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Abstract
For eachposet P ,we construct a polytopeA (P) called the P-associahedron. Similarly
to the case of graph associahedra, the faces of A (P) correspond to certain nested
collections of subsets of P . The Stasheff associahedron is a compactification of the
configuration space of n points on a line, and we recover A (P) as an analogous
compactification of the space of order-preserving maps P → R. Motivated by the
study of totally nonnegative critical varieties in the Grassmannian, we introduce affine
poset cyclohedra and realize these polytopes as compactifications of configuration
spaces of n points on a circle. For particular choices of (affine) posets, we obtain
associahedra, cyclohedra, permutohedra, and type B permutohedra as special cases.

Keywords Poset · Associahedron · Cyclohedron · Configuration space ·
Compactification

Mathematics Subject Classification Primary 52B11; Secondary 05E99 · 06A07 ·
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1 Introduction

Polytopes arising from combinatorial data have been studied extensively in the recent
decades. Some examples include order polytopes [44], graph associahedra [5], gener-
alized permutohedra [36], the associahedron [21, 26, 43, 46], and the cyclohedron [4,
40]. The latter two polytopes may be obtained as compactifications of configuration
spaces of n points on a line and on a circle, respectively; see e.g. [2, 12, 16, 25, 30,
41].

The author was supported by an Alfred P. Sloan Research Fellowship and by the National Science
Foundation under Grants Nos. DMS-1954121 and DMS-2046915.

B Pavel Galashin
galashin@math.ucla.edu

1 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-023-00896-1&domain=pdf


6 Page 2 of 34 P. Galashin

The goal of the present paper is to introduce a new class of polytopes called P-
associahedra which combines the notions of graph associahedra and order polytopes
in a natural way, and to show that these polytopes arise as compactifications of poset
configuration spaces of points on a line. We review these results in Sects. 1.1–1.2. We
then introduce affine posets and affine P̃- cyclohedra in Sect. 1.3. They correspond to
compactifying affine poset configuration spaces of points on a circle rather than on a
line, and lead to applications to critical varieties [18] which we pursue in a separate
paper [17].

1.1 P-associahedra

Let (P,�P ) be a finite connected poset with |P| ≥ 2. Recall from [44] that the faces
of the order polytope of P correspond1 to set partitions T of P such that each τ ∈ T
is a convex connected subset of P , and such that the directed graph DT with vertex
set V (DT) := T and edge set

E(DT) := {(τ, τ ′) ∈ T2 | τ ∩ τ ′ = ∅ and i ≺P j for somei ∈ τ , j ∈ τ ′} (1.1)

is acyclic. Here a subset τ ⊆ P is called convex if having i ≺P j ≺P k with i, k ∈ τ

implies j ∈ τ , and τ is called connected if the corresponding induced subgraph of the
Hasse diagram of P is connected. Let us say that two sets A, B are nested if either
A ⊆ B or B ⊆ A.

Definition 1.1 A P-pipe is a convex connected nonempty subset τ ⊆ P . A P-piping is
a collection T of P-pipes such that any two sets τ, τ ′ ∈ T are either nested or disjoint,
and such that the directed graph DT given by (1.1) is acyclic.

When the poset P is clear from the context, we refer to P-pipes (resp., P-pipings)
simply as pipes (resp., pipings). We say that a pipe τ is proper if 1 < |τ | < |P|.
A piping is proper if it consists of proper pipes. Clearly, a subset of a proper piping
is a proper piping. We let KA (P) be an abstract simplicial complex whose vertices
correspond to proper pipes, and whose simplices correspond to proper pipings.

Theorem 1.2 (P-associahedron) There exists a simplicial (|P| − 2)-dimensional
polytope A (P)∗ whose boundary complex is isomorphic to KA (P).

Bydefinition, the P- associahedronA (P) is the polar dual of the polytope constructed
in Theorem 1.2. Thus A (P) is a simple polytope of dimension |P| − 2 whose facets
correspond to proper pipes and whose vertices correspond to maximal by inclusion
proper pipings. See Figs. 1 and 2 for examples.

We list some properties and examples of P-associahedra in Sect. 2.3. For instance,
similarly to other families of combinatorial polytopes (including permutohedra and
associahedra), each face ofA (P) is a product of smaller P-associahedra.When P is a
chain,A (P) is combinatorially equivalent to the (|P|−2)-dimensional associahedron.

1 Stanley’s construction of an order polytope only applies when P has a minimal and a maximal element.
In (1.2), we slightly modify his construction to include arbitrary connected posets.
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Fig. 1 A P-associahedron

Fig. 2 If P is a chain (left) then A (P) is the associahedron. If P is a claw (right) then A (P) is the
permutohedron
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When P is a claw (that is, P contains aminimal element 0̂ and any twoother elements of
P are incomparable),A (P) is combinatorially equivalent to the (|P|−2)-dimensional
permutohedron. See Fig. 2 for two-dimensional examples.

Remark 1.3 The set of pipes is not a building set in the sense of [8, 14, 36] since
the union of two pipes whose intersection is nonempty need not be a pipe. (It need
not be convex.) Thus P-associahedra are not special cases of graph associahedra or
nestohedra.

Remark 1.4 Our notions of poset pipes and pipings differ from thewell-studied notions
of graph tubes and tubings [5] in several ways. First, P-pipes are assumed to be convex.
Second, P-pipes of size 1 are not included in a proper P-piping. (In particular, when
P is a chain poset, P-pipings may be more naturally viewed as bracketings; cf. [5,
Figure 1(a)].) Third, a graph tubing cannot contain two adjacent graph tubes, i.e., two
disjoint graph tubes whose union is a graph tube. We do not impose this restriction in
the definition of P-associahedra. Instead, we impose an acyclicity constraint (1.1) on
P-pipings.

Remark 1.5 A different family of polytopes associated to posets was constructed in
[9]. We do not see any direct relation between the two constructions. It would be
interesting to find the intersection of these two classes of polytopes.

Remark 1.6 While we show that P-associahedraA (P) exist as convex polytopes, we
do not construct any explicit geometric realization of A (P) as a polytope with, say,
integer vertex coordinates. Doing so remains an open problem.2 Another interesting
problem is to describe the f - and h-vectors ofA (P) in terms of the combinatorics of
P .

Question 1.7 In [29], it was shown that graph associahedra of [5] arise as dual cluster
complexes of Laurent phenomenon algebras [28], which are certain generalizations of
cluster algebras [15]. Is there a relationship between P-associahedra and dual cluster
complexes of cluster algebras or of Laurent phenomenon algebras?

Another possible direction would be to relate P-associahedra to τ -tilting complexes
of gentle algebras [37].

1.2 Compactifications

Weexplain how P-associahedramay be obtained as compactifications of configuration
spaces of points on a line. When P is a chain, our construction recovers the case of
Stasheff associahedra obtained as Axelrod–Singer compactifications [2]; see also [12].

Recall that the order polytope [44] of P is the space of order-preserving maps
P → [0, 1]. We modify this construction to consider order-preserving maps P → R

instead. Let Sim1 be the group acting on R
P by rescalings x �→ λx for λ ∈ R>0 and

constant shifts x �→ x + μ(1, 1, . . . , 1) for μ ∈ R. We let

O◦(P) := {x ∈ R
P | xi < x j for all i ≺P j}/Sim1 (1.2)

2 Note added in 2023: This problem has now been solved in [39].
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Fig. 3 Defining the compactification Comp(P); see Example 1.9

denote the P-configuration space. It is not hard to see (cf. Sect. 2.1) that O◦(P) is
naturally identified with the interior of a (|P| − 2)-dimensional polytope denoted
O(P). The faces of O(P) are indexed by pipings T which are simultaneously set
partitions of P . If P is bounded, i.e., contains a maximal and a minimal element, then
O(P) is projectively equivalent to Stanley’s order polytope; see Remark 2.5.

Wewill consider a certain compactification ofO◦(P)which we first describe infor-
mally. See Fig. 3 and Example 1.9. An element x ∈ O◦(P) is a collection of |P| points
on a line satisfying the inequalities in (1.2). Allowing some (but not all, in view of the
action of Sim1) of the points to collide, we obtain a point x ∈ O(P), which belongs
to a face labeled by some set partition T0 = {τ1, τ2, . . . , τm} of P into m ≥ 2 disjoint
pipes. Thus all points in each pipe τ j have collided, and moreover, it could be that all
points in, say, τ1�τ2 have collided. During the collision, we keep track of the “ratios of
distances” between all pairs of points inside each individual τ j (however, the distances
between pairs of points in τi × τ j for i �= j are ignored). In the limit, this gives a point
x[τ j ] ∈ O(τ j ) for each j = 1, 2, . . . ,m, where τ j is treated as a connected subposet
(τ j ,�P ) of P . We iterate this construction: the point x[τ j ] belongs to some face of
O(τ j ) labeled by a partition of τ j into disjoint pipes, so we record the distance ratios
between pairs of points in each of those pipes, etc. At the end, we obtain a collection
T(x) of pipes which form a piping, and for each pipe τ ∈ T(x), we have a point
x[τ ] ∈ O(τ ).

The non-rigorous part in the above paragraph is the notion of “ratios of distances”
that we keep track of when the points collide. While such ratios are an essential
ingredient in the definition of the Axelrod–Singer compactification [2, 30, 41], we
found that this approach cannot be directly applied to poset configuration spaces: see
Example 3.1. Instead, we utilize a new construction which we now describe formally.
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For a point x ∈ O◦(P) and a pipe τ , let x[τ ] ∈ O◦(τ ) be the restriction of x to τ ,
i.e., the image of x under the standard projection R

P → R
τ . (This projection is Sim1-

equivariant.) Recall that O◦(τ ) is identified with the interior of the order polytope
O(τ ). Consider the composite restriction map

ρ : O◦(P) →
∏

|τ |>1

O(τ ), x �→ (x[τ ])|τ |>1, (1.3)

where the product is taken over pipes τ satisfying |τ | > 1. (This includes τ = P .)

Definition 1.8 (P-compactification) Let Comp(P) denote the closure

Comp(P) := ρ(O◦(P)).

Thus a point x ∈ Comp(P) is a collection (x[τ ])|τ |>1 ∈ ∏
|τ |>1O(τ ) of points

in various order polytopes. We refer to the coordinates of x[τ ] as (xi [τ ])i∈τ . We
outlined above a recursive way to associate a proper piping T(x) to each such point
x ∈ Comp(P); see Definition 3.4 for further details. This endows Comp(P) with the
structure of a stratified space, where the strata are indexed by proper pipings.

