DOI:10.1130/G51194.1

- 1 https://doi.org/10.1130/G51194.1
- 2 Manuscript received 22 February 2023
- 3 Revised manuscript received 30 June 2023
- 4 Manuscript accepted X Month 2023
- 5 Paul Kapp[ID]https://orcid.org/0000-0002-7173-9908
- 6 *pkapp@email.arizona.edu
- 7 CITATION: Kapp, P., et al., 2023, Laramide bulldozing of lithosphere beneath the Arizona
- 8 transition zone, southwestern United States: Geology, v. XX, p. XXX–XXX,
- 9 https://doi.org/10.1130/G51194.1
- 10 Printed in the USA
- 11 ¹Supplemental Material. Analytical methods, data tables and figures, and thermal modeling
- information. Please visit https://doi.org/10.1130/GEOL.S.XXXX to access the supplemental
- material, and contact editing@geosociety.org with any questions.
- Laramide bulldozing of lithosphere beneath the Arizona
- transition zone, southwestern United States
- Paul Kapp^{1*}, Gilby Jepson², Barbara Carrapa¹, Allen J. Schaen¹, John J.Y. He¹, and
- 17 Jordan W. Wang¹
- ¹Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA
- 19 ²School of Geosciences, University of Oklahoma, Norman, Oklahoma 73019, USA
- 20 ABSTRACT
- The northwest-trending transition zone (TZ) in Arizona (southwestern United States) is
- 22 an ~100-km-wide physiographic province that separates the relatively undeformed southwestern

margin of the Colorado Plateau from the hyperextended Basin and Range province to the southwest. The TZ is widely depicted to have been a Late Cretaceous–Paleogene northeast-dipping erosional slope along which Proterozoic rocks were denuded but not significantly deformed. Our multi-method thermochronological study (biotite ⁴⁰Ar/³⁹Ar, zircon and apatite [U-Th-Sm]/He, and apatite fission track) of Proterozoic rocks in the Bradshaw Mountains of the west-central Arizona TZ reveals relatively rapid cooling (~10 °C/m.y.) from temperatures of >180 °C to <60 °C between ca. 70 and ca. 50 Ma. Given minimal ca. 70–50 Ma upper-crustal shortening in the TZ, we attribute cooling to exhumation driven by northeastward bulldozing of continental lower crust and mantle lithosphere beneath it by the Farallon flat slab. Bulldozing is consistent with contemporaneous (ca. 70–50 Ma) underplating and initial exhumation of Orocopia Schist to the southwest in western Arizona and Mesozoic garnet-clinopyroxenite xenoliths of possible Mojave batholith keel affinity in ca. 25 Ma TZ volcanic rocks.

INTRODUCTION

An outstanding question in tectonics is the extent to which flat-slab oceanic subduction beneath continental lithosphere can drive inboard translation and thickening of continental lower crust. The anomalously thick crust of the Rocky Mountain foreland and Great Plains has been attributed to inboard shearing of North American lithosphere by flat-slab subduction during the Laramide (ca. 85–40 Ma) orogeny (Bird, 1984). In the southwestern United States, very shallow Laramide flat-slab subduction is inferred to have juxtaposed subducted, mostly clastic sedimentary rocks (Orocopia and related schists; henceforth Orocopia Schist) at depths of ~35 km beneath continental crust over an inboard distance of ≥200 km (Fig. 1; Chapman, 2016; Jacobson et al., 2017; Seymour et al., 2018). This hypothesis requires preexisting continental

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

lower crust and mantle lithosphere to have foundered into the mantle or been bulldozed inboard ahead of the leading hinge in the flat slab (Axen et al., 2018; Chapman et al., 2020a).

The transition zone (TZ) in Arizona is a topographically rugged physiographic province separating the southwestern Colorado Plateau from the Basin and Range province (Fig. 1). The TZ is transitional in the magnitude of Oligocene–Miocene extensional deformation, modern crustal thickness (decreasing southwestward across it from ~45 km to ~25 km), and mean elevation (Tork Qashqai et al., 2016). The western TZ exposes 1.8–1.6 Ga (meta)granitic and metasedimentary rocks, ca. 1.4 Ga plutons, and ca. 80-65 Ma tonalitic stocks (Fig. 2; DeWitt et al., 2008). Proterozoic rocks are buried in places by Neogene syn- to post-extensional sedimentary basins and volcanic rocks (DeWitt et al., 2008). The nonconformity between Proterozoic rocks and Paleozoic strata is exposed in the northern TZ and dips regionally <1°-2° to the northeast (Fig. 1). The TZ was not significantly shortened during Laramide orogenesis (Jenney and Reynolds, 1989) but became a proximal source of fluvial sandstone and conglomerate in northwestern Arizona by ca. 64 Ma (Fig. 1; Young and Hartman, 2014; Hill et al., 2016). Recent studies raise the possibility that continental lower crust and mantle lithosphere might have been bulldozed beneath the TZ during Laramide flat-slab subduction (e.g., Chapman et al., 2020a). The TZ is oriented nearly orthogonal to the ca. 80-50 Ma Farallon-North America relative plate convergence vector (Fig. 1) and within the corridor where a hypothesized oceanic plateau subducted beneath western North America (Livaccari et al., 1981; Saleeby, 2003). Integration of lithospheric strain rates back through time implicates a ≥55-km-thick crust within the TZ prior to Miocene extension (Bahadori et al., 2018). Igneous geochemical studies are also consistent with a previously thick TZ crust (~58 km at ca. 76 Ma; Chapman et al., 2020b). Garnet-clinopyroxenite xenoliths in ca. 25 Ma TZ volcanic rocks (Fig. 1) are interpreted to

