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A wide range of studies in Human-Robot Interaction (HRI) has shown that robots can influence the social behavior of humans. This
phenomenon is commonly explained by the Media Equation. Fundamental to this theory is the idea that when faced with technology
(like robots), people perceive it as a social agent with thoughts and intentions similar to those of humans. This perception guides
the interaction with the technology and its predicted impact. However, HRI studies have also reported examples in which the Media
Equation has been violated, that is when people treat the influence of robots differently from the influence of humans. To address this
gap, we propose a model of Robot Social Influence (RoSI) with two contributing factors. The first factor is a robot’s violation of a
person’s expectations, whether the robot exceeds expectations or fails to meet expectations. The second factor is a person’s social
belonging with the robot, whether the person belongs to the same group as the robot or a different group. These factors are primary
predictors of robots’ social influence and commonly mediate the influence of other factors. We review HRI literature and show how

RoSI can explain robots’ social influence in concrete HRI scenarios.
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1 INTRODUCTION

A wide range of experimental work in Human-Robot Interaction (HRI) has shown that robots can influence the social
behavior of humans. For example, prior work suggests that the mere presence of robots can facilitate honest human
behavior [40], that robot nonverbal behavior can induce changes in human nonverbal behavior as well [49], and that

robots can motivate people to engage in activities like exercising [30, 73]. Further, robot cheating behavior has been
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found to influence human engagement in human-robot interactions [88] and robot emotional expressions may influence
human willingness to collaborate with these machines [104]. In group settings, robots have further been shown to
influence not only human-robot interactions, but also human-human interaction dynamics [20, 27, 35, 75, 79, 91].

For 25 years, our understanding of robot social influence has been dominated by Reeves and Nass’s Media Equation
[74]. The fundamental premise of the Media Equation is that when predicting how people will act when interacting
with a novel technology, one needs only to look at how people normally engage with each other. If wearing identical
blue armbands makes two people act more like a team, then we predict a similar outcome when a person and a robot
share the same armbands. This idea has had a foundational influence on both the fields of Human-Computer Interaction
(HCI) and Human-Robot Interaction (HRI). We explicitly design human-computer and human-robot interactions by
following examples provided by human-human interactions with the strong assumption that these will continue to
hold true (e.g., [5]).

There are times, though, when the Media Equation does not offer a prediction because there is no equivalent in
human-human behavior. We can make no prediction about how a person will behave when asked to turn a robot off
and then on again as this is not something that could be done to a person. Perhaps more importantly, there is a growing
collection of results that show cases where the prediction made by the Media Equation falls flat [33]. People often feel
comfortable making mistakes in front of robot tutors when they would not let these errors be seen by human tutors
[54]. We accept that robots can take on roles that we do not consider appropriate for people [52]. We also feel pressure
to conform to groups of humans, even when they give obviously incorrect answers to simple questions, but not to
robots [13].!

Many researchers have tried to address the limitations of the Media Equation; however, these alternate models
focus on predicting how people will perceive technology and do not predict the type and magnitude of the social
influence exerted by the technology. For instance, several alternative models focus on computers [85] or voice/virtual
agents [67]. They suggest that people use different communication strategies when interacting with technology, use
different cognitive processes, and are less engaged. Several models define interaction with technology as a separate
independent type of interaction that involves novel social scripts, triggering different types of control and confidence
[33, 67]. Specifically, in the context of robots, a few models were suggested to address the complexity of how people
perceive robots. For example, Zlotowski et al. (2018) suggested that human perceptions of a robot depend on a dual
evaluation process that involves both an implicit automatic perception and an explicit controlled evaluation of the
robot [105]. Ruijten et al. (2019) suggested an alternative that involves the ordering of human-like characteristics on a
range of perceived human-likeness [78]. Another recent explanation for robot perception was suggested by Clark and
Fisher (2023). They argue that people do not perceive robots as social agents themselves but that they construe robots
as interactive depictions [18]. The authors suggest that robots are perceived from three different perspectives: (1) Base
Scene - the robot’s physical aspects (appearance, material, design); (2) Depiction Proper - the features one associates
with the base scene, such as what social agent the robot represents; (3) Scene depicted - based on the previous two
perspectives, the robot is perceived as a character, which allows for imagining probable scenes involving the robot. The
authors suggested that people can effortlessly take any of these perspectives and switch between them. Other theories
have emphasized the human-likeness of the robot’s appearance, behavior, social skills, and level of personalization as
factors that determine how people perceive robots [26, 43]. While these models can account for the limitations of the

Media Equation in explaining how people perceive robots, they do not demonstrate a difference in the magnitude of the

Though this conformity effect may be seen in more subtle ways [82].
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impact on people’s social behavior. If people do not perceive robots similarly to people it is important to identify the
similarities and differences of such robotic social influence.

In this paper, we propose a model for predicting the magnitude of a robot’s social influence through two independent
factors: violation of expectations and belonging. Our model focuses on what we consider to be the two most important
and critical factors, at times valuing simplicity over complete accounting of all possible factors. We believe that these
two factors capture the unique social context that a robot affords as something that is at times an inanimate object (and
not subject to the classical Media Equation) and, at times, a social agent (i.e., the interaction with it is characterized by
human-like social effects, [41]), creating a specific set of expectations around a particular interaction. Furthermore, the
robot’s status as being in some ways similar to ourselves (as an in-group member) and at times very different from
ourselves (as an out-group member who does not belong) shapes the influence that these artifacts have over us.

In the following sections, we first explain and ground our three factors: the dependent and predicted factor of
social influence and the independent factors of violation of expectation and belonging. Then, we provide the first step of
validating our model, which we call RoSI (Robot Social Influence), by applying the model to five previously published
user studies and predicting their results. We visualize these predictions in use-case diagrams. Through those example
predictions, we provide insight into how RoSI should be applied to HRI experimental designs. The goal of this work is
to provide a theoretical model that can explain the outcome of an experiment by predicting differences in the robot’s

social influence.

