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We study totally nonnegative parts of critical varieties in the Grassmannian. We

show that each totally nonnegative critical variety Crit�0
f is the image of an affine

poset cyclohedron under a continuous map and use this map to define a boundary

stratification of Crit�0
f . For the case of the top-dimensional positroid cell, we show

that the totally nonnegative critical variety Crit�0
k,n is homeomorphic to the second

hypersimplex �2,n.

Introduction

The totally nonnegative Grassmannian Gr�0(k, n) is a certain subset of the real Grass-

mannian introduced in [24, 25, 29]. Recent years have revealed a variety of surprising

connections between the structure of Gr�0(k, n) and statistical mechanics [6, 13, 19],

physics of scattering amplitudes [1, 2], and soliton solutions to the KP equation [17]. In

a recent paper [8], we introduced critical varieties inside the Grassmannian, which may

be considered “critical parts” of positroid varieties introduced in [16]. The construction

of critical varieties is based on Kenyon’s critical dimer model [15] and simultaneously

includes the embeddings of the critical Ising model and critical electrical networks into

Gr�0(k, n) discovered in [13, 19].

Our aim in [8] was to develop a theory of critical varieties, which would

parallel the theory of positroid varieties. For example, we introduced complex-algebraic
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3650 P. Galashin

open critical varieties Critf as well as their totally positive parts Crit>0
f called

critical cells. The goal of the present paper is to continue this program and study

totally nonnegative critical varieties Crit�0
f , defined as closures of critical cells Crit>0

f

inside Gr�0(k, n).

While investigating the structure of the spaces Crit�0
f , we were led to con-

sider several new families of polytopes generalizing order polytopes [35], associ-

ahedra [14, 22, 36, 38], and cyclohedra [4, 33]. We introduced poset associahedra

and affine poset cyclohedra and explored their properties in [9]. An important

result from the point of view of applications to critical varieties is that these

polytopes arise as compactifications of certain configuration spaces of points on

a line and on a circle, analogously to the cases of associahedra and cyclohedra

[3, 20, 34].

The goal of this paper is to prove two results on totally nonnegative critical

varieties Crit�0
f . First, we show that each space Crit�0

f is the image of an affine poset

cyclohedron under a surjective continuous map. This observation, which may be con-

sidered an analog of the results of [30], allows us to introduce a boundary stratification

of Crit�0
f . (Unlike in the case of positroid cells, the boundary stratification of Crit�0

f is

not merely obtained by intersecting Crit�0
f with various positroid cells; see Example 1.2.)

Next, we concentrate on the special case of the totally nonnegative critical variety Crit�0
k,n

corresponding to the top-dimensional positroid cell inside Gr�0(k, n). We show that

Crit�0
k,n is homeomorphic to a polytope, namely, to the second hypersimplex �2,n, via a

stratification-preserving homeomorphism.

As a surprising consequence, we see that Crit�0
k,n does not depend on k as

a stratified space. We view this result as a step towards constructing a family of

conjectural shift maps Gr(k, n) ��� Gr(k + 1, n), which should restrict to homeo-

morphisms Crit�0
k,n

∼−→ Crit�0
k+1,n. Constructing such shift maps is of great impor-

tance in relation to physics and statistical mechanics. For example, it would yield a

connection between electrical networks and the Ising model (see [13, Question 9.2])

as well as provide insight into the construction of the BCFW triangulation [5] of

the amplituhedron [2]; see [1, 12, 23, 28] and [8, Section 8] for context and related

results.

Recall that the totally nonnegative parts of positroid varieties, while not being

isomorphic to polytopes as stratified spaces, have remarkably simple topological

structure [10, 11, 30–32, 39]. It remains an open problem to determine whether each

totally nonnegative critical variety Crit�0
f is isomorphic to a polytope as a stratified

space.
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Totally Nonnegative Critical Varieties 3651

Fig. 1. (a) A (reduced) planar bipartite graph G; (b) strands in G; (c) edge weights wtv(e), where

the unmarked edges have weight 1 and we abbreviate |pq| := |vp − vq|. Figure reproduced from [8,

Figure 1].

1 Main Results

We give a brief overview of some of our results. The full statements and proofs are given

in the main body of the paper.

Let G be a planar graph embedded in a disk. We assume that G has n black degree

1 boundary vertices labeled b1, b2, . . . , bn in clockwise order; see Figure 1(a). A strand in

G is a path that makes a sharp right (resp., left) turn at each black (resp., white) vertex;

see Figure 1(b). For each p ∈ [n] := {1, 2, . . . , n}, if a strand starts at the boundary vertex

bp, it must terminate at some boundary vertex bfG(p). The resulting permutation fG ∈ Sn

is called the strand permutation of G. We say that G is reduced [29] if it has the minimal

number of faces among all graphs with strand permutation fG.

For 0 � k � n, the totally nonnegative Grassmannian Gr�0(k, n) is the subset

of the real Grassmannian Gr(k, n) where all Plücker coordinates have the same sign; see

Section 2.1 for further background. To a weight function wt : E(G) → R>0 defined on the

edges of G, Postnikov [29] associates a point MeasG(wt) ∈ Gr�0(k, n), where 0 � k � n

depends only on G.

In order to define a critical cell Crit>0
G , we restrict to a special family of weight

functions coming from the critical dimer model of [15]. We will always assume that G is

reduced, in which case the critical cell Crit>0
G depends only on the strand permutation

of G and is denoted Crit>0
fG

.

For the purposes of this introduction, we consider the most important special

case of the top cell strand permutation fk,n. By definition, fk,n ∈ Sn sends p �→ p + k

modulo n, for all p ∈ [n]. Let �>0
k,n be the space of n-tuples v := (v1, v2, . . . , vn) ∈ Cn of

distinct points ordered counterclockwise on the unit circle, considered modulo global

rotations of the circle.
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3652 P. Galashin

Remark 1.1. The space �>0
k,n is naturally homeomorphic to the interior of an (n − 1)-

dimensional simplex

�>0
k,n

∼= {θ = (θ1, θ2, . . . , θn) ∈ Rn | 0 = θ1 < θ2 < · · · < θn < π},

by setting vr := exp(2iθr) for all r ∈ [n]. (In particular, �>0
k,n does not depend on k.)

Every edge e of G belongs to exactly two strands. Denoting the endpoints of these

strands by bp, bq for p, q ∈ [n], we say that e is labeled by {p, q}. In this case, we define its

weight by

wtv(e) :=
⎧⎨
⎩|vp − vq|, if e is not incident to a boundary vertex;

1, otherwise.
(1.1)

We obtain a weight function wtv : E(G) → R>0. See Figure 1(c) for an example. It turns

out that the resulting point MeasG(wtv) ∈ Gr�0(k, n) does not depend on the choice of G.

We denote Meask,n(v) := MeasG(wtv). The critical cell Crit>0
k,n is defined as

Crit>0
k,n := {Meask,n(v) | v ∈ �>0

k,n}.

Throughout, we assume that 2 � k � n − 1. (For k = 1 or k = n, Crit>0
k,n is a single

point.) According to [8, Theorem 1.10], the map Meask,n restricts to a homeomorphism

�>0
k,n

∼−→ Crit>0
k,n, and thus Crit>0

k,n is homeomorphic to the interior of an (n − 1)-simplex.

Our goal is to study the closure Crit�0
k,n of Crit>0

k,n inside Gr�0(k, n), and more generally,

the closure Crit�0
f of an arbitrary critical cell Crit>0

f , f ∈ Sn.

Informally, since Crit>0
k,n is parameterized by configurations of n distinct points

on a circle, its closure Crit�0
k,n should be parameterized by n-point configurations

where some points are allowed to collide. The map MeasG is invariant under gauge

transformations: given a weighted graph (G, wt), for each interior vertex u of G, rescaling

the weights of all edges incident to u by the same nonzero scalar does not alter the

image of wt under MeasG. Modulo gauge transformations, Meask,n(v) depends only on

the ratios of the distances between the points v1, v2, . . . , vn. For instance, even if all points

v1, v2, . . . , vn collide together, it could happen that after we apply gauge transformations

at the vertices of G, in the limit none of the edge weights tend to zero, as the following

example demonstrates.
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Totally Nonnegative Critical Varieties 3653

Fig. 2. Taking a limit where all points in v collide. See Example 1.2.

Example 1.2. Consider the graph G in Figure 1, and suppose that v1, v2, v3, v4 collide in

such a way that

(|v2 − v1| : |v3 − v2| : |v3 − v1| : |v4 − v3| : |v4 − v2| : |v4 − v1|) → (a : b : a + b : c : b + c : a + b + c),

for some constants a, b, c > 0; see Figure 2(left). After applying gauge transformations

at the two black interior vertices of G and taking a limit, we obtain a weighted graph

(G′, wt′) shown in Figure 2(right). The point MeasG′(wt′) belongs to the totally posi-

tive Grassmannian (i.e., has all Plücker coordinates strictly positive). Yet, MeasG′(wt′)
belongs to the boundary of Crit�0

2,4, that is, to Crit�0
2,4 \ Crit>0

2,4.

A natural compactification of �>0
k,n taking into account the ratios of distances

between pairs of colliding points in v is the (n − 1)-dimensional cyclohedron Cn studied

in [4, 33]. See Section 3.2 for background. The cyclohedron Cn may be obtained as the

Axelrod–Singer compactification [3] of �>0
k,n. In particular, the interior of Cn is identified

with �>0
k,n.

Theorem 1.3. The map Meask,n : �>0
k,n

∼−→ Crit>0
k,n extends to a continuous surjective

map

Meask,n : Cn → Crit�0
k,n .

A similar result (Theorem 4.1) holds for arbitrary critical cells. Here, instead of

the cyclohedron, one needs to take an affine poset cyclohedron introduced in [9]. For an

arbitrary permutation f ∈ Sn, the critical cell Crit>0
f is parameterized by a configuration

space �>0
f of n points on a circle where some points are allowed to pass through each

other. To this data, we associate an affine poset P̃f such that the corresponding affine

poset cyclohedron C (P̃f ) gives a suitable compactification of �>0
f . This allows us to
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3654 P. Galashin

Fig. 3. Taking a limit where the points v1, v2, v3 collide but are far from v4. After applying a

sequence of reduction moves from Figure 4, the edge weights involving relative distances between

v1, v2, v3 cancel out. See Example 1.4 and Theorem 1.5.

extend the boundary measurement map Measf : �>0
f → Crit>0

f to a surjective continuous

map

Measf : C (P̃f ) → Crit�0
f .

By considering images of different faces of C (P̃f ), we obtain a stratification of Crit�0
f .

It turns out that the map Meask,n is far from a homeomorphism. Instead, it has

the following remarkable property, which we call independence of infinitesimal ratios.

Suppose that v(t) ∈ Crit>0
k,n is a sequence of point configurations converging to some

v ∈ Cn as t → 0. Let d(t) := maxp,q∈[n] |v(t)p − v(t)q|. It turns out that for all p, q such that

limt→0
|v(t)p−v(t)q|

d(t)
= 0, the limit Meask,n(v) of Meask,n(v(t)) does not depend on distance

ratios involving |v(t)p − v(t)q|. This property is surprising since the limiting edge weight

function wt′ does depend on such distance ratios. However, the resulting limiting graph

G′ is not reduced in general, and after applying reduction moves (see Figure 4) to it, all

such ratios miraculously cancel each other out.

