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ABSTRACT

The northwest-trending transition zone (TZ) in Arizona (southwestern United States) is

an ~100-km-wide physiographic province that separates the relatively undeformed southwestern

1of 17



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

DOI:10.1130/G51194.1

margin of the Colorado Plateau from the hyperextended Basin and Range province to the
southwest. The TZ is widely depicted to have been a Late Cretaceous—Paleogene northeast-
dipping erosional slope along which Proterozoic rocks were denuded but not significantly
deformed. Our multi-method thermochronological study (biotite “’Ar/*°Ar, zircon and apatite [U-
Th-Sm]/He, and apatite fission track) of Proterozoic rocks in the Bradshaw Mountains of the
west-central Arizona TZ reveals relatively rapid cooling (~10 °C/m.y.) from temperatures of
>180 °C to <60 °C between ca. 70 and ca. 50 Ma. Given minimal ca. 70-50 Ma upper-crustal
shortening in the TZ, we attribute cooling to exhumation driven by northeastward bulldozing of
continental lower crust and mantle lithosphere beneath it by the Farallon flat slab. Bulldozing is
consistent with contemporaneous (ca. 70—-50 Ma) underplating and initial exhumation of
Orocopia Schist to the southwest in western Arizona and Mesozoic garnet-clinopyroxenite
xenoliths of possible Mojave batholith keel affinity in ca. 25 Ma TZ volcanic rocks.
INTRODUCTION

An outstanding question in tectonics is the extent to which flat-slab oceanic subduction
beneath continental lithosphere can drive inboard translation and thickening of continental lower
crust. The anomalously thick crust of the Rocky Mountain foreland and Great Plains has been
attributed to inboard shearing of North American lithosphere by flat-slab subduction during the
Laramide (ca. 85—40 Ma) orogeny (Bird, 1984). In the southwestern United States, very shallow
Laramide flat-slab subduction is inferred to have juxtaposed subducted, mostly clastic
sedimentary rocks (Orocopia and related schists; henceforth Orocopia Schist) at depths of ~35
km beneath continental crust over an inboard distance of >200 km (Fig. 1; Chapman, 2016;

Jacobson et al., 2017; Seymour et al., 2018). This hypothesis requires preexisting continental
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lower crust and mantle lithosphere to have foundered into the mantle or been bulldozed inboard
ahead of the leading hinge in the flat slab (Axen et al., 2018; Chapman et al., 2020a).

The transition zone (TZ) in Arizona is a topographically rugged physiographic province
separating the southwestern Colorado Plateau from the Basin and Range province (Fig. 1). The
TZ is transitional in the magnitude of Oligocene—Miocene extensional deformation, modern
crustal thickness (decreasing southwestward across it from ~45 km to ~25 km), and mean
elevation (Tork Qashqai et al., 2016). The western TZ exposes 1.8—1.6 Ga (meta)granitic and
metasedimentary rocks, ca. 1.4 Ga plutons, and ca. 80—65 Ma tonalitic stocks (Fig. 2; DeWitt et
al., 2008). Proterozoic rocks are buried in places by Neogene syn- to post-extensional
sedimentary basins and volcanic rocks (DeWitt et al., 2008). The nonconformity between
Proterozoic rocks and Paleozoic strata is exposed in the northern TZ and dips regionally <1°-2°
to the northeast (Fig. 1). The TZ was not significantly shortened during Laramide orogenesis
(Jenney and Reynolds, 1989) but became a proximal source of fluvial sandstone and
conglomerate in northwestern Arizona by ca. 64 Ma (Fig. 1; Young and Hartman, 2014; Hill et
al., 2016). Recent studies raise the possibility that continental lower crust and mantle lithosphere
might have been bulldozed beneath the TZ during Laramide flat-slab subduction (e.g., Chapman
et al., 2020a). The TZ is oriented nearly orthogonal to the ca. 80—50 Ma Farallon—North America
relative plate convergence vector (Fig. 1) and within the corridor where a hypothesized oceanic
plateau subducted beneath western North America (Livaccari et al., 1981; Saleeby, 2003).
Integration of lithospheric strain rates back through time implicates a >55-km-thick crust within
the TZ prior to Miocene extension (Bahadori et al., 2018). Igneous geochemical studies are also
consistent with a previously thick TZ crust (~58 km at ca. 76 Ma; Chapman et al., 2020b).

