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Abstract—In this article, we consider the problem of
designing an expected-revenue-maximizing mechanism for
allocating multiple nonperishable goods of k varieties to
flexible consumers over T time steps. In our model, a ran-
dom number of goods of each variety may become available
to the seller at each time, and a random number of con-
sumers may enter the market at each time. Each consumer
is present in the market for one time step and wants to
consume one good of one of its desired varieties. Each con-
sumer is associated with a flexibility level that indicates the
varieties of goods it is equally interested in. A consumer’s
flexibility level and the utility it gets from consuming a
good of its desired varieties are its private information.
We characterize the allocation rule for a Bayesian-
incentive-compatible, individually rational, and expected-
revenue-maximizing mechanism in terms of the solution to
a dynamic program. The corresponding payment function
is also specified in terms of the optimal allocation func-
tion. We leverage the structure of the consumers’ flexibility
model to simplify the dynamic program. Our simplified dy-
namic program allows us to provide an explicit allocation
procedure and a simple payment rule in terms of the solu-
tion of the dynamic program.

Index Terms—Bayesian incentive compatibility, dynamic
mechanism design, flexible demand, optimal mechanism,
revenue maximization.

I. INTRODUCTION

C
ONSIDER the scenario faced by a monopolist seller with

multiple resources who wants to allocate them to con-

sumers over time in order to maximize its expected total revenue.

The seller offers goods of different varieties, and there may be

new additions to its stock of each variety over time. Different

consumers may interact with the market at various points in

time, each for a limited duration. Such a scenario arises in many

marketplaces where the available supply and the population of

the consumers vary in an uncertain fashion over time. In cloud

computing platforms [1], for example, the computational and
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data storage resources get freed up with the termination of previ-

ously submitted jobs and are dedicated to processing of the new

tasks dynamically over time. In power distribution networks with

partial reliance on the renewable energy resources [2], the energy

supply varies over time depending on the availability of the

intermittent source of energy; the amount of power demanded

by the consumer base connected to the grid is also uncertain

and constantly fluctuates over time. In wireless spectrum man-

agement platforms [3], the available spectrum bands are leased

to secondary wireless service providers (WSPs) for temporary

usage and are freed up as the interim lease contracts terminate

dynamically over time. One particular feature that makes these

resource allocation problems challenging is that in the face of

uncertainty about the future supply and demand, the seller needs

to decide whether to use its limited resources to serve a currently

present consumer or keep them for potentially more profitable

transactions in future. Moreover, in order to decide about the

optimal way of allocating its resources, the seller needs the

information about the consumers’ preferences and restrictions,

and their willingness to pay for their desired goods or services.

Typically, however, this information is known privately to each

consumer, and the seller needs to elicit these data from them.

Since the consumers are self-interested and strategic, they may

distort their privately held information when communicating it

to the seller if they believe that they can benefit from such misrep-

resentations. The seller, thus, needs to incentivize the consumers

to disclose their private information. The theory of mechanism

design provides a systematic framework for designing the rules

of interaction between multiple strategic agents in a way that

the principal decision maker’s desired outcome emerges at the

equilibrium of the induced game.

Auctions as a special class of mechanisms have been exten-

sively studied in the context of mechanism design, and they

are being adopted in an increasing number of markets for

pricing and selling various products and services. While the

theory of auction design is well developed under static settings,

its extension to dynamic markets that involve allocation and

pricing of time-varying supply to accommodate time-varying

demand under incomplete information is generally less mature

and is still an active area of research [4]. Given the growing

practical interest in auctions for allocating and pricing resources

in dynamically operating markets, a deeper understanding of the

design and implementation of such auctions is crucial.

In this article, we study the problem of designing expected-

revenue-maximizing auctions for selling indivisible and durable

goods of k varieties to consumers over a discrete finite-time
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horizon. Additional units of each variety may become available

to the seller at each time step. In our setup, each consumer is

associated with a flexibility level, which indicates the varieties

of goods that the consumer finds equally desirable. Formally, the

flexibility level of a consumer is a number in the range 1, . . . , k
such that a consumer with flexibility level j wants to get a good

of any of the first j varieties. Each consumer is present in the

market for one time period and wants to receive one good (of

any of the desired varieties) prior to its departure. The flexibility

level and the valuation a consumer has for a desirable good are

both its private information.

There are several markets with a temporally fluctuating con-

sumer base where the flexibility in demand described above

arises. We describe two such scenarios as follows.

1) Dynamic spectrum management in cognitive radio net-

works: With the emergence of various wireless applica-

tions for mobile users, there has been a significant increase

in the demand for radio frequency spectrum in recent

years. While most of the available radio spectrum has al-

ready been licensed off to the existing WSPs, they are not

being fully utilized by their primary owners. As pointed

out in [3], dynamic spectrum access protocols can enable

efficient use of these underutilized frequency bands—

referred to as spectrum holes in [3]—by accommodating

the demands of secondary users who can use these bands

on a temporary basis. Cognitive radio systems can detect

the presence of such spectrum holes in the frequency

bands owned by a primary user. Consider the problem

faced by one such spectrum owner who wants to allocate

its underutilized frequency bands of various widths, as

they become available over time, to secondary WSPs

who have different minimum bandwidth requirements.

Suppose that the primary owner has frequency bands of

widths w1, . . . , wk such that w1 > w2 > · · · > wk. We

say that a WSP is of flexibility level j if it requires a

frequency band of width at least wj . At the beginning of

each time step t, a random number of WSPs arrive into the

market to compete for the limited radio frequency bands

available at that time. The resource allocation problem

that a primary spectrum owner encounters when it aims

to allocate its intermittently available frequency bands to

secondary users’ temporary usage can be modeled within

the framework developed in this article.

2) Allocation of computational resources in cloud comput-

ing platforms: Consider Amazon’s EC2 cloud comput-

ing platform that sells various types of computational

resources, such as memory, CPU, storage capacity, com-

puter applications, etc. In this market, clients can ran-

domly enter and depart over time. Clients rent virtual

machines or instances and are typically charged on an

hourly basis per instance depending on the duration of

their usage as well as the rented instance type. Each of the

instance types are offered in different sizes to suit various

purposes. As explained in [1], for example, Amazon’s

EC2 offers “standard” instances in three sizes: small,

large, and extra large. A consumer can belong to one of

the following three flexibility classes:

a) inflexible consumers who need an extra-large instance;

b) somewhat flexible consumers who need a large or extra-

large instance;

c) flexible consumers who are fine with receiving any of the

three types of instances.

The allocation of computing instances to consumers of dif-

fering flexibilities can be modeled by our setup.

A. Prior Work

Much of the prior work in the area of dynamic auctions can

be grouped in two categories [5]: 1) markets with a dynamic

population of consumers whose private information remains

unchanged over time and 2) markets with a fixed population of

consumers whose private information evolves over time. Within

each of these two categories, the important findings on efficiency

(social-welfare maximization) and optimality (revenue maxi-

mization) as the two primary objectives are highlighted in [5].

Our work falls under the first category (dynamic population)

above with the focus on revenue maximization as the main

objective. Therefore, we will focus on comparing our model with

prior works that have addressed revenue maximization under the

first category above. We can broadly categorize the works in this

strand of the literature based on certain features of the seller’s

supply and the consumers’ demands as follows.

1) Dynamic Auctions With Multiple Identical and

Durable Goods: The works in this area have studied dynamic

revenue-maximizing auctions in settings where the seller has

multiple identical goods and wants to sell them to unit-demand1

consumers over a finite- or infinite-time horizon. The setups

in [7]–[9] consider a seller that has multiple identical goods

and wants to sell them to consumers over T time steps; each

consumer may demand one [7], [8] or more units [9] of the

good and may be present in the market for one [7] or more

time steps [8], [9]. Gallien [10] studies a similar setup, where

the seller offers K identical items for sale over an infinite-time

horizon and consumers are assumed to be unit demand and time

sensitive in the sense that they discount their future utility with

a common time-discount factor. Gershkov et al. [11] design a

revenue-maximizing mechanism for a setting where the seller

has multiple identical goods for sale over an infinite continuous-

time horizon. They assume in [11] that the consumers are unit

demand and that each consumer’s arrival time and its valuation

are its private information.

The key feature that differentiates these setups from our model

is that in all of them, the goods are assumed to be identical. In

our model, each consumer, depending on its flexibility level,

subjectively differentiates between the goods. In particular, a

consumer with flexibility level j has the same positive valuation

for any good of varieties 1, . . . , j and zero valuation for a good

of varieties j + 1, . . . , k. Furthermore, in our model, more units

may be added to the seller’s supply of different varieties over

time. In the setups described above, the seller’s supply is limited

to the initial stock of goods available at the beginning of the time

horizon.

1A unit-demand consumer wants to receive one unit of the good [6].
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2) Dynamic Auctions With Multiple Identical and Perish-

able Goods: Said [12] considers a setup where a seller obtains

an uncertain number of perishable2 identical goods at each time

step and wants to sell them to unit-demand consumers over an

infinite discrete-time horizon. Each consumer may depart the

market exogenously at any time period t after its arrival with

a common probability (1− γt) ∈ [0, 1]. Otherwise, a consumer

continues to interact with the market until it gets an allocation.

Unlike the setup in [12], in our model, we assume that goods

are durable and could, thus, be stored for future allocations.

Moreover, in contrast to [12], we assume that consumers are

present in the market for one time step only. Finally, in our model,

goods are valued differently by different consumers depending

on their flexibility levels, whereas, in [12], the offered goods are

all identical from the consumers’ viewpoints.

3) Dynamic Auctions With Multiple Heterogeneous

Goods: The papers in this line of work study the dynamic

revenue-maximizing auction design problem in cases where the

seller has multiple heterogeneous goods and wants to sell them

to unit-demand consumers over a finite/infinite-time horizon.

Gershkov and Moldovanu [13] study one such setup over a

continuous- and finite-time horizon where the goods are com-

monly ranked by the consumers that are impatient, i.e., they want

to get an allocation immediately upon arrival in the market.

Unlike this setup, each consumer in our model has subjective

preferences for different varieties of goods, and each consumer’s

desired varieties are its private information. Furthermore, in our

model, additional goods of each variety may be added to the

seller’s supply over time, which is not the case in [13].

4) Dynamic Auctions With Private Departure Times:

Mierendorff [14] considers a setup where a seller wants to sell

a single indivisible good over T time steps to consumers who

are privately informed about their valuations as well as their

deadlines for buying the single item in the dynamic auction.

The key differences between this work and our setup are the

following: 1) in our model, the seller offers multiple goods that

are differentiated by each consumer subjectively based on their

privately known flexibility levels, while in [14], the seller has

only one good for sale; 2) the consumers’ exit times are known

to the seller in our setup, while they are privately known to each

consumer in [14]; and 3) in our model, each consumer is present

in the market for one time step only, while in [14], a consumer

may remain present in the market for multiple time periods.

In the model studied by Pai and Vohra [8], each consumer’s

departure time is assumed to be its private information. As

mentioned in Section I-A1, however, unlike our model, in the

setup in [8], goods are assumed to be identical.

Contributions: We first characterize the allocation rule for

a Bayesian-incentive-compatible (BIC), individually rational,

and expected-revenue-maximizing mechanism in terms of the

solution to a dynamic program (see Lemma 3 and Section V-A).

The corresponding payment function is also specified in terms

of the optimal allocation function.

We then leverage the structure of the consumers’ flexibil-

ity model to simplify the dynamic program. In particular, we

2A good is perishable if it cannot be stored for future allocations.

simplify both the “information state” of the dynamic program

(i.e., the argument of the value function; see Lemma 4) and the

maximization problem in each stage of the dynamic program

(see Lemmas 7–9).