Example 1.4. Let G be the graph in Figure 1, and suppose that v1, v2, v3, v4 collide so

that

(|v2 − v1| : |v3 − v2| : |v3 − v1| : |v4 − v3| : |v4 − v2| : |v4 − v1|) → (0 : 0 : 0 : 1 : 1 : 1),

(|v2 − v1| : |v3 − v2| : |v3 − v1|) → (a : b : a + b),

for some constants a, b > 0. After applying gauge transformations and taking a limit, we

obtain a weighted graph (G′, wt′) shown in Figure 3(middle left). Thus the edge weights

wt′ of G′ depend on the ratio a : b in a non-trivial fashion. The graph G′ is not reduced,
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Totally Nonnegative Critical Varieties 3655

Fig. 4. Reduction moves for planar bipartite graphs. Each move preserves the boundary measure-

ments.

and after applying reduction moves to it, we see that all edge weights involving a and

b cancel out; see Figure 3(right). Our result (Theorem 1.5) claims that this phenomenon

occurs more generally for arbitrary k and n, and for an arbitrary choice of the limiting

ratios of distances between the points in v.

To explain independence of infinitesimal ratios formally, consider a map

φ : �>0
k,n → RPn−1, v �→ (|v2 − v1| : |v3 − v2| : · · · : |vn − vn−1| : |v1 − vn|).

Passing to the closure, φ can be extended to a continuous map φ : Cn → RPn−1. The

image φ(Cn) is essentially described by triangle inequalities, and it is straightforward

to check (Proposition 5.6) that it may be identified with the second hypersimplex

�2,n := {(x1, x2, . . . , xn) ∈ [0, 1]n | x1 + x2 + · · · + xn = 2}.

Theorem 1.5 (Independence of infinitesimal ratios). The map Meask,n factors through

the map φ. That is, there exists a continuous map

ψ : �2,n → Crit�0
k,n

making the following diagram commutative:

(1.2)

Moreover, the map ψ : �2,n → Crit�0
k,n is a stratification-preserving homeomorphism.
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3656 P. Galashin

Fig. 5. Moves for planar bipartite graphs preserving the boundary measurements and the strand

permutation.

We note that currently we have no analog of Theorem 1.5 for other critical cells.

First, independence of infinitesimal ratios is very special to the top cell, and does not

appear to hold for lower cells. Second, showing that the map ψ is a homeomorphism

relies on the injectivity conjecture [8, Conjecture 4.3] being true for a certain family of

critical cells; see Section 5.4. This conjecture remains wide open for arbitrary critical

cells. Nevertheless, limited computational evidence suggests that the stratified space

Crit�0
f may be polytopal for each f ∈ Sn.

2 Background on Critical Varieties

We review the background on positroid cells inside the totally nonnegative Grassman-

nian [29]; see also [18]. We then recall the construction of critical cells introduced in [8].

2.1 Planar bipartite graphs

Fix a planar graph G as in Section 1. Recall that the n boundary vertices of G are

assumed to be black and to have degree 1, and that G is assumed to be reduced. Any non-

reduced graph G may be transformed into a reduced one using the moves in Figures 4

and 5.

We switch to denoting strand permutations by f̄G, and reserve the notation fG for

bounded affine permutations introduced below.

Definition 2.1. A (k, n)-bounded affine permutation is a bijection f : Z → Z such that

• f (j + n) = f (j) + n for all j ∈ Z,

•
∑n

j=1(f (j) − j) = kn, and

• j � f (j) � j + n for all j ∈ Z.
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Totally Nonnegative Critical Varieties 3657

We denote the set of (k, n)-bounded affine permutations by B(k, n). For f ∈
B(k, n), we let f̄ ∈ Sn be obtained by reducing f modulo n. In other words, f̄ is

uniquely determined by the conditions f̄ (j) ∈ [n] and f̄ (j) ≡ f (j) modulo n for

all j ∈ [n].

Remark 2.2. We say that f ∈ B(k, n) is loopless if f (j) 	= j for all j ∈ Z. Each permutation

f̄ ∈ Sn arises via the above procedure from a unique loopless bounded affine permutation

f ∈ B(k, n): for j ∈ [n], one sets f (j) := f̄ (j) if f̄ (j) > j and f (j) := f̄ (j) + n otherwise.

The remaining values f (j + dn) = f (j) + dn are automatically determined for all d ∈ Z.

Positroid cells are labeled by arbitrary bounded affine permutations while critical cells

are labeled by loopless bounded affine permutations, which is why in the introduction

we used permutations in Sn to label critical cells.

In general, the bounded affine permutation fG is recovered from f̄G as follows.

For j ∈ [n], if f̄G(j) 	= j then fG(j) is uniquely determined by the conditions j � fG(j) �
j + n and fG(j) ≡ f̄G(j) modulo n. If f̄G(j) = j then, depending on the structure of G (see

Definition 2.3), either j is a loop (i.e., fG(j) = j) or j is a coloop (i.e., fG(j) = j + n).

An affine inversion of f ∈ B(k, n) is a pair (p, q) ∈ Z2 such that p < q and

f (p) > f (q). The length �(f ) of f is the number of affine inversions of f considered

modulo n:

�(f ) := #{p, q ∈ Z | p < q, f (p) > f (q), and p ∈ [n]}.

The (real) Grassmannian Gr(k, n) is the set of all linear k-dimensional subspaces

of Rn. Choosing a basis of each subspace, Gr(k, n) may be identified with the space of full

rank k × n matrices M considered modulo row operations. With this identification, one

has a collection of Plücker coordinates on Gr(k, n). Let
([n]

k

)
denote the set of k-element

subsets of [n], and for each I ∈ ([n]
k

)
and a k×n matrix M we let �I(M) denote the maximal

minor of M with column set I. Letting I vary, we obtain the Plücker embedding Gr(k, n) ↪→
RP(n

k)−1 sending the row span of M to (�I(M))I∈([n]
k )

∈ RP(n
k)−1.

Let RPr−1
>0 be the subset of RPr−1 where all coordinates are nonzero and have the

same sign, and let RPr−1
�0 be the closure of RPr−1

>0 . The totally nonnegative Grassmannian

Gr�0(k, n) is the subset of Gr(k, n) where all nonzero Plücker coordinates have the same

sign. In other words, Gr�0(k, n) is the preimage of RP
(n

k)−1
�0 under the Plücker embedding.

Given a planar bipartite graph G as above, the boundary measurement map

MeasG : RE(G)
>0 → Gr�0(k, n) is defined using the dimer model on G. An almost perfect

matching A of G is a collection of edges of G, which uses each interior vertex exactly
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3658 P. Galashin

once. Importantly (cf. Lemma 4.2 below), in order to define the boundary measurement

map MeasG, we assume that G admits at least one almost perfect matching.

Recall that the boundary vertices of G are assumed to be black and have

degree 1. For an almost perfect matching A, let ∂(A) ⊆ [n] denote the set of p ∈ [n]

such that the boundary vertex bp is used by A. There is an integer 0 � k � n depending

only on G such that |∂(A)| = k for any almost perfect matching A of G. Given an edge

weight function wt : E(G) → R>0, the weight wt(A) := ∏
e∈A wt(e) of A is the product of

the weights of the edges used by A. For I ∈ ([n]
k

)
, we set

�I(G, wt) :=
∑

A: ∂(A)=I

wt(A).

We view the resulting boundary measurements

MeasG(wt) := (�I(G, wt))I∈([n]
k )

(2.1)

up to multiplication by a common scalar, that is, as an element of RP(n
k)−1. It was shown

in [29, 37] (see [19, Theorem 4.1]) that the entries of MeasG(wt) are the Plücker coordinates

of some point of Gr�0(k, n), which we also denote by MeasG(wt).

Definition 2.3. It is known that when f̄G(j) = j, exactly one of the following holds:

• j /∈ A for any almost perfect matching A of G;

• j ∈ A for any almost perfect matching A of G.

In the former case, we say that j is a loop and set fG(j) = j. In the latter case, we

say that j is a coloop and set fG(j) = j + n. This completes the definition of the bounded

affine permutation fG ∈ B(k, n) associated to G. For f ∈ B(k, n), we let Gred(f ) denote

the set of all reduced planar bipartite graphs G satisfying fG = f . For G ∈ Gred(f ), the

positroid cell �>0
G := {MeasG(wt) | wt : E(G) → R>0} depends only on f and is denoted

�>0
f . The top cell bounded affine permutation fk,n ∈ B(k, n) is defined by fk,n(p) = p + k

for all p ∈ Z.

2.2 Critical cells

Let f ∈ B(k, n) be a loopless bounded affine permutation and let f̄ ∈ Sn be the

corresponding permutation. The combinatorics of the critical cell Crit>0
f associated to f

is described by the following objects.
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Totally Nonnegative Critical Varieties 3659

Fig. 6. An affine poset P̃, a tubing T of P̃, and a family θ (t) ∈ O◦(P̃) converging to a point θ in the

compactification Comp(P̃) satisfying T(θ) = T. Here a, b, c > 0 are constants, and the limiting point

θ depends on the ratio a : b but does not depend on c. See Example 3.3 and 3.4.

Definition 2.4. Place 2n points b−
1 , b+

1 , . . . , b−
n , b+

n on the circle in clockwise order. The

reduced strand diagram of f is obtained by drawing an arrow b+
s → b−

f̄ (s)
for each s ∈ [n].

We say that p, q ∈ [n], p 	= q, form an f -crossing if the arrows b+
s → b−

p and b+
t → b−

q

cross, where s := f̄ −1(p) and t := f̄ −1(q). We say that f has a connected strand diagram

if the resulting union of n arrows is topologically connected. See Figure 7(left) for an

example.

Throughout the paper, we assume that f has a connected strand diagram. When

the strand diagram of f is not connected, the corresponding critical cell Crit>0
f (as well as

its closure Crit�0
f ) factorizes as a product over its connected components; see [8, Section

4.4].

Definition 2.5. A tuple θ = (θ1, θ2, . . . , θn) ∈ Rn is called f -admissible if whenever two

indices 1 � p < q � n form an f -crossing, we have

θp < θq < θp + π . (2.2)

We let

�>0
f := {θ ∈ Rn | θ1 = 0 and θ is f -admissible}. (2.3)

Letting vr := exp(2iθr) for r ∈ [n], we obtain a configuration v = (v1, v2, . . . , vn) of

n points on the unit circle, which are not necessarily distinct or ordered counterclock-
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3660 P. Galashin

wise. The condition θ1 = 0 reflects that we consider these points modulo rotations of the

circle.

A graph G ∈ Gred(f ) is called contracted if it has no degree 2 vertices that

are not adjacent to the boundary. Any graph G ∈ Gred(f ) may be transformed into a

contracted one using contraction–uncontraction moves (Figure 5(left)), which do not

affect the boundary measurements of G.

Given a contracted graph G ∈ Gred(f ) and an f -admissible tuple θ ∈ �>0
f , we

define a weight function wtθ : E(G) → R>0 similarly to (1.1): if e ∈ E(G) is labeled by

{p, q} with 1 � p < q � n then we set

wtθ (e) :=
⎧⎨
⎩sin(θq − θp), if e is not incident to a boundary vertex;

1, otherwise.
(2.4)

By [8, Proposition 4.2], we indeed get wtθ (e) > 0 for all e ∈ E(G). Setting vr := exp(2iθr)

for r ∈ [n], we get sin(θq − θp) = 1
2 |vq − vp|. Thus, wtθ differs from wtv defined in (1.1) by

applying gauge transformations at all black interior vertices.

The crucial property of this assignment of edge weights is that the resulting

boundary measurements are invariant under square moves (Figure 5(right)). Thus, it

follows from the results of [29] that the point MeasG(wtθ ) does not depend on the choice

of G. We denote Measf (θ) := MeasG(wtθ ). The critical cell is given by

Crit>0
f := {Measf (θ) | θ ∈ Rn is f -admissible}.

