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Work in Human-Robot Interaction (HRI) has investigated interactions between one human and one robot as well as human-robot
group interactions. Yet, the field lacks a clear definition and understanding of the influence a robot can exert on interactions between
other group members (e.g., human-to-human). In this paper, we define Interaction-Shaping Robotics (ISR), a subfield of HRI that
investigates robots that influence the behaviors and attitudes exchanged between two (or more) other agents. We highlight key factors
of Interaction-Shaping Robots that include the role of the robot, the robot-shaping outcome, the form of robot influence, the type of
robot communication, and the timeline of the robot’s influence. We also describe three distinct structures of human-robot groups to
highlight the potential of ISR in different group compositions and discuss targets for a robot’s interaction-shaping behavior. Finally,

we propose areas of opportunity and challenges for future research in ISR.

CCS Concepts: « Human-centered computing — Collaborative and social computing theory, concepts and paradigms; «

Social and professional topics — Computing / technology policy;

Additional Key Words and Phrases: Human-robot interaction, Multiparty interactions, Social influence, Shaping interactions, Interaction-

shaping robotics

ACM Reference Format:

Sarah Gillet, Marynel Vazquez, Sean Andrist, Iolanda Leite, and Sarah Sebo. 2024. Interaction-Shaping Robotics: Robots that Influence
Interactions between Other Agents. ACM Trans. Hum.-Robot Interact. 1, 1, Article 1 (January 2024), 22 pages. https://doi.org/10.1145/
3643803

1 INTRODUCTION

As the field of Human-Robot Interaction (HRI) continues to grow, researchers are designing and studying increasingly
complex human-robot social interactions, including those that involve multiple people and/or multiple robots [29, 106,
111]. Numerous studies examining human-robot group interactions have demonstrated that robots can do more than
influence one person’s behavior. Robots can also shape current and subsequent interactions between multiple agents,

especially including those between people [42, 103, 120, 126].
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Fig. 1. Schematic depicting an interaction-shaping robot that displays behavior (blue dashed arrows) towards two other agents: one
human and one human or robot. The agents may (1) respond reciprocally towards the robot (black dotted arrows) and/or (2) change
their interactions with one another as a result of the robot’s behavior (green bold arrows). We consider this latter effect to be unique
to interaction-shaping robots.

This paper proposes a new research area—Interaction-Shaping Robotics (ISR)—which we define as the study of robots
that influence the behaviors and attitudes exchanged between two (or more) other agents. Figure 1 illustrates this
definition. The figure represents the robot’s behavior towards two other interactants with blue dashed arrows. One
of the interactants in the diagram is a human and the other may either be a human or a robot. The robot’s behavior
can then result in two possible effects: (1) a direct reciprocal effect from the agent (black dotted arrows); and/or (2) an
indirect effect of the robot’s behavior on the interaction of the other interactants (green bold arrows). This first direct
reciprocal effect is characteristic of traditional HRI research spanning both dyadic and multiparty scenarios, where a
robot’s behavior shapes human behaviors and attitudes back towards the robot. This second indirect effect of the robot’s
behavior on the interactions between other agents is unique to ISR, where a robot influences how one agent behaves
toward and/or thinks about another interactant in a group. While some researchers explicitly design their robots to
shape interactions between other agents [29, 30, 44, 120, 132], many robots also produce interaction-shaping effects
that are neither designed nor intended by the robot or researcher. ISR represents a critically needed addition to the
current topic areas covered in the HRI community, as it invites researchers and practitioners to be more deliberate and
thoughtful about the potential of influencing interactions when designing and deploying robots, especially considering
how these interactions between other agents may be negative or positive, intended or unintended.

To illustrate an example of an interaction-shaping robot, consider the humanoid robot that made vulnerable ex-
pressions in a collaborative game with three people [120]. In response to the robot’s vulnerable expressions (e.g., I
sometimes find myself getting a bit discouraged..”), some human team members verbally responded to the robot — which
are examples of direct responses to the robot’s behavior (black dotted arrows in Figure 1). Later on in the collaborative
game, people were more likely to explain their mistakes to their human team members if their robot teammate had
made vulnerable utterances, as opposed to neutral utterances [120]. This increased likelihood to explain their mistakes
to fellow human team members displays how the robot shaped the interactions between its human teammates (green
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Interaction-Shaping Robotics 3

bold arrows in Figure 1) by influencing what information these human team members shared with each other. Beyond
this one example, other work in HRI has also demonstrated a variety of interaction-shaping robots, including robots that
influence the amount of time people spend talking to one another [44, 77, 97, 129] and backchanneling [105, 126], robots
that change how people in a group perceive [63] and resolve [108] conflicts, robots that shape people’s perceptions
of group dynamics such as inclusion [119] and cohesion [112], and robots that influence how people behave towards
other robots [29].

In this paper, we present ISR as a subfield of HRI to bring this research area to the attention of the HRI community
and align researchers whose work touches on this space. We define five key factors that characterize the distinct
methods that interaction-shaping robots use to influence interactions between other agents. We do not claim that
the presented key factors represent a complete and sufficient theoretical framework but suggest that these factors
support our understanding of the impact interaction-shaping robots have in society and highlight unexplored research
directions and possible ethical risks in developing interaction-shaping robots. Additionally, we describe three categories
of human-robot group structures, along with example scenarios within each, that highlight distinct opportunities and
effects of a robot’s interaction-shaping behavior capturing the variation in possible group compositions and targets for
interaction-shaping.

To provide a holistic HRI perspective, we highlight ethical, methodological, and computational challenges that arise
when building and deploying interaction-shaping robots. Our goal is to inspire future research to carefully consider the
ethical risks (e.g., of deception or biased behavior) while recognizing the potential benefits of deliberately influencing
human-robot and human-human interactions. Furthermore, we emphasize the need for future research to develop
new methodologies for meaningful comparisons between robots, robot behaviors, and scenarios in ISR. By discussing
computational challenges, we encourage bridging the gap between related research fields, such as affective computing

and network analysis, necessary for developing effective, ethical, and adaptive interaction-shaping robots.