2 A MODEL OF ROBOT SOCIAL INFLUENCE (RoSI)

Figure 1 describes our theoretical model of Robot Social Influence (RoSI), which predicts the magnitude of a robot’s
social influence on a person based on two factors: (1) the degree to which the robot exceeds or fails to meet the person’s
expectations and (2) the degree to which the person considers themselves and the robot as belonging to the same group.
In particular, the model predicts a larger magnitude of social influence when the robot exceeds expectations and a
lower magnitude when it fails to meet them. It also predicts that both high and low belonging will involve high social
influence, while a more neutral sense of belonging will involve a low influence.

We chose violations of expectations and belonging specifically as independent variables of our model because they are
primary components and powerful predictors of robot social influence across a broad range of human-robot interactions.
In some cases, these two factors are predicted to involve different influence patterns for humans and robots (e.g., our
expectations of robots can differ from our expectations of people). Previous studies have indicated other factors that
can also shape the social influence of a robot, including robot anthropomorphism [69, 103], robot status or power [81],
robot competence [38], social pressure [13], and perceived robot agency [56, 88]. These other factors are commonly
encapsulated in our chosen factors of expectations (e.g., power, competency, agency) and group belonging (e.g., robot
status, anthropomorphism).

The model makes several key assumptions: (1) social influence is presented from the perspective of a person who
takes part in an interaction with a robot; (2) the model predicts the magnitude, but not the valance or type of the social
influence (which are highly context-dependent); (3) the model predicts the change in the magnitude of social influence
across the interaction with the robot. While at the beginning of an interaction, people have initial expectations and
sense of belonging, the robot’s behavior throughout the interaction can alter those, which would result in a different

magnitude of social influence.
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Fig. 1. RoSl, our social influence model, predicts the amount of influence a robot has on a person (z axis) based on: the degree to
which the robot violates the person’s expectations (x axis), and the degree to which the person considers themselves and the robot to
belong to the same group (y axis). The 3D plot (a) shows the relationship between these axes. The 2D plot (b) shows a 2D projection
of the social influence surface from (a). Both diagrams are best viewed in color.

2.1 Predicted Factor: Robot Social Influence

Prior work in HRI has demonstrated that robots can change how people behave, how people perceive the world around
them, and how people think and feel. In other words, robots can exert social influence on people. We define social
influence as “a change in one’s beliefs, behavior, or attitudes due to external pressure that may be real or imagined”
[37]. Social influence can take many forms: a person may conform their choice to match that of a robot [82, 83, 98], a
person may comply with the request of a robot (even if it does not make sense) [6, 76], or a person may follow a social

norm introduced or reinforced by a robot [68, 93].

2.1.1  Theoretical Background & Justification. Rooted in the human sensitivity to social information in their environment
[61], people perceive robots’ actions as social and, as a result, are often influenced by them. It is argued that humans are
social organisms [94], with brain structures that specifically support awareness of others and communication skills that
are fundamental to social coordination [51, 61, 74]. The inherent propensity to perceive the world through a social lens
[101] is believed to lead to a strong tendency to anthropomorphize objects and to automatically associate autonomous
actions with social intent [2, 25, 29, 51, 90]. This social interpretation given to interactions with autonomous objects is
the basis for the various indications for social influence in human-robot interactions.

At the same time, robots do not necessarily have the same social influence as humans do (e.g. [13]). Different aspects
of a robot’s design may shape the type and magnitude of its social influence. The robot’s appearance, capabilities,
communication modalities, and role may all contribute to its social influence in a given interaction. We suggest that it
is not enough to state that interactions with robots are interpreted as social experiences. Therefore, we present this
model of robot social influence (RoSI), that can be used to predict the unique social influence of a robot on the people

with whom the robot interacts.
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2.2 Model Independent Factor #1: Violation of a Person’s Expectations of the Robot

The first factor in RoSI is how much and in which direction a robot violates a person’s social expectations. Social
expectations are defined as cognitions concerning the behavior anticipated of others when interacting with them [4, 16].
They guide people’s behavior by reducing uncertainty and directing their comprehension [11, 14, 16, 84]. In the context
of human-robot interaction, expectations become even more important due to the inherent uncertainty associated with
an autonomous machine [90]. A robot could meet the person’s expectations, exceed their expectations, or fail to meet
the person’s expectations. A robot can also violate the person’s expectations in a way that surprises the person but
does not exceed or fail to meet their expectations. We treat these cases as similar to the robot meeting the person’s
expectations.

For example, consider a person’s expectations of a food-delivery robot. One way the robot might exceed expectations
is by displaying empathy in addition to delivering food, for example, noticing that a person looks sad and saying “you
look sad, is everything ok?” A food-delivery robot could fail to meet expectations if it is unable to speak its “here’s your
delivery!” phrase as the user has come to expect due to a software failure. A robot might surprise a person by using a
voice that the person did not expect but neither exceeds expectations or fails to meet them.

Robots that exceed a person’s expectations typically present complex social behaviors like vulnerability [92], favoring
one human over the other [45], and touching the human [19]. Exceeding expectations does not necessarily involve
positive robotic behavior as some negative behaviors like cheating and excluding others [28, 56] may be perceived as
exceeding the robot’s anticipated behavior. Robots that fail to meet a person’s expectations often disappoint them since
they exhibit lower capabilities than expected [47]. Robots fail to meet expectations either due to humans’ unrealistic
initial expectations or due to mistakes and errors related to the robot’s function (e.g., navigation errors [80], perceptual
and processing judgment errors [47], memory-related errors [102]).

While some robot behaviors may cause expectation violations that always exceed a person’s expectations or always
fail to meet them, some robot behaviors may cause distinct effects based on individual differences. For example, consider
the possibility that a food-delivery robot receives a software update that has the robot express happiness after a
successful delivery by spinning around in a circle. This additional expression of emotion could exceed a person’s
expectations of the robot. However, another person may perceive the circle-spinning as a robot malfunction, resulting
in a failure for the robot to meet the person’s expectations. It is also possible that the circle-spinning of the robot may
not change a person’s perceptions of the robot, leaving that person’s expectations of the robot unchanged (leaving their

expectations at “meets expectations”). As this example illustrates, the violation of expectations can be subjective.