3 Affine Poset Cyclohedra

We review some definitions and properties of affine posets and the associated polytopes;

see [9] for further details.

3.1 Order polytopes and tubings

We start with ordinary posets. Let (P, �P) be a connected (i.e., having a connected Hasse

diagram) poset with |P| � 2. Let αP : RP → R be a linear function given by

αP(x) :=
∑

p ≺·P q

xq − xp,

where the sum is taken over all covering relations p ≺·P q in P. Let RP

=0 denote the

linear subspace of RP consisting of vectors whose sum of coordinates is zero. Consider
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a (|P| − 2)-dimensional polytope

O(P) := {x ∈ RP

=0 | αP(x) = 1 and xp � xq for all p �P q}.

When P has a maximal and a minimal element, O(P) is projectively equivalent to the

order polytope [35] of P; see [9, Remark 2.5].

For a subset τ ⊆ P, we say that τ is convex if for any three elements p �P q �P r

such that p, r ∈ τ , we have q ∈ τ . We say that τ is connected if the restriction of �P to

τ is a connected poset. A P-tube is a convex connected nonempty subset τ ⊆ P. A tubing

partition of P is a set partition T of P into disjoint P-tubes such that the directed graph

DT with vertex set V(DT) := T and edge set

E(DT) := {(τ , τ ′) | τ ∩ τ ′ = ∅ and p ≺P q for some p ∈ τ , q ∈ τ ′} (3.1)

is acyclic. The faces of O(P) are in bijection with tubing partitions of P. Explicitly,

given a point x ∈ O(P), consider a maximal by inclusion set I ⊆ P such that all

coordinates in {xp}p∈I coincide. Then I is a disjoint union of P-tubes, which are the

connected components of the induced subgraph of the Hasse diagram of P with vertex

set I. Collecting these P-tubes for all such sets I, we obtain a tubing partition of P denoted

B(x).

Definition 3.1. An affine poset (of order n � 1) is a poset P̃ = (Z, �P̃) such that:

• for all p ∈ Z, p ≺P̃ p + n;

• for all p, q ∈ Z, p �P̃ q if and only if p + n �P̃ q + n;

• for all p, q ∈ Z, we have p �P̃ q + dn for some d � 0.

We denote |P̃| := n.

We identify points θ ∈ R|P̃| with infinite sequences θ̃ = (θ̃p)p∈Z satisfying θ̃p = θp

for p ∈ [n] and θ̃p+n = θ̃p + π for p ∈ Z. Consider the (n − 1)-dimensional affine order

polytope O(P̃) and its interior O◦(P̃) defined by

O(P̃) := {θ ∈ R|P̃| | θ1 = 0 and θ̃p � θ̃q for all p �P̃ q}, (3.2)

O◦(P̃) := {θ ∈ R|P̃| | θ1 = 0 and θ̃p < θ̃q for all p ≺P̃ q}. (3.3)

A P̃-tube (or simply a tube) is a convex connected nonempty subset τ ⊆ P̃ such that either

τ = P̃ or τ contains at most one element in each residue class modulo n. For each tube τ ,
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3662 P. Galashin

we denote by [τ ] := {τ +dn | d ∈ Z} its equivalence class, where τ +dn := {p+dn | p ∈ τ }.
A collection T of tubes is called n-periodic if it is a union of such equivalence classes.

We say that two sets A, B are nested if either A ⊆ B or B ⊆ A.

Definition 3.2. A P̃-tubing (or simply a tubing) is an n-periodic collection T of tubes

such that any two tubes in T are either nested or disjoint, and such that the directed

graph DT given by (3.1) is acyclic. A tube τ is called proper if τ 	= P̃ and |τ | > 1. A tubing

T is called proper if it consists of proper tubes. A tubing partition of P̃ is a tubing T,

which is simultaneously a set partition of Z.

The face poset of O(P̃) is isomorphic to the poset of tubing partitions of P̃ ordered

by refinement. For example, the vertices of O(P̃) are in bijection with equivalence classes

of maximal proper tubes, which are tubes τ 	= P̃ satisfying |τ | = n. For a point θ ∈ O(P̃),

we let B(θ) denote the corresponding tubing partition of P̃.

Example 3.3. Let n = 5. Consider the affine poset P̃ of order |P̃| = n in Figure 6(a). We

may identify O(P̃) := {(θ2, θ3, θ4, θ5) ∈ R4 | 0 � θ3 � θ4 � π and 0 � θ2 � θ5 � π}. Thus,

the order polytope O(P̃) is the direct product of two triangles. The tubing T shown in

Figure 6(b) consists of the tubes τ := {0, 1, 2, 3, 4}, τ ′ := {0, 1, 2}, τ ′′ := {3, 4}, and the tubes

equivalent to them. The tube τ is a maximal proper tube; the corresponding vertex of

O(P̃) is given by θ2 = θ3 = θ4 = 0, θ5 = π . This vertex is the limit inside O(P̃) of the family

θ (t) of points of O◦(P̃) shown in Figure 6(c). Here, θ(t)
2 = at2, θ(t)

3 = at2+t, θ(t)
4 = at2+t+ct2,

and θ
(t)
5 = −bt2. A more refined limit will be considered in Example 3.4.

3.2 Affine poset cyclohedra and compactifications

We showed in [9] that there is an (n − 1)-dimensional polytope C (P̃), called an affine

poset cyclohedron, whose face poset is the poset of proper tubings ordered by reverse

inclusion. For example, the vertices of C (P̃) are in bijection with proper tubings T

satisfying |[T]| = n − 1, where [T] := {[τ ] | τ ∈ T} is the set of equivalence classes of

tubes in T.

In addition, we showed in [9] that C (P̃) ∼= Comp(P̃) arises as a compactification

of the space O◦(P̃). We first explain the construction of Comp(P̃) informally. The space

O◦(P̃) defined in (3.3) may be identified with a configuration space of n points on a

circle: setting vr := exp(2iθr) for r ∈ Z as in Remark 1.1, we have vr+n = vr for all

r ∈ Z. The points vp, vq are not allowed to pass through each other whenever p, q ∈ Z

are comparable in P̃. For instance, for P̃ in Figure 6(a), v3 cannot pass through v4 but
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Totally Nonnegative Critical Varieties 3663

Fig. 7. Associating an affine poset P̃f (right) to a strand diagram of a permutation f ∈ Sn for n = 5

(left). Figure reproduced from [9].

can pass through v2. The compactification Comp(P̃) is obtained by allowing the points

to collide and keeping track of the ratios of distances between the points in the limit.

This leads to a recursive picture of the type shown in Figure 6(d). The positions of the

points on the circle define a point θ [P̃] ∈ O(P̃). The face of O(P̃) containing θ [P̃] is labeled

by a tubing partition B(θ [P̃]) of P̃. For each τ ∈ B(θ [P̃]), the points in τ have collided

together. However, we would like to “zoom in” and keep track of the ratios of distances

between these points, which naturally gives rise to a point in O(τ ) denoted θ [τ ]. Iterating

this process, we obtain a tubing T := T(θ) (cf. Definition 3.5 below) and a collection

(θ [τ ])τ∈T�{P̃}, where θ [τ ] ∈ O(τ ) for each τ ∈ T � {P̃}. Keeping track of this data while

letting the points collide in all possible ways, we obtain the compactification Comp(P̃).

Example 3.4. Consider a sequence of points θ (t) ∈ O◦(P̃) given in Figure 6(c); cf. Example

3.3. Taking a limit as t → 0, we find that (|v1 − v2| : |v1 − v5| : |v2 − v5|) → (a : b : a + b),

(|v1 − v2| : |v2 − v3|) → (0 : 1), and (|v2 − v3| : |v3 − v4|) → (1 : 0). The resulting tubing

T(θ) is shown in Figure 6(b). Let τ := {0, 1, 2, 3, 4}, τ ′ := {0, 1, 2}, τ ′′ := {3, 4}. The point θ [P̃]

corresponds to the vertex of O(P̃) labeled by the maximal proper tube τ = {0, 1, 2, 3, 4}; cf.

Example 3.3. On the other hand, the point θ [τ ′] for τ ′ = {0, 1, 2} records the (a : b : a + b)

ratio of distances between v5, v1, v2. Note that the limit (|v1 − v2| : |v3 − v4|) → (a : c)

is not recorded by the points θ [P̃], θ [τ ], θ [τ ′], θ [τ ′′] shown in Figure 6(d); the value of the

constant c is lost in the limit.
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3664 P. Galashin

We now define Comp(P̃) formally. Let τ � P̃ be a proper tube. We treat τ as a

finite subposet (τ , �P̃) of P̃, thus, we may consider the order polytope O(τ ). The projection

R|P̃| → Rτ sending (θ̃p)p∈Z �→ (θ̃p)p∈τ gives rise to a map ρτ : O◦(P̃) → O◦(τ ). (We will later

obtain the point θ [τ ] ∈ O(τ ) as the limit of ρτ (θ
(t)) as t → 0.) More precisely, given any

set A ⊇ τ , define the following maps:

avgτ : RA → R, x �→ 1

|τ |
∑
p∈τ

xp; πτ

=0 : RA → Rτ


=0, x �→ (xp − avgτ (x))p∈τ ;

ατ : RA → R, x �→
∑

p,q∈τ : p ≺·P̃ q

xq − xp; ρτ : RA ��� Rτ , x �→ 1

ατ (x)
πτ


=0(x).

Here ρτ is a rational map defined on the subset of RA where ατ (x) 	= 0. Applying this

construction to the case A = Z, we obtain a map ρτ : O◦(P̃) → O◦(τ ). Notice that ατ takes

strictly positive values on O◦(P̃). By convention, for θ ∈ O◦(P̃), we set ρP̃(θ) := θ . Let

ρ̃ : O◦(P̃) →
∏̄

|τ |>1

O(τ ), θ �→ (ρτ (θ))|τ |>1.

Here
∏̄

|τ |>1O(τ ) is the set of points (θ [τ ])|τ |>1 ∈ ∏
|τ |>1 O(τ ) satisfying θ [τ ] = θ [τ ′]

whenever two tubes τ , τ ′ are equivalent. The product is taken over all non-singleton tubes

τ , including the case τ = P̃. The compactification

Comp(P̃) := ρ̃(O◦(P̃)) (3.4)

is defined as the closure of the image of ρ̃.

By definition, each point θ ∈ Comp(P̃) is an element (θ [τ ])|τ |>1 of the product∏̄
|τ |>1O(τ ). We refer to its coordinates as (θ̃i[τ ])i∈τ for each non-singleton tube τ . We

showed in [9, Proposition 3.9] that Comp(P̃) may be alternatively described as the subset

of
∏̄

|τ |>1O(τ ) consisting of all points satisfying the following coherence condition:

for any τ � τ+ with |τ | > 1, there exists λ ∈ R�0 such that πτ

=0(θ [τ+]) = λθ [τ ]. (3.5)

Definition 3.5. For θ ∈ Comp(P̃), let T̂(θ) be the smallest collection of tubes such that

• T̂(θ) contains P̃;

• for each non-singleton τ ∈ T̂(θ), T̂(θ) also contains all tubes in B(θ [τ ]).
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Totally Nonnegative Critical Varieties 3665

We let T(θ) be obtained from T̂(θ) by removing P̃ and all singleton tubes. More

generally, for a proper tubing T, we let T̂ be obtained from T by adding P̃ and all singleton

tubes, and vice versa.

