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Optimal Dynamic Mechanism Design With
Stochastic Supply and Flexible Consumers

Shiva Navabi

Abstracit—In this article, we consider the problem of
designing an expected-revenue-maximizing mechanism for
allocating multiple nonperishable goods of k varieties to
flexible consumers over T' time steps. In our model, a ran-
dom number of goods of each variety may become available
to the seller at each time, and a random number of con-
sumers may enter the market at each time. Each consumer
is present in the market for one time step and wants to
consume one good of one of its desired varieties. Each con-
sumer is associated with a flexibility level that indicates the
varieties of goods it is equally interested in. A consumer’s
flexibility level and the utility it gets from consuming a
good of its desired varieties are its private information.
We characterize the allocation rule for a Bayesian-
incentive-compatible, individually rational, and expected-
revenue-maximizing mechanism in terms of the solution to
a dynamic program. The corresponding payment function
is also specified in terms of the optimal allocation func-
tion. We leverage the structure of the consumers’ flexibility
model to simplify the dynamic program. Our simplified dy-
namic program allows us to provide an explicit allocation
procedure and a simple payment rule in terms of the solu-
tion of the dynamic program.

Index Terms—Bayesian incentive compatibility, dynamic
mechanism design, flexible demand, optimal mechanism,
revenue maximization.

I. INTRODUCTION

ONSIDER the scenario faced by a monopolist seller with

multiple resources who wants to allocate them to con-
sumers over time in order to maximize its expected total revenue.
The seller offers goods of different varieties, and there may be
new additions to its stock of each variety over time. Different
consumers may interact with the market at various points in
time, each for a limited duration. Such a scenario arises in many
marketplaces where the available supply and the population of
the consumers vary in an uncertain fashion over time. In cloud
computing platforms [1], for example, the computational and
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data storage resources get freed up with the termination of previ-
ously submitted jobs and are dedicated to processing of the new
tasks dynamically over time. In power distribution networks with
partial reliance on the renewable energy resources [2], the energy
supply varies over time depending on the availability of the
intermittent source of energy; the amount of power demanded
by the consumer base connected to the grid is also uncertain
and constantly fluctuates over time. In wireless spectrum man-
agement platforms [3], the available spectrum bands are leased
to secondary wireless service providers (WSPs) for temporary
usage and are freed up as the interim lease contracts terminate
dynamically over time. One particular feature that makes these
resource allocation problems challenging is that in the face of
uncertainty about the future supply and demand, the seller needs
to decide whether to use its limited resources to serve a currently
present consumer or keep them for potentially more profitable
transactions in future. Moreover, in order to decide about the
optimal way of allocating its resources, the seller needs the
information about the consumers’ preferences and restrictions,
and their willingness to pay for their desired goods or services.
Typically, however, this information is known privately to each
consumer, and the seller needs to elicit these data from them.
Since the consumers are self-interested and strategic, they may
distort their privately held information when communicating it
to the seller if they believe that they can benefit from such misrep-
resentations. The seller, thus, needs to incentivize the consumers
to disclose their private information. The theory of mechanism
design provides a systematic framework for designing the rules
of interaction between multiple strategic agents in a way that
the principal decision maker’s desired outcome emerges at the
equilibrium of the induced game.

Auctions as a special class of mechanisms have been exten-
sively studied in the context of mechanism design, and they
are being adopted in an increasing number of markets for
pricing and selling various products and services. While the
theory of auction design is well developed under static settings,
its extension to dynamic markets that involve allocation and
pricing of time-varying supply to accommodate time-varying
demand under incomplete information is generally less mature
and is still an active area of research [4]. Given the growing
practical interest in auctions for allocating and pricing resources
in dynamically operating markets, a deeper understanding of the
design and implementation of such auctions is crucial.

In this article, we study the problem of designing expected-
revenue-maximizing auctions for selling indivisible and durable
goods of k varieties to consumers over a discrete finite-time
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horizon. Additional units of each variety may become available
to the seller at each time step. In our setup, each consumer is
associated with a flexibility level, which indicates the varieties
of goods that the consumer finds equally desirable. Formally, the
flexibility level of a consumer is a number in the range 1, ...,k
such that a consumer with flexibility level j wants to get a good
of any of the first j varieties. Each consumer is present in the
market for one time period and wants to receive one good (of
any of the desired varieties) prior to its departure. The flexibility
level and the valuation a consumer has for a desirable good are
both its private information.

There are several markets with a temporally fluctuating con-
sumer base where the flexibility in demand described above
arises. We describe two such scenarios as follows.

1) Dynamic spectrum management in cognitive radio net-
works: With the emergence of various wireless applica-
tions for mobile users, there has been a significant increase
in the demand for radio frequency spectrum in recent
years. While most of the available radio spectrum has al-
ready been licensed off to the existing WSPs, they are not
being fully utilized by their primary owners. As pointed
out in [3], dynamic spectrum access protocols can enable
efficient use of these underutilized frequency bands—
referred to as spectrum holes in [3]—by accommodating
the demands of secondary users who can use these bands
on a temporary basis. Cognitive radio systems can detect
the presence of such spectrum holes in the frequency
bands owned by a primary user. Consider the problem
faced by one such spectrum owner who wants to allocate
its underutilized frequency bands of various widths, as
they become available over time, to secondary WSPs
who have different minimum bandwidth requirements.
Suppose that the primary owner has frequency bands of
widths w1, ..., wg such that wy > wo > -+ > wg. We
say that a WSP is of flexibility level j if it requires a
frequency band of width at least w;. At the beginning of
each time step ¢, arandom number of WSPs arrive into the
market to compete for the limited radio frequency bands
available at that time. The resource allocation problem
that a primary spectrum owner encounters when it aims
to allocate its intermittently available frequency bands to
secondary users’ temporary usage can be modeled within
the framework developed in this article.

2) Allocation of computational resources in cloud comput-
ing platforms: Consider Amazon’s EC2 cloud comput-
ing platform that sells various types of computational
resources, such as memory, CPU, storage capacity, com-
puter applications, etc. In this market, clients can ran-
domly enter and depart over time. Clients rent virtual
machines or instances and are typically charged on an
hourly basis per instance depending on the duration of
their usage as well as the rented instance type. Each of the
instance types are offered in different sizes to suit various
purposes. As explained in [1], for example, Amazon’s
EC2 offers “standard” instances in three sizes: small,
large, and extra large. A consumer can belong to one of
the following three flexibility classes:

a) inflexible consumers who need an extra-large instance;
b) somewhat flexible consumers who need a large or extra-
large instance;
c) flexible consumers who are fine with receiving any of the
three types of instances.
The allocation of computing instances to consumers of dif-
fering flexibilities can be modeled by our setup.

A. Prior Work

Much of the prior work in the area of dynamic auctions can
be grouped in two categories [5]: 1) markets with a dynamic
population of consumers whose private information remains
unchanged over time and 2) markets with a fixed population of
consumers whose private information evolves over time. Within
each of these two categories, the important findings on efficiency
(social-welfare maximization) and optimality (revenue maxi-
mization) as the two primary objectives are highlighted in [5].
Our work falls under the first category (dynamic population)
above with the focus on revenue maximization as the main
objective. Therefore, we will focus on comparing our model with
prior works that have addressed revenue maximization under the
first category above. We can broadly categorize the works in this
strand of the literature based on certain features of the seller’s
supply and the consumers’ demands as follows.

1) Dynamic Auctions With Multiple Identical and
Durable Goods: The works in this area have studied dynamic
revenue-maximizing auctions in settings where the seller has
multiple identical goods and wants to sell them to unit-demand’
consumers over a finite- or infinite-time horizon. The setups
in [7]-[9] consider a seller that has multiple identical goods
and wants to sell them to consumers over 7' time steps; each
consumer may demand one [7], [8] or more units [9] of the
good and may be present in the market for one [7] or more
time steps [8], [9]. Gallien [10] studies a similar setup, where
the seller offers K identical items for sale over an infinite-time
horizon and consumers are assumed to be unit demand and time
sensitive in the sense that they discount their future utility with
a common time-discount factor. Gershkov er al. [11] design a
revenue-maximizing mechanism for a setting where the seller
has multiple identical goods for sale over an infinite continuous-
time horizon. They assume in [11] that the consumers are unit
demand and that each consumer’s arrival time and its valuation
are its private information.

The key feature that differentiates these setups from our model
is that in all of them, the goods are assumed to be identical. In
our model, each consumer, depending on its flexibility level,
subjectively differentiates between the goods. In particular, a
consumer with flexibility level j has the same positive valuation
for any good of varieties 1, ..., j and zero valuation for a good
of varieties j 4 1,. .., k. Furthermore, in our model, more units
may be added to the seller’s supply of different varieties over
time. In the setups described above, the seller’s supply is limited
to the initial stock of goods available at the beginning of the time
horizon.

A unit-demand consumer wants to receive one unit of the good [6].
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2) Dynamic Auctions With Multiple Identical and Perish-
able Goods: Said [12] considers a setup where a seller obtains
an uncertain number of perishable” identical goods at each time
step and wants to sell them to unit-demand consumers over an
infinite discrete-time horizon. Each consumer may depart the
market exogenously at any time period ¢ after its arrival with
a common probability (1 — ;) € [0, 1]. Otherwise, a consumer
continues to interact with the market until it gets an allocation.
Unlike the setup in [12], in our model, we assume that goods
are durable and could, thus, be stored for future allocations.
Moreover, in contrast to [12], we assume that consumers are
present in the market for one time step only. Finally, in our model,
goods are valued differently by different consumers depending
on their flexibility levels, whereas, in [12], the offered goods are
all identical from the consumers’ viewpoints.