Our simplified dynamic program allows us to provide an

explicit allocation procedure and a simple payment rule (see

Theorem 1) in terms of the solution of the dynamic program.

B. Notations

Random variables are denoted by uppercase letters (X,Y,N)
or by Greek letters (θ), and their realizations by the corre-

sponding lowercase letters (x, y, n) or by Greek letters with

tilde (θ̃). {0, 1}N×M denotes the space of N ×M matrices

with entries that are either 0 or 1. 01×k is the k-dimensional

all-zero row vector. Z≥0 and Z+ denote the sets of nonnegative

and positive integers, respectively. For a set A, |A| denotes the

cardinality of A. x+ is the positive part of the real number x,

that is, x+ = max(x, 0). 1{a≤b} denotes 1 if the inequality in

the subscript is true and 0 otherwise. E denotes the expectation

operator. For a random variable/random vector θ, Eθ denotes

that the expectation is with respect to the probability distri-

bution of θ.3 x1:n, y1:m, and z1:m1:n are shorthands for vectors

(x1, . . . , xn), (y
1, . . . , ym), and (z11 , . . . , z

m
1 , . . . , z1n, . . . , z

m
n ),

respectively. For the vector y1:m, y−j is the shorthand

for (y1, . . . , yj−1, yj+1, . . . , ym). The summation
∑n

i=m yi
equals zero when n < m regardless of the indexed quantities

yi.

II. PROBLEM FORMULATION

We consider a setup where a seller offers k varieties of

goods for sale over T time steps. At each time step, a ran-

dom number of consumers enter the market. Let the random

variable Nt denote the number of consumers that arrive at

time step t. Nt is an integer-valued random variable that takes

values in the set {0, 1, . . . , n̄} according to the probability

mass function (PMF) λt(·). At each time step, a random num-

ber of goods of varieties 1, 2, . . . , k become available to the

seller. Let the random variable X
j
t denote the number of goods

of variety j that become available at time step t. X
j
t is an

integer-valued random variable that takes values in the set

{0, 1, . . . , x̄j} according to the PMF γ
j
t (·). The random vari-

ables N1:T and X1:k
1:T are mutually independent. Let Y

j
t denote

the number of unallocated goods of variety j at time t—this

includes X
j
t as well as any unallocated variety j goods from

the past. Let V
j
t denote the number of variety j goods allocated

by the seller at time t. Y
j
t evolves according to the following

dynamics:

Y
j
t+1 =

t+1∑

s=1

Xj
s −

t∑

s=1

V j
s = Y

j
t − V

j
t +X

j
t+1, t ≥ 1

Y
j
1 = X

j
1 , j = 1, 2, . . . , k. (1)

3The subscript for E[·] operator is added only when its absence is likely to
cause ambiguity.
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A. Consumer Flexibility and Consumer Type

Each consumer can consume at most one good. Each con-

sumer has a flexibility level that indicates the varieties of goods

the consumer is equally interested in. A consumer with flexibility

level j wants to get one good of any of the first j varieties.

Each consumer is associated with a 4-tuple (θ, b, tA, tD).
1) θ is the consumer’s utility if it receives one good of a

desired variety. We refer to θ as the consumer’s valuation.

2) b is the consumer’s flexibility level.

3) tA is the consumer’s arrival time.

4) tD is the consumer’s departure time.

A consumer can receive a good at any time t, tA ≤ t ≤ tD.

Definition 1: We say that a consumer is impatient [6, Ch. 16]

if its arrival and departure times are the same. Thus, an impatient

consumer can only receive a good at its arrival time.

In this article we assume that all consumers are impatient.

The random variable bit denotes the flexibility level of the ith

consumer arriving at time t. bit takes values in the set {1, . . . , k}
according to the PMF gt(·). The random variable θit denotes the

valuation of the ith consumer arriving at time t. Given bit = j,

θit takes values in Θ := [θmin, θmax] with conditional probability

density πt(·|b
i
t = j).4 We define the joint distribution function

ft(θ̃, j) := πt(θ̃|j).gt(j) , j ∈ {1, . . . , k}, θ̃ ∈ Θ. The prob-

ability distributions λt(·), ft(·), γ
j
t (·), ∀t, ∀j are common

knowledge.

For a consumer with valuation θ̃ and flexibility level b̃, we

refer to the pair (θ̃, b̃) as its type. Each consumer’s type is

independent of the other consumers’ types and of the random

variables N1:T and X1:k
1:T .

B. Direct Mechanisms

We consider a direct mechanism where each consumer ar-

riving in the market reports a valuation from the set Θ and a

flexibility level from the set {1, 2, . . . , k}. Each consumer can

misreport its valuation and flexibility level. Consider a consumer

whose true type is (θ̃, b̃), and let (r, c) denote the type it reports,

where r is the reported valuation and c is the reported flexibility

level. The consumers’ arrivals are publicly observed. Hence, Nt

is observed by the seller at time t and by the consumers who

arrive at time t. We make the following assumptions about the

consumers’ reported types.

Assumption 1:

1) Each consumer reports its valuation and flexibility level

simultaneously at its arrival time.

2) No consumer departs the market without reporting a type

to the seller.

3) Consumers cannot over-report their flexibility levels, that

is, c cannot exceed b̃.

C. Feasible Allocations

Suppose that nt consumers arrive at time t, i.e., Nt = nt.

Let hR
t := {(r1t , c

1
t ), . . . , (r

nt

t , cnt

t )} be the collection of reports

4Extension of the results under the case where different consumers may have
different lower and upper bounds for their valuations (i.e., θmin

i
�= θmin

j
and/or

θmax
i

�= θmax
j

for i �= j) is straightforward.

made by the consumers arriving at time t, where (rit, c
i
t) denotes

the type reported by the ith consumer arriving at time t. If

nt = 0, then hR
t = ∅. Let HR

t denote the set of all the possible

values of hR
t . At each time t if hR

t �= ∅, an allocation of the

available goods among the currently present consumers can be

described by a binary matrix At ∈ {0, 1}nt×k. At(i, j) = 1
if the ith consumer is allocated a good of the jth variety at

time t and At(i, j) = 0 otherwise. The matrix At is called an

allocation matrix at time t. At must satisfy some feasibility

constraints. In particular,
∑nt

i=1 At(i, j) ≤ y
j
t , ∀j, where y

j
t is

the number of variety j goods available for allocation at time

t. Furthermore, we require that each consumer is allocated at

most one good of its desired varieties and no goods of its un-

desired varieties, i.e.,
∑

j≤cit
At(i, j) ≤ 1,

∑

j>cit
At(i, j) = 0

for i = 1, . . . , nt. A binary matrix that satisfies these constraints

is called a feasible allocation matrix at time t. For hR
t �= ∅, let

S(hR
t , y

1:k
t ) ⊂ {0, 1}nt×k denote the set of all feasible alloca-

tion matrices at time t.

D. Mechanism Setup

Let ht denote all the information that the seller knows at time

t. We call ht the history at time t, which is given as

ht :=
{
hR
1:t , y

1:k
1:t , x1:k

1:t

}
. (2)

Let Ht denote the set of all possible values of ht. We use Ht to

denote a random history.

A mechanism needs to specify allocations and payments

at each time t, for which the number of arriving consumers

is nonzero, i.e., hR
t �= ∅. Such a mechanism consists of the

following components.

1) A sequence of allocation functions q1:T such that for any

ht with hR
t �= ∅, qt(ht) ∈ S(hR

t , y
1:k
t ). qt(ht) describes

the allocation matrix to be used at time t.

2) A sequence of payment functions p1:T such that for

any ht with hR
t �= ∅, pt(ht) ∈ R

|hR
t |. The ith component

pit(ht) of pt(ht) describes the payment charged to the ith

consumer at time t.

E. Consumer Utility Model

Suppose that ht is the history at time t and (θ̃it, b̃
i
t) is the

true type of the ith consumer arriving at time t. Then, under the

mechanism (q1:T , p1:T ), this consumer’s utility is given as

u(θ̃it, b̃
i
t, ht) = θ̃it

⎛

⎝
∑

j≤b̃it

q
i,j
t (ht)

⎞

⎠− pit(ht) (3)

where q
i,j
t (ht) is the entry in the ith row and the jth column

of the allocation matrix qt(ht) and pit(ht) is the ith entry of the

payments vector pt(ht).

F. Incentive Compatibility and Individual Rationality

The seller needs to design a mechanism that satisfies incen-

tive compatibility and individual rationality (IR) constraints, as

described in the following.

In a BIC mechanism, truthful reporting of private information

(valuations and flexibility levels in our setup) constitutes an
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equilibrium of the Bayesian game induced by the mechanism. In

other words, each consumer would prefer to report its true type

provided that all other consumers have adopted the truth-telling

strategy. Moreover, according to the revelation principle [15],

restriction to incentive compatible direct mechanisms is without

loss of generality.

Suppose that nt consumers arrive at time t and let (θ̃it, b̃
i
t)

be the true type of the ith consumer arriving at time t. Recall

that Nt is observed by the consumers who arrive at time t (see

Section II-B). Assuming that all other consumers report their

types truthfully, consumer i’s expected utility if it reports its

type truthfully will be

EH−i
t

⎡

⎣ θ̃it

∑

j≤b̃it

q
i,j
t (H−i

t , (θ̃it, b̃
i
t))

− pit(H
−i
t , (θ̃it, b̃

i
t)) | Nt = nt

⎤

⎦ (4)

where the expectation is with respect to the collection of random

variables H−i
t , which includes all variables in the history at time

t except the ith consumer’s report.

Now, suppose that the consumer with type (θ̃it, b̃
i
t) reports

(rit, c
i
t) as its type rather than (θ̃it, b̃

i
t). That is, the consumer

might misreport its valuation or its flexibility level or both.

Assuming that all other consumers truthfully report their types,

this consumer’s expected utility if it reports (rit, c
i
t) will be

EH−i
t

⎡

⎣ θ̃it

∑

j≤b̃it

q
i,j
t (H−i

t , (rit, c
i
t))

− pit(H
−i
t , (rit, c

i
t)) | Nt = nt

⎤

⎦. (5)

The BIC constraint is satisfied if each consumer’s expected util-

ity is maximized when it reports its valuation and flexibility level

truthfully, provided that all other consumers report their types

truthfully. Therefore, from the viewpoint of the ith consumer at

time t, the BIC constraint can be expressed as follows:

EH−i
t

⎡

⎣ θ̃it

∑

j≤b̃it

q
i,j
t (H−i

t , (θ̃it, b̃
i
t))

− pit(H
−i
t , (θ̃it, b̃

i
t)) | Nt = nt

⎤

⎦

≥ EH−i
t

⎡

⎣ θ̃it

∑

j≤b̃it

q
i,j
t (H−i

t , (rit, c
i
t))

− pit(H
−i
t , (rit, c

i
t)) | Nt = nt

⎤

⎦

∀θ̃it, r
i
t ∈ Θ , cit ≤ b̃it, c

i
t, b̃

i
t ∈ {1, 2, . . . , k} , ∀nt, ∀t. (6)

The IR constraint ensures that the consumer’s expected utility

at the truthful reporting equilibrium is nonnegative. Using (4),

from the viewpoint of ith consumer at time t, the IR constraint

can be described as follows:

EH−i
t

⎡

⎣ θ̃it

∑

j≤b̃it

q
i,j
t (H−i

t , (θ̃it, b̃
i
t))

−pit(H
−i
t , (θ̃it, b̃

i
t)) | Nt = nt

]

≥ 0 ∀nt, ∀t. (7)

G. Expected-Revenue Maximization

Consider a BIC and IR mechanism (q1:T , p1:T ). When all

consumers adopt the truthful strategy, the history at time t is

Ht := {{(θi1, b
i
1)}

N1

i=1, . . . , {(θ
i
t, b

i
t)}

Nt

i=1, Y
1:k
1:t , X1:k

1:t } (8)

and the expected total revenue is E{
∑T

t=1

∑Nt

i=1 p
i
t(Ht)}.

