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We study totally nonnegative parts of critical varieties in the Grassmannian. We
show that each totally nonnegative critical variety Crit? % is the image of an affine
poset cyclohedron under a continuous map and use this map to define a boundary
stratification of Crit?o. For the case of the top-dimensional positroid cell, we show
that the totally nonnegative critical variety Critf’ 2 is homeomorphic to the second

hypersimplex A, ,,.

Introduction

The totally nonnegative Grassmannian Grs(k, n) is a certain subset of the real Grass-
mannian introduced in [24, 25, 29]. Recent years have revealed a variety of surprising
connections between the structure of Gr>0(k, n) and statistical mechanics [6, 13, 19],
physics of scattering amplitudes [1, 2], and soliton solutions to the KP equation [17]. In
a recent paper [8], we introduced critical varieties inside the Grassmannian, which may
be considered “critical parts” of positroid varieties introduced in [16]. The construction
of critical varieties is based on Kenyon's critical dimer model [15] and simultaneously
includes the embeddings of the critical Ising model and critical electrical networks into
Gr>0(k, n) discovered in [13, 19].

Our aim in [8] was to develop a theory of critical varieties, which would

parallel the theory of positroid varieties. For example, we introduced complex-algebraic
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open critical varieties Crity as well as their totally positive parts CritJ?0 called
critical cells. The goal of the present paper is to continue this program and study
totally nonnegative critical varieties Crit? 0 defined as closures of critical cells CritJ?0
inside G1>O(k, n).

While investigating the structure of the spaces Crit?o, we were led to con-
sider several new families of polytopes generalizing order polytopes [35], associ-
ahedra [14, 22, 36, 38], and cyclohedra [4, 33]. We introduced poset associahedra
and affine poset cyclohedra and explored their properties in [9]. An important
result from the point of view of applications to critical varieties is that these
polytopes arise as compactifications of certain configuration spaces of points on
a line and on a circle, analogously to the cases of associahedra and cyclohedra
[3, 20, 34].

The goal of this paper is to prove two results on totally nonnegative critical
varieties Crit?o. First, we show that each space Critj?0 is the image of an affine poset
cyclohedron under a surjective continuous map. This observation, which may be con-
sidered an analog of the results of [30], allows us to introduce a boundary stratification

of Crit?o. (Unlike in the case of positroid cells, the boundary stratification of Critf2 % s

not merely obtained by intersecting Critj?0 with various positroid cells; see Example 1.2.)
Next, we concentrate on the special case of the totally nonnegative critical variety Critk?, 2
corresponding to the top-dimensional positroid cell inside Gry,(k,n). We show that
Critig is homeomorphic to a polytope, namely, to the second hypersimplex A, ,,, via a
stratification-preserving homeomorphism.

As a surprising consequence, we see that Critig does not depend on k as
a stratified space. We view this result as a step towards constructing a family of
conjectural shift maps Gr(k,n) --» Gr(k + 1,n), which should restrict to homeo-
morphisms Critig 5 Critfflyn. Constructing such shift maps is of great impor-
tance in relation to physics and statistical mechanics. For example, it would yield a
connection between electrical networks and the Ising model (see [13, Question 9.2])
as well as provide insight into the construction of the BCFW triangulation [5] of
the amplituhedron [2]; see [1, 12, 23, 28] and [8, Section 8] for context and related
results.

Recall that the totally nonnegative parts of positroid varieties, while not being
isomorphic to polytopes as stratified spaces, have remarkably simple topological
structure [10, 11, 30-32, 39]. It remains an open problem to determine whether each
totally nonnegative critical variety Crit? % is isomorphic to a polytope as a stratified

space.
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Fig.1. (a) A (reduced) planar bipartite graph G; (b) strands in G; (c) edge weights wty(e), where
the unmarked edges have weight 1 and we abbreviate |pq| := |vp — vq|. Figure reproduced from [8,
Figure 1].

1 Main Results

We give a brief overview of some of our results. The full statements and proofs are given
in the main body of the paper.

Let G be a planar graph embedded in a disk. We assume that G has n black degree
1 boundary vertices labeled b;, b,, ..., b, in clockwise order; see Figure 1(a). A strand in
G is a path that makes a sharp right (resp., left) turn at each black (resp., white) vertex;
see Figure 1(b). For each p € [n] :={1,2,...,n}, if a strand starts at the boundary vertex
by, it must terminate at some boundary vertex b, ). The resulting permutation f; € S,
is called the strand permutation of G. We say that G is reduced [29] if it has the minimal
number of faces among all graphs with strand permutation f;.

For 0 < k < n, the totally nonnegative Grassmannian Gr>0(k, n) is the subset
of the real Grassmannian Gr(k, n) where all Pliicker coordinates have the same sign; see
Section 2.1 for further background. To a weight function wt : E(G) — R_, defined on the
edges of G, Postnikov [29] associates a point Meas(wt) € Gr>0(k, n), where 0 <k <n
depends only on G.

In order to define a critical cell Critgo, we restrict to a special family of weight
functions coming from the critical dimer model of [15]. We will always assume that G is
reduced, in which case the critical cell Crit;° depends only on the strand permutation
of G and is denoted Crit>Go.

For the purposes of this introduction, we consider the most important special
case of the top cell strand permutation f} ,,. By definition, f; , € S, sends p — p +k
modulo n, for all p € [n]. Let 6;2 be the space of n-tuples v := (vy,vy,...,v,) € C" of
distinct points ordered counterclockwise on the unit circle, considered modulo global

rotations of the circle.
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Remark 1.1. The space @;?l is naturally homeomorphic to the interior of an (n — 1)-

dimensional simplex
070 =1{0=(0,0,....0,) R |0=0, <0, <--- <6, <7},

by setting v, := exp(2i6,) for all r € [n]. (In particular, ®;91 does not depend on k.)

Every edge e of G belongs to exactly two strands. Denoting the endpoints of these
strands by b, b, for p, g € [n], we say that e is labeled by {p, q}. In this case, we define its
weight by

|vp - Vq|, if e is not incident to a boundary vertex;
wt,(e) 1= (1.1)
1, otherwise.

We obtain a weight function wt, : E(G) — R_,. See Figure 1(c) for an example. It turns
out that the resulting point Meas;(wt,) € G1>O(k, n) does not depend on the choice of G.

We denote Meas; (V) := Meas;(wt,). The critical cell Crit;% is defined as
Crit;% = {Measy ,(v) | v € @;91}.

Throughout, we assume that 2 < k < n— 1. (Fork = 1 ork = n, Crit;% is a single
point.) According to [8, Theorem 1.10], the map Measy ,, restricts to a homeomorphism
@;'?1 5 Crit;?z, and thus Crit,jygl is homeomorphic to the interior of an (n — 1)-simplex.
Our goal is to study the closure Critf’g of Crit,z?l inside Gr>0(k, n), and more generally,
the closure Critj?0 of an arbitrary critical cell CritJ?o,f €S,.

Informally, since Crit;% is parameterized by configurations of n distinct points
on a circle, its closure Critig should be parameterized by n-point configurations
where some points are allowed to collide. The map Meas. is invariant under gauge
transformations: given a weighted graph (G, wt), for each interior vertex u of G, rescaling
the weights of all edges incident to u by the same nonzero scalar does not alter the
image of wt under Meas;. Modulo gauge transformations, Measy, ,,(v) depends only on
the ratios of the distances between the points v, v,, ..., v,,. For instance, even if all points
V1, Vy, ..., v, collide together, it could happen that after we apply gauge transformations
at the vertices of G, in the limit none of the edge weights tend to zero, as the following

example demonstrates.
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Fig. 2. Taking a limit where all points in v collide. See Example 1.2.

Example 1.2. Consider the graph G in Figure 1, and suppose that v, v,, v3, v, collide in
such a way that

(jvg —vi|:|lvg —va|:|vg —vi|:|lva—Vv3|:|lva—Vva|:|lva—Vvi]) > (@:b:a+b:c:b+c:a+b+o0),

for some constants a,b,c > 0; see Figure 2(left). After applying gauge transformations
at the two black interior vertices of G and taking a limit, we obtain a weighted graph
(G',wt') shown in Figure 2(right). The point Measg (wt’) belongs to the totally posi-
tive Grassmannian (i.e., has all Pliicker coordinates strictly positive). Yet, Meas (wt')

belongs to the boundary of Critfg, that is, to Critfg \ Critiﬂ.

A natural compactification of @;91 taking into account the ratios of distances
between pairs of colliding points in v is the (n — 1)-dimensional cyclohedron ¢, studied
in [4, 33]. See Section 3.2 for background. The cyclohedron %, may be obtained as the
Axelrod-Singer compactification [3] of @;?l. In particular, the interior of ¥, is identified
with @;91.

Theorem 1.3. The map Meas; , : 079 — Crit7% extends to a continuous surjective

map
Measy ,, : €, — Critfg.

A similar result (Theorem 4.1) holds for arbitrary critical cells. Here, instead of
the cyclohedron, one needs to take an affine poset cyclohedron introduced in [9]. For an
arbitrary permutation f € S,,, the critical cell Crit; 0 is parameterized by a configuration
space @;0 of n points on a circle where some points are allowed to pass through each
other. To this data, we associate an affine poset Py such that the corresponding affine

poset cyclohedron %(Pf) gives a suitable compactification of @;0. This allows us to
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Fig.3. Taking a limit where the points v, vy, v3 collide but are far from v,. After applying a
sequence of reduction moves from Figure 4, the edge weights involving relative distances between

v1, V2, vy cancel out. See Example 1.4 and Theorem 1.5.

extend the boundary measurement map Meas; : ®; 0 Crit]? 9 to a surjective continuous

map

20

Meas; : %(Pf) — Critz

By considering images of different faces of @ (Pf), we obtain a stratification of Crit? 0
It turns out that the map Meas; ,, is far from a homeomorphism. Instead, it has

the following remarkable property, which we call independence of infinitesimal ratios.

Suppose that v(t) e Crit;(,)l is a sequence of point configurations converging to some

ve®,ast— 0.Letdt) := max, ;. |V(t)p - V(t)q|. It turns out that for all p, g such that

[v{t)p—vt)ql
d()

ratios involving |V(t)p — V(t)q|. This property is surprising since the limiting edge weight

lim, = 0, the limit Measy , (v) of Meask'n(v(t)) does not depend on distance

function wt’ does depend on such distance ratios. However, the resulting limiting graph
G’ is not reduced in general, and after applying reduction moves (see Figure 4) to it, all

such ratios miraculously cancel each other out.