3) Dynamic Auctions With Multiple Heterogeneous
Goods: The papers in this line of work study the dynamic
revenue-maximizing auction design problem in cases where the
seller has multiple heterogeneous goods and wants to sell them
to unit-demand consumers over a finite/infinite-time horizon.
Gershkov and Moldovanu [13] study one such setup over a
continuous- and finite-time horizon where the goods are com-
monly ranked by the consumers that are impatient, i.e., they want
to get an allocation immediately upon arrival in the market.
Unlike this setup, each consumer in our model has subjective
preferences for different varieties of goods, and each consumer’s
desired varieties are its private information. Furthermore, in our
model, additional goods of each variety may be added to the
seller’s supply over time, which is not the case in [13].

4) Dynamic Auctions With Private Departure Times:
Mierendorff [14] considers a setup where a seller wants to sell
a single indivisible good over 7" time steps to consumers who
are privately informed about their valuations as well as their
deadlines for buying the single item in the dynamic auction.
The key differences between this work and our setup are the
following: 1) in our model, the seller offers multiple goods that
are differentiated by each consumer subjectively based on their
privately known flexibility levels, while in [14], the seller has
only one good for sale; 2) the consumers’ exit times are known
to the seller in our setup, while they are privately known to each
consumer in [ 14]; and 3) in our model, each consumer is present
in the market for one time step only, while in [14], a consumer
may remain present in the market for multiple time periods.

In the model studied by Pai and Vohra [8], each consumer’s
departure time is assumed to be its private information. As
mentioned in Section I-A1, however, unlike our model, in the
setup in [8], goods are assumed to be identical.

Contributions: We first characterize the allocation rule for
a Bayesian-incentive-compatible (BIC), individually rational,
and expected-revenue-maximizing mechanism in terms of the
solution to a dynamic program (see Lemma 3 and Section V-A).
The corresponding payment function is also specified in terms
of the optimal allocation function.

We then leverage the structure of the consumers’ flexibil-
ity model to simplify the dynamic program. In particular, we

2 A good is perishable if it cannot be stored for future allocations.

simplify both the “information state” of the dynamic program
(i.e., the argument of the value function; see Lemma 4) and the
maximization problem in each stage of the dynamic program
(see Lemmas 7-9).

Our simplified dynamic program allows us to provide an
explicit allocation procedure and a simple payment rule (see
Theorem 1) in terms of the solution of the dynamic program.

B. Notations

Random variables are denoted by uppercase letters (X, Y, N)
or by Greek letters (6), and their realizations by the corre-
sponding lowercase letters (x,y,n) or by Greek letters with
tilde (). {0,1}V*M denotes the space of N x M matrices
with entries that are either O or 1. 0;y; is the k-dimensional
all-zero row vector. Z>q and Z . denote the sets of nonnegative
and positive integers, respectively. For a set A, |.4| denotes the
cardinality of A. 2T is the positive part of the real number z,
that is, 27 = max(x,0). I,y denotes 1 if the inequality in
the subscript is true and O otherwise. E denotes the expectation
operator. For a random variable/random vector 6, Ey denotes
that the expectation is with respect to the probability distri-
bution of 6.2 z1.,, y*'™, and 2™ are shorthands for vectors
(1, xn), (Yt y™)and (28, .., 20 2o 2,
respectively. For the vector y“™, y~J is the shorthand
for (y*,...,y7 1,y ... y™). The summation > . vy,
equals zero when n < m regardless of the indexed quantities
Yi-

Il. PROBLEM FORMULATION

We consider a setup where a seller offers k varieties of
goods for sale over T' time steps. At each time step, a ran-
dom number of consumers enter the market. Let the random
variable N; denote the number of consumers that arrive at
time step ¢. IV; is an integer-valued random variable that takes

values in the set {0,1,...,7} according to the probability
mass function (PMF) A;(-). At each time step, a random num-
ber of goods of varieties 1,2,...,%k become available to the

seller. Let the random variable X; denote the number of goods
of variety j that become available at time step ¢. X; is an
integer-valued random variable that takes values in the set
{0,1,...,27} according to the PMF ~/(-). The random vari-
ables Ny.r and X% are mutually independent. Let Y}’ denote
the number of unallocated goods of variety j at time t—this
includes X/ as well as any unallocated variety j goods from
the past. Let V;/ denote the number of variety j goods allocated
by the seller at time ¢. Y’ evolves according to the following
dynamics:

t+1 t
Vi =D XI=Y V/=Y/-V/+X],,, t>1
s=1 s=1
Y/ =XJ, j=1,2,...,k 1)

3The subscript for E[-] operator is added only when its absence is likely to
cause ambiguity.
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A. Consumer Flexibility and Consumer Type

Each consumer can consume at most one good. Each con-
sumer has a flexibility level that indicates the varieties of goods
the consumer is equally interested in. A consumer with flexibility
level j wants to get one good of any of the first j varieties.

Each consumer is associated with a 4-tuple (6, b, 4, t7).

1) 6 is the consumer’s utility if it receives one good of a
desired variety. We refer to 6 as the consumer’s valuation.

2) b is the consumer’s flexibility level.

3) t4 is the consumer’s arrival time.

4) tP is the consumer’s departure time.

A consumer can receive a good at any time ¢, tA <t <tP,

Definition 1: We say that a consumer is impatient [6, Ch. 16]
if its arrival and departure times are the same. Thus, an impatient
consumer can only receive a good at its arrival time.

In this article we assume that all consumers are impatient.

The random variable b} denotes the flexibility level of the ith
consumer arriving at time ¢. b takes values in the set {1, ..., k}
according to the PMF g,(-). The random variable 6 denotes the
valuation of the ¢th consumer arriving at time ¢. Given bi =7,
0 takes values in © := [f™" #™¥] with conditional probability
density (+[bj = j).* We define the joint distribution function
£:(6,5) = 70(017)-9¢(j) , j € {1,....k},6 € ©. The prob-
ability distributions  A:(-), f+(*), 7/ (),Vt,Vj are common
knowledge. B ~

For a consumer with valuation ¢ and flexibility level b, we
refer to the pair (0,b) as its rype. Each consumer’s type is
independent of the other consumers’ types and of the random
variables Ny.7 and X%

B. Direct Mechanisms

We consider a direct mechanism where each consumer ar-
riving in the market reports a valuation from the set © and a
flexibility level from the set {1,2,...,k}. Each consumer can
misreport its valuation and flexibility level. Consider a consumer
whose true type is (6, b), and let (r, ¢) denote the type it reports,
where 7 is the reported valuation and c is the reported flexibility
level. The consumers’ arrivals are publicly observed. Hence, NV,
is observed by the seller at time ¢ and by the consumers who
arrive at time ¢. We make the following assumptions about the
consumers’ reported types.

Assumption 1:

1) Each consumer reports its valuation and flexibility level
simultaneously at its arrival time.

2) No consumer departs the market without reporting a type
to the seller.

3) Consumers cannot over-report their flexibility levels, that
is, ¢ cannot exceed b.

C. Feasible Allocations

Suppose that n; consumers arrive at time ¢, i.e., Ny = ny.
Lethf == {(r},cl),..., (r}', ")} be the collection of reports

4Extension of the results under the case where different consumers may have
different lower and upper bounds for their valuations (i.e., """ # 0;5“" and/or

O+ 9;.‘“‘" for ¢ # j) is straightforward.

made by the consumers arriving at time ¢, where (¢, ci) denotes
the type reported by the ith consumer arriving at time ¢. If
n¢ = 0, then At = (). Let H denote the set of all the possible
values of hlt. At each time t if A # (), an allocation of the
available goods among the currently present consumers can be
described by a binary matrix A; € {0,1}™*%. A;(i,j) =1
if the ith consumer is allocated a good of the jth variety at
time ¢ and A.(i,j) = 0 otherwise. The matrix A; is called an
allocation matrix at time ¢. A; must satisfy some feasibility
constraints. In particular, Y ", A;(i,j) < y{,Vj, where y] is
the number of variety j goods available for allocation at time
t. Furthermore, we require that each consumer is allocated at
most one good of its desired varieties and no goods of its un-
desired varieties, i.e., > ;i Ae(i,7) < 1,300 5 Ae(i,7) =0
fort =1,...,n,. Abinary matrix that satisfies these constraints
is called a feasible allocation matrix at time ¢. For hf¥ # (), let
S(hf, yt*) c {0,1}™** denote the set of all feasible alloca-
tion matrices at time .

D. Mechanism Setup

Let h; denote all the information that the seller knows at time
t. We call h; the history at time ¢, which is given as

f5*{h1tay1fax1f} (2)
Let H; denote the set of all possible values of h;. We use H; to
denote a random history.

A mechanism needs to specify allocations and payments
at each time ¢, for which the number of arriving consumers
is nonzero, i.e., hf # (). Such a mechanism consists of the
following components.

1) A sequence of allocation functions ¢;.7 such that for any
hy with bt # 0, qi(hy) € S(hE, y*). qi(ht) describes
the allocation matrix to be used at time ¢.