2 BACKGROUND

This section highlights prior work that informs ISR. First, we summarize work on multiparty HRI and the formation of
human-robot relationships. Then, we review related work in psychology and sociology that examines how people can

shape the behavior and attitudes of other people.

2.1 Human-Robot Multiparty Interactions

ISR is closely related to multi-party HRI. When multiple humans and/or robots interact simultaneously, the scenario
is broadly a multi-party interaction. When a multi-party interaction also involves a robot influencing how one agent
behaves toward and thinks about another interactant in the group, then the scenario represents both a multi-party HRI
scenario and an ISR scenario.

There is a long history of work in multi-party human-robot interaction that motivates ISR. For instance, HRI research
in public environments has investigated robot interactions with many people in places like museums [37, 80, 115, 128],
office buildings [16, 50], airports [130], train stations [51], hospitals [76], hotels [26], and schools or care centers for
children [64, 65, 71, 148]. Recently, there has also been increased interest in studying group human-robot interactions
[104, 106], including situations where robots are peripheral companions to groups [55, 126] and situations where robots
directly participate in conversational engagements [42, 75, 77, 93, 129, 135], multi-party games [31, 113, 136, 138], or
collaborative tasks [29, 62, 63].
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4 Gillet, et al.

While not all these examples focus explicitly on ISR, several of these research directions have motivated studying
how robots can influence human behavior towards other interactants. For example, Kanda et al. [64] describe the
deployment of Robovie in a school environment. In this setting, 63% of first-grader’s interaction time with the robot
was in the company of one or more friends. These types of interactions provide opportunities for robots to shape
relationships. Also, Yamaji et al. [148] studied children’s interaction with Sociable Trash Boxes (STBs). When the STBs
moved individually, only 30% of children in the public environment where the robots were deployed helped with trash
collection. Meanwhile, when the STBs moved in groups, 70% of children helped with the trash collection. This group
effect could be seen as an example of ISR whereby the behavior of a Sociable Trash Box motivated children to interact
with another nearby STB in which they deposited trash. We generally see ISR as overlapping with multi-party HRI
because a subset of ISR requires multiple colocated interactants but focuses more narrowly on how a robot can shape
interpersonal processes among other interactants.

A growing body of work in multi-party HRI has started to explore the benefits and risks of interaction-shaping
robotics. For example, robots using non-verbal behaviors can assist a group conversation by balancing engagement
[126] or participation [42]. In addition, robots can help to resolve situations of conflict [63, 108], build more trustful
relationships in peer groups [14, 120], enhance the interaction among intergenerational groups [113], influence how
included people feel in a group [44, 119], and improve interpersonal interactions [36, 95]. Recent pioneering work
has also started to uncover the negative effects robots can have on interactions and the consecutive formation or
destruction of relationships. For example, in a scenario where only one team member could ask a robot for information,
that team member experienced a greater sense of exclusion from the human members of their group [119]. Also,
non-anthropomorphic robots have been shown capable of inducing feelings of ostracism [35] in people, which can
also shape subsequent human-human interactions [34]. These examples of interaction-shaping robots in multiparty
HRI demonstrate the variety of interaction-shaping effects, both positive and negative, robots can have in a range of

multiparty interaction settings.

2.2 Human Relationships with Robots

In addition to shaping human-human interactions, interaction-shaping robots may increasingly form and change
human-robot interactions and relationships. Several studies have described the formation of relationships between
humans and robots, which grow and develop over a series of interactions. Sung et al. [121] found that robot vacuum
cleaner owners build an intimate attachment to their robot vacuum cleaners. Further, soldiers working with bomb-
disposal robots have been found to form close bonds with these robots [20]. Similarly, dismantling ceremonies for Aibo
robots in Buddist temples in Japan are indicative of close bonds and relationships between owners and their robots
[19, 90]. While human-human relationships display a mutuality and depth that human-robot relationships have yet to
realize, robots are increasingly incorporating methods to personalize their interactions with people [101], which is a
step towards building relationships. As human-robot interactions and relationships become increasingly common, it is
important to consider the potential for third-party robots to influence human-robot interactions and relationships, a

potential we discuss further in this work.

2.3 Human-to-Human Social Influence

How people can shape the behaviors and attitudes of other people through social behavior is important for ISR, since
robots can potentially use similar methods of social influence to shape the interactions between other agents. Social

influence is typically studied in the field of social psychology. The literature broadly studies aspects of conformity,
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obedience and power, attitudes, group processes, and effects of culture and gender concerning social influence [7, 56,
66, 78]. We would like to note that in this section, we focus on social influence a human or robot could exert knowingly,
e.g., through language or behavior. In the following paragraphs, we discuss phenomena from the human-to-human
social influence literature that we found particularly promising for HRI or that have been used in previous HRI studies.
We recommend the interested reader to consult a social psychology textbook [7, 56, 66, 78] for an exhaustive literature
review on social influence. One way people can exert social influence is by their behavior or emotion spreading from
one person to another through social interactions, an effect known as behavioral or emotional contagion [11, 24, 25]. A
variety of behaviors have been found to spread from person to person including selfish behaviors in economic games
[61] or aggressive behavior in children [33]. Emotions are also contagious, for example, people are more likely to be
happy if they are in contact with others who are happy [41] or become depressed if they are assigned to live with a
mildly depressed roommate [59]. Emotions can also spread from one person to an entire group, for example, Barsade
[11] demonstrated that one person’s positive affect in a collaborative group led to improved cooperation between group
members, less conflict, and increased perceived task performance.

