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ABSTRACT
Catalytic processes are used in about 1/3 of US manufacturing, from
the field of chemical engineering to renewable energy. Assessing
the activity of single-molecules, or individual molecules, is neces-
sary to the development of efficient catalysts. Their heterogeneity
structure leads to particle-specific catalytic activity. Experimenta-
tion with single-molecules can be time consuming and difficult.
We purpose a Machine learning (ML) model that allows chemical
researchers to run shorter single-molecule experiments to obtain
the same level of results. We use common and widely understood
ML methods to reduce complexity and enable accessibility to the
chemical engineering community. We reduce the experiment time
by up to 83%. Our evaluation shows that a small data set is suf-
ficient to train an acceptable model. 300 experiments are needed,
including the validation set. We use a well understood multilayer
perceptron (MLP) model. We show that more complex models are
not necessary and simpler methods are not sufficient.
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1 INTRODUCTION
Catalysts are used to speed up chemical reactions by providing a
lower energy pathway for the reaction. Catalytic processes are used
in a wide range of chemical engineering fields including renewable
energy, solar energy conversion, and batteries to name a few. Cat-
alytic processes are used in over 1/3 of US manufacturing overall
[9, 13]. The activity of individual molecules have a direct impact
on how effective a catalysts is. Much work in the chemical engi-
neering community has been spent on developing new methods to
assess the reactivity of single-molecules [3, 12, 13]. These methods
range from practical, in the laboratory, experiments to computa-
tional methods. Computational methods include simulation and
theoretical calculations.

Each practical and computational method has major benefits
and draw backs. The practical experimentation can give the most
accurate results, as it allows real world measurements. However,
they suffer from time and labour intensive costs to preform. Com-
putational Methods are, comparatively, cheap in terms of time and
labour. But they suffer limitations in scale.

Machine learning (ML), specifically artificial neural networks
(ANN), remain underutilized [8]. ANN’s offer a unique opportunity,
when compared to the theoretical calculations, to extract features
based on real experiments. Bridging the gap between the practical
experimentation and theoretical calculation. However, they require
the researcher to have a good understanding of current ML tech-
nology. Including how to adjust (add, remove, modify) layers of
an ML model and tune hyperparameters. Learning how best to
build, train, and evaluate a ML model serves as a barrier to applying
ML methods in the field of chemical engineering and research. In
addition, most are evaluated with simulated experimentation data,
as freely available data sets are very limited or non-exists [8].

We evaluate how effective a simple multilayer perceptron (MLP)
model is when applied to inferring single-molecule activity. MLP
was chosen for its well understood properties and widely avail-
able documentation. We evaluated our MLP model with 6 single-
molecule experiment data sets. Each set is a collection of real ex-
periments under different experimental conditions. We used 200
experiments from each set to train 6 models, one for each data
set, and 100 for validation. Each model had the same number of
neurons per layer, number of layers, learning rate, loss function,
and optimizer. This demonstrates that chemical engineers can use
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our model without having to evaluate different hyperparameters.
Thus, allowing chemical engineers with no background in ML to
use the model. We summarize our contribution as follows;

• We offer a simple ANNmodel based on well understood prin-
ciples, using a common and easy to use framework PyTorch
[11]

• We evaluate our model with 6 different single-molecule ex-
periment data sets, each with unique experiment conditions.

• We compare our model’s accuracy with a naive approach
that requires the same level of expertise on the chemical
engineers part. We also compare our results with a more
complex Recurrent Neural Network (RNN) model.

• We show that a naive approach is insufficient, and the RNN
model retains similar or worse accuracy but with higher
complexity.

The remainder of this paper is organized as follows. Section 2
introduces the background in the field of chemical engineering
for both practical and computational methods. In Section 3 we
review literature related to current methods for measuring single-
molecule activity with ML. Section 4 describes our data set and
problem definition. In Section 5 we offer a overview of our model,
and explain model and training parameters. Section 6 we present
our evaluation. Section 7 we overview our plans for future work and
possible research directions moving forward. Section 8 we conclude
the paper with a summary of our work.