2) A sequence of payment functions p;.r such that for
any hy with h® # 0, p;(hs) € RI"| The ith component
pi(hy) of p(hy) describes the payment charged to the ith
consumer at time t.

E. Consumer Utility Model

Suppose that h, is the history at time ¢ and (67, b) is the
true type of the ith consumer arriving at time ¢. Then, under the
mechanism (q1.7, p1.7), this consumer’s utility is given as

> a7’ (h)

J<bi

u(6;,b;, hy) = 0. — p}(he) 3)

where ¢/ (hy) is the entry in the ith row and the jth column
of the allocation matrix g;(h;) and pi(h;) is the ith entry of the
payments vector p;(hy).

F Incentive Compatibility and Individual Rationality

The seller needs to design a mechanism that satisfies incen-
tive compatibility and individual rationality (IR) constraints, as
described in the following.

In a BIC mechanism, truthful reporting of private information
(valuations and flexibility levels in our setup) constitutes an
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equilibrium of the Bayesian game induced by the mechanism. In
other words, each consumer would prefer to report its true type
provided that all other consumers have adopted the truth-telling
strategy. Moreover, according to the revelation principle [15],
restriction to incentive compatible direct mechanisms is without
loss of generality.

Suppose that n, consumers arrive at time ¢ and let (6}, b!)
be the true type of the ith consumer arriving at time ¢. Recall
that V; is observed by the consumers who arrive at time ¢ (see
Section II-B). Assuming that all other consumers report their
types truthfully, consumer i’s expected utility if it reports its
type truthfully will be

i 0 th H (6:,0))
ng?
— PH(H(01,59)) | Ny = ny (4)

where the expectation is with respect to the collection of random
variables H, ¢ which includes all variables in the history at time
t except the ith consumer’s report. o

Now, suppose that the consumer with type (6, b}) reports
(r,c}) as its type rather than (6}, b}). That is, the consumer
might misreport its valuation or its flexibility level or both.
Assuming that all other consumers truthfully report their types,
this consumer’s expected utility if it reports (¢, ci) will be

EH;"' 91 Zq H", Ttact))
JSb’
—pi(H; " (rfe) | Ny =y | (5)

The BIC constraint is satisfied if each consumer’s expected util-
ity is maximized when it reports its valuation and flexibility level
truthfully, provided that all other consumers report their types
truthfully. Therefore, from the viewpoint of the ¢th consumer at
time ¢, the BIC constraint can be expressed as follows:

EH;’? 91 th H, 927”))
j<bi
— pi(H; %, (07, 0))) | Ny =

H*, rtvct))

_p;(Ht_la (ﬁ&%)) ‘ Nt =Ny

VO e © ¢ <b, el bl e {1,2,...,k} Vg, V. (6)

The IR constraint ensures that the consumer’s expected utility
at the truthful reporting equilibrium is nonnegative. Using (4),
from the viewpoint of ith consumer at time ¢, the IR constraint
can be described as follows:

EHt—i 91 Z qt

j<bi

7p7{5(Ht713 (é}hgz)) ‘ Nt =Ny

H,",(0,51))

>0 Vo, YVt (7)

G. Expected-Revenue Maximization

Consider a BIC and IR mechanism (g1.7, p1.7). When all
consumers adopt the truthful strategy, the history at time ¢ is

He = {{(03,00) )2, {0, 0) )2, Vi, Xairy - ®)

and the expected total revenue is E{> 7, SN pi(H,)}.
The mechanism design problem can now be formulated as

T N¢ )
E{zzpzm

t=1 i=1

max
(q1:7,p1:7)

} , subjectto (6) and (7)X9)

I1l. CHARACTERIZATION OF BIC AND IR MECHANISMS

In this section, we provide a characterization of BIC and IR
mechanisms that will be useful for solving the problem in (9).

A. Interim Allocation and Payment

Suppose that 7, consumers arrive at time ¢, and let (éi, 5@) be
the true type of the ith consumer arriving at time ¢. Assuming
that all other consumers report their types truthfully, this con-
sumer’s expected allocation and payment under the mechanism
(q1.1, p1.7) if it reports the pair (1}, ¢}) are given as

Qi(r}, ¢ty me) _EH i th

j<ci

Hy ’(rtvct)) | Ny =ny

(10)

Pi(ri,cyyme) o= B [ pi(H ' (rf ) | Ne=mne] . (11
In the following lemmas, we provide an operational character-
ization of the BIC and IR mechanisms in terms of the interim
quantities defined in (10) and (11).

Lemma 1: A mechanism (qy.7, p1.7) satisfies the BIC and IR
constraints if given N; = ny, the following conditions hold true
foralli € {1,...,n:},Vt.

i) Qi(r,c,n;) is nondecreasing in 7 forall ¢ € {1,...,k}.
ii) Qi(r,c,nt) is nondecreasing in ¢ for all r € ©.
iii) P}(0™", c,ny) =0, forall c€ {1,2,...,k}.
iv) The interim payment in (11) takes the following form for
allr € ©,ce {1,2,... k}:

s

Pti(ra ) nt) =T Qi(rv &) nt) - Qi(& c, nt) ds

@min
- emin Qi (emina ¢, nt)'
v) Omin QO™ ¢ ny) > OVe.
Proof: The proof closely follows the standard arguments
in [16, Sec. III]. O

12)
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Lemma 2: Any BIC and IR mechanism (q;.7, p1.7) satisfies

Qi(s,c, ng) ds

@min

r

Pti(rv (& nt) <r Qi(rv <) nt) -

forall t,ng,ie{l,...,n:},r € ©,c€{1,2,...,k}. (13)

Proof: The proof closely follows the standard arguments
in [16, Sec. III]. Il

Remark 1: The setup studiedin[16] can be viewed as a special
case of the framework considered in this article. Navabi and
Nayyar [16] consider a model where the seller wants to sell a
fixed number of goods of k varieties (2}:* are known) to a fixed
number of consumers (n; is known) with different flexibility
levels in one time step (7' = 1).

IV. REVENUE-MAXIMIZING MECHANISM

In this section, we characterize the expected-revenue-
maximizing mechanism. Let us define

wy(B.5) = (é ~ 1‘“*"”) (14)

(0| b)
where II,(- | b) is the cumulative distribution function corre-
sponding to the conditional probability density function (pdf)
7¢(- | b). In economics terminology, w; (6, b) is referred to as
the virtual valuation [15, Ch. 3] of a consumer with type (6, b)
that arrives at time ¢.

We make the following assumptions to simplify the solution
to the optimal mechanism design problem in (9).
Assumption 2:
i) The conditional pdfs m;(-|c),t =1,...,T,ce=1,...,k
satisfy the generalized monotone hazard rate condition [8,
Sec. 2], [16, Sec. IV]. That is, for all ¢, we assume that

T”(w‘c)c) is nondecreasing in = and c. Moreover, we

T (le)
assume that forall tif z > 2’ and ¢ > ¢/, then % >
1-II; (2'[c')

i) wy (™", 5) < 0 forall j,t.
In the following lemma, we provide a characterization of the
expected-revenue-maximizing mechanism.
Lemma 3: Suppose that (¢}, pi.) is a BIC and IR mecha-
nism for which the following conditions are true.
i) (¢i.7) is the solution to the following functional opti-
mization problem:

T N,
max E SO wi05,0) | D g (Hy) 15)
o t=1i=1

J<bi
where H, is the history under truthful reporting.

ii) Given the history h; and assuming that n; consumers
arrive at time ¢, the payment charged to the ith consumer
arriving at time ¢ with the true type (6%, b}) is given as
pii(h;i’(az’bi)) = 0115 qu’j(h;i’(ezﬂbi))

J<b}

0 S .
- /min Z q;ﬂ)] (h*, (e, 0y)) | da
o\ <

Vie{l,...,ne}, Vng, Vit (16)

where h;t = hy \ {(67,0)}.

Then, (q¢;.1, p;.7) gives the highest expected revenue in the
class of BIC and IR mechanisms.

Proof: See Appendix A. O

The results of Lemma 3 imply that in order for a BIC and
IR mechanism to maximize the expected revenue, its allocation
rules must solve the functional optimization problem in (15).
This problem can be viewed as a stochastic control problem.
In the following section, we describe this stochastic control
problem and formulate a dynamic program to find the optimal
allocation rules.

V. SOLUTION TO THE STOCHASTIC CONTROL PROBLEM

The optimization problem in (15) is a finite horizon stochastic
control problem with the history at time ¢ (with truthful report-
ing) as the state and the allocation matrix as the action at time
t. The allocation function ¢;.7 is the control strategy, and the
optimizationin (15) is to find the control strategy with the highest
expected reward. This stochastic control perspective provides a
dynamic program for the optimization in (15). We then leverage
the structure of the consumers’ flexibility model to simplify the
dynamic program.

A. Dynamic Program

For a truthful history h; at time ¢, let R;(h;) denote the
maximum expected reward from ¢ to 7" for the stochastic control
problem in (15). R;(h:) is a value function and obeys the
standard dynamic programming recursions given as

If hB=0: Ry(hy):=E[Ryp1(Hip1) | hi (17)
If Wit #£0:
IhE|
Ri(hy) = gt b Al 9
+(ha) AesI(I}lL?%),(y;:k) ;wt( t t); (1,)
+E[Ri11(Hegr) | ey Ay = A] (18)

where Rp41(+) = 0.

