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Abstract

Leclerc and Zelevinsky, motivated by the study of quasi-commuting quantum
flag minors, introduced the notions of strongly separated and weakly separated col-
lections. These notions are closely related to the theory of cluster algebras, to the
combinatorics of the double Bruhat cells, and to the totally positive Grassmannian.

A key feature, called the purity phenomenon, is that every maximal by inclu-
sion strongly (resp., weakly) separated collection of subsets in [n] has the same
cardinality.

In this paper, we extend these notions and define M-separated collections for
any oriented matroid M.

We show that maximal by size M-separated collections are in bijection with
fine zonotopal tilings (if M is a realizable oriented matroid), or with one-element
liftings of M in general position (for an arbitrary oriented matroid).

We introduce the class of pure oriented matroids for which the purity phenom-
enon holds: an oriented matroid M is pure if M-separated collections form a pure
simplicial complex, i.e., any maximal by inclusion M-separated collection is also
maximal by size.

We pay closer attention to several special classes of oriented matroids: oriented
matroids of rank 3, graphical oriented matroids, and uniform oriented matroids.
We classify pure oriented matroids in these cases. An oriented matroid of rank 3
is pure if and only if it is a positroid (up to reorienting and relabeling its ground
set). A graphical oriented matroid is pure if and only if its underlying graph is an
outerplanar graph, that is, a subgraph of a triangulation of an n-gon.

We give a simple conjectural characterization of pure oriented matroids by
forbidden minors and prove it for the above classes of matroids (rank 3, graphical,
uniform).
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CHAPTER 1

Introduction

In 1998, Leclerc and Zelevinsky [LZ98] defined strongly separated and weakly
separated collections. Several variations of these notions were studied in [DKK10,
DKK14,OPS15,FG16,Gal16]. The main goal of the present paper is to intro-
duce the notion of M-separation in the general framework of oriented matroids,
which extends the previous cases, and study its properties and its relationship with
zonotopal tilings.

The notions of strongly and weakly separated collections originally appeared in
[LZ98] motivated by the study of the q-deformation Qq[F ] of the coordinate ring
of the flag variety F . They also appeared in the study [Sco05,Sco06] of the cluster
algebra [FZ02,FZ03a,BFZ05,FZ07] structure on the Grassmannian. They are
closely related to the combinatorics of the totally positive Grassmannian and plabic
graphs, see [Pos06,OPS15].

The study of zonotopal tilings is a popular topic in combinatorics. The cel-
ebrated Bohne-Dress theorem [Boh92] gives a correspondence between zonotopal
tilings and one-element liftings of oriented matroids. Fine zonotopal tilings of the
2n-gon (also known as rhombus tilings) correspond to commutation classes of re-
duced decompositions of the longest element in the symmetric group Sn. More
generally, Ziegler [Zie93] proved that fine zonotopal tilings of cyclic zonotopes cor-
respond to elements of Manin-Shekhtman’s higher Bruhat orders [MS86,VK91].
Zonotopal tilings were studied in the context of the generalized Baues problem for
cubes, see [BKS94,Rei99,Boh92] and [BLVS+99, Section 7.2], which was re-
cently answered in the negative by Liu [Liu16].

In this paper, we connect these two areas of research.

Let I and J be two subsets of the set [n] := {1, 2, . . . , n}. Leclerc and Zelevin-
sky [LZ98] proved that two quantum flag minors [I] and [J ] in Qq[F ] quasi-
commute if and only if I and J are weakly separated, and that the product [I][J ]
is invariant under the involution on Qq[F ] that sends q to q−1 if and only if I and
J are strongly separated. Scott [Sco05,Sco06] showed that two sets I and J of
the same cardinality are weakly separated if and only if the corresponding Plücker
coordinates can appear together in the same cluster in the cluster algebra of the
Grassmannian.

Leclerc and Zelevinsky showed that any maximal by inclusion strongly sepa-
rated collection of subsets of [n] has size

(
n

0

)
+

(
n

1

)
+

(
n

2

)

and conjectured the same for weakly separated collections. This purity conjecture
was proved independently in [DKK10] and [OPS15].

1
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2 1. INTRODUCTION

Another related purity result is that, for fixed k ≤ n, any maximal by inclusion
weakly separated collection of k-element subsets of [n] has size

k(n− k) + 1.

It was shown in [OPS15] that maximal by inclusion collections of weakly separated
k-element subsets of [n] are in bijection with plabic graphs from [Pos06] associated
with parametrizations of the top cell of the totally positive Grassmannian.

Several other similar purity phenomena have been recently discovered, see
[DKK14,FG16,Gal16]. In [Gal16], the notion of chord separation related to
that of weak separation was introduced. It was shown in [Gal16] that any maxi-
mal by inclusion chord separated collection has size

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)

and is associated with the set of vertices of a fine zonotopal tiling of the 3-dimensional
cyclic zonotope ZCn,3 .

In this paper, we extend these various versions of separation and purity to ori-
ented matroids. For any oriented matroid M, we define the notion of M-separation
for collections of subsets of the ground set of M. For an oriented matroid associ-
ated with a vector configuration V = (v1, . . . ,vn), where v1, . . . ,vn ∈ Rd, we call
this notion V-separation.

For example, for alternating oriented matroids of rank 2 and 3 (associated with
cyclic vector configurations in R2 and R3), the notion ofM-separation is equivalent,
respectively, to strong separation from [LZ98] and chord separation from [Gal16].

Let ZV be the zonotope associated with a vector configuration V, defined as
the Minkowski sum of the line intervals [0,v1], . . . , [0,vn]. A fine zonotopal tiling
of ZV is a subdivision of the zonotope into parallelotopes. Each fine zonotopal
tiling T is naturally equipped with a family Vert(T) of subsets of [n] that label the
vertices of the tiling.

We prove that maximal by size V-separated collections are in bijection with
fine zonotopal tilings T of ZV; namely, they are precisely the collections Vert(T) of
vertex labels of tilings. The size of such a V-separated collection equals the number
of independent sets of the associated oriented matroid.

If all maximal by inclusion M-separated collections have the same cardinality,
we call the oriented matroid M pure. We give a complete description of pure
oriented matroids in the following cases:

(1) oriented matroids of rank 3,
(2) graphical oriented matroids, and
(3) uniform oriented matroids.

For the first class, the pure oriented matroids are precisely all oriented matroids
obtained from positroids of rank 3 by relabeling and reorienting the ground set.

For the second class, we show that an undirected graph G gives rise to a pure
oriented matroid if and only if G is outerplanar.

For the third class, we show that all pure uniform vector configurations either
have rank at most 3 or corank at most 1.

For an arbitrary oriented matroid M, we give a conjectural criterion for purity
in terms of forbidden minors of M.
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Here is the general outline of the paper. In Chapter 2, we define the notion of
separation for vector configurations and oriented matroids and discuss its relation-
ship with zonotopal tilings and one-element liftings. In Chapter 3, we describe some
known motivating examples of the purity phenomenon. We then recall several sim-
ple operations on oriented matroids in Section 4. In Chapter 5, we state our main
results regarding the purity phenomenon for vector configurations and oriented ma-
troids. Next, we give some technical background on zonotopal tilings and oriented
matroids in Chapter 6. The rest of the paper is mainly concerned with proving
theorems from Chapter 5. In Chapter 7, we prove the results regarding maximal by
size V-separated collections, including Theorem 2.7 that gives a simple bijection
between maximal by size V-separated collections and vertex label collections of fine
zonotopal tilings of the zonotope corresponding to V. Next, we concentrate on pure
vector configurations/oriented matroids. In Chapter 8, we show that the property
of being a pure oriented matroid is preserved under various oriented matroid op-
erations. We prove the purity phenomenon for outerplanar graphs in Chapter 9,
where we also give enumerative results on the number of maximal G-separated
collections. We then proceed to showing the purity of totally nonnegative rank 3
vector configurations in Chapter 10. Finally, we give the remaining proofs of our
various classification results for pure oriented matroids in Chapter 11.

Acknowledgments
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arguments. We also thank Steven Karp and Melissa Sherman-Bennett for their
comments on the text.
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CHAPTER 2

Separation, purity, and zonotopal tilings

In this chapter, we introduce the notion of separation and purity for vector
configurations and oriented matroids and formulate some of our results.

Let [n] := {1, . . . , n}. Denote by 2E the set of all subsets of a set E.

2.1. Separation for vector configurations

Definition 2.1. Let V = (v1, . . . ,vn) be a finite configuration of vectors
v1, . . . ,vn ∈ Rd.

Two subsets I, J ⊂ [n] are called V-separated if there exists a linear function
h : Rd → R such that h(vi) > 0 for i ∈ I \ J , and h(vj) < 0 for j ∈ J \ I.

A collection S ⊂ 2[n] of subsets of [n] is called a V-separated collection if any
two of its elements are V-separated.

2.2. Separation for oriented matroids

The above notion of V-separation depends only on the oriented matroid asso-
ciated with a vector configuration V. One can extend this notion to any oriented
matroid as follows.

First, recall the definition of oriented matroids; see Section 6.3 for more details.
A signed subset X of a set E is a pair X = (X+, X−) of disjoint subsets X+, X−

of E. The support X of X is the (usual) set X := X+ � X−. The empty signed
subset is ∅ = (∅, ∅). For a signed subset X = (X+, X−), let −X := (X−, X+).

Definition 2.2 ([BLVS+99, Definition 3.2.1]). An oriented matroid M is a
pair M = (E, C), where E is a set, called the ground set, and C is a collection of
signed subsets of E, called circuits, that satisfy the following axioms:

(C0) ∅ 	∈ C.
(C1) For all X ∈ C, we have −X ∈ C.
(C2) For all X,Y ∈ C, if X ⊂ Y , then X = Y or X = −Y .
(C3) For all X,Y ∈ C, X 	= −Y , and e ∈ X+ ∩ Y −, there is a Z ∈ C such that

Z+ ⊂ (X+ ∪ Y +) \ {e} and Z− ⊂ (X− ∪ Y −) \ {e}.

A subset I ⊂ E is called independent if there is no circuit X ∈ C such that
X ⊂ I. The rank of M, denoted rank(M), is the maximal size of an independent
subset.

A vector configuration V = (v1, . . . ,vn), defines the associated oriented ma-
troid MV on the ground set E = [n] such that a nonempty signed subset X of [n]
is a circuit of MV if and only if there exists a linear dependence

∑
i∈X ci vi = 0

with ci > 0, for all i ∈ X+, and cj < 0, for all j ∈ X−, and any proper subset of
vectors vi, i ∈ X, is linearly independent.

5
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6 2. SEPARATION, PURITY, AND ZONOTOPAL TILINGS

Definition 2.3. For an oriented matroid M = (E, C), we say that two sets
I, J ⊂ E are M-separated if there is no circuit X ∈ C such that X+ ⊂ I \ J and
X− ⊂ J \ I.

A collection S ⊂ 2E of subsets of E is called an M-separated collection if any
two of its elements are M-separated.

The following lemma is an easy exercise for the reader.

Lemma 2.4. Let M = MV be the oriented matroid associated with a vector
configuration V. Then a collection S ⊂ 2E is V-separated if and only if it is
M-separated.

2.3. Zonotopal tilings

Recall that the Minkowski sum of two (or more) sets A,B ⊂ Rd is the set
A+B := {a+ b | a ∈ A, b ∈ B}.

For a vector configuration V = (v1, . . . ,vn), the corresponding zonotope ZV is
defined as the Minkowski sum of the line segments [0,vi]:

ZV := [0,v1] + · · ·+ [0,vn].

Equivalently, the zonotope ZV is the image p( n) of the standard n-hypercube

n := [0, e1] + · · ·+ [0, en] ⊂ Rn

under the projection

p : Rn → Rd such that p(ei) = vi, for i = 1, . . . , n,

where e1, . . . , en are the standard coordinate vectors in Rn.

Definition 2.5. A fine zonotopal tiling of ZV is a cubical subcomplex T of the

n-hypercube n, i.e., a collection of faces F of n closed under taking subfaces,
such that the projection p induces a homeomorphism between

⋃
F∈T

F and the
zonotope ZV.

A fine zonotopal tiling T gives a polyhedral subdivision p(T) of the zonotope ZV

with faces p(F ), for F ∈ T. Each face p(F ) of the subdivision p(T) is a parallelotope
whose edges are parallel translations of some vectors vi.

Faces F = X of the hypercube n can be labeled by signed subsets X =
(X+, X−) of [n] as follows:

X :=
∑

i∈X+

ei +
∑

j∈[n]\X

[0, ej ].

Thus every face p( X) of the subdivison p(T) of the zonotope ZV is naturally

labeled by the signed subset X of [n]. In what follows, we identify a face F = X

of the cube with the signed subset X that labels it.

Clearly, dim X = dim p( X) = n− |X|.

Remark 2.6. According to our definition, a fine zonotopal tiling T contains
more information than the polyhedral subdivision p(T) of the zonotope ZV. Namely,
it also includes the labeling of the faces of the subdivision p(T) by signed sets X.
It is possible that two different tilings T1 and T2 produce the same subdivision
p(T1) = p(T2) of the zonotope.
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2.4. PURE ORIENTED MATROIDS 7

However, if the vectors v1, . . . ,vn of the configuration V are non-zero and not
collinear to each other, it is not hard to show (an exercise for the reader) that the
subdivision p(T) of ZV uniquely defines the labeling of its faces by signed sets. In
this case, we can identify a fine zonotopal tiling T with the corresponding polyhedral
subdivision p(T) of ZV.

Clearly, a face X of the hypercube n is a vertex if and only if X = [n]. So

we can label vertices of n by usual subsets I = X+ ⊂ [n].
For a fine zonotopal tiling T of ZV, let Vert(T) ⊂ 2[n] be the collection of labels

I of vertices of T, i.e.,

(2.1) Vert(T) := {I ∈ 2[n] | (I,[n]\I) ∈ T}.

We say that a V-separated collection S is maximal by size if its cardinality |S|
is maximal among all V-separated collections.

Our first main result on V-separation identifies maximal by size V-separated
collections with fine zonotopal tilings of ZV.

Theorem 2.7. Let V ⊂ Rd be a vector configuration. Then the map T �→
Vert(T) is a bijection between fine zonotopal tilings of ZV and maximal by size
V-separated collections of subsets of [n].

Any such collection has size | Ind(V)|, where Ind(V) denotes the collection of
linearly independent subsets of V.

Actually, we will prove a stronger result, Theorem 7.2, concerning an arbitrary
oriented matroidM. According to the Bohne-Dress theorem (see Theorem 6.7), fine
zonotopal tilings of the zonotope ZV are canonically identified with one-element
liftings of the oriented matroid MV in general position. Thus one can view the
notion of “one-element liftings in general position” as an extension of the notion of
“fine zonotopal tilings” to an arbitrary oriented matroid M. Theorem 7.2 gives a
bijection between these objects and maximal by size M-separated collections.

2.4. Pure oriented matroids

We will distinguish between two different notions of maximality of M- or V-
separated collections: maximal by size (appearing in the previous theorem) and
maximal by inclusion.

Definition 2.8. For an oriented matroid M, an M-separated collection S is
calledmaximal by inclusion if S is not properly contained in any otherM-separated
collection. Similarly, for a vector configuration V, we define maximal by inclusion
V-separated collections.

Clearly, all M-separated collections in 2E form an abstract simplicial complex,
i.e., any subset of an M-separated collection is also M-separated.

Recall that a simplicial complex is called pure if any simplex in it is a face of
a top-dimensional simplex in this simplicial complex.

Definition 2.9. We say that an oriented matroid M is pure if any maximal by
inclusion M-separated collection is also maximal by size. Equivalently, an oriented
matroid M is pure if all M-separated collections form a pure simplicial complex.

We also say that a vector configuration V is pure if the associated oriented
matroid MV is pure.
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8 2. SEPARATION, PURITY, AND ZONOTOPAL TILINGS

Clearly, if V is pure then we can replace the phrase “maximal by size” in
Theorem 2.7 with “maximal by inclusion”.

2.5. Mutation-closed domains

Definition 2.10. The mutation graph of an oriented matroid M is a simple
undirected graph on the vertex set 2E such that two subsets I, J ⊂ E are connected
by an edge if and only if the signed set (I \J, J \I) is a circuit of M. See Figure 7.2
for an example of an oriented matroid for which the connected components of the
mutation graph are the 1-skeleta of the icosahedron and the dodecahedron.

We say that a subset D ⊂ 2E is a mutation-closed domain for M if D is a union
of connected components of the mutation graph of M.

We say that a mutation-closed domain D ⊂ 2E is M-pure if all M-separated
collections S ⊂ D form a pure simplicial complex. In other words, D is M-pure
if and only if any M-separated collection S ⊂ D, which is maximal by inclusion
among all M-separated collections that belong to D, is also maximal by size among
all such collections.

See Section 7.1 for more details related to this definition. Note that a concept
equivalent to the mutation graph appeared in [Gio07, Section 4].

Remark 2.11. Both M-separated collections S and mutation-closed domains
D are subsets of 2E . Strictly speaking, both terms “collection” and “domain”
mean a “set of subsets” of E. However, we usually use the term collection when we
talk about M-separated collections. On the other hand, domains need not be M-
separated. Typically, we will fix a domain D and study all M-separated collections
S inside D. The same convention is used in [DKK14].

Conjecture 2.12. If M is a pure oriented matroid then any mutation-closed
domain D for M is an M-pure domain.

We will prove this conjecture in two important cases.
There are local transformations of fine zonotopal tilings of MV called flips.

Using the Bohne-Dress correspondence between zonotopal tilings and liftings, one
can extend the definition of flips to one-element liftings in general position of any
oriented matroid M. An oriented matroid M is called flip-connected if any two
one-element liftings of M in general position are connected by a sequence of flips.
See Section 7.1 and Definition 7.10 for more details.

Proposition 2.13. Conjecture 2.12 is true for graphical oriented matroids and
also for flip-connected oriented matroids.

The graphical case is proved in Section 9. The case of flip-connected matroids
is proved in Section 7.1.
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CHAPTER 3

Motivating examples

In this chapter, we describe several results about strong, weak, and chord sep-
aration that have been proved in [LZ98,OPS15,Gal16,DKK10,DKK14].

3.1. Alternating oriented matroids

A cyclic vector configuration is a vector configuration V = (v1, . . . ,vn) such
that all maximal d × d minors of the d × n matrix with columns v1, . . . ,vn are
strictly positive. For example, for the moment curve

v(t) = (1, t, t2, . . . , td−1) ∈ Rd, t ∈ R,

the vector configuration (v(t1), . . . ,v(tn)), for 0 < t1 < · · · < tn, is cyclic. (In this
case, the maximal minors are given by positive Vandermonde determinants.)

Remark 3.1. A cyclic polytope is the convex hull of the endpoints of vectors
vi in a cyclic vector configuration. According to [Pos06], for fixed n and d, cyclic
vector configurations represent points of the totally positive Grassmannian Gr>0

d,n.

It is not hard to see that all cyclic configurations of n vectors in Rd define the
same oriented matroid, called the alternating oriented matroid Cn,d.

We will call a zonotope ZV associated with a cyclic vector configuration V
of n vectors in Rd a cyclic zonotope and denote it by ZCn,d . The combinatorial
structure of cyclic polytopes and cyclic zonotopes depends only on n and d and is
independent of the choice of vectors in a cyclic vector configuration.

The following description of circuits of alternating oriented matroids is well
known and not hard to prove. It explains why these oriented matroids are called
“alternating”.

Lemma 3.2. The circuits of the alternating oriented matroid Cn,d are exactly
all signed subsets of [n] of the form (Iodd, Ieven) or (Ieven, Iodd), where I = {i1 <
i2 < · · · < id+1} is any (d + 1)-element subset of [n], Iodd := {i1, i3, i5, . . . }, and
Ieven := {i2, i4, i6, . . . }.

Theorem 3.3 ([Zie93, Theorem 4.1(G)]). All alternating oriented matroids
Cn,d are flip-connected.

Remark 3.4. Ziegler [Zie93] identified fine zonotopal tilings of cyclic zono-
topes with elements of the higher Bruhat orders [MS86,VK91]. The flip con-
nectedness of Cn,d is equivalent to the connectedness of the corresponding higher
Bruhat order poset.

9
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10 3. MOTIVATING EXAMPLES

v1 v2 v3 v4 v5
v1v2

v3
v4 v5

v6

z = 1

A cyclic vector configuration A cyclic vector configuration
representing C5,2. representing C6,3.

Figure 3.1. Cyclic vector configurations in R2 and R3.

∅

1 5

1 2 1 3 1 5 3 5 4 5

1 2 3 1 3 5 2 3 5 3 4 5

1 2 3 4 1 2 3 5 2 3 4 5

1 2 3 4 5

∅

1 5

1 2 1 3 1 5 3 5 4 5

1 2 3 1 3 5 2 3 5 3 4 5

1 2 3 4 1 2 3 5 2 3 4 5

1 2 3 4 5

∅

1 5

1 2 1 3 1 5 3 5 4 5

1 2 3 1 3 5 2 3 5 3 4 5

1 2 3 4 1 2 3 5 2 3 4 5

1 2 3 4 5

Figure 3.2. Vertex labels of a rhombus tiling of a convex 2 × 5-
gon form a maximal by inclusion (and by size) strongly separated
collection.

3.2. Strong separation

Leclerc and Zelevinsky [LZ98] defined strong separation as follows.

Definition 3.5. Two sets I, J ⊂ [n] are called strongly separated if there are
no three elements i < j < k ∈ [n] such that i, k ∈ I \ J and j ∈ J \ I, or vice versa.

A collection S ⊂ 2[n] of subsets of [n] is strongly separated if any two of its
sets are strongly separated from each other. Such a collection is called maximal by
inclusion if it is not properly contained in any other strongly separated collection.

Theorem 3.6 ([LZ98, Theorem 1.6]). Any maximal by inclusion strongly sep-
arated collection S ⊂ 2[n] is also maximal by size:

|S| =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
.

Such collections are in bijection with rhombus tilings of a convex 2n-gon, see Fig-
ure 3.2.

For example, Figure 3.2 shows a maximal by inclusion strongly separated col-
lection with

(
5
0

)
+
(
5
1

)
+
(
5
2

)
= 16 elements.

It follows directly from the definitions and Lemma 3.2 that strong separation is
equivalent to M-separation for the rank 2 alternating oriented matroid M = Cn,2.

Lemma 3.7. A collection S ⊂ 2[n] is strongly separated if and only if S is
Cn,2-separated.
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∅

1

2
3

4
5

1 2
1 3

1 5

2 3

3 4
3 5

4 5

1 2 3

1 2 5
1 3 5

1 4 5

2 3 4
2 3 5

3 4 5

1 2 3 4
1 2 3 5

1 2 4 5
1 3 4 5

2 3 4 5

1 2 3 4 5

∅

1

2
3

4
5

1 2
1 3

1 5

2 3

3 4
3 5

4 5

1 2 3

1 2 5
1 3 5

1 4 5

2 3 4
2 3 5

3 4 5

1 2 3 4
1 2 3 5

1 2 4 5
1 3 4 5

2 3 4 5

1 2 3 4 5

z = 0

z = 1

z = 2

z = 3

z = 4

z = 5

Figure 3.3. The horizontal sections of a zonotopal tiling of ZC5,3

by planes z = k, for k = 0, 1, . . . , 5, are dual to trivalent plabic
graphs.