Remark 3.6. The informal description given at the beginning of the section resulted in

a pair (T, (x[τ ])τ∈T�{P̃}). In the formal description (3.4), a point x ∈ Comp(P̃) is by definition

a collection x[τ ] for all tubes τ satisfying |τ | > 1. Definition 3.5 explains how to recover

the tubing T from x ∈ Comp(P̃). Moreover, one can see from (3.5) that for each τ ′ /∈ T �
{P̃}, the point x[τ ′] is uniquely determined by the tuple (x[τ ])τ∈T�{P̃}; see [9, Proposition

3.11]. This explains the equivalence between the formal description (3.4) and the informal

description above.

The space Comp(P̃) is naturally subdivided into cells labeled by proper tubings:

for a proper tubing T, the corresponding cell is given by

DT := {θ ∈ Comp(P̃) | T(θ) = T}.

Cell closure relations are given by reverse inclusion of tubings:

CompT(P̃) =
⊔

T′⊇T

CompT ′(P̃).

Theorem 3.7 ([9, Theorem 1.11]). There exists a stratification-preserving homeomor-

phism C (P̃)
∼−→ Comp(P̃).

Remark 3.8. In what follows, we always identify C (P̃) with Comp(P̃). The map ρ̃ gives

a homeomorphism between O◦(P̃) and the unique open dense cell Comp∅(P̃) of Comp(P̃),

and we identify each of these spaces with the interior of the affine poset cyclohedron:

O◦(P̃) ∼= Comp∅(P̃) ∼= C ◦(P̃).

3.3 Circular chains

Let P̃ be an affine poset. Our goal is to construct a particular family of continuous

functions on C (P̃) indexed by circular P̃-chains.

Definition 3.9. We say that a tuple p := (p1, p2, . . . , pr) of integers is a circular P̃-chain

if
p1 ≺P̃ p2 ≺P̃ · · · ≺P̃ pr ≺P̃ p1 + n. (3.6)
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3666 P. Galashin

Thus p is a circular P̃-chain if and only if σ(p) := (p2, . . . , pr, p1 +n) is a circular P̃-chain.

We say that two such tuples differ by cyclic relabeling. We say that a tube τ contains

the residues of p modulo n if for each j ∈ [r], we have pj + djn ∈ τ for some dj ∈ Z.

Equivalently, since each tube τ is convex, it follows that τ contains the residues of p

modulo n if and only if τ contains all elements of a circular P̃-chain σ s(p) for some s ∈ Z.

Given a circular P̃-chain p = (p1, p2, . . . , pr) and a point θ ∈ C (P̃), the point θ [P̃] ∈
O(P̃) satisfies

θ̃p1
[P̃] � θ̃p2

[P̃] � · · · � θ̃pr
[P̃] � θ̃p1+n[P̃] = θ̃p1

[P̃] + π . (3.7)

For any tube τ � P̃ satisfying p1, p2, . . . , pr ∈ τ , the vector θ [τ ] ∈ O(τ ) satisfies

θ̃p1
[τ ] � θ̃p2

[τ ] � · · · � θ̃pr
[τ ]. (3.8)

Lemma 3.10. Let P̃ be an affine poset, and suppose that p = (p1, p2, . . . , pr) is a circular

P̃-chain. Then the map

ζ ◦
p : C ◦(P̃) → RPr−1

>0 , θ �→
(
sin(θ̃p2

− θ̃p1
) : · · · : sin(θ̃pr

− θ̃pr−1
) : sin(θ̃p1+n − θ̃pr

)
)

(3.9)

extends to a continuous map

ζp : C (P̃) → RPr−1
�0 .

Proof. Let θ ∈ Comp(P̃) ∼= C (P̃) and let T := T(θ) be the associated tubing. Let τ ∈ T̂ be

a minimal by inclusion tube containing the residues of p modulo n.

If τ = P̃ then we set

ζp(θ) :=
(
sin(θ̃p2

[P̃] − θ̃p1
[P̃]) : · · · : sin(θ̃pr

[P̃] − θ̃pr−1
[P̃]) : sin(θ̃p1+n[P̃] − θ̃pr

[P̃])
)

. (3.10)

We would like to show that the vector on the right-hand side is nonzero. Otherwise, by

(3.7), we would have θ̃ps
[P̃] = · · · = θ̃pr

[P̃] = θ̃p1+n[P̃] = · · · = θ̃ps−1+n[P̃] for some s ∈ [r]. Let

S := {p ∈ Z | θ̃p[P̃] = θ̃ps
[P̃]}.
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Thus S is a convex subset of P̃ containing all elements in σ s−1(p) = (ps, . . . , pr, p1 +
n, . . . , ps−1 + n). It follows that S splits as a disjoint union of tubes, all of which belong

to T̂ \ {P̃}. Because σ s−1(p) is a circular P̃-chain, there exists a path in the Hasse diagram

of P̃, which starts at ps, ends at ps−1 + n, and passes through all elements of σ s−1(p).

For each vertex p on this path, we see that p ∈ S since S is convex. Thus all elements of

σ s−1(p) belong to the same proper tube τ ′ ∈ T. This contradicts the minimality of τ . We

have shown that the vector on the right-hand side of (3.10) is nonzero, thus ζp(θ) is a well

defined element of RPr−1
�0 when τ = P̃.

Assume now that τ � P̃. Since τ is convex, we may assume after some cyclic

relabeling (Observe that the maps ζ ◦
p and ζ ◦

σ(p) are related by a cyclic shift on RPr−1.) that

p1, p2, . . . , pr ∈ τ , in which case we set

ζp(θ) :=
(
(θ̃p2

[τ ] − θ̃p1
[τ ]) : · · · : (θ̃pr

[τ ] − θ̃pr−1
[τ ]) : (θ̃pr

[τ ] − θ̃p1
[τ ])

)
. (3.11)

The entries on the right-hand side are nonnegative by (3.8). Similarly to the above, we

see that they cannot all be zero because that would imply θ̃p1
[τ ] = θ̃p2

[τ ] = · · · = θ̃pr
[τ ],

contradicting the minimality of τ .

It remains to show that ζp is continuous. Let θ (m) be a sequence of elements of

C (P̃) converging to θ as m → ∞. By definition, this means that θ (m)[τ ′] converges to θ [τ ′]
inside O(τ ′) for each non-singleton tube τ ′. Without loss of generality, we may assume

that all points θ (m) belong to CompT ′(P̃) for some fixed T′ ⊆ T. Let τ ′ ∈ T̂
′
be a minimal by

inclusion tube containing the residues of p modulo n. Then τ ⊆ τ ′. If τ = τ ′ then clearly

ζp(θ (m)) → ζp(θ) as m → ∞. If τ � τ ′ � P̃ then the result follows from (3.5). Finally,

if τ � τ ′ = P̃, we see that because τ ∈ T = T(θ), all coordinates of the vector on the

right-hand side of (3.10) tend to zero. But since this vector is treated as an element of

RPr−1, we may replace the sines by their arguments. For the last coordinate, we replace

sin(θ̃p1+n[P̃]−θ̃pr
[P̃]) = sin(θ̃pr

[P̃]−θ̃p1
[P̃]) with θ̃pr

[P̃]−θ̃p1
[P̃]. Therefore, the limit of ζp(θ (m))

coincides with the limit of(
(θ̃

(m)
p2 [P̃] − θ̃

(m)
p1 [P̃]) : · · · : (θ̃

(m)
pr [P̃] − θ̃

(m)
pr−1 [P̃]) : (θ̃

(m)
pr [P̃] − θ̃

(m)
p1 [P̃])

)
(3.12)

as m → ∞. By the coherence condition (3.5) applied to τ+ := P̃, the vector in (3.12) equals

(
(θ̃

(m)
p2 [τ ] − θ̃

(m)
p1 [τ ]) : · · · : (θ̃

(m)
pr [τ ] − θ̃

(m)
pr−1 [τ ]) : (θ̃

(m)
pr [τ ] − θ̃

(m)
p1 [τ ])

)
. (3.13)

Since θ (m)[τ ] → θ [τ ] as m → ∞, the vector in (3.13) converges to ζp(θ). �
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3668 P. Galashin

3.4 From bounded affine permutations to affine posets

Suppose that f ∈ B(k, n) is loopless and has a connected strand diagram. Let P̃f be the

n-periodic transitive closure of the relations p ≺P̃f
q ≺P̃f

p + n whenever 1 � p < q � n

form an f -crossing. (Explicitly, ≺P̃f
is the transitive closure of the relations p + dn ≺P̃f

q + dn ≺P̃f
p + (d + 1)n for all d ∈ Z.) It follows that P̃f is an affine poset. See Figure 7 for

an example.

Comparing (3.3) to (2.3), we see that the sets

O◦(P̃f ) = �>0
f

coincide as subsets of Rn. As explained in Remark 3.8, these spaces are identified with

the interior C ◦(P̃f ) of the corresponding affine poset cyclohedron.

4 Taking the Closure

Suppose that f ∈ B(k, n) is loopless and has a connected strand diagram. Recall from

Section 3.4 that �>0
f is naturally identified with the interior C ◦(P̃f ). Thus we have a map

Measf : C ◦(P̃f ) → Crit>0
f .

Our goal is to show the following result.

Theorem 4.1. For any loopless f ∈ B(k, n), the map Measf extends to a surjective

continuous map between the closures

Measf : C (P̃f ) → Crit�0
f . (4.1)

First, we describe a simple way to take a limit of a family of boundary measure-

ments. See [30, Lemma 3.1] for a closely related result.

Lemma 4.2. Let G ∈ Gred(f ). Suppose that we are given a sequence wt(m) ∈ R
E(G)
>0 , m =

1, 2, . . . , such that for each e ∈ E(G), there exists a finite limit

wt(e) := lim
m→∞ wt(m)(e) ∈ [0, ∞).
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Totally Nonnegative Critical Varieties 3669

Let G′ be given by

V(G′) := V(G), E(G′) := {e ∈ E(G) | wt(e) > 0},

and let wt′ ∈ R
E(G′)
>0 be the restriction of wt to E(G′). Then we have

lim
m→∞ MeasG(wt(m)) = MeasG′(wt′) inside Gr�0(k, n), (4.2)

provided that G′ admits at least one almost perfect matching.

Proof. Clearly, we have

lim
m→∞(�I(G, wt(m)))I∈([n]

k )
= (�I(G

′, wt′))I∈([n]
k )

inside R(n
k). (4.3)

By construction, any almost perfect matching of G′ is an almost perfect matching of G.

Since the set of such almost perfect matchings is nonempty, the right-hand side of (4.3)

is nonzero. Thus (4.3) also holds inside RP(n
k)−1. This implies (4.2). �

Remark 4.3. We caution that if G′ admits no almost perfect matchings, the limit on the

left-hand side of (4.2) may still exist, since applying a gauge transformation to each wt(m)

may give rise to a different graph G′ in the limit.

Our next goal is to define the map Measf in (4.1). We identify C (P̃f ) with Comp(P̃f )

via Theorem 3.7. Fix θ ∈ C (P̃f ) and let T := T(θ) be the corresponding proper tubing.

Choose a contracted graph G ∈ Gred(f ).

Lemma 4.4. Let v ∈ V(G) be an interior vertex of G of degree r, and let 1 � p1 < p2 <

· · · < pr � n be the endpoints of the strands emanating from v. Then (p1, p2, . . . , pr) is a

circular P̃f -chain.