The mechanism design problem can now be formulated as

max
(q1:T ,p1:T )

E

{
T∑

t=1

Nt∑

i=1

pit(Ht)

}

, subject to (6) and (7).(9)

III. CHARACTERIZATION OF BIC AND IR MECHANISMS

In this section, we provide a characterization of BIC and IR

mechanisms that will be useful for solving the problem in (9).

A. Interim Allocation and Payment

Suppose that nt consumers arrive at time t, and let (θ̃it, b̃
i
t) be

the true type of the ith consumer arriving at time t. Assuming

that all other consumers report their types truthfully, this con-

sumer’s expected allocation and payment under the mechanism

(q1:T , p1:T ) if it reports the pair (rit, c
i
t) are given as

Qi
t(r

i
t, c

i
t, nt) := EH−i

t

⎡

⎣
∑

j≤cit

q
i,j
t (H−i

t , (rit, c
i
t)) | Nt = nt

⎤

⎦

(10)

P i
t (r

i
t, c

i
t, nt) := EH−i

t

[
pit(H

−i
t , (rit, c

i
t)) | Nt = nt

]
. (11)

In the following lemmas, we provide an operational character-

ization of the BIC and IR mechanisms in terms of the interim

quantities defined in (10) and (11).

Lemma 1: A mechanism (q1:T , p1:T ) satisfies the BIC and IR

constraints if given Nt = nt, the following conditions hold true

for all i ∈ {1, . . . , nt}, ∀t.
i) Qi

t(r, c, nt) is nondecreasing in r for all c ∈ {1, . . . , k}.
ii) Qi

t(r, c, nt) is nondecreasing in c for all r ∈ Θ.

iii) P i
t (θ

min, c, nt) = 0 , for all c ∈ {1, 2, . . . , k}.

iv) The interim payment in (11) takes the following form for

all r ∈ Θ, c ∈ {1, 2, . . . , k}:

P i
t (r, c, nt) = r Qi

t(r, c, nt)−

∫ r

θmin

Qi
t(s, c, nt) ds

− θmin Qi
t(θ

min, c, nt). (12)

v) θmin Qi
t(θ

min, c, nt) ≥ 0∀c.
Proof: The proof closely follows the standard arguments

in [16, Sec. III]. �
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Lemma 2: Any BIC and IR mechanism (q1:T , p1:T ) satisfies

P i
t (r, c, nt) ≤ r Qi

t(r, c, nt)−

∫ r

θmin

Qi
t(s, c, nt) ds

for all t, nt, i ∈ {1, . . . , nt}, r ∈ Θ, c ∈ {1, 2, . . . , k}. (13)

Proof: The proof closely follows the standard arguments

in [16, Sec. III]. �

Remark 1: The setup studied in [16] can be viewed as a special

case of the framework considered in this article. Navabi and

Nayyar [16] consider a model where the seller wants to sell a

fixed number of goods of k varieties (x1:k
1 are known) to a fixed

number of consumers (n1 is known) with different flexibility

levels in one time step (T = 1).

IV. REVENUE-MAXIMIZING MECHANISM

In this section, we characterize the expected-revenue-

maximizing mechanism. Let us define

wt(θ̃, b̃) :=

(

θ̃ −
1−Πt(θ̃ | b̃)

πt(θ̃ | b̃)

)

(14)

where Πt(· | b̃) is the cumulative distribution function corre-

sponding to the conditional probability density function (pdf)

πt(· | b̃). In economics terminology, wt(θ̃, b̃) is referred to as

the virtual valuation [15, Ch. 3] of a consumer with type (θ̃, b̃)
that arrives at time t.

We make the following assumptions to simplify the solution

to the optimal mechanism design problem in (9).

Assumption 2:

i) The conditional pdfs πt(·|c), t = 1, . . . , T, c = 1, . . . , k
satisfy the generalized monotone hazard rate condition [8,

Sec. 2], [16, Sec. IV]. That is, for all t, we assume that
πt(x|c)

1−Πt(x|c)
is nondecreasing in x and c. Moreover, we

assume that for all t ifx ≥ x′ and c > c′, then
πt(x|c)

1−Πt(x|c)
>

πt(x
′|c′)

1−Πt(x′|c′) .

ii) wt(θ
min, j) < 0 for all j, t.

In the following lemma, we provide a characterization of the

expected-revenue-maximizing mechanism.

Lemma 3: Suppose that (q∗1:T , p
∗
1:T ) is a BIC and IR mecha-

nism for which the following conditions are true.

i) (q∗1:T ) is the solution to the following functional opti-

mization problem:

max
q1:T

E

⎡

⎣

T∑

t=1

Nt∑

i=1

wt(θ
i
t, b

i
t)

⎛

⎝
∑

j≤bit

q
i,j
t (Ht)

⎞

⎠

⎤

⎦ (15)

where Ht is the history under truthful reporting.

ii) Given the history ht and assuming that nt consumers

arrive at time t, the payment charged to the ith consumer

arriving at time t with the true type (θ̃it, b̃
i
t) is given as

p∗it (h
−i
t , (θ̃it, b̃

i
t)) = θ̃it

∑

j≤b̃it

q
∗i,j
t (h−i

t , (θ̃it, b̃
i
t))

−

∫ θ̃i
t

θmin

⎛

⎝
∑

j≤b̃it

q
∗i,j
t (h−i

t , (α, b̃it))

⎞

⎠ dα

∀i∈{1, . . . , nt}, ∀nt, ∀t (16)

where h−i
t = ht \ {(θ̃

i
t, b̃

i
t)}.

Then, (q∗1:T , p
∗
1:T ) gives the highest expected revenue in the

class of BIC and IR mechanisms.

Proof: See Appendix A. �

The results of Lemma 3 imply that in order for a BIC and

IR mechanism to maximize the expected revenue, its allocation

rules must solve the functional optimization problem in (15).

This problem can be viewed as a stochastic control problem.

In the following section, we describe this stochastic control

problem and formulate a dynamic program to find the optimal

allocation rules.

V. SOLUTION TO THE STOCHASTIC CONTROL PROBLEM

The optimization problem in (15) is a finite horizon stochastic

control problem with the history at time t (with truthful report-

ing) as the state and the allocation matrix as the action at time

t. The allocation function q1:T is the control strategy, and the

optimization in (15) is to find the control strategy with the highest

expected reward. This stochastic control perspective provides a

dynamic program for the optimization in (15). We then leverage

the structure of the consumers’ flexibility model to simplify the

dynamic program.

A. Dynamic Program

For a truthful history ht at time t, let Rt(ht) denote the

maximum expected reward from t to T for the stochastic control

problem in (15). Rt(ht) is a value function and obeys the

standard dynamic programming recursions given as

If hR
t = ∅ : Rt(ht) := E [Rt+1(Ht+1) | ht] (17)

If hR
t �= ∅ :

Rt(ht) := max
A∈S(hR

t ,y1:k
t )

⎧

⎨

⎩

|hR
t |

∑

i=1

wt(θ̃
i
t, b̃

i
t)

k∑

j=1

A(i, j)

+ E [Rt+1(Ht+1) | ht,At = A]

⎫

⎬

⎭
(18)

where RT+1(·) = 0.

In the above dynamic program, the information state at time

t is ht (since the value functions have ht as the argument). It

can be shown that the only relevant part of the history are the

reports and the state of supply at current time. In the following

lemma, we use this idea to simplify the information state and

the dynamic program.

Lemma 4: Let st = (hR
t , y

1:k
t ). There exist functions

V1(·), . . . , VT (·) such that at each time t:

Vt(st) = Rt(st, x
1:k
t , ht−1)

for all {st, x
1:k
t , ht−1} ∈ Ht. (19)

Furthermore, these functions obey the following dynamic pro-

gram:

If hR
t = ∅ : Vt(st) = E [Vt+1(St+1) | st] (20)

If hR
t �= ∅ :
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Vt(st) = max
A∈S(hR

t ,y1:k
t )

⎧

⎨

⎩

|hR
t |

∑

i=1

wt(θ̃
i
t, b̃

i
t)

k∑

j=1

A(i, j)

+ E [Vt+1(St+1) | st,At = A]

⎫

⎬

⎭
(21)

where VT+1(·) = 0.

Proof: See Appendix B. �

Based on the results of Lemma 4, the optimal allocation

functions can be described in terms of the solution to the dynamic

program in (20) and (21) with the simplified information state

st = (hR
t , y

1:k
t ) at time t.

In the dynamic program in (21) at each time t, the optimization

variables comprise all the entries of the |hR
t | × k allocation

matrix At. In the following, we simplify the dynamic program

formulation in terms of alternate variables that need to be opti-

mized at each time.

B. Alternative Optimization Variables

Consider the information state (hR
t , y

1:k
t ) with hR

t �= ∅ and

an allocation matrix A ∈ S(hR
t , y

1:k
t ) at time t. Let u

j
t denote

the number of consumers with flexibility level j that get a good

at time t under A. That is, u
j
t :=

∑|hR
t |
i=1

i:b̃it=j

∑

l≤j A(i, l), where

A(i, l) is the entry in the ith row and the lth column of the matrix

A. Let U(hR
t , y

1:k
t ) denote the set of admissible values of u1:k

t

given the information state (hR
t , y

1:k
t ). Thus, for every vector

u1:k ∈ U(hR
t , y

1:k
t ), there exists a matrix Â ∈ S(hR

t , y
1:k
t ) such

that
∑|hR

t |
i=1

i:b̃it=j

∑

l≤j Â(i, l) = uj ∀j. If hR
t = ∅, no consumer is

present to be allocated, and thus, we define U(hR
t , y

1:k
t ) :=

{01×k}. In the following lemma, we provide a more operational

characterization of U(hR
t , y

1:k
t ).

Lemma 5: Given the information state (hR
t , y

1:k
t ) at time t

U(hR
t , y

1:k
t )=

{

u1:k ∈ Z
k
≥0 :

j
∑

l=1

ul ≤

j
∑

l=1

ylt , u
j ≤ n

j
t , ∀j

}

(22)

where n
j
t denotes the number of consumers with flexibility level

j that arrive at time t.

Proof: See Appendix C. �

Consider the information state (hR
t , y

1:k
t )with hR

t �= ∅ and an

allocation matrix A ∈ S(hR
t , y

1:k
t ) at time t. Let v

j
t denote the

number of goods of variety j allocated at time t under A, i.e.,

v
j
t :=

∑|hR
t |

i=1 A(i, j). Given some vectoru1:k
t ∈ U(hR

t , y
1:k
t ), let

V(u1:k
t , y1:kt ) denote the set of all values of v1:kt that can fulfill

the demand represented byu1:k
t under the supply y1:kt . More pre-

cisely, for every vector v1:k ∈ V(u1:k
t , y1:kt ), there exists a matrix

Â ∈ S(hR
t , y

1:k
t ) such that for each j, Â serves u

j
t consumers of

flexibility level j (i.e.,
∑|hR

t |
i=1

i:b̃it=j

∑

l≤j Â(i, l) = u
j
t ) and allocates

vj goods of variety j (i.e.,
∑|hR

t |
i=1 Â(i, j) = vj). If hR

t = ∅, no

consumer is present to be allocated, and thus, V(u1:k
t , y1:kt ) =

V(01×k, y
1:k
t ) = {01×k}. In the following lemma, we provide a

more operational characterization of V(u1:k
t , y1:kt ).