represent cumulates or residues that developed in situ during Laramide magmatism at depth (Erdman et al., 2016) or fragments of the mafic keel to the Mojave batholith that were bulldozed beneath the TZ (Chapman et al., 2020a; Rautela et al., 2020). Orocopia Schist exposed at Cemetery Ridge and the Plomosa Mountains (Fig. 1; Jacobson et al., 2017; Seymour et al., 2018) would have abutted the southwestern TZ prior to ~100 km of intervening Miocene northeast-southwest extension (Spencer and Reynolds, 1990[[changed year to match Reference List]]). If crustal thickening of the TZ by bulldozing did occur, it should have been active at least when Orocopia Schist was being emplaced beneath western Arizona at ca. 70–65 Ma (Chapman, 2016; Jacobson et al., 2017; Seymour et al., 2018) and might have induced erosion-driven exhumation as topographic relief was generated in the TZ. This timing prediction motivated our thermochronological study of the TZ.

PREVIOUS THERMOCHRONOLOGIC DATA

Thermochronological data record information about the timing of rock cooling below their respective closure temperature windows, which are broad but nominally ~250–400 °C for biotite ⁴⁰Ar/³⁹Ar, ~200–240 °C for zircon fission track (ZFT), ~180 °C for zircon (U-Th-Sm)/He (ZHe), ~60–115 °C for apatite fission track (AFT), and ~60–80 °C for apatite (U-Th-Sm)/He (AHe) (Reiners et al., 2018, and references therein). Biotite K-Ar and ⁴⁰Ar/³⁹Ar apparent ages from Proterozoic TZ rocks are overwhelmingly Proterozoic (DeWitt et al., 2008, and references therein). The Mesozoic–Cenozoic thermal history of the TZ is roughly constrained from three AFT ± ZFT transects that span the Poachie, Bradshaw, and Mazatzal Mountains[[Poachie Range and Bradshaw and Mazatzal Mountains (according to the USGS geographic names database, GNIS)? Check all instances of "Poachie"]] (Fig. 2; Bryant et al., 1991; Foster et al., 1993). These studies showed that TZ rocks cooled during Cretaceous–Cenozoic time from

temperatures of <120 °C near the Proterozoic unconformity to >200 °C at the deeper structural levels now exposed in the southwest. The Poachie Mountains experienced moderate rates of cooling between ca. 85 and 55 Ma (Bryant et al., 1991). Elsewhere in the TZ, most AFT samples exhibit bimodal track-length distributions that suggest initial cooling during the Laramide orogeny followed by ≤25 Ma cooling associated with extension (Foster et al., 1993). There are no published ZHe or AHe data from the TZ, but an AHe investigation of the southwesternmost margin of the Colorado Plateau suggests >1.5 km of Late Cretaceous sedimentary burial followed by exhumation between ca. 60 and 50 Ma (Flowers et al., 2008).

METHODS

Our new igneous zircon U-Pb and biotite 40 Ar/ 39 Ar, ZHe, AFT, and AHe data from the approximately northwest-trending Bradshaw Mountains come from samples of five Proterozoic granitoids, one Late Cretaceous stock, and one modern river sand (Fig. 2) (see the Supplemental Material¹ for analytical methods, data tables, supplemental data figures, and thermal modeling information). The samples span a range-parallel distance of \sim 50 km and elevations ranging from 994 to 2212 m. To limit the effects of \leq 25 Ma tectonic exhumation or sedimentary burial, we focused our sampling within interior parts of the range located farthest away from Neogene extensional faults and basins. The number of individual zircon crystals analyzed for each of the four ZHe samples is only two to four because of their low yield of suitable zircons; for these samples, we report their unweighted mean age and standard deviation. A larger number of individual apatite crystals (n = 7-8) were analyzed for each of the three AHe samples; for these, we report first quartile dates (FQDs), which have been shown to provide the most geologically meaningful information for relatively low-n and relatively fast-cooled samples with dispersed

single age distributions, along with 1σ uncertainties quantified through non-parametric bootstrapping (He et al., 2021).