Example 1.4. Let G be the graph in Figure 1, and suppose that v, v,, v3, v, collide so
that

(lvg —=vqlilvg —vyl i |lvg — vl |lvg— Vgl i vy — Vol i vy —Vvi) > (0:0:0:1:1:1),
(lvg —vqlilvg—vyltlvg—v) = (@a:b:a+b),
for some constants a, b > 0. After applying gauge transformations and taking a limit, we

obtain a weighted graph (G, wt’) shown in Figure 3(middle left). Thus the edge weights

wt’ of G’ depend on the ratio a : b in a non-trivial fashion. The graph G’ is not reduced,

20z Ae 21 uo Jesn Aeiqi 969100 10N Ad £9697 | L/679€/G/720Z/2I01HE/UIWI/WOod dNO"OlWapedE//:SARY WOl papeojumod



Totally Nonnegative Critical Varieties 3655

¥

Parallel edge reduction Leaf removal Dipole removal

Fig. 4. Reduction moves for planar bipartite graphs. Each move preserves the boundary measure-

ments.

and after applying reduction moves to it, we see that all edge weights involving a and
b cancel out; see Figure 3(right). Our result (Theorem 1.5) claims that this phenomenon
occurs more generally for arbitrary k and n, and for an arbitrary choice of the limiting

ratios of distances between the points in v.
To explain independence of infinitesimal ratios formally, consider a map
. ®>0 R]P)n—l _ . _ L _ . _
0, — Vi (Vg = vyl s g = vl i |y, — V] i v — vy D).

Passing to the closure, ¢ can be extended to a continuous map ¢ : %, — RP"!. The
image ¢(%,) is essentially described by triangle inequalities, and it is straightforward

to check (Proposition 5.6) that it may be identified with the second hypersimplex

Agpi={(x1, X, ..., %,) €10, 11" | x; + X5 +--- + X, = 2}.

Theorem 1.5 (Independence of infinitesimal ratios). The map Measy, ,, factors through

the map ¢. That is, there exists a continuous map
. . >0
YAy, — Crltk,n

making the following diagram commutative:

Measy,

(1.2)

Moreover, the map ¢ : A, , — Critig is a stratification-preserving homeomorphism.
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A a
a = ac+bd

b o= b
a a AN : ac+bd

) { )E c/ R [
" ac+bd

r._ _d
d = ac+bd

Contraction-uncontraction Square move

Fig.5. Moves for planar bipartite graphs preserving the boundary measurements and the strand

permutation.

We note that currently we have no analog of Theorem 1.5 for other critical cells.
First, independence of infinitesimal ratios is very special to the top cell, and does not
appear to hold for lower cells. Second, showing that the map ¢ is a homeomorphism
relies on the injectivity conjecture [8, Conjecture 4.3] being true for a certain family of
critical cells; see Section 5.4. This conjecture remains wide open for arbitrary critical
cells. Nevertheless, limited computational evidence suggests that the stratified space
Critj?0 may be polytopal for each f € S,,.

2 Background on Critical Varieties

We review the background on positroid cells inside the totally nonnegative Grassman-

nian [29]; see also [18]. We then recall the construction of critical cells introduced in [8].

2.1 Planar bipartite graphs

Fix a planar graph G as in Section 1. Recall that the n boundary vertices of G are
assumed to be black and to have degree 1, and that G is assumed to be reduced. Any non-
reduced graph G may be transformed into a reduced one using the moves in Figures 4
and 5.

We switch to denoting strand permutations by fG, and reserve the notation f;; for

bounded affine permutations introduced below.

Definition 2.1. A (k,n)-bounded affine permutation is a bijection f : Z — Z such that

e fG+n)=f@) +nforalljeZ,
o YL(fG) —)) =kn,and
e j<f()<j+nforalljeZ.
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We denote the set of (k,n)-bounded affine permutations by B(k,n). For f €
Bk,n), we let f € S,, be obtained by reducing f modulo n. In other words, f is
uniquely determined by the conditions f(j) € I[nl and f(j) = f(j) modulo n for
all j € [n].

Remark 2.2, We say that f € B(k, n) is loopless if f(j) # j for all j € Z. Each permutation
fe S,, arises via the above procedure from a unique loopless bounded affine permutation
f € B(k,n): for j € [nl, one sets f(j) := f(j) if fG) > j and f(j) := f(j) + n otherwise.
The remaining values f(j + dn) = f(j) + dn are automatically determined for all d € Z.
Positroid cells are labeled by arbitrary bounded affine permutations while critical cells
are labeled by loopless bounded affine permutations, which is why in the introduction

we used permutations in S,, to label critical cells.

In general, the bounded affine permutation f; is recovered from J_‘G as follows.
For j € [n], if fG(]') # J then f;(j) is uniquely determined by the conditions j < f;(j) <
j+nand f;(G) = fG(i) modulo n. IffG(]') = j then, depending on the structure of G (see
Definition 2.3), either j is a loop (i.e., f;(j) =j) or jis a coloop (i.e., fz(j) =j+n).

An affine inversion of f € B(k,n) is a pair (p,q) € Z? such that p < q and
f() > f(q). The length £(f) of f is the number of affine inversions of f considered

modulo n:

Uf) =#p,qeZ|p<q, f(p) > f(qg, and p € [nl]}.

The (real) Grassmannian Gr(k, n) is the set of all linear k-dimensional subspaces
of R™. Choosing a basis of each subspace, Gr(k, n) may be identified with the space of full
rank k x n matrices M considered modulo row operations. With this identification, one

has a collection of Pliicker coordinates on Gr(k,n). Let ([Zl) denote the set of k-element

subsets of [rn], and for each I € ([Zl) and a k x n matrix M we let A;(M) denote the maximal
minor of M with column set I. Letting I vary, we obtain the Pliicker embedding Gr(k, n) —
RP()~! sending the row span of M to (AI(M))IE(“,?) c RP(-1,

Let RIP’ZBI be the subset of RP"~! where all coordinates are nonzero and have the
same sign, and let RIP’;Ol be the closure of RIPZBI. The totally nonnegative Grassmannian

Gr>0(k, n) is the subset of Gr(k, n) where all nonzero Pliicker coordinates have the same

sign. In other words, Gr((k, n) is the preimage of R]P’g‘())_l under the Pliicker embedding.
Given a planar bipartite graph G as above, the boundary measurement map
Meas; : RE%G) — Gry(k,n) is defined using the dimer model on G. An almost perfect

matching A of G is a collection of edges of G, which uses each interior vertex exactly
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once. Importantly (cf. Lemma 4.2 below), in order to define the boundary measurement
map Meas;, we assume that G admits at least one almost perfect matching.

Recall that the boundary vertices of G are assumed to be black and have
degree 1. For an almost perfect matching A, let 3(A4) < [n] denote the set of p € [n]
such that the boundary vertex b, is used by A. There is an integer 0 < k < n depending
only on G such that |d(A)| = k for any almost perfect matching A of G. Given an edge
weight function wt : E(G) — R_, the weight wt(A) := [[,. 4 wt(e) of A is the product of
the weights of the edges used by A. For I € ([’,Z]), we set

A (G, wt) = Z wt(A).
A: d3(A)=I

We view the resulting boundary measurements
Measq(Wt) = (Af(G, W), n) (2.1)

up to multiplication by a common scalar, that is, as an element of RP() -1, It was shown
in [29,37] (see [19, Theorem 4.1]) that the entries of Meas;(wt) are the Pliicker coordinates

of some point of Gr>0(k, n), which we also denote by Meas;(wt).

Definition 2.3. It is known that when fG(j) = J, exactly one of the following holds:

e j¢ Afor any almost perfect matching A of G;
e je Afor any almost perfect matching A of G.

In the former case, we say that j is a loop and set f;(j) = j. In the latter case, we
say that j is a coloop and set f;(j) = j + n. This completes the definition of the bounded
affine permutation f; € B(k,n) associated to G. For f € B(k,n), we let G..4(f) denote
the set of all reduced planar bipartite graphs G satisfying f; = f. For G € G4(f), the
positroid cell HEO := {Meas;(wt) | wt : E(G) — R_;,} depends only on f and is denoted
l'[;o. The top cell bounded affine permutation f} ,, € B(k, n) is defined by f; ,(p) =p +k
forallp € Z.

2.2 Critical cells

Let f € B(k,n) be a loopless bounded affine permutation and let f < S, be the
corresponding permutation. The combinatorics of the critical cell Critfo associated to f

is described by the following objects.
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: : 0[34]
I I ct?
8 7
\6/ ¢
4/ \5 t—0
I I s
3 2
N/ o
7\
a7 0[01234]
N : 0[F] 6[012]
(a) P (b) T (c) 81 € ¢°(P) (d) 8 € Comp(P)

Fig. 6. An affine poset P, a tubing T of P, and a family 0® e ¢°(P) converging to a point 6 in the
compactification Comp(P) satisfying T(#) = T.Here a, b, ¢ > 0 are constants, and the limiting point

0 depends on the ratio a : b but does not depend on c. See Example 3.3 and 3.4.

Definition 2.4. Place 2n points bl_,bf, ..., by, b} on the circle in clockwise order. The
reduced strand diagram of f is obtained by drawing an arrow b — b];(s) foreach s € [n].
We say that p,q € [nl, p # g, form an f-crossing if the arrows b — b, and by — by
cross, where s := f~!(p) and ¢ := f~1(q). We say that f has a connected strand diagram
if the resulting union of n arrows is topologically connected. See Figure 7(left) for an

example.

Throughout the paper, we assume that f has a connected strand diagram. When
the strand diagram of f is not connected, the corresponding critical cell Critji0 (as well as
its closure Crit?o) factorizes as a product over its connected components; see [8, Section

4.4].

Definition 2.5. A tuple 6 = (6,,0,,...,6,) € R" is called f-admissible if whenever two

indices 1 < p < g < n form an f-crossing, we have

b0, <0y <O, +m. (2.2)

We let
@;O :={# e R" | 6, =0 and 0 is f-admissible}. (2.3)
Letting v, := exp(2ih,) for r € [n], we obtain a configuration v = (v;, v, ..., v,) of

n points on the unit circle, which are not necessarily distinct or ordered counterclock-
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3660 P. Galashin

wise. The condition 6; = 0 reflects that we consider these points modulo rotations of the
circle.