Proof. It is easy to see from the “no bad double crossings” condition on the strands [29,

Theorem 13.2] that the edges incident to v are labeled by {p1, p2}, . . . , {pr−1, pr}, {pr, p1} in

clockwise order. The result follows by [8, Proposition 4.2]. �

In the setting of the above lemma, we denote pG(v) := (p1, p2, . . . , pr). Observe that

the entries of ζpG(v)(θ) are naturally labeled by {p1, p2}, . . . , {pr−1, pr}, {pr, p1}; see (3.9).

Thus we may treat the entries of ζpG(v)(θ) as nonnegative real edge weights assigned to
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3670 P. Galashin

the edges incident to v. They form an element of RPr−1
�0 since rescaling them by a common

positive scalar corresponds to a gauge transformation at v.

Definition 4.5. Let θ ∈ Comp(P̃f ). We define a weight function wtθ ∈ R
E(G)
�0 as follows.

For each boundary edge e, set wtθ (e) := 1. For each black interior vertex b ∈ V(G), set the

weights of the edges incident to b to be proportional to the entries of ζpG(b)(θ). Let G′ be

given by

V(G′) := V(G), E(G′) := {e ∈ E(G) | wtθ (e) > 0}, (4.4)

and let wt′
θ be the restriction of wtθ to E(G′). Define

Measf (θ) := MeasG′(wt′
θ ). (4.5)

See Figures 2 and 1 3 for examples of weighted graphs (G′, wt′).

Remark 4.6. For θ ∈ �>0
f

∼= O◦(P̃f ), we have Measf (θ) = Measf (θ) in view of (2.4) and

Lemma 3.10.

Remark 4.7. The construction of Measf in Definition 4.5 formally depends on the choice

of G ∈ Gred(f ). However, we will see later that the choice of G is immaterial: we will show

that Measf is a continuous extension of Measf to C (P̃f ). If such a continuous extension

exists, it must be unique, and thus any other choice of G would give rise to the same map

Measf .

While the graph G in Definition 4.5 was assumed to be reduced and contracted,

these properties need not hold for G′. But first, in order for (4.5) to give a well-defined

element of the Grassmannian, we must show that not all coordinates of the vector

MeasG′(wt′
θ ) are zero, which is equivalent to the following statement.

Proposition 4.8. The graph G′ given by (4.4) admits at least one almost perfect matching.

Proof. Recall that we have set T := T(θ). Our first goal is to show that there exists a

maximal proper tube τ ′ such that T ∪ {τ ′} is a tubing.

The tubing T corresponds to a face CompT(P̃f ) of C (P̃f ). Let CompT′(P̃f ) be any

vertex of the closed face ( CompT(P̃f )). Thus T ⊆ T′ and CompT′(P̃f ) is a zero-dimensional
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Totally Nonnegative Critical Varieties 3671

face, which means |[T′]| = n−1. We claim that any proper tubing T′ satisfying |[T′]| = n−1

contains a maximal proper tube.

To see this, consider a rooted tree T ′ (cf. [9, Definition 3.5]) with vertex set {P̃f } �
[T′]�Z/nZ, where Z/nZ is identified with the set of equivalence classes of singleton tubes.

(We identify the set of singleton tubes with Z.) The root of T ′ is P̃f , while Z/nZ is the set

of leaves of T ′. The children of each [τ ] ∈ {P̃f } � [T′] are of the form [τ−] where τ− is a

maximal by inclusion element of T′ �Z satisfying τ− � τ . We find that T ′ has 2n vertices,

including n leaves. Moreover, each non-leaf vertex of T ′ other than P̃f has at least two

children. Since a binary tree on n leaves contains 2n − 1 vertices, it follows that the root

P̃f has exactly one child in T ′. In other words, T′ contains a maximal proper tube τ ′. Thus

T ∪ {τ ′} is contained in a tubing T′, and therefore is itself a tubing.

We now construct an almost perfect matching A of G. Let v be a (black or white)

interior vertex of G. Since τ ′ is a maximal proper tube, it contains the residues of pG(v)

modulo n, and we let p1, p2, . . . , pr ∈ τ ′ be such that (p1, p2, . . . , pr) = σ s(pG(v)) for some

s ∈ Z. Thus the strands emanating from v are labeled by p1, p2, . . . , pr in clockwise order,

where we consider their labels modulo n.

We see that v is incident to an edge ev labeled by {p1, pr}. Set

A := {ev | v is an interior vertex of G}.

Thus A is a collection of edges of G covering each interior vertex at least once.

Let b (resp., w) be a black (resp., white) interior vertex of G. We claim that

ebconnects b to w ⇐⇒ ew connects b to w. (4.6)

Suppose that eb connects b to w. Label the strands emanating from b (resp., from w)

by p1, p2, . . . , pr ∈ τ ′ (resp., q1, q2, . . . , qs ∈ τ ′) in clockwise order. Thus eb is labeled by

{p1, pr} while ew is labeled by {q1, qs}. Since w is also incident to the edge eb labeled by

{p1, pr}, we see that p1, pr ∈ {q1, q2, . . . , qs}, and moreover, pr appears right before p1 in

the sequence (q1, q2, . . . , qs, q1). It follows that q1 = p1 and qs = pr, therefore ew = eb.

The converse direction is handled similarly, except that for a white interior vertex w,

ew may be a boundary edge (in which case there is no black interior vertex b satisfying

eb = ew).

It follows from (4.6) that A is an almost perfect matching of G. It remains to show

that A is an almost perfect matching of G′. Recall that V(G′) = V(G). Let b be a black

interior vertex of G with outgoing strands labeled by p1, p2, . . . , pr ∈ τ ′. Thus the edge

eb ∈ A is labeled by {p1, pr}. Our goal is to show that the r-th entry yr of y := ζ(p1,p2,...,pr)
(θ)

is nonzero. By Lemma 3.10, the entries of y are not all zero.
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3672 P. Galashin

Let τ ∈ T̂ be a minimal by inclusion tube containing the residues of (p1, p2, . . . , pr)

modulo n. We first consider the case τ = P̃f . By (3.10), we have yr = sin(θ̃p1+n[τ ] − θ̃pr
[τ ]).

Thus by (3.7), yr = 0 implies that either θ̃pr
[τ ] = θ̃p1

[τ ] or θ̃pr
[τ ] = θ̃p1

[τ ] + π . In the former

case, the vector y would be zero, a contradiction. Thus assume θ̃pr
[τ ] = θ̃p1

[τ ] + π . Let

S := {p ∈ Z | θ̃p[τ ] = θ̃pr
[τ ]}.

We see that S is a convex subset of P̃f containing both pr and p1 + n. Recall that S

is a disjoint union of tubes. Since pr ≺P̃f
p1 + n, these two elements belong to the

same connected component τ− of S. By Definition 3.5, we must have τ− ∈ T. This is a

contradiction: T ∪ {τ ′} is a tubing; however, the tubes τ−, τ ′ ∈ T ∪ {τ ′} are neither nested

nor disjoint. We have shown that yr 	= 0 when τ = P̃f .

Assume now that τ � P̃f is a proper tube. By choosing a particular representative

in [τ ], we may assume that p1 ∈ τ . Since any two tubes in T ∪ {τ ′} are either nested or

disjoint, and since p1 ∈ τ ∩ τ ′, we must have τ ⊆ τ ′. (Because |τ ′| = n, we cannot have

τ ′ � τ .) It follows that p1, p2, . . . , pr ∈ τ . Since τ � P̃f , y is given by (3.11). In particular,

yr = θ̃pr
[τ ] − θ̃p1

[τ ]. By (3.7), yr = 0 implies y = 0, a contradiction. �

Proof of Theorem 4.1. By Proposition 4.8, the map Measf lands inside Gr(k, n). By

Remark 4.6, it extends the map Measf to C (P̃f ). Next, we show that it is continuous.

Let (θ (m))m�1 be a sequence of points in C (P̃f ) converging to θ ∈ C (P̃f ) as m →
∞. Let b be a black interior vertex of G of degree r. By Lemma 3.10, the map ζpG(b) is

continuous on C (P̃f ):

lim
m→∞ ζpG(b)(θ

(m)) = ζpG(b)(θ) inside RPr−1.

Thus, after applying gauge transformations to each wtθ (m) at black interior vertices, we

get

lim
m→∞ wtθ (m) (e) = wtθ (e) for all e ∈ E(G).

(Recall that the weight of each boundary edge e is not affected by gauge transformations

at black interior vertices, and satisfies wtθ (m) (e) = wtθ (e) = 1 for all m.) By Proposition

4.8, G′ admits an almost perfect matching, therefore Measf is continuous by Lemma 4.2.

It remains to show that Measf (C (P̃f )) = Crit�0
f . We see that the image of Measf

is compact (since C (P̃f ) is compact) and thus closed. Since the image contains Crit>0
f =

Measf (C
◦(P̃f )), it contains the closure Crit�0

f of Crit>0
f . On the other hand, Measf (C (P̃f ))

must be contained inside Crit�0
f because C (P̃f ) is the closure of C ◦(P̃f ). �
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Totally Nonnegative Critical Varieties 3673

Definition 4.9. We endow Crit�0
f with a stratification obtained by taking the common

refinement of the images of all open faces of C (P̃f ).

Conjecture 4.10. For any two open faces CompT(P̃f ), CompT′(P̃f ) of C (P̃f ), their images

under Measf either coincide or are disjoint.

Below we prove this conjecture for f = fk,n.

5 Top Cell and the Second Hypersimplex

We concentrate on the case of the top cell (f = fk,n), where 2 � k � n − 1. We denote

Crit�0
k,n := Crit�0

fk,n
, P̃k,n := P̃fk,n

, etc. Note that C (P̃k,n) ∼= Cn is just the standard (n − 1)-

dimensional cyclohedron of [4, 33]. Our goal is to prove Theorem 1.5.

5.1 From C (P̃k,n) to �2,n

Recall from Theorem 4.1 that Crit�0
k,n is the image of the cyclohedron C (P̃k,n) under the

map Meask,n : C (P̃k,n) → Crit�0
k,n. Our first goal is to introduce a map φ : C (P̃k,n) → �2,n

to the second hypersimplex and to show that Meask,n factors through φ.

We start with a few preliminary observations and definitions.

Notation 5.1. For a, b ∈ Z with a � b, we set [a, b) := {a, a + 1, . . . , b − 1}. For a, b ∈ [n],

we introduce a cyclic interval [a, b) := {a, a + 1, . . . , b − 1} if a � b and [a, b) := {a, a +
1, . . . , n, 1, . . . , b − 1} if a > b. The intervals (a, b], [a, b] ⊆ Z (for a � b) and cyclic intervals

(a, b], [a, b] ⊆ [n] (for a, b ∈ [n]) are defined analogously.

Definition 5.2. An inscribed polygon (resp., degenerate inscribed polygon) is a polygon

all of whose vertices lie on a single circle (resp., on a single line).

We view (degenerate) inscribed polygons modulo transformations that preserve

the ratios of the distances between their vertices. We write R = (v1, v2, . . . , vm) for a

polygon with vertices v1, v2, . . . , vm given in cyclic order. The following result is well

known.

Lemma 5.3. Let (a1, a2, . . . , am) ∈ Rm
�0 be such that ap �

∑
q 	=p aq for all p ∈ [m]. Then

there exists a unique possibly degenerate inscribed polygon R = (v1, v2, . . . , vm) such

that

|vp+1 − vp|
|vq+1 − vq| = ap

aq
for all p, q ∈ [m],

where we set vm+1 := v1.
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3674 P. Galashin

Thus, up to a common scalar, the diagonals of a possibly degenerate inscribed

polygon may be reconstructed from its sides.