RESULTS

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Proterozoic rocks in the Bradshaw Mountains are locally intruded by kilometer-scale Late Cretaceous stocks with previously determined biotite/hornblende[Replace slash with "and", "or", or "and/or" (or other appropriate wording)]] K-Ar dates ranging from 76 to 64 Ma (Fig. 2; DeWitt et al., 2008, and references therein). The K-Ar dates are generally taken to approximate the timing of post-magmatic thermal equilibration, which occurs within a few million years for stocks emplaced at shallow crustal depths (McInnes et al., 2005). Supporting this assumption is the consistency between a newly determined U-Pb zircon mean crystallization age of 71.9 ± 0.9 Ma (2σ ; n = 33 zircon laser spot ages; Fig. S1 in the Supplemental Material) for a tonalitic stock (sample A in Fig. 2) and a biotite K-Ar date of ca. 70 Ma from an adjacent stock (Fig. 2). Sample A yields single-grain AHe dates ranging from ca. 37 to 66 Ma with a FQD of 44 \pm 4 Ma (Fig. 3A), suggesting that the stock remained at temperature \geq 60 °C for \geq 20 m.y. after crystallization. Sample B of a foliated Proterozoic granite located <1 km from a stock with a hornblende K-Ar date of ca. 64 Ma yields a ZHe date of 66 ± 1 Ma (n = 3) (Figs. 2 and 3B). Sample C of a ca. 1.7 Ga granodiorite located <1 km from a stock with a biotite K-Ar date of ca. 65 Ma yields an AFT central age of 61 ± 4 Ma and strongly dispersed individual AHe dates with a FQD of 52 ± 26 Ma (Figs. 2 and 3A). Given their similarity to adjacent K-Ar dates, the ZHe and AFT dates from samples B and C likely reflect thermal perturbations associated with magmatism.

ZHe dates from northernmost sample D and southernmost sample E of Proterozoic granitoids are 50 ± 4 Ma (n = 3) and 54.9 ± 0.5 Ma (n = 2), respectively (Figs. 2 and 3B).

Because these ZHe dates are too young to reflect post-magmatic thermal equilibration, they are interpreted to record cooling in response to erosion. Two ⁴⁰Ar/³⁹Ar incremental heating experiments on biotite (one single crystal, one 0.5 mg aliquot) from sample E yield overall similar and discordant age spectra that do not meet plateau criteria (Figs. S2 and S3). Apparent ages increase from ca. 30 to ca. 50 Ma during progressive degassing and are younger than the two individual ca. 55 Ma ZHe dates for the same sample. The most likely explanation for the anomalously young apparent ages is partial alteration of biotite to vermiculate[[Do you mean "vermiculite"?]] as determined using Raman spectroscopy (Fig. S4).

Two 40 Ar/ 39 Ar incremental heating experiments on biotite (one single crystal, one 1 mg aliquot) from easternmost sample F of a ca. 1.7 Ga granite (DeWitt et al., 2008) yield similarly shaped age spectra that range from ca. 0.8 Ga to ca. 1.4 Ga (Fig. S5). Omitting the initial ~7% 39 Ar_K[[Explain what the subscript "K" represents]] from each experiment yields coeval inverse isochron ages of ca. 1.4 Ga with subatmospheric 40 Ar/ 36 Ar intercept values resulting from apparent Ar loss (Fig. S6). Sample F also yields a ZHe date of 64 ± 8 Ma (n = 4), an AFT central age of 53 ± 4 Ma, and an AHe FQD of 48 ± 8 Ma (Figs. 2 and 3). Inverse thermal history modeling using QTQt 5.7.0 (Gallagher, 2012) on samples C and F (see the Supplemental Material), integrating the AFT central age and single-grain age distribution, confined tracklength distribution, thermal influence of the ca. 65 Ma stock on sample C, and ZHe and/or AHe single-grain dates, reveals an episode of accelerated cooling (~10 °C/m.y.) from ~150–200 °C to near-surface temperature between ca. 70 and 50 Ma (Fig. 3C).

Lastly, detrital AFT dates (n = 117) on sample G of modern Hassayampa River sand yield a unimodal distribution with a central age of 55.8 ± 1.4 Ma (Fig. 2; Fig. S7). The catchment area for sample G is only ~ 9 km² but located ~ 20 km to the northwest of sample F in a different

catchment with an indistinguishable AFT central age of 53 ± 4 Ma, suggestive of a similar and regional low-temperature cooling history for the central Bradshaw Mountains.