2 BACKGROUND
Within this section, we present a concise overview of single-molecule
assessment through both laboratory experimentation and computa-
tional methodologies. Practical experimentation is time consuming,
while computational have hard limitations and are normally supple-
mented with some level of laboratory experimentation. Thus there
is a need to accelerate the practical experimentation via machine
learning (ML).

2.1 Practical Single-Molecule Experimentation
Here we overview some of the common practical methods used
to assess the quality of a products particle-specific activity. The
structural heterogeneity of molecules leads to distinctive catalytic
activity associated with individual particles. Thus it is necessary
to evaluate particle-specific catalytic activity due to this inherent
heterogeneity.

Severalmethods have been employed tomeasure particle-specific
activity including X-ray spectroscopy, Raman spectroscopy, and
fluorescence microscopy [13]. Any form of spectroscopy uses the
absorption and emission of light and other radiation to obtain
measurements. X-ray absorption spectroscopy (XAS) has a spatial
resolution to 10 nm. However it is limited in distance, posing chal-
lenges to nanoreactor design. It can also cause significant damage to
the sample [13]. surface-enhanced Raman scattering (SERS) allows
real-time monitoring of chemical reactions and can yield comple-
mentary chemical and structural information. A notable constraint
is the necessity for a specific material within the experimental
setup to amplify the Raman signal [13]. Fluorescence microscopy is
a sensitive and informative technique in life and materials sciences
that uses fluorescent indicators to allow researchers to watch cell

physiology[12, 14]. The resolution of the acquired images remains a
limiting factor [14]. Dual-trap laser-tweezers instrument is another
method. Using focused laser beams, this method combines two op-
tical traps, also known as optical tweezers, allowing researchers to
hold, move, and manipulate nanoparticles with extreme precision
[2]. This method can becomes problematic when hour-long obser-
vations are desired and results from large numbers of nanoparticles
are required.

Each of these approaches demands a substantial number of ex-
periments, ranging from hundreds to tens of thousands [12]. While
each individual experiment consume minutes to hours, when scaled
up to identify trends within the data, this process can extend to
days, weeks, or even months, contingent on the total number of
experiments required. In addition more than one method may be
used, for example in [17] a combination of methods where used
including fluorescence microscopy, observation with a dual-trap
laser-tweezers instrument and fluorogenic probing.

2.2 Computational Methods
Computational methodologies have been extensively employed,
encompassing density functional theory (DFT), high-throughput
theoretical calculations, reactive force field (ReaxFF)-based molec-
ular dynamics simulations, and kinetic modeling [13, 17]. These
approaches predominantly revolve around simulations and theo-
retical calculations, encountering inherent limitations in terms of
scale, size of catalytic systems under scrutiny, and available data
resources [8]. Randall H. Goldsmith et al use a microfluidic trapping
device to obtain prolonged solution-phase measurement of single
enzymes in solution [7]. The result of these measurements where
time-tagged photon detection data. For data analysis, they utilize a
Matlab implementation of a change-point-finding algorithm, specif-
ically tailored for their context. Gillespie et al purpose a stochastic
simulation algorithm in [6]. A unique strength of their approach lies
in its inherent capacity to avoid approximations for infinitesimal
time increments. All computational method suffer from very small
data sets if any are avalable at all [5].

3 RELATEDWORK
In this section we briefly summarize the current application of
machine learning (ML) in the field of chemical engineering and
research, specifically single-molecule experimentation.