2.2.1 Theoretical Background & Justification. Violation of the expectations from the robot was chosen as one of the
model’s factors due to the centrality of expectations in interpersonal interactions [14, 72, 90] and specifically how
they shape human behavior in HRI [48]. One of the primary concerns associated with interpersonal interactions
is the uncertainty about others’ thoughts, attitudes, and behavior. It is suggested that in any given context, people
unconsciously develop expectations that assist in predicting different aspects of the interaction [4]. Such predictions
have a persistent influence on the social sensitivity in the interaction [84, 90].

Expectation may be even more central in human-robot interactions [72] because human norms cannot be fully
applied to interactions with robots [58], and people commonly have various and changing expectations of robots [77].
At the same time, robots’ autonomous behavior typically positions them as independent social actors, triggering a set
of expectations people apply to social contexts. Accordingly, expectations from robots are formed by various factors
ranging from relevant human norms in the social context to experience with real and fictional robots. Technical affinity
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and the introduction of a robot in a specific interaction were also shown to impact the expectations from the robot
[36, 44, 70]. This complexity increases the need to understand and anticipate robots’ behavior during interactions,
emphasizing the importance of deriving accurate expectations. When expectations are violated, one is required to
reassess the situation which leads to higher social sensitivity. The direction of the violation (exceeding or failing to
meet expectations) and its magnitude determine the intensity of the social impact [14, 15]. Various studies have already
mapped people’s expectations of different robots (e.g. [77]) and suggested methods for manipulating, structuring and
modifying expectations. These commonly involve a short explanation about the robot given before the interaction

(36, 70].

2.2.2  Prediction of Social Influence. Expectations are constructed in RoSI as a relative factor predicting the intensity
of the robot’s social influence. The model treats each person’s expectations violation as relative to their own initial
expectations. Thus, the starting point for a person’s expectations of the robot is at the center of the horizontal axis of
Fig. 1, where the robot meets the expectations.

When a robot meets the person’s expectations, the model predicts no change in the robot’s social influence. No
change in the robot’s influence is also predicted when the violation of expectations is surprising since it neither exceeds
the person’s expectation nor fails to meet the person’s expectations. While a surprise at a robot’s actions may influence
the human-robot interaction in some way, we only expect a significant change in the robot’s social influence when the
person’s expectations of the robot are either exceeded, or the robot fails to meet the person’s expectations..

Robotic experiences that fail to meet expectations are predicted to decrease social influence (due to disappointment
and decrease in trust [99]). On the other hand, robotic experiences that exceed participants’ expectations are predicted
to increase social influence (due to the increase in the robot’s perceived capabilities). While the magnitude of the social
influence is predicted to increase, it is not necessarily predicted to be positive. For instance, a robotic experience that
exceeds expectations may lead to increased conformity and obedience.

The relative nature of this factor also suggests that the robot’s social influence will become more typical over
repeating interactions since the expectations from the robot will be updated. If the robot presents consistent behaviors
across several interactions, the expectations from it will be adjusted accordingly. This, in turn, would form a relevant
social context with a typical social influence.

As an illustrative example, consider a robot that provides product recommendations. Accepting the robot’s recom-
mendation for a product to purchase is predicted to depend on the robot’s perceived group membership and the initial
expectations from the robot (whether the robot meets them). If the robot fails to meet expectations (e.g., unable to
provide information about the product or if there are long delays in its responses to questions), the chances that its
recommendation will be followed drop. On the other hand, if the robot provides a sense of caring by asking for the
person’s name and preferences, it is likely to be perceived as exceeding expectations, and its recommendations are

more likely to be accepted by the user.

2.3 Model Independent Factor #2: A Person’s Belonging to the Robot’s Group

The second input to RoSI is the person’s perception of their group membership relative to the robot: whether the person
and the robot belong to the same group or different groups. Let us consider a card game where two human-robot teams
play competitively against each other: participant A and robot Emys play against participant B and robot Glin, as
explored by Correia et al. [22]. Participant A would likely perceive a high degree of belonging to robot Emys’s group
(their partner) and a low degree of belonging to robot Glin’s group (their competitor). We view high and low belonging
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to the robot’s group as a similar concept to intergroup membership (in-group/out-group) [95]. High belonging to the
robot’s group is analogous to the person viewing the robot as an in-group member. Low belonging to the group is
analogous to the person viewing the robot as an out-group member. It is also possible for a person’s belonging to the
robot’s group to exist somewhere in between low belonging and high belonging (e.g., at a neutral midpoint).
People’s perceptions of their and the robot’s group membership can be powerfully shaped by both the robot’s
behavior and environmental factors. People show greater signs of shared group membership (e.g., favor, trust, liking)
with robots that express vulnerability [60, 92], use team-related verbal expressions [21, 81], display empathy [53], and
use social touch [50, 87, 100]. Robots do not even need to have a humanlike appearance to engender themselves to
greater group membership and belonging with people. Using expressive gestures, non-humanoid robots have effectively
communicated responsiveness [12] and security [59] in one-on-one interactions with people. In addition to robot
behavior, environmental factors, such as pre-assigned interaction roles [21, 32, 91], can also influence people’s views of
robots’ group membership. For example, when robots are a part of the same team as a person, those robots are seen as
in-group members, however, when robots are a part of a competing team to a person, those robots are seen as out-group

members [32].

2.3.1 Theoretical Background & Justification. The focus on belonging as one of the two factors determining the robot’s
social influence is grounded in its profound impact on human behavior in interpersonal interactions [10, 17]. The
dramatic effect of belonging is attributed to a fundamental human drive to form meaningful relationships with others
that involve positive and pleasant interactions [1, 9, 10]. In order to satisfy the need to belong, people must establish
meaningful interpersonal connections [63] commonly supported by sharing group membership [10, 42]. Belonging to a
group leads to the rapid formation of strong group bonds, loyalty, and group identification ties [42, 57, 86, 86]. Sharing
group membership encourages behaviors that enhance the chances of being included, such as showing favoritism to
in-group members [7, 42, 57, 86] and defending the integrity of the intergroup social bonds [10]. Belonging to a group
also influences the perceptions of out-groups [10, 62] leading to negative attitudes and rejection of those with different
group membership [62]. This variety of group membership effects contributes to the centrality of belonging in shaping
interactions.