In this case, the cyclic zonotope ZCn,2 is a centrally symmetric 2n-gon. Fine
zonotopal tilings of this zonotope are exactly rhombus tilings of the 2n-gon.

Notice that the number of independent sets of the rank 2 alternating oriented
matroid Cn,2, which are all subsets of [n] with at most 2 elements, is exactly(
n
0

)
+
(
n
1

)
+
(
n
2

)
.

3.3. Chord separation

Before we discuss weak separation, let us first talk about a related notion of
chord separation, which was recently defined in [Gal16] as follows.

Definition 3.8. Two sets I, J ⊂ [n] are chord separated if and only if there
do not exist numbers 1 ≤ i < j < k < l ≤ n such that i, k ∈ I \ J and j, l ∈ J \ I,
or vice versa.

Theorem 3.9 ([Gal16, Theorem 1.2]). Any maximal by inclusion chord sep-
arated collection S ⊂ 2[n] has size(

n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
.

Such collections are in bijection with fine zonotopal tilings of the three-dimensional
cyclic zonotope ZCn,3 .

Figure 3.3 shows an example of a zonotopal tiling of ZV whose vertex labels
form a maximal by inclusion chord separated collection S ⊂ 2[n] for n = 5. This
collection has size

(
5
0

)
+
(
5
1

)
+
(
5
2

)
+
(
5
3

)
= 26, as predicted by Theorem 3.9.

It follows directly from the definitions and Lemma 3.2 that chord separation is
equivalent to M-separation for the rank 3 alternating oriented matroid M = Cn,3:

Lemma 3.10. A collection S ⊂ 2[n] is chord separated if and only if S is Cn,3-
separated.
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12 3. MOTIVATING EXAMPLES

Notice that the number of independent sets in Cn,3, which are all subsets of
[n] with at most 3 elements, is exactly

(
n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
.

Using our matroidal terminology, Theorems 3.6 and 3.9 imply the following
result.

Corollary 3.11. The rank 2 and 3 alternating oriented matroids Cn,2 and
Cn,3 are pure.

3.4. Weak separation

Leclerc and Zelevinsky [LZ98] also introduced weak separation, which is a more
subtle notion than strong separation.

For two sets I, J ⊂ [n], we say that I surrounds J if their set-theoretic difference
I\J can be partitioned as a disjoint union of two sets I1 and I2 so that I1 ≺ (J\I) ≺
I2. Here, for two sets A and B of integers, the notation A ≺ B means that any
element of A is less than any element of B.

Definition 3.12 ([LZ98]). Two sets I, J ⊂ [n] are weakly separated if

(1) |I| ≤ |J | and I surrounds J , or
(2) |J | ≤ |I| and J surrounds I.

Clearly, if |I| = |J | then I and J are weakly separated if and only if they
are chord separated. However, sets I and J of different cardinalities can be chord
separated but not weakly separated.

Leclerc-Zelevinsky’s purity conjecture [LZ98, Conjecture 1.5] for weak sepa-
ration was independently proved in [DKK10, Theorem A] and [OPS15, Theo-
rem 1.3] (in a more general version for positroids). Let us formulate two special
cases of this result.

Let
(
[n]
k

)
be the set of all k-element subsets of [n]. Thus 2[n] is the disjoint

union of the sets
(
[n]
k

)
, k = 0, 1, . . . , n.

Theorem 3.13 ([OPS15, Theorem 1.3], [DKK10, Theorem A]).

(1) Every maximal by inclusion weakly separated collection S ⊂
(
[n]
k

)
of k-

element subsets of [n] is also maximal by size:

|S| = k(n− k) + 1.

(2) Every maximal by inclusion weakly separated collection S ⊂ 2[n] is also
maximal by size:

|S| =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
.

This theorem was proved in [OPS15] by constructing a bijection between max-

imal by inclusion weakly separated collections S ⊂
(
[n]
k

)
and reduced plabic graphs

introduced in [Pos06] in the study of the totally nonnegative Grassmannian.
Figure 3.4 shows an example of a weakly separated collection of k-element

subsets of [n], for k = 3 and n = 6:

S = {123, 126, 156, 236, 136, 146, 346, 234, 345, 456} ⊂

(
[6]

3

)
.

It consists of |S| = k(n − k) + 1 = 3 × 3 + 1 = 10 elements. Here we abbreviate a
subset {a, b, c} ⊂ [n] by abc.
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1 2 3

1 2 61 3 6

1 4 6

1 5 6

2 3 4

2 3 6

3 4 5 3 4 6

4 5 6

1 2 3

1 2 61 3 6

1 4 6

1 5 6

2 3 4

2 3 6

3 4 5 3 4 6

4 5 6

Figure 3.4. A (trivalent) plabic graph is shown in blue. The face
labels form a maximal by inclusion weakly separated collection of
k-element subsets of [n], for k = 3 and n = 6.

Remark 3.14. Part (2) of Theorem 3.13, concerning weakly separated collec-
tions S ⊂ 2[n] of subsets of various cardinalities, was deduced in [OPS15] from
part (1), concerning collections of subsets of the same cardinality, using a simple
padding construction as follows.

Let pad : 2[n] →
(
[2n]
n

)
be the injective map given by pad(I) = I ∪ {2n, 2n −

1, . . . , n+ |I|+ 1}, for I ⊂ [n]. It is easy to see [OPS15, Lemma 12.7] that S is a
weakly separated collection in 2[n] if and only if its image pad(S) is a weakly sep-

arated collection in
(
[2n]
n

)
. Moreover, according to [OPS15], maximal by inclusion

weakly separated collections S ⊂ 2[n] correspond to maximal by inclusion weakly

separated collections S̃ ⊂
(
[2n]
n

)
of n-element subsets in [2n] that contain some fixed

collection Ŝ0. The correspondence is given explicitly by S �→ pad(S) � S0 (disjoint

union) for a slightly smaller fixed collection S0 ⊂ Ŝ0. One can take, for example,

S0 := {[a, n] ∪ [b, c] | 0 < a ≤ n < b ≤ c < 2n, |[a, n] ∪ [b, c]| = n};

Ŝ0 := {[a, n] ∪ [b, c] | 0 < a ≤ n < b ≤ c ≤ 2n, |[a, n] ∪ [b, c]| = n}.

This shows that the original Leclerc-Zelevinsky’s notion of weak separation essen-
tially reduces to the notion of weak separation (equivalently, chord separation) for
collections of subsets of the same cardinality.

Let us show how weakly separated collections S ⊂
(
[n]
k

)
fit into our general

setup of oriented matroids.

Observe that
(
[n]
k

)
is a mutation-closed domain for the alternating matroid

M = Cn,3 of rank 3. Theorem 3.13 implies that this is an M-pure domain.

Corollary 3.15. Let M = Cn,3 be the alternating oriented matroid of rank

3. The mutation-closed domain
(
[n]
k

)
, for k = 0, 1, . . . , n, is an M-pure domain.
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14 3. MOTIVATING EXAMPLES

Note that, in view of Proposition 2.13 and Theorem 3.3, Corollary 3.15 formally
follows from Corollary 3.11. However, the proof of purity of Cn,3 given in [Gal16]

relies on the Cn,3-purity of all domains
(
[n]
k

)
that was proven in [OPS15,DKK10].
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CHAPTER 4

Simple operations on oriented matroids

There are several simple operations on oriented matroids that do not affect
purity.

4.1. Relabeling and adding/removing loops and coloops

Clearly, an oriented matroid obtained from a pure oriented matroid by relabel-
ing the elements of the ground set is again pure.

The following lemma is straightforward. See Chapter 6 for the definitions of
loops and coloops and Chapter 8 for the proof.

Lemma 4.1. Let M be a pure oriented matroid. Then any oriented matroid
obtained from M by adding (or removing) loops and coloops is pure.

4.2. Adding/removing parallel elements

There is another simple operation on oriented matroids M, the operation of
adding parallel elements. Let e ⊂ E be an element of the ground set of M. Let
M′ be the oriented matroid on the ground set E′ = E ∪ {e′} (where e′ 	∈ E)
whose set of circuits contains exactly all circuits of M, all circuits of M with the
element e replaced by e′, and also the circuits given by the signed sets ({e}, {e′})
and ({e′}, {e}). If M is an oriented matroid associated with a vector configuration
V, this operation means that we add an extra copy of some vector vi to V. We
say that an oriented matroid is obtained by adding parallel elements from M if it
is obtained by a sequence of such operations.

The following result is easy to formulate but (surprisingly) hard to prove, see
Lemma 8.2.

Lemma 4.2. Let M be an oriented matroid and M′ be any oriented matroid
obtained from M by adding parallel elements. Then M is pure if and only if M′

is pure.

4.3. Reorientations

Let us also describe the operation of reorientation, defined on signed sets and
on oriented matroids as follows.

For a signed subset X = (X+, X−) of E and an element f ∈ E, we write

(4.1) Xf =

⎧
⎪⎨
⎪⎩

1, if f ∈ X+,

−1, if f ∈ X−,

0, if f ∈ E \X.

For e ∈ E, let −eX = X ′ be the signed subset of E such that X ′
e = −Xe, and

X ′
f = Xf , for f 	= e.

15
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16 4. SIMPLE OPERATIONS ON ORIENTED MATROIDS

For an oriented matroid M = (E, C), let −eM be the oriented matroid on the
same ground set E with circuits −eX, for X ∈ C.

If M is the oriented matroid associated with a vector configuration V =
(v1, . . . ,vn), then −iM is the oriented matroid associated with the vector con-
figuration (v1, . . . ,vi−1,−vi,vi+1, . . . ,vn).

Let us define related operations on M-separated collections. For a usual subset
I ⊂ E, let

(4.2) −eI :=

{
I \ {e}, if e ∈ I,

I ∪ {e}, if e /∈ I.

For a collection S ⊂ 2E , let −eS be the collection of subsets −eI, for I ∈ S.
The following lemma follows directly from the definitions.

Lemma 4.3. Let M = (E, C) be an oriented matroid, and let e ∈ E. Then S
is an M-separated collection if and only if −eS is an −eM-separated collection.

Thus M is pure if and only if −eM is pure.

Let us say that two oriented matroids M and M′ are isomorphic if they can be
obtained from each other by a sequence of reorientations followed by a relabeling
of the ground set. Lemma 4.3 implies that, for two isomorphic oriented matroids
M and M′, there is a natural (inclusion- and cardinality-preserving) one-to-one
correspondence between M-separated collections and M′-separated collections. In
particular, we get the following result.

Proposition 4.4. For two isomorphic oriented matroids M and M′, M is
pure if and only if M′ is pure.
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CHAPTER 5

Main results on purity

5.1. Purity of matroids of rank 2 or corank 1

We prove the following easy claim in Chapter 11.

Proposition 5.1. Any oriented matroid M such that rank(M) ≤ 2 or
corank(M) ≤ 1 is pure.

5.2. Purity of rank 3 oriented matroids

Definition 5.2 (cf. [Pos06]). An oriented matroid M of rank d on the ground
set [n] is a positroid if it can be represented by the columns of a d × n matrix of
rank d all of whose d× d minors are nonnegative.1

According to [Pos06], full rank d× n matrices with nonnegative d× d minors

represent points of the totally nonnegative Grassmannian Gr≥0
d,n. It comes equipped

with a CW decomposition into cells labeled by positroids.
The following result generalizes Theorem 3.9.

Theorem 5.3. Let M be an oriented matroid of rank 3. Then the following
are equivalent:

(1) M is pure.
(2) M is isomorphic to a positroid.
(3) M is represented by a vector configuration V such that, after a suitable

rescaling of vectors (by nonzero scalars) and removing zero vectors, the
endpoints of vectors in V lie in the same affine plane and belong to the
boundary of a convex m-gon for some 3 ≤ m ≤ |V|.

Remark 5.4. We distinguish between being “a positroid” and “isomorphic to
a positroid”. The property of being a positroid depends on the ordering of the
elements of the ground set and is not invariant under reorientations. On the other
hand, purity is invariant under relabeling and reorienting the ground set of M.

The equivalence of conditions (2) and (3) in Theorem 5.3 is a simple well known
fact. We prove that (1) implies (2) in Theorem 10.2, and the converse is shown in
Chapter 11.

5.3. Graphical oriented matroids

Let �G be a directed graph2 with vertex set [d] and with n edges, then the
corresponding vector configuration V�G ⊂ Rd consists of vectors ei − ej , where

1In [Pos06], positroids were defined as (unoriented) matroids. But they can be naturally

endowed with a structure of an oriented matroid.
2We denote directed graphs by �G and undirected graphs by G.

17
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18 5. MAIN RESULTS ON PURITY

Figure 5.1. A K2,3-separated collection of total orientations
that is maximal by inclusion but not by size. For each total orien-
tation, the unique cycle that it orients is shown in red.

i → j is an edge of �G, and the vectors ei, 1 ≤ i ≤ d, are the standard coordinate
vectors in Rd.

The graphical oriented matroid M�G is the oriented matroid associated with
the vector configuration V�G.

According to Lemma 4.3 on reorientations, the property of M�G being pure

does not depend on the orientation of the edges of �G. We briefly explain how our
definitions translate to undirected graphs.

Consider an undirected graph G without loops or parallel edges. We say that
two total orientations O1 and O2 of G are G-separated if there does not exist a cycle
C of G such that C is directed in both O1 and O2 but in the opposite ways. In
particular, acyclic orientations of G areG-separated from all other total orientations
of G. We say that G is pure if the size of any maximal by inclusion collection of
pairwise G-separated total orientations of G equals the number of forests of G.

Definition 5.5 ([CH67]). An undirected graph G is called outerplanar if G
can be drawn in the plane without self-intersections and so that every vertex is
incident to the exterior face of G.

Theorem 5.6 ([CH67]). Given an undirected graph G, the following conditions
are equivalent:

(1) G is outerplanar;
(2) G is a subgraph of the 1-skeleton of a triangulation of a convex m-gon;
(3) G does not contain K4 or K2,3 as a minor.

Here K4 denotes the complete graph with 4 vertices and K2,3 denotes the
complete bipartite graph with 2 + 3 vertices. The last condition in Theorem 5.6 is
analogous to the celebrated theorems of Kuratowski [Kur30] and Wagner [Wag37]
for planar graphs.

Here is our main result on the purity of graphical oriented matroids, which is
proved in Section 9.

Theorem 5.7. An undirected graph G is pure (i.e., the graphical oriented ma-

troid M�G is pure for any orientation �G of G) if and only if G is outerplanar.

Note that the zonotope associated with the vector configuration V �K4
for the

directed graph �K4 with edge set {i → j | 1 ≤ i < j ≤ 4} is the three-dimensional
permutohedron. Figures 5.1 and 5.2 show that the graphs K2,3 and K4 are not
pure. This is explained in more detail in Section 9.
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1 2

34

1 2

34

1 2

34

1 2

34

Figure 5.2. A K4-separated collection of total orientations that
is not contained in any maximal by size K4-separated collection.

5.4. Uniform oriented matroids

An oriented matroid M of rank d is called uniform if

{X | X if a circuit of M} =

(
[n]

d+ 1

)
.

If M is associated with a vector configuration V, uniformity means that the vectors
in V are in general position.

The following theorem gives a complete characterization of pure uniform ori-
ented matroids.

Theorem 5.8. Suppose M is a uniform oriented matroid. Then M is pure if
and only if

(1) rank(M) ≤ 2, or
(2) corank(M) ≤ 1, or
(3) rank(M) = 3 and M is isomorphic to the alternating matroid Cn,3.

This result is proved in Chapter 11. It implies in particular that there are no
pure uniform oriented matroids M with rank(M) ≥ 4 and corank(M) ≥ 2.

5.5. Arbitrary oriented matroids

Let us give a general conjecture that, according to our computer experiments,
characterizes the class of pure oriented matroids.

Conjecture 5.9. An oriented matroid M is pure if and only if all of its six-
element minors are pure. Explicitly, it is pure if and only if one cannot obtain
the graphical oriented matroids M �K4

and M �K2,3
from M by taking minors and

rank-preserving weak maps.
In particular, if M1 � M2 is a rank-preserving weak map and M1 is a pure

oriented matroid then M2 is a pure oriented matroid as well.

We refer the reader to Chapter 6 for the definition of a rank-preserving weak
map.

A simple corollary to Theorem 5.3 and Proposition 5.1 is that Conjecture 5.9
holds when rank(M1) ≤ 3, since a weak map image of a positroid of rank 3 is again
a positroid (see Lemma 10.1). As an illustration to Conjecture 5.9, we list all pure
and non-pure oriented matroids on 6 elements of rank 4 and corank 2 in Figure 11.8.
Using the oriented matroid database [Fin01], we have also computationally verified
Conjecture 5.9 for all oriented matroids with at most 8 elements.

In Proposition 8.3, we prove one part of Conjecture 5.9, namely, that a minor
of a pure oriented matroid is again pure.
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20 5. MAIN RESULTS ON PURITY

In the three classes of oriented matroids that we discussed above (rank 3, graph-
ical, uniform), Conjecture 5.9 agrees with Theorems 5.3, 5.7, and 5.8.

Remark 5.10. We have already mentioned that maximal by size strongly
and weakly separated collections correspond to clusters in certain cluster algebras.
When M is a uniform oriented matroid, one can define mutations on maximal by
size M-separated collections in a way similar to how they are defined in the case of
strong and weak separation. A natural question arises: for which uniform oriented
matroids M do maximal by size M-separated collections form clusters in a cluster
algebra? We do not know the answer to this question, but Theorem 5.8 implies
that strong and weak separation are essentially the only two cases where the cor-
responding oriented matroid is both uniform and pure. However, mutation-closed
domains for uniform oriented matroids provide more possibilities for purity, see,
e.g., Example 7.7.
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CHAPTER 6

Background on zonotopal tilings and oriented

matroids

In this chapter, we fix notation and recall some notions from [BLVS+99].

6.1. Sets and signed vectors

From now on, we denote the set-theoretic difference of two sets S, T by S − T
rather than S \ T , following the conventions of [LZ98,DKK10]. For a set S and
an element e 	∈ S, we denote Se = S ∪ {e}. In particular, the use of Se indicates
that e 	∈ S. On the other hand, we denote S ∪ e := S ∪ {e} and S − e := S − {e}
regardless of whether e belongs to S or not.

Generalizing (4.2), for two sets S, T ⊂ E, denote by −TS their symmetric
difference:

−TS := (S − T ) ∪ (T − S).

We abbreviate +1 and −1 by + and − respectively. Let X = (X+, X−) be
a signed subset of the ground set E. The zero set X0 of X is the complement
of its support, X0 = E − X. We denote the collection of all signed subsets of E
by {+,−, 0}E and recall that for each element f ∈ E, Xf ∈ {+,−, 0} is defined
by (4.1).

We say that two signed sets X,Y ∈ {+,−, 0}E are orthogonal if either of the
following holds:

• there exist two elements e, f ∈ E such that Xe = Yf = + and Xf = Ye =
−, or

• for every e ∈ E, either Xe = 0 or Ye = 0.

In this case we write X ⊥ Y .
We introduce a partial order ≤ on {+,−, 0} by 0 < + and 0 < −, while leaving

+ and− incomparable. This induces an order on {+,−, 0}E : forX,Y ∈ {+,−, 0}E ,
we write X ≤ Y if for all e ∈ E, Xe ≤ Ye.

For two signed sets X,Y ∈ {+,−, 0}E , their composition X ◦ Y ∈ {+,−, 0}E

is defined by

(X ◦ Y )e =

{
Xe, if Xe 	= 0;

Ye, otherwise.

6.2. Zonotopal tilings

A vector configuration V = (ve)e∈E is a finite subset of Rd indexed by the
elements of some ground set E.

21
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22 6. BACKGROUND ON ZONOTOPAL TILINGS AND ORIENTED MATROIDS

For a signed set X ∈ {+,−, 0}E , we denote by τX = p( X) the following
zonotope:

τX :=
∑

e∈E

⎧
⎪⎨
⎪⎩

ve, if e ∈ X+;

0, if e ∈ X−;

[0,ve], otherwise.

Let us now give an alternative definition of a zonotopal tiling in a slightly
different language.

Definition 6.1. A collection T of signed subsets of E is called a zonotopal
tiling of ZV if and only if the following conditions hold:

• ZV =
⋃

X∈T

τX ;

• for any X ∈ T and any Z ≥ X, we have Z ∈ T;
• for any two X,Y ∈ T, either the intersection τX ∩ τY is empty or there
exists Z ∈ T such that Z ≤ X,Y (i.e., τZ is a proper face of τX and τY )
and

τX ∩ τY = τZ .

A zonotopal tiling T is called fine if for every X ∈ T, the vectors ve, e ∈ X0,
are linearly independent. In particular, all the top-dimensional tiles of T must be
parallelotopes. It is easy to see that this definition is equivalent to Definition 2.5.

Indeed, every cubical subcomplex of |E| from Definition 2.5 satisfies the above
properties. Conversely, given a collection T of signed subsets of E satisfying the
three properties above, it is easy to show that it also defines a cubical subcomplex
satisfying Definition 2.5. To see that, note that we get a continuous bijection from

the subcomplex
⋃

X X of |E| to ZV, and any such bijection is a homeomor-
phism since it maps a compact space to a Hausdorff space.

For a fine zonotopal tiling T, its set of vertices is defined as

Vert(T) := {X+ | X ∈ T such that X = E} ⊂ 2E .

This is a slight modification of (2.1).

6.3. Oriented matroids

An oriented matroid is a notion that has several cryptomorphic descriptions;
for example, see Definition 2.2. The axiom (C3) is called the weak elimination
axiom. The set E is called the ground set of M and throughout the text we denote
the ground set of M by E unless told otherwise. Given an oriented matroid M
with circuits C(M), define its collection L(M) of covectors by

L(M) = {X ∈ {+,−, 0}E | X ⊥ Y ∀Y ∈ C}.

The collection C∗(M) of cocircuits of M is the set of minimal non-zero elements
of L(M) with respect to the ≤ order from Section 6.1. Next, T (M) denotes the
collection of all maximal elements of L(M). Such elements are called maximal
covectors or topes. The dual matroid M∗ of M is the oriented matroid whose set
of circuits equals C∗(M).

We denote by Ind(M) the collection of independent sets of M, where a set is
independent if it does not contain the support of any circuit of M. The maximal
by inclusion independent sets are called bases of M and the collection of all bases
of M is denoted B(M). They all have the same size, which we call the rank of M
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6.3. ORIENTED MATROIDS 23

and denote rank(M). If every rank(M)-element subset of E is a basis then M is
called uniform. The corank of M is corank(M) := |E| − rank(M).