DISCUSSION AND CONCLUSIONS

Our thermochronologic data from the Bradshaw Mountains suggest rapid (~10 °C/m.y.) cooling between ca. 70 and 50 Ma. Initial cooling at ca. 70–65 Ma could reflect post-magmatic thermal equilibration, but most of the subsequent cooling is attributed to erosion. Both the Poachie Mountains to the west and the southwesternmost Colorado Plateau to the northeast, where Late Cretaceous intrusions are absent, experienced cooling between ca. 85–80 Ma and ca. 50 Ma (Bryant et al., 1991; Flowers et al., 2008; Fig. 3C). The Basin and Range province to the southwest also records widespread ca. 80–50 Ma cooling prior to Miocene core complex development (Fig. 2; e.g., Knapp and Heizler, 1990; Wong et al., 2023). The Orocopia Schist, Maria fold-thrust belt, a narrow northwest-trending belt of metamorphic core complexes between Phoenix (Arizona) and southeastern California, garnet-clinopyroxenite xenolith localities, and the oldest (Paleocene) Rim[[Explain what "Rim" refers to (check all instances for clarity)]] gravels in northwestern Arizona are all exposed along the trajectory where the Farallon flat slab plowed into the southwestern Cordilleran orogen (Fig. 1). We present a tentative regional tectonic history that attempts to link these elements with the evolution of the TZ.

In contrast to the TZ, Late Cretaceous shortening is significant in southeastern California and western Arizona as manifested by the basement-involved but thin-skinned-style and ductile Maria fold-thrust belt (Fig. 1; Reynolds et al., 1986; Hamilton, 1987; Spencer and Reynolds, 1990; Boettcher et al., 2002). Thrusts and folds generally verge toward the south-southwest, in contrast to the east-vergent Sevier thrust belt to the north (Fig. 1), and were active between ca. 90 and 70 Ma (Reynolds et al., 1986; Knapp and Heizler, 1990; Boettcher et al., 2002). Hence, the

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Maria fold-thrust belt could have fed crust in the footwall of its décollement beneath the TZ (Fig. 4A). Underthrusting could explain ca. 85–70 Ma exhumation in the Poachie Mountains and thick crust in the TZ by ca. 76 Ma (Chapman et al., 2020b).

The beginning of flat-slab subduction near the trench at ca. 90 Ma (Chapman, 2016) might have accelerated shortening within the Maria fold-thrust belt, while whereas the passage of the buoyant flat slab and underplating of Orocopia Schist beneath the continental margin may have led to its ca. 70–50 Ma extensional reactivation (e.g., Boettcher et al., 2002; Wong et al., 2023). Ca. 70–50 Ma cooling of the TZ, perhaps driven by inboard bulldozing of lithosphere beneath it, was coeval with initial river incision and Rim gravel deposition in northwestern Arizona (Young and Hartman, 2014; Hill et al., 2016) (Fig. 4B). Eclogite xenoliths in the Navajo volcanic field[[Briefly describe where this is located relative to the study area]] suggest that the top of the Farallon slab was located at a depth of ~120 km beneath the Four Corners region[[Unclear whether this is a reference that would be widely understood by an international audience. Perhaps give geographical context - e.g., "(northeastern corner of Arizona)"?]] (Hernández-Uribe and Palin, 2019, and references therein), implicating a hinge in the flat slab. A logical place for a hinge to have formed is where the flat slab first encountered stronger lithosphere as it translated inboard. Lithosphere to the southwest of the TZ was weakened by Mesozoic magmatism, lithospheric thinning during Border [Explain what "Border" refers to | rift development, and Late Cretaceous crustal shortening and anatexis (Jenney and Reynolds, 1989), whereas Colorado Plateau lithosphere experienced none of this. The location of the hinge in the flat slab at the TZ can also explain why bulldozed lithosphere thickened preferentially beneath it (Fig. 4B).