In the above dynamic program, the information state at time
t is h; (since the value functions have h; as the argument). It
can be shown that the only relevant part of the history are the
reports and the state of supply at current time. In the following
lemma, we use this idea to simplify the information state and
the dynamic program.

Lemma 4: Let s; = (h®,y}*). There exist functions
Vi(), ..., Vp(+) such that at each time :

Vi(se) = Rt(Styaftl:k, hi-1)
forall {s;, 2% hy 1} € H,. 19)

Furthermore, these functions obey the following dynamic pro-
gram:

If hi=90:
If R A£0:

Vi(se) = E[Vig1(St41) | 54 (20
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h | :
Vi(se) = max wy (0}, b; AL, j
2 (5¢) A ) ; ACH f); %)

+ E[Vig1(Si41) | 8¢, Ay = A] 2D

where Vryq(-) = 0.

Proof: See Appendix B. g

Based on the results of Lemma 4, the optimal allocation
functions can be described in terms of the solution to the dynamic
program in (20) and (21) with the simplified information state
s; = (b, yl*) at time ¢t.

In the dynamic programin (21) at each time ¢, the optimization
variables comprise all the entries of the |hf*| x k allocation
matrix A;. In the following, we simplify the dynamic program
formulation in terms of alternate variables that need to be opti-
mized at each time.

B. Alternative Optimization Variables

Consider the information state (h{%,y}**) with h* # 0 and
an allocation matrix A € S(hf, y}*) at time ¢. Let u] denote
the number of consumers with flexibility level j that get a good

B R
at time ¢ under A. That is, u} := Z“;t:‘l > 1< A(i, 1), where
ibi=j B

A (i,1) is the entry in the ith row and the /th column of the matrix
A. LetU(hf, y}*) denote the set of admissible values of u;*
given the information state (h7,y}*). Thus, for every vector
ul® € U(hE, yl*), there exists a matrix A € S(hE, y}*) such

R ~ .
that E‘h{;‘l >i<; A, 1) = u? V. If bt = 0, no consumer is

iibi=j
present to be allocated, and thus, we define U(hf, y}*) =
{01« }- In the following lemma, we provide a more operational
characterization of U (hf, y}*).
Lemma 5: Given the information state (h5,y}*) at time ¢

J J

Z/l(h,f%,ytl:’“):{ul:]’c €zk,: Zul < z:yllt ,u? < ng,Vj}
=1 =1

(22)

where ng denotes the number of consumers with flexibility level
7 that arrive at time t.

Proof: See Appendix C. (|

Consider the information state (h{*, y}**) with h* # ()and an
allocation matrix A € S(hft, y}**) at time ¢. Let v; denote the
number of goods of variety j allocated at time ¢ under A, i.e.,
vl = nyl‘ A(i, 7). Given some vectoru* € U(hlt, y*),let
V(u}F, y}*) denote the set of all values of v}* that can fulfill
the demand represented by u}** under the supply y;**. More pre-
cisely, forevery vectorv'* € V(u}*, y}¥), there exists a matrix
A € S(hE, y}*) such that for each j, A serves u) consumers of
flexibility level j (i.e., Z“ﬁl > A(i,1) = ul)andallocates

ibi=j

v7 goods of variety j (i.e., nyl‘ A(i,§) = v9). If hE =0, no
consumer is present to be allocated, and thus, V(u;™*, y}*) =

V(01 .k, yt*) = {014 }. In the following lemma, we provide a
more operational characterization of V(u ¥, y}*).

Lemma 6: Given the information state (h!%,y}*) and the
vector u* € U(hL, y}*) at time ¢

1:k , 1:k 1:k k
V(u " y;7) = Qv 6220:

A , i .
Sub<> ot j=1 k=1, ) up=> ot )
=1 =1

=1 =1
(23)
Proof: The proof is similar to the proof of Lemma 5 and is,
therefore, omitted. O

In the following lemma, we show that the two k-dimensional
vectors u;** and v}* constructed above can be treated as the
optimization variables in the dynamic program in (21).

Lemma 7: The value function in (21) can be equivalently
expressed as

ko oul
%]
> D v

j=11i=1

Vt(h?a ytl:k) =

max
ul:kEU(hf,y%:k)

max
vlkeY(ulik ylik)

E [Vt-‘rl (Hﬁ,-la {yl —v + Xg+1}?=1>}

(24)

where V11 () = 0.In (24), w;” denotes the ith largest element
in W defined as

Wi = {w,(0,b): (6,b) e hF b=j} (25)
that is, Wg denotes the set of virtual valuations [see (14)] of all
the consumers with flexibility level j at time ¢.

Proof: See Appendix D. ]
In the following lemma, we establish a monotonicity property
of the value functions in (24). In Lemma 9, we leverage this prop-
erty to construct an optimal solution to the inner maximization
over v'¥ vector in (24).
Lemma 8: Consider two supply profiles y}** and z}** such
that
Y=z +1
yi=2 -1 (26)
yb =2l forall 1#i,j
where i < j. Then, the value functions V;(-) defined in Lemma
4 satisfy the following property:
Vi(hE, yt*) > Vi, 21%)  for all hF and t. (27)
Proof: See Appendix E. |
A more intuitive interpretation of the property established in
Lemma 8 is that a good of variety j contributes more to the
generation of revenue in comparison with a good of any of the
varieties j + 1,5 + 2, ..., k. Consequently, allocating a good of
variety j is at least as costly as allocating a good of any of the
varieties j + 1,75 + 2,..., k.
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Remark 2: The value functions V;(-) defined in Lemma 4
satisfy a more general version of the monotonicity property
shown in Lemma 8. Consider any two supply profiles y}** and
2% such that S°7_ yl > S 2L g ., k. Then, it can
be shown that value functions V;(-) still satisfy (27).

The property in (27) can be leveraged to provide an explicit
solution for the inner maximization over v'** in (24). This is
shown in Lemma 9.

Lemma 9: At each time t, given hf yl* and u* €
U(RE, y}*), recursively define
v** = min(u®, yF)
_ k k
v = min |y}, + Z ul — Z v ,
I=j+1 I=j+1
j=k—1,...,1. (28)
Then
vTe  argmax 1 ( Heps g v/ + X020 )|-
’Ul:kEV(ulzk,y%‘k)
(29)
Proof: See Appendix F. O

Based on the results of Lemma 9, the value functions in (24)
can be simplified as follows:

ko ul
i,j
DIPIR

j=1i=1

‘/t(h?aytl k) - max

ul:keu(hﬁjy%:k)

E [ Virr (HE (=0 + X0, Y )|

(30)

where v*'** is obtained corresponding to each wu!¥ ¢

U(RE, y}*), as described in (28). Note that since I(-) and V()
are finite sets [see (22) and (23)], the dynamic program in (30)
is guaranteed to have a solution.

VI. OPTIMAL MECHANISM

In Lemma 3, we established that the expected-revenue-
maximizing allocation rules of a BIC and IR mechanism indeed
coincide with the optimal control strategy for the stochastic
control problem in (15). Based on this insight, Section V was
devoted to the development of a characterization of the optimal
control strategy for the problem in (15) in terms of the solution
to a dynamic program [see (17) and (18)]. We leveraged the
structure of the flexibility model to simplify the formulated
dynamic program (see Lemmas 7-9). In the following theorem,
we use the results of Lemmas 3-9 as well as the characterization
of BIC and IR mechanisms provided in Lemma 1 to specify the
allocation and payment rules of the optimal mechanism.

Theorem 1: Consider the information state
(hy "%, (r, ) yt ¥), where consumer i reports (r,j) as its
type and h, “1 denotes the set of reports from all consumers
other than i. Let u;'** and v;'** denote the optimal vectors that

result from solving the dynamic program in (30). Consider the
mechanism (g}, pi.p) described in the following

1) Allocations: ~ Let  q;(h, "%, (r, ), yt"*) € S(h; " ¥,
(r,7),y+'¥) denote the allocatlon matr1x Constructed
according to the allocation procedure described as
follows.

i) Index the goods under the proﬁle v;¥* in a nondecreasing
flexibility order i.e., the v L goods of variety 1 are indexed
as 1,...,v;! and, the v} goods of variety 2 are indexed
asvil +1,..., 05t + v;‘2, and so on.

ii) Sort consumers of flexibility level 1 in nonincreasing or-
der of virtual valuations. Top u}' consumers of flexibility
level 1 get the first u;! goods as arranged in (i). Ties are
resolved randomly.

iii) Sort consumers of flexibility level 2 in nonincreasing or-
der of virtual valuations. Top u}? consumers of flexibility
level 2 get the next u;2 goods. Ties are resolved randomly.

iv) Allocations to the top u;’ consumers with flexibility

levels j = 3,...,k are carried out in the same fashion

as above.

v) The rest of the consumers do not get an allocation.

2) Payments: Suppose that nt consumers arrive attime ¢t. The
payment function p (h, ", (r, ), y+*) € R™ is defined
fori =1,...,n; as follows:

i1 —i. R . .
Pt (hy " ,<r,y>,y3~’“>

0 , if consumer 7 gets a good
= (€29
0, otherwise
where 6} is defined as
0i7 .= sup {z e [gmin, gmax] .
*i,l 1 —1, R . 1:ky _ .
ZQt (hf 7(‘raj)ayt )_07 wt(xmy)zo
1<j
(32)

Under Assumptions 1 and 2, (¢j.p,p}.) is an expected-
revenue-maximizing, BIC, and IR mechanism.