Garnet-clinopyroxenite xenoliths in ca. 25 Ma TZ volcanic rocks (Fig. 1) are interpreted to
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represent cumulates or residues that developed in situ during Laramide magmatism at depth
(Erdman et al., 2016) or fragments of the mafic keel to the Mojave batholith that were bulldozed
beneath the TZ (Chapman et al., 2020a; Rautela et al., 2020). Orocopia Schist exposed at
Cemetery Ridge and the Plomosa Mountains (Fig. 1; Jacobson et al., 2017; Seymour et al., 2018)
would have abutted the southwestern TZ prior to ~100 km of intervening Miocene northeast-
southwest extension (Spencer and Reynolds, 1990[[changed year to match Reference List]]).
If crustal thickening of the TZ by bulldozing did occur, it should have been active at least when
Orocopia Schist was being emplaced beneath western Arizona at ca. 70—65 Ma (Chapman, 2016;
Jacobson et al., 2017; Seymour et al., 2018) and might have induced erosion-driven exhumation
as topographic relief was generated in the TZ. This timing prediction motivated our
thermochronological study of the TZ.
PREVIOUS THERMOCHRONOLOGIC DATA

Thermochronological data record information about the timing of rock cooling below
their respective closure temperature windows, which are broad but nominally ~250—400 °C for
biotite **Ar/*Ar, ~200-240 °C for zircon fission track (ZFT), ~180 °C for zircon (U-Th-Sm)/He
(ZHe), ~60—115 °C for apatite fission track (AFT), and ~60—80 °C for apatite (U-Th-Sm)/He
(AHe) (Reiners et al., 2018, and references therein). Biotite K-Ar and “°Ar/*° Ar apparent ages
from Proterozoic TZ rocks are overwhelmingly Proterozoic (DeWitt et al., 2008, and references
therein). The Mesozoic—Cenozoic thermal history of the TZ is roughly constrained from three
AFT + ZFT transects that span the Poachie, Bradshaw, and Mazatzal Mountains[[Poachie
Range and Bradshaw and Mazatzal Mountains (according to the USGS geographic names
database, GNIS)? Check all instances of “Poachie”]] (Fig. 2; Bryant et al., 1991; Foster et al.,

1993). These studies showed that TZ rocks cooled during Cretaceous—Cenozoic time from
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temperatures of <120 °C near the Proterozoic unconformity to >200 °C at the deeper structural
levels now exposed in the southwest. The Poachie Mountains experienced moderate rates of
cooling between ca. 85 and 55 Ma (Bryant et al., 1991). Elsewhere in the TZ, most AFT samples
exhibit bimodal track-length distributions that suggest initial cooling during the Laramide
orogeny followed by <25 Ma cooling associated with extension (Foster et al., 1993). There are
no published ZHe or AHe data from the TZ, but an AHe investigation of the southwesternmost
margin of the Colorado Plateau suggests >1.5 km of Late Cretaceous sedimentary burial
followed by exhumation between ca. 60 and 50 Ma (Flowers et al., 2008).
METHODS

Our new igneous zircon U-Pb and biotite “°Ar/*°Ar, ZHe, AFT, and AHe data from the
approximately northwest-trending Bradshaw Mountains come from samples of five Proterozoic
granitoids, one Late Cretaceous stock, and one modern river sand (Fig. 2) (see the Supplemental
Material! for analytical methods, data tables, supplemental data figures, and thermal modeling
information). The samples span a range-parallel distance of ~50 km and elevations ranging from
994 to 2212 m. To limit the effects of <25 Ma tectonic exhumation or sedimentary burial, we
focused our sampling within interior parts of the range located farthest away from Neogene
extensional faults and basins. The number of individual zircon crystals analyzed for each of the
four ZHe samples is only two to four because of their low yield of suitable zircons; for these
samples, we report their unweighted mean age and standard deviation. A larger number of
individual apatite crystals (n = 7-8) were analyzed for each of the three AHe samples; for these,
we report first quartile dates (FQDs), which have been shown to provide the most geologically

meaningful information for relatively low-# and relatively fast-cooled samples with dispersed
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single age distributions, along with 16 uncertainties quantified through non-parametric
bootstrapping (He et al., 2021).
RESULTS