Example 1.9 Consider the poset P in Fig. 3a. For small t > 0, the point x(t) shown
on the left in Fig. 3c belongs to the P-configuration space O◦(P). When we take
the limit as t → 0, we obtain a point x ∈ Comp(P), described as follows. The
points 1, 2, 3, 4, 5 collide, as do the points 6, 7, 8, 9, thus x[P] ∈ O[P] satisfies
x1[P] = x2[P] = · · · = x5[P] and x6[P] = · · · = x9[P]. The set {1, 2, 3, 4, 5}
is a union of two pipes, and the corresponding two points x[123] ∈ O(123) and
x[45] ∈ O(45) are among those shown on the right in Fig. 3c. Here we abbreviate
123 = {1, 2, 3}, etc. The two to one ratio of distances between the points 1, 2 and 2, 3 is
encoded in the coordinates of x[123]. Similarly, the point x[6789] ∈ O(6789) satisfies
x6[6789] = x7[6789], but we have x6[67] < x7[67]. The pipes 123, 45, 6789, 67
form a proper piping T := T(x) which labels (cf. Definition 3.4) the stratum of
Comp(P) containing x. This piping is shown in Fig. 3b. By definition, to specify
a point x ∈ Comp(P), one needs to specify a point x[τ ] ∈ O(P) for any pipe τ ,
including the case τ /∈ T. Some of such points x[τ ] are shown in Fig. 3d. Aswe explain
in Lemma 3.8, it actually suffices to only specify the points x[τ ] for τ ∈ T � {P}.

Theorem 1.10 There exists a stratification-preserving homeomorphism A (P)
∼−→

Comp(P).

1.3 Affine P̃-cyclohedra

We now describe affine versions of the above constructions, which have served as the
original motivation for this work; see Remark 1.16.

Definition 1.11 An affine poset (of order n ≥ 1) is a poset P̃ = (Z,�P̃ ) such that:

• for all i ∈ Z, i ≺P̃ i + n;
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Fig. 4 If P̃ is a circular chain (left) then C (P̃) is the cyclohedron. If P̃ is a circular claw (right) then C (P̃)

is the type B permutohedron

• for all i, j ∈ Z, i �P̃ j if and only if i + n �P̃ j + n;
• P̃ is strongly connected: for all i, j ∈ Z, we have i �P̃ j + kn for some k ≥ 0.

We denote the order of P̃ by |P̃| := n.
A (P̃-)pipe is a convex connected nonempty subset of Z which either equals to P̃

or contains at most one element in each residue class modulo n. Thus if τ is a pipe
then so is τ + dn for any d ∈ Z, where we set τ + dn := {i + dn | i ∈ τ }. We say
that the pipes τ and τ + dn are equivalent, and let τ := {τ + dn | d ∈ Z} denote
the equivalence class of τ . A collection of pipes is called n-periodic if it is a union of
such equivalence classes.

A (P̃-)piping is an n-periodic collection T of pipes such that any two pipes in T
are either nested or disjoint, and such that the directed graph DT given by (1.1) is
acyclic. A pipe τ is called proper if it satisfies |τ | > 1 and τ �= P̃ . A piping is called
proper if it consists of proper pipes. Observe that each piping is a disjoint union of
finitely many equivalence classes of pipes. We let KC (P̃) be an abstract simplicial
complex whose vertices correspond to equivalence classes of proper pipes, and whose
simplices correspond to proper pipings.

Theorem 1.12 (Affine P̃-cyclohedron)There exists a simplicial (|P̃|−1)-dimensional
polytope C (P̃)∗ whose boundary complex is isomorphic to KC (P̃).

We define the affine P̃- cyclohedron C (P̃) as the polar dual to C (P̃)∗. See Corollary
4.10 for a list of its properties. It is a simple (|P̃| − 1)-dimensional polytope whose
vertices correspond to proper pipings consisting of |P̃ |−1 equivalence classes of pipes,
andwhose facets correspond to equivalence classes of proper pipes. Each face ofC (P̃)

is a product of smaller P-associahedra and affine P̃-cyclohedra. When P̃ is a circular
chain shown in Fig. 4(left) (resp., a circular claw shown in Fig. 4(right)), C (P̃) is
combinatorially equivalent to the cyclohedron (resp., to the type B permutohedron)
of dimension |P̃| − 1. Since the cyclohedron is a type B analog of the associahedron
[40], we may think of affine posets as type B analogs of finite posets.
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Finally, we explain how affine P̃-cyclohedra arise as compactifications. Fix some
constant c ∈ R>0. We identify points x ∈ R

|P̃| with infinite sequences x̃ = (x̃i )i∈Z

satisfying x̃i+n = x̃i + c for all i ∈ Z. Let the group R(1, 1, . . . , 1) act on R
|P̃| by

constant shifts. Set

O◦(P̃) := {x ∈ R
|P̃|/R(1, 1, . . . , 1) | x̃i < x̃ j for all i ≺P̃ j},

O(P̃) := {x ∈ R
|P̃|/R(1, 1, . . . , 1) | x̃i ≤ x̃ j for all i �P̃ j}.

(1.4)

We show in Corollary 4.3 that O(P̃) is a nonempty polytope of dimension |P̃| − 1.
We call it the affine order polytope of P̃ .

Given a point x ∈ O◦(P̃) and a pipe τ with |τ | > 1, we may still consider the
restriction x[τ ] ∈ O◦(τ ) whose coordinates are given by (x̃i )i∈τ . (Recall that τ = P̃
is considered a pipe, in which case we set x[τ ] := x.) When two pipes τ, τ ′ are
equivalent, we have x[τ ] = x[τ ′]. We thus get a map

ρ̃ : O◦(P̃) →
∏̄

|τ |>1

O(τ ), x �→ (x[τ ])|τ |>1.

Here
∏̄

|τ |>1O(τ ) is the set of points (x[τ ])|τ |>1 ∈ ∏
|τ |>1O(τ ) satisfying

x[τ ] = x[τ ′] whenever two pipes τ, τ ′ are equivalent. Thus essentially the prod-
uct

∏̄
|τ |>1O(τ ) is taken over finitely many equivalence classes τ of pipes τ satisfying

|τ | > 1, including the case τ = P̃ . For τ �= P̃ , O(τ ) is the order polytope associated
to the finite connected subposet (τ,�P̃ ) of P̃ .

We consider the closure

Comp(P̃) := ρ̃(O◦(P̃)). (1.5)

Similarly to the case of P-associahedra, Comp(P̃) admits a stratification into pieces
indexed by proper pipings.

Theorem 1.13 There exists a stratification-preserving homeomorphism C (P̃)
∼−→

Comp(P̃).

Remark 1.14 The quotient R/cZ is homeomorphic to a circle S1. ThusO◦(P̃)may be
considered as a configuration space of |P̃| points on S1 (modulo global rotations of
S1) such that the points comparable in P̃ are not allowed to pass through each other.
Whenwe take the closure in (1.5), we allow some (possibly all) of the points to collide.
During the collisions, we keep track of the ratios of distances recursively as we did
in Sect. 1.2. In particular, when the points belonging to some pipe τ �= P̃ collide, the
relative distances between them are described by a point x[τ ] in the order polytope
O(τ ) (as opposed to an affine order polytope). This is consistent with the fact that a
circle is locally homeomorphic to a line.
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Fig. 5 C (P̃) as a compactification of the P̃-configuration space of points on a circle. See Example 1.15

Example 1.15 Suppose that P̃ is a circular claw as in Fig. 4(right) of order |P̃| = 3.
We may viewO◦(P̃) as the configuration space of three points labeled 0, 1, 2 moving
on a circle so that 1 and 2 can pass through each other, but neither 1 nor 2 can pass
through 0. Consider the octagon in Fig. 5(right). Each vertex is labeled by a circle
with points 0, 1, 2 on it. We view each such circular configuration as a limit as t → 0
of a family of configurations where the distance between 0 and the closest point is t2

while the distance between 0 and the farthest point is t . In the limit as t → 0, it yields
a point in Comp(P̃) which corresponds to a vertex of C (P̃). This correspondence is
illustrated in Fig. 5.

Remark 1.16 Affine posets relevant to critical varieties are constructed as follows.
Choose a permutation f ∈ Sn . Place n vertices on a circle labeled 1, 2, . . . , n in
clockwise order. For each s ∈ [n] := {1, 2, . . . , n}, draw an arrow s → i whenever
i = f (s). The arrow starts slightly after s and terminates slightly before i in clockwise
order; see Fig. 6(left). Assuming the resulting union of n arrows is topologically
connected, the affine poset P̃ f is defined as the n-periodic transitive closure of the
relations

i ≺P̃ f
j ≺P̃ f

i + n

for all 1 ≤ i < j ≤ n such that the arrows s → i and t → j cross; see Fig. 6(right).
Setting c := π , the P̃ f -configuration space O◦(P̃ f ) defined in (1.4) coincides with
the space �>0

f of f -admissible tuples which parameterizes the critical cell Crit>0
f ;

see [18, Definition 1.6]. As we show in [17, Theorem 4.1], the affine P̃-cyclohedron
C (P̃ f ) admits a surjective continuousmap onto the totally nonnegative critical variety
Crit≥0

f , defined as the closure of Crit>0
f inside the Grassmannian.
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Fig. 6 Associating an affine poset P̃ f (right) to a strand diagram of a permutation f ∈ Sn (left)

2 P-associahedra

2.1 Order cones and polytopes

We start by collecting several simple results on order polytopes. Let P be a finite
connected poset with |P| ≥ 2. First, rather than taking the quotient modulo the group
Sim1 of rescalings and constant shifts, we would like to define O(P) as an explicit
subset of R

P . Let R
P
�=0 denote the subspace of R

P where the sum of coordinates is
zero. Define a linear function αP on R

P by

αP (x) :=
∑

i≺·P j

x j − xi . (2.1)

Here the sum is taken over the covering relations i ≺·P j in P . We are ready to define
the order cone L (P), the order polytope O(P), and their interiors:

L (P) := {x ∈ R
P
�=0 | xi ≤ x j for all i �P j}, O(P) := {x ∈ L (P) | αP (x) = 1};

L ◦(P) := {x ∈ R
P
�=0 | xi < x j for all i ≺P j}, O◦(P) := {x ∈ L ◦(P) | αP (x) = 1}.

The definition and some basic properties of L (P) may be found e.g. in [24, 38].
Recall that a cone is called pointed if it does not contain a line through the origin.
Clearly,L (P) is a pointed polyhedral cone since for each x ∈ L (P) \ {0}, we have
αP (x) > 0. Thus O(P) is a polytope of dimension |P| − 2.

Next, we describe the faces of O(P).

Definition 2.1 A piping partition of P is a piping T which is simultaneously a set
partition of P .

Consider a point x ∈ O(P). Let B(x) be the collection of maximal by inclusion
pipes τ such that we have xi = x j for all i, j ∈ τ . Then B(x) is a piping partition of
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P . Given an arbitrary piping partition T of P , let

F◦
O (P,T) := {x ∈ O(P) | B(x) = T}, (2.2)

and letFO (P,T)denote the closure ofF◦
O (P,T). For the coarsest pipingpartitionT =

{P}, let FO (P,T) := ∅ denote the empty face of O(P). The following proposition is
a straightforward extension of the results of [44].