Lemma 6: Given the information state (hR
t , y

1:k
t ) and the

vector u1:k
t ∈ U(hR

t , y
1:k
t ) at time t

V(u1:k
t , y1:kt ) =

⎧

⎨

⎩
v1:k ∈ Z

k
≥0 :

vj ≤ y
j
t , j = 1, . . . , k,

j
∑

l=1

ul
t≤

j
∑

l=1

vl , j=1, . . . , k − 1 ,

k∑

l=1

ul
t=

k∑

l=1

vl

⎫

⎬

⎭
.

(23)

Proof: The proof is similar to the proof of Lemma 5 and is,

therefore, omitted. �

In the following lemma, we show that the two k-dimensional

vectors u1:k
t and v1:kt constructed above can be treated as the

optimization variables in the dynamic program in (21).

Lemma 7: The value function in (21) can be equivalently

expressed as

Vt(h
R
t , y

1:k
t ) = max

u1:k∈U(hR
t ,y1:k

t )

⎧

⎨

⎩

k∑

j=1

uj
∑

i=1

w
i,j
t

+ max
v1:k∈V(u1:k,y1:k

t )
E

[

Vt+1

(

HR
t+1, {y

j
t − vj +X

j
t+1}

k
j=1

)]

⎫

⎬

⎭

(24)

where VT+1(·) = 0. In (24), w
i,j
t denotes the ith largest element

in Wj
t defined as

Wj
t := { wt(θ̃, b̃) : (θ̃, b̃) ∈ hR

t , b̃ = j } (25)

that is, Wj
t denotes the set of virtual valuations [see (14)] of all

the consumers with flexibility level j at time t.

Proof: See Appendix D. �

In the following lemma, we establish a monotonicity property

of the value functions in (24). In Lemma 9, we leverage this prop-

erty to construct an optimal solution to the inner maximization

over v1:k vector in (24).

Lemma 8: Consider two supply profiles y1:kt and z1:kt such

that

yit = zit + 1

y
j
t = z

j
t − 1

ylt = zlt for all l �= i, j

(26)

where i < j. Then, the value functions Vt(·) defined in Lemma

4 satisfy the following property:

Vt(h
R
t , y

1:k
t ) ≥ Vt(h

R
t , z

1:k
t ) for all hR

t and t. (27)

Proof: See Appendix E. �

A more intuitive interpretation of the property established in

Lemma 8 is that a good of variety j contributes more to the

generation of revenue in comparison with a good of any of the

varieties j + 1, j + 2, . . . , k. Consequently, allocating a good of

variety j is at least as costly as allocating a good of any of the

varieties j + 1, j + 2, . . . , k.
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Remark 2: The value functions Vt(·) defined in Lemma 4

satisfy a more general version of the monotonicity property

shown in Lemma 8. Consider any two supply profiles y1:kt and

z1:kt such that
∑j

l=1 y
l
t ≥

∑j
l=1 z

l
t, j = 1, . . . , k. Then, it can

be shown that value functions Vt(·) still satisfy (27).

The property in (27) can be leveraged to provide an explicit

solution for the inner maximization over v1:k in (24). This is

shown in Lemma 9.

Lemma 9: At each time t, given hR
t , y

1:k
t and u1:k ∈

U(hR
t , y

1:k
t ), recursively define

v∗k := min(uk, ykt )

v∗j := min

⎛

⎝y
j
t , u

j +

⎛

⎝

k∑

l=j+1

ul −
k∑

l=j+1

v∗l

⎞

⎠

⎞

⎠ ,

j = k − 1, . . . , 1. (28)

Then

v∗1:k∈ argmax
v1:k∈V(u1:k,y1:k

t )

E

[

Vt+1

(

HR
t+1, {y

j
t−vj+X

j
t+1}

k
j=1

)]

.

(29)

Proof: See Appendix F. �

Based on the results of Lemma 9, the value functions in (24)

can be simplified as follows:

Vt(h
R
t , y

1:k
t ) = max

u1:k∈U(hR
t ,y1:k

t )

⎧

⎨

⎩

k∑

j=1

uj
∑

i=1

w
i,j
t

+E

[

Vt+1

(

HR
t+1, {y

j
t−v∗j+X

j
t+1}

k
j=1

)]

⎫

⎬

⎭

(30)

where v∗1:k is obtained corresponding to each u1:k ∈
U(hR

t , y
1:k
t ), as described in (28). Note that since U(·) and V(·)

are finite sets [see (22) and (23)], the dynamic program in (30)

is guaranteed to have a solution.

VI. OPTIMAL MECHANISM

In Lemma 3, we established that the expected-revenue-

maximizing allocation rules of a BIC and IR mechanism indeed

coincide with the optimal control strategy for the stochastic

control problem in (15). Based on this insight, Section V was

devoted to the development of a characterization of the optimal

control strategy for the problem in (15) in terms of the solution

to a dynamic program [see (17) and (18)]. We leveraged the

structure of the flexibility model to simplify the formulated

dynamic program (see Lemmas 7–9). In the following theorem,

we use the results of Lemmas 3–9 as well as the characterization

of BIC and IR mechanisms provided in Lemma 1 to specify the

allocation and payment rules of the optimal mechanism.

Theorem 1: Consider the information state

(h−i,R
t , (r, j), y1:kt ), where consumer i reports (r, j) as its

type and h
−i,R
t denotes the set of reports from all consumers

other than i. Let u∗1:k
t and v∗1:kt denote the optimal vectors that

result from solving the dynamic program in (30). Consider the

mechanism (q∗1:T , p
∗
1:T ) described in the following.

1) Allocations: Let q∗t (h
−i,R
t , (r, j), y1:kt ) ∈ S(h−i,R

t ,

(r, j), y1:kt ) denote the allocation matrix constructed

according to the allocation procedure described as

follows.

i) Index the goods under the profile v∗1:kt in a nondecreasing

flexibility order, i.e., the v∗1t goods of variety 1 are indexed

as 1, . . . , v∗1t and, the v∗2t goods of variety 2 are indexed

as v∗1t + 1, . . . , v∗1t + v∗2t , and so on.

ii) Sort consumers of flexibility level 1 in nonincreasing or-

der of virtual valuations. Top u∗1
t consumers of flexibility

level 1 get the first u∗1
t goods as arranged in (i). Ties are

resolved randomly.

iii) Sort consumers of flexibility level 2 in nonincreasing or-

der of virtual valuations. Top u∗2
t consumers of flexibility

level 2 get the nextu∗2
t goods. Ties are resolved randomly.

iv) Allocations to the top u
∗j
t consumers with flexibility

levels j = 3, . . . , k are carried out in the same fashion

as above.

v) The rest of the consumers do not get an allocation.

2) Payments: Suppose thatnt consumers arrive at time t. The

payment function p∗t(h
−i,R
t , (r, j), y1:kt ) ∈ R

nt is defined

for i = 1, . . . , nt as follows:

p∗it (h
−i,R
t , (r, j), y1:kt )

=

{

θ̄
i,j
t , if consumer i gets a good

0, otherwise
(31)

where θ̄
i,j
t is defined as

θ̄
i,j
t := sup

{
x ∈ [θmin, θmax] :

∑

l≤j

q
∗i,l
t (h−i,R

t , (x, j), y1:kt ) = 0 , wt(x, j) ≥ 0

⎫

⎬

⎭
.

(32)

Under Assumptions 1 and 2, (q∗1:T , p
∗
1:T ) is an expected-

revenue-maximizing, BIC, and IR mechanism.

Proof: See Appendix G. �

Remark 3: The vectors u∗1:k
t and v∗1:kt that characterize the

optimal allocation matrix q∗t (·) in Theorem 1 as well as the

quantities θ̄
i,j
t defined in (32) can be found by first discretizing

the set [θmin, θmax] with sufficient numerical precision and then

applying the methods developed for solving Markov decision

processes (MDPs) with discrete state and action spaces. Several

methods for solving MDPs are available in the literature [17]–

[19]. An extensive discussion of the computational complexity

of different methods for solving MDPS can be found in [20] and

[21].

A. Example

Consider a simple setup with T = 2 and k = 2, where the

consumer arrival process λt(·) follows a Bernoulli distribution,

that is, at each time step, a consumer may enter the market

with probability p. For a consumer entering the market at time

t = 1, 2, its flexibility level is equally likely to be 1 or 2, i.e.,
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gt(j) =
1
2 for j ∈ {1, 2} and, conditioned on its flexibility level

being j, its valuation has truncated exponential distribution

over the interval [0,1], i.e., πt(x|j) =
αj exp(−αjx)
1−exp(−αj)

, x ∈ [0, 1],

where α2 > α1 > 0. It is straightforward to verify that πt(·|j)
satisfies Assumption 2. The virtual valuation function [see (14)]

associated with πt(·|j) is of the following form:

wt(x, j) = x−
1

αj

(1− exp(αj(x− 1))) , t = 1, 2.

Suppose that the supply profile at time t = 1 is (y11 , y
2
1) =

(1, 1), and no more goods of either variety become available

at time t = 2. Suppose that a consumer with type (θ̃, 2) ar-

rives at time t = 1. Under the optimal mechanism charac-

terized in Theorem 1, this consumer gets a good of variety

2 if w1(θ̃, 2) > E[V2(H
R
2 , (1, 1))− V2(H

R
2 , (1, 0))] =: ρ21 [see

(30)]. It is straightforward to verify that in this example

E[V2(H
R
2 , (1, 1))] = E[V2(H

R
2 , (1, 0))]

=
p

2

(
Eθ|b=1 [max{w2(θ, 1), 0}]

+Eθ|b=2 [max{w2(θ, 2), 0}]
)

from which it follows that ρ21 = 0.

If instead a consumer with type (θ̃, 1) arrives at time t = 1,

it gets a good of variety 1 if w1(θ̃, 1) > E[V2(H
R
2 , (1, 1))−

V2(H
R
2 , (0, 1))] =: ρ11. We observe that in this example

E[V2(H
R
2 , (0, 1))] =

p

2
Eθ|b=2 [max{w2(θ, 2), 0}]

and thus

ρ11 =
p

2
Eθ|b=1 [max{w2(θ, 1), 0}]

=
p

2
θres
1,2

exp(−α1θ
res
1,2)− exp(−α1)

1− exp(−α1)
(33)

where θres
j,t is defined as

θres
j,t := max {x ∈ [0, 1] : wt(x, j) = 0} . (34)

For instance, if α1 = 2 and p = 0.5, we obtain θres
1,2 ≈ 0.36 and,

thus, ρ11 ≈ 0.037. In general, for the setup described above, it

is easy to check that ρ11 ≥ ρ21, which implies that a consumer

with flexibility level 1 needs to have higher valuation to get

an allocation at t = 1. If the consumer with type (θ̃, j) at

time t = 1 gets a good, it pays θ̄
j
1 = w−1

1 (ρj1; j) [see (32)],

where w−1
1 (·; j) denotes the inverse of w1(·, j). Notice that

Assumption 2 combined with ρ11 ≥ ρ21 implies that θ̄11 ≥ θ̄21 ,

i.e., a consumer with flexibility level 1 is charged a higher

price upon allocation of a desired good. For instance, con-

sider α2 = 3, α1 = 2, and p = 0.5. For this numerical setup,

we obtain θ̄11 = w−1
1 (ρ11; 1) ≈ w−1

1 (0.037; 1) ≈ 0.39 and θ̄21 =
w−1

1 (ρ21; 2) = w−1
1 (0; 2) ≈ 0.29.