In addition to behavioral and emotional contagion, people can influence the behavior and attitudes of other people
using other forms of social influence. For example, people change their behavior to match the behavior of others, an
effect known as conformity [27]. Famously, Asch [8] demonstrated that participants asked to judge the length of the
line would choose a clearly incorrect answer about 37% of the time if their peers also chose the same incorrect answer,
displaying the powerful effect of conformity and peer pressure. Compliance is another type of social influence and
refers to cases where a person acquiesces to the request of another person (e.g., purchasing items from a door-to-door
salesman, voting for a political candidate touted by a colleague) [28]. In addition to conformity and compliance, people
are also greatly influenced by social norms - rules about actions to perform or avoid that are upheld by a community of
people who follow and enforce them [13, 18]. Examples of social norms include shaking someone’s hand when meeting
them, not littering in a park, and speaking softly in a library.

In addition to individual behaviors, group-level social influences such as intergroup processes and balance theory
can shape people’s behaviors and attitudes. Intergroup effects in form of biases describe the natural favoring of one’s
own group (ingroup) over other groups (outgroup). This ingroup-outgroup bias results in implicit intergroup and
cognitive biases to the detriment of the perception of and behaviors toward the outgroup [40]. To overcome those
ingroup-outgroup biases, the literature proposes the contact hypothesis that suggests that relationships between groups
can be improved through positive contact in a joint interaction [5, 147]. Balance theory suggests that groups naturally
strive for a balanced state, meaning that attraction relations are reciprocal [52]. If imbalances occur, the balance can be
restored by changes in the individual or interpersonal changes. For example, one person disliking another can change
their opinion if they realize that the other group member likes them. On the other hand, a group member can also
change their opinion from liking to disliking the other, which can cause ostracism [125].

This section offers a brief overview of the literature that covers aspects of human-human social influence and
intergroup effects, demonstrating that people’s behaviors and attitudes are strongly influenced by the people around
them and their behavior. As people increasingly interact with social robots, they will also inevitably influence the
behaviors and attitudes of these people, likely in similar ways (e.g., contagion, conformity, compliance) as in human-
human social influence. As a result, effects found in human-human literature offer promising directions for studying

interaction-shaping robots.
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6 Gillet, et al.
ISR Factor Category Description
Guiding Facilitator | The robot leads and directly mediates the interaction between the
agents.
Role of the Robot Peripheral The robot is present and active, but is not directly involved in the
Facilitator interaction.
Peer Group Member | The robot acts as a peer relative to the agents.
Specialized Group The robot adopts a special role as a group member relative to the
Member agents.
Robot-Shaping Cognitive The shaping outcome is measurable in changes in cognitive attitudes
Outcome and thoughts (e.g., interpersonal evaluation, feelings, intentions).
Behavioral The shaping outcome is measurable as a change in behavior (e.g.,
spatial repositioning, amount of speaking, gazing).
Form of Robot Explicit Robot The robot addresses aspects of the interaction explicitly through clear
Influence Influence and exact communication, directly prompting or requesting a change
in the interaction (e.g. calls a conflict out and asks for resolving it).
Implicit Robot The robot implicitly addresses aspects of the interaction that could
Influence lead to a change in the interaction among the other agents.
Type of Robot Verbal The robot uses verbal natural language to shape the interaction.
Communication Non-Verbal The robot uses non-verbal behavior (e.g., gestures, gaze, movement,
resource distribution) to shape the interaction.
Timeline of Robot | Immediate Influence | The robot’s behavior immediately shapes the interaction between the
Influence agents.
Long-Lasting The robot’s behavior shapes the interaction between the agents after
Influence the robot’s interaction-shaping behavior has concluded (e.g., the fol-
lowing day).

Table 1. Key factors of interaction-shaping robots. The ISR factors on the left distinctly identify mechanisms that allow robots to

shape interactions between other agents. Categories can be combined for a given application. See Sec. 3 for concrete examples.

3 FACTORS OF INTERACTION-SHAPING ROBOTICS

This section presents key aspects for Interaction-Shaping Robotics as five factors that greatly influence how a robot
shapes interactions (see Table 1). To develop these factors, we consulted recently published surveys on group HRI
[45, 104, 106] and reviewed the surveyed and more recently published literature. Based on prominent examples from
the literature, we discussed distinguishing elements repeatedly among all authors, drafted definitions and naming of
the factors, and refined them while mapping works to factors and their categories. Before agreeing on the final five
factors, we focused on the overall clarity to a potential reader and the fit of work from the literature. The result of this
process is documented in the remainder of this section, in which we describe and exemplify each factor with related
work from the HRI community.

The following subsections describe factors that we identified as uniquely relevant and essential for ISR: 1) the role of
the robot in the group, 2) the robot-shaping outcome, 3) the form of robot influence, 4) the type of robot communication,
and 5) the timeline of robot influence on the interaction(s). Similar to the broader field of HRI, we acknowledge that
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many factors other than these five may influence ISR interactions [39], including robot-specific factors (e.g., physical
appearance[89], anthropomorphism [151]) and individual differences in human interaction partners (e.g., personality,
prior familiarity). While these additional factors can certainly influence ISR interactions considerably, the five factors
we have chosen to focus on reflect aspects that have a unique and sizable impact on how robots can shape interactions
between other agents.

Similar to work in the field of HRI more broadly, we also expect that some interaction-shaping factors will have similar
effects when they are expressed by a robot compared with when they are expressed by a human (e.g., expressions of
vulnerability being reciprocated by others [120]). However, the literature shows that effects might not always replicate,
as in the case of replicating the effects of Asch’s conformity experiment [17, 109] or have an effect with reduced
magnitude when compared to human-human interactions [99]. Additionally, robots can adopt some interaction-shaping
behaviors that are similar to those that people can express but they can also shape interactions in unique ways by,
for example, expressing lights, sounds, and movements impossible for humans. The five interaction-shaping factors
we identified represent ways that robots can influence other agents that contain similarities with human-human

interaction-shaping and key differences.