Proposition 2.2 The map T �→ FO (P,T) is a bijection between piping partitions T
of P and faces of O(P). Face inclusion corresponds to refinement:

FO (P,T) ⊆ FO (P,T′) ⇐⇒ each τ ′ ∈ T′ is contained in some τ ∈ T. (2.3)

The dimension of each face FO (P,T) equals |T| − 2. ��
Corollary 2.3

(i) The vertices of O(P) are in bijection with partitions P = I � F of P into a
connected nonempty order ideal I and a connected nonempty order filter F.

(ii) The facets of O(P) are in bijection with the covering relations i ≺·P j in P.
(iii) Each face FO (P,T) of O(P) is itself an order polytope O(P/T), where the

quotient poset P/T is obtained from P by identifying all elements of P that
belong to a single pipe of T.

Let τ ⊆ P be a non-singleton pipe, i.e., a pipe satisfying |τ | > 1. Recall that τ is
treated as a subposet (τ,�P ) of P . Given any set A ⊇ τ , define the following maps:

avgτ : R
A → R, x �→ 1

|τ |
∑

i∈τ

xi ; πτ
�=0 : R

A → R
τ
�=0, x �→ (xi − avgτ (x))i∈τ ;

ατ : R
A → R, x �→

∑

i, j∈τ : i ≺·P j

x j − xi ; ρτ : R
A ��� R

τ , x �→ 1

ατ (x)
πτ

�=0(x).

Here ρτ is a rational map defined on the subset of R
A where ατ (x) �= 0.

Remark 2.4 We suppress the dependence of the maps avgτ , π
τ
�=0, ατ , ρτ on A. Thus,

for example, we have ατ ◦ πτ
�=0 = ατ as maps R

A → R.

ThemapρP provides a homeomorphismbetween the P-configuration space defined
in (1.2) and the interior O◦(P) of O(P). More generally, suppose that τ ⊆ τ+ are
non-singleton pipes. Then we have a map

πτ
�=0 : L (τ+) → L (τ ). (2.4)

The map ρτ : L (τ+) ��� O(τ ) is defined at all points x ∈ L (τ+) such that not all
coordinates {xi | i ∈ τ } are equal. For the case τ+ = P , we find that ρτ coincides
with the map x �→ x[τ ] from Sect. 1.2. Thus the map ρ in (1.3) extends to a map

ρ : L ◦(P) →
∏

|τ |>1

O(τ ), x �→ (ρτ (x))|τ |>1. (2.5)
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Fig. 7 Constructing the polytopeAM(P)∗ from O(P)∗ inductively via stellar subdivisions. See Example
2.6

Remark 2.5 Suppose P is bounded, and denote by 0̂, 1̂ ∈ P its minimal and maximal
elements. The order polytope Ô(P), introduced byStanley [44], is the set of all x ∈ R

P

satisfying x0̂ = 0, x1̂ = 1, and xi ≤ x j for all i �P j . Letting α′
P (x) := x1̂ − x0̂,

we see that the map π P
�=0 provides an affine isomorphism between Ô(P) and the

polytope O ′(P) := {x ∈ L (P) | α′
P (x) = 1}. Thus the polytopes Ô(P) and O(P)

are projectively equivalent. When P is not bounded, it appears that the polytopeO(P)

has not been considered before.

2.2 Proof of Theorem 1.2

Weuse a variation of Lee’s construction [26]. Our proof can be summarized as follows.
Recall from Proposition 2.2 that the faces of O(P) correspond to piping partitions of
P , and therefore the same holds for the polar dual O(P)∗. For each proper pipe τ , we
have a face of O(P)∗ corresponding to the partition

{τ } � {{i} | i ∈ P \ τ }. (2.6)

We will show thatA (P)∗ is obtained fromO(P)∗ by performing stellar subdivisions
at all such faces. The order of stellar subdivisions is chosen so that the size of τ is
weakly decreasing along the way. Before we proceed with the proof, we consider an
example of constructing the polar dual of the polytope A (P) from Fig. 1.

Example 2.6 Let P = 1

2 3

4

5

be the poset in Fig. 1(left). The polytopeO(P)∗ is shown
in Fig. 7(left). Here and belowwe abbreviate 123 := {1, 2, 3}, etc. The faces ofO(P)∗
correspond to piping partitions of P , and each face of the form (2.6) for some proper
pipe τ is labeled by τ in Fig. 7(left). For instance, the top left triangular face with
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vertices {12, 34, 45} corresponds to the piping partition {12, 345} which is not of the
form (2.6), so we do not label this face in the figure. Next, we apply stellar subdivisions
at all faces labeled by 4-element pipes, obtaining the polytope in Fig. 7(middle). The
set M, defined below, records the list of faces at which the subdivision has already
been performed. We then apply stellar subdivisions at all faces labeled by 3-element
pipes, obtaining the polytope in Fig. 7(right). Since 2-element pipes label the vertices
of O(P)∗, the corresponding stellar subdivisions do not change the polytope. The
vertices of the resulting polytope in Fig. 7(right) are in bijection with proper pipes,
and a collection of vertices forms a face precisely when the corresponding pipes form
a piping. Thus the polar dual of this polytope is combinatorially equivalent to A (P),
as one can check by comparing Fig. 7(right) to Fig. 1(right).

We now explain the proof in detail. Suppose we are given a set M of pipes such
that for τ ⊆ τ ′ with τ ∈ M, we have τ ′ ∈ M. We refer to the elements of M as
melted pipes. A pipe which does not belong to M is called frozen.

A piping T satisfying P ∈ T is called M-admissible if

(a) for each frozen pipe τ ∈ T, there is no τ ′ ∈ T such that τ ′
� τ .

(b) for each melted pipe τ ∈ T, the maximal by inclusion pipes τ ′ ∈ T satisfying
τ ′

� τ form a piping partition of τ .

Let (Adm(M),≤M) denote the poset of allM-admissible pipings, where T ≤M T′
if and only if T is obtained from T′ by removing some melted pipes and subdividing
some frozen pipes. More precisely, T ≤M T′ if
(1) for each frozen pipe τ ∈ T, there exists a frozen pipe τ ′ ∈ T′ satisfying τ ⊆ τ ′,

and
(2) for each melted pipe τ ∈ T, we have τ ∈ T′.

Our proof will proceed by induction on |M|, starting from the base caseM = {P}.
For each setM, we will introduce a polytopeAM(P)∗ whose boundary face lattice3
is isomorphic to Adm(M). For each T ∈ Adm(M), we let FAM(P;T) denote the
corresponding face of AM(P)∗. We will show that its dimension is given by

dim(FAM(P;T)) = |P| + |T ∩ M| − |T \ M| − 2. (2.7)

For example, the minimal element of Adm(M) consists of P together with all single-
ton pipes. (Throughout the entire induction process, the singleton pipes stay frozen.)
By (2.7), the face corresponding to this minimal element has dimension −1 and thus
is the empty face ofAM(P)∗. We encourage the reader to check that the face poset of
the polytope in Fig. 7(middle) coincides with Adm(M) for M = {P, 1234, 2345}.

Consider the base case M = {P}. By definition, each M-admissible piping T
contains P together with a piping partition of P into frozen pipes. The order relation
≤M is given by coarsening, which is the opposite of (2.3). Thus we let AM(P)∗ :=
O(P)∗ be the polar dual of O(P). For example, maximal elements of Adm(M)

correspond to pipings of the form T = {P, I , F} where I (resp., F) is a nonempty

3 By definition, the boundary face lattice includes all faces (in particular, the empty face) except for the
polytope itself.
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order ideal (resp., order filter). By Corollary 2.3, such pipings are in bijection with the
facets of AM(P)∗. We check that (2.7) holds for the base case.

We now proceed with the induction step. Suppose we have constructed the polytope
AM(P)∗ as above for some set M. Choose a maximal by inclusion frozen proper
pipe τ /∈ M, and let M′ := M � {τ }. Set

Sτ := {P, τ } � {{i} | i ∈ P \ τ }.

Thus Sτ is an M-admissible piping. Let FAM(P;Sτ ) be the corresponding face
of AM(P)∗. Our goal is to perform a stellar subdivision of AM(P)∗ at the face
FAM(P;Sτ ).

We give some background on stellar subdivisions; see e.g. [48, Exercise 3.0] or [1,
Section 2.1]. Let Q be a polytope and F � Q be its face. Assume for simplicity that
Q contains the origin in its interior. Geometrically, a stellar subdivision Stel(Q, F)

of Q at the face F is obtained by choosing a point x in the relative interior of F and
setting

Stel(Q, F) := Conv(Q ∪ {(1 + ε)x})
for some sufficiently small ε > 0. Combinatorially, the face poset of Stel(Q, F) is
obtained from that of Q via the following procedure:

(i) add a new vertex x′ := (1 + ε)x;
(ii) remove all faces F ′ of Q containing F ;
(iii) for each face F ′ of Q containing F and each face F ′′ ⊆ F not containing F , add

a new face Conv(F ′′ ∪ {x′}) of dimension dim(F ′′) + 1.

Going back to our proof, we let F := FAM(P;Sτ ), Q := AM(P)∗, and
AM′(P)∗ := Stel(Q, F). Thus the face poset of AM′(P)∗ is given by steps (i)–
(iii) above. Let us now compare Adm(M) to Adm(M′) and show that Adm(M′) is
obtained from Adm(M) by applying analogs of steps (i)–(iii).

(i): Adm(M′) \ Adm(M) contains a piping

S′
τ := {P, τ } � {{i} | i ∈ P}.

It corresponds to the new vertex x′ of AM′(P)∗.
(ii): Let T be an M-admissible piping such that Sτ ≤M T, i.e., such that

FAM(P;Sτ ) ⊆ FAM(P;T). Since τ was a maximal by inclusion frozen pipe, by (1)
we get that τ ∈ T. In particular, T is notM′-admissible, thus the face FAM(P;T) is
removed. Conversely, any T ∈ Adm(M) \ Adm(M′) must contain τ .

(iii): Let Sτ ≤M T be as above. Any T′ ≤M T is obtained from T by removing
some melted pipes and subdividing some frozen pipes. Moreover, we have Sτ �M T′
if and only if τ /∈ T′ (thus τ was among the subdivided frozen pipes). In this case,
we claim that T′′ := T′ � {τ } is an M′-admissible piping. First, because T′ contains
a subdivision of τ , any two pipes in T′′ are either nested or disjoint. Next, we need
to show that the directed graph D′′

T is acyclic. Suppose otherwise that τ ′′
1 → τ ′′

2 →
· · · → τ ′′

m → τ ′′
m+1 = τ ′′

1 is a directed cycle in D′′
T. For each j ∈ [m], let τ j ∈ T

be the minimal by inclusion pipe containing τ ′′
j . We see that τ ′′

j ∈ M′ if and only
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Fig. 8 A poset P such that
A (P)∗ is not a flag simplicial
complex

if τ j ∈ M′, in which case τ j = τ ′′
j . Let DT be the directed graph obtained from T

via (1.1). Let j ∈ [m]. If τ j ∩ τ j+1 = ∅ then (τ j , τ j+1) is an edge in DT. Otherwise,
τ j and τ j+1 must be nested, say, τ j ⊆ τ j+1. Since τ ′′

j ∩ τ ′′
j+1 = ∅, we cannot have

τ ′′
j+1 = τ j+1, so τ j+1 /∈ M′ is frozen, and therefore τ j = τ j+1 by (a). Because T′ is

itself a piping, we must have τ ′′
i = τ = τi for some i ∈ [m]. Therefore not all pipes τ j

are equal to each other. We arrive at a directed cycle in DT, a contradiction. We have
shown that T′′ is a piping. Finally, because τ ∈ M′ is subdivided in T′, the piping T′′
isM′-admissible. This way, we obtain all M′-admissible pipings containing τ .

