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Figure 1: Overview of REACT. In REACT-Nao, people played a collaborative video game with a Nao robot (a). In REACT-Shutter,
participants interacted with a Shutter robot during a photography task (d). For both datasets, we captured images of participants
throughout the interaction (b,e) and provide facial analyses of the images (c,f).

ABSTRACT
Recent work in Human-Robot Interaction (HRI) has shown that
robots can leverage implicit communicative signals from users to
understand how they are being perceived during interactions. For
example, these signals can be gaze patterns, facial expressions, or
body motions that reflect internal human states. To facilitate future
research in this direction, we contribute the REACT database, a
collection of two datasets of human-robot interactions that display
users’ natural reactions to robots during a collaborative game and a
photography scenario. Further, we analyze the datasets to show that
interaction history is an important factor that can influence human
reactions to robots. As a result, we believe that future models for
interpreting implicit feedback in HRI should explicitly account for
this history. REACT opens up doors to this possibility in the future.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Computing methodologies → Artificial intelligence.
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1 INTRODUCTION
Robots promise a future where they will help us with many physi-
cal and social tasks in human environments. However, as robots
enter these environments, such as homes, many tasks will become
subjective and driven by personal preferences [7, 25]. Because of
this, it becomes infeasible to pre-program all tasks with which we
may want robot assistance. Rather, it is essential to make robots
better at learning from non-expert human teachers [3].

Human nonverbal reactions are a key and often underutilized
source of information for learning from users in Human-Robot
Interaction (HRI). Humans naturally convey information through
their nonverbal behavior that provides cues about how they per-
ceive social encounters [19, 30]. Indeed, work in affective comput-
ing [15, 26] and social signal processing [29] has studied how we
can create computational models to interpret human nonverbal
reactions. More recently, work in HRI has started to explore this
possibility (e.g., [11, 14]). It is generally agreed upon that effective
social agents must be able to analyze, comprehend, and respond
to nonverbal cues [12]. However, interpreting these cues can be
challenging. Different cultures or situations can result in similar
nonverbal cues, so these cues may have different meanings depend-
ing on the context in which they are generated [5, 9, 17].
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Table 1: Comparison of related available datasets. “Interactive task” indicates whether the human is actively interacting with the
robot. “Additional task(s)” indicates if the participant had additional tasks other than just providing feedback to the robot (e.g.,
playing game in REACT-Nao). “Evaluative feedback” refers to if the dataset includes explicit, evaluative feedback about the robot
from the participant throughout the interaction (either live or through annotations). The “Context” columns describe what
additional context is provided in the dataset: E = Environment (e.g., location of enemies in REACT-Nao); H = Human (e.g., whether
human spaceship moved left or right in REACT-Nao); R = Robot / agent (e.g., actual text of robot utterances in REACT-Shutter).

Nonverbal Features Task Context History

Dataset
Head
pose Gaze Facial

landmarks
Facial
AUs

Raw
images

Colocated
robot

Interactive
task

Additional
task(s)

Evaluative
feedback E. H. R. Spans

interaction

EMPATHIC [13] ✓ ✓ ✓ ✓ ✓ X X X X ✓ X ✓ ✓
Errors in HRI [28] X X X ✓ X ✓ ✓ ✓ X X X X ✓
REACT-Nao ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
REACT-Shutter ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ X ✓ ✓

In order to facilitate further research on how robots may leverage
human nonverbal behavior in HRI, we contribute the Reactions and
EvaluAtive feedbaCk over Time (REACT) database. REACT consists of
two datasets that contain observations of humans, robots, and task-
related data during human-robot interactions (as shown in Figure 1).
The first dataset, REACT-Nao, consists of data from interactions from
a user study [10] in which humans played a video game with a Nao
robot while providing explicit feedback so that the Nao could learn
to be a better teammate. REACT-Nao includes approximately 864
minutes of data collected across 72 participants. The second dataset,
REACT-Shutter, consists of observations from interactions with a
tabletop social robot during a photography task. REACT-Shutter
includes approximately 160 minutes of data collected across 40
participants. Part of the latter data was used to investigate different
annotation methods of robot performance during interactions [31].
In this work, we augmented this data with additional observations
over the whole interaction to provide a more complete dataset to
study human implicit signals in HRI. Together, the datasets provide
a rich set of observations to analyze how human reactions are
related to explicitly provided robot feedback. The datasets and
documentation are available at: github.com/yale-img/react.