204	Beginning at ca. 25 Ma, ductile crust extruded to the southwest from beneath the TZ in
205	the footwalls of large-displacement detachment faults (Spencer and Reynolds, 1989; Bryant et
206	al., 1991), drainage reversed from northeastward to southwestward across the TZ (Anderson et
207	al., 2021; Potochnik et al., 2022), and volcanism became more widespread (Fig. 4C). Extensional
208	collapse is attributed to foundering of the Farallon slab and dense bulldozed lithosphere and was
209	directed southwestward by the buoyancy of the TZ crustal root (Fig. 4C; Chapman et al., 2020a).
210	ACKNOWLEDGMENTS
211	This research was supported by U.S. National Science Foundation (NSF) grant EAR-
212	2048656. The Arizona LaserChron Center and Noble Gas Laboratory (University of Arizona) are
213	funded by NSF grants EAR-1649254 and EAR-182692.[[Is this grant number missing a
214	digit?]] We thank D. Alberts and J. Headley for laboratory assistance and A. Chapman, C.
215	Jacobson, and N. Seymour for constructive reviews.
216	REFERENCES CITED
217	Anderson, J.C., Karlstrom, K.E., and Heizler, M.T., 2021, Neogene drainage reversal and
218	Colorado Plateau uplift in the Salt River area, Arizona, USA: Geomorphology, v. 395,
219	https://doi.org/10.1016/j.geomorph.2021.107964.
220	Axen, G.J., van Wijk, J.W., and Currie, C.A., 2018, Basal continental mantle lithosphere
221	displaced by flat-slab subduction: Nature Geoscience, v. 11, p. 961-964,
222	https://doi.org/10.1038/s41561-018-0263-9.
223	Bahadori, A., Holt, W.E., and Rasbury, E.T., 2018, Reconstruction modeling of crustal thickness
224	and paleotopography of western North America since 36 Ma: Geosphere, v. 14, p. 1207-
225	1231, https://doi.org/10.1130/GES01604.1.

226	Bird, P., 1984, Laramide crustal thickening event in the Rocky Mountain foreland and Great
227	Plains: Tectonics, v. 3, p. 741–758, https://doi.org/10.1029/TC003i007p00741.
228	Boettcher, S.S., Mosher, S., and Tosdal, R.M., 2002, Structural and tectonic evolution of
229	Mesozoic basement-involved fold nappes and thrust faults in the Dome Rock Mountains,
230	Arizona, in Barth, A., ed., Contributions to Crustal Evolution of the Southwestern United
231	States: Geological Society of America Special Paper 365, p. 73-97,
232	https://doi.org/10.1130/0-8137-2365-5.73.
233	Bryant, B., Naeser, C.W., and Fryxell, J.E., 1991, Implications of low-temperature cooling
234	history on a transect across the Colorado Plateau-Basin and Range boundary, west central
235	Arizona: Journal of Geophysical Research, v. 96, p. 12,375–12,388,
236	https://doi.org/10.1029/90JB02027.
237	Chapman, A.D., 2016, The Pelona-Orocopia-Rand and related schists of southern California: A
238	review of the best-known archive of shallow subduction on the planet: International
239	Geology Review, v. 59, p. 664–701, https://doi.org/10.1080/00206814.2016.1230836.
240	Chapman, A.D., Rautela, O., Shields, J., Ducea, M.N., and Saleeby, J., 2020a, Fate of the lower
241	lithosphere during shallow-angle subduction: The Laramide example: GSA Today, v. 30, no
242	1, p. 4–10, https://doi.org/10.1130/GSATG412A.1.
243	Chapman, J.B., Greig, R., and Haxel, G.B., 2020b, Geochemical evidence for an orogenic
244	plateau in the southern U.S. and northern Mexican Cordillera during the Laramide orogeny:
245	Geology, v. 48, p. 164–168, https://doi.org/10.1130/G47117.1.
246	DeWitt, E., Langenheim, V.E., Force, E., Vance, R.K., Lindberg, P.A., and Driscoll, R.L., 2008,
247	Geologic map of the Prescott National Forest and the headwaters of the Verde River,

248	Yavapai and Coconino Counties, Arizona: U.S. Geological Survey Scientific Investigations
249	Map 2996, scale 1:100,000, 100 p., https://doi.org/10.3133/sim2996.
250	Erdman, M.E., Lee, CT.A., Levander, A., and Jiang, H.H., 2016, Role of arc magmatism and
251	lower crustal foundering in controlling elevation history of the Nevadaplano and Colorado
252	Plateau: A case study of pyroxenitic lower crust from central Arizona, USA: Earth and
253	Planetary Science Letters, v. 439, p. 48-57, https://doi.org/10.1016/j.epsl.2016.01.032.
254	Flowers, R.M., Wernicke, B.P., and Farley, K.A., 2008, Unroofing, incision, and uplift history of
255	the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry: Geological
256	Society of America Bulletin, v. 120, p. 571–587, https://doi.org/10.1130/B26231.1.
257	Foster, D.A., Gleadow, A.J.W., Reynolds, S.J., and Fitzgerald, P.G., 1993, Denudation of
258	metamorphic core complexes and the reconstruction of the transition zone, west central
259	Arizona: Constraints from apatite fission track thermochronology: Journal of Geophysical
260	Research, v. 98, p. 2167–2185, https://doi.org/10.1029/92JB02407.
261	Gallagher, K., 2012, Transdimensional inverse thermal history modeling for quantitative
262	thermochronology: Journal of Geophysical Research, v. 117, B02408,
263	https://doi.org/10.1029/2011JB008825.
264	Hamilton, W.B., 1987, Mesozoic geology and tectonics of the Big Maria Mountains region,
265	southeastern California, in Dickinson, W.R., and Klute, M.A., eds., Mesozoic Rocks of
266	Southern Arizona and Adjacent Areas: Arizona Geological Society Digest 18, p. 33-47.
267	He, J., Thomson, S.N., Reiners, P.W., Hemming, S.R., and Licht, K.J., 2021, Rapid erosion of
268	the central Transantarctic Mountains at the Eocene-Oligocene transition: Evidence from
269	skewed (U-Th)/He date distributions near Beardmore Glacier: Earth and Planetary Science
270	Letters, v. 567, https://doi.org/10.1016/j.epsl.2021.117009.