We letFAM′ (P;T′′) be the face Conv(FAM(P;T′)∪{x′}) of Stel(Q, F). We find
that dimFAM′ (P;T′′) = dimFAM(P;T′) + 1, which is consistent with (2.7) since
T′′ = T′ � {τ } and τ ∈ M′. Any M′-admissible piping not containing τ is already
M-admissible. This exactly parallels the description in step (iii). We have shown that
Adm(M′) is the boundary face lattice of AM′(P)∗, completing the induction step.

We continue this process until M contains all proper pipes. Then every M-
admissible piping contains P and all singleton pipes. Removing them, we obtain an
order-preserving bijection between Adm(M) and the poset of proper pipings ordered
by inclusion. Thus the boundary face poset Adm(M) of AM(P)∗ is isomorphic to
the face poset of the simplicial complex KA (P) in Theorem 1.2. ��

2.3 Properties of P-associahedra

Recall that a poset P is called a chain if its covering relations are 1 ≺·P 2 ≺·P · · · ≺·P n,
and P is called a claw if its covering relations are 0̂ ≺·P 1, 0̂ ≺·P 2, . . . , 0̂ ≺·P n. In
the following result, we identify two polytopes if they are combinatorially equivalent.

Corollary 2.7 Let P be a finite connected poset with |P| ≥ 2.

(i) A (P) is a simple polytope of dimension |P| − 2.
(ii) Its polar dual A (P)∗ is simplicial, but in general not flag.
(iii) For each proper pipingT, the corresponding face ofA (P) has dimension |P|−

|T| − 2.
(iv) The vertices of A (P) are in bijection with proper pipings of size |P| − 2.
(v) The facets of A (P) are in bijection with proper pipes.
(vi) Each face of A (P) is a product of P-associahedra.
(vii) When P is a chain, A (P) is the (|P| − 2)-dimensional associahedron.
(viii) When P is a claw, A (P) is the (|P| − 2)-dimensional permutohedron.

Proof Most of these properties are simple consequences of the definitions andTheorem
1.2. We comment on some of them.

(ii): Consider the poset P in Fig. 8. The proper pipes {1, 2}, {3, 4}, {5, 6} correspond
to three vertices ofA (P)∗ such that any twoof them forman edge ofA (P)∗. However,
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T := {{1, 2}, {3, 4}, {5, 6}} is not a piping since the graph DT contains a directed cycle.
Thus these three vertices do not form a 2-dimensional face of A (P)∗, and therefore
the boundary of A (P)∗ is not a flag simplicial complex.

(vi): Consider a proper pipingT. For each τ ∈ T�{P}, consider the quotient τ/T[τ ]
of the poset τ obtained by identifying all elements which belong to some τ− ∈ T
satisfying τ− � τ . Then the face of A (P) corresponding to T is combinatorially
equivalent to the product

∏
τ∈T�{P} A (τ/T[τ ]) of such quotient P-associahedra.

(vii): Let n := |P|. Recall that the faces of the (n − 2)-dimensional associahedron
are in bijection with plane rooted trees with n leaves, where the root has degree
≥ 2. Face closure relations correspond to edge contractions in such trees. In view
of Definition 3.5 below, it follows that when P is a chain, plane rooted trees with n
leaves are in bijection with proper pipings. Explicitly, we may assume that each plane
tree is embedded in the upper half plane with the leaves lying on the x-axis. Labeling
the leaves 1, 2, . . . , n from left to right, each non-leaf vertex v gives rise to a pipe τv

consisting of the labels of its descendant leaves. The collection of τv over all non-leaf
vertices v other than the root of the tree gives a proper piping. Clearly, each proper
piping arises from a unique such plane rooted tree.

(viii): Let n := |P| − 1. Label the elements of P \ {0̂} by 1, 2, . . . , n as in
Fig. 2(right). Recall that the (n − 1)-dimensional permutohedron 
n is the con-
vex hull of all vectors obtained from (1, 2, . . . , n) by permuting the coordinates.
The faces of 
n are in bijection with ordered set partitions (B1, B2, . . . , Bk), where
[n] = B1 � B2 � · · · � Bk and each Bi is nonempty. For each i ∈ [k], let
τi := {0̂} � B1 � · · · � Bi . We obtain a proper piping T := {τi | i ∈ [k]}, and
the resulting map gives the desired order-preserving bijection. ��

3 P-associahedra as compactifications

We develop some further properties of compactifications introduced in Sect. 1.2 and
prove Theorem 1.10. Before we proceed with the proof, we demonstrate a problem
that arises when extending the definition of Axelrod–Singer compactifications to poset
configuration spaces. The standard approach [2, 30, 41]when P is a chain is to consider
a family of functions

di, j,k : O◦(P) → [0,∞], di, j,k(x) := |xi − x j |
|xi − xk |

for all triples i, j, k ∈ P of distinct elements. The Axelrod–Singer compactification
is then essentially the closure of the image of O◦(P) inside the corresponding

(|P|
3

)
-

dimensional space.4 In order to apply a similar construction to an arbitrary poset P ,
one would expect to fix some set Triples(P) consisting of some of the

(|P|
3

)
triples

(i, j, k), and then define Comp(P) to be the closure of the image ofO◦(P) inside the

4 For arbitrary manifolds, one needs to include other functions keeping track of the coordinates xi and the

directions of the unit vectors
xi−x j
|xi−x j | when the points xi and x j collide. In the 1-dimensional case, ignoring

these extra functions does not alter the resulting compactifications.
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Fig. 9 The functions di, j ,k needed to determine the ratio (c − b) : (b − a) cannot be extended to the whole
boundary of A (P). See the proof of Corollary 2.7(viii)

corresponding |Triples(P)|-dimensional space. The following example demonstrates
that this is impossible.

Example 3.1 Let P be the N -shaped poset with relations 1 ≺P 3 �P 2 ≺P 4. Thus
A (P) is a pentagon; see Fig. 9. Let x(t) ∈ O◦(P) be a configuration of four points on
a line. We will use the definition (1.2) of O◦(P) as a subset of R

P/Sim1. Consider
a point x ∈ A (P) obtained as the limit x (t)

1 → a, x (t)
2 , x (t)

3 → b, x (t)
4 → c. Letting

a < b < c vary, we obtain a 1-dimensional face ofA (P). Thus there should be a triple
(i, j, k) ∈ Triples(P) such that di, j,k allows one to recover the ratio (c−b) : (b−a).
The set of such triples (i, j, k), modulo the symmetry of P swapping 1 ↔ 4 and
2 ↔ 3, and modulo swapping j and k in di, j,k , consists of (1, 2, 4), (2, 1, 4), and
(1, 3, 4). Suppose (1, 2, 4) ∈ Triples(P) or (2, 1, 4) ∈ Triples(P). Then consider
a different limit where x (t)

1 , x (t)
2 , x (t)

4 → 0 and x (t)
3 → 1. This limit should yield

a single point y ∈ A (P). However, depending on how x (t)
1 , x (t)

2 , x (t)
4 approach 0,

the ratios d1,2,4(x(t)) and d2,1,4(x(t)) may converge to any numbers in [0,∞]. Thus
(1, 2, 4), (2, 1, 4) /∈ Triples(P). Similarly, if (1, 3, 4) ∈ Triples(P) then we consider
a limit where x (t)

1 , x (t)
3 , x (t)

4 → 1, x (t)
2 → 0. This should yield a single point z ∈ A (P)

but the ratio d1,3,4(x(t)) again may converge to any number depending on the way we
take the limit. We arrive at a contradiction. See Fig. 9.

The same problem arises if we consider more general distance ratio functions
d ′
i, j,k,�(x) := |xi−x j |

|xk−x�| . For instance, the above ratio (c−b) : (b−a)may be recovered

from d ′
1,3,2,4. However, considering a limit x (t)

1 , x (t)
3 → 1, x (t)

2 , x (t)
4 → 0 corre-

sponding to a vertex of A (P), we again conclude that d ′
1,3,2,4 cannot be used in the

construction.
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3.1 Coherent collections

Our first goal is to describe which elements of
∏

|τ |>1O(τ ) belong to Comp(P). For
that, we will introduce the notion of a coherent collection. Recall from (2.4) that for
any pipes τ ⊆ τ+ with |τ | > 1, the map πτ

�=0 gives a projection L (τ+) → L (τ ).

Definition 3.2 An element x ∈ ∏
|τ |>1O(τ ) is called coherent if

for any τ � τ+wi th|τ | > 1, there exists λ ∈ R≥0 such that πτ
�=0(x[τ+]) = λx[τ ].

(3.1)

We let Coh(P) denote the set of points x ∈ ∏
|τ |>1O(τ ) satisfying (3.1). We will see

later in Proposition 3.9 that Coh(P) = Comp(P).

Remark 3.3 For ( y, z) ∈ C
d × (Cd \ {0}), the condition that there exists some λ ∈ C

satisfying y = λz cuts out a subvariety of C
d × (Cd \ {0}) defined by equations

yi z j = y j zi for all i, j ∈ [d]. This construction is closely related to the classical
notion of a blow-up in algebraic geometry; see e.g. [22, page 28]. Thus the space
Coh(P)may be considered a polytope-theoretic blow-up ofO(P) along the collection
of faces indexed by piping partitions of the form (2.6). We note that there is a well-
known connection between blow-ups of toric varieties and stellar subdivisions of the
associated polytopes; see e.g. [31, Section 1.7]. It would be interesting to find some
family of algebraic varieties reflecting the combinatorics of P-associahedra.

3.2 A cell decomposition

Given a point x ∈ Coh(P) and a non-singleton pipe τ , we have a point x[τ ] ∈ O(τ ).
We may therefore consider the corresponding piping partition B(x[τ ]) of τ defined in
Sect. 2.1.

Definition 3.4 Let x ∈ Coh(P). Let T̂(x) be the smallest collection of pipes such that

• T̂(x) contains P;
• for each non-singleton τ ∈ T̂(x), T̂(x) also contains all pipes in B(x[τ ]).

In particular, T̂(x) contains P and all singleton pipes. We let T(x) denote the set of
proper pipes in T̂(x). For an arbitrary proper piping T, we let T̂ be obtained from T
by adding P and all singleton pipes.