Proterozoic rocks in the Bradshaw Mountains are locally intruded by kilometer-scale
Late Cretaceous stocks with previously determined biotite/hornblende[[Replace slash with
"and", "or", or "and/or" (or other appropriate wording)]] K-Ar dates ranging from 76 to 64
Ma (Fig. 2; DeWitt et al., 2008, and references therein). The K-Ar dates are generally taken to
approximate the timing of post-magmatic thermal equilibration, which occurs within a few
million years for stocks emplaced at shallow crustal depths (Mclnnes et al., 2005). Supporting
this assumption is the consistency between a newly determined U-Pb zircon mean crystallization
age of 71.9 + 0.9 Ma (20; n = 33 zircon laser spot ages; Fig. S1 in the Supplemental Material) for
a tonalitic stock (sample A in Fig. 2) and a biotite K-Ar date of ca. 70 Ma from an adjacent stock
(Fig. 2). Sample A yields single-grain AHe dates ranging from ca. 37 to 66 Ma with a FQD of 44
+ 4 Ma (Fig. 3A), suggesting that the stock remained at temperature >~60 °C for >20 m.y. after
crystallization. Sample B of a foliated Proterozoic granite located <1 km from a stock with a
hornblende K-Ar date of ca. 64 Ma yields a ZHe date of 66 = 1 Ma (n = 3) (Figs. 2 and 3B).
Sample C of a ca. 1.7 Ga granodiorite located <1 km from a stock with a biotite K-Ar date of ca.
65 Ma yields an AFT central age of 61 =4 Ma and strongly dispersed individual AHe dates with
a FQD of 52 +£ 26 Ma (Figs. 2 and 3A). Given their similarity to adjacent K-Ar dates, the ZHe
and AFT dates from samples B and C likely reflect thermal perturbations associated with
magmatism.

ZHe dates from northernmost sample D and southernmost sample E of Proterozoic

granitoids are 50 £4 Ma (n =3) and 54.9 £ 0.5 Ma (n = 2), respectively (Figs. 2 and 3B).
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136  Because these ZHe dates are too young to reflect post-magmatic thermal equilibration, they are
137  interpreted to record cooling in response to erosion. Two *°Ar/>*?Ar incremental heating

138  experiments on biotite (one single crystal, one 0.5 mg aliquot) from sample E yield overall

139  similar and discordant age spectra that do not meet plateau criteria (Figs. S2 and S3). Apparent
140  ages increase from ca. 30 to ca. 50 Ma during progressive degassing and are younger than the
141  two individual ca. 55 Ma ZHe dates for the same sample. The most likely explanation for the
142 anomalously young apparent ages is partial alteration of biotite to vermiculate[[Do you mean
143 “vermiculite”?]] as determined using Raman spectroscopy (Fig. S4).

144 Two “°Ar/*°Ar incremental heating experiments on biotite (one single crystal, one 1 mg
145  aliquot) from easternmost sample F of a ca. 1.7 Ga granite (DeWitt et al., 2008) yield similarly
146  shaped age spectra that range from ca. 0.8 Ga to ca. 1.4 Ga (Fig. S5). Omitting the initial ~7%
147  *°Arg[[Explain what the subscript “K” represents]] from each experiment yields coeval

148  inverse isochron ages of ca. 1.4 Ga with subatmospheric *°Ar/*’Ar intercept values resulting

149  from apparent Ar loss (Fig. S6). Sample F also yields a ZHe date of 64 + 8 Ma (n =4), an AFT
150  central age of 53 + 4 Ma, and an AHe FQD of 48 + 8 Ma (Figs. 2 and 3). Inverse thermal history
151  modeling using QTQt 5.7.0 (Gallagher, 2012) on samples C and F (see the Supplemental

152  Material), integrating the AFT central age and single-grain age distribution, confined track-

153 length distribution, thermal influence of the ca. 65 Ma stock on sample C, and ZHe and/or AHe
154  single-grain dates, reveals an episode of accelerated cooling (~10 °C/m.y.) from ~150-200 °C to
155  near-surface temperature between ca. 70 and 50 Ma (Fig. 3C).