3.1 Role of the Robot

The role that a robot adopts in human-robot interactions has a significant impact on how people perceive the robot and
respond to its behavior. Interaction-shaping robots in prior work have often adopted the roles of facilitator or group
member, which offer particular opportunities but also challenges when shaping interactions. Some types of interactions,

like role-playing games [136], allow robots to switch between the facilitator and group member roles.

Guiding Facilitator: When an interaction-shaping robot adopts a guiding facilitator role, it directly leads the interaction
between the other agents. A robot can utilize this role to explicitly draw the agents’ attention to the aspects of the
interaction the robot wants to shape. For example, Shen et al. [108] showed how a Keepon robot can help children to
resolve their resource conflicts by explicitly pointing at the conflict and suggesting to focus on a constructive solution.
In addition, Birmingham et al. [14] exemplified how a robot could guide a support group session for stressed students
with questions and self-disclosure statements to invite students to share their stress experiences and improve trust
between participants. As long as the robot is accepted as the leader, it can effectively guide the group, like eliciting
participation from quiet individuals when making hiring decisions [107], or encouraging deeper conversations among

strangers [149]. Engagement from other interactants is crucial for robots in this role.

Peripheral Facilitator: An interaction-shaping robot can also facilitate an interaction between agents from the
periphery. The robot is present and active, but it is not directly involved in the main task being carried out by the group.
For example, Tennent et al. [126] explored this role for a microphone-shaped robot, MicBot. During human group
conversations, MicBot followed the speaker and attempted to encourage the least talkative participant to take the floor of
the conversation by turning towards them. The authors found that these behaviors led to a more balanced engagement
of all group members [126]. In another example, a Cozmo robot used similar behaviors to turn towards children to follow
their play, encourage participation, and prompt collaboration to help the process of inclusion among children [44].
These examples demonstrate that peripheral robot facilitators can have a profound impact on an interaction even
though engagement from other interactants with the robot is not a requirement. It is important, though, that the robot’s

actions are recognizable enough for people to not forget about the robot or ignore it [95].
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8 Gillet, et al.

Peer Group Members: Interaction-shaping robots can also take on the role of a peer, similar in function to the other
group members. In contrast to the facilitator role, the robot can leverage the establishment of group membership to
shape interactions, e.g, leading to higher trust by the other group members [10]. One context where prior work has
explored interaction-shaping robots as peers is in collaborative task and game contexts, where the interaction-shaping
behavior is embedded within the task or game. For example, Strohkorb Sebo et al. [120] found that a robot that admitted
having made mistakes during the game play could increase the number of vulnerable statements made by other people
within the group.

Specialized Group Members: An interaction-shaping robot can also fulfill a special role as a group member, where
the robot makes a unique contribution to the group but still benefits from emerging group membership. For example,
Mutlu et al. [77] studied interactions with a travel agent robot that gave people advice on travel destinations. Because
the robot’s goal was to help people select a suitable travel location, the robot’s primary role (serving as an information
source) was distinct from the role of other group members (seeking advice). A robot’s special role might thereby offer
the robot opportunities for shaping interactions that can be part of the role itself or the task-based behavior. In other
examples from prior work, robots have adopted a variety of special roles including an information source in a desert

survival task [119], a ‘bomb scanner’ in a bomb defusal game [63], and a guesser in a word guessing game [42].

3.2 Robot-Shaping Outcome

A robot shaping an interaction might lead to cognitive and/or behavioral outcomes. Cognitive outcomes typically
result in a change in cognitive attitudes often measured through questionnaires or dedicated tasks, e.g., the Implicit
Association Test (see [54] for an example). Behavioral outcomes can typically be measured within the interaction
between the robot and other agents or in dedicated tasks. Changes in cognitive attitudes may often influence changes
in behavioral outcomes. However, it is also possible for people to change their behavior while their cognitive attitudes
remain the same, e.g., a requested spatial repositioning might not change how the other agents perceive themselves or

the interaction.

Cognitive: Cognitive outcomes are measurable changes, e.g., in interpersonal attitudes, changes in trust between the
other agents, or aspects of group dynamics such as cohesion or perception of group identity. For example, researchers
explored a non-anthropomorphic robot’s leaning gestures and their influence on interpersonal evaluations in conver-
sations [95]. In another example, researchers address intergroup effects through explicit experimental manipulation
before the interaction with the robot, and through an implicit manipulation by giving one group member the unique
role of the robot liaison. They find that the role of the robot liaison has a stronger effect on perceived inclusion than
the explicit formation of ingroup and outgroup before the interaction with the robot [119]. Other works explore the
effect of robot exclusion, inclusion and overinclusion on the experience of ostracism [35], the perception of inclusion in
groups of mixed visual abilities [79], or trust in support groups [14]. A change in stereotypical thinking as demonstrated
by Hitron et al. [54] can also be understood as a cognitive robot-shaping outcome that generally influences how an

individual thinks and acts toward others in society.

Behavioral: Robots can also influence how other agents, individually or as a group, behave in interaction-shaping
scenarios, including how much time agents spend speaking, how group members communicate with each other, work
as a team, or how they change their spatial positioning [15]. Prior work has provided multiple examples that have
demonstrated that participants’ speaking behavior can be altered by a robot’s shaping behavior [42, 77, 79, 86, 114].
Other works demonstrated that robots can change conflict resolution strategies around toys among children [108] or
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how children play with members from a different group in the context of social inclusion [44]. Further examples include
robots that could elicit prosocial interventions in case of robot mistreatment [29], evoke task-based explanations among

children [21], alter a group’s decision-making process [119], or prompt more trash disposal to a robotic trash can [148].

3.3 Form of Robot Influence

Another important factor of ISR is how the robot influences the interaction among the other agents. We consider
two possible forms of robot influence: explicit, and implicit. While this section discusses these two forms as distinct
categories, we recognize that the form of robot influence is best described by a spectrum where a specific shaping
attempt might fall between explicit and implicit. The form of robot influence might affect people’s ability to identify
and be aware of the robot’s shaping behavior. We discuss the ethical considerations of forms of robot influence in

combination with other factors in Section 5.1.