A graph G € G.4(f) is called contracted if it has no degree 2 vertices that
are not adjacent to the boundary. Any graph G € G_..4(f) may be transformed into a
contracted one using contraction-uncontraction moves (Figure 5(left)), which do not
affect the boundary measurements of G.

Given a contracted graph G € G,.4(f) and an f-admissible tuple § € G)J?O, we
define a weight function wty : E(G) — R_, similarly to (1.1): if e € E(G) is labeled by
{p,q} with 1 < p < g < n then we set

Sin(eq — Gp), if e is not incident to a boundary vertex;
(2.4)

1, otherwise.

wty(e) =

By [8, Proposition 4.2], we indeed get wty(e) > 0 for all e € E(G). Setting v, := exp(2i0,)
for r € [n], we get sin(é?q — Gp) = %|Vq — Vp|. Thus, wt, differs from wt, defined in (1.1) by
applying gauge transformations at all black interior vertices.

The crucial property of this assignment of edge weights is that the resulting
boundary measurements are invariant under square moves (Figure 5(right)). Thus, it
follows from the results of [29] that the point Meas;(wt,) does not depend on the choice
of G. We denote Measf(a) := Meas(wty). The critical cell is given by

Crit]?0 = {Meas;(0) | 0 € R" is f-admissible}.

3 Affine Poset Cyclohedra

We review some definitions and properties of affine posets and the associated polytopes;

see [9] for further details.

3.1 Order polytopes and tubings

We start with ordinary posets. Let (P, <p) be a connected (i.e., having a connected Hasse

diagram) poset with |P| > 2. Let ap : R” — R be a linear function given by
ap(X) 1= z Xq — Xp,
bp=prq

where the sum is taken over all covering relations p <p g in P. Let RE_, denote the

linear subspace of R” consisting of vectors whose sum of coordinates is zero. Consider
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a (|P| — 2)-dimensional polytope

OP) :={x¢ R;IO | ap(x) =1 and Xp < Xg for all p <, g}

When P has a maximal and a minimal element, &'(P) is projectively equivalent to the
order polytope [35] of P; see [9, Remark 2.5].

For a subset r C P, we say that 7 is convex if for any three elements p <, g <p 1
such that p,r € v, we have g € r. We say that t is connected if the restriction of < to
7 is a connected poset. A P-tube is a convex connected nonempty subset t C P. A tubing
partition of P is a set partition T of P into disjoint P-tubes such that the directed graph
D+ with vertex set V(Dy) := T and edge set

E(Dg) :={(r,7)|tNt =P and p <p gforsomep € 7,q € 7'} (3.1)

is acyclic. The faces of ¢'(P) are in bijection with tubing partitions of P. Explicitly,
given a point x € O(P), consider a maximal by inclusion set I € P such that all
coordinates in {Xp}per coincide. Then I is a disjoint union of P-tubes, which are the
connected components of the induced subgraph of the Hasse diagram of P with vertex
set I. Collecting these P-tubes for all such sets I, we obtain a tubing partition of P denoted
B(x).

Definition 3.1. An affine poset (of order n > 1) is a poset P = (Z, <p) such that:

e forallpeZ,p<zp+n;
e forallp,qeZ,p<pqifandonlyifp+n <3 q+n;
e forall p,q € Z,wehavep 5Pq+dn for some d > 0.

We denote |P| := n.

We identify points € Rl with infinite sequences 8 = (6p) pez, satisfying 6, = 6,
for p € [n] and ép+n = ép + 7 for p € Z. Consider the (n — 1)-dimensional affine order
polytope 0(P) and its interior ¢°(P) defined by

OP):={0 R |9, =0and §, <§, forall p <; q), (3.2)
O°(P):=1{0 R |6, =0and ép < éq for all p <3 qJ. (3.3)

A P-tube (or simply a tube) is a convex connected nonempty subset ¢ C P such that either

T = P or T contains at most one element in each residue class modulo n. For each tube 7,
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we denote by [7] := {t +dn | d € Z} its equivalence class, where t +dn := {p+dn | p € t}.
A collection T of tubes is called n-periodic if it is a union of such equivalence classes.
We say that two sets A, B are nested if either A C Bor B C A.

Definition 3.2. A P-tubing (or simply a tubing) is an n-periodic collection T of tubes
such that any two tubes in T are either nested or disjoint, and such that the directed
graph D given by (3.1) is acyclic. A tube 7 is called proper if v # Pand |7| > 1. A tubing
T is called proper if it consists of proper tubes. A tubing partition of P is a tubing T,

which is simultaneously a set partition of Z.

The face poset of &(P) is isomorphic to the poset of tubing partitions of P ordered
by refinement. For example, the vertices of ¢(P) are in bijection with equivalence classes
of maximal proper tubes, which are tubes t # P satisfying |7| = n. For a point 8 € ¢'(P),

we let B(9) denote the corresponding tubing partition of P.

Example 3.3. Let n = 5. Consider the affine poset P of order |P| = n in Figure 6(a). We
may identify OP) = {(05,05,6,,05) € R* |0 < 03 <0, <mand 0 < 0, < 65 < w}. Thus,
the order polytope ¢(P) is the direct product of two triangles. The tubing T shown in
Figure 6(b) consists of the tubes t :={0,1,2,3,4}, ¢ := {0, 1,2}, t” := {3,4}, and the tubes
equivalent to them. The tube t is a maximal proper tube; the corresponding vertex of
O(P) is given by 6, = 6; = 6, = 0, 6; = r. This vertex is the limit inside ¢'(P) of the family
0 of points of ¢°(P) shown in Figure 6(c). Here, Oét) = at?, Qét) = at?+t, 9‘9) = at’+t+ct?,

and Gét) = —bt?. A more refined limit will be considered in Example 3.4.

3.2 Affine poset cyclohedra and compactifications

We showed in [9] that there is an (n — 1)-dimensional polytope % (P), called an affine
poset cyclohedron, whose face poset is the poset of proper tubings ordered by reverse
inclusion. For example, the vertices of ¢ (P) are in bijection with proper tubings T
satisfying |[Tl| = n — 1, where [T] := {[z] | T € T} is the set of equivalence classes of
tubes in T.

In addition, we showed in [9] that ¥ (P) = Comp(P) arises as a compactification
of the space ¢°(P). We first explain the construction of Comp(P) informally. The space
0°(P) defined in (3.3) may be identified with a configuration space of n points on a
circle: setting v, := exp(2i,) for r € Z as in Remark 1.1, we have v,,, = v, for all
r € Z. The points Vp, V4 are not allowed to pass through each other whenever p,q € Z

q
are comparable in P. For instance, for P in Figure 6(a), v5 cannot pass through v, but
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Strand diagram of f € .S,  Affine poset J-:’f

Fig. 7. Associating an affine poset Pf (right) to a strand diagram of a permutation f € Sy, forn =5
(left). Figure reproduced from [9].

can pass through v,. The compactification Comp(P) is obtained by allowing the points
to collide and keeping track of the ratios of distances between the points in the limit.
This leads to a recursive picture of the type shown in Figure 6(d). The positions of the
points on the circle define a point [P] € &(P). The face of ¢(P) containing [P] is labeled
by a tubing partition B(@[P]) of P. For each r € B(#[P]), the points in r have collided
together. However, we would like to “zoom in” and keep track of the ratios of distances
between these points, which naturally gives rise to a point in ¢'(r) denoted #[z]. Iterating
this process, we obtain a tubing T := T(#) (cf. Definition 3.5 below) and a collection
(0[1])T€Tu{i,}, where 0[t] € O(r) for each t € T U {P). Keeping track of this data while

letting the points collide in all possible ways, we obtain the compactification Comp(P).

Example 3.4. Consider a sequence of points ¥ € ¢°(P) given in Figure 6(c); cf. Example
3.3. Taking a limit as ¢ — 0, we find that (v, — vy| : |v; — V5| 1 vy, —V5]) > (@:b:a+b),
(lvi = vyl 1 lvyg —v3)) = (0: 1), and (Jvy — v3] : [v3 — v4) = (1 : 0). The resulting tubing
T(#) is shown in Figure 6(b). Let  := {0, 1,2, 3,4}, ' :={0, 1, 2}, t” := {3, 4}. The point 0[P
corresponds to the vertex of ¢(P) labeled by the maximal proper tube t = {0, 1,2, 3,4}; cf.
Example 3.3. On the other hand, the point 0[] for ' = {0, 1, 2} records the (a : b : a + b)
ratio of distances between v;, v, v,. Note that the limit (jv; — vy| : [v3 —v4]) — (@ : ©)
is not recorded by the points 0[P],0(z], 017’1, 0[z"] shown in Figure 6(d); the value of the

constant c is lost in the limit.
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We now define Comp(P) formally. Let  C P be a proper tube. We treat r as a
finite subposet (7, <3) of P, thus, we may consider the order polytope ¢(r). The projection
RIP — R® sending (ép)pEZ — (ép)per gives rise to amap p, : 0°(P) — 0°(t). (We will later
obtain the point 0[z] € ¢(r) as the limit of p,(#'Y) as t — 0.) More precisely, given any

set A D t, define the following maps:

1
. DA . T . DA T .
avg, : R - R, xm— T E Xp; Ty R > Ry x> (X, — avg (X)) e,
pert
1
. A . . A T T
a, ' R* >R, x> E Xg — Xp,; o R - R, x> m”z:o(x)-

Here p, is a rational map defined on the subset of R4 where o, (x) # 0. Applying this
construction to the case A = Z, we obtain a map p, : 0° (P) — 0°(1). Notice that o, takes

strictly positive values on &° (P). By convention, for 6 € 0°(P), we set pp(0) :=0. Let

0 ﬁo(}:’) - H o), 0 (pr(o))|1|>1'

IT|>1

Here ]:[m>lﬁ(r) is the set of points (0[t]);.; € [[;-; O(v) satisfying 0[r] = 0[]
whenever two tubes 7, t’ are equivalent. The product is taken over all non-singleton tubes

7, including the case t = P. The compactification
Comp(P) := p(0°(P)) (3.4)

is defined as the closure of the image of p.