Masateru Taniguchi el al useML to help identify single molecules
in DNA and RNA [15]. Identification is done with histograms of
single molecules in DNA, when these histograms overlap iden-
tification is problematic. The authors use a combination of fast
Fourier transform (FFT) to create features and a support vector
machine (SVM) to classify the molecules. Thomsen et al apply ML
to single molecule Forster resonance energy transfer (FRET) with
DeepFRET in [16]. DeepFRET is an open-source software package
that implements a deep convolutional neural network (CNN) with
a graphical user interface (GUI). The authors add a long short-term
memory (LSTM) layer after the convolutional layers to assist in
their classification. They provide a trained deep neural network
(DNN). Their training data is 150,000 simulated FRET traces. Celik
et al purpose a Deep-Channel model architecture in [4] to help
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Table 1: AuNP concentrations, Data set size, and [minimum,
maximum] value

AuNP
concentration

Number of experiments
(size)

Range
(total events)

50 640 [35, 327]
100 499 [50, 382]
400 477 [50, 289]
800 564 [55, 321]
1200 794 [40, 335]
1800 888 [40, 314]

classify single molecule data of loss, or dysregulation, of ion chan-
nels. They combine 1D convolution layers with several pooling
and LSTM layers. They use a simulated data set using the com-
putational methods presented by Gillespie et al in [6]. Parker et
al purpose a multi-stage machine learning workflow to identify
the correct structure/property relationships of Pt nanoparticles
[10]. Their workflow consists of unsupervised clustering via itera-
tive label spreading (ILS), supervised classification via Extra Trees
Classifier (ETC) and finally supervised regression with Extra Trees
Regressor (ETR). They use a data set presenting 1300 optimized
platinum (Pt) nanoparticle configurations for data-driven studies.

To the best of our knowledge these methods rely on a chemical
engineers ability to chose hyperparameters andmodify themodel as
needed. Choosing hyperparameters may be difficult but doable for
simple models that have limited, or well documented, parameters to
set. However, modifying the model, especially when dealing with
more complex LSTM layers, can be overly difficult. Acting as a
barrier for ML methods in chemical engineering.

4 SINGLE-MOLECULE EXPERIMENT DATA
SET

4.1 Experiment Setup and Description
Our data set is a collection of experiments done by the Kent State
University Chemistry and Biochemistry department, published in
[17]. Their goal is to create and evaluate a artificial enzymes. They
combine gold nanoparticles (AuNPs), a nanozymes, and DNAzymes.
They used a combination of practical experimentation and com-
putational methods to evaluate AuNP@DNA, the combination of
gold and DNA. Multiple practical experimentation methods where
preformed. We only consider the experiments that used a spin
casted coronazyme under fluorescence microscope. Table 1 sum-
marizes the different levels of AuNP concentration, the number
of experiments run, and the range in total number of events in a
single experiment, [min,max]. Each Concentration is considered a
different data set. All other variables where the same.

4.2 Output and Goal
While each spin casted coronazyme experiment is preformed a
recording is made, called amovie. Each movie is taken at a specified
frame rate and is 60 minuets long. This frame rate is how many
times a second the single-molecule (AuNP@DNA) is checked for a
reaction, or event. All experiments where recorded with a frame rate
of 20 frames per second (FPS). Each frame is numbered according

to it’s order in the recording, the first frame’s 1, the second is 2
and so on. The finale output is a list of frame numbers in a movie
where an event was recorded.1 The total number of frames in a
movie, ones with a recorded event, are then counted for the total
number of events in the experiment. The total number of events is
the desired result of the experment, this is what chemical engineers
use to gauge how well a product will preform as a catalysts.

In summary, Our data set is a collection of experiments. Each
element of our data set is an experiment’s accosted movie. In total
we have 6 data sets, each under a different concentration of AuNP.
Our goal is to shorten the experiment time needed, by createing a
ML model that reads in the first 10mins of a movie and then can
predict, within a margin of error, the total number of events that
movie would have at 60mins. Thus reducing the experiment time
by 83%.

5 MODEL OVERVIEW
We purpose a multilayer perceptron (MLP) model. We demonstrate
that MLP can be applied to different real experimentation data sets
with no modification to the majority of its hyperparameters. Thus,
demonstrating that chemical engineers with no background can
train and use our model easily and out of the box. We will first
present an overview of our model and model parameters, we will
then discuss implementation details.