As a second contribution, we analyze the datasets to evaluate
a common assumption in how machine learning models are used
to make predictions about users from their nonverbal behavior in
HRI. In particular, prior work often focuses on making predictions
from short horizons of observations (e.g., [14, 31]). However, our
analyses suggest that humans may become less reactive to robots
over time. Thus, in the future, it is important for data-driven models
to more explicitly account for interaction history in HRI. The data
that we contribute in this work opens up possibilities in this respect.

2 RELATED WORK
Existing Datasets. There is a long history of open datasets with
human nonverbal reactions (e.g., see [27] for a survey on human fa-
cial expression recognition); however, such datasets are still scarce
within HRI. There exist some datasets of human nonverbal reactions
to robots [6, 8, 13, 18, 24, 28]. Out of this set, the two publicly avail-
able datasets that are closest to REACT involve participants watching
robots commit errors during an interactive task [28] and watching
agents perform a task sub-optimally [13], as detailed in Table 1. The

other datasets [6, 8, 18, 24] provide great value to the field of HRI,
but do not facilitate research examining both nonverbal human
reactions and explicit evaluative feedback during a task in which
both the human and robot play a key role. Our dataset includes
both explicit, evaluative feedback and implicit, nonverbal reactions
from participants that were actively interacting with a robot dur-
ing a task. In comparison, the BAD Dataset [8] does not involve
humans that are actively interacting with or explicitly evaluating a
robot, but rather are reacting to videos that they observe online as
bystanders. Similarly, the other datasets [6, 18, 24] do not include
explicit feedback during the task. Rather, these datasets support
other specific research avenues (e.g., modeling user engagement).
Reasoning about Human Nonverbal Reactions. In prior work,
models that reason about human nonverbal reactions to robots typ-
ically fail to account for a rich interaction history. It is a common
approach to reason about nonverbal cues at the individual snap-
shot level (e.g., [28]), especially when inferring specific emotions or
user states (e.g., [20]). Another approach is to examine changes in
expressivity over fixed windows (e.g., [22]). While some models in-
corporate recurrence, they do not explicitly account for how human
feedback may change over time (e.g., [31]). Our analyses suggest
that as human-robot interactions evolve over time, human nonver-
bal signals may become more muted, requiring potentially different
interpretations based on the interaction history. Going forward, it
will be important to investigate algorithms that intelligently reason
about feedback that is dependent on other factors, such as a longer
interaction history or modeling of internal human states. This type
of approach has been explored for reasoning about explicit human
feedback, e.g., COACH learns from policy-dependent feedback [23].

3 THE REACT-NAO DATASET
The first dataset, REACT-Nao, contains observations throughout a
collaborative game between a Nao robot and humans [10].

3.1 Data Collection
First, participants consented to take part in the data collection,
be video recorded and have their data shared. Participants played
six games of Space Invaders with a Nao robot (Figure 1a). They
were instructed to provide feedback to the robot via their keyboard
during the game so the robot could learn to be a better teammate.

https://github.com/yale-img/react
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In the Space Invaders game, the goal was to destroy all enemies as
a team. Each player generally took care of destroying enemies on
one side of the game screen. However, the Nao employed different
gameplay strategies across games which varied by when the robot’s
spaceship crossed over to the human’s side of the gamescreen to
help destroy enemies – we refer to these events as “visits”. During
games 1 and 2, the robot did not crossover to the human’s side to
provide assistance. During games 3 and 4, the robot crossed over to
the human’s side for assistance on three separate “visits”. During
games 5 and 6, the robot only crossed over for one “visit” at the end
of the game, after it had destroyed all of the enemies on its own side.
Participants were not prompted to speak during the interactions,
but experimenters noted that some participants did speak at times.