By definition, each point # € Comp(P) is an element (0[]~ of the product
1:[‘T|>1ﬁ(‘[). We refer to its coordinates as (4;[r]);., for each non-singleton tube 7. We
showed in [9, Proposition 3.9] that Comp(P) may be alternatively described as the subset

of ﬁlr\>1 O(t) consisting of all points satisfying the following coherence condition:

for any r C 7, with |r] > 1, there exists A € Ry such that 75_, @[z, ]) = A0[z].  (3.5)

Definition 3.5. For # € Comp(P), let T(#) be the smallest collection of tubes such that

o T(O) contains P;

e for each non-singleton 7 € T\(ﬂ), f(o) also contains all tubes in B(0[z]).
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We let T(0) be obtained from T(#) by removing P and all singleton tubes. More
generally, for a proper tubing T, we let T be obtained from T by adding P and all singleton

tubes, and vice versa.

Remark 3.6. The informal description given at the beginning of the section resulted in

a pair (T, (x[t]) ). In the formal description (3.4), a point x € Comp(P) is by definition

TeTU{P)
a collection x[z] for all tubes 7 satisfying |7| > 1. Definition 3.5 explains how to recover
the tubing T from x € Comp(P). Moreover, one can see from (3.5) that for each v’ ¢ T U

{P}, the point x[t'] is uniquely determined by the tuple (x[r]) see [9, Proposition

TeTU{P)’
3.11]. This explains the equivalence between the formal description (3.4) and the informal

description above.

The space Comp(P) is naturally subdivided into cells labeled by proper tubings:

for a proper tubing T, the corresponding cell is given by
Dy := {0 € Comp(P) | T(§) =T}.

Cell closure relations are given by reverse inclusion of tubings:

CompT(f)) = |_| CompT/(f’).
2T

Theorem 3.7 ([9, Theorem 1.11]). There exists a stratification-preserving homeomor-

phism ¢ (P) = Comp(P).

Remark 3.8. In what follows, we always identify % (P) with Comp(P). The map / gives
a homeomorphism between &° (P) and the unique open dense cell Comp@(ﬁ) of Comp (P,

and we identify each of these spaces with the interior of the affine poset cyclohedron:

0°(P) = Comp(P) = ¢°(P).

3.3 Circular chains

Let P be an affine poset. Our goal is to construct a particular family of continuous

functions on ¢ (P) indexed by circular P-chains.

Definition 3.9. We say that a tuple p := (p;, Py, ..., p,) of integers is a circular P-chain
if
D1 <pP2 <p " <pDr <pD1 + 1N (3.6)
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Thus p is a circular P-chain if and only if o(p) := (p,, ..., p,,p; + 1) is a circular P-chain.
We say that two such tuples differ by cyclic relabeling. We say that a tube t contains
the residues of p modulo n if for each j € [r], we have p; + d;n € t for some d; € Z.
Equivalently, since each tube 7 is convex, it follows that r contains the residues of p

modulo 7 if and only if r contains all elements of a circular P-chain o%(p) for some s € Z.

Given a circular P-chain p = (v1,pP2:---,p,) and a point 0 % (P), the point [P] €
O(P) satisfies

[P] < 8,,[B1 < - < 0, [F1 < By, .,

2 [Pl = 6, [P] + 7. (3.7)

For any tube 7 C P satisfying P1/Dy:---. D, € T, the vector 0[r] € O(r) satisfies

Op, [T < 0, [T < -+ < 6, [7]. (3.8)

Lemma 3.10. Let P be an affine poset, and suppose that p = (p1.Dy:---.py) is a circular

P-chain. Then the map

G5 C°(B) > RPLG!, 8> (sin@y, —0,) : - sin@y, — G, ) 5in@p, 10— 0,)) (3.9

extends to a continuous map

oy -1
tp: C(P) — RIF’;O .

Proof. Let# € Comp(P) = % (P) and let T := T(#) be the associated tubing. Let 7 € T be
a minimal by inclusion tube containing the residues of p modulo n.

If T = P then we set
6p(®) = (510, [P — 0, [BY) : - : sin(dy, [P — G, [P) : $in(@y, ., [P~ 6, [PD) . (3.10)

We would like to show that the vector on the right-hand side is nonzero. Otherwise, by

(3.7), we would have épS[fJ] =...= épr[f’] = §p1+n[13] =.. [P] for some s € [r]. Let

"= Ups-14n

S:={p € Z | 6,[P] = 6, [Pl}.
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Thus S is a convex subset of P containing all elements in o5~ !(p) = Dgr--- PPy +
n,...,ps_; + n). It follows that S splits as a disjoint union of tubes, all of which belong
to "f\ {P}. Because o571 (p) is a circular P-chain, there exists a path in the Hasse diagram
of P, which starts at p,, ends at p,_, + n, and passes through all elements of o5~ (p).
For each vertex p on this path, we see that p € S since S is convex. Thus all elements of
o571 (p) belong to the same proper tube 7’ € T. This contradicts the minimality of . We
have shown that the vector on the right-hand side of (3.10) is nonzero, thus g“p(()) is a well
defined element of RIP’;_OI when 7 = P.

Assume now that r C P. Since 7 is convex, we may assume after some cyclic

relabeling (Observe that the maps ¢g and {5 p) are related by a cyclic shift on RP"~!.) that
P1:Py/---. Py € T,in which case we set
£p(0) = ((épz[r] —Op [t -2 (G, [F] =6, [7]) 1 (0, 1] -0, [r])) . (3.11)

The entries on the right-hand side are nonnegative by (3.8). Similarly to the above, we
see that they cannot all be zero because that would imply épl[r] = épzlr] == épr[r],
contradicting the minimality of .

It remains to show that ¢, is continuous. Let 0™ be a sequence of elements of
% (P) converging to § as m — oc. By definition, this means that #™[z'] converges to 8[r’]
inside €'(z’) for each non-singleton tube t’. Without loss of generality, we may assume
that all points #"™ belong to Comp (P) for some fixed T' C T.Let v’ € T be a minimal by
inclusion tube containing the residues of p modulo n. Then t C /. If t = 7’ then clearly
gp(é’(m)) — {D(G) asm — oo. If t C v/ C P then the result follows from (3.5). Finally,
if t € v/ = P, we see that because t € T = T(#), all coordinates of the vector on the
right-hand side of (3.10) tend to zero. But since this vector is treated as an element of
RP"~!, we may replace the sines by their arguments. For the last coordinate, we replace
sin(@,, ,,[P1—0,, [P]) = sin(d, [P1—0, [P]) with 6, [P]—0, [P]. Therefore, the limit of £,(0"™)

coincides with the limit of
((éé’zm [B] — 05 1B]) - : Gy 1B] — 657 [B]) = (B [P) — G5 usD) (3.12)

as m — oo. By the coherence condition (3.5) applied to 7, := P, the vector in (3.12) equals

((ééT)[rl — 0] e B[] = 657 [2)) (B [e) — é},@[ﬂ)) : (3.13)

Since 8™ [t] — 0[r] as m — oo, the vector in (3.13) converges to g“p(()). [ |
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3.4 From bounded affine permutations to affine posets

Suppose that f € B(k,n) is loopless and has a connected strand diagram. Let 13f be the
n-periodic transitive closure of the relations p <p 4 <p, P +n wheneverl <p<g<n
form an f-crossing. (Explicitly, <B is the transitive closure of the relations p + dn <B,
g+dn <p P + (d+ 1)n for all d € Z.) It follows that Py is an affine poset. See Figure 7 for
an example.

Comparing (3.3) to (2.3), we see that the sets
0°(Pp) = ©7°

coincide as subsets of R". As explained in Remark 3.8, these spaces are identified with

the interior ¢° (13f) of the corresponding affine poset cyclohedron.

4 Taking the Closure

Suppose that f € B(k,n) is loopless and has a connected strand diagram. Recall from

Section 3.4 that @;0 is naturally identified with the interior €° (Pf). Thus we have a map

Measy : ‘Ko(ﬁf) — CritJ?O.
Our goal is to show the following result.

Theorem 4.1. For any loopless f € B(k,n), the map Meas; extends to a surjective
continuous map between the closures

20

Meas; : Cg(f)f) — Cri 7

First, we describe a simple way to take a limit of a family of boundary measure-

ments. See [30, Lemma 3.1] for a closely related result.

Lemma 4.2. Let G € G..4(f). Suppose that we are given a sequence wt™ e REE)G), m =

1,2,...,such that for each e € E(G), there exists a finite limit

wi(e) := lim wt™(e) € [0, 0).
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Let G’ be given by

V(G):=V(G), E(G):={ecEG) |wt(e) >0},

and let wt’ € RE(OG/) be the restriction of wt to E(G’). Then we have

lim MeasG(Wt(m)) = Measg (wt') inside Grs(k,n), (4.2)
m— o0 =

provided that G’ admits at least one almost perfect matching.

Proof. Clearly, we have
. (m) _ / ’ . . n
r%me(AI(G'Wt mn ))Ie([’,j]) = (A(G',wt ))Ie([ﬁl) inside RG). (4.3)

By construction, any almost perfect matching of G’ is an almost perfect matching of G.
Since the set of such almost perfect matchings is nonempty, the right-hand side of (4.3)
is nonzero. Thus (4.3) also holds inside RP(t)~1. This implies (4.2). |

Remark 4.3. We caution that if G’ admits no almost perfect matchings, the limit on the
left-hand side of (4.2) may still exist, since applying a gauge transformation to each wt(™

may give rise to a different graph G’ in the limit.

Our next goal is to define the map Meas; in (4.1). We identify %' (P;) with Comp(Py)
via Theorem 3.7. Fix 0 € %(Pf) and let T := T(#) be the corresponding proper tubing.
Choose a contracted graph G € G..q(f).

Lemma 4.4. Let v € V(G) be an interior vertex of G of degreer,andlet 1 < p; < p, <
- < p, < n be the endpoints of the strands emanating from v. Then (p;,p,,...,p,) is a

circular Pf-chain.

Proof. Itiseasy to seefrom the “no bad double crossings” condition on the strands [29,
Theorem 13.2] that the edges incident to v are labeled by {p;,p,}, ..., {p,_1.P;}. {P,.P1} In
clockwise order. The result follows by [8, Proposition 4.2]. |

In the setting of the above lemma, we denote p;(v) := (p;, Py, ..., p,). Observe that
the entries of Cpe(v)(0) are naturally labeled by {p;,ps},... {p,_1. P/} {P, D1 }; see (3.9).