At time t = 2, which is the terminal time step, if a consumer

with type (θ̃, j) arrives and a desired good is available, it gets

an allocation if w2(θ̃, j) > 0 and is charged the reserve price

θres
j,t at t = 2, as defined in (34). Notice that from Assumption

2, it follows that θres
1,2 > θres

2,2, meaning that at time t = 2 also, a

consumer with flexibility level 1 needs to have a higher valuation

to get an allocation and is charged a higher price upon allocation

of a desired good. For instance, for the case in which α2 =
3, α1 = 2, and p = 0.5, we see that θres

1,2 ≈ 0.36 > θres
2,2 ≈ 0.29.

Therefore, we observe that in the above setup under the

optimal mechanism, at each time, the payment charged to the

more flexible consumers is less than the payment charged to

the less flexible consumers. Moreover, it is straightforward to

verify that θ̄
j
t is nonincreasing in t, that is, the payment charged

to the consumers with flexibility level j decreases over time

across all j (e.g., for the case in which α1 = 2 and p = 0.5,

we see that θ̄11 ≈ 0.39 > θ̄12 = θres
1,2 ≈ 0.36). Intuitively, this is

expected because unlike t = 1, the consumer that arrives at t = 2
faces no competition from future consumers. On the other hand,

the virtual valuation of a consumer that arrives at t = 1 must

outweigh the expected revenue that can be produced by saving

the good for a consumer that may arrive at t = 2. As a result,

a consumer that arrives at t = 2 is expected to be charged less

(only the reserve price associated with its flexibility level) than

a consumer of the same flexibility level that arrives at t = 1.

B. Social Welfare Maximization

Consider a benevolent mechanism designer whose objective

is to maximize the expected social welfare of all the consumers.

In that case, the mechanism design problem can be formulated

as follows:

max
(q1:T ,p1:T )

E

⎧

⎨

⎩

T∑

t=1

Nt∑

i=1

θit

⎛

⎝
∑

j≤bit

q
i,j
t (Ht)

⎞

⎠

⎫

⎬

⎭

subject to (6) and (7).

(35)

Suppose that (q̂1:T , p̂1:T ) is a BIC and IR mechanism, for which

q̂1:T is the solution to the following functional optimization

problem:

max
q1:T

E

⎡

⎣

T∑

t=1

Nt∑

i=1

θit

⎛

⎝
∑

j≤bit

q
i,j
t (Ht)

⎞

⎠

⎤

⎦ (36)

where Ht is the history under truthful reporting.

It is straightforward to verify that (q̂1:T , p̂1:T ) gives the high-

est expected social welfare in the class of BIC and IR mech-

anisms. That is, (q̂1:T , p̂1:T ) is a solution to the optimization

problem in (35).

One can easily show that the payment form in (16) can be

used to further specify the above mechanism. Given the history

ht and assuming that nt consumers arrive at time t, p̂t can be

specified as follows:

p̂it(h
−i
t , (θ̃it, b̃

i
t)) = θ̃it

∑

j≤b̃it

q̂
i,j
t (h−i

t , (θ̃it, b̃
i
t))

−

∫ θ̃i
t

θmin

⎛

⎝
∑

j≤b̃it

q̂
i,j
t (h−i

t , (α, b̃it))

⎞

⎠ dα ∀i∈{1, . . . , nt}, ∀nt, ∀t.

(37)

By comparing (36) with (15), we observe that (36) is exactly

the same optimization problem as (15) with virtual valuation

wt(θ
i
t, b

i
t) replaced by true valuation θit. Therefore, the analyses

in Sections V– VI can be applied to specify the mechanism

(q̂1:T , p̂1:T ) as well. In particular, it can be verified that q̂t has the

same description as the one given for q∗t in Theorem 1, where in

Authorized licensed use limited to: University of Southern California. Downloaded on May 17,2024 at 00:58:39 UTC from IEEE Xplore.  Restrictions apply. 



3266 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 6, JUNE 2023

steps (ii)–(iv), the consumers need to be sorted in nonincreasing

order of true valuations rather than virtual valuations.

Moreover, using similar arguments as in Appendix G, we can

simplify the payment form in (37) as follows:

p̂it(h
−i,R
t , (r, j), y1:kt ) =

{

θ̂
i,j
t , if consumer i gets a good

0, otherwise

(38)

where θ̂
i,j
t is defined as

θ̂
i,j
t :=sup

⎧

⎨

⎩
x∈ [θmin, θmax] :

∑

l≤j

q̂
i,l
t (h−i,R

t , (x, j), y1:kt )=0

⎫

⎬

⎭
.

(39)

VII. CONCLUSION

In this article, we studied the problem of designing a dynamic

expected-revenue-maximizing, BIC, and IR mechanism for the

allocation of multiple goods of k varieties to flexible consumers

over T time steps. In our model, a random number of goods of

each variety may become available to the seller at each time,

and a random number of consumers may enter the market at

each time. We considered impatient consumers that need to get

one good of one of their desired varieties within the single time

step of their arrival. Each consumer has a flexibility level, i.e.,

a number between 1 and k that indicates the varieties of goods

the consumer finds equally desirable. A consumer’s flexibility

level and the utility it enjoys upon allocation of a desired good

are its private information. We characterized the allocation and

payment functions under the optimal mechanism in terms of

the solution to a dynamic program. We leveraged the structure

of the consumers’ flexibility model to simplify the dynamic

program and provided an alternative description of the optimal

mechanism in terms of thresholds computed by the dynamic

program.

Further exploration of the practical aspects of the developed

mechanism through simulation experiments is an important task

for future research. For instance, it would be interesting to deploy

Monte Carlo simulation techniques to study the interplay be-

tween various parameters, such as revenue, payments, flexibility

levels, etc., over time. Such studies would provide insights into

the practical limitations of the developed mechanism and the

scope of its applicability in different contexts.

An interesting extension to this article would be to study this

setup with patient consumers, i.e., consumers may be present

for more than one time step. In addition, studying the dynamic

mechanism design problem under the settings where both the

arrival and departure times of each consumer are privately known

to them is an important direction for further exploration. In the

present setup, we studied the case where each consumer wants to

receive a single good of its desired varieties. Another interesting

scenario would be the case where the consumers may need to

get multiple goods of their desired varieties.

APPENDIX A
PROOF OF LEMMA 3

Consider a BIC and IR mechanism (q1:T , p1:T ). The expected

revenue under this mechanism is

E

{
T∑

t=1

Nt∑

i=1

pit(Ht)

}

=

T∑

t=1

n̄∑

nt=1

λt(nt)

nt∑

i=1

E
[
pit(Ht) | Nt = nt

]
. (40)

The conditional expectation in (40) can be written as

k∑

b̃it=1

∫ θmax

θmin

EH−i
t
[ pit(H

−i
t , (θ̃it, b̃

i
t)) |Nt = nt ] ft(θ̃

i
t, b̃

i
t) dθ̃

i
t

=

k∑

b̃it=1

∫ θmax

θmin

P i
t (θ̃

i
t, b̃

i
t, nt) ft(θ̃

i
t, b̃

i
t) dθ̃

i
t (41)

where P i
t (·) is the interim payment defined in (11). Because of

Lemma 2, we know that

P i
t (θ̃

i
t, b̃

i
t, nt) ≤ θ̃it Q

i
t(θ̃

i
t, b̃

i
t, nt)−

∫ θ̃i
t

θmin

Qi
t(α, b̃

i
t, nt) dα. (42)

Using (42), (41) can be upper bounded as follows:

k∑

b̃it=1

∫ θmax

θmin

P i
t (θ̃

i
t, b̃

i
t, nt) ft(θ̃

i
t, b̃

i
t) dθ̃

i
t

≤
k∑

b̃it=1

∫ θmax

θmin

(

θ̃it Q
i
t(θ̃

i
t, b̃

i
t, nt)

−

∫ θ̃i
t

θmin

Qi
t(α, b̃

i
t, nt) dα

)

ft(θ̃
i
t, b̃

i
t) dθ̃

i
t

=
k∑

b̃it=1

[
∫ θmax

θmin

θ̃it Q
i
t(θ̃

i
t, b̃

i
t, nt) ft(θ̃

i
t, b̃

i
t) dθ̃

i
t

−

∫ θmax

θmin

(
∫ θ̃i

t

θmin

Qi
t(α, b̃

i
t, nt) dα

)

ft(θ̃
i
t, b̃

i
t) dθ̃

i
t

]

=

k∑

b̃it=1

[
∫ θmax

θmin

θ̃it Q
i
t(θ̃

i
t, b̃

i
t, nt) ft(θ̃

i
t, b̃

i
t) dθ̃

i
t

−

∫ θmax

θmin

Qi
t(α, b̃

i
t, nt)

(∫ θmax

α

ft(θ̃
i
t, b̃

i
t) dθ̃

i
t

)

dα

]

=

k∑

b̃it=1

⎡

⎢
⎢
⎢
⎢
⎣

∫ θmax

θmin

θ̃it Q
i
t(θ̃

i
t, b̃

i
t, nt) ft(θ̃

i
t, b̃

i
t) dθ̃

i
t
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−

∫ θmax

θmin

Qi
t(α, b̃

i
t, nt)

⎛

⎜
⎜
⎜
⎜
⎝

gt(b̃
i
t)

∫ θmax

α

πt(θ̃
i
t|b̃

i
t) dθ̃

i
t

︸ ︷︷ ︸

=1−Πt(α|b̃it)

⎞

⎟
⎟
⎟
⎟
⎠

dα

⎤

⎥
⎥
⎥
⎥
⎦

=

k∑

b̃it=1

[
∫ θmax

θmin

θ̃it Q
i
t(θ̃

i
t, b̃

i
t, nt) ft(θ̃

i
t, b̃

i
t) dθ̃

i
t

−

∫ θmax

θmin

Qi
t(α, b̃

i
t, nt)(1−Πt(α|b̃

i
t))

ft(α, b̃
i
t)

πt(α|b̃it)
dα

]

=

k∑

b̃it=1

[
∫ θmax

θmin

θ̃it Q
i
t(θ̃

i
t, b̃

i
t, nt) ft(θ̃

i
t, b̃

i
t) dθ̃

i
t

−

∫ θmax

θmin

Qi
t(θ̃

i
t, b̃

i
t, nt)(1−Πt(θ̃

i
t|b̃

i
t))

ft(θ̃
i
t, b̃

i
t)

πt(θ̃it|b̃
i
t)
dθ̃it

]

=

k∑

b̃it=1

∫ θmax

θmin

Qi
t(θ̃

i
t, b̃

i
t, nt)

×

(

θ̃it −
1−Πt(θ̃

i
t|b̃

i
t)

πt(θ̃it|b̃
i
t)

)

ft(θ̃
i
t, b̃

i
t)dθ̃

i
t

=

k∑

b̃it=1

∫ θmax

θmin

Qi
t(θ̃

i
t, b̃

i
t, nt) wt(θ̃

i
t, b̃

i
t)ft(θ̃

i
t, b̃

i
t) dθ̃

i
t. (43)

The upper bound in (43) implies that the expected total revenue

in (40) can be upper bounded by the following:

T∑

t=1

n̄∑

nt=1

λt(nt)

nt∑

i=1

k∑

b̃it=1

∫ θmax

θmin

E

⎡

⎣ wt(θ̃
i
t, b̃

i
t)

∑

j≤b̃it

q
i,j
t (H−i

t , (θ̃it, b̃
i
t)) | Nt = nt

⎤

⎦ft(θ̃
i
t, b̃

i
t) dθ̃

i
t

=

T∑

t=1

n̄∑

nt=1

λt(nt)

nt∑

i=1

E

⎡

⎣ wt(θ
i
t, b

i
t)

∑

j≤bit

q
i,j
t (Ht) | Nt = nt

⎤

⎦

=

T∑

t=1

E

⎡

⎣

Nt∑

i=1

wt(θ
i
t, b

i
t)

∑

j≤bit

q
i,j
t (Ht)

⎤

⎦

= E

⎡

⎣

T∑

t=1

Nt∑

i=1

wt(θ
i
t, b

i
t)

∑

j≤bit

q
i,j
t (Ht)

⎤

⎦

≤ max
q1:T

E

⎡

⎣

T∑

t=1

Nt∑

i=1

wt(θ
i
t, b

i
t)

⎛

⎝
∑

j≤bit

q
i,j
t (Ht)

⎞

⎠

⎤

⎦ .