Definition 3.5 Let T̂ be a collection of pipes containing P and all singleton pipes,
such that any two pipes in T̂ are either nested or disjoint. Then T̂ has the following
structure of a rooted tree. The pipe P ∈ T̂ is the root, and the singleton pipes are the
leaves. For each non-singleton pipe τ ∈ T̂, the set T̂[τ ] of its children consists of all
maximal by inclusion pipes τ− ∈ T̂(x) satisfying τ− � τ .

Lemma 3.6 For any x ∈ Coh(P), T(x) is a proper piping.

Proof It is clear that any two pipes in T̂ := T̂(x) are either nested or disjoint. We
need to show that the directed graph DT is acyclic. Suppose otherwise that τ ′

1 →
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τ ′
2 → · · · → τ ′

m → τ ′
m+1 = τ ′

1 is a cycle in DT. Let τ+ ∈ T̂ be the lowest common
ancestor (cf. Definition 3.5) of τ ′

1, τ
′
2, . . . , τ

′
m . For each j ∈ [m], let τ j be the child

of τ+ containing τ ′
j . Thus the pipes τ1, τ2, . . . , τm are not all equal to each other. The

children of τ+ in T̂ form a piping partition T̂[τ+] of τ+ equal to B(x[τ+]). Thus for
each j ∈ [m], either τ j = τ j+1 or τ j ∩ τ j+1 = ∅, in which case τ j → τ j+1 is an edge
of DT. We have therefore found a cycle in DT consisting of children of τ+, which
contradicts the fact that they form a piping partition of τ+. ��

Our next goal is to show that any point x ∈ Coh(P) is completely determined by
the points x[τ ] for all τ ∈ T̂(x) (as opposed to all pipes τ ) satisfying |τ | > 1; cf.
Fig. 3(c,d) and Example 1.9.

Definition 3.7 Given an arbitrary subset A ⊆ P and a piping T̂ with P ∈ T̂, let T̂min⊇A

be the minimal by inclusion pipe τ ∈ T̂ satisfying τ ⊇ A.

Lemma 3.8 Let x ∈ Coh(P) and T̂ := T̂(x). Let τ be any non-singleton pipe, and let
τ+ := T̂min⊇τ . Then

ατ (x[τ+]) > 0 and x[τ ] = ρτ (x[τ+]).

Proof Because τ+ ∈ T̂ is minimal by inclusion containing τ , we see that τ is not
contained in any pipe in the piping partition T̂[τ+] = B(x[τ+]). In particular, not all
coordinates {xi [τ+] | i ∈ τ } are equal. Thus ατ (x[τ+]) > 0 and πτ

�=0(x[τ+]) �= 0.
By (3.1), we have λx[τ ] = πτ

�=0(x[τ+]), and since the right hand side is nonzero, we
have λ > 0. It follows that λ = ατ (x[τ+]), thus x[τ ] = ρτ (x[τ+]). ��
Proposition 3.9 We have Comp(P) = Coh(P).

Proof First, (3.1) is satisfied for all points in ρ(O◦(P)). We explained in Remark 3.3
that (3.1) is described by polynomial equations and thus it is satisfied for the points in
the closure Comp(P) of ρ(O◦(P)). Therefore Comp(P) ⊆ Coh(P).

Conversely, let x ∈ Coh(P) and T := T(x). The following argument is borrowed
from [41, Section 3.4]. Choose a vector t = (tτ )τ∈T ∈ R

T
>0 such that

0 < tτ � 1 for all τ ∈ T, and tτ− � tτ for all τ−, τ ∈ T such that τ− � τ.

(3.2)
Define a point y(t) ∈ R

P by

y(t)
i := xi [P] +

∑

τ∈T: i∈τ

tτ xi [τ ], for all i ∈ P.

It is easy to see that for t sufficiently small satisfying (3.2), we have y(t) ∈ L ◦(P).
Let

z(t) := ρ
(
y(t)

)
∈

∏

|τ |>1

O(τ );

cf. (2.5). We claim that limt→0 z(t) = x inside
∏

|τ |>1O(τ ), where the limit is taken

in the above regime (3.2). In other words, we need to show that limt→0 z(t)[τ ] = x[τ ]
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for each non-singleton pipe τ . This is clear for τ = P . Suppose next that τ ∈ T.
Define a point x(t)[τ ] ∈ L ◦(τ ) by

x (t)
i [τ ] := xi [τ ] +

∑

τ−∈T: i∈τ−�τ

tτ−
tτ

xi [τ−] for i ∈ τ.

Thus z(t)[τ ] = 1
ατ (x(t)[τ ]) x

(t)[τ ]. By (3.2), we have x(t)[τ ] → x[τ ] inside L (τ ) as

t → 0. Thus ατ (x(t)[τ ]) → 1 and z(t)[τ ] → x[τ ] as t → 0. We have shown the
result for τ ∈ T. For any proper pipe τ /∈ T, the result follows by Lemma 3.8: for
τ+ := T̂min⊇τ , the map ρτ : L (τ+) ��� O(τ ) is continuous where it is defined, and its
domain of definition includes the points x[τ+] and z(t)[τ+]. ��
Definition 3.10 Given a proper piping T, let

CompT(P) := {x ∈ Comp(P) | T(x) = T}.

Recall from Definition 3.5 that for a proper piping T and a pipe τ ∈ T̂, we denote
by T̂[τ ] the piping partition of τ consisting of all children of τ in the rooted tree T̂.

Proposition 3.11 For each proper piping T, we have a homeomorphism

CompT(P) ∼=
∏

τ∈T�{P}
F◦
O (τ, T̂[τ ]).

Proof Let x ∈ CompT(P). By Definition 3.4, we have

(x[τ ])τ∈T�{P} ∈
∏

τ∈T�{P}
F◦
O (τ, T̂[τ ]). (3.3)

We claim that the map x �→ (x[τ ])τ∈T�{P} is a homeomorphism. To describe the
inverse of this map, choose a point (x[τ ])τ∈T�{P} as in (3.3). Take any non-singleton
pipe τ and let τ+ := T̂min⊇τ . ByLemma3.8,wemust set x[τ ] := ρτ (x[τ+]). This defines
a point x ∈ ∏

|τ |>1O(τ ). We claim that x ∈ Coh(P), i.e., that it satisfies (3.1).
Let τ � τ+ be arbitrary pipes with |τ | > 1. Our goal is to show thatπτ

�=0(x[τ+]) =
λx[τ ] for some λ ∈ R≥0. Let τ ′ := T̂min⊇τ and τ ′+ := T̂min⊇τ+ , thus τ ′ ⊆ τ ′+. Suppose first
that τ ′

� τ ′+. Then τ ′ is a subset of some pipe in T̂[τ ′+], and thus πτ ′
�=0(x[τ ′+]) = 0.

Since x[τ+] is proportional toπ
τ+
�=0(x[τ ′+]), and sinceπτ

�=0◦π
τ+
�=0 = πτ

�=0◦πτ ′
�=0 =

πτ
�=0 (cf. Remark 2.4), it follows that πτ

�=0(x[τ+]) = 0. Thus (3.1) holds with
λ = 0. Suppose now that τ ′ = τ ′+ and let y := x[τ ′] = x[τ ′+]. Then x[τ ] is a
positive scalar multiple ofπτ

�=0( y) and x[τ+] is a positive scalar multiple ofπτ+
�=0( y).

Again using πτ
�=0 ◦ π

τ+
�=0 = πτ

�=0, we find that x[τ ] is a positive scalar multiple of
πτ

�=0(x[τ+]). Thus x ∈ Coh(P) = Comp(P). Moreover, Definition 3.4 implies that
x ∈ CompT(P).

We have constructed a bijection between CompT(P) and
∏

τ∈T�{P} F◦
O (τ, T̂[τ ]).

This bijection and its inverse are clearly continuous, thus the two spaces are
homeomorphic. ��
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Corollary 3.12 We have a disjoint union

Comp(P) =
⊔

T

CompT(P),

where for each proper piping T, the cell CompT(P) is homeomorphic to R
|P|−|T|−2.

Proof By Proposition 3.11, CompT(P) is homeomorphic to an open ball. By
Proposition 2.2, its dimension is given by

∑

τ∈T�{P}
(|T̂[τ ]|−2) =

∑

τ∈T�{P}
|T̂[τ ]|−2|T|−2 = |T|+|P|−2|T|−2 = |P|−|T|−2.

The first and the third equalities are trivial, and the second equality follows from the
fact that each pipe τ− ∈ T̂ \ {P} appears in T̂[τ ] for exactly one τ ∈ T � {P}. ��
Lemma 3.13 The closure of each cell CompT(P) in Comp(P) is given by

CompT(P) =
⊔

T′⊇T

CompT′(P),

where the union is taken over proper pipings T′ containing T.

Proof Suppose that a point x ∈ CompT′(P) belongs to CompT(P). First, we show
that T′ ⊇ T. Let τ ∈ T and τ+ := T̂′min⊇τ . We need to show that τ ∈ T′. If τ = τ+ then
we are done, so assume τ � τ+.

We claim that for any point y ∈ CompT(P), τ is contained inside some pipe
τ ′ ∈ B( y[τ+]) (which therefore satisfies τ ′

� τ+). Indeed, by Lemma 3.8, y[τ+] is
obtained as ρτ+( y[τ ′+]) for τ ′+ := T̂min⊇τ+ . We see that τ, τ ′+ ∈ T̂ and τ � τ+ ⊆ τ ′+,
so τ is contained inside some pipe in B( y[τ ′+]). Since τ � τ+, it follows that τ is
contained inside some τ ′ ∈ B( y[τ+]).

Since x is the limit of a sequence of points in CompT(P), we see that τ is contained
inside some pipe τ ′′ ∈ B(x[τ+]). By Definition 3.4, we have τ ′′ ∈ T̂′, and since
τ ⊆ τ ′′

� τ+, we get a contradiction with the minimality of τ+. We have shown that
T′ ⊇ T.

Conversely, suppose that x ∈ CompT′(P) for some T′ ⊇ T. Our goal is to show
that x ∈ CompT(P). We modify the construction in the proof of Proposition 3.9.
Choose a vector t = (tτ )τ∈T′\T. For τ ∈ T � {P}, define a vector y(t)[τ ] by

y(t)
i [τ ] := xi [τ ] +

∑

τ−∈T′\T: i∈τ−�τ

tτ−xi [τ−] for i ∈ τ.

For t ∈ R
T′\T
>0 sufficiently small satisfying (3.2), we get y(t)[τ ] ∈ L (τ ) \ {0}. Let

z(t)[τ ] := ρτ ( y(t)[τ ]) ∈ O(τ ).
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We see that z(t)[τ ] ∈ F◦
O (τ, T̂[τ ]). Repeating this for each τ ∈ T � {P}, we obtain

a point in
∏

τ∈T�{P} F◦
O (τ, T̂[τ ]), which by Proposition 3.11 gives a point z(t) ∈

CompT(P). Similarly to the argument in the proof of Proposition 3.9, we get z(t) → x
as t → 0. ��

3.3 Collapsing and expandingmaps

We now come to the most technical part of our proof. We will construct a family of
maps which will be later used to show that the closure CompT(P) of each cell is a
topological manifold with boundary. Throughout this section, we fix two pipes τ � τ+
with |τ | > 1.