Every vector configuration V ⊂ Rr determines an oriented matroid MV whose
circuits are the sign vectors of minimal linear dependencies of V. We call MV

the oriented matroid of linear dependencies of V (also called the oriented matroid
associated with V in the earlier sections).

Recall that, for a directed graph �G, the graphical oriented matroid M�G is the
oriented matroid of linear dependencies of the vector configuration V�G defined in
Section 2.

Another structure that defines an oriented matroid is a chirotope. Given an
oriented matroid M of rank r, its chirotope is a certain mapping χ : Er → {+,−, 0}
which can be obtained from C(M) and vice versa using [BLVS+99, Theorem 3.5.5].
IfM is an oriented matroid associated to a vector configurationV then χ(i1, . . . , ir)
is equal to 0 unless the vectors vi1 , . . . ,vir form a basis of Rr, in which case the
sign of χ(i1, . . . , ir) equals the sign of the determinant of the matrix with rows
vi1 , . . . ,vir . An oriented matroid is called positively oriented if there is a total
order ≺ on E such that for any i1 ≺ i2 ≺ · · · ≺ ir ∈ E, χ(i1, . . . , ir) ∈ {0,+}.
One example of a positively oriented matroid is the alternating matroid Cn,r, see
Section 3.1. In this case, we have χ(i1, . . . , ir) = + for any i1 < i2 < · · · < ir ∈ [n].

Remark 6.2. A closely related notion is that of a positroid which is a matroid
coming from a totally nonnegative matrix of [Pos06]. Positroids have been intro-
duced in [Pos06], and it was shown in [ARW13] that every positively oriented
matroid is realizable. Thus these objects are essentially the same.

Given an oriented matroid M and a set A ⊂ E, the reorientation −AM of M
on A is another oriented matroid whose set of circuits is given by

C(−AM) = {
(
−(A∩X)(X

+),−(A∩X)(X
−)

)
| X ∈ C(M)}.

Two oriented matroids that differ by a reorientation are called reorientation equiv-
alent. Two oriented matroids M1 and M2 on ground sets E1 and E2 are called
isomorphic if there is a bijection φ : E1 → E2 and a subset A ⊂ E2 such that the
oriented matroids φ(M1) and −AM2 are equal (i.e., have the same collections of
circuits). In this case, we write M1

∼= M2.
An element e ∈ E is called a loop of M if {e} ∈ C(M). It is called a coloop of

M if {e} ∈ C∗(M).
An oriented matroid is called acyclic if (E, ∅) ∈ T (M), that is, if it has a

positive covector. Clearly, every loopless oriented matroid is isomorphic to an
acyclic oriented matroid.

Two elements e, f ∈ E are called parallel (resp., antiparallel) if ({e}, {f}) ∈
C(M) (resp., ({e, f}, ∅) ∈ C(M)). An oriented matroid is called simple if it has no
loops and parallel or antiparallel elements.

If an element e ∈ E is not a coloop of M then the oriented matroid M− e is
defined by

(6.1) C(M− e) = {(X+, X−) | X ∈ C(M) : e 	∈ X}.

Similarly, if e ∈ E is not a loop of M then the oriented matroid M/e is defined by

(6.2) C(M/e) = min<{(X
+ − e,X− − e) | X ∈ C(M)},

where min< denotes the collection of all minimal signed sets with respect to the
order < from Section 6.1. The restriction M |A of M to A ⊂ E is defined as
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24 6. BACKGROUND ON ZONOTOPAL TILINGS AND ORIENTED MATROIDS

M− (E − A). The rank and nullity of A ⊂ E are defined as the rank and corank
of M |A.

For two oriented matroids M1 and M2 of the same rank, we say that there is
a rank-preserving weak map M1 � M2 if for every signed circuit X of M1, there
exists a signed circuit Y ofM2 such that Y ≤ X (see [BLVS+99, Proposition 7.7.5]
for other equivalent formulations).

Definition 6.3. Given an oriented matroid M, its one-element lifting M̃ is

another oriented matroid on the ground set Eg such that M̃/g = M. A result due
to Las Vergnas (see [BLVS+99, Proposition 7.1.4] or [LV78]) shows that for each
one-element lifting of M there is a unique function

σ : C(M) → {+,−, 0}

such that for every circuit Y of M, (Y, σ(Y )) ∈ C(M̃). Here (Y, σ(Y )) denotes the
signed set Y = (Y +, Y −) with g added to Y + if σ(Y ) = + and to Y − if σ(Y ) = −.
We call such a function σ a colocalization, and if the image of σ lies in {+,−} then
we say that σ is a colocalization in general position. In this case, we also say that

M̃ is a one-element lifting of M in general position.

We next review a theorem of Las Vergnas [LV78] that gives a characterization
of one-element liftings.

Definition 6.4. Consider an oriented matroid M and a map σ : C(M) →
{+,−, 0}. For any subset A ⊂ E of nullity 2, the restriction of M to A is isomorphic
(up to removing parallel elements of the dual matroid) to the alternating matroid
Cm,m−2. The 2m circuits of Cm,m−2 have a natural cyclic order on them (see
Lemma 7.14). Using [BLVS+99, Figure 7.1.6], we say that the restriction of σ to
the circuits of M |A is

• of Type I if its values on the circuits of Cm,m−2 are all zeroes;
• of Type II if its values on the circuits of Cm,m−2, up to a cyclic shift,
are (+, . . . ,+, 0,−, . . . ,−, 0), where the number of plus signs equals the
number of minus signs and equals m− 1;

• of Type III if its values on the circuits of Cm,m−2, up to a cyclic shift, are
m plus signs followed by m minus signs.

See Lemma 7.14 for a detailed description of the circuits of Cm,m−2.

Theorem 6.5 ([LV78],[BLVS+99, Theorem 7.1.8]).

• Given a map σ : C(M) → {+,−}, its restriction to every nullity 2 subset
of E is of Type III if and only if σ is a colocalization in general position.

• Given a map σ : C(M) → {+,−, 0}, its restriction to every nullity 2
subset of E is of Type I, II, or III if and only if σ is a colocalization, not
necessarily in general position.

Proposition 6.6 ([BLVS+99, Proposition 7.1.4]). Given a colocalization σ of

M, the collection of circuits of the corresponding one-element lifting M̃ is described
by

C(M̃) = {(Y, σ(Y )) : Y ∈ C(M)} ∪ {Y 1 ◦ Y 2},

where the second set runs over all pairs Y 1, Y 2 ∈ C(M) such that

• σ(Y 1) = −σ(Y 2) 	= 0;
• Y 1, Y 2 < Y 1 ◦ Y 2;
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6.3. ORIENTED MATROIDS 25

• rank∗(Y 1 ◦ Y 2) = 2, where rank∗(A) = |A| − rank(M) + rank(A) denotes
the rank of A ⊂ E in M∗.

For the rest of this paper, we assume that all colocalizations and one-element
liftings are in general position unless told otherwise.

We now review the Bohne-Dress theorem that gives a connection between zono-
topal tilings and oriented matroid liftings.

Theorem 6.7 ([Boh92],[BLVS+99, Theorem 2.2.13]). Let V be a vector con-
figuration and let ZV be the associated zonotope. Let MV be the oriented matroid of
linear dependencies of V. Then there is a canonical bijection between fine zonotopal
tilings of ZV and one-element liftings of MV in general position.

This bijection can be described explicitly in terms of covectors of the lifting of
MV, we refer the reader to [BLVS+99] for the details.
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CHAPTER 7

Maximal by size M-separated collections

In this chapter, we develop some initial properties of maximal by size M-
separated collections and use them to prove a strengthening of Theorem 2.7, see
Theorem 7.2 below.

Recall that a collection S ⊂ 2E is called M-separated if any two subsets S, T ∈
S are M-separated, i.e., there is no circuit C = (C+, C−) ∈ C(M) such that
C+ ⊂ S − T and C− ⊂ T − S. For an M-separated collection S, we define a map
σS : C → {+,−, 0} as follows: for every circuit Y ∈ C, we set σS(Y ) := 0 unless
there is a set S ∈ S satisfying

Y + ⊂ S; Y − ⊂ (E − S)

or the other way around:

Y − ⊂ S; Y + ⊂ (E − S).

In the first case (resp., in the second case) we set σS(Y ) := + (resp., σS(Y ) := −)
and we say that S orients Y positively (resp., negatively). Thus if a collection
S ⊂ 2E is M-separated then σS(Y ) is well defined for all Y ∈ C.

Definition 7.1. Given a colocalization σ : C → {+,−}, we define S(σ) ⊂ 2E

to be the collection of all subsets S ⊂ E such that for every circuit Y ∈ C that S
orients positively (resp., negatively), we have σ(Y ) = + (resp., σ(Y ) = −).

We now restate Theorem 2.7 in the oriented matroid language:

Theorem 7.2. Let M be any oriented matroid. Then the map S �→ σS is a
bijection (with inverse σ �→ S(σ)) between maximal by size M-separated collections
of subsets of E and one-element liftings of M in general position. Every such
collection has size | Ind(M)|.

The fact that Theorem 7.2 generalizes Theorem 2.7 follows from the Bohne-
Dress theorem (Theorem 6.7).

Definition 7.3. Suppose we are given an oriented matroid M, a collection
S ⊂ 2E , and an element e ∈ E. Define collections S −e and S/e of subsets of E−e
as follows:

S − e = {S ⊂ (E − e) | S ∈ S or (S ∪ e) ∈ S} = {S − e | S ∈ S};

S/e = {S ⊂ (E − e) | S ∈ S and (S ∪ e) ∈ S}.
(7.1)

Remark 7.4. After reading the first version of this manuscript, Steven Karp
pointed out to us that some of our constructions are very similar to those re-
lated to the notion of VC-dimension studied in the early seventies in the extremal
combinatorics literature, see [She72,Sau72,VC71]. Later, a bijective correspon-
dence between uniform oriented matroids and collections of sets of maximal pos-
sible size with a fixed VC-dimension was given by Gärtner and Welzl in [GW94].

27
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(a) The collection S

∅
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∅
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1 2 1 3 3 5

1 2 3 1 3 5 2 3 5
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(b) The collection S − 4

1 3 3 51 2 3 1 3 51 3 3 51 2 3 1 3 51 3 3 51 2 3 1 3 5

(c) The collection S/4

Figure 7.1. Deletion-contraction recurrence for maximal by size
M-separated collections.

In particular, our Definition 7.3 can be found in [GW94, Definition 5] and the
idea of the proof of our Theorem 7.2 is quite similar to the one used in the proof
of [GW94, Theorem 18]. The authors of [GW94] are giving a characterization to
possible collections of topes of a uniform oriented matroid in this language. How-
ever, we are giving a characterization to one-element liftings of a fixed oriented
matroid M. Thus we do not see a way to deduce any of our results from the results
of Gärtner-Welzl or vice versa. We are extremely grateful to Steven for bringing
these papers to our attention.

Proposition 7.5. Let M be an oriented matroid and suppose that a collection
S ⊂ 2E is M-separated. Then for any e ∈ E, the collection S − e is an (M− e)-
separated collection (if e is not a coloop) and the collection S/e is an (M/e)-
separated collection (if e is not a loop).

Proof. We start with S−e. We need to check that every circuit C = (C+, C−)
of M− e is not oriented in the opposite directions by S − e. Recall from (6.1) that
C ∈ C(M) is a circuit of M − e if and only if e 	∈ C. Thus if S ∈ S is such that
S− e orients C in M− e then S orients C in M as well, so it is impossible to have
another set T ∈ S orienting C the opposite way.

The proof for S/e will be a bit harder. Recall from (6.2) that if C is a circuit of
M/e then there is a circuit C1 of M such that C = C1− e (i.e., C is the restriction
of C1 to E − e). Assume moreover that there are sets S, T ∈ S/e orienting C in
the opposite directions:

C+ ⊂ S, C− ∩ S = ∅, C− ⊂ T, C+ ∩ T = ∅.

Note that by the definition of S/e, we have S, S ∪ e, T, T ∪ e ∈ S.
If e 	∈ C1, that is, if C1 = C, then S and T are not M-separated, so let us

assume without loss of generality that C−
1 = C− ∪ e, C+

1 = C+. But then it is
clear that the sets S and T ∪ e are not M-separated. We get a contradiction again
and thus we have shown that S − e (resp., S/e) is an (M − e)-separated (resp.,
(M/e)-separated) collection of sets. �
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Proposition 7.6. Let M be an oriented matroid and suppose that e ∈ E is
neither a loop nor a coloop in M. Then for any M-separated collection S, we have

(7.2) |S| = |S − e|+ |S/e|.

Proof. This is obvious from Definition 7.3. �

7.1. Mutation-closed domains

Given a set S ⊂ E and a circuit C ∈ C(M) of an oriented matroid M such
that S orients C, we define a new set

μC(S) := −CS

to be the symmetric difference of S and C. We call μC(S) the mutation of S along
C. Thus for example if S orients C positively then

μC(S) = (S \ C+) ∪ C−.

Recall that we introduced the mutation graph of M in Definition 2.10 with
vertex set 2E and an edge from S to μC(S) for any circuit C oriented by S. We
denote this undirected graph by Gμ(M).

Recall the definition of a mutation-closed domain from Section 2.5. For ex-
ample, 2E and ∅ are always mutation-closed domains. If M is balanced, i.e., for
every circuit C = (C+, C−) of M we have |C+| = |C−|, then clearly

(
E
k

)
is a

mutation-closed domain for any k ≤ |E|.

Example 7.7. Suppose that M is the oriented matroid associated with the
vector configuration shown in Figure 7.2 (top). In terms of affine point con-
figurations, we have M = IC(6, 3, 1) in Figure 11.2. The ground set for M is
E = {1, 2, 3, 4, 5, 6}. Thus Gμ(M) has 64 vertices. It turns out that 32 of them
are isolated, and the other 32 of them form two connected components Di and Dd

that are 1-skeleta of the icosahedron and the dodecahedron respectively, see Fig-
ure 7.2 (bottom). The mutation-closed domain Di consisting of the vertex labels
of the icosahedron is M-pure: M-separated collections inside Di form a pure 2-
dimensional simplicial complex which is, coincidentally, again the boundary of an
icosahedron (this complex is dual to the cluster complex of [FZ03b]). However, the
mutation-closed domain Dd corresponding to the dodecahedron connected compo-
nent is not M-pure.

Conjecture 7.8. Let S be a maximal by size M-separated collection inside
2E and let D be a mutation-closed domain. Then S ∩ D is a maximal by size
M-separated collection inside D.

For the case when M is a graphical oriented matroid, we prove Conjecture 7.8
in Chapter 9. We also show in Proposition 9.14 that the connected components of
Gμ(M) are 1-skeleta of polytopes just as in Example 7.7. Note however that for
M = IC(6, 3, 15) in Figure 11.1, one of the components of Gμ(M) is not a 1-skeleton
of a polytope.

Proposition 7.9. Conjecture 7.8 implies Conjecture 2.12.

Proof. Let M be a pure oriented matroid, D be a mutation-closed domain,
and S be a maximal by inclusion M-separated collection inside D. Since M is
pure, S is contained in some maximal by inclusion (and thus, by size) M-separated
collection S ′ inside 2E so the result follows. �
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46 2345
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Figure 7.2. A vector configuration realizing the oriented ma-
troid M from Example 7.7 (top). Two non-trivial connected com-
ponents of Gμ(M) (bottom). Here we abbreviate the set {1, 2, 3, 5}
as 1235, etc.

Note that Conjecture 7.8 is much more general than Conjecture 2.12 as it
applies to all, not necessarily pure, oriented matroids. We also include a proof of
Conjecture 7.8 in an important special case.

Definition 7.10. Consider an oriented matroid M. We say that two colocal-
izations σ, σ′ : C(M) → {+,−} of M in general position differ by a flip if there
exists W ∈ C(M) such that

σ(W ) = −σ′(W ), and σ(T ) = σ′(T ) for all T 	= ±W.

We say that M is flip-connected if any two colocalizations of M in general position
can be connected to each other by a sequence of flips.1

We now give a proof of the “flip-connected” part of Proposition 2.13. In the
proof of Proposition 7.11 and Lemma 7.12 below, we rely on the result of Theo-
rem 7.2 which will be proven later in Section 7.4. (Proposition 7.11 and Lemma 7.12
are not used in the rest of the paper.)

Proposition 7.11. Suppose that an oriented matroid M is pure and flip-
connected. Then Conjecture 7.8 is valid for M. In particular, any mutation-closed
domain D ⊂ 2E is M-pure.

1This is equivalent to the extension space of M∗ being connected.
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Proof. Let S be a maximal by size M-separated collection inside 2E and let
D be a mutation-closed domain. We need to show that S0 := S ∩ D is a maximal
by size M-separated collection inside D. Suppose that this is not the case and thus
there exists an M-separated collection S1 inside D satisfying |S1| > |S0|. Since
M is pure, S1 is contained in a maximal by size M-separated collection S2 inside
2E . Let σ and σ2 be the colocalizations in general positions that correspond (via
Theorem 7.2) to S and S2 respectively. We know that S 	= S2 and thus σ 	= σ2.
Using the flip-connectedness of M, we get that σ can be connected to σ2 by a
sequence of flips. It remains to show that if two colocalizations σ and σ′ differ by
a flip then |S(σ) ∩D| = |S(σ′) ∩D| for any mutation-closed domain D. The result
will follow almost immediately from the following lemma.

Lemma 7.12. Suppose that σ and σ′ differ by a flip and let W ∈ C(M) be such
that σ(W ) = + and σ′(W ) = −. Then the collections S(σ) and S(σ′) are related
as follows:

S(σ) ∩ S(σ′) = {S ∈ S(σ) | S does not orient W};

S(σ′)− S(σ) = {μW (S) | S ∈ S(σ) orients W positively}.
(7.3)

Proof of the lemma. Let us define a collection S ′ by (7.3), i.e.,

S ′ :={S ∈ S(σ) | S does not orient W}
⊔

{μW (S) | S ∈ S(σ) orients W positively}.

We claim that S ′ = S(σ′), and it suffices to show that any element of S ′ orients
every circuit of M in accordance with σ′, because the size of S ′ is already equal
to the size of S(σ) (by Theorem 7.2). So suppose that there exists a set T ′ ∈ S ′

and a circuit C ∈ C(M) such that σ′(C) = σ(C) = + but T ′ orients C negatively
(we are using here that clearly C 	= ±W ). It must be the case that T ′ = μW (T )
for some T ∈ S(σ). In particular, we may assume that W+ ⊂ T and W− ∩ T = ∅.
After reorienting all the elements of E − T in M, we may assume that T = E and
W ∈ {0,+}E .

Let M̃ and M̃′ be the one-element liftings of M corresponding to σ and σ′

respectively. Thus (W,−) and (C,+) are circuits of M̃′. As usual, we will denote

the ground sets of M̃ and M̃′ by Eg.
We denote R := W 0 and S := E − R. Thus W (R) = 0R and W (S) = +S .

Here W (R) is the restriction of W to R, +S is the signed vector (S, ∅), etc. Since
C is oriented negatively by T ′ = T − S, we have

C(S) ∈ {+, 0}S ; C(R) ∈ {−, 0}R.

We know that σ′(C) = σ(C) = +, so in particular C 	= ±W . We are going to
describe a certain algorithm. As an input, it takes a circuit X ∈ C(M) such that

• X+ 	= ∅,
• X 	= ±W ,
• σ(X) = σ′(X) = +, and
• X(R) ∈ {−, 0}R.

As an output, it produces a circuit Y ∈ C(M) such that

• Y 	= ±W ,
• σ(Y ) = σ′(Y ) = +,
• Y (R) ∈ {−, 0}R, and
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32 7. MAXIMAL BY SIZE M-SEPARATED COLLECTIONS

• Y + � X+.

Note that one can iteratively apply this algorithm starting with X = C until
eventually we have Y + = ∅. This leads to a contradiction since Y is then oriented
negatively by T = E ∈ S even though σ(Y ) = +.

Let us describe the steps of the algorithm.

(1) Choose an element s ∈ E such that Xs = +. Since X(R) ∈ {−, 0}R, we
have s ∈ S and thus Ws = +.

(2) Since σ′(W ) = −, we have that both (X,+) and (−W,+) are circuits

of M̃′. In particular, Xs = + and −Ws = −, so apply Axiom (C3) to

produce a circuit (Z, ε) ∈ C(M̃′) for some ε ∈ {+, 0} such that

Zs = 0; Z+ ⊂ X+; Z(R) ∈ {−, 0}R.

(3) If ε = + then output Y := Z. Because Ws = + and Zs = 0, we have
Z 	= ±W , thus in particular σ(Z) = σ′(Z) = +.

(4) If ε = 0 then by Proposition 6.6, there exists a pair of circuits Y, Y ′ of M
such that σ′(Y ) = +, σ′(Y ′) = −, and Y, Y ′ ≤ Y ◦ Y ′ = Z. The latter
implies that Ys = 0 so Y + � X+. Since Ys = 0, we get Y 	= ±W and so
σ(Y ) = σ′(Y ) = +. Finally, since Y ≤ Z, we get Y (R) ∈ {−, 0}R.

We have constructed the desired algorithm which, as we explained earlier, contra-
dicts the existence of C. This finishes the proof of the lemma. �

Using Lemma 7.12, it is now easy to deduce Proposition 7.11. Recall that the
only thing left to show was that if σ and σ′ differ by a flip then |S(σ) ∩ D| =
|S(σ′) ∩ D| for any mutation-closed domain D. Indeed, the collections S(σ) and
S(σ′) are related by (7.3) which gives an obvious bijection

T �→

{
μW (T ), if T orients W positively;

T, otherwise

between the sets S(σ) ∩ D and S(σ′) ∩ D. We are done with the proof of Proposi-
tion 7.11. �

7.2. The structure of the alternating matroid of corank 2

In this section, we describe explicitly the circuits, colocalizations, and the mu-
tation graph of the alternating matroid Cn,n−2 of corank 2. It is more convenient
to describe another oriented matroid (Cn,2)∗. It is easy to see that (Cn,2)∗ is iso-
morphic to the alternating matroid Cn,n−2. We leave the following lemma as an
exercise for the reader.

Lemma 7.13. The oriented matroid (Cn,d)∗ is isomorphic to Cn,n−d. They are
obtained from each other by reorienting the set {2, 4, . . . } ⊂ [n].

Recall that [n] denotes the set {1, 2, . . . , n}. For two integers i and j, we define
[i, j] ⊂ Z to be the set of all k ∈ Z satisfying i ≤ k ≤ j. In particular, [i, j] = ∅ if
i > j.

For 1 ≤ k ≤ n, let Ck be the signed set given by

(7.4) Ck := ([1, k − 1], [k + 1, n]).

Lemma 7.14. The circuits of (Cn,2)∗ are C1, C2, . . . , Cn, −C1, −C2, . . . ,
−Cn. The only pairs (I, J) of non (Cn,2)∗-separated sets are ([1, l], [m+ 1, n]) for
l,m = 0, . . . , n with |l −m| ≤ 1.
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Figure 7.3. Two subsets S and T are connected by an edge in
this graph if and only if they are not (Cn,2)∗-separated for n = 5.
They are connected by a black edge labeled by ±Ck if and only if
T = μCk

(S). The red edges do not belong to Gμ((C
n,2)∗).