156 Lastly, detrital AFT dates (n = 117) on sample G of modern Hassayampa River sand

157  yield a unimodal distribution with a central age of 55.8 + 1.4 Ma (Fig. 2; Fig. S7). The catchment

158  area for sample G is only ~9 km? but located ~20 km to the northwest of sample F in a different
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catchment with an indistinguishable AFT central age of 53 + 4 Ma, suggestive of a similar and
regional low-temperature cooling history for the central Bradshaw Mountains.
DISCUSSION AND CONCLUSIONS

Our thermochronologic data from the Bradshaw Mountains suggest rapid (~10 °C/m.y.)
cooling between ca. 70 and 50 Ma. Initial cooling at ca. 70—65 Ma could reflect post-magmatic
thermal equilibration, but most of the subsequent cooling is attributed to erosion. Both the
Poachie Mountains to the west and the southwesternmost Colorado Plateau to the northeast,
where Late Cretaceous intrusions are absent, experienced cooling between ca. 85-80 Ma and ca.
50 Ma (Bryant et al., 1991; Flowers et al., 2008; Fig. 3C). The Basin and Range province to the
southwest also records widespread ca. 80-50 Ma cooling prior to Miocene core complex
development (Fig. 2; e.g., Knapp and Heizler, 1990; Wong et al., 2023). The Orocopia Schist,
Maria fold-thrust belt, a narrow northwest-trending belt of metamorphic core complexes between
Phoenix (Arizona) and southeastern California, garnet-clinopyroxenite xenolith localities, and
the oldest (Paleocene) Rim[[Explain what “Rim” refers to (check all instances for clarity)]]
gravels in northwestern Arizona are all exposed along the trajectory where the Farallon flat slab
plowed into the southwestern Cordilleran orogen (Fig. 1). We present a tentative regional
tectonic history that attempts to link these elements with the evolution of the TZ.

In contrast to the TZ, Late Cretaceous shortening is significant in southeastern California
and western Arizona as manifested by the basement-involved but thin-skinned-style and ductile
Maria fold-thrust belt (Fig. 1; Reynolds et al., 1986; Hamilton, 1987; Spencer and Reynolds,
1990; Boettcher et al., 2002).Thrusts and folds generally verge toward the south-southwest, in
contrast to the east-vergent Sevier thrust belt to the north (Fig. 1), and were active between ca. 90

and 70 Ma (Reynolds et al., 1986; Knapp and Heizler, 1990; Boettcher et al., 2002). Hence, the
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Maria fold-thrust belt could have fed crust in the footwall of its décollement beneath the TZ (Fig.
4A). Underthrusting could explain ca. 85-70 Ma exhumation in the Poachie Mountains and thick
crust in the TZ by ca. 76 Ma (Chapman et al., 2020b).

The beginning of flat-slab subduction near the trench at ca. 90 Ma (Chapman, 2016)
might have accelerated shortening within the Maria fold-thrust belt, shile-whereas the passage of
the buoyant flat slab and underplating of Orocopia Schist beneath the continental margin may
have led to its ca. 70—50 Ma extensional reactivation (e.g., Boettcher et al., 2002; Wong et al.,
2023). Ca. 70-50 Ma cooling of the TZ, perhaps driven by inboard bulldozing of lithosphere
beneath it, was coeval with initial river incision and Rim gravel deposition in northwestern
Arizona (Young and Hartman, 2014; Hill et al., 2016) (Fig. 4B). Eclogite xenoliths in the Navajo
volcanic field[[Briefly describe where this is located relative to the study area]] suggest that
the top of the Farallon slab was located at a depth of ~120 km beneath the Four Corners
region|[[Unclear whether this is a reference that would be widely understood by an
international audience. Perhaps give geographical context — e.g., “(northeastern corner of
Arizona)”?]] (Hernandez-Uribe and Palin, 2019, and references therein), implicating a hinge in
the flat slab. A logical place for a hinge to have formed is where the flat slab first encountered
stronger lithosphere as it translated inboard. Lithosphere to the southwest of the TZ was
weakened by Mesozoic magmatism, lithospheric thinning during Border[[Explain what
“Border” refers to]] rift development, and Late Cretaceous crustal shortening and anatexis
(Jenney and Reynolds, 1989), whereas Colorado Plateau lithosphere experienced none of this.
The location of the hinge in the flat slab at the TZ can also explain why bulldozed lithosphere

thickened preferentially beneath it (Fig. 4B).
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Beginning at ca. 25 Ma, ductile crust extruded to the southwest from beneath the TZ in
the footwalls of large-displacement detachment faults (Spencer and Reynolds, 1989; Bryant et
al., 1991), drainage reversed from northeastward to southwestward across the TZ (Anderson et
al., 2021; Potochnik et al., 2022), and volcanism became more widespread (Fig. 4C). Extensional
collapse is attributed to foundering of the Farallon slab and dense bulldozed lithosphere and was
directed southwestward by the buoyancy of the TZ crustal root (Fig. 4C; Chapman et al., 2020a).
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Figure 1. Late Cretaceous—Eocene reconstruction of the American Southwest Cordillera[[Do you

mean, e.g., “North American Cordillera in the southwestern United States”?]|] and major

tectonic elements (modified after Chapman, 2016, and Saleeby, 2003). CR—Cemetery Ridge;