271	Hernández-Uribe, D., and Palin, R.M., 2019, Catastrophic shear-removal of subcontinental
272	lithospheric mantle beneath the Colorado Plateau by the subducted Farallon slab: Scientific
273	Reports, v. 9, 8153, https://doi.org/10.1038/s41598-019-44628-y.
274	Hill, C.A., Polyak, V.J., Asmerom, Y., and Provencio, P.P., 2016, Constraints on a Late
275	Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern
276	Colorado Plateau, USA, from U-Pb dating of lacustrine limestone: Tectonics, v. 35, p. 896-
277	906, https://doi.org/10.1002/2016TC004166.
278	Jacobson, C.E., Hourigan, J.K., Haxel, G.B., and Grove, M., 2017, Extreme latest Cretaceous-
279	Paleogene low-angle subduction: Zircon ages from Orocopia Schist at Cemetery Ridge,
280	southwestern Arizona, USA: Geology, v. 45, p. 951–954, https://doi.org/10.1130/G39278.1.
281	Jenney, J.P., and Reynolds, S.J., eds., 1989, Geologic Evolution of Arizona: Arizona Geological
282	Society Digest 17, 866 p.
283	Knapp, J.H., and Heizler, M.T., 1990, Thermal history of crystalline nappes of the Maria fold
284	and thrust belt, west central Arizona: Journal of Geophysical Research, v. 95, p. 20,049-
285	20,073, https://doi.org/10.1029/JB095iB12p20049.
286	Livaccari, R.F., Burke, K., and Sengor, A.M.C., 1981, Was the Laramide orogeny related to
287	subduction of an oceanic plateau?: Nature, v. 289, p. 276-278,
288	https://doi.org/10.1038/289276a0.
289	McInnes, B.I.A., Evans, N.J., Fu, F.Q., and Garvin, S., 2005, Application of thermochronology
290	to hydrothermal ore deposits: Reviews in Mineralogy and Geochemistry, v. 58, p. 467-498,
291	https://doi.org/10.2138/rmg.2005.58.18.

292	Potochnik, A.R., Faulds, J.E., and Reynolds, S.R., 2022, Cenozoic drainage reversal on the
293	southern margin of the Colorado Plateau, east-central Arizona, USA: Geomorphology,
294	v. 411, https://doi.org/10.1016/j.geomorph.2022.108286.
295	Prior, M.G., Stockli, D.F., and Singleton, J.S., 2016, Miocene slip history of the Eagle Eye
296	detachment fault, Harquahala Mountains metamorphic core complex, west-central Arizona:
297	Tectonics, v. 35, p. 1913–1934, https://doi.org/10.1002/2016TC004241.
298	Rautela, O., Chapman, A.D., Shields, J.E., Ducea, M.N., Lee, CT., Jiang, H.H., and Saleeby, J.
299	2020, In search for the missing arc root of the Southern California Batholith: P-T-t evolution
300	of upper mantle xenoliths of the Colorado Plateau Transition Zone: Earth and Planetary
801	Science Letters, v. 547, https://doi.org/10.1016/j.epsl.2020.116447.
302	Reiners, P.W., Carlson, R.W., Renne, P.R., Cooper, K.M., Granger, D.E., McLean, N.M., and
303	Schoene, B., 2018, Geochronology and Thermochronology: Oxford, John Wiley and Sons
304	Ltd, 464 p.
305	Reynolds, S.J., Spencer, J.E., Richard, S.M., and Laubach, S.E., 1986, Mesozoic structures in
306	west-central Arizona, in Beatty, B., and Wilkinson, P.A.K., eds., Frontiers in Geology and
307	Ore Deposits of Arizona and the Southwest: Arizona Geological Society Digest 16, p. 35-
808	51.
809	Saleeby, J., 2003, Segmentation of the Laramide Slab—Evidence from the southern Sierra
310	Nevada region: Geological Society of America Bulletin, v. 115, p. 655-668,
311	https://doi.org/10.1130/0016-7606(2003)115<0655:SOTLSF>2.0.CO;2.
312	Seymour, N.M., Strickland, E.D., Singleton, J.S., Stockli, D.F., and Wong, M.S., 2018, Laramide
313	subduction and metamorphism of the Orocopia Schist, northern Plomosa Mountains, west-