Explicit Robot Influence: A robot can shape interactions explicitly by using behaviors or other means that elicit
clear expectations on how the interaction between the other agents should change. Typically, a robot would use direct
prompts and requests. For instance, one research study investigated the efficacy of a couple’s counselor [133]. The robot
invited the couples to explore exercises that aim to improve their communication skills among them. In other research,
a robot explicitly asked participants to reposition themselves when interacting with the robot [15]. Another example of
the explicit influence that does not use verbal communication is the robot MicBot [126]. In this work, the robot takes
the form of a microphone which turns to encourage participants to speak. While Micbot cannot verbally explain its
actions, swiveling towards a person does clearly indicate Micbot’s desire for that person to speak. Other works explore
a robot’s explicit influence in situations of resource conflict [108], children collaborating in a rocket-building game
[118], or general moderation of a collaborative game [113]. In cases where the robot’s influence is explicit, other agents
have the choice to either accept the robot’s influence or reject the robot’s influence. Therefore, the ability of a robot to

shape interactions explicitly depends on the decisions of the other agents to follow its prompts.

Implicit Robot Influence: In contrast to shaping interactions in ways that clearly communicate expectations toward
the other agents, robots can also implicitly shape interactions. For example, in a word-guessing game, a robot used
gaze cues to encourage more participation from a less talkative person [42]. Even though participants might notice
irregular patterns in the robot’s gaze when asked to reflect on the robot’s behavior, the robot does not make it explicitly
clear to the participant that its gaze may result in a change in their behavior [43]. Additionally, robot expressions of
vulnerability in a game context increased people’s likelihood to explain their mistakes to one another and console those
who made mistakes [120]. Further research has shown that a robot being unreliable in a task could elicit more task-based
explanations among children [21], or could harmonize an interaction, i.e., yielding the floor to a less active group
member after taking the floor in a short natural exchange with the current speaker(s) [73]. Implicit means of shaping
interactions typically use subconscious responses, like gaze or psychological processes, to influence the interaction.
These subconscious responses might though be subject to individual differences between people and could affect how

effectively a robot can shape interactions through implicit means.

3.4 Type of Communication

Robots can shape interactions through verbal and non-verbal communication. Verbal communication involves the use of
natural language. Non-verbal communication comprises other expressive forms of behaviors, such as movement, gesture,
backchanneling, and gaze. This section describes how these behaviors can contribute to how a robot shapes interactions
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10 Gillet, et al.

between other agents. Important to note is that the type of communication only concerns interaction-shaping behaviors.
The robot could display additional behaviors intended for other aspects of the interaction that use other types of

communication.

Verbal communication: Verbal communication can be used in different ways by robots to shape interactions, e.g.,
utterances can provide recommendations or mention problematic situations explicitly. For example, Jung et al. [63]
studied the effects of a robot with a special role in a shared bomb-defusal task. The robot admonished a confederate
for their hostile behavior toward another participant and, through this verbal behavior, called attention to the conflict
between the human team members. Robots in guiding facilitator roles, as discussed in Section 3.1, often use verbal
communication to shape interactions, acting as a couples counselor [132], reducing conflicts among children [108],
and improving the perception of a patient as evaluated from a caregiver’s or doctor’s perspective [23]. While verbal
behavior can be an effective way to shape interactions between agents, a robot’s use of verbal behavior may lead
people to believe that a robot can both produce and understand natural language. If a robot cannot understand natural
language to the same extent that it can produce it, people’s expectations of the robot could be violated [92] and, in turn,
this could reduce trust [67] and social influence. Therefore, considering human expectations is particularly important

for these interaction-shaping robots.

Non-verbal communication: Non-verbal behaviors typically used by interaction-shaping robots include gestures,
movement, backchanneling, gaze and functional interaction-shaping behaviors. Non-verbal communication can help
coordinate human-human conversations and group interactions and is influential in human-robot interactions [102].
For example, a robot’s gaze behavior can balance human participation in conversations [42], shape conversational
roles [77], and distribute speaking turns to less talkative members of a conversation [73, 114]. Furthermore, Erel and
colleagues explored the effect of gaze and leaning gestures of the non-anthropomorphic robot, Kip, on the interaction
between humans. They found that these behaviors can positively influence the perception of conversation partners
[95] and improve perceived emotional support within the group [36]. This work points out one advantage of fully
non-verbal robots: users have lower expectations of them. This could facilitate creating effective interaction-shaping

robots.

Functional non-verbal behavior can also be used by robots to shape interactions among two other agents. For example,
non-humanoid robots ‘shooting a ball’ unequally in a group interaction can raise feelings of exclusion [35]. Additionally,
in industrial contexts, a robot arm’s unequal distribution of resources has been shown to systematically influence
human-human interaction dynamics [62]. Other examples of non-verbal interaction-shaping behaviors include the
microphone-shaped robot MicBot that balances engagement [126], the robot Cozmo that encourages active play to
improve inclusion among children through body movement, sound and facial expressions[44], and robotic bar-stools
that encourage spontaneous conversation [98]. In summary, non-verbal behavior can be designed from human-human
communication or following the specific capabilities of the robot, making a robot’s possible repertoire of interaction-

shaping behaviors both shared and unique relative to those used by people.

3.5 Timeline of Robot Influence

Once a robot has expressed interaction-shaping behavior, the robot’s behavior may influence the agents’ interactions in
both the short-term and the long-term. A robot’s behavior may have immediate interaction-shaping effects on the agents

that are physically present with the robot. It is also possible that the robot’s interaction-shaping behavior might have
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long-lasting effects and influence the agents’ subsequent interactions with others, even in the absence of the robot’s

presence.