Participants answered survey questions after each pair of games,
and a final set of survey questions. The interaction lasted approxi-
mately 35 minutes, and the participants were compensated US$10.
The protocol was reviewed by our Institutional Review Board (IRB)
and refined via pilots. For additional motivations and details of the
user study, please refer to the work by Candon et al. [10].

3.2 Data Processing
The dataset consists of data collected for 72 participants during the
six games of Space Invaders that they each played.

Facial Features. To analyze the images captured during the interac-
tion, we used OpenFace 2.0 [4], a open-source toolkit for automatic
facial behavior analysis. OpenFace 2.0 [4] uses computer vision
algorithms to analyze each image and extract features about head
pose, eye gaze, facial landmarks, and facial action units (AUs). Our
data is organized in individual CSV files per game and participant.
Each CSV file has one row per frame that includes a frame number
and the output from running OpenFace on the image from that
frame. A detailed description of individual features is included in
the dataset documentation.

For our analyses, we first smoothed individual OpenFace features
with a Gaussian filter (with a rolling window with a width of 30
data points and a Gaussian function with a standard deviation of
10). We then segmented the frames into “visits” by when the robot’s
spaceship was on the participant’s side of the screen. We examined
the mean of values of OpenFace activation values during various
“visits” across the games of Space Invaders to see how participants
reacted to a change in robot gameplay behavior. All post-processing
scripts are included in github.com/yale-img/react.

Other features. Our dataset includes additional information that
provides context about the interaction. For each game, we provide
a json file that contains game state information, robot game ac-
tions, and participant game actions (including explicitly provided
feedback via keyboard presses). We also provide a CSV that pro-
vides demographic information for each participant. Additionally,
the raw images of the participant during the games is available at
github.com/yale-img/react.

3.3 Results
We first analyzed how the robot’s visits affected human nonverbal
signals as the data collection progressed. We used linear mixed mod-
els estimated with Restricted Maximum Likelihood (REML). The

Figure 2: Mean of sum of AU values during robot visits in
REACT-Nao. Error bars are standard error. Letters (A,B,C) de-
note statistical significance. If visits do not share a letter,
there is a statistically significant difference between values.

Game Number-Visit combination (e.g., Game3-First, Game4-Third,
etc.) was a main effect and the participant ID was a random effect
in the models. We conducted post-hoc Tukey Honestly Significant
Difference (HSD) tests when appropriate.

We first examined the sum of AU activation values, as a proxy
for participant expressiveness, during the robot visits in the in-
teractions. Our analysis showed a significant difference by Game
Number-Visit combination, 𝐹 (7, 7) = 16.54, 𝑝 < 0.0001. The post-
hoc test revealed that the average of the sum of participant AU
values during all three visits of both Game 3 and Game 4 were
significantly higher than the robot’s single visits in Games 5 and 6.
Additionally, the average of the sum of participant AU values during
the first visit of Game 3 was significantly higher than the third visit
of Game 4. These differences between earlier and later visits show
that participants reacted differently to similar stimuli based on
when in the interaction they occurred. Figure 2 shows these results.
A table of results is included in github.com/yale-img/react.

4 THE REACT-SHUTTER DATASET
REACT-Shutter contains data from interactions with a robot pho-
tographer [31]. A subset of this data was previously published
[31], but it only included observations during specific robot actions.
REACT-Shutter provides the complete interaction history, enabling
better analyses and modeling.

4.1 Data Collection
First, participants consented to take part in the data collection, be
video recorded, and have their data shared. Each participant then
sat in front of a small robot while the robot took six photographs
of them (as in Figure 1d). The robot, called Shutter, is a social robot
with a screen face mounted on a small arm [2, 21]. Shutter took
photos of the participants via a camera mounted on its head.

Each photograph was preceded by a series of four robot actions.
These actions consisted of a mix of robot dialogue (telling jokes,
telling the person to smile, and telling the person to relax) and
changes to the robot’s pose. The physical pose actions included
aiming the robot’s face directly at the participant, orienting its
face away from the participant, or moving to one of four fixed
poses. Actions were selected via weighted sampling, and an action

https://github.com/yale-img/react
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Figure 3: Median of sum of AU values over the photography
interaction. Error bars are standard error. Trend line is a
linear regression model with a 95% confidence interval.

could not be selected twice in a row – additional action details
are included in the dataset documentation. Similar to Section 3.1,
participants were not prompted to speak during the interactions.