Next, observe that the order �P̃k,n
coincides with the usual total order � on Z. In

particular, p(n) := (1, 2, . . . , n) is a circular P̃k,n-chain. By Lemma 3.10, we therefore have

a continuous map

ζp(n)
: C (P̃k,n) → RPn−1

�0 .

Definition 5.4. Let θ ∈ C (P̃k,n). We denote by Bθ the partition of Z into intervals

consisting of the tubes in B(θ [τ ]) for each minimal by inclusion τ ∈ T̂(θ) satisfying |τ | = n.

In the above definition, either τ = P̃k,n or τ is a maximal proper tube, which

in the case of P̃k,n is just an interval of the form [p, p + n) ⊆ Z for some p ∈ Z. Thus

B(θ [τ ]) forms a partition of τ into intervals. Considering Bθ modulo n, we get a partition

B̄θ = (B̄1, B̄2, . . . , B̄m) of [n] into m � 2 nonempty cyclic intervals.

Remark 5.5. Recall from Remark 1.1 that for θ ∈ C ◦(P̃k,n), setting vr := exp(2iθr) for

r ∈ [n] gives n distinct points v1, v2, . . . , vn on the unit circle ordered counterclockwise.

The map ζ ◦
p(n)

in this case records the side length ratios of the n-gon R = (v1, v2, . . . , vn).

When we pass to the boundary (θ ∈ C (P̃k,n)), some of these points will collide. If not

all points collide then the cyclic intervals in B̄θ = (B̄1, B̄2, . . . , B̄m) record precisely the

groups of collided points, and ζp(n)
(θ) records the side length ratios of the corresponding

m-gon. If all points collide then T(θ) contains a maximal proper tube τ . In this case,

θ [τ ] records the positions of n points on a line, the cyclic intervals in B̄θ record which

groups of those points collided together, and ζp(θ) records the side length ratios of the

corresponding degenerate inscribed m-gon.

Consider a map

ξ : RPn−1
�0 → Rn

�0, (x1 : x2 : · · · : xn) �→ 2

x1 + x2 + · · · + xn
(x1, x2, . . . , xn).

We note that the entries of an element of RPn−1
�0 are nonnegative and at least one of them

is nonzero, thus their sum is strictly positive. The image of ξ belongs to the subspace of

Rn
�0 where the sum of coordinates is equal to 2. Let

φ : C (P̃k,n) → Rn
�0, φ := ξ ◦ ζp(n)

.
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Proposition 5.6. The image of the map φ equals

�2,n = {(y1, y2, . . . , yn) ∈ [0, 1]n | y1 + y2 + · · · + yn = 2}.

Proof. By Remark 5.5, the map ζ ◦
p(n)

records the side length ratios of an inscribed n-gon,

and thus its image is described by triangle inequalities:

ζ ◦
p(n)

(C ◦(P̃k,n)) = {(x1 : x2 : · · · : xn) ∈ RPn−1
�0 | 0 < xp <

∑
q 	=p

xq for each p ∈ [n]}.

Observe that 0 < xp <
∑

q 	=p xq is equivalent to 0 < 2xp <
∑n

q=1 xq. Substituting yp :=
2xp

x1+x2+···+xn
, we get

φ(C ◦(P̃k,n)) = {(y1, y2, . . . , yn) ∈ Rn | 0 < yp < 1 for each p ∈ [n] andy1 + y2 + · · · + yn = 2}.
The result follows by taking the closure. �

5.2 From �2,n to Crit�0
k,n

The goal of this section is to prove the following result.

Theorem 5.7. There exists a continuous map

ψ : �2,n → Crit�0
k,n

making the diagram (1.2) commutative.

Thus, Theorem 1.5 consists of Theorem 5.7 together with the statement that the

map ψ is a homeomorphism, which we prove in Section 5.4.

Let θ ∈ C (P̃k,n). Since Meask,n(θ) ∈ Gr�0(k, n), it must belong to some positroid

cell �>0
g , g ∈ B(k, n). We will see later (Proposition 5.14) that the bounded affine

permutation g has the following description. For a subset A ⊆ Z and p ∈ Z, we let

A + p := {a + p | a ∈ A}. By an n-periodic interval partition of Z we mean a collection B

of disjoint nonempty intervals in Z of size strictly less than n such that their union is Z

and for each interval B ∈ B, we have B + dn ∈ B for all d ∈ Z.

Lemma 5.8. For any n-periodic interval partition B of Z, there exists a unique loopless

gB ∈ B(k, n) of maximal length such that gB(B − k) = B for all B ∈ B.

Proof. We describe gB explicitly; see Figure 8. Let B ∈ B and denote A := B − k. Let

ovL(A, B) := |(A + n) ∩ B| and ovR(A, B) := |(A + 1) ∩ B|. (5.1)

We have ovL(A, B) + ovR(A, B) � |A| = |B| < n. Let AL consist of the smallest ovL(A, B)

elements of A, let AR consist of the largest ovR(A, B) elements of A, and let AM consist of
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3676 P. Galashin

Fig. 8. The permutation gB described in Lemma 5.8.

Fig. 9. A Le-diagram graph and its strands.

the remaining elements of A. Thus we have a partition A = AL � AM � AR into intervals.

Next, we partition B = BL � BM � BR into intervals given by BL = AR + 1 and BR := AL + n.

For p ∈ AR, we let gB(p) := p + 1 ∈ BL, and for p ∈ AL, we let gB(p) := p + n ∈ BR. The

restriction of gB to AM is an order reversing bijection AM → BM . This ensures that gB has

maximal possible length among all loopless bounded affine permutations sending A to B.

It is also clear that gB ∈ B(k, n) (as opposed to B(k′, n) for some k′ 	= k) since it can be

obtained from fk,n by applying (affine) simple transpositions. �

Recall from Remark 4.7 that any choice of a graph G ∈ Gred(fk,n) gives rise to

the same map Meask,n. We will take advantage of this observation by using a particular

graph Gk,n ∈ Gred(fk,n) called the Le-diagram graph; see Figure 9(a) for an example and

[29, Section 20] for background.

Notation 5.9. All interior vertices of Gk,n have degree either 2 or 3. Each interior vertex

v belongs to one horizontal strand directed east, one vertical strand directed south, and

one diagonal strand directed northwest; see Figure 9(b). We denote the endpoints of these
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Totally Nonnegative Critical Varieties 3677

strands by E(v), S(v), NW(v) ∈ [n], respectively. If a black vertex b has degree 2 then we

have NW(b) = S(b). If a white vertex w has degree 2 then we have NW(w) = E(w). We

denote by V•(Gk,n) the set of black interior vertices of Gk,n.

Thus each b ∈ V•(Gk,n) is uniquely determined by E(b) and S(b), which are its vertical

and horizontal coordinates in the plane.

After a cyclic shift, we may assume that

k and k + 1 belong to different intervals in Bθ . (5.2)

Definition 5.10. An interval B ∈ Bθ is called special if it contains both n and n + 1. We

also refer to the corresponding cyclic interval B̄ ∈ B̄θ as special.

Clearly, Bθ contains at most one special interval.

Next, we consider the weighted graph (G′, wt′) obtained from Gk,n via

Definition 4.5.

Definition 5.11. We say that b ∈ V•(Gk,n) is of type(1) (resp., type(2) or type(3)) if the

endpoints of the strands emanating from b belong to exactly one (resp., two or three)

distinct cyclic intervals in B̄θ .

Remark 5.12. If b is of type(3), all three edges of b are present in G′. Their weights

coincide with their weights in G, and can be computed from φ(θ); cf. Remark 5.5 and

Lemma 5.3. If b is of type(2), only two edges of b are present in G′. Their weights are

equal, and after a gauge transformation at b, can be made equal to 1. Finally, if b is

of type(1), either two or three edges of b are present in G′, and their weights cannot in

general be computed from φ(θ). See for example, Figures 3 and 10.

Lemma 5.13. If B̄θ does not contain a special cyclic interval (in the sense of Definition

5.10) then V•(Gk,n) contains no vertices of type(1). If B̄θ contains a special cyclic interval

B̄ then for each b ∈ V•(Gk,n), b is of type(1) if and only if S(b), E(b) ∈ B̄.

Proof. In order for b ∈ V•(Gk,n) to be of type(1), S(b), E(b), NW(b) must belong to some

cyclic interval B̄ ∈ B̄θ . But since S(b) ∈ [k + 1, n] and E(b) ∈ [k], B̄ must be special in

view of (5.2). Conversely, suppose that B̄ ∈ Bθ is special and S(b), E(b) ∈ B̄. Since B̄ is

of the form [n − h + 1, n] � [v] for some v ∈ [k] and h ∈ [n − k], S(b), E(b) ∈ B̄ implies

NW(b) ∈ B̄. �
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3678 P. Galashin

Fig. 10. Left: an example for Lemma 5.13. Here k = 6, n = 12, and B̄θ contains a special cyclic

interval B̄ = [10, 5] = [10, 12] � [1, 5]. The strands terminating in B̄ are shown in red. Type (1) black

vertices are marked by (1). Dashed edges are present in G but not in G′. Each of them is incident to

a black vertex of type(2). Right: regions of Gk,n containing vertices of types (1) and (2) with respect

to the special region B̄.

Thus the set of type(1) vertices forms a top left justified h × v rectangle in Gk,n;

see Figure 10 for an example.

For the next result, we need to refer explicitly to the edges of Gk,n. Each black

vertex b ∈ V•(Gk,n) of degree 3 is incident to a northern, eastern, and southwestern

edge labeled by {S(b), NW(b)}, {E(b), NW(b)}, and {S(b), E(b)}, respectively; see Figure 9(b).

Recall from (5.2) that k and k + 1 cannot both belong to the special interval in B̄θ . We

let gθ := gBθ
be given by Lemma 5.8. Let us say that a self-loop is an edge of a graph

connecting a vertex to itself.

Proposition 5.14. If B̄θ does not contain a special cyclic interval then set G′′ := G′.
Otherwise, let B̄ be the special cyclic interval of B̄θ , and let G′′ be obtained from G′ in one

of the following two ways:

• (if k /∈ B̄) remove all black vertices of type(1) and their southwestern white

neighbors;

• (if k + 1 /∈ B̄) contract all edges incident to black vertices of types (1) and (2)

and remove all self-loops in the resulting graph.

Let wt′′
θ be the restriction of wt′

θ to the edges of G′′. Then

G′′ ∈ Gred(gθ ) and MeasG′′(wt′′
θ ) = MeasG′(wt′

θ ). (5.3)
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Totally Nonnegative Critical Varieties 3679

For the example in Figure 10(left), we have k, k + 1 /∈ B̄, so either of the two above

procedures yields a reduced graph G′′ satisfying the conditions in (5.3).

Proof. Consider a vertex b ∈ V•(Gk,n) of type(1) and let e be its southwestern edge.

We claim that wtθ (e) equals the sum of wtθ (e
′) over all other edges e′ of b. (In particular,

wtθ (e) > 0 so e is present in G′.) Indeed, this is clear if b has degree 2. If b has degree 3 then

NW(b) belongs to the cyclic interval [S(b), E(b)]. Thus there exists a P̃k,n-circular chain

(p, q, r) such that p, q, r are equal respectively to S(b), NW(b), E(b) modulo n, and such

that p, q, r ∈ τ for some proper tube τ ∈ T(θ). This implies that wtθ (e) = wtθ (e
′)+wtθ (e

′′),
where e, e′, e′′ are labeled by {p, r}, {p, q}, and {q, r}, respectively.