Thus we may treat the entries of £, ,(f) as nonnegative real edge weights assigned to
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the edges incident to v. They form an element of R]P’;Ol since rescaling them by a common

positive scalar corresponds to a gauge transformation at v.

Definition 4.5. Let 0 € Comp(f’f). We define a weight function wt, € Rg(g ) as follows.
For each boundary edge e, set wty(e) := 1. For each black interior vertex b € V(G), set the
weights of the edges incident to b to be proportional to the entries of Cpe®) (0). Let G’ be
given by

V(G):=V(G), EG):={ecEWG) | wty(e) > 0}, (4.4)
and let wty, be the restriction of wt, to E(G'). Define

Measg(6) := Measg (Wtp). (4.5)
See Figures 2 and 1 3 for examples of weighted graphs (G, wt').

Remark 4.6. For 6 < @;o = ﬁ"(faf), we have Meas;(0) = Measg(6) in view of (2.4) and

Lemma 3.10.

Remark 4.7. The construction of mf in Definition 4.5 formally depends on the choice
of G € G,.q(f). However, we will see later that the choice of G is immaterial: we will show
that mf is a continuous extension of Meas; to %(Pf). If such a continuous extension
exists, it must be unique, and thus any other choice of G would give rise to the same map

Measf.

While the graph G in Definition 4.5 was assumed to be reduced and contracted,
these properties need not hold for G’'. But first, in order for (4.5) to give a well-defined
element of the Grassmannian, we must show that not all coordinates of the vector

Meas (wty) are zero, which is equivalent to the following statement.

Proposition 4.8. The graph G’ given by (4.4) admits at least one almost perfect matching.

Proof. Recall that we have set T := T(#). Our first goal is to show that there exists a
maximal proper tube ¢’ such that T U {z'} is a tubing.
The tubing T corresponds to a face CompT(f’f) of %(Pf). Let CompT/(Pf) be any

vertex of the closed face fCompT(f-"f)). Thus T C T’ and Compr (f-"f) is a zero-dimensional
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face, which means |[T']| = n—1. We claim that any proper tubing T’ satisfying T =n—1
contains a maximal proper tube.

To see this, consider a rooted tree T’ (cf. [9, Definition 3.5]) with vertex set {13f} u
[T'luZ/nZ,where Z/nZ is identified with the set of equivalence classes of singleton tubes.
(We identify the set of singleton tubes with Z.) The root of T’ is 13f, while Z/nZ is the set
of leaves of T'. The children of each [T] € {Pr} U [T'] are of the form [T_] where 7_ is a
maximal by inclusion element of T’ UZ satisfying t_ C 7. We find that T’ has 2n vertices,
including n leaves. Moreover, each non-leaf vertex of T’ other than Pf has at least two
children. Since a binary tree on n leaves contains 2n — 1 vertices, it follows that the root
Pf has exactly one child in 7’. In other words, T’ contains a maximal proper tube 7’. Thus
T U {t’} is contained in a tubing T’, and therefore is itself a tubing.

We now construct an almost perfect matching A of G. Let v be a (black or white)
interior vertex of G. Since t’ is a maximal proper tube, it contains the residues of p;(v)
modulo n, and we let p;,p,,...,p, € v’ be such that (p;,p,,...,p,) = c°(Pg(v)) for some
s € Z. Thus the strands emanating from v are labeled by p;, p,, ..., p, in clockwise order,
where we consider their labels modulo n.

We see that v is incident to an edge e, labeled by {p,, p,}. Set
A :={e, | vis an interior vertex of G}.

Thus A is a collection of edges of G covering each interior vertex at least once.

Let b (resp., w) be a black (resp., white) interior vertex of G. We claim that
epconnects btow <= e, connects b to w. (4.6)

Suppose that e, connects b to w. Label the strands emanating from b (resp., from w)
by p;.py,....p, € T (resp., q;.9,,--..qs € T') in clockwise order. Thus e, is labeled by
{p,,p,} while e, is labeled by {q;, g,}. Since w is also incident to the edge e, labeled by
{p:,p,}, we see that p;,p, € {q;,4,,-..,q,}, and moreover, p, appears right before p, in
the sequence (q;,9q,,...,qs, q;). It follows that g; = p, and q; = p,, therefore ¢, = ¢;.
The converse direction is handled similarly, except that for a white interior vertex w,
e,, may be a boundary edge (in which case there is no black interior vertex b satisfying
e, =e,).

It follows from (4.6) that A is an almost perfect matching of G. It remains to show
that A is an almost perfect matching of G'. Recall that V(G') = V(G). Let b be a black
interior vertex of G with outgoing strands labeled by p,,p,,...,p, € t’. Thus the edge

.....

is nonzero. By Lemma 3.10, the entries of y are not all zero.
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Let r € T be a minimal by inclusion tube containing the residues of (p, py, ..., p,)
modulo n. We first consider the case t = Pf. By (3.10), we have y, = sin(§p1+n[r] - épr[T]).
Thus by (3.7), y, = 0 implies that either 6,, [t] =, [t] or 6, [t] = §, [r] + 7. In the former

case, the vector y would be zero, a contradiction. Thus assume ép,[T] = épl [t]+ 7. Let

S={peZ| ép[t] = épr[r]}.

We see that S is a convex subset of Pf containing both p, and p, + n. Recall that S
is a disjoint union of tubes. Since p, <p P1 T 1, these two elements belong to the
same connected component 7_ of S. By Definition 3.5, we must have r_ € T. This is a
contradiction: T U {z’} is a tubing; however, the tubes t_, 7’ € T U {z} are neither nested
nor disjoint. We have shown that y, # 0 when t = Pf.

Assume now that t C Py is a proper tube. By choosing a particular representative
in [7], we may assume that p; € t. Since any two tubes in T U {r'} are either nested or
disjoint, and since p; € v N7/, we must have v C t’. (Because |t’| = n, we cannot have
1’ C 1.) It follows that p;,p,,...,p, € . Since T C 13f, y is given by (3.11). In particular,
Yy = 0p, [t]1 =0, [r]. By (3.7), y,, = 0 implies y = 0, a contradiction. ]

Proof of Theorem 4.1. By Proposition 4.8, the map Meas; lands inside Gr(k,n). By
Remark 4.6, it extends the map Measf to ¢ (Pf). Next, we show that it is continuous.

Let (O(m))m>l be a sequence of points in %”(Pf) converging to 6 € c5(13f) asm —
oco. Let b be a black interior vertex of G of degree r. By Lemma 3.10, the map ¢, ) is

continuous on %(Pf):

r%l_r}go ) @™y = Cpe) (@) inside RP™L.

Thus, after applying gauge transformations to each wt,m at black interior vertices, we
get

lim wtym (e) =wty(e) forall e € E(G).
m— o0

(Recall that the weight of each boundary edge e is not affected by gauge transformations
at black interior vertices, and satisfies wty,m) (e) = wty(e) = 1 for all m.) By Proposition
4.8, G’ admits an almost perfect matching, therefore mf is continuous by Lemma 4.2.

It remains to show that mf(‘ﬁ(f’f)) = Crit?o. We see that the image of mf
is compact (since %(Pf) is compact) and thus closed. Since the image contains Critjfo =
Measf(%c’(f’f)), it contains the closure Critj?0 of CritJ?O. On the other hand, mf(%(f’f))

must be contained inside Crit?o because %(Pf) is the closure of %"(Pf). |
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Definition 4.9. We endow Critf2 % with a stratification obtained by taking the common

refinement of the images of all open faces of ¥ (Pf).

Conjecture 4.10. For any two open faces Comp. (Pf), Comp. (13f) of %(Pf), their images

under Measy either coincide or are disjoint.
Below we prove this conjecture for f = fj .
5 Top Cell and the Second Hypersimplex

We concentrate on the case of the top cell (f = fk,n), where 2 < k < n — 1. We denote
Critig = Criti’?l, Pk,n = Pfk,n' etc. Note that %(Pk'n) = %, is just the standard (n — 1)-

dimensional cyclohedron of [4, 33]. Our goal is to prove Theorem 1.5.

5.1 From € (Py ) to Agp

Recall from Theorem 4.1 that Critfg is the image of the cyclohedron ¢ (Pk,n) under the
map Measy, ,, : %(Pkln) — Critfg. Our first goal is to introduce a map ¢ : ‘K(Pk’n) - Ay
to the second hypersimplex and to show that Meas; ,, factors through ¢.

We start with a few preliminary observations and definitions.

Notation 5.1. For a,b € Z with a < b, we set [a,b) :={a,a+1,...,b—1}.Fora,b € [n],
we introduce a cyclic interval [a,b) := {a,a+ 1,...,b— 1} if a < b and [a, b) := {a,a +
1,...,n,1,...,b—1}if a > b. The intervals (a, b], [a, b] C Z (for a <

(a,bl,la, bl C [n] (for a, b € [n]) are defined analogously.

b) and cyclic intervals

Definition 5.2. An inscribed polygon (resp., degenerate inscribed polygon) is a polygon

all of whose vertices lie on a single circle (resp., on a single line).

We view (degenerate) inscribed polygons modulo transformations that preserve

the ratios of the distances between their vertices. We write R = (vq,Vy,...,V,,) for a
polygon with vertices v;,v,,...,Vv,, given in cyclic order. The following result is well
known.

Lemma 5.3. Let (a;,ay,...,Q,,) € R’;o be such that a, < Zq#p a, for all p € [m]. Then
there exists a unique possibly degenerate inscribed polygon R = (v;,vy,...,v,,) such
that

Vo1 = Vol ap

for all p,q € [m],
v

a+1 ~ Vgl aq

where we set v,, | 1= vy.
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Thus, up to a common scalar, the diagonals of a possibly degenerate inscribed
polygon may be reconstructed from its sides.

Next, observe that the order < Ben coincides with the usual total order < on Z. In
particular, Pm=(1,2,...,n)isa circular Py, ,-chain. By Lemma 3.10, we therefore have

a continuous map

. T -1
Cp(n) . %(Pk,n) — R]P);O .

Definition 5.4. Let § € ¢(P;,). We denote by B, the partition of Z into intervals

consisting of the tubes in B(#[r]) for each minimal by inclusion r € T() satisfying |7| = n.