Proof: See Appendix G. U

Remark 3: The vectors u;'** and v;*** that characterize the
optimal allocation matrix qf( ) in Theorem 1 as well as the
quantities 0, "J defined in (32) can be found by first discretizing
the set [9“‘”‘, 6™ with sufficient numerical precision and then
applying the methods developed for solving Markov decision
processes (MDPs) with discrete state and action spaces. Several
methods for solving MDPs are available in the literature [17]—
[19]. An extensive discussion of the computational complexity
of different methods for solving MDPS can be found in [20] and
[21].

A. Example

Consider a simple setup with 7' = 2 and k£ = 2, where the
consumer arrival process A (+) follows a Bernoulli distribution,
that is, at each time step, a consumer may enter the market
with probability p. For a consumer entering the market at time
t = 1,2, its flexibility level is equally likely to be 1 or 2, i.e.,
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9¢(j) = % for j € {1,2} and, conditioned on its flexibility level
being j, its valuation has truncated exponential distribution
o exp(—a;x)
Tooxp(Ca,) 'L € [0, 1],
where ap > a1 > 0. It is straightforward to verify that m;(+|5)
satisfies Assumption 2. The virtual valuation function [see (14)]

associated with ¢ (-|7) is of the following form:

over the interval [0,1], i.e., m(x|j) =

wie, ) =~ - (L= explogle~ 1) , =12
J

Suppose that the supply profile at time ¢ =1 is (yi,y?) =
(1,1), and no more goods of either variety become available
at time t = 2. Suppose that a consumer with type (5, 2) ar-
rives at time ¢t = 1. Under the optimal mechanism charac-
terized in Theorem 1, this consumer gets a good of variety
2ifwy(6,2) > E[Va(HE, (1,1)) — Va(HE, (1,0))] =: p3 [see
(30)]. It is straightforward to verify that in this example

]E[VQ(H2Rv (1, 1))] = ]E[VQ(H2R7 (1, 0))]
= 5 (Egpm [max{ws(0,1),0)]

+Egjp—2 [max{ws(6, 2),0}])
from which it follows that p? = 0. ~
If instead a consumer with type (¢, 1) arrives at time ¢ = 1,
it gets a good of variety 1 if wy(0,1) > E[Va(HE, (1,1)) —
Vo(HE, (0,1))] =: p}. We observe that in this example
E[Va(H3, (0,1))] = 5Egp—s [max{ws(6,2),0)]
and thus
p
p1 = S Eojp=1 [max{w,(6,1),0}]

_ P res eXP(_alefsz) - eXp(_al)

5 33
212 1 —exp(—ay) (33)

where 677} is defined as
05 =max{z €[0,1] s wi(w,j) =0}. (34

For instance, if a; = 2 and p = 0.5, we obtain 67, ~ 0.36 and,
thus, pt ~ 0.037. In general, for the setup described above, it
is easy to check that p} > p?, which implies that a consumer
with flexibility level 1 needs to have higher valuation to get
an allocation at ¢ = 1. If the consumer with type (0,7) at
time ¢ = 1 gets a good, it pays 0] = w;*(p];j) [see (32)],
where w;!(+;7) denotes the inverse of wy (-, ). Notice that
Assumption 2 combined with pl > p? implies that 6] > 62,
i.e., a consumer with flexibility level 1 is charged a higher
price upon allocation of a desired good. For instance, con-
sider o = 3,3 = 2, and p = 0.5. For this numerical setup,
we obtain 0} = wy(pi;1) ~ w;(0.037;1) ~ 0.39 and 67 =
wy(p?;2) = wyt(0;2) ~ 0.29.

At time ¢ = 2, which is the terminal time step, if a consumer
with type (é, Jj) arrives and a desired good is available, it gets
an allocation if ws (6, ) > 0 and is charged the reserve price
9;62 at t = 2, as defined in (34). Notice that from Assumption
2, it follows that 67 > 057, meaning that at time ¢ = 2 also, a
consumer with flexibility level 1 needs to have a higher valuation
to get an allocation and is charged a higher price upon allocation
of a desired good. For instance, for the case in which oy =
3,1 = 2,and p = 0.5, we see that 61 ~ 0.36 > 057 ~ 0.29.

Therefore, we observe that in the above setup under the
optimal mechanism, at each time, the payment charged to the
more flexible consumers is less than the payment charged to
the less flexible consumers. Moreover, it is straightforward to
verify that @] is nonincreasing in ¢, that is, the payment charged
to the consumers with flexibility level j decreases over time
across all j (e.g., for the case in which oy =2 andp = 0.5,
we see that 0] ~ 0.39 > 05 = 01, ~ 0.36). Intuitively, this is
expected because unlike ¢ = 1, the consumer that arrives att = 2
faces no competition from future consumers. On the other hand,
the virtual valuation of a consumer that arrives at ¢ = 1 must
outweigh the expected revenue that can be produced by saving
the good for a consumer that may arrive at ¢ = 2. As a result,
a consumer that arrives at ¢ = 2 is expected to be charged less
(only the reserve price associated with its flexibility level) than
a consumer of the same flexibility level that arrives at t = 1.

B. Social Welfare Maximization

Consider a benevolent mechanism designer whose objective
is to maximize the expected social welfare of all the consumers.
In that case, the mechanism design problem can be formulated
as follows:

T Ng
max E 0; q’ (H
(‘h:T;plzT) t:Zl; ! Z ! ( t) (35)

j<bi
subject to  (6) and (7).

Suppose that (1.7, p1.7) is a BIC and IR mechanism, for which
¢1.7 is the solution to the following functional optimization
problem:

T N,
w8 30 (Caem) | oo
‘ t=1 i=1 §<bi

where H, is the history under truthful reporting.

It is straightforward to verify that (G1.7, p1.7) gives the high-
est expected social welfare in the class of BIC and IR mech-
anisms. That is, (Gi.7, p1.7) is a solution to the optimization
problem in (35).

One can easily show that the payment form in (16) can be
used to further specify the above mechanism. Given the history
h; and assuming that n; consumers arrive at time ¢, p; can be
specified as follows:
py(hy ", (03, 01)) = 67 ) a7 (hy ", (67, 01))

J<b}

0y o
—/ a7 (hi% (e, 09) | dao Yie {1, ... ,n.}, Vg, Vt.
o J<bi

(37

By comparing (36) with (15), we observe that (36) is exactly
the same optimization problem as (15) with virtual valuation
wy (01, b?) replaced by true valuation 6;. Therefore, the analyses
in Sections V— VI can be applied to specify the mechanism
(¢1.7, D1.7) as well. In particular, it can be verified that §; has the
same description as the one given for ¢; in Theorem 1, where in
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steps (ii)—(iv), the consumers need to be sorted in nonincreasing
order of true valuations rather than virtual valuations.

Moreover, using similar arguments as in Appendix G, we can
simplify the payment form in (37) as follows:

Ai(hﬂ;’R (r,7) 1;k) . éi’j, if consumer 7 gets a good
Pelle = A1 0)0 8 ) = 0, otherwise

(38)

where 6, is defined as

éi’j::sup xe[eminﬁmax]: qz’l(h;i’R»(fvj)vyg:k)zo :
I<j

(39)

VIl. CONCLUSION

In this article, we studied the problem of designing a dynamic
expected-revenue-maximizing, BIC, and IR mechanism for the
allocation of multiple goods of & varieties to flexible consumers
over T time steps. In our model, a random number of goods of
each variety may become available to the seller at each time,
and a random number of consumers may enter the market at
each time. We considered impatient consumers that need to get
one good of one of their desired varieties within the single time
step of their arrival. Each consumer has a flexibility level, i.e.,
a number between 1 and k that indicates the varieties of goods
the consumer finds equally desirable. A consumer’s flexibility
level and the utility it enjoys upon allocation of a desired good
are its private information. We characterized the allocation and
payment functions under the optimal mechanism in terms of
the solution to a dynamic program. We leveraged the structure
of the consumers’ flexibility model to simplify the dynamic
program and provided an alternative description of the optimal
mechanism in terms of thresholds computed by the dynamic
program.

Further exploration of the practical aspects of the developed
mechanism through simulation experiments is an important task
for future research. For instance, it would be interesting to deploy
Monte Carlo simulation techniques to study the interplay be-
tween various parameters, such as revenue, payments, flexibility
levels, etc., over time. Such studies would provide insights into
the practical limitations of the developed mechanism and the
scope of its applicability in different contexts.

An interesting extension to this article would be to study this
setup with patient consumers, i.e., consumers may be present
for more than one time step. In addition, studying the dynamic
mechanism design problem under the settings where both the
arrival and departure times of each consumer are privately known
to them is an important direction for further exploration. In the
present setup, we studied the case where each consumer wants to
receive a single good of its desired varieties. Another interesting
scenario would be the case where the consumers may need to
get multiple goods of their desired varieties.