Let B̄ := [n − h + 1, n] � [v] for v ∈ [k] and h ∈ [n − k]; see Figure 10. Assume

first that k /∈ B̄, thus v < k. Let b ∈ V•(Gk,n) be a vertex satisfying E(b) = v + 1 and

S(b) ∈ B̄. Then b is of type(2) with S(b), NW(b) ∈ B̄, and its northern edge labeled by

{S(b), NW(b)} is not present in G′. Thus the bottom left black vertex b of type(1) (defined

by S(b) = n, E(b) = v) is adjacent to a white vertex of degree 1 in G′. Applying a sequence

of leaf removals (Figure 4(middle)) starting with b and proceeding up and to the right,

we remove all black vertices of type(1) and their southwestern white neighbors.
Assume now that k+1 /∈ B̄, thus h < n−k. Let b′ ∈ V•(Gk,n) be a vertex satisfying

S(b′) = n − h and E(b′) ∈ [2, v]. Then b′ is of type(2) with E(b), NW(b) ∈ B̄, and its eastern

edge labeled by {E(b), NW(b)} is not present in G′. For a connected subgraph H of G′, let

G′/H be obtained from G′ by contracting all edges in H and removing all self-loops in the

resulting graph. Initialize H to consist of all edges incident to vertices b ∈ V•(Gk,n) of

type(2). This includes the edges incident to black vertices at the top (E(b) = 1, S(b) ∈ B̄)

and the right (S(b) = n − h, E(b) ∈ B̄) boundaries of the (h + 1) × v rectangle. Choose

the top right type(1) black vertex that is not a vertex of H. Its northern and eastern white

neighbors are in H. Let e, e′, e′′ be the edges of G incident to b as above (where one of e′, e′′

may not be present in G′), so that e is the southwestern edge. If both e′, e′′ are present then

their images in G′/H form a double edge. Applying a parallel edge reduction move (Figure

4(left)), we transform this double edge into a single edge of weight wtθ (e
′) + wtθ (e

′′),
which, as we have shown above, equals wtθ (e). Thus the image of b in G/H is a vertex of

degree 2, and the two edges incident to it have the same weight. These two edges may

be contracted using a contraction–uncontraction move (Figure 5(left)). This corresponds

to adding e, e′, e′′ and their endpoints to H, and constitutes the induction step. Once all

type(1) vertices have been added to H, we arrive at G′/H = G′′.
A straightforward consequence of the above construction is that G′′ has strand

permutation fG′′ = gθ and satisfies MeasG′′(wt′′
θ ) = MeasG′(wt′

θ ). Indeed, we have
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3680 P. Galashin

MeasG′′(wt′′
θ ) = MeasG′(wt′

θ ) since (G′′, wt′′
θ ) was obtained from (G′, wt′

θ ) via a sequence of

moves in Figures 5 and 5. To see that fG′′ = gθ , we first observe directly that fG′′(p) = p+n

(resp., fG′′(p) = p+1) if and only if gθ (p) = p+n (resp., gθ (p) = p+1). Next, since our edge

removals taking G to G′ and reduction moves taking G′ to G′′ only involved edges labeled

by {p, q} where p, q belong to a single interval B̄′ of B̄, we have f −1
G′′ (B′) = B′ − k = g−1

θ (B′)
for any interval B′ ∈ B. Finally, it is clear that the contracted version of G′′ contains no

edge labeled {p, q} where p, q belong to the same cyclic interval in B̄. Thus no two strands

terminating at any given B′ form a crossing, so fG′′ coincides with gθ .

We further note that for any black interior vertex b ∈ V(G′′),

the weights wt′′
θ (e) of the edges e of G′′ incident to b are proportional to ζpG′′ (b)(θ). (5.4)

Morally, the last property is close to the statement MeasG′′(wt′′
θ ) = Measgθ

(θ), except

that we have not yet shown that G′′ is reduced, and we also have not defined the

map Measg for the case when g does not have a connected strand diagram (cf.

Definition 2.4).

In order to complete the proof of the proposition, we need to show that G′′ is

reduced. For that, we will use the following well-known characterization [29] of reduced

graphs: G′′ is reduced if and only if it has no isolated connected components and has

exactly k(n−k)+1−�(gθ ) faces. It is not hard to check that G′′ has no isolated connected

components. Since Gk,n has k(n − k) + 1 faces, we need to show that our process above

decreases the number of faces precisely by �(gθ ). Since each affine inversion of gθ involves

two strands with endpoints in the same interval of Bθ , it suffices to show, for each

interval B of Bθ , that the number of affine inversions involving indices from B matches

the number of faces removed from G due to deleting/contracting edges labeled by {p, q}
for p, q ∈ B̄.

Let B ∈ Bθ , and let A := B − k. It follows from the proof of Lemma 5.8 that the

number of affine inversions of the restriction of gθ to A equals(|B|
2

)
−

(
ovR(A, B)

2

)
−

(
ovL(A, B)

2

)
. (5.5)

If B is not special then we see that (5.5) also describes the number of type(2) vertices

involving two indices in B̄. Indeed, if B is not special, then either B̄ ⊆ [k + 1, n] or B̄ ⊆ [k].

In the former case, we have ovL(A, B) = 0 and the number of type(2) vertices involving

two indices in B equals
(|B|

2

) − (ovR(A,B)
2

)
. In the latter case, we have ovR(A, B) = 0 and the

number of type(2) vertices involving two indices in B equals
(|B|

2

) − (ovL(A,B)
2

)
. Each such

type(2) vertex is incident to an edge of G, which is not present in G′. We therefore see that

in both cases, the number of faces decreases by the quantity given in (5.5).
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We concentrate on the case where B is special, so assume B̄ = [n − h + 1, n] � [v].

Either of the two ways to reduce G′ to G′′ removes exactly h(v − 1) faces contained in

the rectangular region. (When k + 1 ∈ B̄, this includes joining the v − 1 boundary faces

contained between the boundary vertices bp for p ∈ [v] into a single boundary face.)

Next, we count the number of edges removed when passing from G to G′. All of them are

adjacent to type(2) black vertices, and are contained in two trapezoidal regions shown in

Figure 10(right). The lower left (resp., upper right) region is a trapezoid if ovR(A, B) > 0

(resp., ovL(A, B) > 0) and a triangle if ovR(A, B) = 0 (resp., ovL(A, B) = 0). It contains(h+1
2

) − (ovR(A,B)
2

)
(resp.,

(v
2

) − (ovL(A,B)
2

)
) vertices of type(2) involving two indices in B. The

result follows since

h(v − 1) +
(

h + 1

2

)
+

(
v

2

)
=

(
h + v

2

)
=

(|B|
2

)
. �

Proof of Theorem 5.7. By Definition 4.5, we have Measf (θ) = MeasG′(wt′
θ ), which

equals MeasG′′(wt′′
θ ) by Proposition 5.14. By Remark 5.12, the edge weights of G′′ may be

computed purely in terms of the side length ratios encoded in φ(θ). Thus Measf factors

through φ. Since φ is surjective, there exists a unique map ψ : �2,n → Crit�0
k,n making the

diagram (1.2) commutative. It remains to show that ψ is continuous. Letting X := C (P̃k,n),

Y := �2,n, and Z := Crit�0
k,n, we have maps X

φ−→ Y
ψ−→ Z such that the composition ψ ◦ φ is

continuous. Choose a closed subset Z′ ⊆ Z. Then X ′ := (ψ ◦ φ)−1(Z′) is a closed subset of

X. Observe that X is compact while Y is Hausdorff, thus φ is closed. Therefore Y ′ := φ(X ′)
is a closed subset of Y. It follows from the surjectivity of φ that Y ′ = ψ−1(Z′). Thus ψ is

continuous. �

5.3 Positroids and weak separation

Before we proceed with the final step of the proof, we need to introduce some con-

structions related to positroids; see [27, 29] for background. Our ultimate goal is to

prove Corollaries 5.21 and 5.22, which state that under certain hypotheses, we can

apply square moves to find either an interior square face or an Ij-arch (Figure 11 and

Definition 5.15). Finding such faces bounded by a small number of edges is useful for

our proof of the injectivity in Section 5.4 since it allows one to reconstruct cross-ratios

of edge weights from the image of Meask,n.

Let g ∈ B(k, n) be a bounded affine permutation. For q ∈ Z, let

Ĩq := {g(p) | p ∈ Z is such that p < q � g(p)}. (5.6)
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3682 P. Galashin

Fig. 11. An Ij-arch; see Definition 5.15.

We set Ĩg = (Ĩq)q∈Z. For q ∈ [n], let Iq ∈ ([n]
k

)
be obtained from Ĩq by reducing all elements

modulo n. The Grassmann necklace of g is the sequence Ig = (I1, I2, . . . , In). For each

q ∈ [n], consider a total order �q on [n] given by q �q q + 1 �q · · · �q q − 1. For two sets

I = {i1 <q i2 <q · · · <q ik} and J = {j1 <q j2 <q · · · <q jk}, we write I �q J if ir �q jr for all

r ∈ [k]. The positroid Mg of g is defined as the collection of all J ∈ ([n]
k

)
satisfying Iq �q J

for each q ∈ [n].

We say that I, J ∈ ([n]
k

)
are weakly separated [21] if there do not exist indices

1 � a < b < c < d � n such that a, c ∈ I \ J and b, d ∈ J \ I or vice versa.

For G ∈ Gred(g) and j ∈ [n], we let wj denote the unique neighbor of the degree 1

boundary vertex bj.

Definition 5.15. Let g ∈ B(k, n) and j, t ∈ [n]. Let r := ḡ(j − 1) ∈ [n]. (Here and below

the index j − 1 is taken modulo n.) Assume that t 	= j 	= r 	= t. We say that t touches

an Ij-arch (with respect to g) if there exists a contracted graph G ∈ Gred(g) such that the

boundary face of G between bj and bj−1 is a pentagon with vertices (bj, wj, b, wj−1, bj−1)

for some black interior vertex b, and such that the strand labeled t passes through the

edges connecting wj to b and b to wj−1. See Figure 11.

Our notion of an Ij-arch is closely related to the notion of a BCFW bridge; see [1,

5, 18]. In fact, a bridge is a special case of an arch when either wj or wj−1 has degree 2;

compare Figure 11 to for example, [8, Figure 7]. We now establish a useful criterion for

the existence of an Ij-arch.

Lemma 5.16. Let g ∈ B(k, n), j, t ∈ [n], r := ḡ(j − 1) be such that t 	= j 	= r 	= t. Then t

touches an Ij-arch if and only if the sets

J := Ij ∪ {t} \ {j} and R := Ij ∪ {t} \ {r} (5.7)

belong to Mg and are weakly separated from all sets in Ig.
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Totally Nonnegative Critical Varieties 3683

Proof. We start with the if direction. Since Ij, J, R ∈ Mg, they are all of size k, and since

t 	= j 	= r 	= t, we have Ij 	= J 	= R 	= Ij. In particular, j, j − 1 are neither loops nor coloops.

(Otherwise, either j or r would appear in either none or all of the three sets Ij, J, R.) Clearly,

J and R are weakly separated from each other. Since they are also weakly separated from

all sets in Ig, by [27, Theorem 1.5], there exists a contracted graph G ∈ Gred(g) such that

J, R appear as face labels of G. Here we label the faces of G ∈ Gred(g) by k-element sets

as follows: for each face F of G, the label of F contains s ∈ [n] if and only if F is to the

left of the strand terminating at bs.

Observe that |J ∪Ij ∪R| = |Ij ∪{t}| = k+1. Thus J, Ij, R belong to a non-trivial black

clique in the sense of [27, Section 9]. In particular, the faces of G labeled J, Ij, R share a

black vertex b ∈ V(G).