In the above definition, either t = Pk,n or T is a maximal proper tube, which
in the case of Pk,n is just an interval of the form [p,p + n) € Z for some p € Z. Thus
B(#[r]) forms a partition of t into intervals. Considering B, modulo n, we get a partition

By = (B;,B,,...,B,,) of [n] into m > 2 nonempty cyclic intervals.

Remark 5.5. Recall from Remark 1.1 that for 0 € ‘50(13,{'”), setting v, := exp(2i6,) for
r € [n] gives n distinct points v;,v,,..., v, on the unit circle ordered counterclockwise.
The map {I‘,’m) in this case records the side length ratios of the n-gon R = (vy, vy,...,v,).
When we pass to the boundary (0 € ¢'(Py,)), some of these points will collide. If not
all points collide then the cyclic intervals in B, = (B;,B,,...,B,,) record precisely the
groups of collided points, and o (0) records the side length ratios of the corresponding
m-gon. If all points collide then T(#) contains a maximal proper tube 7. In this case,
0[] records the positions of n points on a line, the cyclic intervals in B, record which
groups of those points collided together, and ¢p(#) records the side length ratios of the

corresponding degenerate inscribed m-gon.

Consider a map

2
RPYD S R, (XX i1 X)) > (X1, X0, X))
§ 1 RP3, >or (X1 1% n) P n)

We note that the entries of an element of R]P";Bl are nonnegative and at least one of them
is nonzero, thus their sum is strictly positive. The image of & belongs to the subspace of

RY , where the sum of coordinates is equal to 2. Let

¢:C(Py,) — R%y ¢:i=¢&o S
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Proposition 5.6. The image of the map ¢ equals
Doy ={y1. V2 V) €10, 11" |y +yp + -+ ¥y, =2}

Proof. By Remark 5.5, the map ;I‘;’(n) records the side length ratios of an inscribed n-gon,

and thus its image is described by triangle inequalities:

;I‘;(m(%o(fak,n)) ={(x;: Xy 1 1X,) € ]RIP;BI |0 <x, < qu for each p € [n]}.
q#p

Obsezzrve that 0 < x,, < Zq#p X, is equivalent to 0 < 2x, < ZZ:] X,. Substituting y,, :=
Xp

X1+Xo++Xn ' we get

¢(‘€°(13kln)) ={(y1,¥2,--- V) ER" |0 < Vp <1 foreachp e [nlandy; +y, +---+y, =2}

The result follows by taking the closure. |

5.2 From Ay, to Critlfg

The goal of this section is to prove the following result.

Theorem 5.7. There exists a continuous map
.. >0
ViAy, — Crltk,n
making the diagram (1.2) commutative.

Thus, Theorem 1.5 consists of Theorem 5.7 together with the statement that the
map v is a homeomorphism, which we prove in Section 5.4.

Let 0 € <K(INJ',C,,L). Since Measy ,, () € Grs(k,n), it must belong to some positroid
cell H;O, g € B(k,n). We will see later (Proposition 5.14) that the bounded affine
permutation g has the following description. For a subset A € Z and p € Z, we let
A+p:={a+p|ae A} By an n-periodic interval partition of Z we mean a collection B
of disjoint nonempty intervals in Z of size strictly less than n such that their union is Z

and for each interval B € B, we have B+ dn € Bforalld € Z.

Lemma 5.8. For any n-periodic interval partition B of Z, there exists a unique loopless
gp € B(k,n) of maximal length such that gg(B — k) = B for all B € B.

Proof. We describe gy explicitly; see Figure 8. Let B € B and denote A := B — k. Let
ovy(A,B):=[(A+n)NB| and ovgx(4,B):=|(A+1)NB]. (5.1)

We have ov;(4,B) + ovg(4,B) < |A| = |B| < n. Let A; consist of the smallest ov; (4, B)

elements of A, let Ay consist of the largest ovyz (A4, B) elements of A, and let A;; consist of
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AL AM AR

A A A

|AL| = |Br| = ovL(A, B)
:p+TL ‘AH|:‘BL|:OVH(A,B)

gB(p)

et S NW(b)
L L\ NW ()
X P P — *\04 by S E(w) = E(b)
L\\\\LLL
bo by bs bbb S(w) = S(b)

(a) Le-diagram graph Gy, for k =4, n =10  (b) Strands in Gy ,; see Notation 5.9
Fig. 9. A Le-diagram graph and its strands.

the remaining elements of A. Thus we have a partition A = A; U A,; U Ap into intervals.
Next, we partition B = B; U By, LI B into intervals given by B; = Ag + 1 and By := A; +n.
Forp € Ay, welet gg(p) :=p+1 € B;, and for p € A;, we let gg(p) :== p + n € Bg. The
restriction of gy to Ay, is an order reversing bijection A;; — By,. This ensures that gz has
maximal possible length among all loopless bounded affine permutations sending A to B.
It is also clear that g € B(k, n) (as opposed to B(k’,n) for some k' # k) since it can be
obtained from f} ,, by applying (affine) simple transpositions. |

Recall from Remark 4.7 that any choice of a graph G € G.oq(f; ) gives rise to
the same map mkln. We will take advantage of this observation by using a particular
graph Gy ,, € Goq(f% ) called the Le-diagram graph; see Figure 9(a) for an example and
[29, Section 20] for background.

Notation 5.9. All interior vertices of Gy ,, have degree either 2 or 3. Each interior vertex
v belongs to one horizontal strand directed east, one vertical strand directed south, and

one diagonal strand directed northwest; see Figure 9(b). We denote the endpoints of these
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strands by E(v), S(v), NW(v) € [n], respectively. If a black vertex b has degree 2 then we
have NW(b) = S(b). If a white vertex w has degree 2 then we have NW(w) = E(w). We
denote by V,(Gy ,) the set of black interior vertices of Gy ,,.

Thus each b € V,(Gy ,,) is uniquely determined by E(b) and S(b), which are its vertical
and horizontal coordinates in the plane.

After a cyclic shift, we may assume that

k and k + 1 belong to different intervals in By. (5.2)

Definition 5.10. An interval B € By is called special if it contains both n and n + 1. We

also refer to the corresponding cyclic interval B € B, as special.

Clearly, By contains at most one special interval.
Next, we consider the weighted graph (G',wt’) obtained from G, via
Definition 4.5.

Definition 5.11. We say that b € V,(Gy ) is of type(l) (resp., type(2) or type(3)) if the
endpoints of the strands emanating from b belong to exactly one (resp., two or three)

distinct cyclic intervals in By.

Remark 5.12. If b is of type(3), all three edges of b are present in G'. Their weights
coincide with their weights in G, and can be computed from ¢(#); cf. Remark 5.5 and
Lemma 5.3. If b is of type(2), only two edges of b are present in G'. Their weights are
equal, and after a gauge transformation at b, can be made equal to 1. Finally, if b is
of type(1), either two or three edges of b are present in G/, and their weights cannot in

general be computed from ¢ (). See for example, Figures 3 and 10.

Lemma 5.13. If B, does not contain a special cyclic interval (in the sense of Definition
5.10) then V,(Gy ,,) contains no vertices of type(1). If By contains a special cyclic interval
B then for each b € V,(Gy,,), b is of type(1) if and only if S(b), E(b) € B.

Proof. In order for b € V,(Gy ) to be of type(1), S(b), E(b), NW(D) must belong to some
cyclic interval B € B,. But since S(b) € [k + 1,n] and E(b) € [k], B must be special in
view of (5.2). Conversely, suppose that B € B, is special and S(b),E(b) € B. Since B is
of the form [n — h + 1,n] u [v] for some v € [kl and h € [n — k], S(b),E(b) € B implies
NW(b) € B. [ ]
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type (1) type (2) ovi(A. B)
VI )

type (2)

OVR(A, B)

Fig. 10. Left: an example for Lemma 5.13. Here k = 6, n = 12, and By contains a special cyclic
interval B = [10, 5] = [10, 12] U [1, 5]. The strands terminating in B are shown in red. Type (1) black
vertices are marked by (1). Dashed edges are present in G but not in G’. Each of them is incident to
a black vertex of type(2). Right: regions of Gy, containing vertices of types (1) and (2) with respect
to the special region B.

Thus the set of type(1) vertices forms a top left justified h x v rectangle in Gy ,;
see Figure 10 for an example.

For the next result, we need to refer explicitly to the edges of Gy ,. Each black
vertex b € Vo (Gy ) of degree 3 is incident to a northern, eastern, and southwestern
edge labeled by {S(b), NW(b)}, {E(b), NW(b)}, and {S(b), E(b)}, respectively; see Figure 9(b).
Recall from (5.2) that k and k + 1 cannot both belong to the special interval in B,. We
let gy := gg, be given by Lemma 5.8. Let us say that a self-loop is an edge of a graph

connecting a vertex to itself.

Proposition 5.14. If B, does not contain a special cyclic interval then set G’ := G'.
Otherwise, let B be the special cyclic interval of ]_30, and let G’ be obtained from G’ in one
of the following two ways:
e (if k ¢ B) remove all black vertices of type(1) and their southwestern white
neighbors;
e (if k41 ¢ B) contract all edges incident to black vertices of types (1) and (2)

and remove all self-loops in the resulting graph.
Let wty be the restriction of wty to the edges of G”. Then

G" € GLeq(gy) and Measg (wty) = Measg (Wtp). (5.3)
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For the example in Figure 10(left), we have k, k+ 1 ¢ B, so either of the two above

procedures yields a reduced graph G” satisfying the conditions in (5.3).