Proof. The circuits of (Cn,2)∗ are the cocircuits of Cn,2 which are clearly
given by (7.4) (see Figure 3.1).

Thus two sets I, J ⊂ [n] are not (Cn,2)∗-separated if and only if there exists
k ∈ [n] such that they orient Ck in the opposite ways. If, say, I orients Ck positively
and J orients Ck negatively then we have

I − J � {k} � J − I, and (I − J) ∪ {k} ∪ (J − I) = [n].

Here S � T means that every element of S is less than or equal to every element of
T . Thus a subset I of [n] is (Cn,2)∗-separated from all other subsets of [n] unless
it has the form [k] or [k + 1, n] for some k ∈ [n]. The empty set induces a positive
orientation on C1 and a negative orientation on Cn, the set [n] induces a negative
orientation of C1 and a positive orientation of Cn. For k ∈ [n−1], the set [k] (resp.,
[k + 1, n]) induces a positive (resp., negative) orientation on Ck and Ck+1. Thus
all pairs (I, J) of non-(Cn,2)∗-separated subsets of [n] are exactly the pairs listed
in the statement. �

See Figure 7.3 for an example for n = 5.

Definition 7.15. Let S ⊂ 2[n] be an (Cn,2)∗-separated collection. Define
ε(S) = (ε1, ε2, . . . , εn) ∈ {+,−, 0}[n] by

εk =

⎧
⎪⎨
⎪⎩

+, if [1, k − 1] ∈ S;

−, if [k, n] ∈ S;

0, otherwise.

Since S is (Cn,2)∗-separated, we have εk = 0 if and only if S contains neither
[1, k − 1] nor [k, n].

Lemma 7.16. Take any (Cn,2)∗-separated collection S and consider the signed
vector ε(S) = (ε1, ε2, . . . , εn). For any k = 1, 2, . . . , n − 1, if εk = −εk+1 then
εk = εk+1 = 0. The same holds for ε1 and −εn, that is, if ε1 = εn then ε1 = εn = 0.

Proof. This also follows by inspection from Lemma 7.14. �

Licensed to Univ of Calif, Los Angeles.  Prepared on Fri May 17 17:38:41 EDT 2024for download from IP 131.179.158.3.



34 7. MAXIMAL BY SIZE M-SEPARATED COLLECTIONS

Lemma 7.16 implies that ε(S) has at least one zero. We say that ε(S) ismaximal
if it has exactly one zero.

Theorem 7.17. For any maximal by size (Cn,2)∗-separated collection S, σS is
a colocalization of (Cn,2)∗ in general position.

Proof. One easily observes that if S is maximal by size then ε(S) is maximal,
which, in turn, implies that σS has Type III (cf. Theorem 6.5). �

7.3. Colocalizations and complete collections

An M-separated collection S is called complete if the image of σS lies in {+,−}
(that is, for every circuit, there is a set in S that orients it). We collect the properties
of complete collections in the following proposition:

Proposition 7.18. Let M be an oriented matroid on the ground set E and
suppose that S is an M-separated collection. Then:

(1) if S is complete then for every e ∈ E, S−e is a complete (M−e)-separated
collection;2

(2) if S is complete and rank(M) ≤ 3 then σS is a colocalization in general
position.

Proof. The claim (1) is obvious from the definitions of complete, S − e, and
M−e. To show (2), note that any nullity 2 subset A ⊂ E contains at most n ≤ 5 el-
ements. To check that σS is a colocalization, we need to consider all possible nullity
2 subsets and restrict σS to the circuits of the corresponding alternating matroids
isomorphic to (Cn,2)∗ (where n ≤ 5). By Lemmas 7.14 and 7.16, we can describe
the restriction S(A) of S to A by a sequence ε(S(A)) = (ε1, . . . , εn) ∈ {+,−, 0}n.
Let ε⊕2(S(A)) := (ε1, . . . , εn,−ε1, . . . ,−εn) ∈ {+,−, 0}2n. By Lemma 7.16, no two
adjacent nonzero entries of ε⊕2(S(A)) have opposite signs. If ε⊕2(S(A)) contains
two consecutive zeros then S(A) is not complete, which by (1) implies that S is not
complete. Let ε̄1 := ε1, ε̄2n := ε2n, and for 1 < k < 2n, let ε̄k be defined as follows:
if εk−1 = εk+1 	= 0 and εk = 0 then we set ε̄k := εk−1, otherwise we set ε̄k := εk.
Thus if ε̄k = 0 for some 1 < k < 2n then εk−1, εk+1 must be nonzero and have
opposite signs. Since n ≤ 5, it follows that ε̄(S(A)) := (ε̄1, . . . , ε̄n) has the form
(+k−1, 0,−n−k) or (−k−1, 0,+n−k) for some k ∈ [n]. Indeed, the smallest example
when ε̄(S(A)) satisfies all the listed properties but does not have the desired form
happens for n = 6 where we can have ε̄(S(A)) = (+, 0,−, 0,+, 0). Since ε(S(A))
and ε̄(S(A)) give rise to the same orientation of the circuits of M |A, we find that
σS is a colocalization in general position. �

We now formulate a basic fact on existence of colocalizations in general position:

Lemma 7.19 ([BLVS+99, Proposition 7.2.2]). Let M be an oriented matroid.

(i) For any colocalization σ of M, there exists a colocalization σ′ of M in
general position satisfying σ ≤ σ′.

(ii) In particular, there exists at least one colocalization of M in general po-
sition. �

We now give an alternative description of S(σ) in terms of the one-element
lifting defined by σ.

2In contrast, S/e may even be empty for a complete M-separated collection S.
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Lemma 7.20. Given a colocalization σ : C → {+,−, 0} (not necessarily in

general position) corresponding to a one-element lifting M̃ of M, we have

(7.5) S(σ) = {S ⊂ E | (S − L, (Eg − S)− L) ∈ T (M̃)},

where L ⊂ Eg denotes the set of loops of M̃.

Proof. We denote the right hand side of (7.5) by S ′. We first show S(σ) ⊂ S ′.
Let S ∈ S(σ) be a set. We need to show that the signed vector T = (S − L, (Eg −

S)−L) is a tope of M̃. Note that the support of T is Eg−L and thus it suffices to

prove that T is a covector of M̃. This is equivalent to saying that T is orthogonal

to every circuit of M̃, so let X ∈ C(M̃) be such a circuit. By Proposition 6.6,
either X has the form (Y, σ(Y )) for some Y ∈ C(M) or we have X = Y 1 ◦ Y 2 for
some Y 1, Y 2 ∈ C(M) such that σ(Y 1) = −σ(Y 2) 	= 0. It is clear that T ⊥ X if X

is a loop of M̃ so suppose that X ∩ L = ∅. Assume that X has the form (Y, σ(Y ))
for some Y ∈ C(M). If S does not orient Y then (S,E−S) is orthogonal to Y and
thus T is orthogonal to (Y, σ(Y )). Otherwise, if S orients Y , say, positively, then
σ(Y ) = + so X = (Y +g, Y −) is easily checked to be orthogonal to T . The case
σ(Y ) = − is completely analogous and we are left with the case X = Y 1 ◦ Y 2 so
that σ(Y 1) = −σ(Y 2) 	= 0. Recall from Proposition 6.6 that we have Y 1, Y 2 < X.
If S does not orient Y i for either i = 1 or i = 2 then clearly T is orthogonal to X.
On the other hand, if S orients both of them then we may assume that it orients
Y 1 positively and Y 2 negatively which also implies that T is orthogonal to X. We
have shown the inclusion S(σ) ⊂ S ′.

To show S(σ) ⊃ S ′, suppose that S ∈ S ′ and thus T = (S − L, (Eg − S)− L)

is a tope of M̃. Let C ∈ C(M) be a circuit that is oriented by S, say, positively.
This means that C+ ⊂ S and C− ⊂ E − S so the only way for (C, σ(C)) to be
orthogonal to T is if σ(C) = +. The case when S orients C negatively is again
analogous so we are done with the proof. �

Lemma 7.21. Let M be an oriented matroid and suppose that σ is a colocal-
ization of M in general position. Then

(1) the collection S(σ) is a complete M-separated collection;
(2) if S is any M-separated collection satisfying σS ≤ σ then S ⊂ S(σ).

Proof. By definition, S(σ) contains all sets S ⊂ E that orient each circuit
C ∈ C in accordance with σ. Since σS ≤ σ, this happens for all sets in S, and thus
S ⊂ S(σ), which proves (2). Since the topes orient all the circuits by [BLVS+99,
Proposition 3.8.2], we get that S(σ) is complete which proves (1). �

7.4. Proof of Theorem 7.2

Before we proceed to the proof, we recall some basic facts about Tutte polyno-
mials of unoriented matroids, see, e.g., [Cra69].

Proposition 7.22. Let M be an oriented matroid, and M its underlying ma-
troid with Tutte polynomial TM(x, y). Then we have | Ind(M)| = TM(2, 1) and
|B(M)| = TM(1, 1). Moreover, for every element e ∈ E which is neither a loop nor
a coloop, we have

TM(x, y) = TM−e(x, y) + TM/e(x, y).
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In particular,

| Ind(M)| = | Ind(M− e)|+ | Ind(M/e)|, and

|B(M)| = |B(M− e)|+ |B(M/e)|. �

Proof of Theorem 7.2. We are going to show three statements that will
together imply the theorem.

(a) If σ : C → {+,−} is a colocalization in general position then |S(σ)| =
| Ind(M)|.

(b) For any M-separated collection S, |S| ≤ | Ind(M)|.
(c) If |S| = | Ind(M)| then σS is a colocalization in general position.

To show (a), note that |S(σ)| = |T (M̃)|/2 by (7.5) so we need to show

|T (M̃)|/2 = | Ind(M)|. As it follows from the discussion before [BLVS+99, Propo-
sition 3.8.3], if e is neither a loop nor a coloop in some simple oriented matroid M′

then
|T (M′)| = |T (M′ − e)|+ |T (M′/e)|.

Since this formula only works for simple oriented matroidsM′, the number |T (M′)|

is not an evaluation of the Tutte polynomial. However, note that M̃ is a lifting of

M in general position so M̃ is indeed simple. Therefore we can choose some element
e ∈ E that is neither a loop nor a coloop in M and apply the deletion-contraction

recurrence to M̃. Clearly M̃/e (resp., M̃−e) will be a lifting in general position of

M/e (resp., of M−e). Thus it suffices to check the equality |T (M̃)|/2 = | Ind(M)|
only for oriented matroids M that consist of loops and coloops. Suppose that there
are a loops and b coloops in M. Then | Ind(M)| = 2b. On the other hand, σ
maps every loop of M to either a + or a −, and S(σ) consists of the 2b sets whose
restriction to the set of loops is fixed and determined by σ. We are done with the
base case and therefore with (a).

Now we prove part (b) by induction on |E|. The base of induction is the
case when every element of M is either a loop or a coloop, and in this case the
statement of the theorem holds by an argument similar to the one above. To do
the induction step, take any M-separated collection S and consider any element
e ∈ E that is neither a loop nor a coloop. By the induction hypothesis combined
with Propositions 7.6 and 7.22, we have

|S − e| ≤ | Ind(M− e)|;

|S/e| ≤ | Ind(M/e)|;

|S| = |S − e|+ |S/e|;

| Ind(M)| = | Ind(M− e)|+ | Ind(M/e)|.

(7.6)

The fact that |S| ≤ | Ind(M)| follows.
Finally, we prove (c) by induction on |E|. The base of induction is the empty

oriented matroid M with E = ∅. It has exactly one maximal by size M-separated
collection S = {∅} which corresponds to the “empty” colocalization of M via
S �→ σS and vice versa.

Now we do the induction step. Let M be any oriented matroid and let S be
any maximal by size M-separated collection. Suppose e is a loop of M. Then
either all elements of S contain e or all elements of S do not contain e. In other
words, maximal by size M-separated collections are in two-to-one correspondence
with maximal by size (M− e)-separated collections. Similarly, each colocalization
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σ of M in general position either sends e to + or to −, and induces a colocalization
of M− e. Thus in the case when e is a loop, the induction step is clear.

If e is a coloop of M then it is not contained in any circuit so for all S ∈ S we
have S− e, S ∪ e ∈ S. The induction step is clear here as well, and we are left with
the case when M has no loops and no coloops.

Let S be an M-separated collection satisfying |S| = | Ind(M)|, and let e be
any element of M (it is neither a loop nor a coloop). It follows that S (resp.,
S − e and S/e) is a maximal by size M-separated (resp., (M− e)-separated and
(M/e)-separated) collection. Therefore by the induction hypothesis, both S−e and
S/e correspond to colocalizations in general position of the corresponding oriented
matroids.

We would like to show that every circuit C = (C+, C−) of M is oriented by S.
Suppose first that there is an element e ∈ E−C. Then we know that S − e orients
C by part (1) of Lemma 7.21. Thus the same is true for S. Otherwise we have
C = E which by the incomparability axiom (C2) in Definition 2.2 implies that C
and −C are the only circuits of M. In this case obviously S orients C so we are
done.

Since S orients every circuit of M, the image of σS lies in {+,−}. In this case
it is clear that the maps S �→ σS and σ �→ S(σ) are inverse to each other. Since
the image of σS lies in {+,−}, it is in general position, but we still need to show
that it is a colocalization.

Assume that σS is not a colocalization. It means that there is a subset A ⊂ E
of nullity 2 for which the restriction of σS is not of Type III. If A � E then
we can delete any element in E − A and get a contradiction with the induction
hypothesis. Thus we may assume that M has corank 2, and hence is realizable by
[BLVS+99, Corollary 8.2.3]. We contract some elements until M∗ has no pairs of
parallel elements while preserving the fact that σS is not a colocalization. After
that, M must be isomorphic (Cn,2)∗ (where n = |E|). By Theorem 7.17, σS

is a colocalization of (Cn,2)∗ in general position because S is a maximal by size
(Cn,2)∗-separated collection. This shows (c).

Now we explain how Theorem 7.2 follows from (a), (b), and (c). Take any
oriented matroidM. By Lemma 7.19, there exists a colocalization σ ofM in general
position. By (a), the size of S(σ) is | Ind(M)|. By (b), we get that the maximal
size of an M-separated collection is exactly equal to | Ind(M)|. Finally, by (c), any
M-separated collection with | Ind(M)| elements corresponds to a colocalization of
M in general position. We are done with the proof of Theorem 7.2. �

As a corollary, we get that a maximal by size M-separated collection orients
every circuit of M:

Corollary 7.23. Let S be a maximal by size M-separated collection. Then
S is complete.

7.5. Zonotopal tilings for oriented matroids

The Bohne-Dress theorem (Theorem 6.7) provides a bijection between zono-
topal tilings of a zonotope and one-element liftings of the corresponding realizable
oriented matroid M. Unlike zonotopal tilings, the notion of one-element liftings
easily generalizes to the non-realizable case. The goal of this section is to define and
develop some basic properties of zonotopal tilings for arbitrary oriented matroids.
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Since these tilings turn out to be identical to the covectors of one-element liftings
of M, we give only brief proofs, and view this section as the basement for the proof
of Lemma 4.2.

Definition 7.24. Any nonempty boolean interval τ ⊂ 2E is called a tile.
Equivalently, given a signed vector X ∈ {+,−, 0}E , the corresponding tile denoted
τX ⊂ 2E is defined by

τX := {S ⊂ E | X+ ⊂ S, X− ∩ S = ∅}.

The elements of τ are called its vertices. The set X0 is called the spanning set
of τ and denoted sp(τ ), and X is called the signed vector of τ . The dimension of
τ is

dim(τ ) := rank(sp(τ )),

and given an oriented matroidM, τ is called top-dimensional if dim(τ ) = rank(M).

For an element e ∈ E and a tile τ ⊂ 2E , define another tile τ − e ⊂ 2E−e by

τ − e := {S − e | S ∈ τ}.

We define fine zonotopal tilings for an oriented matroid M as collections of
tiles coming from a maximal by size M-separated collection.

Definition 7.25. Given a maximal by size M-separated collection S, the cor-
responding fine zonotopal tiling T(S) is defined to be the collection of all tiles τ all
of whose vertices belong to S:

T(S) = {τ ⊂ S | τ is a tile}.

The following is a simple extension of [BLVS+99, Proposition 2.2.11] to the
non-realizable case.

Proposition 7.26. Let S be a maximal by size M-separated collection, and

let M̃ be the one-element lifting of M in general position corresponding to S via

Theorem 7.2. Then the map τX �→ X is a bijection from T(S) to L−
g (M̃) defined

by

L−
g (M̃) := {X = (X+, X−) ∈ {+,−, 0}E | (X+, X−g) ∈ L(M̃)}.

Proof. Fix a tile τ ∈ T(S) and let X ∈ {+,−, 0}E be such that τ = τX . We

need to show that (X+, X−g) ∈ L(M̃). Suppose that this is not the case, and

therefore there exists a circuit Y of M̃ not orthogonal to (X+, X−g).
Proposition 6.6 suggests considering two cases for Y . Suppose that Y =

(C, σ(C)) for some circuit C = (C+, C−) ∈ C(M). In this case, we may assume
that σ(C) = − and thus C+ ⊂ X+ ∪ X0, C− ⊂ X− ∪ X0. It is easy to see that
there is a set S ∈ τ such that C+ ⊂ S and C− ∩ S = ∅. But then σ(C) = +,
because it cannot happen that C ⊂ X0 by property (1) in Theorem 7.27 below
since X0 is necessarily an independent set of M. This gives a contradiction.

The second case is Y = Y1 ◦ Y2 where Y1 and Y2 satisfy the assumptions of
Proposition 6.6. We get that Y +

1 , Y +
2 ⊂ X+ ∪X0, Y −

1 , Y −
2 ⊂ X− ∪X0. Similarly

to the above, this implies σ(Y1) = σ(Y2) = + which contradicts the assumption
σ(Y1) 	= σ(Y2) from Proposition 6.6. Thus we have shown that if τX ∈ T(S) then

(X+, X−g) ∈ L−
g (M̃).

Conversely, suppose (X+, X−g) ∈ L(M̃) for someX = (X+, X−) ∈ {+,−, 0}E .
We claim that for every J ⊂ X0, X+∪J ∈ S. Suppose that this is not the case, and
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thus for some J , X+ ∪ J 	∈ S. Since S is maximal by size, there must be a circuit
C = (C+, C−) ∈ C(M) with σ(C) = − and C+ ⊂ X+ ∪ J , C− ⊂ X− ∪X0. But

then (C, σ(C)) = (C+, C−g) ∈ C(M̃) is not orthogonal to (X+, X−g) ∈ L(M̃). �

It is easy to see that for realizable M, our notion of T(S) coincides with the
notion of a fine zonotopal tiling from Definition 6.1.

Define the tile graph G(S) to be an undirected graph with vertex set S and two
vertices S and T connected by an edge in G(S) if and only if S = −eT for some
e ∈ E.

The following theorem summarizes some basic properties of fine zonotopal
tilings for oriented matroids:

Theorem 7.27. Let M be an oriented matroid and consider any maximal by
size M-separated collection S.

(1) For any tile τ ∈ T(S), the set sp(τ ) is independent:

sp(τ ) ∈ Ind(M).

(2) For any I ∈ Ind(M), there is a tile τ ∈ T(S) with sp(τ ) = I.
(3) For any basis B ∈ B(M), there is a unique tile τ ∈ T(S) with sp(τ ) = B.

Thus the map τ �→ sp(τ ) provides a bijection between top-dimensional tiles
of T(S) and bases of M.

(4) Every tile in T(S) is contained in a top-dimensional tile.
(5) For any two sets S, T ∈ S, the graph distance between the corresponding

vertices in G(S) equals the size of their symmetric difference, that is, |S−
T |+ |T −S|. Thus the graph G(S) is embedded isometrically into the cube

[0, 1]E = |E|.
(6) If e ∈ E is not a loop then

T(S/e) = {τ − e | τ ∈ T(S) : e ∈ sp(τ )}.

(7) If e ∈ E is not a coloop then

T(S − e) = {τ − e | τ ∈ T(S)}.

Proof. We deduce most of the properties from their known counterparts in

the language of covectors of M̃.
Proof of (1): This is obvious: after some reorientation we may assume that τ is

just the family of all subsets of sp(τ ), and if sp(τ ) contains a circuit C = (C+, C−)
then S is not M-separated because both C+ and C− belong to it.

Proof of (2): This follows from part (3) below.
Proof of (3): For every basis B of M, there is a unique pair of opposite cocir-

cuits ±C = ±(C+, C−) ∈ C∗(M̃) such that C0 = B. Here M̃ is the one-element
lifting in general position corresponding to S. We are done by Proposition 7.26.

Proof of (4): This follows from the fact that the order complex of the big face
lattice Fbig(M)op is isomorphic to the face lattice of a PL regular cell decomposition
of the (r − 1)-sphere, see [BLVS+99, Corollary 4.3.4]. This implies that this

complex is pure, and it is easy to see that the subcomplex consisting of L−
g (M̃) is

pure as well.
Proof of (5): By Proposition 7.26, G(S) is just a subgraph (in fact, a halfspace)

of the tope graph of M̃, see [BLVS+99, Definition 4.2.1]. Thus the result follows
immediately from [BLVS+99, Proposition 4.2.3]. Note that since we are working
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40 7. MAXIMAL BY SIZE M-SEPARATED COLLECTIONS

with colocalizations in general position only, the corresponding one-element lifting

M̃ will be a simple oriented matroid and thus [BLVS+99, Section 4.2] applies
directly.

Proof of (6): This is completely obvious from the definitions: T(S) contains a
tile τ with e ∈ sp(τ ) if and only if T(S/e) contains a tile τ − e.

Proof of (7): Follows from Proposition 7.26 and the deletion formula for cov-
ectors [BLVS+99, Proposition 3.7.11].

�
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CHAPTER 8

Pure oriented matroids

The rest of the paper will be concerned with the question of which oriented
matroids M are pure, that is, have the property that every maximal by inclusion
M-separated collection is also maximal by size.

Let us start by proving a slight strengthening of Lemma 4.1:

Lemma 8.1. Let M be an oriented matroid and suppose that an element e
belongs to the ground set E of M.

(1) If e is a loop then M is pure if and only if M− e is pure.
(2) If e is a coloop then M is pure if and only if M/e is pure.

Proof. Let S ⊂ 2E be a maximal by inclusion M-separated collection. If e is
a loop then ({e}, ∅) ∈ C(M) so either all elements of S contain e or all elements of
S do not contain e. And then S is a maximal by inclusion M-separated collection
if and only if S − e is a maximal by inclusion (M− e)-separated collection. Thus
the first claim follows.

Assume now that e is a coloop of M, so none of the circuits of M contain e.
In this case, for every S ⊂ E− e, we have S ∈ S if and only if Se ∈ S. And then S
is a maximal by inclusion M-separated collection if and only if S/e is a maximal
by inclusion (M/e)-separated collection. This finishes the proof of the lemma. �

In order to reduce to simple oriented matroids, we need to exclude parallel
elements as well. We reformulate Lemma 4.2 as follows.