Since j, j − 1 are neither loops nor coloops, we have Ij−1 	= Ij 	= Ij+1. Suppose that

J 	= Ij+1. Then Ij, J, Ij+1 belong to a non-trivial white clique, and thus the corresponding

faces of G share a common white vertex, which, since G is contracted, equals wj. If J =
Ij+1 then the two faces labeled by J and Ij still share the degree 2 vertex wj. Similarly, the

faces labeled by R and Ij share wj−1. By [27, Lemma 9.2], Ij and J share an edge connecting

wj to b while Ij and R share an edge connecting wj−1 to b. The strand labeled t therefore

must pass through both of these edges, so t touches an Ij-arch.

The only if direction is a trivial consequence of the results of [27]: if t touches an

Ij-arch then J, R appear as labels of the faces of G containing b, and therefore J, R belong

to Mg and are weakly separated from all sets in Ig by [27, Theorem 1.5]. �

Next, we apply the above lemma to a particular class of permutations gB

constructed in Lemma 5.8.

Definition 5.17. An n-periodic interval partition B of Z is called generic if we have

|B| � min(k − 1, n − k) for all B ∈ B.

In other words, B is generic if and only if ovL(A, B) = ovR(A, B) = 0 for all B ∈ B

and A := B−k. Consequently, gB restricts to an order-reversing map A → B for each such

pair (A, B). For the rest of this subsection, we fix some generic B. Recall from Notation 5.1

that for p, q ∈ [n], [p, q) denotes the corresponding cyclic interval.

Lemma 5.18. Let [p, q) ∈ B̄ and r ∈ [p, q). Let j ∈ [n] be equal to p + q − k − r modulo n.

Then the corresponding element of the Grassmann necklace IgB
is given by

Ij := [j, p) � [r, q).

Moreover, every element of IgB
appears in this way for a unique triple (p, q, r).
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3684 P. Galashin

We note that such Grassmann necklaces have been previously studied in [7,

Section 4.4].

Proof. Follows from (5.6) by direct observation. �

Definition 5.19. A set J ∈ ([n]
k

)
is called right-aligned if for each [p, q) ∈ B̄, we have

J ∩ [p, q) = [r, q) for some r ∈ [p, q].

Lemma 5.20. Let J ∈ ([n]
k

)
be right-aligned. Then J ∈ MgB

and J is weakly separated

from all sets in IgB
.

Proof. Let Ij ∈ IgB
. After a cyclic shift, we may assume j = 1, thus I1 = [1, p) � [r, q)

for some [p, q) ∈ B̄ with r ∈ [p, q). Our goal is to show that I1 �1 J and that J is weakly

separated from I1. If J does not contain any elements in [p, r) then both claims are clear.

Otherwise, let I ′
1 := [1, p), J ′ := J ∩[1, p), I ′′

1 := [r, q), and J ′′ := J ∩[p, q), thus J ′′ contains an

element s ∈ [p, r). However, since [p, q) ∈ B̄ and J is right-aligned, we must have J ′′ ⊇ I ′′
1 .

On the other hand, J ′ ⊆ I ′
1, so I1 and J are weakly separated. Moreover, because |I1| = |J|

and J contains the last q − r elements of I1, we get I1 �1 J. �

Corollary 5.21. Let j ∈ [n] and [s, s′) ∈ B̄ be such that Ij ∩ [s, s′) = ∅. Then t := s′ − 1

touches an Ij-arch with respect to gB.

Proof. Let Ij = [j, p) � [r, q) with r ∈ [p, q) ∈ B̄ be as in Lemma 5.18. Observe that r =
ḡB(j−1). The sets J, R given by (5.7) are clearly right-aligned. By Lemma 5.20, they satisfy

the conditions of Lemma 5.16. �

Corollary 5.22. Assume that k � n − 2. Let [p1, q1), [p2, q2), [p3, q3), [p4, q4) ∈ B̄ be four

disjoint intervals, listed in clockwise order. Then there exists a contracted graph G ∈
Gred(gB) containing a square face whose edges are labeled by {t1, t2}, {t2, t3}, {t3, t4}, {t1, t4}
with tj ∈ [pj, qj) for each j = 1, 2, 3, 4.

Proof. Consider all right-aligned subsets of [n] whose intersection with [pj, qj) is

nonempty for each j = 1, 2, 3, 4. Clearly, such subsets can have any size between 4 and

n. Let I be such a set of size k + 2, and for j = 1, 2, 3, 4, let I ∩ [pj, qj) = [tj, qj), where

tj ∈ [pj, qj). The sets I \ {ti, tj} for 1 � i < j � 4 are all right-aligned. Thus they belong

to MgB
and are weakly separated from all elements of IgB

by Lemma 5.20. The result

follows by combining [27, Proposition 3.2] with [27, Theorem 1.3]. �
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5.4 Injectivity

Our final goal is to show that the map ψ : �2,n → Crit�0
k,n constructed in Theorem 4.1 is

injective, which is closely related to the injectivity conjecture for critical cells; see [8,

Conjecture 4.3]. It was proved for Crit>0
k,n in [8, Theorem 4.4]. What we need is an extension

of that result to the closure Crit�0
k,n of Crit>0

k,n, which turns out to be more subtle.

Theorem 5.23. The map ψ : �2,n → Crit�0
k,n is a homeomorphism.

Proof. Since �2,n is compact, Crit�0
k,n is Hausdorff, and ψ is a continuous surjection, it

remains to show that ψ is an injection. Thus, for θ ∈ C (P̃k,n), our goal is to show that

the point φ(θ) ∈ �2,n can be uniquely reconstructed from Meask,n(θ) ∈ Crit�0
k,n. Let Bθ , gθ ,

G′′ ∈ Gred(gθ ), and wt′′
θ be as in Section 5.2 and Proposition 5.14.

First, observe that Bθ need not be generic in the sense of Definition 5.17 since gθ

may have some coloops and some indices j ∈ Z satisfying gθ (j) = j+1. The corresponding

strands form isolated connected components of the reduced strand diagram of gθ . We

remove these components using the factorization procedure from [8, Section 4.4]. Thus

the problem reduces to the case where Bθ is generic, which allows us to apply the results

of Section 5.3.

Let B̄ = (B̄1, B̄2, . . . , B̄m). The point φ(θ) records the side length ratios of a (possibly

degenerate) inscribed m-gon Rθ . For p, q ∈ [m], let dθ (p, q) denote the distance between

the corresponding vertices of Rθ . The ratio of any two such distances can be computed

from φ(θ); see Remark 5.5. Recall from (5.4) that the edge weights of the graph G′′ are

proportional to the distances between the vertices of Rθ . More precisely, if an interior

(i.e., not incident to a boundary vertex) edge e of G′′ is labeled by {s, t} then s ∈ B̄p and

t ∈ B̄q belong to different cyclic intervals in B̄θ , and the weight wt′′
θ (e) is proportional

(compared to the other edges sharing a black vertex with e) to dθ (p, q).

As explained in [8, Section 9], for any face F of G′′, the alternating ratio of the

edge weights that appear on the boundary of F may be reconstructed from Meask,n(θ)

using the left twist of Muller–Speyer; see [26, Corollary 5.11]. We will be interested in

two kinds of faces of G′′: Ij-arches as in Definition 5.15 and interior square faces as in

Corollary 5.22.

Let s, t ∈ [m] and j ∈ B̄s be such that Ij ∩ B̄t = ∅. By Corollary 5.21, some element

in B̄t touches an Ij-arch. Then for r ∈ [m] such that ḡθ (j − 1) ∈ B̄r, we find that the ratio

dθ (s, t)

dθ (r, t)
(5.8)

may be recovered from Meask,n(θ).
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3686 P. Galashin

Similarly, assume k � n − 2 and let B̄p, B̄q, B̄t, B̄s ∈ B̄ be four disjoint intervals

listed in clockwise order. Then, by Corollary 5.22, the cross-ratio

dθ (p, q) · dθ (t, s)

dθ (q, t) · dθ (p, s)
(5.9)

may be recovered from Meask,n(θ). In fact, since the four corresponding vertices of Rθ lie

on a circle or on a line, the ratios

(dθ (p, q) · dθ (t, s)) : (dθ (p, t) · dθ (q, s)) : (dθ (p, s) · dθ (q, t)) (5.10)

can all be recovered from Meask,n(θ) using standard relations for cross-ratios.

Recall that we have B̄ = (B̄1, B̄2, . . . , B̄m). Consider a directed graph D on [m] with

edges s → r whenever there exists j ∈ B̄s such that ḡθ (j − 1) ∈ B̄r. Thus the ratio in (5.8)

may be recovered from Meask,n(θ) for all t ∈ [r + 1, s − 1]. Clearly, each vertex of D has

at least one outgoing arrow. Moreover, since B̄ is generic, we see that each vertex s of D

has an outgoing arrow s → r for r 	= s, s − 1 (modulo m). Finally, by comparing ḡθ (j) to

ḡθ (j +1), we see that if D has an arrow s → r then D also has at least one of the following

arrows: s → r + 1, s + 1 → r, s + 1 → r + 1.

By Lemma 5.3, it suffices to recover the ratio dθ (s, s − 1) : dθ (s − 1, s − 2) from

Meask,n(θ) for each s ∈ [m]. This task is trivial when k = n − 1, thus let us assume that

k � n − 2. As shown above, there exists r 	= s, s − 1 such that D contains an arrow s → r.

If r = s − 2 then we are done, thus assume r 	= s, s − 1, s − 2 and let t ∈ [r + 2, s − 1]. We

know that D contains another arrow s′ → r′ for s′ ∈ {s, s + 1}, r′ ∈ {r, r + 1}. From (5.8), we

recover the ratios

dθ (s, t) : dθ (r, t), dθ (s, r′) : dθ (r, r′), dθ (s
′, t) : dθ (r

′, t), dθ (s
′, s) : dθ (r

′, s), (5.11)

some of which may coincide or be equal to 1 if s = s′ or r = r′.
Suppose first that s′ = s + 1 and r′ = r + 1. Using (5.10), we recover the ratios

(dθ (s, s + 1) · dθ (r, r + 1)) : (dθ (s, r) · dθ (s + 1, r + 1)) : (dθ (s, r + 1) · dθ (s + 1, r)),

(dθ (s + 1, r) · dθ (r + 1, t)) : (dθ (s + 1, r + 1) · dθ (r, t)) : (dθ (s + 1, t) · dθ (r, r + 1)).
(5.12)

Combining (5.11) with (5.12), we recover

dθ (s, s + 1) : dθ (s + 1, r) : dθ (r, r + 1) : dθ (s, r + 1).

By Lemma 5.3, we recover the (possibly degenerate) inscribed quadrilateral with vertices

s, s+1, r, r +1. The cases s′ = s, r′ = r +1 and s = s+1, r′ = r are handled similarly. In the

former case, we recover the inscribed triangle with vertices s, r, r + 1, and in the latter
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case, we recover the inscribed triangle with vertices s, s + 1, r. (When we say “we recover

a polygon” we mean that the ratio of any two of its side lengths may be recovered from

Meask,n(θ).) Thus we have recovered a possibly degenerate inscribed polygon R whose

vertex set Vert(R) contains s and r. By (5.8), for each t′ ∈ [r + 1, s − 1], we recover the

ratio dθ (s, t) : dθ (r, t), and thus the possibly degenerate inscribed polygon with vertex

set Vert(R) ∪ [r, s] is recovered. In particular, the ratio dθ (s, s − 1) : dθ (s − 1, s − 2) is

recovered. �
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