Proof. Consider a vertex b € V,(Gy ) of type(l) and let e be its southwestern edge.
We claim that wty(e) equals the sum of wt,(e’) over all other edges €’ of b. (In particular,
wty(e) > 0so eis presentin G'.) Indeed, this is clear if b has degree 2. If b has degree 3 then
NW(b) belongs to the cyclic interval [S(b), E(b)]. Thus there exists a Pk'n—circular chain
(p,q,r) such that p, q,r are equal respectively to S(b), NW(b), E(b) modulo n, and such
that p, g, € t for some proper tube t € T(0). This implies that wt,(e) = wt,(e') +wty(e”),
where e, €, e’ are labeled by {p, r}, {p, q}, and {q, r}, respectively.
LetB:=[n—h+1,nlulvlforv € [kl and h € [n — kl; see Figure 10. Assume
first that k ¢ B, thus v < k. Let b € V(G ) be a vertex satisfying E(b) = v + 1 and
S(b) € B. Then b is of type(2) with S(b), NW(b) € B, and its northern edge labeled by
{S(b), NW(b)} is not present in G’'. Thus the bottom left black vertex b of type(1) (defined
by S(b) = n, E(b) = v) is adjacent to a white vertex of degree 1 in G'. Applying a sequence
of leaf removals (Figure 4(middle)) starting with b and proceeding up and to the right,

we remove all black vertices of type(1) and their southwestern white neighbors.
Assume now thatk+1 ¢ B, thus h < n—k.Let b’ € V,(Gy, ) be a vertex satisfying

S(b') =n — hand E(b') € [2,v]. Then b’ is of type(2) with E(b), NW(b) € B, and its eastern
edge labeled by {E(b), NW(b)} is not present in G’. For a connected subgraph H of G/, let
G'/H be obtained from G’ by contracting all edges in H and removing all self-loops in the
resulting graph. Initialize H to consist of all edges incident to vertices b € V,(Gy,) of
type(2). This includes the edges incident to black vertices at the top (E(b) = 1, S(b) € B)
and the right (S(b) = n — h, E(b) € B) boundaries of the (h + 1) x v rectangle. Choose
the top right type(1) black vertex that is not a vertex of H. Its northern and eastern white
neighbors arein H. Let e, €, €’ be the edges of G incident to b as above (where one of ¢, ¢’
may not be present in '), so that e is the southwestern edge. If both ¢, ¢’ are present then
their images in G’'/H form a double edge. Applying a parallel edge reduction move (Figure
4(left)), we transform this double edge into a single edge of weight wt,(e’) + wty(e”),
which, as we have shown above, equals wty(e). Thus the image of b in G/H is a vertex of
degree 2, and the two edges incident to it have the same weight. These two edges may
be contracted using a contraction—uncontraction move (Figure 5(left)). This corresponds
to adding e, €/, €’ and their endpoints to H, and constitutes the induction step. Once all
type(1) vertices have been added to H, we arrive at G'/H = G”.

A straightforward consequence of the above construction is that G” has strand

permutation f;» = g, and satisfies Measg (wtg) = Measg (wty). Indeed, we have
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Meas g (Wtg) = Measg (Wty) since (G”, wty) was obtained from (G’, wt) via a sequence of
moves in Figures 5 and 5. To see that f;, = g,, we first observe directly that f;(p) = p+n
(resp., fgr(p) = p+1) if and only if g4 (p) = p+n (resp., gy (p) = p+ 1). Next, since our edge
removals taking G to G’ and reduction moves taking G’ to G” only involved edges labeled
by {p, g} where p, q belong to a single interval B’ of B, we have f,' (B) =B — k = g, ' (B)
for any interval B’ € B. Finally, it is clear that the contracted version of G” contains no
edge labeled {p, g} where p, g belong to the same cyclic interval in B. Thus no two strands
terminating at any given B’ form a crossing, so f;» coincides with g,.

We further note that for any black interior vertex b € V(G"),
the weights wtg(e) of the edges e of G” incident to b are proportional to Cperty @) (5.4)

Morally, the last property is close to the statement Measg,(wty) = MW (@), except
that we have not yet shown that G” is reduced, and we also have not defined the
map mg for the case when g does not have a connected strand diagram (cf.
Definition 2.4).

In order to complete the proof of the proposition, we need to show that G” is
reduced. For that, we will use the following well-known characterization [29] of reduced
graphs: G” is reduced if and only if it has no isolated connected components and has
exactly k(n —k) + 1 —£(gy) faces. It is not hard to check that G” has no isolated connected
components. Since Gy ,, has k(n — k) + 1 faces, we need to show that our process above
decreases the number of faces precisely by £(gy). Since each affine inversion of g, involves
two strands with endpoints in the same interval of By, it suffices to show, for each
interval B of By, that the number of affine inversions involving indices from B matches
the number of faces removed from G due to deleting/contracting edges labeled by {p, g}
for p,q € B.

Let B € By, and let A := B — k. It follows from the proof of Lemma 5.8 that the

number of affine inversions of the restriction of g, to A equals

(|B|) 3 (OVR(A,B)) B (ovL(A,B)). (5.5)
2 2 2

If B is not special then we see that (5.5) also describes the number of type(2) vertices
involving two indices in B. Indeed, if B is not special, then either B C [k + 1, n] or B C [k].
In the former case, we have ov;(4,B) = 0 and the number of type(2) vertices involving
two indices in B equals (Igl) — (OVR(ZA'B)). In the latter case, we have ovz(4,B) = 0 and the
number of type(2) vertices involving two indices in B equals ('5') — (*"*{%). Each such
type(2) vertex is incident to an edge of G, which is not present in G’'. We therefore see that

in both cases, the number of faces decreases by the quantity given in (5.5).
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We concentrate on the case where B is special, so assume B=[n—-h+1,nlulvl.
Either of the two ways to reduce G’ to G” removes exactly h(v — 1) faces contained in
the rectangular region. (When k + 1 € B, this includes joining the v — 1 boundary faces
contained between the boundary vertices b, for p € [v] into a single boundary face.)
Next, we count the number of edges removed when passing from G to G'. All of them are
adjacent to type(2) black vertices, and are contained in two trapezoidal regions shown in
Figure 10(right). The lower left (resp., upper right) region is a trapezoid if ovz(4,B) > 0
(resp., ov;(A,B) > 0) and a triangle if ovgz(4,B) = 0 (resp., ov;(4,B) = 0). It contains

("31) = ("5)

result follows since

(resp., (5) — (°"={P))) vertices of type(2) involving two indices in B. The

e (5)-()-(1)- () :

Proof of Theorem 5.7. By Definition 4.5, we have mf(o) = Measg (wty), which
equals Meas;,(wty) by Proposition 5.14. By Remark 5.12, the edge weights of G’ may be
computed purely in terms of the side length ratios encoded in ¢ (#). Thus mf factors
through ¢. Since ¢ is surjective, there exists a unique map ¢ : A, , — Critig making the
diagram (1.2) commutative. It remains to show that v is continuous. Letting X := %(ﬁkln),
Yi=2A,, and Z := Critig, we have maps X f) Y i) Z such that the composition ¥ o ¢ is
continuous. Choose a closed subset Z' C Z. Then X’ := (¢ o ¢)~1(Z) is a closed subset of
X.Observe that X is compact while Y is Hausdorff, thus ¢ is closed. Therefore Y’ := ¢(X’)
is a closed subset of Y. It follows from the surjectivity of ¢ that Y’ = ¢ ~1(Z'). Thus v is

continuous. [ |

5.3 Positroids and weak separation

Before we proceed with the final step of the proof, we need to introduce some con-
structions related to positroids; see [27, 29] for background. Our ultimate goal is to
prove Corollaries 5.21 and 5.22, which state that under certain hypotheses, we can
apply square moves to find either an interior square face or an I;-arch (Figure 11 and
Definition 5.15). Finding such faces bounded by a small number of edges is useful for
our proof of the injectivity in Section 5.4 since it allows one to reconstruct cross-ratios

of edge weights from the image of Meas .

Let g € B(k,n) be a bounded affine permutation. For q € Z, let

I,:=1{g(p) | p € Z is such that p < g < g(p)}. (5.6)
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Fig. 11. An Ij-arch; see Definition 5.15.

We set fg = (jq)qu' Forq e [n] let I, ([',;]) be obtained from fq by reducing all elements
modulo n. The Grassmann necklace of g is the sequence Ig = (I;,1,,...,1,). For each
q € [n], consider a total order <q on [n] given by q g4+ 1 g Sq4-— 1. For two sets
I={i) <qip <q - <qUandJ ={j; <qJp <q - <qJi}h wewrite I <, Jif i, <, j, for all
r  [k]. The positroid M, of g is defined as the collection of all J € ([z]) satisfying I, <, J
for each q € [n].

We say that I,J € ([',:]) are weakly separated [21] if there do not exist indices
1<a<b<c<d<nsuchthata,ceI\Jandb,d e J\I or vice versa.

For G € G4q(9) and j € [n], we let w; denote the unique neighbor of the degree 1

boundary vertex b;.

Definition 5.15. Let g € B(k,n) and j,t € [n]. Let r := g(j — 1) € [n]. (Here and below
the index j — 1 is taken modulo n.) Assume that t # j # r # t. We say that t touches
an Ij—arch (with respect to g) if there exists a contracted graph G € §,.4(g) such that the
boundary face of G between bj and bj_l is a pentagon with vertices (bj, wj, b, Wi_y, bj_l)
for some black interior vertex b, and such that the strand labeled ¢t passes through the

edges connecting w; to b and b to w;_;. See Figure 11.

Our notion of an Ij—arch is closely related to the notion of a BCFW bridge; see [1,
5,18]. In fact, a bridge is a special case of an arch when either w; or w;_; has degree 2;
compare Figure 11 to for example, [8, Figure 7]. We now establish a useful criterion for

the existence of an Ij—arch.

Lemma 5.16. Letg € B(k,n),j,t € [nl,r := g(G — 1) besuch thatt #j # r # t. Then ¢t

touches an Ij-arch if and only if the sets
J:=LU{t}\{j} and R:=LU{t}\{r} (5.7)

belong to M, and are weakly separated from all sets in Z.
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Proof. We start with the if direction. Since IJ-,J,R IS Mg, they are all of size k, and since
t #j #r#t wehavel; #J # R # I;. In particular, j,j — 1 are neither loops nor coloops.
(Otherwise, eitherj or r would appearin either none or all of the three sets I] J,R.) Clearly,
J and R are weakly separated from each other. Since they are also weakly separated from
all sets in 7 , by [27, Theorem 1.5], there exists a contracted graph G € G,.4(9) such that
J, R appear as face labels of G. Here we label the faces of G € G,.4(9) by k-element sets
as follows: for each face F of G, the label of F contains s € [n] if and only if F is to the
left of the strand terminating at b;.

Observe that |JULUR| = |;U{t}| = k+1.Thus J.I; R belong to a non-trivial black
clique in the sense of [27, Section 9]. In particular, the faces of G labeled J,Ij,R share a
black vertex b € V(G).