While group membership effects are also observed in HRI, they are not always similar to those observed in human
interactions and present more complex patterns of social influence that underscore their importance to the model.
Robots are not naturally perceived as in-group members and can often be considered a part of a potentially competing
out-group [89]. People are more likely to consider themselves as members of a group with people who share more in
common with them [24]. This is supported by evidence that people demonstrate greater in-group favoritism to other
humans as opposed to robots [32], and to more human-like robots as opposed to more machine-like robots [31]. In
some cases, interactions with robots fail to show any belonging effects that are typically observed in human groups
[13]. However, robots’ behavior and various environmental factors may form a strong sense of mutual human-robot
group membership. In such contexts, people have shown a preference for in-group robots over out-group humans [32].
Given these findings, understanding how a person views their group membership relative to a robot is essential in

determining the amount of social influence a robot can exert on the person.

2.3.2  Prediction of Social Influence. The social influence people experience from a robot will depend on how they view
the robot’s group membership. In explaining this relationship between social influence and belonging, we consider
three categories of belonging: low belonging, neutral belonging, and high belonging. The belonging category may
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change across repeated interactions due to familiarity effects and the development of the relationship (which can be
either positive or negative).

Our model predicts that a robot will have high social influence in both cases of high belonging and low belonging
when compared with cases of neutral belonging. When a person views themselves and the robot as members of the
same group (high belonging), we expect them to display in-group favoritism towards the robot, and thus an increased
likelihood to be influenced by the robot. For example, if a robot viewed with high belonging makes a recommendation
about which product to purchase, our model predicts that the person will be likely to follow that recommendation.

When a person views themselves and the robot as members of different groups (low belonging), it also increases
the robot’s influence. This can especially happen if the robot is viewed as an authoritative figure [3, 34]. Additionally,
people can display outgroup hostility, with possible negative attitudes and aggressive behavior towards the robot.
Taking the same example, if a robot makes a recommendation about which product to purchase and the person views
the robot with low belonging, the person may intentionally choose to purchase a different product or nothing at all,
acting against the recommendation of the robot.

It is also possible for a person to view a robot in a more neutral way (neutral belonging), where they do not view the
robot as either a close in-group member (high belonging) or an opposing out-group member (low belonging). In these
cases of neutral belonging, our model predicts that the robot will have low social influence and that it is less likely to

change the behavior or attitudes of the person with whom the robot is interacting.

2.4 A Potential Mathematical Expression for RoSI

A detail-oriented reader may have noticed that we omit units from the axes and from the colormap of Figure 1, i.e.,
there are no ticks with specific coordinates in the x and y axes nor in the colormap. We do this to emphasize how the
pattern of social influence changes based on the two independent factors more than whether a person’s perspective
about a robot has a specific (x,y) coordinate or social influence takes on a specific numeric value. In other words, RoSI
provides the pattern of impact on social influence; it is not intended to provide an exact prediction of the social influence
magnitude. The pictorial representation of RoSI in Figure 1 is inspired by other models with visual representations, like
the uncanny valley model [65]. The uncanny valley is often conveyed and reasoned about through a 2-dimensional
plot that depicts the relationship between the human likeness of an entity and the perceiver’s affinity for it (e.g., see
Figure 1 in [71]). Similar to how the early uncanny valley plots lacked units and concrete measurements, our pictorial
representation for RoSI lacks specific units as well. Also, similar to how follow-up work to the uncanny valley proposal
measured concrete examples along the uncanny valley curve and has proposed refinements to the early model (cf.
[8, 46]), we expect future work to also refine our model of robot social influence for specific contexts of use.

It was important for us to generate RoSI diagrams in this paper using a systematic and reproducible procedure.
Although we did not want these diagrams to focus on specific (x, y) and social influence values as described before,
defining this systematic procedure required choosing some underlying mathematical formulation for RoSI. With such a
formulation, one could then reason about robot social influence across different potential interactions with a robot, as
further described in the next section.

We considered different mathematical formalizations for RoSI that matched the general shape of the RoSI’s pictorial
representation in Figure 1a; ultimately, though, we chose to err on the side of simplicity per Occam’s razor or the
principle of parsimony. We chose to generate all RoSI diagrams shown in this paper with the following expression:
Social_Influence(x,y) = x +ay?, where x represents violations of expectations, y represents belonging, and « is a scaling

factor between the independent terms. For this mathematical expression, we assumed that « € R is a positive scalar
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such that both independent factors contribute to social influence. Also, we assumed that y € [—c,c] with ¢ € R5
and square the contribution of y such that Social_Influence(x, y) follows the 3D surface depicted in Figure 1a.? It is
important to note that while squaring y increases its impact in comparison to x, the & coefficient can further define the
tradeoff between these factors. We could have chosen the absolute value for the y component of the equation instead of
the squared exponential, but this would have resulted in a more sensitive variation in influence around y=0. Instead
of that variation, we wanted to accentuate that we expect social influence to be more pronounced with high or low
belonging, farther away from y=0. Other mathematical expressions that follow the shape of the surface in Figure 1a are
possible for RoSL e.g., instead of squaring y, one could use other exponentials that are convex functions as well, such as
y*. Additional possibilities include more complex functions like a Tukey loss curve. We leave the exploration of other

mathematical forms for RoSI to future work.

3 EMPLOYING USE-CASE DIAGRAMS TO DISPLAY RoSI PREDICTIONS

When focusing on a specific human-robot interaction, RoSI predicts the pattern of magnitude change in the robot’s
social influence according to the implementation of the two predicting factors (violation of expectations and belonging)
in that specific interaction. This type of integrated impact can be visualized in model use-case diagrams, as exemplified
in Figure 2.