Thus, the expected revenue of any BIC and IR mechanism is

upper bounded by the maximum value in (15). Consequently, a

BIC and IR mechanism (q∗1:T , p
∗
1:T ), for which q∗1:T achieves the

maximum value in (15) and p∗1:T is of the form given in (16),5

guarantees the largest expected revenue among all the BIC and

IR mechanisms. This concludes the proof.

APPENDIX B
PROOF OF LEMMA 4

We prove this by induction.

Base case: Clearly, the expression given for RT (hT ) in (17)

and (18) solely depends on hR
T and y1:kT (recall that RT+1(·) =

0). That is, the information in hT \ {hR
T , y

1:k
T } is irrelevant for

determining RT (hT ). Therefore, if we define the function VT (·)
as follows:

1) if hR
T = ∅ : VT (h

R
T , y

1:k
T ) := 0

2) if hR
T �= ∅ :

VT (h
R
T , y

1:k
T ) := max

A∈S(hR
T
,y1:k

T
)

⎧

⎨

⎩

|hR
T |

∑

i=1

wT (θ̃
i
T , b̃

i
T )

k∑

j=1

A(i, j)

⎫

⎬

⎭

the equality in (19) holds true at time T .

Induction hypothesis: Suppose that there exists some function

Vt+1(·) such that (19) holds true at time t+ 1.

Now, we want to show that there exists some function Vt(·)
such that (19) holds true at time t. In other words, we want

to show that given the history ht = {hR
t , y

1:k
t , x1:k

t , ht−1}, the

expression given for Rt(·) in (17) and (18) is fully determined

from {hR
t , y

1:k
t } and does not depend on ht \ {h

R
t , y

1:k
t } =

{x1:k
t , ht−1}. For the casehR

t = ∅, from (17), we see thatRt(ht)
is expressed as

Rt(ht) = E

[

Rt+1(ht, H
R
t+1, {y

j
t +X

j
t+1}

k
j=1, X

1:k
t+1)

]

.

Using the induction hypothesis, the above expression can be

written as

Rt(ht) = E

[

Vt+1(H
R
t+1, {y

j
t +X

j
t+1}

k
j=1)

]

.

Since HR
t+1 and X

j
t+1 are independent of ht, the expected value

above depends only on y1:kt . Thus, when hR
t = ∅, we can define

Vt(∅, y
1:k
t ) = Rt(ht) = EHR

t+1
,Y 1:k

t+1

[
Vt+1(H

R
t+1, Y

1:k
t+1)

]
.

Note that the above definition of Vt(·) satisfies (20).

For the casehR
t �= ∅, we see from (18) thatRt(ht) is expressed

as

Rt(ht) = max
A∈S(hR

t ,y1:k
t )

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|hR
t |

∑

i=1

wt(θ̃
i
t, b̃

i
t)

k∑

j=1

A(i, j)

︸ ︷︷ ︸

†

+E [Rt+1(Ht+1)|ht,At = A]

⎫

⎪⎬

⎪⎭

. (44)

Clearly, the term † in the above expression does not depend on

the information in ht \ {h
R
t , y

1:k
t } = {x1:k

t , ht−1}. Moreover,

the set S(hR
t , y

1:k
t ) over whose elements the max{·} operation

5p∗
1:T

form in (16) makes the upper bound on the expected total revenue
attainable, by ensuring that the inequality in (42) becomes an equality for
(q∗

1:T
, p∗

1:T
).
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above is carried out is fully specified in terms of hR
t , y

1:k
t and

does not depend on {x1:k
t , ht−1}. It, thus, remains to show that

the second term in the max{·} operation above does not depend

on the information in {x1:k
t , ht−1} either. Using the induction

hypothesis, let us expand the second term above as follows:

E [Rt+1(Ht+1)|Ht = ht,At = A]

= E
[
Vt+1(H

R
t+1, Y

1:k
t+1)|Ht = ht,At = A

]

= E

[

Vt+1

(
HR

t+1,

⎧

⎨

⎩
y
j
t −

|hR
t |

∑

i=1

A(i, j) +X
j
t+1

⎫

⎬

⎭

k

j=1

⎞

⎟
⎠ | {hR

t , y
1:k
t , x1:k

t , ht−1},A

]

= E

[

Vt+1

⎛

⎝HR
t+1,

⎧

⎨

⎩
y
j
t −

|hR
t |

∑

i=1

A(i, j)

+X
j
t+1

⎫

⎬

⎭

k

j=1

⎞

⎟
⎠ | hR

t , y
1:k
t ,A

]

= E
[
Vt+1(H

R
t+1, Y

1:k
t+1) | h

R
t , y

1:k
t ,A

]
(45)

where we used the fact that HR
t+1 and X1:k

t+1 are independent of

ht. It is clear that the above conditional expectation is a function

of hR
t , y

1:k
t , and A and does not depend on the information

in {x1:k
t , ht−1}. The above analysis allows us to conclude the

following.

1) Rt(ht) is completely determined by hR
t and y1:kt . Thus,

we can define a function Vt(h
R
t , y

1:k
t ) = Rt(ht).

2) Furthermore, using (44) and (45), it is clear that Vt(·)
satisfies (21).

This completes the proof.

APPENDIX C
PROOF OF LEMMA 5

LetA :={u1:k ∈ Z
k
≥0 :

∑j
l=1 u

l ≤
∑j

l=1 y
l
t , u

j ≤ n
j
t , ∀j},

i.e.,A equals the set in the right-hand side of (22). Clearly, when

hR
t = ∅, U(hR

t , y
1:k
t ) := {01×k} = A.

Let us now consider the information state st = (hR
t , y

1:k
t )

with hR
t �= ∅. We start with showing that U(hR

t , y
1:k
t ) ⊆

A. Consider a vector u1:k
t ∈ U(hR

t , y
1:k
t ). Since n

j
t is the

number of consumers with flexibility level j that arrive at

time t and u
j
t is the number of consumers with flexibil-

ity level j that get a good at time t, we clearly have that

u
j
t ≤ n

j
t .

Now, consider
∑j

l=1 u
l
t. This is the total number of con-

sumers with flexibility level less than or equal to j that get

a good. Since consumers cannot get a good of variety higher

than their flexibility level, it follows that
∑j

l=1 u
l
t is less than

or equal to the total number of available goods of variety less

than or equal to j. In other words,
∑j

l=1 u
l
t ≤

∑j
l=1 y

l
t. Thus,

u1:k
t ∈ A.

We now show that script A ⊆ U(hR
t , y

1:k
t ). Consider u1:k

t ∈
A. In order to prove that u1:k

t ∈ U(hR
t , y

1:k
t ), we need to

show that there exists some matrix D ∈ S(hR
t , y

1:k
t ) such that

∑|hR
t |
i=1

i:b̃it=j

∑

l≤j D(i, l) = u
j
t , ∀j. Let us construct such a matrix

according to the following allocation procedure.

1) Select any u1
t consumers with flexibility level 1 and

allocate each of them a good of variety 1. This is a feasible

allocation since u1
t ≤ y1t .

2) Select any u2
t consumers with flexibility level 2 and

allocate each of them either an unallocated good of variety

1 (if u1
t < y1t ) or a good of variety 2. These can be done

since u1
t + u2

t ≤ y1t + y2t .

3) Proceed in a similar fashion for all flexibility levels: select

anyu
j
t consumers with flexibility level j and allocate each

of them a good of any of the varieties 1, . . . , j depend-

ing on their availability. Since
∑j

l=1 u
l
t ≤

∑j
l=1 y

l
t, the

described allocation is feasible.

4) The other consumers that arrived at time t but were

not selected for allocation in the above steps get zero

allocation.

It is straightforward to verify that allocation matrix D con-

structed above belongs to S(hR
t , y

1:k
t ) and that it serves u

j
t

consumers of flexibility level j. Hence, every vector u1:k
t ∈ A

corresponds to a feasible allocation matrix D ∈ S(hR
t , y

1:k
t ).

Hence, u1:k
t ∈ U(hR

t , y
1:k
t ). This establishes A ⊆ U(hR

t , y
1:k
t )

and completes the proof.

APPENDIX D
PROOF OF LEMMA 7

Define

F(hR
t , y

1:k
t ) :=

{
(u1:k, v1:k) ∈ Z

2k
≥0 :

u1:k ∈ U(hR
t , y

1:k
t ) , v1:k ∈ V(u1:k, y1:kt )

}
. (46)

Furthermore, for any (u1:k, v1:k) in F(hR
t , y

1:k
t ), define

SF (h
R
t , y

1:k
t , u1:k, v1:k) :=

{

A ∈ S(hR
t , y

1:k
t ) :

|hR
t |

∑

i=1

A(i, j) = vj ,

|hR
t |

∑

i=1
i:b̃it=j

j
∑

l=1

A(i, l) = uj , j = 1, . . . , k

}

.

(47)

It is easy to check that the set of all feasible allocation matrices

can be partitioned as

S(hR
t , y

1:k
t ) =

⋃

(u1:k,v1:k)∈F(hR
t ,y1:k

t )

SF (h
R
t , y

1:k
t , u1:k, v1:k).

(48)

Therefore, the value function in (21) can be written as

Vt(st) = max
(u1:k,v1:k)∈F(st)

{

max
A∈SF (st,u1:k,v1:k)

{
|hR

t |
∑

i=1

wt(θ̃
i
t, b̃

i
t)

k∑

j=1

A(i, j)+ E [Vt+1(St+1)|st,At = A]
︸ ︷︷ ︸

†

}}

.

(49)
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The † term in (49) can be written as

† = E

[

Vt+1

(

HR
t+1, {y

j
t − vj +X

j
t+1}

k
j=1

)]

.

The above expectation depends only on v1:k and y1:kt and not

on the allocation matrix itself. Thus, (49) becomes

Vt(st) =

max
(u1:k,v1:k)∈F(st)

⎧

⎪⎪⎨

⎪⎪⎩

E

[

Vt+1

(

HR
t+1, {y

j
t − vj +X

j
t+1}

k
j=1

)]

+ max
A∈SF (st,u1:k,v1:k)

⎧

⎨

⎩

|hR
t |

∑

i=1

wt(θ̃
i
t, b̃

i
t)

k∑

j=1

A(i, j)

⎫

⎬

⎭

︸ ︷︷ ︸

‡

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (50)

Considering the term ‡ in the above expression, it is straightfor-

ward to see that for all A ∈ SF (st, u
1:k, v1:k)

|hR
t |

∑

i=1

wt(θ̃
i
t, b̃

i
t)

k∑

j=1

A(i, j) ≤
k∑

j=1

uj
∑

i=1

w
i,j
t

where w
i,j
t denotes the ith largest element in Wj

t [see (25)].