5.1 Multilayer Perceptron Model
Our MLP model it made up of 1 input layer, 2 hidden layers and 1
output layer. The input layer can vary in size depending on the size
of the movie input to the model. That is to say, it is determined by
the practical single-molecule experimentation used. More details
on the input from our datasets is available in the following section
5.2. Our hidden layers have 700 neurons each. Our output layer is
a single neuron. We use dropout between the input, first hidden,
and second hidden layers. Neurons have a probability to be zeroed
of 20%, there is no dropout between the second hidden layer and
the output layer. We use ReLU activation functions for both hidden
layers and the output layer. See figure 1 for illustration.

5.2 Implementation Details and Prepossessing
We implement our model with PyTorch [11]. We use their basic
frame work, with no extraneous modification or alteration. This
allows easy installation and setup of the necessary dependencies
for running our model. We use mean squared error (MSE) as our
loss function with sum reduction. We use L2 regularization for
our weights. We use the Adam optimization algorithm for gradient
decent with a learning rate of 0.000001.

Our prepossessing is kept as simple as possible in order to pro-
mote generalization and easy of use. Movies frames with no events
are omitted from the original data. However, we are able to infer
which movie frames are missing as we know the total run time of
the movie, the frame rate and all the frames that did have an event.
We add in missing frames in to the movies. Frames with events are
recorded as having a value of 1 while frames without events are

1A copy of the data can be downloaded at https://github.com/khood5/SNN-
DNA-project/blob/fe24f113c1fa389e4d640d202c44da934ebc5c71/DNA-
SC23_workshop_paper/concentration_experments.7z

68



SC-W 2023, November 12–17, 2023, Denver, CO, USA Hood and Guan, et al.

𝑥0

𝑥1

.

.

.

𝑥𝑛

ℎ10

ℎ11

.

.

.

ℎ1700

ℎ20

ℎ21

.

.

.

ℎ2700

𝑦

input layer
1st hidden layer 2nd hidden layer

output layer

Figure 1: MLP model. 𝑥0 to 𝑥𝑛 is movie frame 0 − 𝑛. 𝑦 is the
final predicted activity for the experiment if run for 60min

recorded as 0. That is each movie is converted to a bit string. Our
model is thus trying to predict the total number of 1s in the bit
string given a beginning portion of the bit string. That is, the total
number of 1s is the target output. The original experiments where
run for a total of 60min creating 72, 000 long bit strings. We use as
input the first 10min of an experiment, or 12, 000 bits.

We make our implementation, preliminary work, and other re-
search materials freely available at [1]

6 EVALUATION
We evaluate our model on all 6 data sets. For each set we train a
new model, however all hyperparameters are the same for each
model. The only variable is the data set. We compare our results to
a naive approach and an RNN model. For each model we use 300
of the total available data for training and validation. Of the 300
training/validation set 200 is used for training and 100 is used for
validation. The remaining data is used for testing and evaluation.
A prediction is considered accurate if it is within a marrgin of
error. For each approach we use a margin of error while training,
validating, and testing of ±20 events, unless specified otherwise.
A margin of error of ±20 events was selected as it is the smallest
average difference between targets, total number of events per
movie, among all the data sets.

6.1 Multilayer Perceptron Model Approach
Our MLP model is trained with 10000 epoch and check pointing
whenever the accuracy on the validation set increases. Figure 2
shows how MLP preformed on each data set. The left bar is the
average target value, average number of event in an experiment’s
movie, of the test set with error bars set as the standard deviation
of that set. The right bar is the average predicted number of events
across the test set, with error bars set as the standard deviation of
the predicted number of events. The accuracies shown are thous of
the test set.