Lemma 8.2. Let M be an oriented matroid. Suppose that e, f ∈ E are parallel
to each other. Then

M is pure ⇔ M− e is pure ⇔ M− f is pure.

We are not going to use this result in what follows and postpone its proof until
Section 8.1.

It turns out that the property of being pure is preserved under taking minors:

Proposition 8.3. Suppose an oriented matroid M is pure, and let e ∈ E
belong to its ground set. Then

• if e is not a coloop then M− e is pure;
• if e is not a loop then M/e is pure.

Proof. Suppose that e is not a coloop and let S ⊂ 2E−e be any maximal by
inclusion (M−e)-separated collection. Let us view S as a collection of subsets of E
rather than E− e. Then S is still clearly an M-separated collection. Let S ′ be any
maximal by inclusion M-separated collection that contains S. Since M is pure, S ′

is maximal by size as well and thus by Theorem 7.2 has size | Ind(M)|. But then
by (7.6), S ′ − e must have size | Ind(M− e)|. On the other hand, it contains S so

41
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42 8. PURE ORIENTED MATROIDS

S is contained in a maximal by size (M− e)-separated collection S ′ − e, so M− e
is pure.

Now assume that e is not a loop and let S ⊂ 2E−e be any maximal by inclusion
(M/e)-separated collection. Consider a collection S ′ ⊂ 2E defined by

S ′ := {S | S ∈ S} ∪ {Se | S ∈ S}.

By the definition of M/e, it is clear that S ′ is an M-separated collection: if C ∈ C
is a circuit of M then C − e contains a circuit of M/e and thus if two sets S, T
are not M-separated then S − e and T − e are not (M/e)-separated. But now we
can again extend S ′ to a maximal by inclusion M-separated collection S ′′ which is
therefore maximal by size. Again, by (7.6), the collection S ′′/e has size | Ind(M/e)|
and since it contains S, we get that M/e is pure. �

8.1. Proof of Lemma 8.2

Proposition 8.4. Let S be a maximal by size M-separated collection, and let
S ∈ S and e ∈ E be such that −eS 	∈ S. Then there exists a unique tile τ ∈ T(S)
such that

(a) S ∈ τ ⊂ S, and
(b) (Ie ∩ Se, I − S) is a circuit of M, where I := sp(τ ).

In particular, the set −IS ∈ S is not M-separated from Se.

Proof. After a suitable reorientation we may assume that S = ∅. In this case,
we need to show that there exists a unique independent set I such that all of its
subsets belong to S and (I, {e}) is a circuit of M.

First we show uniqueness. This is clear: if (I, {e}) and (J, {e}) are both circuits
of M then by the weak elimination axiom (C3), there is a circuit (I ′, J ′) of M with
I ′ ⊂ I and J ′ ⊂ J . But this is impossible because both I ′ and J ′ belong to S. We
have shown that if such I exists, it is unique.

Now we show existence by induction on |E|. If |E| ≤ 1 then the statement
holds trivially. Let k ∈ E be any element such that {k} ∈ S (so k is not a loop).
Such k exists by Theorem 7.27, part (4). We know that {e} 	∈ S and thus S/k does
not contain {e} but it clearly contains ∅. By the induction hypothesis, there is a
tile τ ′ ∈ T(S/k) that consists of all subsets of some set I ′ ∈ Ind(M/k) such that
(I ′, {e}) is a circuit of M/k. Therefore either one of (I ′, {e}), (I ′k, {e}), (I ′, {e, k})
is a circuit of M. By Theorem 7.27, part (6), S contains all subsets of I ′k. And
thus if (I ′, {e}) or (I ′k, {e}) is a circuit of M, we are done. The only case left is
when (I ′, {e, k}) is a circuit of M.

Consider now S − k instead. By the induction hypothesis, there is a tile τ ′′ ∈
T(S−k) that consists of all subsets of some set I ′′ ∈ Ind(M−k) such that (I ′′, {e})
is a circuit of M−k. But then (I ′′, {e}) is a circuit of M as well. By Theorem 7.27,
part (7), there is a tile τ ∈ T(S) such that τ − k = τ ′′. If ∅ ∈ τ then we are done.
Otherwise, all subsets in τ have to contain k, and so sp(τ ) = I ′′.

So far we have the following information:

• (I ′, {e, k}) is a circuit of M;
• (I ′′, {e}) is a circuit of M;
• all subsets of I ′ belong to S;
• all subsets of I ′′k that contain k belong to S.
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These four pieces lead to a contradiction: apply the circuit elimination axiom to
the two circuits to get a circuit C of M with C+ ⊂ I ′ and C− ⊂ I ′′k, and then
we have C+ ∈ S and C− ∪ k ∈ S, but these two sets are not M-separated. This
contradicts the assertion that all subsets in τ contain k and thus we are done with
the proof of the proposition. �

Lemma 8.5. Let M be an oriented matroid on the ground set Eg such that
M− g is pure, and let S be a maximal by size M-separated collection. Define

S	g := {T ∈ S : g ∈ T}; S 
	g := {T ∈ S : g 	∈ T}.

Let S ⊂ E be any subset.

• Assume S 	∈ S 
	g. Then S is M-separated from S 
	g if and only if Sg is;
• Assume Sg 	∈ S	g. Then S is M-separated from S	g if and only if Sg is.

Proof. Since replacing each set by its complement preserves the notion of M-
separation, we only need to show the first claim. Moreover, if Sg is M-separated
from S 
	g then obviously the same is true for S, because if a circuit is oriented
differently by S and S 
	g then it is also oriented differently by Sg and S 
	g. So
suppose that S is M-separated from S 
	g, but Sg is not, and thus there is a signed
setX = (X+, X−) such that the circuit C = (X+g,X−) ofM is oriented negatively
by S 
	g and positively by Sg. Let T ∈ S 
	g be any set that orients C negatively.
We have

X− ⊂ T − Sg, X+g ⊂ Sg − T.

By Theorem 7.27, part (2), there exists a set R ∈ S that orients X positively,
because X is an independent set of M. If g ∈ R then S would not be M-separated,
because R would orient C positively, and we know that T ∈ S orients C negatively.
Thus g 	∈ R and by definition, R ∈ S 
	g.

Since S is M-separated from S 
	g, it is also (M− g)-separated from S 
	g. And
because of the assumption thatM−g is pure, S 
	g∪{S} is contained in a maximal by
size (M− g)-separated collection, which we denote S0. By Theorem 7.27, part (5),
the subgraph of G(S0) induced on all vertices that orient X positively is connected.
We want to show that the path

R = R0, R1, . . . , Rt = S

in this subgraph that connects R and S passes through the boundary of S 
	g, that
is, contains at least one set from S/g ⊂ S 
	g. We know that R0 = R 	∈ S/g because
otherwise Rg would belong to S so it would orient C positively. We claim that for
every set U from S 
	g that does not belong S/g, the set of edges adjacent to U in
G(S0) is the same as the set of edges adjacent to U in G(S). If we manage to do
so then the only way to get connected to S 	∈ S 
	g would be to pass through the
boundary S/g of S 
	g. And the way to show our claim is to consider the collection
S − g. By Theorem 7.27, part (7), there are no tiles containing U in T(S − g)
other than the ones from T(S). And then Proposition 8.4 applied to S − g and
U immediately shows that there can be no other edges from U in any tiling that
contains all tiles adjacent to U , in particular, in T(S0). Thus there will be some
set Ri that belongs to the boundary of S 
	g, that is, to S/g, and thus Rig belongs
to S but it orients C positively while we started with the set T ∈ S that orients
C negatively. We are done with the proof of the lemma and we are now ready to
apply this technical result to prove Lemma 8.2. �
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Proof of Lemma 8.2. If M is pure then by Proposition 8.3, M− f is pure.
Suppose now M− f ∼= M− e is pure. Since e and f are parallel, ({e}, {f}) ∈

C(M) and no other circuit contains both e and f in its support. Moreover, for
any circuit (C+e, C−), (C+f, C−) is also a circuit and vice versa. Let Eef be the
ground set of M.

Let S ⊂ 2Eef be a maximal by inclusion M-separated collection. Then for any
two sets S, T ∈ S, it is not the case that e ∈ S − T, f ∈ T − S. Thus without loss
of generality we may assume that for all S ∈ S, if f ∈ S then e ∈ S.

We would like to show that S is maximal by size, and we are going to do so by
considering collections S − e and S − f . Since the oriented matroids M − e and
M− f are isomorphic, we introduce another oriented matroid M′ on the ground
set Eg that is isomorphic to both of them. Define the maps φ : Ee → Eg and
ψ : Ef → Eg that send e and f to g respectively and restrict to the identity map
on E. Define collections S0,S1,S2 ⊂ 2E as follows:

S0 = {S ∈ S | e, f 	∈ S}; S1 = {S − e | S ∈ S : e ∈ S, f 	∈ S};

S2 = {S − {e, f} | S ∈ S : e, f ∈ S}.

Then
S = S0 � S1e � S2ef,

where by definition S1e := {Se | S ∈ S1} and S2ef := {Sef | S ∈ S2}.
Denote S\f := φ(S − f) and S\e := ψ(S − e). Then

S\f = S0 ∪ S1g ∪ S2g; S\e = S0 ∪ S1 ∪ S2g.

Our temporary goal is to prove that both collections S\e and S\f are maximal
by inclusion M′-separated collections.

Suppose first that S\f = S0 ∪ S1g ∪ S2g is not maximal by inclusion, and
consider a set S 	∈ S\f which is M′-separated from S\f . If g 	∈ S then we claim
that S is in fact M-separated from S. Indeed, clearly S is M-separated from all
subsets in S0 and S1e. Thus we only need to show that S is M-separated from all
subsets in S2ef . Let Tef ∈ S2ef be such a subset, so T ∈ S2. Since Tg ∈ S2g is
M′-separated from S, we see that both Te and Tf are M-separated from S. But
then Tef must be M-separated from S as well. We have shown that if S 	∈ S\f is
M′-separated from S\f then g ∈ S.

Let S ′ ⊃ S\f be a maximal by inclusion M′-separated collection of subsets that
contains S\f . Since M′ is assumed to be pure, it means that S ′ is complete and
maximal by size. By the previous observation, S ′ differs from S\f only in subsets
that contain g. In particular, (S ′) 
	g = (S\f ) 
	g = S0. Using Lemma 8.5, we get
the following:

Claim. Assume S 	∈ S0. Then S is M′-separated from S0 if and only if Sg is.

A completely analogous argument applied to S\e shows the following:

Claim. Assume S 	∈ S2. Then S is M′-separated from S2g if and only if Sg
is.

Let us now return to the collections S ′ ⊃ S\f . We know that S ′ may contain
some extra subsets, but all of them have to contain g. Let Sg be such a subset,
so Sg 	∈ S\f but Sg is M′-separated from S\f . Recall that S\f = S0 ∪ S1g ∪ S2g.
Therefore S 	∈ S2 and Sg is M′-separated from S2g. By the second claim, S is
M′-separated from S2g. Also, since Sg is M′-separated from S1g, it must be true
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that S is M′-separated from S1. Finally, if Sg is M′-separated from S0 then of
course so is S. To sum up, S is M′-separated from S0 ∪ S1 ∪ S2g = S\e. Then we
claim that Se is M-separated from our initial collection S. Indeed:

• Se is M-separated from S0 because Sg is M′-separated from S0 ⊂ S\f ;
• Se is M-separated from S1e because S is M′-separated from S1 ⊂ S\e;
• Se is M-separated from S2ef because S is M′-separated from S2g ⊂ S\e.

Thus Se ∈ S which contradicts the fact that Sg 	∈ S\f . It follows that S\f is
maximal by inclusion. Since replacing each set in S with its complement swaps the
roles of e and f , we find that S\e is also maximal by inclusion. More precisely,

−EefS is a maximal by inclusion M-separated collection with the roles of e and

f swapped. By what we have just shown, (−EefS)
\e = −ES0g � −ES1g � −ES2 is

a maximal by inclusion M′-separated collection. Applying the map −Eg(·) to this

collection, we obtain S\e.
We now have the following situation. The collections S\f and S\e are maximal

by inclusion M′-separated, and since M′ is assumed to be pure, both of them are
maximal by size and complete (see Corollary 7.23). We would like to show that S
is a complete M-separated collection. It is clear that it orients all circuits of M
except for possibly C = ({e}, {f}). If S orients C then it is complete, so assume
σS(C) = 0. We are going to extend the map σS to a map σ by setting σ(C) = +.
To check that σ is still a colocalization, we need to see why σ has Type III for all
possible subsets A ⊂ Eef of nullity 2. If A does not contain either e or f then
we are done because in this case on A, we have σ = σS . If A contains both e and
f then C is a cocircuit of the oriented matroid (M |A)

∗ of rank 2. A simple case
analysis shows that A can be partitioned into three subsets A = S � T � {e, f} so
that the cocircuits of (M |A)

∗ written in the cyclic order are

({e}, {f}), (Se, T ), (Sf, T ), ({f}, {e}), (T, Se), (T, Sf),

or
({e}, {f}), (S, T ), ({f}, {e}), (T, S).

In the second case, the Type III assumption holds regardless of the value σ((S, T )).
In the first case however, we want to show that the corresponding values of σ are not
equal to (+,−,+,−,+,−). In other words, we need to see why if σ((Se, T )) = −
then σ((Sf, T )) = −. But this is clear because if R ∈ S orients (Se, T ) negatively
then T ⊂ R and Se ∩ R = ∅, so, in particular, e 	∈ R and thus f 	∈ R, so R
orients the circuit (Sf, T ) negatively as well. This shows that σ is a colocalization,
and thus S is contained in a complete collection by Lemma 7.21, part (2). This
complete collection has to be maximal by size by Theorem 7.2. We are done with
the proof of Lemmas 4.2 and 8.2. �
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CHAPTER 9

The graphical case

9.1. Pure graphs

In this chapter, we prove Theorem 5.7 by investigating which undirected graphs
are pure.

Let G be an undirected graph (possibly with loops or parallel edges). Fix some

total orientation O of G. We let �GO be the directed graph where each edge of G
is oriented according to O. We say that G is pure if the oriented matroid M�GO

is

pure, and since for different orientations O of G, the oriented matroids M�GO
differ

by a reorientation, the property of G being pure does not depend on the choice of
O. In Section 5, we explained how to translate the notion of M�GO

-separation to

the language of total orientations of G, and we start now by proving that this is
indeed the case.

The ground set of M�GO
is precisely the set E of edges of G. There is a simple

bijection α between total orientations O′ of G and subsets of E, namely, for a total
orientation O′ of G, α(O′) is the set of edges of G where O and O′ disagree.

We let Cyc(G) denote the set of cycles of G, and by a cycle we always mean
a non-self-intersecting undirected cycle of G viewed as a subset of edges of G. For
each cycle C of G, there are two orientations of C that make it into a directed
cycle which we denote O+(C) and O−(C). For example, if G is planar then O+(C)
and O−(C) can denote the clockwise and counterclockwise orientations of C. For
general graphs G, there is no canonical way to decide which of the two orientations
is positive and which is negative so we just fix some arbitrary choice of O+(C) and
O−(C) for all elements C ∈ Cyc(G).

Recall the definition of G-separation from Chapter 5:

Definition 9.1. We say that two total orientations O1 and O2 of G are G-
separated if there does not exist a cycle C of G such that the restrictions of O1 and
O2 on G are O+(C) and O−(C) or vice versa.

Proposition 9.2. Two total orientations O1 and O2 of G are G-separated if
and only if the sets α(O1) and α(O2) are M�GO

-separated.section

Proof. Note that the circuits of M�GO
correspond to the cycles of G. More

precisely, let C+ and C− be subsets of the edges of C defined as follows: an edge
e of C belongs to C± if and only if the reference orientation O agrees with O±(C)
on e. Then (C+, C−) is a circuit of M�GO

. Moreover, given a total orientation

O′ of G, the set α(O′) orients (C+, C−) positively (resp., negatively) if and only
if O′ agrees with O−(C) (resp., with O+(C)) on C. This shows that O1 and O2

are G-separated if and only if there is no circuit of M�GO
that they orient in the

opposite ways so the result follows. �

47
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It also follows from the description of the circuits of M�GO
that the independent

subsets of M�GO
correspond to forests of G, that is, to subsets of the edges of G

without cycles.

Proof of Theorem 5.7. We first show that the graphs K4 and K2,3 are not
pure. The graph K2,3 contains 54 forests but just 46 acyclic total orientations.
Thus every maximal by size K2,3-separated collection contains these 46 acyclic
orientations together with 8 other orientations. Figure 5.1 contains 6 orientations
of K2,3 that are K2,3-separated from each other but there is no other orientation
K2,3-separated from all of them that would not be acyclic. This shows that K2,3 is
not pure.

Now let us concentrate onK4. By Corollary 7.23, in a pure oriented matroidM,
any M-separated collection S is contained in a complete M-separated collection.
Equivalently, there is a colocalization σ of M in general position satisfying σ ≥ σS .
We will construct a collection S forK4 such that there does not exist a colocalization
σ satisfying σ ≥ σS .

Let us start with translating the notion of a colocalization to undirected out-
erplanar graphs.

Definition 9.3. Given an outerplanar graph G, a G-colocalization γ : Cyc(G)
→ {+,−} is a map that assigns an orientation to each cycle of G so that an extra
condition below is satisfied. Consider any cycle C such that there is an edge e of G
that is not in C but connects two vertices of C. Then the union of C and e contains
two more cycles which we denote C1 and C2. Let O+(C), O+(C1), and O+(C2) be
chosen so that they all agree on the edges of C. Then the condition on γ is that
either γ(C) = γ(C1) or γ(C) = γ(C2) (or both).

It is easy to see that for an outerplanar graph G, γ is a G-colocalization if and
only if the corresponding map σ : C(M�GO

) → {+,−} defined by σ((C+, C−)) =

γ(C) is a colocalization of M�GO
in general position. Indeed, the non-trivial nul-

lity 2 subsets of the edges of G correspond to connected subgraphs G′ of G with
|E(G′)| = |V (G′)| + 1, where E(G′) and V (G′) are the sets of edges and vertices
of G′, respectively. After removing leaves (which are coloops of the corresponding
oriented matroid), we get that G′ is a union of three paths with the same start and
the same end and non-overlapping interiors. If each path has at least two edges
then G is not outerplanar, so we may assume that one of the paths is a single edge
e, and so G′ is a union of a cycle and e. And then the condition of σ being of Type
III is precisely the extra condition on γ in Definition 9.3.

We are now ready to prove that the (outerplanar) graph K4 is not pure. Con-
sider the collection S of four total orientations of K4 in Figure 5.2.

We claim that S is K4-separated but does not belong to any maximal by size
K4-separated collection. It is clear that S is K4-separated because for each cycle
of K4, there is at most one orientation in S that orients it.

Suppose that there exists a maximal by size K4-separated collection containing
S. Thus there must be a K4-colocalization γ satisfying γ ≥ σS . Let C be the cycle
with vertices (1, 2, 3, 4) listed in this order, and let O+(C) = (1 → 2 → 3 → 4 → 1)
and O−(C) = (1 → 4 → 3 → 2 → 1) be its two possible orientations. There
are two edges in K4 that do not belong to C, namely, (1, 3) and (2, 4). Applying
Definition 9.3 to the union of C and (1, 3) yields that γ(C) has to be positive while
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applying Definition 9.3 to the union of C and (2, 4) yields that γ(C) has to be
negative. We get a contradiction and thus K4 is not pure.

Recall from Section 5.3 that G is assumed to be simple, i.e., to have no loops
or parallel edges. (Non-simple graphs may be easily treated using Lemmas 8.1
and 8.2.) By Theorem 5.6, outerplanar graphs are exactly the graphs that do not
contain K4 and K2,3 as minors. Therefore by Proposition 8.3, if a graph G is not
outerplanar then it is not pure. It remains to show purity for outerplanar graphs.
By Theorem 5.6 again, every such graph is a subgraph of a triangulation of an
n-gon, so again by Proposition 8.3 it suffices to show purity for triangulations.

Definition 9.4. Let G be the 1-skeleton of a triangulation of an n-gon. Con-
struct a plane tree T = T (G) as follows: put a vertex of T inside each triangular
face of G and connect two of them by an edge in T if and only if the corresponding
triangular faces share a diagonal. Define Conn(T ) to be the set of all connected
induced subgraphs of T . There is an obvious bijective correspondence τ between
Conn(T ) and Cyc(G), see Figure 9.1.

Given two subgraphs T1, T3 ∈ Conn(T ), we call them vertex-disjoint if their
vertex sets V (T1), V (T3) are disjoint, in which case their union is the induced
subgraph of T on V (T1) � V (T3).

Definition 9.5. For two vertex-disjoint connected subgraphs T1, T3 ∈ Conn(T )
whose union T2 is also connected, we say that (T1, T2, T3) is a Las Vergnas triple.
Given a map γ̃ : Conn(T ) → {+,−, 0} and a Las Vergnas triple (T1, T2, T3), we say
that (T1, T2, T3) is a bad triple for γ̃ if

γ̃(T2) 	= 0, γ̃(T2) 	= γ̃(T1), γ̃(T2) 	= γ̃(T3).

Let us explain the motivation for this terminology. For each cycle C of G, we
choose O+(C) and O−(C) so that O+(C) is oriented clockwise. Therefore a G-
colocalization γ becomes a function γ̃ : Conn(T ) → {+,−} (defined by γ̃ = γ ◦ τ )
such that there are no bad triples for γ̃. This is true because every Las Vergnas
triple comes precisely from a union of a cycle of G and an edge connecting two of
its vertices as in Definition 9.3.

Now consider any G-separated collection S of total orientations of G and let
γS : Cyc(G) → {+,−, 0} be the corresponding cycle signature. Let γ̃S = γS ◦ τ :
Conn(T ) → {+,−, 0}. We would like to show that there is a G-colocalization
γ ≥ γS , or equivalently, that there is a map γ̃ : Conn(T ) → {+,−} that has no
bad triples and satisfies γ̃ ≥ γ̃S . Since S is G-separated, there are no bad triples
for γ̃S . Indeed, suppose that (T1, T2, T3) is a bad triple for γ̃S . Then γ̃S(T2) 	= 0
which means that there is a total orientation O′ ∈ S that orients τ (T2). There is
an edge e of G such that the other two cycles of τ (T2) ∪ e are precisely τ (T1) and
τ (T3). Since O′ has to orient e, it follows that it orients either τ (T1) or τ (T3) with
the same sign as τ (T2). Thus γ̃S has no bad triples.

