 *D. melanogaster* (A), *D. simulans* (B), *D. sechellia* (C), *D. mauritiana* (D), and *D. yakuba* (E) and
769 the non-lobed species, *D. biarmipes* (F) and *D. ananassae* (G), immunostained with anti-Ems
770 antibodies. White arrowheads indicate the expression associated with the posterior lobes. Empty
771 arrowheads show the first wave of Ems expression at the border between the lateral plates and
772 claspers. Scale bars: 50 μ m.

773