Use-case diagrams are a direct application of the social influence surface depicted in Figure 1. The independent
variables represented by the x and y axes and their underlying relationship to social influence are the same between
the RoSI model in Figure 1 and RoSI use-case diagrams. More specifically, the x axis of a use-case diagram corresponds
to the degrees to which a robot exceeds or fails to meet the person’s expectations (factor #1 in Section 2.2). The y axis
corresponds to how much the person considers themselves and the robot as belonging to the same group (factor #2
in Section 2.3). Finally, social influence in a use-case diagram is predicted to vary in a similar fashion to the surface
depicted in Figure 1a and as explained in Section 2.4. Thus, the colormaps used to convey social influence in Figure 1
and in the use-case example in Figure 2 are the same.

There is one main difference between the RoSI model plots in Figure 1 and use-case diagrams: use-case diagrams
highlight specific points in time during interactions, e.g., according to experimental conditions in a user study. Thus,
one can think of a user diagram as multiple RoSI model plots, like the ones in Figure 1, overlaid on top of each other.
Each of the plots conveys how social influence changes over time according to different interactions. This is achieved
by visualizing a trajectory from an initial set of values for the model’s independent factors (x1, y1) when an interaction
starts to a new set of values (x2, y2) later in time, when an interaction has already taken place. The usefulness of RoSI is
in predicting the pattern of magnitude change in the robot’s social influence during the interaction. Consequently, the
value of a use-case diagram stems from being able to visualize these predictions all in one place, facilitating comparisons.
Importantly, the use-case diagrams assume that in all the interactions that they consider, the initial expectation of
interest (factor #1) is uniform across the interactions when the human-robot encounters start. That is, x; is the same
across all interactions visualized in the use-case diagram. This assumption is important to be able to compare different
interaction trajectories with respect to violations of expectations in one diagram because this is intrinsically a relative

construct. One has to have some initial set of expectations for them to be violated in some way.

20ur implementation of the equation and the code for generating the plots in this paper are provided in the supplementary material. In the code, the
equation Social_Influence(x, y) = x + ay® uses x € [0,2], y € [—1,1], and @ = 1.5. These values made the mathematical expression look like the 3D
surface in Figure 1a and facilitated visual coloring of the plots using the cool colormap of the Matplotlib visualization library.
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high
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more
influence
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Fig. 2. Use-case diagram for RoSl. The model is applied to a hypothetical HRI between-subjects experiment where participants
interact with a robot that either “Supports Ideas” and actively defends them, or suggests “Irrelevant ldeas” during a brainstorming
session. The thickness of the boxes for the experimental conditions and the color of their edges indicate the expected amount of
social influence according to RoSI (with a thicker edge corresponding to more influence). Under the Irrelevant Ideas condition,
the interaction with the robot evolved such that the robot failed to meet the expectations of a participant. Under the Supports
Ideas condition, the robot increased a participant’s perception of their group membership relative to the robot as well as exceeded
expectations. See Section 3.1 for more details.

Use-case diagrams highlight the person’s perspective when an interaction begins with the s symbol. This symbol
is always at the midpoint of the x axis because violations of expectations is a relative construct, as explained before.
The position of the s symbol on the y axis depends on the degree to which the interaction started with the person
perceiving themselves and the robot as sharing group membership.

The social influence at the end of the interaction with the robot is indicated by a rectangle in the use-case diagrams.
The rectangle’s position represents the violation of expectations experienced in the interaction and the final perception
of sharing group membership with the robot. The estimated magnitude of the social influence is indicated by the
thickness of the rectangle’s frame and its edge color, which correspond with the social influence magnitude pattern
presented in Figure 1. The arrow from s to the rectangle shows how the person’s perspective changed during the

human-robot interaction, e.g., according to an experimental manipulation during a user study.

3.1 Applying the Model to a Study

In this section, we will go through an example of how to apply the RoSI model to a given study. We would like to
highlight that the following discussion is based on the experience and judgment of the researchers. Therefore, we
recommend discussing the planned experiment among experts when applying the model to make predictions. We will
use as an example the hypothetical study shown in Figure 2, where the aim is to predict the social influence of a robot
on a participant given the ideas it provides during a brainstorming session. Let us say that there are two types of robot
behaviors that we are interested in comparing: one where the robot supports the ideas the user is providing while
brainstorming and one where the robot will provide several ideas that are irrelevant to the topic of the brainstorming
session.

The first step is to determine the starting location s in the diagram. As previously mentioned, the expectations factor
is relative, so the ‘s would be set in the middle of the x-axis. Since the robot engages in a collaborative brainstorming
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session with the user, we might set the start somewhat above neutral on the y-axis (belonging). Next, the changes
in expectations and belonging need to be determined given the robot’s behaviors in the two conditions. First, let us
consider the robot that provides irrelevant ideas. The group membership would likely not change as the user and the
robot are still collaborating on the same task, and the robot is not increasing nor decreasing its belonging perception.
However, it will likely fail to meet the user’s expectations as the ideas it is providing are unrelated to the task. Therefore,
we would likely place the end-point of the irrelevant ideas condition at the same height of belonging but to the left of
the starting point. Next, we evaluate the robot that supports the user’s ideas. As the robot is positive about the user’s
ideas, their feelings of belonging would likely increase. Additionally, for a robot to support the user’s ideas it would
need an understanding of what the user is saying and be able to verbally express its support. This usually exceeds what
many people expect robots to be able to do. Therefore, the end-point of the robot that supports ideas would likely be
placed to the right (exceeds expectations) and higher up (increased belonging) than the starting point.

Now that we have determined the endpoints of each of the conditions compared to the start point, we can deduce
which of the conditions would likely have higher social influence. As can be seen in Figure 2, the “irrelevant ideas”
condition is displayed as an aqua color (and a thin outline), which represents a lower degree of social influence. On the
other hand, the “support ideas” condition is displayed in dark blue (and a thicker outline), which displays a moderate
amount of social influence. Therefore, the robot that “supports ideas” is likely to have greater social influence (e.g., it is
more likely that the person will comply with its requests in a later interaction) than a robot that provides “irrelevant
ideas”.

A similar step-by-step process can be used for any study one is planning on conducting. First, determining the
starting location, and in sequence, determining how the robot’s behavior (or how different experimental conditions)
would exceed or fail to meet expectations and how the user’s feeling of belonging would change. The end positions
of each experimental condition can be compared to deduce which one would likely have a higher degree of social

influence on the user. We use a similar process as described in this section to generate the graphs in Section 4.