APPENDIX A
PROOF OF LEMMA 3

Consider a BIC and IR mechanism (¢;.7, p1.7). The expected
revenue under this mechanism is

E{iipi(m)}

t=1 i=1

Z )"t (nt)

T
t=1n,=1

Z]E [pi(Hy) | Ny =ny] . (40)
i1

The conditional expectation in (40) can be written as

gmax

k
2:/,EmAMWWﬂ%mHM=nAﬁwm@wz

PO}, b}, 1) f1(01,0}) db; (41)

where P}(-) is the interim payment defined in (11). Because of
Lemma 2, we know that

0

Qi by, ny) dav. (42)
9"““

Pg(é§7~ivnt> < ézzt Qzlf(~l7 g’nt) -

Using (42), (41) can be upper bounded as follows:

k gmax
Z/wwmwmwww
b1’
k gmax _ o
sZ/,@m%%m
E7£:1 gmm
o o
-—Jﬁ_ @z«ub;ru>da> f(@.5) dé
k en‘ax ~. . ~. ~ . ~. ~ . ~.
=ZL@%@M¢MM;@M
bi=1

gmax éz ' _ o B
—/9_ ( o Qy (e, b, my) da) f:(61,0%) d@;]

k

>

bi=1

max
[ /(;mi"

gmax

- guin Qi(a7l~);€i7nt) (/;

k gmax

>\

bi=1

0; Qy(60;.bi.ne) f1(61,0}) db;

gmax

5.1 i) da]

0; Qy(07,bi,ne) f1(0;,0}) db;
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gmax

- QW%M%@/

@min o

gmax

m(011b;) db; | do

=1-TI; (a|b})

k Qmax
ZU'WmmwmmmM

min

bi=1
[ Qi (a, bi,ny)(1 Ht(abl))wda]
min e Oz‘ )
k 0max~ o o B
3| [ @it nn i a
bi=1
o i(nt 1i AFK) f(9t= t) i
gnin Qt(etvbhnt)( Ht(e |b ))Wt(étﬁ)t)de ‘|
k pmax o
=3 [ Qi@
bi=1

o g 1o Hf(9:§|l~7§)
b w08

=i/w

by=1

) Xy

(43)

min

The upper bound in (43) implies that the expected total revenue
in (40) can be upper bounded by the following:

T n n¢ k gmax
PP I K
t=1n,=1 i=1gizg 70"
El w azabl Z q (Hy 7(0?&7bl)) | Nt = ny ft(ézvgz) dézlf
j<bi
T @
:szt ’I’Lt Z]E Wt Gt,b th77 Ht |Nt—nt
t=1n;=1 j<bz
T Ny
=> E Zwt 0;,b,) > q;? (Hy)
t=1 = j<bi
T N,
E | YO wi(6,6)) ) qr (Hy)
t=1 i=1 j<bi
T N
i 7 i
< max B ;;wt(é’ubﬁ Z:biqt (H)

Thus, the expected revenue of any BIC and IR mechanism is
upper bounded by the maximum value in (15). Consequently, a
BIC and IR mechanism (¢}.7, p}.1), for which ¢}, achieves the

maximum value in (15) and p}.; is of the form given in (16),?
guarantees the largest expected revenue among all the BIC and
IR mechanisms. This concludes the proof.

APPENDIX B
PROOF OF LEMMA 4

We prove this by induction.

Base case: Clearly, the expression given for Ry (hr) in (17)
and (18) solely depends on hlt and y3:* (recall that Ry (+) =
0). That is, the information in hr \ {hf, y}*} is irrelevant for
determining Ry (h). Therefore, if we define the function V()
as follows:

D if hE =10
2) if Kt £ ()

Vr(hif,yr*) =0

|hT k

ZwT 07, b%) ZA(iaj)
=1

the equality in (19) holds true at time 7.

Induction hypothesis: Suppose that there exists some function
Vi41(+) such that (19) holds true at time ¢ + 1.

Now, we want to show that there exists some function V;(-)
such that (19) holds true at time ¢. In other Words, we want
to show that given the history hy = {h yt¥ o}k h; 1}, the
expression glven for R¢(-) in (17) and (18) is fully determined
from {hf',y}*} and does not depend on h; \ {hf y}*} =
{x}* hy_1}.Forthe case hf* = (), from (17), we see that R; (hy)
is expressed as

Ri(hy) = E {Rf-&-l(hthﬁlv {vl + Xt+1}j=1’Xt1—:i-k1):| :

Using the induction hypothesis, the above expression can be
written as

Rt(ht) =K [VtH(Ht}ib {yg + th+1}§:1)} .

Since H{ | and Xg 1 are independent of /4, the expected value
above depends only on ;. Thus, when h* = (), we can define

Vi@, y%) = Re(hy) =Epr yin [Viga ( t+1aYtl+lf)]

t4+127t+4+1
Note that the above definition of V;(-) satisfies (20).
For the case h{* # (), we see from (18) that R; (h;) is expressed

VT(hgv y%“:k

):=  max
AeS(hE it

as

|n |

Ry(he) = > w6,
i=1

max
AeS(hE yi*)

k
%ZM@

+E [Rit1 (Hiz1)|he, Ay = Al (44)

Clearly, the term f in the above expression does not depend on
the 1nf0rmat10n in hy \ {hE, yt*} = {x}F* hy_1}. Moreover,
the set S(hF, y}**) over whose elements the max{-} operation

3 pi.p form in (16) makes the upper bound on the expected total revenue
attainable, by ensuring that the inequality in (42) becomes an equality for

(q;:T’pi:T)'
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above is carried out is fully specified in terms of A%, y}* and
does not depend on {z}** h;_1}. It, thus, remains to show that
the second term in the max{ } operation above does not depend
on the information in {x}** h; ;} either. Using the induction
hypothesis, let us expand the second term above as follows:

E[Riy1(Hygr)|Hy = hy, Ay = A]
=E Vi (HE YD) Hy = by, Ay = A
Vt+1( t+1>
I3 k
ZA Z ] +Xt+1 ‘ {ht 7yt %:k,ht,l},A
j=1
|hfE|
=E|Visr [ HE, Swl =D AGLj)
=1
k
Xt]+1 ‘ ht ayt o A
j=1

(45)

where we used the fact that H/? | and X} 1 are independent of
h. It is clear that the above conditional expectation is a function
of hf,yt and A and does not depend on the information
in {z}* ,ht_l}. The above analysis allows us to conclude the
following.
1) R;(h;) is completely determined by k% and y}**. Thus,
we can define a function V;(hf, y} %) = Ry (hy).
2) Furthermore, using (44) and (45), it is clear that V()
satisfies (21).
This completes the proof.

=E [Virr(HE V) [ Ry ", A

APPENDIX C
PROOF OF LEMMA 5

Let A:={u* € 25 337wl <3 yh, v < nf, V),
i.e., A equals the set in the right-hand side of (22). Clearly, when
P — 0, URE, yl*) = {01} = A.

Let us now consider the information state s; = (h?, ytl k)
with A £ (). We start with showing that U(hl, y}*) C
A. Consider a vector u;* € U(hE,y}**). Since nj is the
number of consumers with flexibility level j that arrive at
time ¢ and w] is the number of consumers with flexibil-
ity level j that get a good at time ¢, we clearly have that
ul < ni. _

Now, consider Y 7_, u}. This is the total number of con-
sumers with flexibility level less than or equal to j that get
a good. Since consumers cannot get a good of variety higher
than their flexibility level, it follows that >7_, u} is less than
or equal to the total number of available goods of variety less
than or equal to j. In other words, > 7_, u} < >°7_, y!. Thus,
urt e A

We now show that script A C U(hf, y}*). Consider u}** €
A. In order to prove that u}* € U(hE, y}*), we need to

show that there exists some matrix D € S(hf*, y}**) such that

Z‘h’ ‘1 ><; D) = ul, V7. Let us construct such a matrix

i b’“—
accordljng to the followmg allocation procedure.

1) Select any u; consumers with flexibility level 1 and
allocate each of them a good of variety 1. This is a feasible
allocation since u} < y}.

2) Select any u? consumers with flexibility level 2 and
allocate each of them either an unallocated good of variety
I @f uf < yf) ora good of variety 2. These can be done
since u} +u? <y} +y?2.

3) Proceed in a similar fashion for all flexibility levels: select
any u] consumers with flexibility level j and allocate each
of them a good of any of the varieties 1 ,J depend-
ing on their availability. Since Zl 1 ul < Z -1 yl, the
described allocation is feasible.

4) The other consumers that arrived at time ¢ but were
not selected for allocation in the above steps get zero
allocation.

It is straightforward to verify that allocation matrix D con-
structed above belongs to S(hft, y*) and that it serves u;
consumers of flexibility level j. Hence, every vector u}* 6 A
corresponds to a feasible allocation matrix D € S (hf']7 yrk).
Hence, ui* € U(hF,yl*). This establishes A C U(hE, y}F)
and completes the proof.

APPENDIX D
PROOF OF LEMMA 7
Define
F(hit yt*) = {(u! ) € Z3

Eu(h?’yt:)a 1kev( vyt )}

Lk LK) in F(hE, yl*), define

(46)

Furthermore, for any (u

uj,jl,...,k}.

(47)

It is easy to check that the set of all feasible allocation matrices
can be partitioned as

(u1=k,v15’“)€f(h{3,yt1:k)

R Il g

ZA(i,j) =0, ZA(Z’,Z)

i=1 [=1
i:by=j

SRy, ul®, '),

(48)
Therefore, the value function in (21) can be written as

Vi(se) = max max
(ul:k wl:k)eF(sy) AESr(sp,ulik plik)

\h k
{zwt i3 A

i, 7))+ E[Vig1(Sig1)|se, A = A] }}
i

(49)
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The  term in (49) can be written as
T=E [Vt+1 (Hﬁp {yl =o' + th+1}§:1)} .