Throughout the data collection, participants annotated robot
actions based on their impressions of the robot’s performance and
answered survey questions. The whole interaction lasted between
45 minutes and one hour, and participants were compensated US$20.
The protocol was approved by the local IRB. For more details about
the data collection, please refer to Zhang et al. [31].

4.2 Data Processing
The dataset consists of data collected for 40 participants, each of
which completed six photography tasks.

Facial Features. The facial features were computed as in Sec-
tion 3.2, but the data is organized into CSVs by photography task.

For our analyses, we first smoothed individual OpenFace features
with a Gaussian window function, using the same approach as in
Section 3.2. Additionally, we segmented the frames into action
segments, splitting up the interaction based on when a new action
began. We looked at the mean, median, maximum, and standard
deviation of values of OpenFace features in each action segment.
Post-processing scripts included in github.com/yale-img/react.

Other features. Our dataset includes additional information that
provides context about the interaction. For each photography task,
we include a CSV that provides the timestamps and details of robot
actions throughout the task (e.g., specific utterance for a “joke”
action). Additionally, we provide a summary CSV that provides
additional information for each participant, including demographic
information, the order of tasks, and the self-annotations. A full
description of the features is available in the dataset documentation.

4.3 Results
We first explored how the expressiveness of participants changed
over time as the interaction progressed. Considering all participants,
we examined a variety of statistics (mean, median, max, standard de-
viation) over the sum of action unit activation values during the 24
actions that proceeded the individual photos in order. For example,
see Figure 3 for the median values over each action segment.

For each statistic calculated over the sum of AU activation values
during action segments, we employed a linear regression model to
predict the statistic considering action number as the independent
variable. Table A of the dataset documentation displays the results

computed with the scipy.stats Python library [1]. Across all four
summary statistics, there was a statistically significant negative
slope, suggesting that participants became less expressive to robot
actions over time. However, the slopes were just slightly negative,
and the Pearson correlation coefficients were low suggesting that
the model may not adequately capture the underlying relationships
within the data. This is to be expected since expressivity likely
depends on many other factors and warrants further study.

We fit another set of linear regression models, but this time con-
sidered whether the actions occurred first, second, third, or fourth in
a mini-series before a photo as the independent variable. For these
models, the slopes were positive for mean, median, and maximum
values of the sum of action unit values over action segments (Table
B of the dataset documentation). Taken with the previous results,
this suggests that within a short photography task, participants got
more expressive, but over time gradually became less expressive.

5 DISCUSSION
The REACT database has the potential to influence HRI work by
facilitating research that examines automated reasoning about hu-
man reactions. This could enable a deeper understanding of the
dynamics of human-robot interactions, which is essential for de-
signing more effective robots. As we work towards enabling robots
to help with physical and social tasks in human environments, it
will be important to consider how novelty effects diminish and peo-
ple change their responses to robots during interactions. Failing to
account for changes in user expressivity could cause robots to fail
to adjust their behavior to muted reactions later on in interactions.

As with all human subject data, there are ethical considerations
[16] for the use of the REACT database. Responsible use guidelines
include ensuring that the data is not used for purposes that would
negatively manipulate or impact people.

Our database facilitates exciting research directions but it is not
without limitations. The datasets showcase interactions for two
different tasks, allowing users to explore model generalizability;
however, it is unclear how analyses or models specific to these two
tasks would translate to other interaction scenarios. Also, there are
other forms of implicit communicative signals, such as the tone of
verbal communications, that are not included in the datasets.

6 CONCLUSION
We contributed two datasets that can facilitate studying how robots
can improve their behavior based on naturalistic human reactions.
Additionally, we found preliminary evidence highlighting the im-
portance of considering the interaction history when interpreting
human reactions in HRI. We hope that the REACT database and
initial findings encourage the HRI community to further explore
how robots can learn from implicit human feedback over time.
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