Definition 3.14 Given a proper pipingT, we say that τ, τ+ are adjacent in T̂ if τ, τ+ ∈
T̂ and τ+ is the parent of τ in T̂, i.e., τ ∈ T̂[τ+]. We denote by adj(τ, τ+) the set of
proper pipings T such that τ, τ+ are adjacent in T̂. We let

Adj(τ, τ+) :=
⊔

T∈adj(τ,τ+)

CompT(P),

Adj′(τ, τ+) :=
⊔

T∈adj(τ,τ+)

CompT(P) � CompT\{τ }(P).

Next, we write

Pτ+
τ := {(i, j) ∈ τ×(τ+\τ) | i ≺P j} and Pτ

τ+ := {( j, i) ∈ (τ+\τ)×τ | j ≺P i}.
(3.4)

For x ∈ Adj(τ, τ+), let

tmax
τ,τ+(x) := sup

{
t ∈ R≥0

∣∣∣∣
xi [τ+] + t xi [τ ] < x j [τ+] f or(i, j) ∈ Pτ+

τ , and
x j [τ+] < xi [τ+] + t xi [τ ] f or( j, i) ∈ Pτ

τ+

}
.

(3.5)
Note that the set on the right hand side of (3.5) is nonempty since it contains t = 0.
Thus we get a map tmax

τ,τ+ : Adj(τ, τ+) → [0,∞]. We treat [0,∞] as a topological
space homeomorphic to a line segment.

Lemma 3.15 The map tmax
τ,τ+ is continuous on Adj(τ, τ+) and has image in (0,∞].

Proof We will show instead that 1
tmax
τ,τ+

is a continuous function Adj(τ, τ+) → [0,∞).

Observe that xi [τ+] < x j [τ+] for all x ∈ Adj(τ, τ+) and (i, j) ∈ Pτ+
τ . Thus

fi, j (x) := xi [τ ]
x j [τ+]−xi [τ+] is a continuous function Adj(τ, τ+) → R, and therefore

f +
i, j (x) := max( fi, j (x), 0) is a continuous function with image in R≥0. Similarly, for

( j, i) ∈ Pτ
τ+ , let gi, j (x) := −xi [τ ]

xi [τ+]−x j [τ+] and g+
i, j (x) := max(gi, j (x), 0). It follows

from (3.5) that

1

tmax
τ,τ+(x)

= min
(
{ f +

i, j (x) | (i, j) ∈ Pτ+
τ } ∪ {g+

i, j (x) | ( j, i) ∈ Pτ
τ+}

)
∈ [0,∞).
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In particular, 1
tmax
τ,τ+

is continuous since it is the minimum of several continuous

functions. ��
Define the expanding set

Ex(τ, τ+) := {(x, t) ∈ Adj(τ, τ+) × [0,∞) | 0 ≤ t < tmax
τ,τ+(x)}.

Similarly, define the collapsing set

Coll(τ, τ+) :=
{
x ∈ Adj′(τ, τ+)

∣∣∣∣
avgτ (x[τ+]) < x j [τ+] f or(i, j) ∈ Pτ+

τ , and
x j [τ+] < avgτ (x[τ+]) f or( j, i) ∈ Pτ

τ+

}
.

(3.6)
The following result is a straightforward consequence of the definitions and Lemma
3.15.

Lemma 3.16 (i) Ex(τ, τ+) is an open subset of Adj(τ, τ+) × [0,∞) containing
Adj(τ, τ+) × {0}.

(ii) Coll(τ, τ+) is an open subset of Adj′(τ, τ+) containing Adj(τ, τ+). ��
Finally, we introduce expanding and collapsingmaps.We first define the expanding

map
exτ,τ+ : Ex(τ, τ+) → Coll(τ, τ+).

Let (x, t) ∈ Ex(τ, τ+). If t = 0, we set exτ,τ+(x, t) := x. If t > 0, the image
exτ,τ+(x, t) = y is described as follows. Let T := T(x), thus τ, τ+ ∈ T, and let
T′ := T \ {τ }. The point y will belong to CompT′(P), thus by Proposition 3.11,
it suffices to specify a point y[τ ′] ∈ F◦

O (τ ′, T̂′[τ ′]) for each τ ′ ∈ T′ � {P}. For
τ ′ ∈ T′ \ {τ+}, set y[τ ′] := x[τ ′]. Let z ∈ L (τ+) \ {0} be defined by

zi :=
{
xi [τ+], if i ∈ τ+ \ τ ;
xi [τ+] + t xi [τ ], if i ∈ τ.

(3.7)

Set y[τ+] := 1
ατ+ (z) z. Thus indeed y[τ ′] ∈ F◦

O (τ ′, T̂′[τ ′]) for each τ ′ ∈ T′ � {P},
and by Proposition 3.11, this data gives rise to a point y ∈ CompT′(P). Since the
conditions in the definition of Coll(τ, τ+) are satisfied for z (where avgτ (z) = xi [τ+]
for any i ∈ τ ), we find y ∈ Coll(τ, τ+). We set exτ,τ+(x) := y.

Next, we describe the collapsing map

collτ,τ+ : Coll(τ, τ+) → Ex(τ, τ+).

We will later see that it is the set-theoretic inverse of exτ,τ+ . Let y ∈ Coll(τ, τ+) and
let T′ := T( y). If τ ∈ T′, we set coll( y) := ( y, 0). Suppose now that τ /∈ T′ and set
T := T′ � {τ }. Introduce a point z ∈ L (τ+) given by

zi :=
{
yi [τ+], if i ∈ τ+ \ τ ;
avgτ ( y[τ+]), if i ∈ τ.

(3.8)
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Set x[τ ′] := y[τ ′] for all non-singleton τ ′ ∈ T̂\{τ+} (including the case τ ′ = τ ), thus
x[τ ′] ∈ F◦

O (τ ′, T̂[τ ′]). Set x[τ+] := 1
ατ+ (z) z. Applying Proposition 3.11, we obtain a

point x ∈ CompT(P). We let t ∈ R≥0 be the unique number satisfying

1

ατ+(z)
yi [τ+] = xi [τ+] + t xi [τ ] for all i ∈ τ.

We see that 0 < t < tmax
τ,τ+(x) since the inequalities in the definition (3.5) of tmax

τ,τ+ are
satisfied for y[τ+]. We set collτ,τ+( y) := (x, t) ∈ Ex(τ, τ+).

Proposition 3.17 The maps exτ,τ+ and collτ,τ+ are mutually inverse homeomorphisms
between Ex(τ, τ+) and Coll(τ, τ+).

Proof The fact that these maps are set-theoretic inverses of each other follows by
construction. It remains to check that bothmaps are continuous. Let (x, t) ∈ Ex(τ, τ+).
If t > 0 then exτ,τ+ is obviously continuous at (x, t), so suppose t = 0. Choose a
sequence (x(n), t (n)) ∈ Ex(τ, τ+) satisfying 0 ≤ t (n) < tmax

τ,τ+(x(n)) and converging

to (x, 0) as n → ∞. Let y(n) := exτ,τ+(x(n), t (n)). Since exτ,τ+(x, 0) = x, we
need to show that limn→∞ y(n) = x. Without loss of generality, we may assume that
x(n) ∈ CompT′(P) for some fixed T′.

LettingT := T(x), we see thatT′ ⊆ T byLemma 3.13. Since x, x(n) ∈ Adj(τ, τ+),
we have T,T′ ∈ adj(τ, τ+), thus τ, τ+ ∈ T̂′ ⊆ T̂. Let τ ′ be any non-singleton pipe,
and let τ ′+ := T̂′min

⊇τ ′ . We consider four cases:

(1) τ ′+ �= τ, τ+;
(2) τ ′+ = τ ;
(3) τ ′+ = τ+ and τ ′ ∩ τ = ∅;
(4) τ ′+ = τ+ and τ ′ ∩ τ �= ∅.
We use Lemma 3.8 to show that in cases (1)–(3), we have y(n)[τ ′] = x(n)[τ ′]. First,
in case (1),

x(n)[τ ′] = ρτ ′(x(n)[τ ′+]) = ρτ ′( y(n)[τ ′+]) = y(n)[τ ′].
In case (2), by (3.7), we have x(n)[τ ] = ρτ ( y(n)[τ+]), and thus

x(n)[τ ′] = ρτ ′(x(n)[τ ]) = ρτ ′(ρτ ( y(n)[τ+])) = ρτ ′( y(n)[τ+]) = y(n)[τ ′].

In case (3), since ρτ ′(z) depends only on the coordinates zi for i ∈ τ ′, we get

x(n)[τ ′] = ρτ ′(x(n)[τ+]) = ρτ ′( y(n)[τ+]) = y(n)[τ ′].

Therefore in cases (1)–(3), we find

lim
n→∞ y(n)[τ ′] = lim

n→∞ x(n)[τ ′] = x[τ ′], since lim
n→∞ x(n) = x.

In case (4), because τ, τ+ are adjacent in T̂, we get T̂min
⊇τ ′ = τ+. Thus y(n)[τ ′] =

ρτ ′( y(n)[τ+]) and x[τ ′] = ρτ ′(x[τ+]). By construction (3.7), we have y(n)[τ+] →
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x[τ+] as n → ∞, which implies the result by the continuity of ρτ ′ . We have shown
that the map exτ,τ+ is continuous.

We nowcheck the continuity of collτ,τ+ . Let y ∈ Coll(τ, τ+)withT := T( y). If τ /∈
T then clearly collτ,τ+ is continuous at y, so assume τ ∈ T. Thus collτ,τ+( y) = ( y, 0).
Choose a sequence y(n) in Coll(τ, τ+) converging to y, and assume thatT′′ := T( y(n))

is fixed. By Lemma 3.13, it satisfies T′′ ⊆ T. It τ ∈ T′′ then collτ,τ+( y(n)) = ( y(n), 0)
converges to y as n → ∞, so assume τ /∈ T′′, and let T′ := T′′ � {τ }. We again have
T,T′ ∈ adj(τ, τ+).

Let (x(n), t (n)) := collτ,τ+( y(n)), thus t (n) > 0 and T(x(n)) = T′. Let τ ′ be any
non-singleton pipe, and let τ ′+ := T̂′min

⊇τ ′ . Considering cases (1)–(4) above, we check
that

lim
n→∞ x(n) = y. (3.9)

It remains to show that t (n) → 0 as n → ∞. Let z and z(n) be obtained respectively
from y and y(n) via (3.8). Thus limn→∞ z(n) = z. Choose i ≺P j with i, j ∈ τ . For
each n, t (n) satisfies

1

ατ+(z(n))
(y(n)

j [τ+] − y(n)
i [τ+]) = (x (n)

j [τ+] − x (n)
i [τ+]) + t (n)(x (n)

j [τ ] − x (n)
i [τ ]).