The above expectation depends only on v** and y}*
on the allocation matrix itself. Thus, (49) becomes

Vf(sf) =

and not

max

R S -
(utk wlR)EF (se) " {Vt“ (Ht“’ (vt ="+ th+1}j:1>}

IhE| k
+ max w(07,6)) " A(i, j
AESF(sg,ulik plik) z:: t ¢ ]2::1 ( j)

i
Considering the term I in the above expression, it is straightfor-
ward to see that for all A € Sz(s;,u'* v““)

hi|

Zwt (62,b%) ZA (4,7) <ZZw

Jj=11i=1

(50)

where wt’] denotes the ith largest element in Wg [see (25)].
Furthermore, an allocation matrix that, for each flexibility level
7, gives goods to u/ consumers with highest virtual valuations
satisfies the above inequality with equality. Hence

ko ul
_ ,J
=2 wi

j=1i=1

hi?]

max E wy Qz,b’ ZAZ]
AESy(sq,ulth plik)

Plugging this result into (50), we obtam

S

j=11i=1

R | 1:k
V;S(ht » Ut )_(ulkvl k)e}'(hR lk){
+E [Vt+1 (Htlj-la {yl —v’ + Xg+1}§:1)} } (G

which can be rearranged in the form of the following nested
maximization:

R | 1:k
‘/t(hthyt )_ulkeb[(hR lk){

>3

j=11i=1

+ max

n _
UlrkEV(ulrk,yg=k){]E [Vt+1 (Ht—Ha {1 —v" + Xt+1}j=1)} }}

(52)
This completes the proof.

APPENDIX E
PROOF OF LEMMA 8

We provide an inductive proof of the lemma.
Base case: At time T, consider a nonempty history ht and

supply profiles y* and z%* such that y& = 28 + 1, v =
7 —1,and yéﬂ = zéﬂ forl # i, j, where i < j. From the defini-
tion of U(-) in (22), it follows that U (R%, 2X%) C U(hE, yAik).

This fact combined with the definition of V7 (+) implies that (27)
holds for ¢ = T and hft # 0. If bt = 0, then Vi (¥, 24:%) =

0 = Vp(h#, y4i*). Hence, (27) holds true at time 7T for all hit.
Induction hypotheszs Suppose that the statement of the
lemma is true for V;41(-). Consider two supply profiles y;*
and 2} such that y{ = 2{ + 1, y/ =2/ — 1 and y! = 2! for
I # i, 7, where i < j. We now show that given such y}* and
Lk the property in (27) holds true at time ¢, i.e.,
Ve(hi®, yi'*) 2 V(b 2%) VA{. (53)

Let us first consider hf = (. In this case, we have

‘/}(@,yg:k) ‘/2+1(H£17K14r§) | y ]
Vit (HE 3 {yh + X1 e )]

Vt+1( t41> {Zt + th+1}l 1) }
Vit (HE L YR | 24 }
= Vil0,2%) S

where the inequality in (54) follows from the induction hy-
pothe51s by noting that for any reahzatlon xf +1, Y, L1 =Y+
xt—i—l =2{ ‘|' Loyl =yl ol =2, —Landy},, =
Yl + 2l 1= =2i44 for l # i, 7. This establishes the property in
(27) for ht = 0.

Now, consider hf = (). To prove (27), it suffices to show that
for every (ul**, v1*) € F(RE, 2}'F), there exists (ul™*, al**) €
F(hE, yL*) such that

kool o
Z Zw;j +E Vi (HE 1 {ys — o' + X{ 4 H2)]

j=1i=1

>Zzw +E ‘/;5+1( t+17{zt_v +X+1}l 1)]

j=11i=1
(55)
Recall that (u'* v¥*) € F(hE, 2}*) implies that v! < 2! for
all [.
For (u'* v'*F) € F(hE, z}%) two cases arise.

1) Case 1: 07 < z/.1In thls case, we define a*** = vl Tt is

clear that (u'*, a'**) € F(hf y}*) and (55) holds.

2) Case 2: vJ = z]. In this case, we cannot set a'** = ¢!

since v/ > y!. Therefore, we define a'* as follows:
a'=v 4+ 1,0/ =v7 — 1, and a! = 0! for [ #i,j. It is
straightforward to verify that (u**, a'*) € F(hf, yt*).
Furthermore, using the induction hypothesis

E [Vier (HE {yt — ' + X[ 03]

=E [Vir(HE yr —a' + X0,y —
..7y{—aj+Xf+1,...,yf—a’“+thH)]
= E[VtJrl(Htl?Hv Y —
R T (AR ) D, AR
oyt =0 X))

= E[V;H-l( t-‘,—layt

a'+ XZ+1a

vl —|—Xt+1,...

,yf—( —1) Xt+1,...

1 1
v+ X,
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(T VLD, G
-'ayf_vk—i—thJrlﬂ

=E Vi (H 1 {2 — o'+ X )] -

This proves (55) and, thus, establishes (27) for A7 # ()
Therefore, (27) holds true for all A at time ¢. This completes
the proof.

APPENDIX F
PROOF OF LEMMA 9

We prove the lemma in the following steps.

Step 1: We first show that v*1% € V(ul* yl*). Clearly,
v <yl and Zf:j vl < Zf:j u! forall 5. To show that v*1:* ¢
V(u*, yl*), it suffices to show that 3)_, v = 37 ul. We
will utilize the following claim.

Claim: Suppose that for all m =1,...,7: (i) Zf:m vl <
SO, uland (i) v** = yi, forall i < j. Then, (a) v*/ = y/ and

k l k l
B) D1 v <Dt -
Assume for now that the claim is true. We have already seen

that Zle v < Zle u!. Suppose
k

k
Zv*l < Zul.
1=1

=1

(56)

Then, using the claim above with j = 1 implies that v*! = y}
and Zf:z vl < 25:2 ul. We can now use the above claim
for j = 2 to conclude that v*? = y? and Zf:s vl < Zf:?) ul.
Proceeding this way until j = k — 1, we get that 1) v = y;"
for all m < k — 1 and 2) v** < «*. Furthermore, 2) and the
definition of v** imply that v** = y¥. Thus, the entire v**
vector is equal to the y}** vector. But we started with the
statement that (56) is true. Thus, Sy} < 37, !, which
contradicts the fact that u*** € U(hft, y}*). Thus, (56) is false,
and hence, .5, v*f = S°F | wl,

The only thing left now is the proof of the claim.

Proof of claim: The inequality Zf: y v < Zf: j u! implies
that v < S0 ul = S0 v ~This, along with the
definition of v*7, implies that v*/ = y]. Therefore, (a) holds true.

We already know that Zf:j_H v < Zf:j_i_l ul. If

k *l
El:j+1 v 4 :
withm = 1,itfollowsthat}_;_, v*' < >°7_, u'. Thiscombined
with v** =i for all 4 < j in (i) and v*/ =] in part (a)
implies that > 7_, y! < >°7_, u', which contradicts the fact

= Zf: i1 u!, then from (i) in the claim statement

that u'* € U(hE, y}*). Hence, Zf:jﬂ vl = Zf:j_H ul
cannot be true. This establishes (b).
Step 2: For any vl #v*l"“ in V(u'*, y}*), consider

the highest j such that v7 # v*J. We argue that v/ > v*J

cannot be true. Given the deﬁmtlon of v*J, either v* = yt
o v - w (Zf:jﬂ ul — Zf:j+1 v I v =y, then
vJ > v* contradicts v1* € V(ul* y}*). Now, suppose v*/ =
ul + (Zf:jﬂ yl - Zf:jﬂ v*!). Given that o' = fu*l,l‘ =
Jj+1,...,k v’ >v" would then imply that v/ >/ +
(Zf:],rl ul — Zfzjﬂ v') or arranged differently Zf:; ol >

,(y§+1)—vj+xg+1,...zl

~u!. This combined with the fact that Zl Lol = Zz Lul

Would then 1mply that 371 v < 3771w, which contradicts
vtk € V(ub*F ylF). Thus, it can only be the case that v/ < v*J
Step 3: For any v'F £ v*1F in V(ul* ylF), we define a
new vector 7 (v'*¥) as follows: Pick the highest j such that
v < v*7.% Then, pick the highest i < j with v* > 0. It can
easily be shown that such i and j exist. Then, 77 (v'*) =
vl + 1, T (o) =o' — 1, and T'(v'*) =o' for 1 #1i,j,
where 7 (v'*) denotes the /th entry in 7 (v':*). We now argue
that 7 (v1*) € V(ul*, y*). Form < iorm > j,itisclear that

i ul § i Tl(’Ulzk).
=1 =1

Since j is the highest index with v7 # v*j it follows that

Jj—1 Jj—1 Jj—
D v>) v Z
=1 =1 =1

Now, for any m such that: < m < j,

m i—1 Jj—1 m
ZTl(vlzk) _ (’Ui - 1) + Zvl _ ( Ul> 1> Zul
=1 = =1 =1

Therefore, 7 (v'¥) satisfies all the inequalities
S T M) > S ulm=1,... k. Furthermore,

it is easy to verify that 77(v'*) <y/. Thus, T (v'¥) e
V(u'*, y}*). We now show that the objective value in (29) is
(weakly) larger under 7 (v'**) compared to that under v'**. Let

a'* ;= T(v%*). Using Lemma 8
E[WJrl(HtRHa {yi — o'+ th+1};€:1)]
=KV (HE  yf =o'+ X,
..,yi—vi+X,f+1,...,
..,y{—vj+Xg+1,...,yf—vk+Xf+1)]
SEVipr(HE L yf —ot + X,

Y= (=D + X,

~~ayt (vj—i—l)—ﬁ—XHl,..,,y —v +Xt+1)]

= E[Verr (B, g — o' + Xi 4]
Therefore, the objective value in (29) can only improve after
applying the transformation 7 ().