Immediate Influence: When a robot exhibits interaction-shaping behavior (e.g., gaze cues [42, 77], supportive com-
ments [105]), often their effects on the agents with whom the robot is interacting are immediate, occurring seconds
or minutes after the robot’s behavior. Most examples of ISR focus on immediate effects. For example, during one
interaction, interaction-shaping robots can lead to more constructive resolution of conflict [108], greater harmony in
group conversations [73], more balanced engagement [126] or participation in conversations [42], more vulnerable

statements [120] or higher trust among group members [14].

Long-lasting Influence: It is also possible that a robot’s behavior shapes interactions that occur after the interaction
with the robot took place. These long-lasting effects “carry over” to shape the interaction between multiple agents
in subsequent human-agent interactions. For example, Erel et al. [34] studied how the effect of ostracism, induced
by multiple robots on one person, influenced the person’s subsequent human-human interactions, including their
proximity to other people and compliance with an experimenter’s request. It is important to note that these long-lasting
effects can occur even if not all of the affected agents were present with the robot (the experimenter in Erel et al.
[34]) when the robot exhibited its interaction-shaping behavior (the robot ostracizing the human participant in Erel
et al. [34]). Another example of an effect that has been found to carry over is prosociality [82]. For example, Shiomi
et al. [110] showed that positive feelings from a robot hug could lead to people donating more money to victims of an
earthquake. This suggests that long-lasting interaction-shaping robot behaviors have the potential to positively impact
human-agent interactions without a dependency on the robot. This is a particularly exciting line of work that would

benefit from more research.

4 INTERACTION-SHAPING GROUP STRUCTURES

In this section, we discuss three human-robot group structures (illustrated in Figure 2) that represent distinct interaction-
shaping group structures. These group structures characterize different group compositions and thereby give insight
into the interactions that a robot might shape (human-human or human-robot) and how many robots (one or more) are
acting to influence other agents. Each group structure presents unique opportunities for ISR, which we highlight using

examples from related work and by proposing areas of future research.

4.1 Structure I: One Robot Shapes a Human-Human Interaction

Structure I describes a group structure where one robot shapes the interaction between two or more other people
(Figure 2a). Scenarios investigating this group structure have received the largest amount of attention as researchers
have sought to use robots to improve human-to-human interactions and group dynamics. Several robots have been
shown to increase the amount and quality of interactions between people, including those between older adults in care
facilities [97, 127], teammates [129], and children with autism and their caregivers [103], therapists [68], and playmates
[152]. Other robots have been designed to assist people in collaborative contexts, using a variety of behaviors (e.g.,
gaze [42], mechanical movement [126], verbal utterances [105]) to encourage more equal participation [42, 105, 126],
promote expressions of vulnerability [120], and mediate conflict [63, 108] between human group members.

Since having positive interactions and relationships with other people are critical to our well-being and everyday
experiences [91, 134, 142], investigating how robots can positively shape human-human interactions will continue
to be an important area of research. For example, for robots that collaborate with people in work teams, it would
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(a) Structure | (b) Structure Il (c) Structure I

Fig. 2. Overview of the three interaction-shaping group structures (Section 4). The relationship-shaping robot(s) are marked with a
green ellipse. Relationships are shaped among the remainder of agents.

be helpful for them to contribute positively to the team’s dynamics in light of research that has demonstrated the
positive influence social team dynamics (e.g., inclusion, trust) have on a team’s performance [74, 85]. Other research
could further explore how robots can shape other key human-human relationships including long-term romantic
partnerships [132], friendships, and caregiver-patient relationships [32] to name a few. In addition to investigating
how robots can positively assist human-human interactions, it is also important to explore the negative effects of
robots on human-human interactions so that people can be aware of the possible dangers robots pose to human-human
interactions and relationships. For example, Sebo et al. [105] showed that giving a human team member a specialized
role to interact with the robot significantly reduced how included the human team member felt in the group. With this
knowledge, human teams can proactively work to counteract the exclusion a team member may feel if they are given a

specialized role to interact with a robot.

4.2 Structure lI: One Robot Shapes a Human-Robot Interaction

Structure II pertains to situations where an interaction-shaping robot influences a human-robot interaction between
one or more humans and one or more robots (Figure 2b). Although limited prior work has investigated scenarios with
this group structure, it is likely that it will become common in the future as robots are increasingly incorporated into
everyday activities in human environments. For example, we foresee this type of scenario occurring often with service
robots, which may need to hand off their interaction with users to another robot due to being unable to complete the
desired task (e.g., because of technical issues or limited robot capabilities). For example, Tan et al. [123] demonstrated
that a first robot could set human expectations of a second robot, to whom the first robot makes a hand-off, potentially
shaping how the human interacts with the second robot. Further, imagine if the first robot told the group that the
second robot was malfunctioning in a particular way, setting low expectations over its functionality. Perhaps the user(s)
would then be more forgiving to errors by the second robot, showing greater trust recovery [144]. Another example
of Scenario II are situations where the way in which a robot interacts with another robot influences how humans
perceive the other robot. Séderlund [117] recently provided initial evidence that this type of effect is possible with
human initiated robot-to-robot interactions. Likewise, we suspect that it could emerge in robot-initiated robot-to-robot
interactions [51] in multi-party HRI.
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In the future, interaction-shaping robots could influence human-robot interactions in a fully reciprocal manner. That
is, interaction-shaping robots could influence both how humans interact with other robots and their attitudes towards
them, as in the prior examples, and how these other robots interact with humans. This would require future social
robots to better perceive changes in behavior and attitudes as well as better process information provided by other
robots about users. Then, they could adapt their behavior towards a person according to how another robot acts in their
group. For instance, imagine that a robot in a kiosk at a hospital told another guide robot that a visitor was looking for
their friend, who was recently in an accident. The information provided by the robot at the kiosk could then influence
the guide robot to provide words of encouragement and support to the visitor as it guides the person to the friend’s

room in the hospital.