By (3.9), x (n)
j [τ ] − x (n)

i [τ ] has a positive limit x j [τ ] − xi [τ ], and since we have

1

ατ+(z)
(y j [τ+] − yi [τ+]) = (x j [τ+] − xi [τ+]) + t(x j [τ ] − xi [τ ]) for t = 0,

we find t (n) → 0 as n → ∞. ��

3.4 Comp(P) is a topological manifold with boundary

Our next goal is to show that Comp(P) — as well as each cell closure CompT(P) —
is a topological manifold with boundary.

Fix two proper pipings T′ ⊆ T. Let

T \ T′ = {τ (1), . . . , τ (m)} (3.10)

be ordered by inclusion so that τ (i) ⊆ τ ( j) implies i ≤ j . For i ∈ [m], let τ (i)
+ � τ (i)

be the parent of τ (i) in T̂ (cf. Definition 3.5).
Let (x0, t) ∈ CompT(P)×[0,∞)m .We give the following inductive definition.We

say that (x0, t) is 0-expandable and set ex
(0)
T,T′(x0, t) := x0. For each i = 1, 2, . . . ,m,

assume that (x0, t) is (i − 1)-expandable and set xi−1 := ex(i−1)
T,T′ (x0, t). We say

that (x0, t) is i-expandable if (xi−1, ti ) ∈ Ex(τ (i), τ
(i)
+ ). In this case, we define

ex(i)
T,T′(x0, t) := ex

τ (i),τ
(i)
+

(xi−1, ti ). Let

Ex(T,T′) := {(x0, t) ∈ CompT(P) × [0,∞)m | (x0, t) is m -expandable }.
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We thus get a map exT,T′ := ex(m)

T,T′ : Ex(T,T′) → Comp(P).
Conversely, set

Star(T,T′) :=
⊔

T′⊆T′′⊆T

CompT′′(P).

Clearly, the image of exT,T′ is contained in Star(T,T′). Let ym ∈ Star(T,T′). We
say that ym is m-collapsible and define coll(m)( ym) := ym . For each i = m,m −
1, . . . , 1, assume that ym is i-collapsible and thatwe have defined a point coll(i)( ym) =
( yi , t

(i)), where t(i) = (tm, tm−1, . . . , ti+1) ∈ [0,∞)m−i . We say that ym is (i − 1)-
collapsible if yi ∈ Coll(τ (i), τ

(i)
+ ). In this case, denoting ( yi−1, ti ) := coll

τ (i),τ
(i)
+

( yi ),

we define coll(i−1)( ym) := ( yi−1, (tm, tm−1, . . . , ti+1, ti )). Let

Coll(T,T′) := { ym ∈ Star(T,T′) | ym is 0 -collapsible }.

We thus have a map collT,T′ := coll(0)T,T′ : Coll(T,T′) → CompT(P) × [0,∞)m . By
Proposition 3.17, exT,T′ and collT,T′ form a pair of mutually inverse homeomorphisms
between Ex(T,T′) and Coll(T,T′).

Lemma 3.18 (i) Ex(T,T′) is an open subset of CompT(P) × [0,∞)m containing
CompT(P) × {0}.

(ii) Coll(T,T′) is an open subset of CompT′(P) containing CompT(P).

Proof (i): For i = 0, 1, . . . ,m, let Ex(i)(T,T′) ⊂ CompT(P) × [0,∞)m be the set of
i-expandable points. Thus Ex(0)(T,T′) = CompT(P)×[0,∞)m and Ex(m)(T,T′) =
Ex(T,T′). We proceed by induction on i = 1, 2, . . . ,m. Suppose that Ex(i−1)(T,T′)
is open inside CompT(P) × [0,∞)m and contains CompT(P) × {0}. We have

Ex(i)(T,T′) = {(x0, t) ∈ Ex(i−1)(T,T′) | (ex(i−1)
T,T′ (x0, t), ti ) ∈ Ex(τ (i), τ

(i)
+ )}.

Observe that for any (x0, t) ∈ Ex(i−1)(T,T′), the point xi−1 := ex(i−1)
T,T′ (x0, t)

belongs to Adj(τ (i), τ
(i)
+ ) since the pipes in (3.10) are ordered by inclusion. In order

for (xi−1, ti ) to belong to Ex(τ (i), τ
(i)
+ ), we must have t (i) < tmax

τ (i),τ
(i)
+

(xi−1). By

Lemma 3.16, Ex(τ (i), τ
(i)
+ ) is open in Adj(τ (i), τ

(i)
+ ). Since the maps ex(i−1)

T,T′ and

tmax
τ (i),τ

(i)
+

are continuous, it follows that Ex(i)(T,T′) is open in CompT(P) × [0,∞)m .

By construction, it contains CompT(P) × {0}. This finishes the induction step.
(ii): Similarly, for i = m,m − 1, . . . , 0, let Coll(i)(T,T′) ⊆ Star(T,T′) consist of

all i-collapsible points ym . Denote ( yi , t
(i)) := coll(i)( ym) as above. It follows that

yi ∈ Adj′(τ (i), τ
(i)
+ ) for each i . By Lemma 3.16, Coll(τ (i), τ

(i)
+ ) is an open subset of

Adj′(τ (i), τ
(i)
+ ). Thus each Coll(i)(T,T′) is an open subset of Star(T,T′), which is an

open subset of CompT′(P). By construction, Coll(i)(T,T′) contains CompT(P) for
each i = m,m − 1, . . . , 0. ��
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Corollary 3.19 Each cell closure

CompT′(P) =
⊔

T⊇T′
CompT(P) (3.11)

is a topological manifold with boundary

∂ CompT′(P) =
⊔

T�T′
CompT(P). (3.12)

Note that Comp(P) = Comp∅(P) appears in the above corollary as a special case.

Proof Choose a point y ∈ CompT′(P) and let T = T( y). We have constructed

a homeomorphism Ex(T,T′) ∼−→ Coll(T,T′). We have y ∈ Coll(T,T′) and
( y, 0) ∈ Ex(T,T′). Since Ex(T,T′) is open, we can choose an open neighborhood
U × [0, ε)m ⊂ Ex(T,T′) of ( y, 0) such that U is homeomorphic to an open ball.
Then the image of U × [0, ε)m under exT,T′ is an open neighborhood of y inside
Coll(T,T′), which is open inside CompT′(P). Thus y admits an open neighborhood
inside CompT′(P), homeomorphic toU ×[0, ε)m , wherem = |T\T′|. Ifm > 0 then
U × [0, ε)m is homeomorphic to a half-space, and if m = 0 then U is homeomorphic
to an open ball. ��
Proof of Theorem 1.10 Since Comp(P) is a subset of

∏
|τ |>1O(τ ), it is Hausdorff. We

have constructed a stratification of Comp(P) into cells so that the closure of each cell
is a topological manifold with boundary, and the boundary of each cell is the union
of lower cells. Moreover, the poset of cell closures (i.e., the poset of proper pipings
ordered by reverse inclusion) is isomorphic to the face poset of the polytopeA (P). It
is then a standard application of the generalized Poincaré conjecture [13, 32–34, 42]
that Comp(P) is a regular CW complex homeomorphic to A (P). We outline a proof
sketch and refer to [19, Section 3.2] for full details.

The proof proceeds by induction on cell dimension. Given a cell CompT(P), by the
induction hypothesis, the closure of each cell in ∂ CompT(P) is homeomorphic to a
closed ball, with boundary homeomorphic to a sphere. This endows ∂ CompT(P)with
the structure of a regular CW complex. Its cell closure poset is isomorphic to the face
poset of the boundary of the face ofA (P) labeled byT. Thus it follows from the results
of [3] that ∂ CompT(P) is homeomorphic to a sphere. SinceCompT(P) is a topological
manifold with boundary, by an application of the generalized Poincaré conjecture (see
[7, Theorem 10.3.3(ii)] or [19, Theorem 3.10]), CompT(P) is homeomorphic to a
closed ball. This constitutes the induction step. ��

4 Affine P̃-cyclohedra

Let P̃ be an affine poset of order |P̃| = n ≥ 1. We explain how our results on
P-associahedra extend to affine P̃-cyclohedra. For the most part, the proofs are com-
pletely analogous; we indicate the places where they differ from their P-associahedra
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counterparts. Throughout this section, by pipes and pipings we mean P̃-pipes and
P̃-pipings, respectively.

For our purposes, it will be more convenient to slightly change the definition (1.4)

of O(P̃) and O◦(P̃) and work with R
|P̃|
�=0 rather than with R

|P̃|/R(1, 1, . . . , 1):

O◦(P̃) := {x ∈ R
|P̃|
�=0 | x̃i < x̃ j for all i ≺P̃ j}, O(P̃) := {x ∈ R

|P̃|
�=0 | x̃i ≤ x̃ j for all i �P̃ j}.

Our first goal is to show that O(P̃) is nonempty.

Definition 4.1 A linear extension of P̃ is a bijection φ : Z → Z satisfying φ(i +n) =
φ(i) + n and φ(i) < φ( j) for all i ≺P̃ j .

For instance, the vertex labels of the affine posets shown in Figs. 4 and 6 are examples
of linear extensions.

Lemma 4.2 Each affine poset P̃ admits at least one linear extension.

Proof Let S := {i ∈ Z | i − n ≺P̃ 0 and i �≺P̃ 0}. Because P̃ is strongly connected
(cf. Definition 1.11), S contains exactly one element in each residue class modulo n,
thus |S| = n. Moreover, we claim that S is convex. Indeed, suppose i, j, k ∈ Z are
such that i ≺P̃ j ≺P̃ k and i, k ∈ S. Then we have j −n ≺P̃ k−n ≺P̃ 0 �≺P̃ i ≺P̃ j ,
so j ∈ S. Note, however, that S need not be connected in general.

Consider S as a finite subposet (S,�P̃ ) of P̃ . Choose a linear extension φ̄ : S → [n]
of S, and let φ : Z → Z be its unique n-periodic extension (satisfying φ(i) = φ̄(i)
for i ∈ S and φ(i + n) = φ(i) + n for i ∈ Z). We claim that φ is a linear extension of
P̃ . First, it is clearly a bijection Z → Z. Second, suppose that for some i ≺P̃ j , we
have φ(i) > φ( j). Adding a multiple of n to both indices, we may assume that j ∈ S.
Let i ′ ∈ S be such that i ′ ≡ i (mod n). Since φ̄ is a linear extension, we cannot have
i = i ′. If i < i ′ then becauseφ(i ′), φ( j) ∈ [n], we haveφ(i) ≤ φ(i ′)−n ≤ 0 < φ( j),
a contradiction. Assume now that i ′ < i . Then i ′ ≺P̃ i ≺P̃ j , so since S is convex,
we get i ∈ S, a contradiction. ��
Corollary 4.3 O(P̃) is a nonempty polytope of dimension n − 1.