Furthermore, an allocation matrix that, for each flexibility level

j, gives goods to uj consumers with highest virtual valuations

satisfies the above inequality with equality. Hence

max
A∈SF (st,u1:k,v1:k)

⎧

⎨

⎩

|hR
t |

∑

i=1

wt(θ̃
i
t, b̃

i
t)

k∑

j=1

A(i, j)

⎫

⎬

⎭
=

k∑

j=1

uj
∑

i=1

w
i,j
t .

Plugging this result into (50), we obtain

Vt(h
R
t , y

1:k
t ) = max

(u1:k,v1:k)∈F(hR
t ,y1:k

t )

{
k∑

j=1

uj
∑

i=1

w
i,j
t

+ E

[

Vt+1

(

HR
t+1, {y

j
t − vj +X

j
t+1}

k
j=1

)]
}

(51)

which can be rearranged in the form of the following nested

maximization:

Vt(h
R
t , y

1:k
t ) = max

u1:k∈U(hR
t ,y1:k

t )

{
k∑

j=1

uj
∑

i=1

w
i,j
t

+ max
v1:k∈V(u1:k,y1:k

t )

{

E

[

Vt+1

(

HR
t+1, {y

j
t− vj +X

j
t+1}

k
j=1

)]}
}

.

(52)

This completes the proof.

APPENDIX E
PROOF OF LEMMA 8

We provide an inductive proof of the lemma.

Base case: At time T , consider a nonempty history hR
T and

supply profiles y1:kT and z1:kT such that yiT = ziT + 1 , y
j
T =

z
j
T − 1, and ylT = zlT for l �= i, j, where i < j. From the defini-

tion of U(·) in (22), it follows that U(hR
T , z

1:k
T ) ⊆ U(hR

T , y
1:k
T ).

This fact combined with the definition of VT (·) implies that (27)

holds for t = T and hR
T �= ∅. If hR

T = ∅, then VT (h
R
T , z

1:k
T ) =

0 = VT (h
R
T , y

1:k
T ). Hence, (27) holds true at time T for all hR

T .

Induction hypothesis: Suppose that the statement of the

lemma is true for Vt+1(·). Consider two supply profiles y1:kt

and z1:kt such that yit = zit + 1 , y
j
t = z

j
t − 1 and ylt = zlt for

l �= i, j, where i < j. We now show that given such y1:kt and

z1:kt , the property in (27) holds true at time t, i.e.,

Vt(h
R
t , y

1:k
t ) ≥ Vt(h

R
t , z

1:k
t ) ∀hR

t . (53)

Let us first consider hR
t = ∅. In this case, we have

Vt(∅, y
1:k
t ) = E

[
Vt+1(H

R
t+1, Y

1:k
t+1) | y

1:k
t

]

= E
[
Vt+1(H

R
t+1, {y

l
t +X l

t+1}
k
l=1)

]

≥ E
[
Vt+1(H

R
t+1, {z

l
t +X l

t+1}
k
l=1)

]

= E
[
Vt+1(H

R
t+1, Y

1:k
t+1) | z

1:k
t

]

= Vt(∅, z
1:k
t ) (54)

where the inequality in (54) follows from the induction hy-

pothesis by noting that for any realization x1:k
t+1, yit+1 = yit +

xi
t+1 = zit+1 + 1 , y

j
t+1 = y

j
t + x

j
t+1 = z

j
t+1 − 1, and ylt+1 =

ylt + xl
t+1 = zlt+1 for l �= i, j. This establishes the property in

(27) for hR
t = ∅.

Now, consider hR
t �= ∅. To prove (27), it suffices to show that

for every (u1:k, v1:k) ∈ F(hR
t , z

1:k
t ), there exists (u1:k, a1:k) ∈

F(hR
t , y

1:k
t ) such that

k∑

j=1

uj
∑

i=1

w
i,j
t + E

[
Vt+1(H

R
t+1, {y

l
t − al +X l

t+1}
k
l=1)

]

≥
k∑

j=1

uj
∑

i=1

w
i,j
t + E

[
Vt+1(H

R
t+1, {z

l
t − vl +X l

t+1}
k
l=1)

]

(55)

Recall that (u1:k, v1:k) ∈ F(hR
t , z

1:k
t ) implies that vl ≤ zlt for

all l.

For (u1:k, v1:k) ∈ F(hR
t , z

1:k
t ) two cases arise.

1) Case 1: vj < z
j
t . In this case, we define a1:k = v1:k. It is

clear that (u1:k, a1:k) ∈ F(hR
t , y

1:k
t ) and (55) holds.

2) Case 2: vj = z
j
t . In this case, we cannot set a1:k = v1:k

since vj > y
j
t . Therefore, we define a1:k as follows:

ai = vi + 1, aj = vj − 1, and al = vl for l �= i, j. It is

straightforward to verify that (u1:k, a1:k) ∈ F(hR
t , y

1:k
t ).

Furthermore, using the induction hypothesis

E
[
Vt+1(H

R
t+1, {y

l
t − al +X l

t+1}
k
l=1)

]

= E
[
Vt+1(H

R
t+1, y

1
t − a1 +X1

t+1, . . . , y
i
t − ai +Xi

t+1,

. . . , y
j
t − aj +X

j
t+1, . . . , y

k
t − ak +Xk

t+1)
]

= E
[
Vt+1(H

R
t+1, y

1
t − v1 +X1

t+1, . . .

. . . , yit − (vi + 1) +Xi
t+1, . . . , y

j
t − (vj − 1) +X

j
t+1, . . .

. . . , ykt − vk +Xk
t+1)

]

= E
[
Vt+1(H

R
t+1, y

1
t − v1 +X1

t+1, . . .
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. . . , (yit − 1)− vi +Xi
t+1, . . . , (y

j
t + 1)− vj +X

j
t+1, . . .

. . . , ykt − vk +Xk
t+1)

]

= E
[
Vt+1(H

R
t+1, {z

l
t − vl +X l

t+1}
k
l=1)

]
.

This proves (55) and, thus, establishes (27) for hR
t �= ∅

Therefore, (27) holds true for all hR
t at time t. This completes

the proof.

APPENDIX F
PROOF OF LEMMA 9

We prove the lemma in the following steps.

Step 1: We first show that v∗1:k ∈ V(u1:k, y1:kt ). Clearly,

v∗j ≤ y
j
t and

∑k
l=j v

∗l ≤
∑k

l=j u
l for all j. To show that v∗1:k ∈

V(u1:k, y1:kt ), it suffices to show that
∑k

l=1 v
∗l =

∑k
l=1 u

l. We

will utilize the following claim.

Claim: Suppose that for all m = 1, . . . , j: (i)
∑k

l=m v∗l <
∑k

l=m ul and (ii) v∗i = yit, for all i < j. Then, (a) v∗j = y
j
t and

(b)
∑k

l=j+1 v
∗l <

∑k
l=j+1 u

l.

Assume for now that the claim is true. We have already seen

that
∑k

l=1 v
∗l ≤

∑k
l=1 u

l. Suppose

k∑

l=1

v∗l <

k∑

l=1

ul. (56)

Then, using the claim above with j = 1 implies that v∗1 = y1t
and

∑k
l=2 v

∗l <
∑k

l=2 u
l. We can now use the above claim

for j = 2 to conclude that v∗2 = y2t and
∑k

l=3 v
∗l <

∑k
l=3 u

l.

Proceeding this way until j = k − 1, we get that 1) v∗m = ymt
for all m ≤ k − 1 and 2) v∗k < uk. Furthermore, 2) and the

definition of v∗k imply that v∗k = ykt . Thus, the entire v∗1:k

vector is equal to the y1:kt vector. But we started with the

statement that (56) is true. Thus,
∑k

l=1 y
l
t <

∑k
l=1 u

l, which

contradicts the fact that u1:k ∈ U(hR
t , y

1:k
t ). Thus, (56) is false,

and hence,
∑k

l=1 v
∗l =

∑k
l=1 u

l.

The only thing left now is the proof of the claim.

Proof of claim: The inequality
∑k

l=j v
∗l <

∑k
l=j u

l implies

that v∗j <
∑k

l=j u
l −

∑k
l=j+1 v

∗l. This, along with the

definition of v∗j , implies that v∗j = y
j
t . Therefore, (a) holds true.

We already know that
∑k

l=j+1 v
∗l ≤

∑k
l=j+1 u

l. If
∑k

l=j+1 v
∗l =

∑k
l=j+1 u

l, then from (i) in the claim statement

withm = 1, it follows that
∑j

l=1 v
∗l <

∑j
l=1 u

l. This combined

with v∗i = yit for all i < j in (ii) and v∗j = y
j
t in part (a)

implies that
∑j

l=1 y
l
t <

∑j
l=1 u

l, which contradicts the fact

that u1:k ∈ U(hR
t , y

1:k
t ). Hence,

∑k
l=j+1 v

∗l =
∑k

l=j+1 u
l

cannot be true. This establishes (b).

Step 2: For any v1:k �= v∗1:k in V(u1:k, y1:kt ), consider

the highest j such that vj �= v∗j . We argue that vj > v∗j

cannot be true. Given the definition of v∗j , either v∗j = y
j
t

or v∗j = uj + (
∑k

l=j+1 u
l −

∑k
l=j+1 v

∗l). If v∗j = y
j
t , then

vj > v∗j contradicts v1:k ∈ V(u1:k, y1:kt ). Now, suppose v∗j =

uj + (
∑k

l=j+1 u
l −

∑k
l=j+1 v

∗l). Given that vl = v∗l, l =

j + 1, . . . , k, vj > v∗j would then imply that vj > uj +
(
∑k

l=j+1 u
l −

∑k
l=j+1 v

l) or arranged differently
∑k

l=j v
l >

∑k
l=j u

l. This combined with the fact that
∑k

l=1 v
l =

∑k
l=1 u

l

would then imply that
∑j−1

l=1 v
l <

∑j−1
l=1 u

l, which contradicts

v1:k ∈ V(u1:k, y1:kt ). Thus, it can only be the case that vj < v∗j .

Step 3: For any v1:k �= v∗1:k in V(u1:k, y1:kt ), we define a

new vector T (v1:k) as follows: Pick the highest j such that

vj < v∗j .6 Then, pick the highest i < j with vi > 0. It can

easily be shown that such i and j exist. Then, T j(v1:k) =
vj + 1, T i(v1:k) = vi − 1, and T l(v1:k) = vl for l �= i, j,

where T l(v1:k) denotes the lth entry in T (v1:k). We now argue

thatT (v1:k) ∈ V(u1:k, y1:kt ). Form < i orm ≥ j, it is clear that
m∑

l=1

ul ≤
m∑

l=1

T l(v1:k).

Since j is the highest index with vj �= v∗j , it follows that

j−1
∑

l=1

vl >

j−1
∑

l=1

v∗l ≥

j−1
∑

l=1

ul.

Now, for any m such that i ≤ m < j,

m∑

l=1

T l(v1:k) = (vi − 1) +

i−1∑

l=1

vl =

(
j−1
∑

l=1

vl

)

− 1 ≥
m∑

l=1

ul.

Therefore, T (v1:k) satisfies all the inequalities
∑m

l=1 T
l(v1:k) ≥

∑m
l=1 u

l,m = 1, . . . , k. Furthermore,

it is easy to verify that T j(v1:k) ≤ y
j
t . Thus, T (v1:k) ∈

V(u1:k, y1:kt ). We now show that the objective value in (29) is

(weakly) larger under T (v1:k) compared to that under v1:k. Let

a1:k := T (v1:k). Using Lemma 8

E[Vt+1(H
R
t+1, {y

l
t − vl +X l

t+1}
k
l=1)]

= E[Vt+1(H
R
t+1, y

1
t − v1 +X1

t+1, . . .