4 EXAMINING HRI STUDIES WITH RoSI

This section exemplifies RoSI on prior HRI studies presented as use-case diagrams (Figures 3-7). To facilitate repro-
ducibility, all the use-case diagrams were created with the RoSI mathematical expression from Section 2.4. The process
used to create the diagrams followed the description in Section 3. As a result, the diagrams should be interpreted as
explained in that prior section.’

The examples discussed next were chosen because they vary in their level of belonging and violation of expectations,

leading to a diverse set of social influence effects. The examples also span a variety of settings and applications.

4.1 Example 1: Admonishing Robot Behavior

Our first example concerns public human-robot interactions as described in the study by Mizumaru et al. [64]. In
particular, the authors investigated how people in a shopping mall in Japan reacted to a Robovie-R3 robot that acted as
a guard, patrolling the environment and asking pedestrians to not use smartphones while walking — something that is
discouraged in many public places in Japan. The robot guard approached a pedestrian using a smartphone in one of two
ways: In the Friendly-approach condition, the robot approached the person and followed them while saying “Excuse me.

Using a smartphone while walking is dangerous. Please stop using it”. In the Admonishing-approach condition, the

3There is no difference in the meaning of the curved and straight arrows in the use-case diagrams. These shapes were generally chosen such that the
arrows don’t occlude other parts of the use-case diagrams, like the boxes that indicate the name of an experimental condition.
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robot communicated the same information verbally but used a navigation policy that imitated how a human guard
would admonish the pedestrian. This policy involved slightly faster motion, taking a shortcut to suddenly appear in
front of the pedestrian, and maintaining a meeting distance once the person was reached.

Figure 3 depicts the predictions of our social influence model on the two conditions considered in Mizumaru et al.
[64]. In both cases, the s symbol is lower than the midpoint in the y axis because the robot generally takes on the role
of a guard. It navigates the mall alone and is an authoritative figure, making it an out-group member for pedestrians.
In the Friendly-approach condition, the robot follows a pedestrian, which does not change expectations of the robot
because the robot is acting as a guard in the environment but might slightly decrease out-group perception due to
the coordinated motion with the human. This leads to a close to neutral sense of belonging which in our model is
associated with low social influence. Mizumaru et al. [64] showed that even though the robot asked the pedestrian
to stop using their phone, many people did not comply with its request. In the Admonishing-approach condition, the
robot moves in a confrontational manner and emphasizes the request for the person to stop using their mobile device.
This confrontational movement highlights the robot’s authoritative figure as a guard and increases the perception of
belonging to different groups - guards and pedestrians. This behavior also led to exceeded expectations of the robot, as
one person that experienced this condition indicated “I noticed the robot approaching me, and I was impressed with it, so
I stopped (using the smartphone)” [64]. Therefore, our model predicts that the Admonishing-approach condition would
lead to more social influence on a pedestrian. This prediction aligns with the results in Mizumaru et al. [64], where 8/13
pedestrians stopped using their smartphone in the Admonishing-approach condition versus 2/11 in the Friendly-approach
condition. We note that our model predicts a stronger social influence in this condition in comparison to the media
equation due to the impact of the expectations factor (i.e., the robot exceeding the participant’s expectations), which is

unique to the interaction with robots.

4.2 Example 2: Social Influence in Groups

Our second example is about robot social influence in multi-party HRI. In particular, Connolly et al. [20] studied a

collaborative task between two people (one participant and one confederate) and three robots. Their study investigated
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belonging
more
influence
fails to meet Friendly- exceeds
expectations appr:)ach expectations
S
fAdmonishing-
approach _ less
influence
low
belonging

Fig. 3. Use-case diagram for the experimental conditions from “Stop doing it! Approaches Strategy for a Robot to Admonish
Pedestrians” [64]. See Section 4.1 for more details.
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whether two bystander robots could influence a person to intervene when observing a human confederate mistreat
the third robot. They had two conditions: in the Sad Response condition, the bystander robot exhibited a sad response
whenever the third robot was abused; in the No Response condition, the bystander robots did not respond to the abuse.
Figure 4 shows the application of our model to the interaction between a participant and the bystander robots. The

s had an initial above-average belonging value because the participant was given a collaborative task with the robots.

The Sad Response condition increased group belonging with a bystander robot because it expressed concern for another
group member (the abused robot). Furthermore, its reaction generally highlighted the confederate’s behavior, pushing
the confederate to be an out-group member and strengthening the in-group memberships between the bystander robots
and the participant. Additionally, the robot’s response exceeded the participant’s expectations in the Sad Response
condition because such emotional reactions to a robot’s surroundings are atypical. In contrast, the No Response condition
did not violate participants’ expectations of the robot. Over time, the lack of response by the bystander robot to the
confederate’s abusive actions reduced the degree to which participants perceived themselves as a group with this robot,
as the abuse made them uncomfortable and therefore feel less like a team. Therefore, our model predicts that the Sad
Response condition would lead to a stronger influence than the No Response condition. The paper’s results show that
participants were significantly more likely to react and confront the confederate about the robot abuse in the Sad

Response condition than in the No Response condition. These results are in line with our model’s prediction.

4.3 Example 3: Impacts of Group Membership

Our third example is about multi-party interaction and the influence of different types of group memberships. In
particular, Haring et al. [39] investigated how likely participants were to cooperate with a robot by accepting their
suggestions depending on whether they were part of the same social group as them, and whether they were told
the robot was a teammate or competitor during the game. Participants interacted with two robots, one which was
introduced as being programmed by students from the same country (in-group robot) as them, and the second as being

programmed by visiting students from another country (out-group robot). In the Congruent condition, the in-group
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belonging
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/ influence
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Fig. 4. Use-case diagram for the study conditions in “Prompting Prosocial Human Interventions in Response to Robot Mistreatment”
[20]. See Section 4.2 for more details.