Step 4: Starting with any v'* #£ v*1:* in V(ul* , We can
keep applying transformation 7 (-) to construct new vectors in
V(u'*, y}F) that result in an objective value at least as large as
that under v!'**. This is conducted in the following while-loop:

1: while v''* #£ v*1'k do
2: wbk e T (vlh)
3: end while

4: return v'*

The above while-loop will terminate in a finite number of steps
with v1* = v*1*F at termination. Thus, the objective value under
v*1F is at least as large as that under any v'** € V(ub*, y).
Thus, v*!** is optimal.

yr™)

Note that the case v/ > v*/ got ruled out in Step 2.
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APPENDIX G
PROOF OF THEOREM 1

Suppose that n; consumers arrive at time ¢, and let (r, j)
denote the type reported by the ith consumer arriving at time .
Assuming that all other consumers report their types truthfully,
let Q;%(r, j,n¢) and P;*(r, j, ;) denote the expected allocation
and payment [see (10) and (11)], respectively, for this consumer
under the mechanism (g}, pi.7), when it reports the pair (7, 7).

Bayesian incentive compatibility and individual rationality:
Because of Lemma 1, we can establish that (qf.,,pi.,) is
BIC and individually rational by showing that the following
conditions hold true.

i) Q;%(r, j,n;) is nondecreasing in r for all i, ¢.
ii) Q;%(r,j,n¢) is nondecreasing in j for all 4, t.

iii) P;E(0™", 5, n;) = 0 for all j,ny, t, i.

iv) M Qri(O™n j ny) = 0 for all §, ny, t, .

v) P;i(r,j,ns) is of the form given in (12) for all i, ¢.

We establish these conditions as follows.

(i) In order to establish that Q;*(r, j,-) is nondecreasing
in 7, it suffices to show that ZK] L BB (0 5), i) s
nondecreasing in r, where h; " R denotes the set of reports
from all consumers other than 7. Given h, “H and Y
sider two information states s, := (h; * %, (r, ), yt )and 5=
(hy " (7, 4), y*), where 7 > r. That is, consumer i has types
(r,7) and (7, 7) under s, and 5, respectively. We now want to

show that
Z q*’L R > Z q*v N

<y <y
Clearly,if ), ; a"” l(st) = 1,(57) holds true. Let us consider
the case where >, q;" '(5,) = 0. We need to argue that in

this case, Y, ¢;"!(s,) = 0. Let u*™* denote the optimal u!*
vector obtained from solving the dynamic program in (30) under
the information state s;. Since consumer ¢ does not get served
under u** (recall that > ¢;"'(5,) = 0), it can be shown
that u*1* is optimal under s, as well and that consumer i will
not get served under the information state s,. In other words,
doi<; 4" (s,) = 0 and (57) is true.

(i) In order to establish that Q;(r, j,-) is nondecreasing
in j, it suffices to prove that },_; ¢ L AR () 4), yiR) s
nondecreasing in j. We will use the following proposition in our
proof.

Proposition 1: Let u*1*¥ denote the optimal vector that results
from solving the dynamic program in (30) under the infor-
mation state s; = (h*, y}**). Consider two flexibility levels j
and j" with j < j'. Then, every consumer with flexibility level

, con-

(57)

4’ and virtual valuation greater than w“ J gets served under
(@i7spir)”

Proof: Suppose that the proposition is not true. Define the
vector 1 as follows: 4/ = u* — 1,1lj/ =u¥ +1,and 0! =
uforalll # j, j'. Clearly, @'** € U(hE,y}*). Consider the ex-
pression of the value function given in (24) [which is equivalent
to the definition in (30)]. It is straightforward to verify that the

. “j s
"fu*d = 0, then wy’ 7 1= o0.

first term in (24), i.e., Z?Zl S wi?, would be strictly larger
under the vector 4'* compared to that under «*'**. Moreover,
since V(u*l* yl'k) C V(al*, y}*) [see (23)], the second term
in (24) (i.e., the inner maximization over v** vector) cannot
decrease under the vector @'* compared to that under u**.
Therefore, the objective in (24) [equivalently, (30)] strictly
improves under the vector 4''* compared to that evaluated at
w*¥*_ which contradicts the optimality of «*!**. This completes
the proof. ]
Given h; o8 and y}*, consider two information states s, :=
(hy "% (), yt*) and 5, := (h; "%, (r,€), yi*), where ¢, ¢ €
{1,...,k},& > c. Thus, we need to show that

> a5 = a (s)-

<e I<c

(58)

Clearly, if ). q l(st) =1, (58) holds true. Let us consider
the case where >, ¢;"

this case, > ;. ¢ “l(s,) = 0. Let u*** denote the optimal v
vector obtained from solving the dynamic program in (30)
under the information state 5. Let n] (s;) denote the number of
consumers with flexibility level j that arrive at time ¢ under the
information state s;. Because consumer 7 with flexibility level ¢
does not get a good under 5; (recall that ;. ¢ l(s,) = 0),
it clearly means that u*¢ < nf(5) —1= nt(st) Therefore,
indeed, u*'** € U(s,) [see (22)]. We now want to show that
uL* is also optimal under s,.
Consider the following sequence of implications.

a) Since consumer 7 does not get served under the informa-
tion state 5; (recall that ), 4" (5¢) = 0), it follows
from Proposition 1 that its virtual valuation must be
no greater than the virtual valuations of the consumers
that are served from flexibility levels lower than ¢; in

'(5;) = 0. We need to argue that in

particular, w;(r, ¢) < w! <.

b) From Assumption 2, we know that wt(r ) < wy(r,C).

Therefore, (a) implies that wy (r, ¢) < w;" <.

¢) > jea qu’l(Et) = 0 combined with (b) implies that the
vector u*1*¥ results in the exact same objective value in
(30) under both information states 5; and s,.

d) Since ¢ < ¢ and wy(r, ¢) < wy(r,c), it is straightforward
to show that under the information state s,, the value
function in (30) is upper bounded by that under s, i.e.,
Vils,) < Vi(51).

e) Items (c) and (d) combined imply that u*!
under s, as well.

Items (e) and (b) above imply that consumer ¢ with type
(r,c) does not get served under the information state s,, i.e.,
S e @ (s,) = 0. Thus, (58) is true.

(iii)=(v): To establish conditions (iii)—(v), consider the pay-
ment form given as follows:

oy (T )ty = > (b g), )

/<‘7

** is optimal

B, 9),yr*) | de. (59)

/ Zq*v,]

r<‘7
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We first argue that monotonicity of ¢; (-), as established above
[condition (i)], implies that the payment form in (59) is equiva-
lent to the one given in (31). Then, we show that this equivalent
payment form in (59) indeed satisfies conditions (iii)—(v).

If consumer ¢ with the report (7, j) does not get a good (i.e.,
doji<i @ (hy " (r, §), y}*) = 0), then the monotonicity of
g; implies that the integral in (59) is also 0. Hence, in this
case, consumer ¢ pays nothing. On the other hand, if consumer %
gets a good (i.e., )i @ (b (r, §), y*) = 1), then the
definition of 92” [see (32)] implies that the integral in (59) is
(r — 0;7). Hence, in this case, consumer 7 pays 0, . Thus, the
payment in (59) is identical to the payment in (31).

We now argue that the equivalent expression for pj(-) in (59)
satisfies the conditions in (iii)—(v).

To see that condition (iii) above holds true, recall that from
Assumption 2, we have that w;(§™", j) < 0 for all 5, ¢. Hence,
it must be that 3 _; g (PR (00 §), ylR) = 0 for all
hy B ykk i t. Otherwise, g, will not maximize the ob-
jective in (15) whose solution is given by the dynamic pro-
gram in (20) and (21). Therefore, from (59), it follows that
pit(hy PR, (0™ §), yL*) = Oforall h; ™™, yL*, 4. i, ¢. This im-
plies that P4 (6™, j. ny) = Oforall j,ny,t, i, which establishes
condition (iii) above. Based on the same argument, condition (iv)
above holds true as well. '

By taking the expectation of pi*(H, “™, (r, j), Y;**) in (59)
over (H, " Y,}*F), where H, *T' = HE\ {(07,b%)}, itis casily
established that the expected payment P;*(-) satisfies (12) with
gmin Q3¢ (g™in | 5, n,) = 0. Hence, condition (v) above holds true.

The above arguments establish that the mechanism
(¢i.7, ;1) is BIC and individually rational.

Expected-revenue maximization: The allocation functions
qi.7 constructed in Theorem 1 are the optimal control strategy
for the stochastic control problem in (15). This is because
Lemmas 4-9 established that the dynamic program in (30) is
equivalent to the one in (17) and (18), which was formulated to
address the control strategy optimization in (15). Moreover, the
payment functions p7.,- defined in (31) [which is equivalent to
(59)] satisty (16). Therefore, based on the results of Lemma 3,
the mechanism (¢;.,, pi.7) is an expected-revenue-maximizing,
BIC, and IR mechanism.
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