For each of the data sets we see that the standard deviation for
the predicted number of events has a slightly varied overlap with
the actual standard deviation. This is due to difference in the distri-
butions of values in each data set, that is the AuNP concentration

of 1800 data set has a more varied distribution than the AuNP con-
centration of 50 data set. We also see that our model biases lower
activity, i.e. lower predicted value. This is because our data sets
have outliers that exaggerate the average. For a deeper look we also
compare the mode and medium for each set of predicted vs actual
in tables 2 and 3. Table 2 shows the mode of predicted number of
events per test set vs the actual mode. Included is the count of how
many times this value occurred. In table 3 we show the medium of
predicted number of events per test set vs the actual medium. What
is observable with the mode is that MLP can closely approximate
the most common value. The predicted and actual mode are all
within 14 events. The predicted medium values also correspond
with the actual medium. Both the mode and medium shows that
MLP bias towards the lower reactivity for each data set. This is
because the higher reactivity levels are outliers not always captured
in the training set. As we assume that the chemical engineer or
researcher will not know ahead of time what would be considered
an outlier for their data prior to training the model we do not filter
these out in our data sets.

The high overlap in standard deviation for all data sets, the accu-
racy of the mode and medium all suggest that the MLP model was
able to capture the underlying dynamic of each data set with the
limited number of samples given. This means that a chemical engi-
neer or researcher can run less experiments at full length to gain a
fair easement of the reactivity of a given product, AuNP concentra-
tion. For an AuNP concentration of 1800 this would have reduced
to time needed from 888 hours, one hour for each experiment to
398 hours, reducing the overall time by more than half.

6.2 Recurrent Neural Network Approach
The Recurrent Neural Network (RNN) model is constructed using
the PyTorch framework [11] and shares a structural resemblance to
the MLP model. Comprising several layers, the RNN’s architecture
consists of an input layer, two hidden layers, and an output layer.
Each movie is presented to the RNN in sequential segments, each
spanning a minute in duration, (1,200 bits). This contrasts with the
holistic approach of the MLP model, which takes the entire first
10mins of the movie (12,000 bits) as an input at once. As the RNN
receives each minute of the movie individually, the output of the
hidden layers in the previous time step (reflecting the preceding
minute of the movie) serves as supplementary input for the current
time step, capturing temporal aspect of the movie.

To elaborate, while each movie remains condensed to a fixed
duration of 10minutes (equivalent to 12,000 bits), the RNNprocesses
these minutes incrementally. This means that at each time step,
the network digests a new portion of the movie, allowing for the
incorporation of temporal dependencies within the data.

Each hidden layer is still 700 neurons, with ReLU activation
functions, the output layer is still a single neuron. All other hyper
parameters (optimizes, wight regularization, etc) are the same as
the MLP model.

6.3 Naive Approach
Our naive approach is to count the number of reactions in the first
10min for each experiment setup. Then multiply this number by 6,
for the total movie length of 60min. This approach is intended to be
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(a) AuNP concentration 50 (b) AuNP concentration 100 (c) AuNP concentration 400

(d) AuNP concentration 800 (e) AuNP concentration 1200 (f) AuNP concentration 1800

Figure 2: MLP performance on test data sets

Table 2: MLP predicted vs actual mode by data set (AuNP
concentrations)

Data set predicted mode, count actual mode, count
50 38, 135 36, 30
100 52, 36 50, 13
400 47, 56 50, 7
800 70, 79 56, 13
1200 53, 160 40, 21
1800 47, 161 40, 17

Table 3: MLP predicted vs actual medium by data set (AuNP
concentrations)

Data set predicted medium actual medium
50 38 47
100 55 64
400 55 78
800 71 81
1200 57 72
1800 52 72

the simplest method that could be used with the data set available
and no additional information. It does not require any statistical

Table 4: data set (AuNP concentration) vs accuracy of MLP,
RNN models and naive approach
all with error margin of ±20

AuNP concentration Naive MLP RNN
50 51% 82% 82%
100 39% 80% 79%
400 9% 64% 38%
800 11% 75% 34%
1200 24% 65% 33%
1800 27% 61% 33%

analysis of the data set, as we believe a MLP model could be used
without any such analysis. In this way it is a fair comparison.