Let γ̃ : Conn(T ) → {+,−, 0} be the maximal with respect to the ≥ order map
such that γ̃ ≥ γ̃S and such that there are no bad triples for γ̃. We claim that the
image of γ̃ lies in {+,−}, which is the same as saying that it is a G-colocalization
in general position. Suppose that this is not the case and choose the minimal by
inclusion connected subgraph T ′ of T such that γ̃(T ′) = 0. We would like to show
that there is ε ∈ {+,−} such that setting γ̃(T ′) := ε introduces no bad triples. First
of all, regardless of ε, we can get no bad triples of the form (T ′, T2, T3). This is true
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because if γ̃(T2) 	= 0 then we necessarily have γ̃(T2) = γ̃(T3), otherwise (T ′, T2, T3)
would be a bad triple for γ̃. Thus we need to only make sure that we will get no
bad triples of the form (T1, T

′, T3) after setting γ̃(T ′) := ε. Since T ′ is minimal,
we have γ̃(T1), γ̃(T3) 	= 0. If γ̃(T1) 	= γ̃(T3) then (T1, T

′, T3) cannot be a bad triple
for γ̃ after we set γ̃(T ′) = ε. Thus the only possible restrictions on ε come from
triples (T1, T

′, T3) such that γ̃(T1) = γ̃(T3) 	= 0. If for all such triples the sign of
γ̃(T1) = γ̃(T3) is the same then we can just choose ε to be this sign. Otherwise
there must exist two triples (T1, T

′, T3) and (T5, T
′, T7) such that

(9.1) γ̃(T1) = γ̃(T3) = +, γ̃(T5) = γ̃(T7) = −.

We need to show that this is impossible. Note that T1 and T3 are obtained
from T ′ by removing some edge e. Similarly, T5 and T7 are obtained from T ′ by
removing some other edge f . If we remove e and f from T ′, it will split into three
connected components, and after a possible switching of indices we may assume that
one of them is T1 and the other one is T7. Let us denote the remaining connected
component T4. Thus T1 ∪ T4 = T5 and T4 ∪ T7 = T3 and T1, T4, T7 are vertex-
disjoint. By (9.1) and since (T1, T5, T4) and (T4, T3, T7) do not form bad triples for
γ̃, we must have γ̃(T3) = γ̃(T4) = γ̃(T5) which yields a contradiction. We are done
with the proof of Theorem 5.7. �

9.2. Mutation-closed domains for graphical oriented matroids

In this section, we investigate the mutation graph Gμ(M�GO
) and prove Con-

jecture 7.8 in the graphical case. We also point out the relationship with the
results of Gioan [Gio07,Gio08] as well as recent developments of Backman-Baker-
Yuen [BBY17] on the Jacobian group of a graph.

Recall that for an oriented matroid M, two sets S, T ⊂ E are related by a
mutation if there exists a circuit C of M oriented by S and such that T = (S −
C+) ∪ C− in which case we write T = μC(S) and have an edge between S and
T in the mutation graph Gμ(M) of M. Translating this to the language of total
orientations of an undirected graph G yields the following notion which is due to
Gioan [Gio07].

Definition 9.6. We say that two orientations O1 and O2 of G are related by
a cycle reversal if there is an undirected cycle C of G such that O1 and O2 orient
it in the opposite ways and agree on all other edges of G. We let Gμ(G) be a
simple graph whose vertices are total orientations of G and two such orientations
are connected by an edge if and only if they are related by a cycle reversal.

Definition 9.7. Let V be the vertex set of G and consider a total orientation
O of G. We define the indegree sequence of O to be a map indegO : V → Z

associating to each vertex v ∈ V the number indegO(v) of edges pointing towards
v in O.

We recall some of the results of Gioan:

Proposition 9.8 ([Gio07, Proposition 4.10]). Two orientations O1 and O2

of G belong to the same connected component of Gμ(G) if and only if indegO1
(v) =

indegO2
(v) for all v ∈ V . �

Proposition 9.9. Let G be an undirected graph. The following quantities are
equal:
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• the number of connected components of Gμ(G);
• the number of forests of G;
• the number of independent sets of M�GO

;

• the size of a maximal by size G-separated collection;
• the value TG(2, 1) where TG is the Tutte polynomial of G.

Proof. The fact that the number of indegree sequences equals TG(2, 1) is given
in [Gio07, Corollary 4.11] and the rest follows from various known interpretations
of TG(2, 1) combined with our results from Section 7. �

Our next result follows from the proof of [Gio07, Proposition 4.10]:

Proposition 9.10. If two orientations O1 and O2 of G belong to the same
connected component of Gμ(G) then O1 and O2 are not G-separated.

Proof. Indeed, as Gioan shows in the proof of [Gio07, Proposition 4.10], if
O1 and O2 have the same indegree sequence then there is a cycle in G that they
orient in the opposite ways. This finishes the proof. �

Thus we have the following situation: every maximal by size G-separated col-
lection S of total orientations has TG(2, 1) elements, there are TG(2, 1) connected
components in Gμ(G) and each connected component contains at most one element
of S. Thus each component contains exactly one element of S.

Corollary 9.11. Conjecture 7.8 is valid for graphical oriented matroids.

Proof. Indeed, for any mutation-closed domain D consisting of k connected
components of Gμ(G), any G-separated collection inside D contains at most k ele-
ments, but the restrictions of maximal by size G-separated collections inside 2E to
D contain exactly k elements. �

Corollary 9.12. An undirected graph G is outerplanar if and only if for any
mutation-closed domain D, every maximal by inclusion G-separated collection of
total orientations is also maximal by size.

Remark 9.13. Several of our results for the graphical case can be found
in [BBY17]. For example, Proposition 9.10 is analogous to [BBY17, Proposi-
tion 3.3.3]. One major difference is that in [BBY17], the authors consider only
coherent colocalizations (see the next section for the definition) which correspond to
regular zonotopal tilings. Another difference is that the main focus of [BBY17] as
well as [Gio07] are cycle-cocycle reversal classes rather than cycle reversal classes
that we consider. The latter correspond to the vertices of the zonotopal tiling while
the former correspond to the top-dimensional tiles of the same tiling.

We now would like to show that the connected components of Gμ(G) are actually
1-skeleta of polytopes. Choose some reference orientation O of G. To every total
orientation O′ of G we now associate a vector x = xO′ ∈ RE as follows. For every
edge e ∈ E, we put

(9.2)

{
x(e) = +1, if O and O′ agree on e;

x(e) = −1, otherwise.

For a collection D of total orientations of G, we define P (D) ⊂ RE to be the
convex hull of xO′ for all O′ ∈ D. Since this polytope is contained in the cube
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Conv({+1,−1}E) ⊂ RE and for any total orientation O′, xO′ is a vertex of this
cube, it follows that for every orientation O′ ∈ D, xO′ is a vertex of P (D).

Proposition 9.14. Let D be a single connected component of Gμ(G). Then
two orientations O1, O2 ∈ D are connected by a cycle reversal if and only if xO1

and xO2
form an edge of P (D). Thus the restriction of Gμ(G) to D is the 1-skeleton

of P (D).

Proof. Note that P (D) lies in the affine subspace W of RE consisting of total
orientations with fixed indegree. More precisely, define the linear map φ : RE → RV

by φ(e) = yv where e is directed in O towards v and (yu)u∈V is a basis of RV . Then
fixing the indegree corresponds to taking the preimage of a single point under φ
which yields an affine subspace of RE . Now, we claim that every edge of Gμ(G)
restricted to D is a one-dimensional face of P (D) and vice versa. Take any edge of
Gμ(G) connecting two orientations O1 and O2. Then there is a unique cycle C of
G where O1 and O2 disagree. One easily observes that the line segment

[xO1
, xO2

] := {txO1
+ (1− t)xO2

| 0 ≤ t ≤ 1}

maximizes the linear function λ on RE defined as follows: for e ∈ E, put λ(e) ∈
{+1, 0,−1} to be

λ(e) =

⎧
⎪⎨
⎪⎩

+1, if xO1
(e) = xO2

(e) = +1;

−1, if xO1
(e) = xO2

(e) = −1;

0, otherwise.

This shows that every edge of Gμ(G) is an edge of P (D). To show the converse,
suppose that O1, O2 ∈ D are such that the line segment [xO1

, xO2
] is an edge

of P (D). Since the indegrees of O1 and O2 are the same, the set of edges of G
where they disagree is a union of several cycles C1, C2, . . . , Ck. If it consists of
just one cycle then we are done, and otherwise we get that [xO1

, xO2
] belongs to a

k-dimensional face of G spanned by the edges of P (D) corresponding to reversing
just a single cycle Ci for 1 ≤ i ≤ k. This finishes the proof. �

9.3. Enumerating maximal G-separated collections

In this section, we show that for some outerplanar graphs G, the total number
of maximal (by size or by inclusion) G-separated collections is given by a simple
multiplicative formula.

Let G be a triangulation of an (n+ 2)-gon. Recall from Definition 9.4 that for
each such graph G there is an associated tree T = T (G) on n vertices such that
the cycles of G correspond to connected subgraphs of T . The former set is denoted
Cyc(G) and the latter set is denoted Conn(T ).

For each a, b ≥ 0, define the tree Ta,b with a+ b+ 2 vertices to be the path of
length a+ b+1 on the vertices (−a,−a+1, . . . ,−1, 0, 1, . . . , b− 1, b) with an extra
leaf � attached to 0. An example of T2,5 (also known as the Dynkin diagram of

affine type Ê8) together with the corresponding outerplanar graph G is shown in
Figure 9.1. When a = 0 or b = 0 then Ta,b is just a path. Note that this family of
trees includes all ADE Dynkin diagrams of finite type as well as some other graphs.

The motivation for the following definition will be clear later, see Proposi-
tion 9.19.
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Figure 9.1. A triangulation G of an 11-gon is shown in black.
The corresponding tree T (G) = T2,5 = Ê8 is shown in red.

Definition 9.15. We say that G is all-coherent if there exist a, b ≥ 0 such that
T (G) = Ta,b.

The main result of this section is the following enumeration of maximal G-
separated collections:

Theorem 9.16. Let G be a triangulation of an n+ 2-gon and suppose that G
is all-coherent: T (G) = Ta,b for some a, b ≥ 0 with n = a+ b+2. Then the number
of maximal (by size = by inclusion) G-separated collections equals

(9.3) 2(n+ 1)
n!

(n− a)!

n!

(n− b)!
.

Example 9.17. Taking G to be a triangulation of a square yields T (G) = Ta,b

for a = b = 0 and n = 2. Thus Ta,b consists of two vertices and there are eight
possible maps Conn(T ) → {+,−}. Six of them give G-colocalizations while the
other two have a bad triple. Each of the six G-colocalizations corresponds to a
maximal G-separated collection, in agreement with (9.3).

Proof. We will show that if G is all-coherent then the number of maximal
G-separated collections equals to the number of regions of a certain hyperplane
arrangement (see [Sta07] for the background) called the secondary arrangement.

Definition 9.18. Let M be an oriented matroid with ground set E and let
σ : C(M) → {+,−, 0}E be a colocalization in general position. We say that σ is
coherent if there exists a function λ : E → R such that for any circuit C = (C+, C−)
of M, we have λ(C) 	= 0 and σ(C) = + if and only if λ(C) > 0. Here

λ(C) =
∑

e∈C+

λ(e)−
∑

e∈C−

λ(e).

Let A(M) be the arrangement of hyperplanes in RE = {λ : E → R} given by
∑

e∈C+

λ(e) =
∑

e∈C−

λ(e),

where C = (C+, C−) runs over the set of all circuits of M.
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Thus coherent colocalizations of M correspond to the regions of A(M). If
M is realized by some vector configuration V then one can define the secondary
arrangement A′(V) as follows: for any circuit C = (C+, C−) of M, there are
unique (up to a multiplication by a common positive scalar) positive real numbers
αe, e ∈ C such that

∑

e∈C+

αeve =
∑

e∈C−

αeve.

The arrangement A′(M) in RE = {λ : E → R} consists of the hyperplanes
∑

e∈C+

αeλ(e) =
∑

e∈C−

αeλ(e).

The colocalizations of M in general position correspond to zonotopal tilings of
ZV by the Bohne-Dress theorem and the coherent colocalizations correspond to
the regions of A(M). The regions of the secondary arrangement A′(M) corre-
spond to the coherent (or regular) zonotopal tilings of ZV. Note that when M is
graphical, we have αe = 1 for all e so the arrangements A(M) and A′(M) actu-
ally coincide. Secondary arrangements are closely related to secondary polytopes of
Gel’fand-Kapranov-Zelevinsky [GKZ94].

Proposition 9.19. Let G be a triangulation of an n + 2-gon. Then G is all-
coherent (i.e., T (G) = Ta,b) if and only if every G-colocalization is coherent.

Before we prove the proposition, let us show how it implies Theorem 9.16. Let
V := {−a,−a+1, . . . , b− 1, b, �} be the vertex set of T (G), and let x−a, x−a+1, . . . ,
xb, z be real numbers. Define the following hyperplane arrangement Aa,b in RV :

Aa,b = {z = 0} ∪ {xi = 0 | −a ≤ i ≤ b}

∪ {xj − xi = 0 | −a ≤ i < j ≤ b}

∪ {xj − xi + z = 0 | −a ≤ i ≤ 0 ≤ j ≤ b}.

(9.4)

The arrangement Aa,b is related to A(M�GO
) via a simple change of coordinates,

as we now explain. Choose an orientation �GO of G such that the boundary of the
n+ 2-gon is oriented clockwise (and the remaining edges are oriented arbitrarily).
We introduce a linear map φ : RE → RV , where E is the ground set of M�GO

. For

each v ∈ V and e ∈ E, the (e, v)-th entry of the matrix of φ is zero unless e is an
edge of the triangle of G around v. If e is oriented clockwise around the boundary
of this triangle, the matrix entry is +1, otherwise it is −1. One easily checks that
each hyperplane in A(M�GO

) contains the kernel of φ, thus φ(A(M�GO
)) yields a

hyperplane arrangement inside RV with the same number of regions. It is also
straightforward to see that the hyperplane arrangements Aa,b and φ(A(M�GO

)) are

related by another coordinate change (x−a, . . . , xb, z) �→ λ, where λ : V → R is
given by

λ(i) = xi − xi−1, −a ≤ i ≤ b, and λ(�) = z.

Here we put x−a−1 := 0. Thus the regions of Aa,b correspond precisely to co-
herent G-colocalizations σ. Since by the above proposition, every G-colocalization
is coherent, the number of them (which is the same as the number of maximal
G-separated collections) equals the number of regions of Aa,b. The formula (9.3)
then follows from [Ath96, Theorem 3.4] since Aa,b is a cone over a graphical Shi
arrangement. The only thing left to do is to prove Proposition 9.19.
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+1 +1

+1+1

λ(1) λ(2) λ(3) λ(4) λ(5)

λ(1) + λ(2) + · · ·+ λ(5) = −2

+1 −2 +3 −2 +1

−2

+1

Figure 9.2. Dynkin diagrams of affine types D̂n (for n = 8) and

Ê6 together with the choice of λ.

Proof of Proposition 9.19. We start by showing that if G is not all-coher-
ent then there is a non-coherent G-colocalization. Since a colocalization of a sub-
graph of G can be extended to a G-colocalization (for example, by Theorem 5.7),
it suffices to construct non-coherent G-colocalizations for the case when T (G) is

a Dynkin diagram of type either D̂n, n ≥ 5, or Ê6, shown in Figure 9.2.1 The
construction is similar to the one used in [GP16, Example 3.9].

Let T (G) be either D̂n or Ê6. To each vertex v of T (G) we will assign a real

number λ(v). For Ê6, the values of λ(v) are shown in Figure 9.2 (thus λ is obtained
from Vinberg’s additive function [Vin71] by changing signs of all vertices of the

same color). For D̂n, denote by L the set of leaves of D̂n and by U the set of all
other vertices, so we have |L| = 4 and |U | = n− 3. We put λ(v) = 1 for all v ∈ L
and for v ∈ U , we choose λ(v) to be generic real numbers such that

∑

v∈U

λ(v) = −2.

For example, if n = 4 then U consists of just one vertex v so we must have λ(v) = −2
which again recovers Vinberg’s additive function.

Now that we have constructed λ, we will define σ : Conn(T (G)) → {+,−, 0}
as follows: for each subtree T ′ ∈ Conn(T (G)), we put σ(T ′) to be the sign of∑

v∈T ′ λ(v), so we put σ(T ′) = 0 if this sum is zero, in which case we call T ′ a zero
subtree. We give a complete description of zero subtrees for each of the cases. For
D̂n, denote L = {a, b, c, d} so that a, b have a common neighbor and c, d have a

common neighbor. For i 	= j ∈ L, denote by iUj the subtree of D̂n with vertex set
{i, j} ∪ U .

• For T (G) = D̂n, n ≥ 5, there are six zero subtrees:

aUc, aUd, bUc, bUd, aUb, cUd.

• For T (G) = Ê6, there are seven zero subtrees: all the six paths of length
4 together with T (G) itself.

We are going to specify a non-coherent perturbation of σ by assigning some
carefully chosen signs to the zero subtrees of T (G) in such a way that σ would be
a colocalization but not a coherent one. First note that no matter how we assign
the signs to these subtrees, the result will be a colocalization (i.e., have no bad
triples as in Definition 9.5). Indeed, in any bad triple (T1, T2, T3), only one of the
trees can satisfy σ(Ti) = 0 as it follows from the description above. If σ(T2) = 0

1Since G is a triangulation, we do not consider the affine Dynkin diagram D̂4 since T (G) can
only have vertices of degree at most 3.
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then λ(T2) = 0 but since λ(T2) = λ(T1) + λ(T3), we have σ(T1) = −σ(T3) 	= 0. If
instead σ(T1) = 0 then λ(T1) = 0 and thus λ(T2) = λ(T3) so σ(T2) = σ(T3) 	= 0.
This shows that after we choose the signs for the zero subtrees of σ, it becomes a
colocalization for G in general position.

Suppose that T (G) = D̂n. Choose the signs for the four zero subtrees as follows:

σ(aUc) = σ(bUd) = +, σ(aUd) = σ(bUc) = −.

Choose the remaining two signs σ(aUb), σ(cUd) arbitrarily. Then σ cannot be
coherent because if it was defined by some labeling μ of the vertices of T (G) by
real numbers then we would have

μ(aUc) + μ(bUd) = μ(a) + μ(b) + μ(c) + μ(d) + 2μ(U) = μ(aUd) + μ(bUc),

but on the other hand, the left hand side has to be positive and the right hand side
has to be negative.

We deal with the case T (G) = Ê6 in an analogous fashion. There are six paths

T1, T2, . . . , T6 of length 4 in Ê6, we order them so that for any i = 1, 2, . . . , 6, Ti

and Ti+1 have 3 vertices in common. Here the indices are taken modulo 6. We put

(9.5) σ(T1) = σ(T3) = σ(T5) = +; σ(T2) = σ(T4) = σ(T6) = −,

and for the remaining zero subtree which coincides with T (G), we choose σ(T (G))
to be arbitrary, say, σ(T (G)) = +. Again, summing up both sides of (9.5) shows

that σ is non-coherent. Thus both D̂n and Ê6 admit non-coherent colocalizations,
and therefore if all G-colocalizations are coherent then T (G) does not contain either
of these two trees as a minor and so G must be all-coherent. We have shown one
direction of Proposition 9.19. Note that the same method of proof does not work
for the affine Dynkin diagrams Ê7 and Ê8, in fact, these graphs are all-coherent.

So let G be an all-coherent graph and thus T (G) = Ta,b for some a, b with a+
b+2 = n. We would like to show that every G-colocalization σ : Conn(T ) → {+,−}
is coherent. Our first goal is to explain that the only possible counterexamples to
this are the ones of the form above. More precisely, by [BBY17, Lemma 2.3.1],
σ is coherent if and only if for every C1, C2, . . . , Ck ∈ Cyc(G), there is no k-tuple

(a1, . . . , ak) of integers such that σ(Ci) = sign(ai) and
∑k

i=1 aixCi
= 0, where

xCi
∈ RE is defined by linearity via (9.2). If we allow repetitions, we may assume

that ai = ±1 for all i = 1, 2, . . . , k. Let T1, T2, . . . , Tk ∈ Conn(T (G)) be the subtrees
of T (G) corresponding to C1, . . . , Ck. Thus showing the result amounts to showing
the following:

Lemma 9.20. Suppose that we are given two multisets

T +, T − ⊂ Conn(Ta,b)

that satisfy σ(T ) = + for all T ∈ T + and σ(T ) = − for all T ∈ T −. Suppose in
addition that every vertex of Ta,b appears in T + and in T − the same number of
times. Then we have T + = ∅ and T − = ∅.

Proof. We assume that the result of the lemma is true for all smaller values
of a and b by induction (the base case being trivial). We also assume that the
collections T +, T − are minimal by size satisfying the above conditions. For i ≤ j,
denote by [i, j] ⊂ Z the set [i, j] = {i, i+ 1, . . . , j}. Recall that the vertices of Ta,b

are the numbers in [−a, b] together with an extra vertex �. For −a ≤ i ≤ 0 ≤ j ≤ b,
we denote by [i, �, j] := [i, j] ∪ {�} the corresponding subtree of Ta,b. Thus the set
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Conn(Ta,b) consists of all sets that are either of the form [i, j] for −a ≤ i ≤ j ≤ b or
of the form [i, �, j] for −a ≤ i ≤ 0 ≤ j ≤ b, together with one extra subtree {�}. We
call the subtrees in T + positive and the subtrees in T − negative. We also assume
that � appears in at least one subtree, otherwise we can remove it and designate
some other vertex to be �. We split T + ∪ T − into two multisets A,B as follows:

A = {positive subtrees containing �} ∪ {negative subtrees not containing �};

B = {positive subtrees not containing �} ∪ {negative subtrees containing �}.

It is clear that both sets are nonempty because we assumed that � appears in at
least one (positive or negative) subtree. We will show that if A is nonempty then
we must have σ({�}) = + and if B is nonempty then we must have σ({�}) = −.
This will immediately lead to a contradiction. Moreover, by symmetry, we only
need to prove the first of these two claims.

Suppose that A is nonempty. We are going to construct a certain directed
graph D(A) with vertex set [−a, b] and with arrows colored red and blue. For each
positive subtree [i, �, j] (with necessarily i ≤ 0 ≤ j), draw a red arrow i → j in
D(A). For each negative subtree [i, j] with i ≤ 0 ≤ j, draw a blue arrow j → i in
D(A). We claim that for every red arrow i → j in D(A), there is also a blue arrow
j → q in D(A), and vice versa, for any blue arrow j → i in D(A), there is a red
arrow i → q in D(A).

Indeed, suppose that i → j is a red arrow in D(A), that is, the subtree [i, �, j]
appears in T +. We will consider two cases: j = b and j < b. If j = b then there
must be some negative subtree T− ∈ T − containing b. It has the form either [q, b]
for some q ∈ [−a, b] or [q, �, b] for some q ∈ [−a, 0]. The latter case is impossible
since then we will either have [q, �, b] ⊂ [i, �, b] or [q, �, b] ⊃ [i, �, b], and in any case we
can replace these two subsets by their difference which also belongs to Conn(Ta,b).
This would contradict the minimality of (T +, T −). The former case is impossible
by the same reasoning unless q ≤ 0. Thus for the case j = b we have established a
blue arrow from j to q ≤ 0. Suppose now that 0 ≤ j < b. Then the rest of (T +, T −)
contributes more to j + 1 than to j. There cannot be any positive subtree of the
form [j + 1, q] because otherwise [i, �, j] ∪ [j + 1, q] would be a connected subtree
which again is a contradiction since (T +, T −) is minimal. Thus there must be a
negative subtree of the form either [q, j] or [q, �, j]. By the same reasoning, the
latter gives a contradiction, and for the former, we must have q ≤ 0, otherwise the
difference [i, �, j] − [q, j] would be connected. We have found a blue arrow from j
in D(A).