314	central Arizona: Insights from zircon U-Pb geochronology: Geology, v. 46, p. 847-850,
315	https://doi.org/10.1130/G45059.1.
316	Singleton, J.S., Stockli, D.F., Gans, P.B., and Prior, M.G., 2014, Timing, rate, and magnitude of
317	slip on the Buckskin-Rawhide detachment fault, west central Arizona: Tectonics, v. 33,
318	p. 1596–1615, https://doi.org/10.1002/2013TC003517.
319	Spencer, J.E., and Reynolds, S.J., 1990, Relationship between Mesozoic and Cenozoic tectonic
320	features in west central Arizona and adjacent southeastern California: Journal of
321	Geophysical Research, v. 95, p. 539–555, https://doi.org/10.1029/JB095iB01p00539.
322	Tork Qashqai, M., Afonso, J.C., and Yang, Y.J., 2016, The crustal structure of the Arizona
323	Transition Zone and southern Colorado Plateau from multiobservable probabilistic
324	inversion: Geochemistry, Geophysics, Geosystems, v. 17, p. 4308-4332,
325	https://doi.org/10.1002/2016GC006463.
326	Wong, M.S., Singleton, J.S., Seymour, N.M., Gans, P.B., and Wrobel, A.J., 2023, Late
327	Cretaceous-early Paleogene extensional ancestry of the Harcuvar and Buckskin-Rawhide
328	metamorphic core complexes, western Arizona: Tectonics, v. 42,
329	https://doi.org/10.1029/2022TC007656.
330	Young, R.A., and Hartman, J.H., 2014, Paleogene rim gravel of Arizona: Age and significance
331	of the Music Mountain Formation: Geosphere, v. 10, p. 870-891,
332	https://doi.org/10.1130/GES00971.1.
333	Figure 1. Late Cretaceous–Eocene reconstruction of the American Southwest Cordillera [[Do you
334	mean, e.g., "North American Cordillera in the southwestern United States"?]] and major
335	tectonic elements (modified after Chapman, 2016, and Saleeby, 2003). CR—Cemetery Ridge;
336	Pl—Plomosa Mountains; X-Pz—nonconformity between Proterozoic rocks and Paleozoic

337	strata.[[In the figure, include labeled latitude/longitude markings if applicable; make
338	instances of "plate" and "zone" lowercase (and "transitional" unless first letter of each text
339	label gets capitalized); on ages, change instances of "~" to "ca." (leave as "~" on other types
340	of measurements)]]
341	Figure 2. Shaded relief map (www.geomapapp.org) of west-central Arizona summarizing
342	previous and new (samples A-G) thermochronologic results. Low-temperature
343	thermochronometric dates from metamorphic core complexes (MCCs) to the southwest of the
344	transition zone (TZ) are mostly Miocene while those in the hanging wall include older dates
345	overlapping with those from the TZ (e.g., Bryant et al., 1991; Foster et al., 1993; Singleton et al.,
346	2014; Prior et al., 2016). ZFT—zircon fission track; ZHe—zircon helium; AFT—apatite fission
347	track; AHe—apatite helium.[[In the figure, should "Poachie Mts." be "Poachie Range" (see
348	query in text)?; make instances of "zone" lowercase (and "transitional" unless the first
349	letter of each label gets capitalized); capitalize "Unconformity"; on ages, change instances
350	of "~" to "ca."]]
351	Figure 3. (A) Individual (black circles), median (black horizontal lines and lettering), and first
352	quartile apatite helium (AHe) dates (red horizontal lines and lettering); one >160 Ma date from
353	sample C is excluded. [[Explain what the "I" bars represent]] (B) Zircon helium (ZHe) dates
354	versus effective uranium concentration (eU).[[Explain what the ages at the tops of the panels
355	represent; explain what the error bars represent]] (C) Thermal history models performed in
356	QTQt 5.7.0 (Gallagher, 2012) of samples C and F (blue lines with gray shading) and
357	southwestern Colorado Plateau samples CP-06-01, CP-06-19, and CP-06-20 of Flowers et al.
358	(2008). [[Explain what is represented by the gray shading (for the samples of this study)
359	and the dashed black lines (for the SW Colorado Plateau samples)]] Poachie Mountains