4.3 Structure IlI: Multiple Robots Shape an Interaction between Multiple Others

Structure III implies multiple robots shaping interactions through coordinated behavior. For instance, Sadka et al.
[98] showed that the motion of robotic bar-stools can encourage human-human interactions and increase positive
encounters. Another example is the study by Connolly et al. [29] on group human-robot interactions involving robot
abuse. In a team of 2 humans and 3 Cozmo robots, a confederate abused one of the robots after it made mistakes
during the interaction. The other two robots either ignored the abuse events or reacted in response to it by expressing
sadness towards the abused robot. Interestingly, the latter reaction led to participants being more likely to prosocially
intervene to help the abused robot and stop the mistreatment by the confederate in comparison to former one. This was
a surprising group social influence effect by robots because people have many reasons to avoid conflict with a person
that abuses a robot in a laboratory study [124]. In the future, we foresee more examples and scenarios with Structure III
present demonstrating powerful group social effects in ISR, including conformity [99].

Structure IIT also brings new perspectives to swarm robotics. While most work in swarm robotics within HRI
concerns operator control methods [70], swarm robotics in ISR is more about multiple robots shaping the interaction
between other agents. An example is MOSAIX [4], a social swarm system designed to help humans in social tasks like
opinion-mixing and brainstorming. The movement and mixing of the swarm appeared to engage people in a public
exhibition and led to conversations about climate change. In the future, more work could be done to understand ISR

with multiple robots and more human interactants than typically studied today.

5 CHALLENGES AND OPPORTUNITIES

This section discusses current challenges and also opportunities regarding ethical considerations, methodological

approaches, and computational advances unique to Interaction-Shaping Robotics.

5.1 Ethical Considerations

In this section, we highlight the opportunities but also ethical risks and challenges of research and development in the
field of ISR.

5.1.1 A Robot’s Influence on Human-Human Connections. Positive relationships between people bring them feelings of
happiness, security, self-esteem, and pleasure [49, 94]. Furthermore, close and positive relationships between people
are essential to living a fulfilled and healthy life [134, 142]. On the contrary, when relationships between people are
negative or nonexistent, people suffer from social rejection, loneliness, and poorer physical health [57, 116].
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IEEE’s guidelines on Ethically Aligned Design indicate that autonomous and intelligent systems should support
human potential and ensure connections and relationships between humans [83]. Interaction-shaping robots have a
unique opportunity to follow this suggestion by enhancing and promoting human-human connections. For example,
robots have already been shown to increase human-human interactions and connections between child and caregiver
[22, 47] and in care facilities for older adults [84, 97, 127]. Also, they can potentially detect if a person is isolated and
encourage connections between them and others. This approach for alleviating human isolation by having robots
promote human-human interaction is distinct from other methods in HRI to alleviate loneliness through human-robot
interactions alone. While several robots have shown promise in reducing a person’s loneliness and raising their
mood [141], some have expressed concern that giving a person a robot to reduce their loneliness could isolate the
person even further [38]. Regardless of the benefits or drawbacks of using robots to alleviate peoples’ loneliness, using
robots to encourage human-human interaction is a promising avenue that could increase human well-being and avoid
potential risks of further isolation.

While reducing the risk of isolation and improving well-being, the risk of dependency on the robot cannot be fully
eliminated. Instead of an individual being dependent on the robot, the functioning of an interaction between people
could become dependent on the robot’s interaction-shaping efforts. Therefore, we believe that it is valuable for an
interaction-shaping robot to sustainably improve interactions and relationships so that the robot eventually becomes
obsolete. This way, people can reap the benefits of human-human connections without being fully dependent on a
robot to sustain them. Future research should investigate more the long-lasting effects of interaction-shaping robots

beyond the interaction with the robot, as discussed in Section 3.5.

5.1.2  People’s Unawareness of the Influence of Interaction-Shaping Robots. Interaction-shaping robots face the ethical
risk of deception when people are unaware of the robot’s shaping attempts and its effects. Interaction-shaping can
positively shape human-human interactions, for example, so that every group member’s opinion gets heard [42], or so
that people feel more comfortable when discussing difficult problems [14]. However, people are fully aware that a robot
is influencing their interactions only in some contexts, while they may not be aware of its influence in others.

A person’s possible awareness of the robot’s influence might best be described as a spectrum between being fully
aware and unaware. The literature has explored scenarios in which the human group members could be fully aware of
the robot’s influence on their interaction. People could become aware of the robot’s influence through the context of
interaction, e.g, a robot acting as a couple’s counselor [132], or through the behaviors the robot demonstrates during
interactions, e.g., when a robot intervenes in a conflict, it can openly address the conflict and suggests conflict resolution
strategies [108].

When the robot uses non-verbal communication or shapes the interaction implicitly, it is more likely that human
group members are unaware of the robot’s influence. A robot acting as a group member or a peripheral facilitator
might further increase unawareness of its influence. For example, participants sometimes noticed gaze cues used to
encourage more participation from a less talkative person [42] as irregular patterns in the robot’s gaze. However, they
were unaware that the robot’s gaze influenced their behavior relative to other humans in the game [43]. Additionally,
people might have been aware of the robot’s expressions of vulnerability [120], but they were not aware that their own
behavior was shaped by the robot as a result of these vulnerable expressions.

Especially since people may be unaware that their interactions may be shaped by robots, it is important to consider
the potential ethical risk of deception in ISR. Deception has been identified as an ethical risk for social robots in general
[83, 146] and extends to interaction-shaping robots as humans might not expect their interactions to be shaped by
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arobot. IEEE’s ethics guidelines suggest that “In general, deception may be acceptable in an affective agent when it
is used for the benefit of the person being deceived, not for the agent itself”’[83, p. 175] In other words, deception in
ISR might be acceptable in cases where there is consensus that the robot’s influence benefits people (e.g., robots that
express vulnerability [120] to help people feel more comfortable self-disclosing, robots that use gaze to elicit verbal
participation from more quiet group members [44]). Nonetheless, research at the intersection of RoboEthics [139] and
ISR is important to critically discuss the effects of interaction-shaping robots and establish recommendations for their
development. These discussions will further help to prepare the public and policymakers for handling end-user robotic
products capable of shaping interactions. Lastly, we suggest that future work explores interesting directions that might
arise when thriving to reduce ethical risks. For example, in cases where it might be natural to hide a robot’s intent, how
would being upfront about the robot’s goal to shape other agents’ interactions affect how people perceive the robot and

its social influence capacity?