A similar argument shows that for every blue arrow j → i, there exists a
red arrow i → q in D(A). Hence we can find a directed cycle C in D(A) that
alternates between red and blue arrows. We want to show that σ({�}) = +. Suppose
that we have σ({�}) = − instead. Then for every positive subtree [i, �, j], we
know that σ([i, j]) = + because otherwise ([i, j], [i, �, j], {�}) would be a bad triple
for σ. Now, let us remove � from all the subtrees appearing in C. This will
give a linear combination of subtrees of Ta,b − {�} that sums up to zero at every
vertex which cannot exist by the induction hypothesis. We get a contradiction thus
finishing the proof of the lemma. As a consequence, this also finishes the proofs of
Proposition 9.19 and Theorem 9.16. �
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9.4. Regular matroids

In this section, we briefly describe how to generalize our results to the class of
regular (unoriented) matroids. We refer the reader to [Oxl11] for the background
on (unoriented) matroids.

Definition 9.21. We say that a matroid M is regular if it can be realized by
a totally unimodular matrix, that is, a matrix with all maximal minors equal to
either +1, 0, or −1.

We refer the reader to the discussion before [BLVS+99, Proposition 7.9.3] for
other equivalent definitions of regular matroids. Note that regular matroids are
always orientable in an essentially unique realizable way:

Proposition 9.22 ([BLVS+99, Corollary 7.9.4]). If M is a regular matroid
then all orientations of M are realizable. They differ only by reorientation.

The class of regular matroids is closed under taking duals and contains the
class of graphical (as well as cographical) matroids. Moreover, graphical and regular
matroids admit the following nice characterizations by forbidden minors. Let F7

denote the famous Fano matroid on 7 elements, and for a graph G, denote by M(G)
the associated graphical matroid. Let U2,4 denote the uniform matroid of rank 2 on
4 elements and let M∗ denote the dual matroid of M .

Proposition 9.23 ([Tut59] and [Tut58]).

(1) A matroid M is regular if and only if it does not contain U2,4, F7, and
F ∗
7 as minors.

(2) A matroid M is graphical if and only if it does not contain U2,4, F7, F
∗
7 ,

M∗(K3,3), and M∗(K5) as minors.

Theorem 9.24. Let M be an orientation of a regular matroid M . Then M is
pure if and only if M = M(G) is a graphical matroid where G is an outerplanar
graph.

Proof. Suppose that M is regular but not graphical. Then by Proposi-
tion 9.23, it contains either M∗(K3,3) or M

∗(K5) as a minor. By Proposition 9.22,
M contains M∗

�K3,3

or M∗
�K5

as a minor. One easily checks that both K3,3 and

K5 contain K4 as a minor and since K4 is self-dual and not pure, we are done by
Proposition 8.3. �
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CHAPTER 10

The rank 3 case

The goal of this chapter is to prove one direction of Theorem 5.3, namely, that
all positively oriented matroids of rank 3 are pure. The case of the rank 3 uniform
positively oriented matroid Cn,3 is done in Corollary 3.11.

The following lemma is well known, see, e.g., [Pos06] or [ARW13, Exam-
ple 3.3].

Lemma 10.1. Suppose that a simple oriented matroid M of rank 3 is isomorphic
to a positively oriented matroid. Then M is isomorphic to MV where the endpoints
of vectors of V all belong to the boundary of a convex n-gon lying in the plane
z = 1. �

We call such vector configurations V totally nonnegative. If all endpoints of
V are vertices of that convex n-gon then we say that V is totally positive. Thus,
Corollary 3.11 shows that all three-dimensional totally positive vector configura-
tions are pure and our goal is to generalize this result to totally nonnegative vector
configurations:

Theorem 10.2. Let V ⊂ R3 be a totally nonnegative vector configuration.
Then the map T �→ Vert(T) is a bijection between fine zonotopal tilings of ZV and
maximal by inclusion V-separated collections of subsets.

Proof. Let [n] be the ground set of V. Since all endpoints of the vectors of
V belong to the plane z = 1, we can restrict our attention to this plane. Moreover,
by Lemma 8.2, we can assume that the oriented matroid MV is simple. We let
A = (x1,x2, . . . ,xn) ⊂ R2 be the affine point configuration corresponding to V,
that is, the points ofA are the endpoints of the vectors inV. Two subsets S, T ⊂ [n]
are A-separated if and only if

Conv(S − T ) ∩ Conv(T − S) = ∅,

where Conv(R) denotes the convex hull of a set {xi | i ∈ R} ⊂ A. It is clear two
subsets are A-separated if and only if they are V-separated.

As we have already mentioned, Corollary 3.11 implies the result for the case
when the points of A are the vertices of a convex n-gon P , and we need to show
purity for the case when the points of A are either the vertices of P or belong to
the edges of P .

We proceed by induction on the number of points in A, and for each fixed
number of points we proceed by “reverse induction” on the number of sides of P :
we start with the polygon with |A| sides, for which we already know the result, and
then do the induction step from polygons with p sides to polygons with p− 1 sides.

Assume that x1,x2, . . . ,xn are cyclically ordered on the boundary of P which
is a polygon with p − 1 < n sides. Assume also that one of the sides contains the
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60 10. THE RANK 3 CASE

points x1,x2, . . . ,xr for some r > 2 but does not contain any other points. This is
always achievable by a cyclic shift of vertex indices. Let

x′
1 :=

1

2
(x1 + xn),

thus we have a non-degenerate triangle with vertices x′
1,x2,xn. Define A′ :=

{x′
1,x2, . . . ,xn}. Then it is clear that Conv(A′) is a polygon with p sides, so by the

induction hypothesis, any maximal by inclusion A′-separated collection corresponds
to a zonotopal tiling of ZV′ , where V′ is the vector configuration corresponding to
A′.

Let S ⊂ 2[n] be any maximal by inclusion A-separated collection. If S is com-
plete then by Proposition 7.18, part (2), σS is a colocalization in general position,
and thus by Theorem 7.2, S is maximal by size so we are done. Thus assume that
S is not complete, in which case σS has some zeroes in the image so we cannot
conclude that it is a colocalization. Let M and M′ be the oriented matroids on
the ground set [n] corresponding to A and A′ respectively with circuits C and C′,
respectively. It is apparent from the definition that there is a weak map M′

� M,
which implies the first part of the following lemma.

Lemma 10.3.

(1) If any two sets are M-separated then they are M′-separated.
(2) If S, T are M′-separated but not M-separated then there is a circuit X ∈ C

such that 1 ∈ X ⊂ [r], X+ ⊂ T − S and X− ⊂ S − T .
(3) Conversely, all circuits that satisfy X+ ⊂ T − S and X− ⊂ S − T must

also satisfy 1 ∈ X ⊂ [r].

Proof. The first claim is obvious, the second and the third claims follow from
the construction of A′, since C − C′ consists exactly of all circuits of M containing
1 whose support belongs to [r]. �

Lemma 10.4. For any C ∈ C, we have

(10.1) C+ ⊂ [r] ⇐⇒ C− ⊂ [r].

Proof. Follows from the fact that [r] is a flat of M. �

Lemma 10.5. The restriction S([r]) := {S ∩ [r] | S ∈ S} is a maximal by size
M |[r]-separated collection. Moreover, S contains

S([r]) ∪ {T � [r + 1, n] | T ∈ S([r])}.

Proof. Since the rank of M |[r] is 2, it is pure by Corollary 3.11, so let Sr be
a maximal by inclusion (and by size) M |[r]-separated collection. Let T ∈ Sr. We
claim that both T and T ′ := T � [r+1, n] are M-separated from S. Indeed, suppose
that S ∈ S is not M-separated from T . Let X ∈ C be such that X+ ⊂ S − T and
X− ⊂ T − S. Then X− ⊂ [r], and therefore by (10.1) we must have X+ ⊂ [r].
Thus T is not M |[r]-separated from S ∩ [r], a contradiction. Similarly, suppose
that S ∈ S is not M-separated from T ′. Let X ∈ C be such that X+ ⊂ S − T ′ and
X− ⊂ T ′ − S. Then X+ ⊂ [r], and therefore by (10.1) we must have X− ⊂ [r],
which again leads to a contradiction. �

Let S ′ be a maximal by inclusion M′-separated collection that contains S.
Then by the induction hypothesis we know that S ′ is complete and that σS′ is
a colocalization in general position. Our goal is to show that S is also complete.
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10. THE RANK 3 CASE 61

Suppose otherwise that σS(C) = 0 for some C ∈ C. We may assume that σS′(C) =
+, thus let S ∈ S ′ be a set orienting C positively. By Lemma 10.3, we see that
C 	⊂ [r], thus by (10.1), we get

(10.2) C+ 	⊂ [r] and C− 	⊂ [r].

Since S /∈ S ′, there exists a set T ∈ S that is not M-separated from S. By
Lemma 10.3, there exists a circuit X ∈ C satisfying

1 ∈ X ⊂ [r], X+ ⊂ T − S, and X− ⊂ S − T.

By Lemma 10.5, we may replace T with T ∩ [r]. Thus we have T ⊂ [r] and denote
T ′ := T � [r + 1, n].

Let X = {1, i, j} for some 1 < i < j ≤ r. We consider two cases: X =
({1, j}, {i}) and X = ({i}, {1, j}). Assume first that X = ({1, j}, {i}). Thus
1, j ∈ T − S and i ∈ S − T . By (10.2), there exists k ∈ C+ \ [r]. Since S orients
C positively and T ⊂ [r], we get k ∈ S − T . Since ({1, j}, {i, k}) ∈ C′, we find
that S and T are not M′-separated, which is a contradiction. Assume now that
X = ({i}, {1, j}). Thus i ∈ T − S and 1, j ∈ S − T . By (10.2), there exists
k ∈ C− \ [r]. Since S orients C positively and T ′ = T � [r+1, n], we get k ∈ S−T ′.
Since ({1, j}, {i, k}) ∈ C′, we find that S and T ′ are not M′-separated, which again
yields a contradiction.

We have shown that S is complete. As explained above, this finishes the proof
of Theorem 10.2. �
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CHAPTER 11

Classification results

In this chapter, we prove the remaining parts of Theorems 5.8 and 5.3, as well
as some other results that we announced in the earlier sections. We start by showing
Proposition 5.1:

Proposition 11.1. All simple oriented matroids of rank at most 2 or corank
at most 1 are pure.

Proof. If M has corank 1 then it has just one pair of opposite circuits ±C =
±(C+, C−) supported on the whole ground set. Thus any two subsets of E are
M-separated from each other except for C+ and C−. The purity of M follows.

If M has corank 0 then there are no circuits so any two subsets of E are
M-separated from each other.

If M (note that it is simple) has rank 2 then it is isomorphic to the alternating
matroid Cn,2 for some n. As we have noted before, in this case M-separation is
the same thing as strong separation and thus the purity of M is a special case of
Theorem 3.6.

If M has rank 0 or 1 and is simple, it means that it has at most one element
and the result is trivial. �

Next, we analyze which of the six-element oriented matroids are pure. Note
that for an oriented matroid M with |E| = 6 elements, if rank(M) = 0, 1, 2, 5, or
6 then M is pure by the above proposition. Also, for rank(M) ≥ 4 we only care
about the case of M being uniform. As we will see later in Lemma 11.3, all uniform
oriented matroids of rank 4 and corank 2 are isomorphic to C6,4.

Lemma 11.2. (1) The alternating matroid C6,4 is non-pure;
(2) There are 17 isomorphism classes of simple oriented matroids of rank 3

with 6 elements. Eight of them (Figure 11.1) are positively oriented and
therefore are pure. The other nine of them (Figure 11.2) are not pure.

Proof. The first claim has already been mentioned in the end of the proof
of Proposition 7.18. Recall that (Cn,2)∗ defines an oriented matroid isomorphic to
Cn,n−2. Take S = {∅, [4], [6] − [2]} ⊂ 2[6]. It is complete but it does not define a
colocalization of (C6,2)∗ because it does not have Type III so it is not contained in
any maximal by size (C6,2)∗-separated collection.

The second claim is a computational fact. It is easy to list all the totally
nonnegative point configurations, see Figure 11.1, and then for each of the remaining
nine oriented matroids one needs to construct an M-separated collection that is not
contained in any complete M-separated collection. We list this data in Figure 11.2.
Namely, for each of the nine oriented matroids M that are not positively oriented,
we specify a bad collection S0 and a bad circuit C ∈ C(M) with the following
property: any maximal by inclusion M-separated collection containing the bad
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IC(6, 3, 17) IC(6, 3, 16) IC(6, 3, 15) IC(6, 3, 14)

1 2 3

45

6

1 2 3

456
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4

5

6

1

2

3

4

5

6

IC(6, 3, 11) IC(6, 3, 8) IC(6, 3, 7) IC(6, 3, 4)

Figure 11.1. Affine diagrams of the eight (isomorphism classes
of) positively oriented matroids of rank 3 with 6 elements and their
names from [Fin01].

collection S0 cannot orient the bad circuit C either negatively or positively. Let us
give an example. Take M = IC(6, 3, 13) from Figure 11.2. Then the bad circuit is
C = (6, 124) and the bad collection is

S0 = {456, 1356, 2345, 12346}.

First, note that S0 is M-separated, e.g., the sets 1356 and 2345 are M-separated
because the segments 16 and 24 do not intersect each other in Figure 11.2.

Now, there are four subsets of [6] that orient C positively, namely, 6, 36, 56, 356.
Similarly, there are four subsets of [6] that orient C negatively: 124, 1234, 1245,
12345. One easily checks that for each such set S, there is at least one subset
T ∈ S0 that is not M-separated from S:

S 6 36 56 356 124 1234 1245 12345
T 2345 2345 12346 12346 1356 456 1356 456

This shows that the oriented matroid IC(6, 3, 13) is not pure. The same argu-
ment applied to the other eight oriented matroids in Figure 11.2 finishes the proof
of Lemma 11.2. �

Lemma 11.3. If M is a uniform oriented matroid with rank(M) ≥ 4 and
corank(M) ≥ 2 then M contains a minor isomorphic to C6,4.

Proof. We show this by induction on corank(M). Suppose corank(M) = 2.
Since M is uniform, its dual is a uniform oriented matroid of rank 2 with at least
6 elements. Any such oriented matroid (they are all isomorphic) contains C6,2

as a minor, and therefore its dual contains a minor isomorphic to C6,4. Now let
corank(M) > 2. If every element e ∈ E is a coloop then corank(M) would be zero,
so suppose e ∈ E is not a coloop. Then removing e from M preserves its rank
but decreases its corank by 1. Therefore M − e contains C6,4 as a minor by the
induction hypothesis. We are done with the proof of the lemma. �

This lemma finishes the proof of parts (1) and (2) of Theorem 5.8. We already
have shown one direction of Theorem 5.3, namely, that every positively oriented
matroid of rank 3 is pure (see Theorem 10.2). We also have shown the converse
for |E| = 6 in Lemma 11.2. (For |E| ≤ 5, each rank 3 oriented matroid is already
isomorphic to a positively oriented matroid, so there is nothing to prove.) It re-
mains to show that if |E| ≥ 7 then M is either isomorphic to a positively oriented
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Name in [Fin01] IC(6, 3, 13) IC(6, 3, 12) IC(6, 3, 10)
Bad circuit (6, 124) (6, 134) (6, 124)

Bad collection 456, 1356, 2345, 12346 13, 126, 1245, 2356 24, 346, 2356, 1345

1 2 3

45

6

1 2

3

4

5

6

1 2

3

4

5 6

Name in [Fin01] IC(6, 3, 9) IC(6, 3, 6) IC(6, 3, 5)
Bad circuit (6, 135) (6, 134) (6, 245)

Bad collection 35, 346, 1234, 2456 13, 126, 2356, 1245 25, 126, 1356, 1234

1 2

3

4

5

6

1 2

3

4

5

6

1

2

3

45

6

Name in [Fin01] IC(6, 3, 3) IC(6, 3, 2) IC(6, 3, 1)
Bad circuit (6, 124) (6, 245) (6, 124)

Bad collection 14, 456, 125, 1356 56, 24, 345, 1346 14, 26, 2345, 1356

Figure 11.2. Affine diagrams of the remaining nine (isomor-
phism classes of) oriented matroids of rank 3 with 6 elements. The
red and blue vertices form a bad circuit.

matroid or contains one of the six-element non-pure oriented matroids as a minor.
In other words, we need to prove that a rank 3 oriented matroid is isomorphic to
a positively oriented matroid if and only if it does not contain an oriented matroid
from Figure 11.2 as a minor.

Definition 11.4. An oriented matroid M of rank 3 is called almost positively
oriented if for every element e ∈ E, M − e is isomorphic to a positively oriented
matroid.

The rest of the paper is devoted to the proof of the theorem below which clearly
implies Theorem 5.3 as well as Theorem 5.8, part (3).

Theorem 11.5. Suppose that M is an almost positively oriented matroid with
at least 7 elements. Then M is isomorphic to a positively oriented matroid.

We prove this theorem via a series of lemmas. Throughout the proof, all ori-
ented matroids are assumed to be simple and to have rank 3.

Definition 11.6. Let M be an oriented matroid of rank 3. Then any maximal
by inclusion subset P ⊂ E of rank 2 is called a line. A line P is called non-trivial
if |P | > 2.

We will mostly work with affine diagrams of rank 3 oriented matroids (such as
the ones in Figures 11.1 and 11.2) where the above defined lines can be represented
by lines in the affine diagram.
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(a) (b) (c) (d) (e)

Figure 11.3. The five possible combinatorial types of matchings
of six points on a circle.

Recall from Lemma 10.1 that a positively oriented matroid M of rank 3 can
be realized by an affine diagram where all the points belong to the boundary of
a convex polygon. The number of vertices of this polygon is called the number of
vertices of M and denoted vert(M). The following corollary is immediate.

Corollary 11.7. Suppose M is isomorphic to a positively oriented matroid,
then

vert(M) = |E| −
∑

P is a line of M

(|P | − 2).

�

We will repeatedly use another well known fact.

Proposition 11.8 ([BLVS+99, Theorem 8.2.4] or [GP80]). Any oriented
matroid of rank 3 on at most 8 elements is realizable. �

Lemma 11.9. Let M be an oriented matroid, and let P1 	= P2 be any two lines
in M. Then

|P1 ∩ P2| ≤ 1.

Proof. Since the rank function of M is submodular, we get rank(P1∩P2) ≤ 1.
Since M is assumed to be simple, this gives the result. �

Lemma 11.10. Let M be an almost positively oriented matroid. Then any
element of M belongs to at most two non-trivial lines in M.

Proof. Let E = {a1, a2, . . . , an} and suppose that P1, P2, P3 are three non-
trivial lines in M that all contain a1. By Lemma 11.9, the sets Pi − a1 are disjoint
for i = 1, 2, 3, and each of them contains at least two elements by non-triviality, so
without loss of generality we have

a2, a3 ∈ P1, a4, a5 ∈ P2, a6, a7 ∈ P3.

Consider the restriction M′ of M to {a1, . . . , a7}. By Proposition 11.8, M′ is a
realizable almost positively oriented matroid. Thus M′ − a1 is isomorphic to a
positively oriented matroid, so reorient the elements a2, a3, . . . , a7 so that M′ − a1
would be just positively oriented. We know that the points of M′−a1 belong to the
boundary of some convex polygon, and then a1 just belongs to the intersection of
the three lines (a2a3), (a4a5), and (a6a7), where (aiaj) is the line passing through
the points ai and aj in the affine diagram of M′. There is a natural cyclic order
O on the points a2, a3, . . . , a7 since they belong to the boundary of a convex poly-
gon. Draw these points on the circle according to O and then draw the matching
{(a2, a3), (a4, a5), (a6, a7)}. Up to rotation and reflection, we will get one of the five
matchings in Figure 11.3.
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(a) (b)

Figure 11.4. Two possibilities for M′. Removing the red point
produces a forbidden minor.

It is clear that for the matchings (c), (d), or (e) in Figure 11.3, the three lines
will not intersect at the same point. For (a) or (b) this is possible and we clearly
get only two possibilities for M, shown in Figure 11.4. If we remove the red point
in (a), we will get the oriented matroid IC(6, 3, 9) from Figure 11.2. If we remove
the red point in (b), we will get IC(6, 3, 10) from Figure 11.2. Both of them are not
isomorphic to a positively oriented matroid, and thus M is not almost positively
oriented, and we are done with the proof of the lemma. �

Definition 11.11. We say that an oriented matroid M contains a pentagon if
there is a 5-element subset Π ⊂ E such that the restriction of M to Π is a uniform
oriented matroid of rank 3.

Recall that all uniform oriented matroids on five elements are isomorphic, be-
cause their duals are uniform oriented matroids of rank 2 with five elements.

Definition 11.12. We say that an oriented matroid M is contained in two
lines if there are two lines P1 and P2 of M whose union is E.

Lemma 11.13. Let M be an almost positively oriented matroid with at least 7
elements. Then either M contains a pentagon or M− e is contained in two lines
for some e ∈ E.

Proof. Assume that M − e is not contained in two lines for any e ∈ E.
Fix some element e ∈ E and consider the positively oriented matroid M − e. If
vert(M − e) ≥ 5 then we are done because the vertices of course form a uniform
oriented matroid. Suppose now that vert(M− e) = 4, that is, the points of M− e
belong to the boundary of some quadrilateral. Since M − e is not contained in
two lines, we get that there are two sides of this quadrilateral such that they share
a vertex and both of them contain points of M − e in their interior. But then
removing their shared vertex increases the number of vertices, so we are done with
this case as well.

The only case left is when vert(M − e) = 3 for all e ∈ E. Thus M − e is
a triangle with at least one point in the interior of each side (otherwise M − e
is contained in two lines). If the interior of one of the sides (say, connecting the
vertices f and g) contains at least two points then vert(M−{e, f, g}) = 5 so M−e
contains a pentagon. Thus each side of the triangle contains exactly one point in
its interior, and therefore |E| = 7. We will show that this is impossible.

We see that M− e is isomorphic to IC(6, 3, 14) from Figure 11.1 for every e.
Let f ∈ E be a vertex of this triangle. It belongs to at least 2 non-trivial lines in M
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and by Lemma 11.10 f belongs to exactly 2 non-trivial lines in M, denoted P1 and
P2. For i = 1, 2, Pi has to contain exactly three points. Indeed, by non-triviality
it contains at least three points, and if it contained at least four points then we
would remove some other element g 	∈ Pi and get an oriented matroid M− g with
a line containing at least 4 elements, but M−g has to be isomorphic to IC(6, 3, 14)
which does not have such a line.