Proof Let φ be a linear extension of P̃ . Setting xi := φ(i) · c
n for i ∈ [n], we obtain

a point x ∈ R
|P̃| such that π [n]

�=0(x) ∈ O◦(P̃). Thus the interior of O(P̃) in R
|P̃|
�=0 is

nonempty. ��
Remark 4.4 Wemention several relations between affine posets and existing objects in
the literature. First,O(P̃) is an alcoved polytope in the sense of [27]. Its volume is the
number of different linear extensions of P̃ , where two linear extensions are considered
the same if their values differ by a constant. It is an interesting problem to compute the
number of such linear extensions for various classes of posets, such as the ones arising
from critical varieties as discussed in Remark 1.16. Second, it would be interesting
to develop an analogous theory of (combinatorial, piecewise-linear, or birational)
rowmotion on affine posets; see e.g. [10, 11, 45]. Third, a natural class of affine posets
consists of cylindric skew shapes, i.e., regions ofZ

2 between two up-right lattice paths
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Fig. 10 A cylindric skew shape
P̃ (left) and a linear extension of
P̃ (right)

which are invariant under shifting by some nonzero vector (a, b) ∈ Z
2≥0. An example

for (a, b) = (2, 2) is shown in Fig. 10. Linear extensions of such affine posets are
certain kinds of “cylindric standard Young tableaux.” These objects are different from
the well-studied cylindric tableaux arising in quantum Schubert calculus; cf. [35].
Indeed, the labels of the former increase in the northeast direction while the labels of
the latter increase in the southeast direction.

Remark 4.5 Recall from Remark 1.16 that one can associate an affine poset to each
permutation f ∈ Sn . A different construction associating an affine poset to an affine
permutation was given in [6, Section 3.1]. The authors of [6] consider the notion of
a proper numbering of an affine poset P̃ , which is a map d : P̃ → Z such that we
have d(i) < d( j) for all i ≺P̃ j , and such that for each j ∈ P̃ , there exists i ≺P̃ j
satisfying d(i) = d( j) − 1. Thus the notion of a proper numbering of P̃ is similar
but different from our notion of a linear extension of P̃ . It would be interesting to see
which of the remarkable properties of proper numberings developed in [6, Section 11]
generalize to arbitrary affine posets.

Definition 4.6 A piping partition of P̃ is a piping which is simultaneously a set
partition of Z.

This includes the case T = {P̃} which will correspond to the empty face of O(P̃).
Recall the notion of equivalence of pipes from Sect. 1.3. For a piping T not containing
P̃ , we let T := {τ | τ ∈ T} denote the corresponding (finite) set of equivalence
classes. Thus we have T = ⊔

τ∈T τ . For the piping partition T = {P̃}, we set T := ∅.
Similarly to Proposition 2.2, we have the following description of the faces of

O(P̃).

Proposition 4.7 We have a bijection T �→ FO (P̃,T) between piping partitions of
P̃ and faces of O(P̃). The face closure relations are given by refinement (2.3). The
dimension of each face FO (P̃,T) equals |T| − 1. ��
As in the case of order polytopes, for a point x ∈ F◦

O (P̃,T), we write B(x) := T,
where F◦

O (P̃,T) denotes the relative interior of the face FO (P̃,T).

We say that a maximal proper pipe is a pipe τ �= P̃ satisfying |τ | = n.

Corollary 4.8

(i) The vertices ofO(P̃) are in bijection with equivalence classes of maximal proper
pipes.
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(ii) The facets of O(P̃) are in bijection with covering relations i ≺·P̃ j in P̃ such
that i �≡ j modulo n.

(iii) Each face FO (P̃,T) of O(P̃) is itself an affine order polytope O(P̃/T), where
the quotient affine poset P̃/T is obtained from P̃ by identifying all elements that
belong to a single pipe of T.

A non-trivial consequence of Corollaries 4.3 and 4.8 is that the set of maximal proper
pipes is nonempty for any affine poset P̃ .

Proof sketch of Theorem 1.12 Our argument closely follows the proof of Theorem 1.2
in Sect. 2.2.Weworkwithn-periodic setsMofmelted pipes, still assuming that τ ⊆ τ ′
with τ ∈ M implies τ ′ ∈ M. An M-admissible piping is a piping T containing P̃
and satisfying conditions (a)–(b) in Sect. 2.2. The poset (Adm(M),≤M) is defined
in exactly the same way, using conditions (1)–(2) in Sect. 2.2. The dual affine P̃-
cyclohedron C (P̃)∗ is then obtained from the dual affine order polytope O(P̃)∗ via a
sequence of stellar subdivisions at the faces ofO(P̃) corresponding to piping partitions
of the form

τ � {{i} | i ∈ Z : i is not contained inside any element of τ },

where at each step, we let τ be a maximal by inclusion proper pipe not contained in
M. ��
Remark 4.9 Suppose P is a bounded (finite) poset with vertex set {0, 1, . . . , n} such
that 0 is theminimal element and n is themaximal element. Then P naturally gives rise
to an affine poset P̃ of order n obtained by “identifying 0 and n.” More precisely, �P̃
is obtained by taking the transitive closure of relations i +dn �P̃ j +dn for all d ∈ Z

and i �P j . A very similar operation was recently considered in [20, Remark 2.7].
It is easy to see that O(P̃) is linearly equivalent to Stanley’s order polytope Ô(P),

thus the polytopes O(P) and O(P̃) are projectively equivalent by Remark 2.5. Each
P-pipe is also a P̃-pipe. However, not all (equivalence classes of) P̃-pipes are obtained
in this way, since we have P̃-pipes of the form τ ∪ (τ ′ + n) where τ, τ ′ are disjoint
proper P-pipes such that n ∈ τ and 0 ∈ τ ′. Thus the polytopes A (P) and C (P̃)

are not directly related to each other. For instance, if P is a chain on 4 elements then
A (P) is a pentagon and C (P̃) is a hexagon; compare Figs. 2(left) and 4(left).

Next, we state an affine analog of Corollary 2.7, where we again identify two
polytopes if they are combinatorially equivalent. We say that P̃ is a circular chain if
�P̃ coincides with the standard order ≤ on Z. We say that P̃ is a circular claw if �P̃
is the n-periodic transitive closure of relations 0 ≺P̃ 1, 2, . . . , n−1 ≺P̃ n. See Fig. 4.

Corollary 4.10 Let P̃ be an affine poset.

(i) C (P̃) is a simple polytope of dimension |P̃| − 1.
(ii) Its polar dual C (P̃)∗ is simplicial, but in general not flag.
(iii) For each proper piping T, the corresponding face of C (P̃) has dimension |P̃|−

|T| − 1.
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(iv) The vertices of C (P̃) are in bijection with proper pipings T satisfying |T| =
|P̃| − 1.

(v) The facets of C (P̃) are in bijection with equivalence classes of proper pipes.
(vi) Each face of C (P̃) is a product of P-associahedra and affine P̃-cyclohedra.
(vii) When P̃ is a circular chain, C (P̃) is the (|P̃| − 1)-dimensional cyclohedron.
(viii) When P̃ is a circular claw, C (P̃) is the (|P̃| − 1)-dimensional type B

permutohedron.

Proof Each of the properties (i)–(viii) is either trivial or is proven similarly to its analog
in Corollary 2.7. For the last two properties, we need to explain the combinatorial
objects labeling the faces of the cyclohedron and the type B permutohedron in order
to connect them to pipings.

(vii): Similarly to the case of the associahedron, the faces of the (n−1)-dimensional
cyclohedron are in bijection with rooted trees T embedded in a disk such that the root
has degree ≥ 1, all non-leaf vertices lie in the interior of the disk, and the leaves
lie on the boundary and are labeled 0, 1, 2, . . . , n in clockwise order. Face closure
relations again correspond to contracting non-leaf edges in T . Let v be a non-leaf
non-root vertex of T . The edges incident to v have a natural cyclic order. Let e be
the edge connecting v to its parent in T . Consider a walk that starts at the parent of
v, traverses e and then turns maximally left at each vertex until it reaches some leaf
a ∈ [n]. Similarly, consider another walk which turns maximally right at each vertex
until it reaches another leaf b ∈ [n]. The leaf descendants of v naturally form a cyclic
subinterval [a, b] of [n]. We may thus associate a pipe τv to v which equals [a, b] if
a ≤ b and [a, b+n] if a > b. If the root of T has degree 1 and v is its sole child vertex
then b equals a − 1 modulo n, so we get [a, b] = [n]. Still, depending on the value of
a, we get different pipes τ = [a, a + n − 1], which corresponds to the different ways
of placing the root of T next to v. It is again clear that when P̃ is a circular chain, the
set of pipes τv where v runs over the set of non-leaf non-root vertices of T yields a
proper P̃-piping. Moreover, we see that any proper P̃-piping arises uniquely in this
way, and that contracting edges in trees corresponds to removing pipes from a piping.

(viii): The (n − 1)-dimensional type B permutohedron 
B
n−1 is defined as the con-

vex hull of all vectors obtained from (1, 2, . . . , n − 1) by permuting the coordinates
and changing their signs. The face poset of 
B

n−1 coincides with the order poset of
the boundary face poset of the (n − 1)-dimensional cross-polytope; see [47, Exam-
ple 1.3.2]. Thus the facets of 
B

n−1 are in bijection with pairs (K+, K−) of disjoint
subsets of [n − 1] whose union is nonempty. Arbitrary faces of 
B

n−1 are labeled by
sets

{(K+
1 , K−

1 ), (K+
2 , K−

2 ), . . . , (K+
r , K−

r )}
of such pairs satisfying the conditions

K+
1 ⊂ K+

2 ⊂ · · · ⊂ K+
r ⊂ [n − 1] \ K−

r ⊂ [n − 1] \ K−
r−1 ⊂ · · · ⊂ [n − 1] \ K−

1 ;

see [23, Corollary 1.11]. Identifying each pair (K+, K−) with (the equivalence class
of) the pipe (K− − n) � {0} � K+, we obtain a bijection between faces of 
B

n−1 and

proper P̃-pipings. ��
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It remains to justify the relation between affine P̃-cyclohedra and compactifications.

Proof sketch of Theorem 1.12 The proof is obtained from that in Sect. 3 via straight-
forward modifications as we outline below. By convention, we write τ � P̃ for any
pipe τ �= P̃ , including the case of maximal proper pipes τ � P̃ satisfying |τ | = |P̃|.
Throughout the whole proof in Sect. 3, we replace P with P̃ and

∏
|τ |>1O(τ ) with

∏̄
|τ |>1O(τ ). The remaining changes are listed below.

ByDefinition 3.4 (with P replaced by P̃), T̂(x) contains P̃ and all pipes inB(x[P̃]),
thus T̂(x) is an infinite piping. It still has the structure of an infinite n-periodic rooted
tree described in Definition 3.5. The remaining definitions and proofs in Sects. 3.1 and
3.2 do not require any changes. The same applies to all results in Sect. 3.3, except that
in Corollary 3.12, CompT(P̃) is now homeomorphic to R

|P̃|−|T|−1. The sets Pτ+
τ and

Pτ
τ+ in (3.4) become infinite when τ+ = P̃ , but that does not affect the proof since

only finitely many of their elements participate non-trivially in (3.5) and (3.6). The
rest of the proof in Sects. 3.3 and 3.4 proceeds without change. ��
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