Manuscript submitted to ACM



14 Erel, et al.

robot was assigned the role of a teammate, and the out-group robot the role of a competitor; in the Incongruent condition,
the out-group robot was assigned the role of a teammate and the in-group robot the role of a competitor.

Figure 5 shows the application of our social influence model on how the two robots (in-group and out-group)
were perceived in the two conditions (Congruent and Incongruent) presented in Haring et al. [39]. The s starts at a
moderately high belonging for the in-group robots and at a moderately low belonging for the out-group robot. After
a robot was assigned the role of a teammate (in the In-group Congruent and the Out-group Incongruent conditions),
their belonging increases; whereas after being assigned the role of a competitor (in the In-group Incongruent and the
Out-group Congruent conditions), their group belonging decreases. The model predicts how likely the participant is to
cooperate and accept suggestions from a robot when it is their teammate (In-group Congruent and Out-group Incongruent
conditions). According to our model, we predict that participants are more likely to cooperate with the In-group congruent
robot than with the Out-group Incongruent robot. The paper’s results show that although participants cooperated
with both robots, only in the In-group Congruent condition did participants exceed the minimum cooperation value.
Therefore our model’s prediction is in line with the paper’s results. The paper does not present results on how frequently
participants cooperated with the competitor robot (In-group Incongruent and Out-group Congruent conditions), but our
model predicts that people are more likely to cooperate with the In-group Incongruent robot than with the Out-group
Congruent Robot.

4.4 Example 4: Cheating Robot Behavior

Our fourth example is about a cheating Nao robot that played a rock-paper-scissors game with individuals. Litoiu
et al. [56] hypothesized that the same cheating detection mechanism used towards other people [96, 97] could also be
triggered by a Nao robot, increasing human attributions of agency and intelligence towards the robot. In their study,
participants played 30 rounds of the game with the Nao robot, where they each threw a “rock”, “paper” or “scissor”
gesture. Paper beat rock, rock beat scissors, scissors beat paper, and two of the same gestures resulted in a tie. In rounds
11-20, however, the Nao changed its gesture once it had seen the human’s gesture to alter the game outcome. This

happened under one of four conditions: Cheat to Win, Cheat to Tie from Lose, Cheat to Tie from Win, and Cheat to Lose.
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Fig. 5. Use-case diagram for "Would You Like to Play with Me? How Robots’ Group Membership and Task Features Influence
Human—-Robot Interaction” [39]. See Section 4.3.
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In the former two conditions, the robot improved the game outcome in its favor, while in the latter two conditions, it
improved the outcome for the human player.

Figure 6 shows our model’s prediction from the perspective of a human that perceives the robot as malfunctioning
when it cheats in a way that improves the outcome of the game for the human. The start symbol is lower than the
midpoint of the y-axis because the rock-paper-scissors game involves competition. The Cheat to Win condition exceeds
participants’ expectations of the robot because the robot is violating the rules of the game in a way that gives it an
advantage. Additionally, it makes the robot an out-group member because its actions highlight the competitive nature of
the game. This results in the biggest amount of robot social influence, followed by the Cheat to Tie from Lose condition,
where the cheating behavior is also exceeding the participant’s expectations of the robot, but the actions do not make
the human lose, only tie with the robot. The two other conditions exert less influence because the robot, which is
perceived as malfunctioning, fails to meet the person’s expectations of the robot. These predictions are in alignment
with the results in the paper about the percentage of participants that emitted an utterance after at least one of the
cheating events [56]. This example also indicates the advantages of our model over the Media Equation, as it can account
for the perception of the robot as malfunctioning.

A second alternative explanation to this study is that participants perceived the Cheat to Lose and the Cheat to Tie
from Win conditions as altruistic robot behavior, as it sacrificed its position in the game by cheating to help the human.
In this case, these conditions would exceed expectations about the robot and increase in-group perception. This would
move the conditions to the top-right quadrant of Figure 6, increasing their amount of influence. Unfortunately, Litoiu
et al. [56] did not break down their results according to whether participants perceived the robot as malfunctioning or
being altruistic, so this alternative explanation could not be verified at this time. The important take-away from this
example, though, is that it is critical to consider individual perspectives when applying our proposed model in practice

- this consideration is something that the Media Equation does not emphasize.
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Fig. 6. Use-case diagram for the study conditions in “Evidence that robots trigger a cheating detector in humans” [56] from the
perspective of a person that perceives the robot as malfunctioning. See Section 4.4 for more details.

Manuscript submitted to ACM



16 Erel, et al.

4.5 Example 5: Robot Communication

Our final example concerns pedestrian engagement with a robot at a large-scale public venue. More specifically,
Moshkina et al. [66] conducted an observational study through which they examined the Media Equation in HRI.
The goal was to test the hypothesis that people will respond to a robot as a social partner, provided social cues are
produced by the robot. Thus, their study had six conditions: 1) the robot was stand-alone, doing nothing (S); 2) the
robot communicated through voice only (V); 3) it communicated through voice and moved its lips in sync with speech
(L); 4) it communicated through voice, lip motion and facial expressions (F); 5) it communicated as before but also with
gestures (G); and 6) it communicated through all prior modalities and played a game with a few volunteers (I). The
main measure considered in the study was whether pedestrians in the event attended to the robot.

Figure 7(a) shows our model predictions for the first five conditions. As social cues increase, the position of the
conditions moves to the right (expectations violation axes), increasing the predicted amount of social influence by
the robot. Note that the plot assumes that the person observing the robot has high expectations to begin with due to
the robot’s humanoid features (and the associated expectations that it will behave like a human). Therefore, voice, lip
motion, facial expressions, and gestures are not enough to cross the midpoint of the x axis (i.e., to exceed expectations).
For the first five conditions, our model’s predictions align with the study findings with respect to human attention
towards the robot [66]. The more social cues, the more people attended to the robot for 15+ seconds during the event.
As discussed by the authors, this result is also aligned with the Media Equation.