Observe that each Pi contains at least two elements of M− f . Now, Pi cannot
contain a vertex of M − f because otherwise this vertex would be contained in
three non-trivial lines, contradicting Lemma 11.10. We find that each of P1 and
P2 contains at least two points which are not among the vertices of M− f . Since
M − f contains three such points in total, one of them has to be common to P1

and P2. On the other hand, the only point in M belonging to both P1 and P2 is
f , a contradiction. �

Remark 11.14. Note that both the property of containing a pentagon and of
being contained in two lines can be stated for unoriented matroids, and then an
example of a matroid that has neither of these two properties is the Fano plane.
Moreover, removing any point from the Fano plane gives an unoriented matroid
isomorphic to IC(6, 3, 14), the underlying matroid of IC(6, 3, 14). In particular, this
implies that the Fano matroid is non-orientable.

We would like to restrict our attention to only almost positively oriented ma-
troids that contain a pentagon. In order to do so, we need to eliminate the other
option from Lemma 11.13.

Lemma 11.15. Let M be an almost positively oriented matroid with |E| ≥ 7
that does not contain a pentagon. Then M is isomorphic to a positively oriented
matroid.

Proof. We will split the proof into three cases:

(1) M is contained in two lines;
(2) there is a line P of M with |P | ≥ |E| − 3;
(3) for some e ∈ E, there are two lines P1 and P2 of M whose union is E− e.

The proof in Case (2) will depend on Case (1) while the proof in Case (3) will
depend on Cases (1) and (2).

Consider the first case. If E = P1 ∪ P2 is a union of two lines then M has no
other non-trivial lines, because any such line would intersect either P1 or P2 by at
least two elements (cf. Lemma 11.9). Consider the cocircuit C(1) of M with zero
set P1 and reorient all elements of P2 so that C(1) would be a positive cocircuit.
Now consider the cocircuit C(2) of M with zero set P2 and reorient all elements
of P1 so that C(2) would be a positive cocircuit. Since the restriction of M to
Pi is a simple rank 2 oriented matroid, we can assume that P1 = {a1, a2, . . . , an}
and P2 = {b1, b2, . . . , bm} are ordered in such a way that the circuits of M |P1

are ({ai, ak}, {aj}) for all 1 ≤ i < j < k ≤ n and the circuits of M |P2
are

({bi, bk}, {bj}) for all 1 ≤ i < j < k ≤ m.
Assume first that P1∩P2 = ∅. Consider the circuitX withX = {a1, an, b1, bm}.

Since X has to be orthogonal to C(1) and C(2), we have Xa1
	= Xan

and Xb1 	= Xbm .
Thus after a possible reversal of the order of ai’s, we have

Xa1
= +; Xan

= −; Xb1 = −; Xbm = +.
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Now choose any 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let Cij be the cocircuit with zero set
{i, j}. Then for any k < i, the sign of Cij

ak
has to be the same, and for any k > i,

Cij
ak

has to have the opposite sign, and similarly for bk’s. Since Cij is orthogonal
to X, we must have

Cij
ak

=

{
+, if k < i;

−, if k > i;
; Cij

bk
=

{
+, if k < j;

−, if k > j;
.

Consider a four-gon with vertices a1, an, bm, b1 in clockwise order and points
a1, . . . , an on one side and points bm, bm−1, . . . , b1 on the opposite side. We claim
that the associated oriented matroid M′ coincides with M. It is clear that the un-
derlying matroids are the same. Clearly they also have the same oriented cocircuits
so we have finished dealing with the case P1 ∩ P2 = ∅. The case |P1 ∩ P2| = 1 is
handled similarly, so we are done with Case (1).

Now consider Case (2): there is a line P of M with |P | ≥ |E| − 3, and in
particular |P | ≥ 4. If |P | > |E|−3 then we are done by Case (1), thus |P | = |E|−3,
so let E − P = {e, f, g}. Since every other line can intersect P by at most one
element, there are at most 3 other non-trivial lines of M, and thus there is an
element h ∈ P not belonging to any of them. If there is another such element h′

then h, h′, e, f, g form a pentagon and we are done, so assume that h is the only
such element. In order to have |P | ≥ 4 while only one element in P not in any
other line, we must have |E| = 7 and for any two elements from {e, f, g} there is
a non-trivial line containing them and one other element in P . But then we have
“too many lines”: consider M − h, which is isomorphic to a positively oriented
matroid on 6 elements. Using Corollary 11.7, we can count that

vert(M− h) = 6− 1− 1− 1− 1 = 2,

which means that M−h is contained in a line even though we know it is not. This
finishes Case (2).

Consider Case (3). We must have that |P1 − P2| ≥ 3 and |P2 − P1| ≥ 3,
otherwise we would arrive at Case (2). Moreover, we may assume that e does not
belong to either P1 or P2, otherwise we would arrive at Case (1). There are at most
two non-trivial lines through e, each of them intersects Pi in at most one element
for i = 1, 2, and there are no other non-trivial lines in M. Thus there is at least
one element ei in each of Pi, i = 1, 2, that is not contained in any other non-trivial
line of M. Let fi 	= ei be an element of Pi − P3−i (i = 1, 2) such that e, f1, f2 do
not lie on the same line. We get that e1, e2, f1, f2, e form a pentagon so we are done
with the proof of the lemma. �

There is a reason why we care about M containing a pentagon.

Lemma 11.16. Suppose that a positively oriented matroid M contains a pen-
tagon. Then the only reorientation of M that is also positively oriented is −EM,
that is, there are no non-trivial positively oriented reorientations of M.

Proof. We prove this by induction on |E|. Let |E| = 5. Then M is itself a
pentagon, and now suppose that −AM is also positively oriented. We may assume
1 ≤ |A| ≤ 2. Note that for every circuit C of M, A has to contain an even number
of elements from C. It is clear that for every one- or two-element subset of E, there
is a circuit of M that contains exactly one element of A, thus we are done with
the base case. To show the induction step, consider any positively oriented matroid
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M that contains a pentagon Π and suppose that −AM is also positively oriented
for some proper subset A of E. Choose an element e ∈ E − Π. By the induction
hypothesis, the intersection of A with E − e has to be either empty or equal to
E − e. In any of these cases, one can easily find a circuit C that contains e and
three other elements from E−e. For this circuit, the intersection A∩C would have
an odd number of elements, so we get a contradiction which finishes the proof of
the lemma. �

Recall that the map χM : Er → {+,−, 0} is the chirotope of M defined in
Section 6.3.

Lemma 11.17. Let M be an almost positively oriented matroid with |E| ≥ 7
that contains a pentagon. Then M is positively oriented if and only if there is a
cyclic order O∗ on E such that for any a, b, c ∈ E ordered in accordance with O∗,
we have χM(a, b, c) ≥ 0. Moreover, if such O∗ exists, it is unique.

Proof. Obviously, if M is positively oriented then O∗ exists and, by Lemma
11.16, is unique. Conversely, ifM admits such an order then it is positively oriented
by definition (see Section 6.3), and thus by the previous claim suchO∗ is unique. �

Our second to last step in proving Theorem 11.5 is to reduce it to oriented
matroids with at most 8 elements.

Lemma 11.18. Suppose that any almost positively oriented matroid with at most
8 elements is isomorphic to a positively oriented matroid. Then the same statement
holds for almost positively oriented matroids with arbitrary number of elements.

Proof. Suppose M is an almost positively oriented matroid with |E| > 8. By
the above discussion, we are assuming that M contains a pentagon Π. Choose any
two distinct elements e, f ∈ E−Π. By Lemma 11.16, there is an essentially unique
reorientation of M−{e, f} that makes it positively oriented. We claim that there is
a unique reorientation of M such that every element from E−e is oriented the same
way in M and in the positive reorientation of M−e, and every element from E−f
is oriented the same way in M and in the positive reorientation of M− f . Such an
orientation is clearly unique, but the fact that it exists is a consequence of the fact
that there is only one reorientation of M−{e, f} that makes it positively oriented,
and this orientation has to agree with the corresponding unique orientations that
make M− e and M− f into positively oriented matroids. Let us explain this in
more detail.

Let O be the cyclic order on the elements of M− {e, f} that comes from the
boundary of the convex polygon that realizes M−{e, f}. In other words, O is the
unique cyclic order on E − {e, f} such that for any three elements a, b, c ordered
in accordance with O, we have χM(a, b, c) ≥ 0 (see Section 6.3). The order O can
be extended to a cyclic order O′ on E − e (resp., O′′ on E − f) such that for any
a, b, c ∈ E−e (resp., a, b, c ∈ E−f) ordered in accordance with O′ (resp., with O′′),
we have χM(a, b, c) ≥ 0. Since the cyclic orders O′ and O′′ agree on E − {e, f},
there is a cyclic order O∗ on E such that removing e from O∗ results in O′ and
removing f from O∗ results in O′′. If e and f are not adjacent in O∗ then such
order is unique, otherwise it is unique up to a transposition of e and f . What we
would like to show is that for any a, b, c ∈ E ordered in accordance with O∗, we
have χ(a, b, c) ≥ 0. Clearly, this holds for any a, b, c such that {e, f} 	⊂ {a, b, c}.
But note that if O∗ is not unique (i.e., if e and f are adjacent in O∗) then we can
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a

b

c

d

e
a

b

c

d

e

A good pentagon A bad pentagon: â+ ê < 180◦

Figure 11.5. Examples of good and bad pentagons. Here â

denotes the angle at vertex a and so on.

choose an element g ∈ Π such that {e, f, g} is a basis, because rank(Πef) > 2, and
then the sign of χ(e, f, g) will determine O∗ uniquely. Thus we have found a unique
possible candidate for O∗ from Lemma 11.17.

Assume that we have some element g ∈ E such that e, f, g is ordered in ac-
cordance with O∗ and we are trying to show that χ(e, f, g) ≥ 0. Let M′ be the
restriction of M to Q := Π ∪ {e, f, g}. Our goal is to show that χM′(e, f, g) ≥ 0.
Since |Q| ≤ 8 and M′ is still almost positively oriented, by the assumption of the
lemma we know that M′ is isomorphic to a positively oriented matroid. By the
above discussion, the unique cyclic order of M′ from Lemma 11.17 has to coincide
with the restriction of O∗ to Q, in which case we clearly get χM′(e, f, g) ≥ 0. This
finishes the proof of the lemma. �

The following lemma combined with Lemmas 11.18 and 11.15 completes the
proof of Theorem 11.5.

Lemma 11.19. If M is an almost positively oriented matroid on at most 8
elements that contains a pentagon Π then M is isomorphic to a positively oriented
matroid.

Proof. By Proposition 11.8, M is realizable, so it comes from some vector
configuration V ⊂ R3. Reorient Π in the unique way such that M |Π is positively
oriented. We know that M |Π is then acyclic, and let H ⊂ R3 be any (affine) plane
such that each vector from Π belongs to H after some rescaling by a positive real
number. The endpoints of vectors from Π form a convex pentagon. Let us say that
a convex pentagon is good if the sum of any two adjacent angles is greater than
180◦. Otherwise, call such a pentagon bad. See Figure 11.5 for an illustration.

We would like to choose an affine plane H so that the vectors from Π would
form a good convex pentagon. Our first goal is to show that it is always possible.

Claim. For every 5 vectors Π in R3 that form a positively oriented uniform
matroid, there exists an affine plane H such that each vector of Π belongs toH after
some rescaling by a positive real number, and moreover, the endpoints of rescaled
vectors form a good pentagon in H.
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Proof of the claim. Let �a,�b,�c, �d,�e be the elements of Π listed in cyclic
order, and let a, b, c, d, e be the rays spanned by the corresponding vectors. By
P (x, y) denote the plane through the origin spanned by the vectors �x and �y. Choose
any point a on a. Consider the lines �1 = P (a, b)∩P (d, e) and �2 = P (a, e)∩P (b, c).
Both of these lines pass through the origin and it is clear that the cone W spanned

by �a,�b,�c, �d,�e intersects the plane P (�1, �2) spanned by �1 and �2 only in the origin.
Let H ′ be the affine plane through a parallel to P (�1, �2). Then H ′ intersects W
by a convex pentagon, so let a, b, c, d, e be the intersection points of a, b, c, d, e with
H ′ respectively. By the choice of H ′, the lines ab and de are parallel. Moreover,
the lines ae and bc are parallel. Let α := â be the angle of abcde at vertex a, so we
have 0◦ < α < 180◦. Thus we have

b̂ = ê = 180◦ − α, ĉ+ d̂ = 180◦ + α.

Since ĉ, d̂ < 180◦, we get that α < ĉ, d̂. Therefore

â+ b̂ = â+ ê = 180◦; b̂+ ĉ, ĉ+ d̂, d̂+ ê > 180◦.

So the pentagon abcde is almost good. We would like to find a slight perturbation

H of H ′ around a so that we would get â + b̂, â + ê > 180◦ without violating the
remaining three inequalities. To do so, observe that the plane H ′ is parallel to the
lines �1 and �2 by construction. Orient �1 (resp., �2) in the direction of the vector
a − b (resp., a − e). Choose a point Xi on �i far away in the positive direction
for i = 1, 2. Let H be the plane through a, X1, X2. Then H is indeed a slight
perturbation of H ′ and therefore the strict inequalities are still satisfied, provided
that X1 and X2 are far enough. Letting abcde denote the corresponding pentagon
inside H, we see that the points X1, a, b lie on a common line (in this order), and the
same is true for X1, d, e, as well as for X2, a, e and X2, b, c. Thus the new pentagon
abcde is good. �

So now we are assuming that the intersection of the cone spanned by Π with
H forms a good pentagon. Reorient E − Π in a unique way so that all vectors in
V would belong to H after a positive rescaling. We claim that now M is oriented
“the correct way” meaning that for any element e ∈ E − Π, M − e is already a
positively oriented matroid. Suppose this is not the case, that is, for some e ∈ E−Π,
M′ := M− e is not positively oriented but −AM

′ is positively oriented for some
proper subset A of E − e. By Lemma 11.16, we may assume that A ∩ Π = ∅. Let
f ∈ A be any element. Since f is represented by a point in H, one easily checks
(using the fact that Π is a good pentagon) that there is a circuit C of M′ that
involves f and three elements from Π, denote them a, b, c, so that C+ = {f, a}
and C− = {b, c}. Thus after reorienting by A, our circuit C will contain an odd
number of plus signs which contradicts the fact that −AM

′ is positively oriented.
This shows that M− e is positively oriented for any e ∈ E −Π. From this we can
deduce some information about possible locations of points from E −Π in H.

Claim. Suppose that the good pentagon Π has vertices a, b, c, d, e as in Fig-
ure 11.6. Then every point from E−Π belongs to one of the shaded areas (including
their boundary) in Figure 11.6.

Proof of the claim. It is easy to see that if e ∈ E−Π belongs to any other
area then removing some other element f ∈ E − Π (which exists due to |E| ≥ 7)
from M would result in a non-positively oriented matroid which contradicts the
above discussion. �
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a

b

c

d

e

Figure 11.6. The areas ofH that are allowed to contain elements
from E −Π are the five (closed) triangles shaded in red.

Before we continue the proof, let us revisit the oriented matroids on six elements
(of rank 3). By Lemma 11.2, we know exactly which of them are pure: the ones in
Figure 11.1 are pure and the ones in Figure 11.2 are not. An important observation
is that for every oriented matroid M in Figure 11.2, there is a rank-preserving
weak map M � IC(6, 3, 13). The conclusion is that an oriented matroid M of
rank 3 with six elements is pure if and only if there is no rank-preserving weak map
M � IC(6, 3, 13). This illustrates the power of Conjecture 5.9 in the rank 3 case.

Claim. Let e, f ∈ E −Π be any two distinct points.

(a) If e and f belong to the same shaded area in Figure 11.6 then the line
through them does not intersect the interior of the pentagon abcde.

(b) If they belong to different shaded areas then the segment [e, f ] intersects
the closure of the pentagon abcde.

Proof of the claim. For two points X and Y , by (XY ) we denote the line
that passes through them and by [X,Y ] denote the line segment that connects
them.

First, if one of (a) or (b) is violated then one can easily check that the restriction
of M to Πef is not isomorphic to a positively oriented matroid. Thus we may
assume that E = Πef .

Let [a, b] be the side of the pentagon adjacent to the shaded area that contains
e. We are first going to prove both (a) and (b) when e is not the intersection
point of lines (bc) and (ae) (we call this intersection point the outside vertex of
the shaded area containing e). For example, assume that e 	∈ (bc). Then M − e

contains a pentagon. Clearly, if one of (a) or (b) is violated then M − e is not
positively oriented. Moreover, the same is true for −fM− e, so M− e cannot be
isomorphic to a positively oriented matroid either because any reorientation would
be trivial on the pentagon Πe− e, and thus no matter how we orient f , we do not
get a convex polygon. This leads to a contradiction.
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a
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d

e

e

g

f

Figure 11.7. The essentially unique oriented matroid M0 on 8
points that is not positively oriented but such that M0−e,M0−f,
and M0 − g are.

Similarly we deal with the case when e is arbitrary and f is not the outside
vertex of the shaded area to which it belongs. The only case left is when e and f
are both outside vertices of the corresponding shaded areas. Since M is simple,
these shaded areas cannot be the same, so we are done with the proof of (a). If
the two shaded areas are not adjacent (i.e., their closures do not intersect) then
the segment [e, f ] intersects the closure of the pentagon by one of its sides, so (b)
holds. If the two shaded areas are adjacent, say, one of them is adjacent to [a, b] and
another one is adjacent to [b, c] then M− d is isomorphic to IC(6, 3, 12) and thus
cannot be isomorphic to a positively oriented matroid. This contradiction finishes
the proof of (b). �

Notice that the above claim actually proves Lemma 11.19 when |E| ≤ 7. Thus
the only case left is when |E| = 8, so we have Π together with three other points
e, f, g, each of them is located in one of the shaded areas in Figure 11.6 and any
two of them satisfy the assertions of the above claim. A quick simple case anal-
ysis shows that if e, f, g do not all belong to the same shaded area then M is a
positively oriented matroid. Moreover, if e, f, g belong to the same shaded area
which is adjacent, say, to [a, b], in such a way that M is not positively oriented but
the lines (ef), (fg), and (eg) do not intersect the interior of the pentagon, then it
is easy to see that there is a rank-preserving weak map from M to the oriented
matroid M0 shown if Figure 11.7. But removing c and d from M0 makes it iso-
morphic to IC(6, 3, 12) from Figure 11.2. Thus there is a rank-preserving weak
map (M − {C,D}) � IC(6, 3, 12) and, in turn, there is a rank-preserving weak
map IC(6, 3, 12) � IC(6, 3, 13) so it follows that in this case M cannot be pure.
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(1, 1, 1, 1, 1, 1)

(2, 1, 1, 1, 1)

(3, 1, 1, 1) (2, 2, 1, 1) (2, 1, 2, 1)

(3, 2, 1) (2, 2, 2)

(3, 3)

Figure 11.8. The 8 simple oriented matroids of rank 4 and
corank 2 ordered by weak maps. Four of them (colored red) are
not pure, the other four (colored black) are pure.

We are done with the proof of Lemma 11.19 which, as we showed earlier, implies
Theorem 11.5. �

11.1. Oriented matroids of rank 4 and corank 2

The smallest case not covered by Theorem 5.3 and Proposition 5.1 is when
M is an oriented matroid with rank(M) = 4 and corank(M) = 2. In this case,
M∗ is of rank 2. Moreover, M is simple if and only if M∗ has no coloops and
no coparallel elements. Each oriented matroid of rank 2 can be reoriented in an
acyclic way, and then we can just record it in a composition α = (α1, . . . , αk) of
6, where αi is the size of the i-th parallelism class, and they are ordered according
to the way they appear on an affine line. For example, the alternating matroid
C6,4 corresponds to the composition (1, 1, 1, 1, 1, 1), while the oriented matroid
�K2,3 corresponds to the composition (2, 2, 2). There is a rank-preserving weak
map between two oriented matroids of rank 2 if and only if their corresponding
compositions are refinements of each other, up to a cyclic shift. Having no coloops
and coparallel elements translates into αi ≤ 3 for all i. The 8 possible compositions
that we can get from M∗ are depicted in Figure 11.8, ordered by rank-preserving
weak maps. According to our computations, the four oriented matroids labeled by
(1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1), (2, 2, 1, 1), and (2, 2, 2) are not pure, and the other four
labeled by (3, 1, 1, 1), (2, 1, 2, 1), (3, 2, 1), and (3, 3) are pure. This further supports
Conjecture 5.9.
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Plücker coordinates, Kirillov’s seminar on representation theory, Amer. Math. Soc.
Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 85–108, DOI
10.1090/trans2/181/03. MR1618743

[MS86] Yu. I. Manin and V. V. Shekhtman, Higher Bruhat orderings connected with the
symmetric group (Russian), Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 74–75.
MR847150

[OPS15] Suho Oh, Alexander Postnikov, and David E. Speyer, Weak separation and
plabic graphs, Proc. Lond. Math. Soc. (3) 110 (2015), no. 3, 721–754, DOI
10.1112/plms/pdu052. MR3342103

[Oxl11] James Oxley, Matroid theory, 2nd ed., Oxford Graduate Texts in
Mathematics, vol. 21, Oxford University Press, Oxford, 2011, DOI
10.1093/acprof:oso/9780198566946.001.0001. MR2849819

[Pos06] Alexander Postnikov. Total positivity, Grassmannians, and networks. arXiv preprint
arXiv:math/0609764, 2006.

[Rei99] Victor Reiner, The generalized Baues problem, New perspectives in algebraic combi-
natorics (Berkeley, CA, 1996), Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ.
Press, Cambridge, 1999, pp. 293–336. MR1731820

[Sau72] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972),
145–147, DOI 10.1016/0097-3165(72)90019-2. MR307902

[Sco05] Josh Scott, Quasi-commuting families of quantum minors, J. Algebra 290 (2005),
no. 1, 204–220, DOI 10.1016/j.jalgebra.2001.12.001. MR2154990

[Sco06] Joshua S. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. (3)
92 (2006), no. 2, 345–380, DOI 10.1112/S0024611505015571. MR2205721

[She72] Saharon Shelah, A combinatorial problem; stability and order for models and theories
in infinitary languages, Pacific J. Math. 41 (1972), 247–261. MR307903

[Sta07] Richard P. Stanley, An introduction to hyperplane arrangements, Geometric combi-
natorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007,
pp. 389–496, DOI 10.1090/pcms/013/08. MR2383131

[Tut58] W. T. Tutte, A homotopy theorem for matroids. I, II, Trans. Amer. Math. Soc. 88
(1958), 144–174, DOI 10.2307/1993243. MR101526

Licensed to Univ of Calif, Los Angeles.  Prepared on Fri May 17 17:38:41 EDT 2024for download from IP 131.179.158.3.



BIBLIOGRAPHY 79

[Tut59] W. T. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527–552, DOI
10.2307/1993185. MR101527
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