5.1.3 Potential Bias in ISR. Interaction-shaping robots might inherit societal biases. The risk for bias is present in
all of HRI, but it is of particular importance in ISR where the bias can affect other agents’ interaction negatively. For
example, Hitron et al. [53] showed that a robot giving turns in a debate according to gender biases reinforced gender
stereotypes. However, reversing the robot’s behavior dispelled these stereotypes [54]. Further, Rosenthal-von der Piitten
and Abrams [96] and Winfield et al. [146] discuss the risk that machine learning algorithms known for developing
biases [58] might transfer those biases when used to create robot behaviors, e.g., in resource allocation problems [62].
These biases might stem from societal biases captured in the data or occur due to nonrepresentative datasets [87]. To
mitigate potential biases, future work in ISR needs to carefully consider sources of the data used to design or learn

interaction-shaping robot behaviors.

5.2 Research Methods

Because multi-party HRI research has explored a large variety of contexts and robot applications, there are not many
standardized methods, tasks, and approaches that allow for comparison across studies [81]. Additionally, theoretical
models and frameworks for studying group interactions are needed to guide our understanding of how robots can
shape interactions between other agents. Abrams and von der Piitten [1] proposed the I-C-E framework for studying
groups by presenting definitions for inclusion, cohesion, entitativity, and methods that allow for measuring the different
concepts. Despite these contributions, the authors highlight that these methods for understanding groups and their
dynamics are scarce and are insufficient to understand the complex interactions in groups. Conversation Analysis
which is concerned with the fine-granular qualitative analysis of human-human interactions might offer one possible
direction to understand interaction-shaping effects [88, 131]. Future work should invest in exploring new techniques to

study interaction-shaping robots.

5.3 Computational Advances

We need computational advancements for developing interaction-shaping robots that can autonomously adapt to
different group interactions and support their distinct needs [46]. Current work in HRI often uses sets of simple
heuristics and interaction scripts to guide autonomous robot behavior in multi-party interactions. While these heuristics
can provide a first approximation to appropriate behavior when driven by human psychology (e.g., [69], [42], [126]),
there is no guarantee that these hand-crafted policies capture all the essential information in the interaction that
the robot may need to select optimal actions nor account for unexpected human behavior. In order to develop more
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robust interaction-shaping robot behavior, advances are needed in modeling relationships and group phenomena, state

representations, and robot behavior control.

5.3.1 Modeling Relationships and Group Phenomena: ISR is concerned with shaping interactions which eventually
result in shaping relationships among other agents. This can be achieved by leveraging group phenomena (e.g., group
social influence [29]) or can in turn induce group social phenomena (e.g., cohesion [112]). This makes the perception of
both relationships and group social factors in HRI essential to interaction-shaping robots. A path forward to improve
robot perception in this regard is to bridge Social Signal Processing (SSP) [140] and ISR. Social Signal Processing has
contributed many methods for computationally modeling social aspects important for human-human interactions. For
example, prior work explored identifying dominant individuals [6, 9] or emerging leadership [12, 100]. In terms of
group-level phenomena, there is also work on the recognition of social roles [3, 150], social relations [2], and cohesion
[60]. In the future, it is important to extend these lines of research to more clearly understand causal relationships
between group members’ behavior, and how shifting perspectives (top-down camera view often used is SSP versus a

robot’s first-person view) may influence reasoning about group behavior.

5.3.2  State Representation: Recent work in multi-party Human-Robot Interaction has begun to advocate for representing
social interactions with graph abstractions [72, 122, 137, 143], which would also benefit ISR as suggested by Figure 1. In
these graphs, nodes often encode information about interactants and edges encode information about relationships.
These graph abstractions could be used for a state representations in ISR because they encode relevant data in a
well-organized manner, which in turn could lead to algorithms that exploit the structure [48, 145] for better modeling

of interactions and group constructs.

5.3.3  Robot Behavior Control: Finally, it is important to close the loop between perception and control in ISR. Advances
from Reinforcement Learning and Imitation Learning might be suitable to map perceived group states with effective
robot behaviors for shaping interactions among other agents. Early explorations of learning robot policies for ISR
compare reinforcement learning and imitation learning approaches in the context of balancing human participation
in conversations [43]. A challenge when learning robot shaping behavior is ensuring that the resulting policy is safe
and appropriate for the given interaction context, e.g., learned gaze behaviors may be irritating, requiring careful
hyper-parameter search and final model selection [43]. If future interaction-shaping robots can learn complex behaviors,
then we might be able to discover shaping behaviors that are potentially unique to robots, not something that humans

would naturally do or even be capable of doing.

6 CONCLUSION

This paper defines Interaction-Shaping robotics (ISR) as robots that shape interactions among two (or more) other agents.
Key factors of ISR characterize interaction-shaping robots according to their role in the interaction, the robot-shaping
outcome, the form of robot influence, the type of robot communication, and the timeline of the robot’s influence. Further,
we highlight three unique ISR group structures where one robot shapes either a human-human or a human-robot
interaction, or multiple robots shape the interaction among multiple other humans. These structures, in combination
with the discussion on key factors, offer interesting avenues to explore a larger variety of interaction-shaping robots. It
is essential that future work further advances our ethical understanding of ISR, robot autonomy, and methodological
practices, but most importantly we hope that future interaction-shaping robots can support humans in flourishing by
shaping their human-robot and human-human interactions.
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