. . . , yit − vi +Xi
t+1, . . . ,

. . . , y
j
t − vj +X

j
t+1, . . . , y

k
t − vk +Xk

t+1)]

≤ E[Vt+1(H
R
t+1, y

1
t − v1 +X1

t+1, . . .

. . . , yit − (vi − 1) +Xi
t+1, . . . ,

. . . , y
j
t − (vj + 1) +X

j
t+1, . . . , y

k
t − vk +Xk

t+1)]

= E[Vt+1(H
R
t+1, {y

l
t − al +X l

t+1}
k
l=1)].

Therefore, the objective value in (29) can only improve after

applying the transformation T (·).
Step 4: Starting with any v1:k �= v∗1:k inV(u1:k, y1:kt ), we can

keep applying transformation T (·) to construct new vectors in

V(u1:k, y1:kt ) that result in an objective value at least as large as

that under v1:k. This is conducted in the following while-loop:

1: while v1:k �= v∗1:k do

2: v1:k ←− T (v1:k)
3: end while

4: return v1:k

The above while-loop will terminate in a finite number of steps

with v1:k = v∗1:k at termination. Thus, the objective value under

v∗1:k is at least as large as that under any v1:k ∈ V(u1:k, y1:kt ).
Thus, v∗1:k is optimal.

6Note that the case vj > v∗j got ruled out in Step 2.
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APPENDIX G
PROOF OF THEOREM 1

Suppose that nt consumers arrive at time t, and let (r, j)
denote the type reported by the ith consumer arriving at time t.

Assuming that all other consumers report their types truthfully,

let Q∗i
t (r, j, nt) and P ∗i

t (r, j, nt) denote the expected allocation

and payment [see (10) and (11)], respectively, for this consumer

under the mechanism (q∗1:T , p
∗
1:T ), when it reports the pair (r, j).

Bayesian incentive compatibility and individual rationality:

Because of Lemma 1, we can establish that (q∗1:T , p
∗
1:T ) is

BIC and individually rational by showing that the following

conditions hold true.

i) Q∗i
t (r, j, nt) is nondecreasing in r for all i, t.

ii) Q∗i
t (r, j, nt) is nondecreasing in j for all i, t.

iii) P ∗i
t (θmin, j, nt) = 0 for all j, nt, t, i.

iv) θmin Q∗i
t (θ

min, j, nt) = 0 for all j, nt, t, i.

v) P ∗i
t (r, j, nt) is of the form given in (12) for all i, t.

We establish these conditions as follows.

(i) In order to establish that Q∗i
t (r, j, ·) is nondecreasing

in r, it suffices to show that
∑

l≤j q
∗i,l
t (h−i,R

t , (r, j), y1:kt ) is

nondecreasing in r, where h
−i,R
t denotes the set of reports

from all consumers other than i. Given h
−i,R
t and y1:kt , con-

sider two information states st := (h−i,R
t , (r, j), y1:kt ) and s̄t :=

(h−i,R
t , (r̄, j), y1:kt ), where r̄ > r. That is, consumer i has types

(r, j) and (r̄, j) under st and s̄t, respectively. We now want to

show that
∑

l≤j

q
∗i,l
t (s̄t) ≥

∑

l≤j

q
∗i,l
t (st). (57)

Clearly, if
∑

l≤j q
∗i,l
t (s̄t) = 1, (57) holds true. Let us consider

the case where
∑

l≤j q
∗i,l
t (s̄t) = 0. We need to argue that in

this case,
∑

l≤j q
∗i,l
t (st) = 0. Let u∗1:k denote the optimal u1:k

vector obtained from solving the dynamic program in (30) under

the information state s̄t. Since consumer i does not get served

under u∗1:k (recall that
∑

l≤j q
∗i,l
t (s̄t) = 0), it can be shown

that u∗1:k is optimal under st as well and that consumer i will

not get served under the information state st. In other words,
∑

l≤j q
∗i,l
t (st) = 0 and (57) is true.

(ii) In order to establish that Q∗i
t (r, j, ·) is nondecreasing

in j, it suffices to prove that
∑

l≤j q
∗i,l
t (h−i,R

t , (r, j), y1:kt ) is

nondecreasing in j. We will use the following proposition in our

proof.

Proposition 1: Letu∗1:k denote the optimal vector that results

from solving the dynamic program in (30) under the infor-

mation state st = (hR
t , y

1:k
t ). Consider two flexibility levels j

and j′ with j < j ′. Then, every consumer with flexibility level

j ′ and virtual valuation greater than w
u∗j ,j
t gets served under

(q∗1:T , p
∗
1:T ).

7

Proof: Suppose that the proposition is not true. Define the

vector û1:k as follows: ûj = u∗j − 1, ûj′ = u∗j′ + 1, and ûl =
u∗l for all l �= j, j′. Clearly, û1:k ∈ U(hR

t , y
1:k
t ). Consider the ex-

pression of the value function given in (24) [which is equivalent

to the definition in (30)]. It is straightforward to verify that the

7If u∗j = 0, then w
u∗j ,j
t := ∞.

first term in (24), i.e.,
∑k

j=1

∑uj

i=1 w
i,j
t , would be strictly larger

under the vector û1:k compared to that under u∗1:k. Moreover,

since V(u∗1:k, y1:kt ) ⊆ V(û1:k, y1:kt ) [see (23)], the second term

in (24) (i.e., the inner maximization over v1:k vector) cannot

decrease under the vector û1:k compared to that under u∗1:k.

Therefore, the objective in (24) [equivalently, (30)] strictly

improves under the vector û1:k compared to that evaluated at

u∗1:k, which contradicts the optimality of u∗1:k. This completes

the proof. �

Given h
−i,R
t and y1:kt , consider two information states st :=

(h−i,R
t , (r, c), y1:kt ) and s̄t := (h−i,R

t , (r, c̄), y1:kt ), where c̄, c ∈
{1, . . . , k}, c̄ > c. Thus, we need to show that

∑

l≤c̄

q
∗i,l
t (s̄t) ≥

∑

l≤c

q
∗i,l
t (st). (58)

Clearly, if
∑

l≤c̄ q
∗i,l
t (s̄t) = 1, (58) holds true. Let us consider

the case where
∑

l≤c̄ q
∗i,l
t (s̄t) = 0. We need to argue that in

this case,
∑

l≤c q
∗i,l
t (st) = 0. Let u∗1:k denote the optimal u1:k

vector obtained from solving the dynamic program in (30)

under the information state s̄t. Let n
j
t (st) denote the number of

consumers with flexibility level j that arrive at time t under the

information state st. Because consumer i with flexibility level c̄

does not get a good under s̄t (recall that
∑

l≤c̄ q
∗i,l
t (s̄t) = 0),

it clearly means that u∗c̄ ≤ nc̄
t(s̄t)− 1 = nc̄

t(st). Therefore,

indeed, u∗1:k ∈ U(st) [see (22)]. We now want to show that

u∗1:k
t is also optimal under st.

Consider the following sequence of implications.

a) Since consumer i does not get served under the informa-

tion state s̄t (recall that
∑

l≤c̄ q
∗i,l
t (s̄t) = 0), it follows

from Proposition 1 that its virtual valuation must be

no greater than the virtual valuations of the consumers

that are served from flexibility levels lower than c̄; in

particular, wt(r, c̄) ≤ w
u∗c,c
t .

b) From Assumption 2, we know that wt(r, c) < wt(r, c̄).

Therefore, (a) implies that wt(r, c) < w
u∗c,c
t .

c)
∑

l≤c̄ q
∗i,l
t (s̄t) = 0 combined with (b) implies that the

vector u∗1:k results in the exact same objective value in

(30) under both information states s̄t and st.

d) Since c < c̄ and wt(r, c) < wt(r, c̄), it is straightforward

to show that under the information state st, the value

function in (30) is upper bounded by that under s̄t, i.e.,

Vt(st) ≤ Vt(s̄t).
e) Items (c) and (d) combined imply that u∗1:k is optimal

under st as well.

Items (e) and (b) above imply that consumer i with type

(r, c) does not get served under the information state st, i.e.,
∑

l≤c q
∗i,l
t (st) = 0. Thus, (58) is true.

(iii)–(v): To establish conditions (iii)–(v), consider the pay-

ment form given as follows:

ρ∗it (h
−i,R
t , (r, j), y1:kt ) = r

∑

j′≤j

q
∗i,j′

t (h−i,R
t , (r, j), y1:kt )

−

∫ r

θmin

⎛

⎝
∑

j′≤j

q
∗i,j′

t (h−i,R
t , (α, j), y1:kt )

⎞

⎠ dα. (59)
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We first argue that monotonicity of q∗t (·), as established above

[condition (i)], implies that the payment form in (59) is equiva-

lent to the one given in (31). Then, we show that this equivalent

payment form in (59) indeed satisfies conditions (iii)–(v).

If consumer i with the report (r, j) does not get a good (i.e.,
∑

j′≤j q
∗i,j′

t (h−i,R
t , (r, j), y1:kt ) = 0), then the monotonicity of

q∗t implies that the integral in (59) is also 0. Hence, in this

case, consumer i pays nothing. On the other hand, if consumer i

gets a good (i.e.,
∑

j′≤j q
∗i,j′

t (h−i,R
t , (r, j), y1:kt ) = 1), then the

definition of θ̄
i,j
t [see (32)] implies that the integral in (59) is

(r − θ̄
i,j
t ). Hence, in this case, consumer i pays θ̄

i,j
t . Thus, the

payment in (59) is identical to the payment in (31).

We now argue that the equivalent expression for p∗t(·) in (59)

satisfies the conditions in (iii)–(v).

To see that condition (iii) above holds true, recall that from

Assumption 2, we have that wt(θ
min, j) < 0 for all j, t. Hence,

it must be that
∑

j′≤j q
∗i,j′

t (h−i,R
t , (θmin, j), y1:kt ) = 0 for all

h
−i,R
t , y1:kt , j, i, t. Otherwise, q∗1:T will not maximize the ob-

jective in (15) whose solution is given by the dynamic pro-

gram in (20) and (21). Therefore, from (59), it follows that

ρ∗it (h
−i,R
t , (θmin, j), y1:kt ) = 0 for allh

−i,R
t , y1:kt , j, i, t. This im-

plies thatP ∗i
t (θmin, j, nt) = 0 for all j, nt, t, i, which establishes

condition (iii) above. Based on the same argument, condition (iv)

above holds true as well.

By taking the expectation of ρ∗it (H
−i,R
t , (r, j), Y 1:k

t ) in (59)

over (H−i,R
t , Y 1:k

t ), whereH
−i,R
t = HR

t \ {(θit, b
i
t)}, it is easily

established that the expected payment P ∗i
t (·) satisfies (12) with

θmin Q∗i
t (θ

min, j, nt) = 0. Hence, condition (v) above holds true.

The above arguments establish that the mechanism

(q∗1:T , p
∗
1:T ) is BIC and individually rational.

Expected-revenue maximization: The allocation functions

q∗1:T constructed in Theorem 1 are the optimal control strategy

for the stochastic control problem in (15). This is because

Lemmas 4–9 established that the dynamic program in (30) is

equivalent to the one in (17) and (18), which was formulated to

address the control strategy optimization in (15). Moreover, the

payment functions p∗1:T defined in (31) [which is equivalent to

(59)] satisfy (16). Therefore, based on the results of Lemma 3,

the mechanism (q∗1:T , p
∗
1:T ) is an expected-revenue-maximizing,

BIC, and IR mechanism.
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