Since j,j — 1 are neither loops nor coloops, we have I;_; # I; # I;,,. Suppose that
J #1;;,. Then I;,J, I;,, belong to a non-trivial white clique, and thus the corresponding
faces of G share a common white vertex, which, since G is contracted, equals wj. IfJ=
Ii, then the two faces labeled by J and I; still share the degree 2 vertex wj. Similarly, the
faces labeled by R and IJ share wi_;. By [27, Lemma 9.2],Ij and J share an edge connecting
w; to b while I; and R share an edge connecting w;_, to b. The strand labeled ¢ therefore
must pass through both of these edges, so ¢ touches an ;-arch.

The only if direction is a trivial consequence of the results of [27]: if ¢ touches an
Ii-arch then J, R appear as labels of the faces of G containing b, and therefore J, R belong
to M, and are weakly separated from all sets in I, by [27, Theorem 1.5]. |

Next, we apply the above lemma to a particular class of permutations gy
constructed in Lemma 5.8.
Definition 5.17. An n-periodic interval partition B of Z is called generic if we have
|B] < min(k — 1,n — k) forall B € B.

In other words, B is generic if and only if ov;(A,B) = ovgz(4,B) = 0forallBe B
and A := B—k. Consequently, gg restricts to an order-reversing map A — B for each such
pair (4, B). For the rest of this subsection, we fix some generic B. Recall from Notation 5.1

that for p, q € [n], [p, @) denotes the corresponding cyclic interval.

Lemma 5.18. Let[p,q) € Bandr < [p,q). Let j € [n] be equal to p + q — k — r modulo n.

Then the corresponding element of the Grassmann necklace 7, is given by

Ii:=[.p)ulr, .

Moreover, every element of Z, appears in this way for a unique triple (p, g, ).
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We note that such Grassmann necklaces have been previously studied in [7,
Section 4.4].

Proof. Follows from (5.6) by direct observation. |

Definition 5.19. AsetJ € ([Zl) is called right-aligned if for each [p, q) € B, we have

JNIp,q) =Ir,q) forsomer e l[p,ql.

Lemma 5.20. LetJ € ([Zl) be right-aligned. Then J € Mg, and J is weakly separated

from all sets in Ign'

Proof. Let I; € I, . After a cyclic shift, we may assume j = 1, thus I; = [1,p) u[r,q)
for some [p,q) € B with r € [p, g). Our goal is to show that I; <; J and that J is weakly
separated from I;. If J does not contain any elements in [p, r) then both claims are clear.
Otherwise, let I} :=[1,p),J :=JNI1,p),I] :=[r,q),and J” := JNIp, q), thus J” contains an
element s € [p, r). However, since [p, q) € B and J is right-aligned, we must have J” 2 I}.
On the other hand, J’ C I}, so I, and J are weakly separated. Moreover, because |I;| = |J|

and J contains the last g — r elements of I}, we get I; <, J. |

Corollary 5.21. Letj € [n] and [s,s’) € B be such that In [s,s) = 0. Thent :=s —1

touches an I;-arch with respect to gg.

Proof. Letl; = [j,p)ulr,q) withr € [p,q) € B be as in Lemma 5.18. Observe that r =
gg(G—1). The sets J, R given by (5.7) are clearly right-aligned. By Lemma 5.20, they satisfy

the conditions of Lemma 5.16. [ |

Corollary 5.22. Assume that k < n — 2. Let [p;,q;). [P2.42), [P3.43). [p4. q4) € B be four
disjoint intervals, listed in clockwise order. Then there exists a contracted graph G €
Greq(gp) containing a square face whose edges are labeled by {t;, t5}, {5, t3}, {t5, ta}, {t;, T4}
with ¢; € [p;, g;) foreachj=1,2,3,4.

Proof. Consider all right-aligned subsets of [n] whose intersection with [pj.q)) is
nonempty for each j = 1,2, 3,4. Clearly, such subsets can have any size between 4 and
n. Let I be such a set of size k + 2, and forj = 1,2,3,4,let I N [pj,qj) = [tj,qj), where
t; € [pj,q)). The sets I'\ {¢;,¢;} for 1 < i < j < 4 are all right-aligned. Thus they belong
to M, and are weakly separated from all elements of Z, by Lemma 5.20. The result

follows by combining [27, Proposition 3.2] with [27, Theorem 1.3]. ]
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5.4 Injectivity

Our final goal is to show that the map ¢ : A, , — Critfg constructed in Theorem 4.1 is
injective, which is closely related to the injectivity conjecture for critical cells; see [8,
Conjecture 4.3]. It was proved for Crit;% in [8, Theorem 4.4]. What we need is an extension

of that result to the closure Critfg of Crit;?l, which turns out to be more subtle.

Theorem 5.23. The map ¥ : Ay, — Critfg is a homeomorphism.

Proof. Since A, , is compact, Critig is Hausdorff, and ¢ is a continuous surjection, it
remains to show that v is an injection. Thus, for § € ‘K(Pk,n), our goal is to show that
the point ¢(#) € A, ,, can be uniquely reconstructed from mkﬂ @) € Critig. Let By, gy,
G" € G1eq(gp), and wty be as in Section 5.2 and Proposition 5.14.

First, observe that B, need not be generic in the sense of Definition 5.17 since g,
may have some coloops and some indices j € Z satisfying g,(j) = j+ 1. The corresponding
strands form isolated connected components of the reduced strand diagram of g,. We
remove these components using the factorization procedure from [8, Section 4.4]. Thus
the problem reduces to the case where B, is generic, which allows us to apply the results
of Section 5.3.

LetB = (By,B,,...,B,,). The point ¢ (9) records the side length ratios of a (possibly
degenerate) inscribed m-gon Ry. For p, g € [ml, let dy(p, q) denote the distance between
the corresponding vertices of R,. The ratio of any two such distances can be computed
from ¢(#); see Remark 5.5. Recall from (5.4) that the edge weights of the graph G” are
proportional to the distances between the vertices of R,. More precisely, if an interior
(i.e., not incident to a boundary vertex) edge e of G’ is labeled by {s,t} then s € Ep and
t € B, belong to different cyclic intervals in By, and the weight wt,(e) is proportional
(compared to the other edges sharing a black vertex with e) to dy(p, q).

As explained in [8, Section 9], for any face F of G”, the alternating ratio of the
edge weights that appear on the boundary of F may be reconstructed from mk'n(())
using the left twist of Muller-Speyer; see [26, Corollary 5.11]. We will be interested in
two kinds of faces of G”: I;-arches as in Definition 5.15 and interior square faces as in
Corollary 5.22.

Let s, t € [m] and j € B, be such that I; N B, = #. By Corollary 5.21, some element
in B, touches an J;-arch. Then for r € [m] such that go(j — 1) € B,, we find that the ratio

dy(s, t)

dy(r ) (5.8)

may be recovered from Measy ,,(6).
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Similarly, assume k < n — 2 and let Ep,Bq,Bt,BS € B be four disjoint intervals

listed in clockwise order. Then, by Corollary 5.22, the cross-ratio

dyg(p,q) - dy(t,5)
dy(g,t) - dy(p,s)

may be recovered from Meas; ,,(9). In fact, since the four corresponding vertices of Ry lie

(5.9)

on a circle or on a line, the ratios

(do(pl q) : d0 (tl S)) . (d0 (p: t) : do(ql S)) . (do(prs) : do (q/ t)) (510)

can all be recovered from Measy, ,(#) using standard relations for cross-ratios.

Recall that we have B = (By,B,,...,B,,). Consider a directed graph D on [m] with
edges s — r whenever there exists j € B, such that g,(j — 1) € B,. Thus the ratio in (5.8)
may be recovered from mkln(o) for all t € [r+ 1,s — 1]. Clearly, each vertex of D has
at least one outgoing arrow. Moreover, since B is generic, we see that each vertex s of D
has an outgoing arrow s — r for r # s,s — 1 (modulo m). Finally, by comparing g, (j) to
ge(G+1), we see that if D has an arrow s — r then D also has at least one of the following
arrows: s > r+1,s+1—->r,s+1—>r+1.

By Lemma 5.3, it suffices to recover the ratio dy(s,s — 1) : dy(s —1,s — 2) from
Meas; ,(0) for each s € [m]. This task is trivial when k = n — 1, thus let us assume that
k < n — 2. As shown above, there exists r # s,s — 1 such that D contains an arrow s — r.
If r = s — 2 then we are done, thus assume r #s,s—1,s—2and lett € [r+ 2,s — 1]. We
know that D contains another arrow s’ — r' for s’ € {s,s+1},r € {r,r+ 1}. From (5.8), we

recover the ratios
dg(s,t) : dg(r,t), dg(s,7):dg(r,7), dg(s',0):dy(r,t), dy(s',s):dy(,s), (5.11)

some of which may coincide or be equal to 1 if s=s"orr=r".

Suppose first that s’ = s+ 1 and ¥ = r + 1. Using (5.10), we recover the ratios

(dg(s,s+ 1) - dg(r, 7+ 1)) : (dg(s,7) - dg(s+ 1,7+ 1)) : (dg(s, 7+ 1) - dy(s + 1,7)), 512
5.12
(do(s+1,7) - dg(r+1,0) : (dg(s+ 1,7+ 1) - dy(r, 1)) : (dg(s+1,2) - dy(r, 7+ 1)).

Combining (5.11) with (5.12), we recover
do(s,s+1):dg(s+1,r):dp(r,r+ 1) : dy(s, 7+ 1).

By Lemma 5.3, we recover the (possibly degenerate) inscribed quadrilateral with vertices
s,s+1,r,r+1.Thecasess' =s,r =r+1ands=s+1,r = rare handled similarly. In the

former case, we recover the inscribed triangle with vertices s,r,r + 1, and in the latter
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case, we recover the inscribed triangle with vertices s, s+ 1, r. (When we say “we recover
a polygon” we mean that the ratio of any two of its side lengths may be recovered from
mk,n(o).) Thus we have recovered a possibly degenerate inscribed polygon R whose
vertex set Vert(R) contains s and r. By (5.8), for each t’ € [r + 1,s — 1], we recover the
ratio dy(s,t) : dy(r,t), and thus the possibly degenerate inscribed polygon with vertex
set Vert(R) U [r,s] is recovered. In particular, the ratio dy(s,s —1) : dy(s—1,5—2) is

recovered. [ |
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