
Queueing Systems (2022) 100:509–511
https://doi.org/10.1007/s11134-022-09835-x

Some open problems in exact simulation of stochastic
differential equations

Jose H. Blanchet1

Received: 6 February 2022 / Accepted: 28 February 2022 / Published online: 20 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

1 Introduction

A general d-dimensional SDE driven by Brownian motion takes the form (see [7]):

dX (t) = μ (X (t)) dt + σ (X (t)) dB (t) , X (0) = x0, (1)

where B (·) is an m-dimensional standard Brownian motion, μ (·) : Rd → R
d is a

drift vector field and σ (·) : Rd×m → R
d is a diffusion matrix. While these models are

flexible and frequently used in engineering and science, they can also be analytically
challenging to work with, so Monte Carlo simulation provides a natural approach to
addressing the computational demands of modeling with SDEs. Diffusions are often
motivated in queueing using a heavy-traffic approximation perspective. Regardless of
how a model is motivated, once it is adopted, the question of efficient computation
(for performance analysis or calibration) is essential to exploit the power of such a
model.

Designing an efficient Monte Carlo strategy to sample exactly the solution of the
SDE at a particular time, say X (1), is an important topic in the theory of stochastic
simulation, and it is precisely the topic of this note. Naturally, one can use a discretiza-
tion such as the Euler scheme to approximate X (1). These schemes generally produce
a biased estimator. This bias can be reduced at a cost that explodes as the degree of
precision required increases. Other path-dependent quantities are also of interest, but
they can often be reduced to sampling a diffusion. For example, the running maximum
follows a diffusionwith a local-time-like constraint in the SDE. These constraints arise
in queueing and are also a part of our later discussion.

An advantage of having an exact and efficient Monte Carlo strategy is that the
estimator can be implemented easily in parallel. By doing this, we can reduce com-
putational wall-clock time while guaranteeing any given error by just sampling over a
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large number of parallel computing cores. In contrast, it is not easy to directly reduce
the wall-clock time by simply increasing the number of parallel cores using a biased
Monte Carlo strategy because of the exploding cost mentioned earlier.

Our goal is to discuss the problem of designing reasonably general Monte Carlo
algorithms for the exact generation of X (1) with finite expected termination time.1

2 Discussion

The first algorithm for exact sampling of SDEs in d = 1 appeared in [2], under suitable
boundedness assumptions. These assumptions were significantly weakened in [1] and
further relaxed using a localization technique in [6], but using essentially the same
sampling strategy as in [2]. The overall strategy in [2] relies on two essential properties
which are non-restrictive in d = 1, but are very restrictive in the multidimensional
setting. The first is the existence of an invertible transformation (i.e., the Lamperti
transformation) which, when applied to the process X (·), results in a diffusion process
with a constant diffusion matrix. Moreover, after this transformation is performed, the
resulting drift coefficient of the transformed diffusion must be of gradient form.

So, the strategy introduced in [2], together with the extensions in [1] and [6], applies
in the d-dimensional setting basically to diffusions of the form:

dX (t) = �u (X (t)) dt + dB (t) ; X (0) = x0, (2)

where �u (·) is the gradient of some function u (·).
In the queueing setting, there are diffusion processes of interest arising in the study

of many server queues with phase-type service times which have a constant diffusion
coefficient but with a drift function μ (·) which is not of gradient form. This already
leads to a problem of significant interest in queueing theory, namely designing an exact
sampling algorithm with finite expected termination time for (1) when σ (x) = σ is a
constant matrix and μ (·) is a Lipschitz function.

The only algorithm that exists to date for multidimensional diffusions under rea-
sonably general assumptions was proposed in [5]. This algorithm terminates in finite
time with probability one, but its expected termination time is infinite. However, it is
worth contrasting the strategy developed in [5] with the one in [2].

Both strategies ultimately rely on acceptance/rejection. However, in the context of
(2), there is an obvious sampler that can be used as a proposal distribution, namely
Brownian motion. The likelihood ratio of the solution to (2) up to t = 1 with respect
to Brownian motion takes the form:

M (1) = exp

(∫ 1

0
�u (X (t)) dX (t) − 1

2

∫ 1

0
‖�u (X (t))‖22 dt

)
. (3)

Applying Ito’s lemma, one can rewrite the stochastic integral involving �u (X (t))
in terms of a Riemann integral involving �u (X (t)) (i.e., the Laplacian of u (·)).
1 We are vague with the model of computation, but generally a little common sense can be used to interpret
the running time in terms of basic random variables needed to implement the algorithm.
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Moreover, if �u (·) and �u (·) are bounded, then the acceptance/rejection step can
be executed by interpreting the Riemann integrand as a stochastic Poisson process
intensity. Hence, as noted in [2], accepting the Brownian proposal, X (1), boils down
to checking if the first arrival of a suitable Poisson process with a stochastic intensity
occurs before time 1. This can be done in finite expected time.

The key idea in the strategy of [5] can be explained in the context in which μ (·) is
not the gradient of any function but with a constant diffusion coefficient. The key idea,
based on strong simulation (to be discussed), is extended in [5] to the non-constant
diffusions and in [4] to diffusions with reflection often arising in queueing. In the con-
stant diffusion case, as indicated earlier, we can use as a proposal Brownian motion.
However, it is no longer possible to rewrite the stochastic integral in (3) as a Riemann
integral. So, [5] propose a sequence of piecewise constant stochastic processes which
approximate the stochastic integral within an error of size at most 1/n with probability
1. (Here, n is the n-th iteration in the sequence of approximations.) These approxi-
mations are called “1/n-strong simulation” estimators. The acceptance/rejection step
then can be executed in finite time because this step is ultimately decided by com-
paring two random variables, namely the likelihood ratio, on the one hand, and an
independent uniform random variable (suitably scaled), on the other. The chance of
the algorithm running forever is zero because the uniform distribution is independent
of the likelihood ratio, M (1) defined in (3), so a tie occurs with zero probability.

Unfortunately, the computational cost of producing the 1/n-strong approximation is
of order O

(
n2

)
(ignoring logarithmic factors). For a finite expected termination time,

a cost smaller than o (n) is required. The approximation used is based on [3], which in
turn uses the theory of rough paths. The general diffusion case is more involved, but
a similar bottleneck in running time arises because of the 1/n-strong approximation
scheme developed in [3].

The acceptance/rejection strategy in [2] is based on a stochastic representation and
additional randomization (via Poisson thinning). The strategy in [5] may benefit from
including additional randomization, auxiliary processes or stronger couplings.
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