Pl—Plomosa Mountains; X-Pz—nonconformity between Proterozoic rocks and Paleozoic
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337  strata.[[In the figure, include labeled latitude/longitude markings if applicable; make

338 instances of “plate” and “zone” lowercase (and “transitional” unless first letter of each text
339 label gets capitalized); on ages, change instances of “~” to “ca.” (leave as “~” on other types
340  of measurements)]]

341  Figure 2. Shaded relief map (www.geomapapp.org) of west-central Arizona summarizing

342 previous and new (samples A—G) thermochronologic results. Low-temperature

343  thermochronometric dates from metamorphic core complexes (MCCs) to the southwest of the
344  transition zone (TZ) are mostly Miocene while those in the hanging wall include older dates

345  overlapping with those from the TZ (e.g., Bryant et al., 1991; Foster et al., 1993; Singleton et al.,
346  2014; Prior et al., 2016). ZFT—zircon fission track; ZHe—zircon helium; AFT—apatite fission
347  track; AHe—apatite helium.[[In the figure, should “Poachie Mts.” be “Poachie Range” (see
348  query in text)?; make instances of “zone” lowercase (and “transitional” unless the first

349 letter of each label gets capitalized); capitalize “Unconformity”; on ages, change instances
350  of “~” to “ca.”]]

351  Figure 3. (A) Individual (black circles), median (black horizontal lines and lettering), and first
352  quartile apatite helium (AHe) dates (red horizontal lines and lettering); one >160 Ma date from
353  sample C is excluded.[[Explain what the “I” bars represent]] (B) Zircon helium (ZHe) dates
354  versus effective uranium concentration (eU).[[Explain what the ages at the tops of the panels
355  represent; explain what the error bars represent]| (C) Thermal history models performed in
356  QTQt 5.7.0 (Gallagher, 2012) of samples C and F (blue lines with gray shading) and

357  southwestern Colorado Plateau samples CP-06-01, CP-06-19, and CP-06-20 of Flowers et al.
358  (2008). [[Explain what is represented by the gray shading (for the samples of this study)

359  and the dashed black lines (for the SW Colorado Plateau samples)]] Poachie Mountains
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samples (Bryant et al., 1991) were not modeled because of insufficient single-grain
data.[[Explain what the error bars on the Poachie samples represent]] Thermal history
modeling inputs and fits are provided in Supplemental Material (see footnote 1). AHe PRZ—
apatite helium partial retention zone; AFT PAZ—apatite fission-track partial annealing zone;
ZHe PRZ—7zircon helium partial retention zone; ZFT—zircon fission track.[[In the figure,
panel C, change “Bradshaw” to “Bradshaw Mountains”, and “Poachie” to “Poachie
Mountains” or “Poachie Range” (see query in text re: Mountains vs. Range); in the
horizontal-axis description, would “Age” be a more accurate term than “Time”?]]

Figure 4. Cross-sectional interpretations of Late Cretaceous to Neogene tectonic evolution of
western Arizona. (A) Maria fold-thrust belt shortening led to northeastward underthrusting of
crust beneath the transition zone (TZ). MMT—Mule Mountains thrust; Pz-Mz—Paleozoic—
Mesozoic. (B) Flat-slab oceanic subduction emplaced Orocopia Schist beneath western Arizona
and bulldozed continental lower crust and mantle lithosphere beneath the TZ. (C) Foundering of
Farallon flat slab and dense bulldozed lithosphere resulted in volcanism, extensional collapse,
and drainage reversal across the TZ.[[Explain what “Rim” refers to]] [[In the figure, label the
vertical axes with a text description and units of measure in parentheses — e.g., “Depth
(km)”; make “zone” lowercase; on ages, change instances of “~” to “ca.”. In panel A,

capitalize “Basin”]]
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Figure 2 Kapp et al.
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Figure 3 Kapp et al.
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Figure 4 Kapp et al.
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