360	samples (Bryant et al., 1991) were not modeled because of insufficient single-grain
361	data.[[Explain what the error bars on the Poachie samples represent]] Thermal history
362	modeling inputs and fits are provided in Supplemental Material (see footnote 1). AHe PRZ—
363	apatite helium partial retention zone; AFT PAZ—apatite fission-track partial annealing zone;
364	ZHe PRZ—zircon helium partial retention zone; ZFT—zircon fission track.[[In the figure,
365	panel C, change "Bradshaw" to "Bradshaw Mountains", and "Poachie" to "Poachie
366	Mountains" or "Poachie Range" (see query in text re: Mountains vs. Range); in the
367	horizontal-axis description, would "Age" be a more accurate term than "Time"?]]
368	Figure 4. Cross-sectional interpretations of Late Cretaceous to Neogene tectonic evolution of
369	western Arizona. (A) Maria fold-thrust belt shortening led to northeastward underthrusting of
370	crust beneath the transition zone (TZ). MMT—Mule Mountains thrust; Pz-Mz—Paleozoic—
371	Mesozoic. (B) Flat-slab oceanic subduction emplaced Orocopia Schist beneath western Arizona
372	and bulldozed continental lower crust and mantle lithosphere beneath the TZ. (C) Foundering of
373	Farallon flat slab and dense bulldozed lithosphere resulted in volcanism, extensional collapse,
374	and drainage reversal across the TZ.[[Explain what "Rim" refers to]] [[In the figure, label the
375	vertical axes with a text description and units of measure in parentheses – e.g., "Depth
376	(km)"; make "zone" lowercase; on ages, change instances of "~" to "ca.". In panel A,
377	capitalize "Basin"]]

thrust fault, triangle Sevier thrust belt on hanging wall Sierra Nevada batholith monocline, arrow in facing direction core complex arrow = hanging-wall transport direction ΑZ ca. 64–24 Ma fluvial strata s including MMF Basin and Range Colorado extension Plateau not ○ Flagstaff Salinia – Mojave batholith restored Fig. 2 arclogite xenoliths Prescott ca. 37-33 Ma Maria thrust belt -Nacimiento belt Mule Mts. thrust) extension not restored Farallon plate Basin and Range Tucson ca. 80–50 Ma ~140–70 mm/yr 100 km

Figure 1 Kapp et al.

Figure 2 Kapp et al.

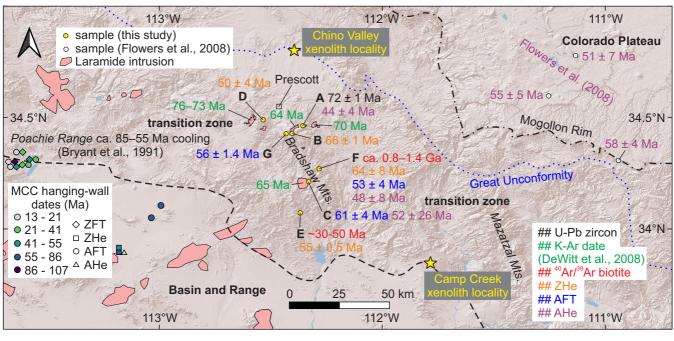


Figure 3 Kapp et al.

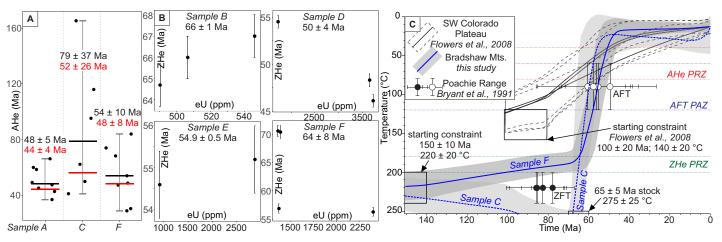
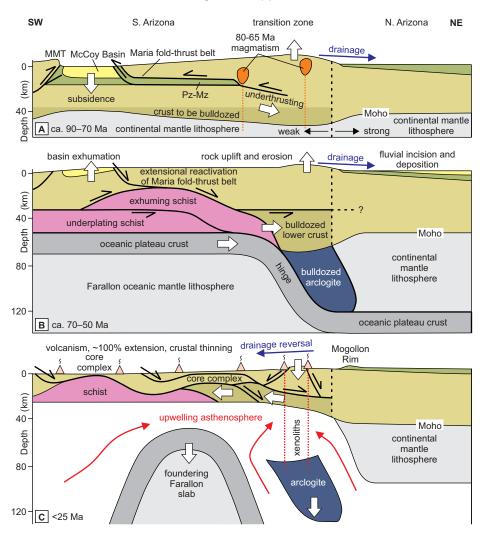



Figure 4 Kapp et al.