6.4 Comparison
We summarize the accuracy for each data set in table 4. Here we
can see that the performance of the MLP model is impacted by the
distribution of the original data set. However, even in theworse case,
AuNP concentration of 1800, the MLP model more than doubles the
accuracy of the naive approach. We also see that MLP is competive
with the more complex RNN model. Notice that the RNN model is
not only more diffcult for chemical researchers to understand, but
is more likely to need additional modification (adding/removing
layers) to work well under different experimental data sets.
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Table 5: Comparison between MLP, RNN models and naive
approach under different error margins
(average accuracy across data sets)

error margins Naive MLP RNN
10 14% 38% 24%
11 15% 41% 26%
12 16% 44% 28%
13 18% 46% 31%
14 19% 48% 34%
15 20% 50% 36%
16 22% 52% 39%
17 24% 54% 41%
18 25% 55% 44%
19 26% 56% 47%
20 27% 57% 48%

Table 5 shows the comparison between accuracies of the MLP,
RNN models with the naive approach. Accuracy is the average
accuracy across all 6 data sets. The error tolerance is the number of
events a prediction must be within, plus or minus, to be considered
accurate. For example, an error tolerance of 10 means if the pre-
dicted number of events is 140 and the actual is 150 it is considered
accurate, if the actual is 151 it is considered inaccurate.

As shown in the table the MLP model performs better than the
more complex RNN model. Both ANN models perform much better
than the naive approach.

6.5 Discussion
Based on our evaluation we have shown that MLP is a versatile
model that can be applied easily by chemical engineers and re-
searchers with little or no background in ML. We have shown that
MLP performs better than a naive approach that requires the same
amount of background knowledge of statistics as our MLP model.
We have demonstrated that the more complex RNN model, that
would require more background in ML to tune, has similar or worse
accuracy to MLP. We show this in table 4 where MLP performs at
worst 1.6 times better than the naive approach. While it matches
the more complex RNNmodel accuracy on the least varied 50 AuNP
data set, the easiest to predict, and perfoms better on all other data
sets. In figure 2 we show that the standard deviation of the pre-
dictions has high overlap with the test set. This indicates that it
accurately represents the experimental data at large, and suggests
that it should be accurate for new experimental data. In short all
you need is MLP.

The RNN model does however have one major advantage over
the MLP model. As the input size grows the RNN model will scale
better at the time of inference as it can load the data in fixed se-
quence, while the MLP model will need to load all of the input data
at once.

It is our belief that this should demonstrate that simple ML meth-
ods can be applied to fields outside of computer science with easy.
We offer a basic MLP model with predetermined hyperparameters
that should be easy for chemical engineers and researchers to apply
to their own work.

We also highlight that MLP performs well under different exper-
iment settings, and can be used to accelerate pratical experimenta-
tion. Allowing chemical researchers to save time and labour.

7 FUTUREWORK
We hope to continue our work by examining other areas of chemical
engineering can befit from ML. We also seek to further investigate
models that take advantage of the time domain. We believe that
such models could leverage patterns in time to offer new insights
to the chemical engineers. Specifically, we aim to investigate the
application of spiking neural networks to chemical engineering as
we believe that can both take advantage of the time domain and
also require fewer resources than comparable classic ML models,
such as RNN or long-short term memory (LSTM) models. We of
course, want to maintain the befits of simplicity. We seek to find
a model that can generally fit a wide range of chemical research
experiment data sets and take advantage of the time domain.

8 CONCLUSION
Catalytic processes play an important role in a large portion of
US manufacturing. Chemical engineers have taken an interest in
evaluating how single-molecules perform as catalysts. Evaluating
single-molecules is a lengthy process that is costly in terms of time
and labour. We have demonstrated that an MLP model can signif-
icantly speed up the evaluation of single-molecules by bridging
the gap between practical and computational evaluation methods.
We demonstrates that an MLP model performs significantly better
than a naive approach, and at the same level as more complex ML
models, namely an RNN model.
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