Based on the Media Equation, Moshkina et al. [66] predicted that the Interactive Game (sixth condition) would be the
most engaging and, thus, would result in the most people attending to the robot during the public event. However, the
authors found the game to be less engaging than when the robot communicated through voice or all other modalities
outside of the game. The authors thought that this result was in direct opposition to the Media Equation and could not
explain why. Analyzing the Interactive Game condition according to our model suggests a more complex effect. Figure
7(b) shows our model predictions for a person that plays the interactive game with the robot. We predict that playing
the interactive game with the robot leads to exceeded expectations of the robot and also increases the perception of
the person and the robot belonging to the same group. Thus, according to our model, the game would increase social

influence on the few people that played the game and they would be more attentive to the robot than people who

a) Interaction Without Game b) Perspective of Game Players c) Perspective of Non-Players During Game
high high high
belonging belonging belonging
more
inf.
fails to SIVILIFGl<s exceeds fails to SIVILIF Gl<s exceeds fails to SIVILIF Gl<s exceeds
meet exp. exp. meet exp. exp. meet exp. exp.
|
_ less
inf.
low low low
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Fig. 7. Use-case diagrams for “Social Engagement in Public Places: A Tale of One Robot” [66]. The condition labels correspond to:
stand-alone robot (S), Voice-only (V), Voice + Lips (L), Voice + Lips + Facial-expressions (F), Voice + Lips + Facial-expressions + Gestures
(G). In addition, figures b) and c) include the Interactive Game condition (I). See Section 4.5 for more details.
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did not participate in the game (as in conditions 1-5). The findings from [66] do not break apart the results for these
participants, so further research is needed to corroborate this prediction.

Figure 7(c) shows our model’s prediction for a person that did not play the game — the majority of the people at the
event. The non-player is predicted to perceive the robot as positively violating expectations because it is more capable
in the game. However, this person also feels less of a sense of belonging to the robot’s group. According to our model,
social influence would still increase for such a non-player during the Interactive Game condition, but we suspect it does
so in a different way: the robot influences non-players to ignore (not attend towards) it because they are outsiders to its
game. This example highlights an important limitation of our model, which is that it does not specify what type of
social influence is being exerted by a robot on a person. Our model only predicts the magnitude of the robot’s social

influence.

5 DISCUSSION

We present a model of Robot Social Influence (RoSI), a theoretical model for understanding and predicting robots’
influence on humans’ behavior and emotions in social contexts. This work extends beyond prior work, which predicts
how people perceive robots [26, 43, 78, 105] or assume like the Media Equation [74] that robots impact would follow
the pattern of human social influence. Instead, the model predicts a person’s response to a robot’s behavior based on
robot-specific interaction factors. The model’s factors, the violation of a person’s expectations of the robot (violation of
expectations) and the social belonging a person feels toward the robot (belonging) capture the varied impact robots
may exert on humans and are also fundamental to interpersonal interactions in general. When applied to human-robot
interactions, these factors predict social influence that, in some cases, matches human social influence and in others is
unique to interactions with robots. Using these two primary factors, the model provides a basis for predicting a wide
range of social effects in human-robot interactions.

As a first step toward validating the theory, we demonstrated how the model’s prediction corresponds with the
results of five previously published user studies that display a variety of manipulations in both violation of expectations
and belonging. We also suggest possible interpretations for unpredicted findings in some of those studies that cannot
be explained by assuming that people’s responses to robots are similar to their responses to people (i.e., the Media
Equation). While these analyses of previous studies do not directly validate the model due to their post-hoc nature, they
provide initial support for the relation between the independent factors and social influence. We encourage future work
to further validate this model by manipulating both violation of expectations and belonging in empirical studies, and
mapping the resulting social influence to the model’s prediction depicted in Fig. 1.

One limitation of this model that we want to highlight is its lack of a valence prediction for the robot’s social
influence on a person. While the model estimates the magnitude of the social influence, it does not predict the influence
type and whether it is positive or negative. To predict valence, a social influence model should involve numerous
factors that account for a variety of interaction contexts. Instead, we chose to design a simple model that includes
only two fundamental factors that predict the magnitude of a robot’s social influence on a person in a wide range of
interactions. The simplicity of the model also leads to a non-bijective prediction of social influence. Since the model
predicts increasing influence for both high and low belonging, extremely opposite human-robot interactions may result
in a similar prediction by the model. It is possible that future elaborations of the model and the addition of independent
factors may resolve this concern and lead to bijective predictions. Another limitation concerns the single perspective
assumed by our model. As suggested by Clark and Fisher (2023), people can take different perspectives when interacting

with a robot. These range from the robot’s physical aspects to perceiving the robot as a character with various attributes
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and features. Taking different perspectives can highly impact the expectations of the robot and the sense of belonging.
To keep our model simple, one of our assumptions is that people will take a single perspective while interacting with
the robot and will not switch between perspectives which may change their expectations and sense of belonging. Future
work should further elaborate the model to address this possibility.

Our model focuses on what we consider to be the two most important and critical factors, at times valuing simplicity
over complete accounting of all possible factors. There are certainly other independent factors that result in social
influence [23, 55]. For example, the model may predict different social influences for diverse populations and group
identification. Different cultures may mediate participants’ sense of belonging and diverse experience with robots
may mediate the impact of violating expectations. Other examples include group size, group cohesion, the social
environment, the number of robots in the interaction, the task, and the importance of the interaction to the participant.
Mediating factors may also change the pattern of influence within each factor. For example, under specific circumstances,
negativity bias may lead to a greater social influence of low belonging (e.g., exclusion) compared to high belonging
(e.g., inclusion). Specific circumstances can also lead to different relations between our two main factors, shaping the
interaction between them and its impact on the robot’s social influence. While this may be the case for any theory
aiming to predict a meaningful effect, we suggest that an interesting avenue of future work is extending RoSI to consider
these other factors while keeping the model interpretable.

Despite the limitations mentioned above, we believe that this model of Robot Social Influence (RoSI) provides a
strong alternative to the oversimplified perception assuming that social interactions with robots are similar to social
interactions between humans. The model identifies two fundamental factors that predict a robot’s unique influence
on humans in social interactions: violation of expectations and belonging. By mapping human-robot interactions with
these two factors, our model demonstrates how they can account for the magnitude of social influence in various social

contexts of human-robot interactions.
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