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ABSTRACT. This paper, largely written in 2009/2010, fits Landau-Ginzburg models into the
mirror symmetry program pursued by the last author jointly with Mark Gross since 2001.
This point of view transparently brings in tropical disks of Maslov index 2 via the notion of
broken lines, previously introduced in two dimensions by Mark Gross in his study of mirror
symmetry for P2

A major insight is the equivalence of properness of the Landau-Ginzburg potential with
smoothness of the anticanonical divisor on the mirror side. We obtain proper superpotentials
which agree on an open part with those classically known for toric varieties. Examples in-
clude mirror LG models for non-singular and singular del Pezzo surfaces, Hirzebruch surfaces

and some Fano threefolds.
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PREFACE

This paper, largely written in 2009/2010, investigates the incorporation of Landau-Ginzburg
models into the toric degeneration approach to mirror symmetry of the last author with Mark
Gross [GS1, GS3]. At the time we could not answer a key question concerning the existence
of the algorithm in [GS3] in the relevant unbounded case. We also felt that our construction
poses many interesting questions and more should be said. With two of the authors leaving
academia (M.C. 2010, M.P. 2011), the paper was eventually left in preliminary form on the
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last author’s Hamburg webpage in the state of September 2010.! This preliminary version
will remain available as an ancillary file in the arXiv-submission. A variation of the last three
sections partly treating other cases appeared as part of the second author’s doctoral thesis
[Pu].

The key consistency proof of the superpotential in §3 and §4 has been repeatedly used
in the construction of generalized theta functions in the surface and cluster variety cases,
notably in [GHK, GHKK]. The question of existence of a consistent wall structure in the
non-compact case eventually turned out to be best answered trivially by a compactification
requirement (Definition 1.2, Proposition 1.5), or in the context of intrinsic mirror symmetry
[GS6, GS7]. With a recent increase in studies of the smooth anticanonical divisor case, the
case of central interest in this paper, it now seems the right time to finalize this paper.

To preserve the line of historical developments, we have mostly only done minor edits
for accuracy and clarity. The exceptions are the mentioned compactification criterion in
§1, Remark 4.11 on algebraizability of the superpotential, a new section on the fibers of the
superpotential (§5), and a corrected treatment of the mirror of Hirzebruch surfaces taken from
[Pu, §5.3]. We have also added some references to newer developments in the introduction
and in some footnotes, but this did not seem the right place to give a comprehensive overview
and due credit to all the wonderful developments that have happened around the topic in
the last decade. We apologize with everybody whose newer contributions are not mentioned
in this paper.

§5 existed in some form for many years and has been distributed occasionally, but the LG
mirror map (Definition 5.11 and Theorem 5.12) has only rather recently been spelled out
in discussions with Helge Ruddat in a joint project with Michel van Garrel on enumerative
period integrals in Landau-Ginzburg models [GRS].

INTRODUCTION

Mirror symmetry has been suggested both by mathematicians [Gi] and physicists [Wi, HV]
to extend from Calabi-Yau varieties to a correspondence between Fano varieties and Landau-
Ginzburg models. Mathematically a Landau-Ginzburg model is a non-compact Kéhler man-
ifold with a holomorphic function, the superpotential. Until recently, the majority of studies
confined themselves to toric cases where the construction of the mirror is immediate. The one
exception we are aware of is the work of Auroux, Katzarkov and Orlov on mirror symmetry
for del Pezzo surfaces [AKO], where a symplectic mirror is constructed by a surgery construc-
tion. The general Floer-theoretic perspective for the mirror Landau-Ginzburg model of an
SYZ fibered logarithmic Calabi-Yau manifold has been discussed by Auroux in [Aul, Au2].
In the following we use the phrase log Calabi-Yau to refer to a pair (X, D) of a complete
variety X over a field with a non-zero effective anticanonical divisor D C X .2

The purpose of this paper is to fit the Fano/Landau-Ginzburg mirror correspondence into
the mirror symmetry program via toric degenerations pursued by the last author jointly with

1The last named author presented our findings at the workshop “Derived Categories, Holomorphic Sym-
plectic Geometry, Birational Geometry, Deformation Theory” at IHP/Paris in May 2010 and at VBAC 2010
in Lisbon in June 2010.

°In [GS3] log Calabi-Yau varieties were referred to as Calabi-Yau pairs to avoid confusion with the central

fiber of toric degenerations of Calabi-Yau varieties.



TROPICAL LANDAU-GINZBURG 3

Mark Gross [GS1, GS3]. The program as it stands suggests a non-compact variety as the

mirror of a log Calabi-Yau variety, or rather toric degenerations of these varieties. So the

main new ingredient is the construction of the superpotential.

The key technical idea of broken lines (Definition 4.2) for the construction of the superpo-

tential has already appeared in a different context in the two-dimensional situation in Gross’

mirror correspondence for P? [Gr2]. We replace his case-by-case study of well-definedness

with a scattering computation, making it work in all dimensions.

Our main findings can be summarized as follows.

(1)

(7)

From our point of view, the natural data on the Fano side is a toric degeneration of
log Calabi-Yau varieties as defined in [GS3], Definition 1.8. In particular, if arising
from the localization of an algebraic family, the general fiber is a pair (X , D) of a
complete variety X and a reduced anticanonical divisor D. No positivity property is
ever used in our construction apart from effectivity of the anticanonical bundle.

The mirror is a toric degeneration of non-compact Calabi-Yau varieties, together
with a canonically defined regular function on the total space of the degeneration
(Proposition 1.5).

The superpotential is proper if and only if the anticanonical divisor D on the log
Calabi-Yau side is locally irreducible (Theorem 2.5). These conditions also have
clean descriptions on the underlying tropical models governing the mirror construction
from [GS1, GS3|. §3 and §4 give the all order construction of the superpotential,
summarized in Theorem 4.10.

For smooth toric Fano varieties our construction provides a canonical (partial) com-
pactification of the Hori-Vafa construction [HV] (Corollary 7.9 in the surface case, [Pu,
Thm. 5.4] in all dimensions). But note Remark 4.11 concerning the general question
of algebraizability of the superpotential.

The terms in the superpotential can be interpreted in terms of virtual numbers of
tropical disks, at least in dimension two (Proposition 6.15). On the Fano side these
conjecturally count holomorphic disks with boundary on a Lagrangian torus.

The natural holomorphic parameters occurring in the construction on the Fano side lie
in H 1(V)V( 0, V@( Ko, Do)) where 6( Xo,D) 18 the logarithmic tangent bundle of thev cen:cral
fiber (X, Do) in (1). This group rules infinitesimal deformations of the pair (X, Dy).
We have not carefully analyzed the parameters on the Landau-Ginzburg side and
their correspondence to the Kihler parameters on the log Calabi-Yau side.* Note
however that all parameters come from deformations of the underlying space, our
superpotential does not add extra parameters.

Explicit computations include non-singular and singular del Pezzo surfaces, the Hirze-
bruch surfaces Fo and F3, P? and a singular Fano threefold (§7-§8).

Throughout we work over an algebraically closed field k of characteristic 0. We use check-
adorned symbols X, D, X,9, B etc. for the log Calabi-Yau side, and unadorned symbols for
the Landau-Ginzburg side. For an integral polyhedron 7 C R™ we denote by A, the free

abelian group of integral tangent vector fields on 7.

3This picture has recently been confirmed in [GS7] in terms of punctured Gromov-Witten invariants.

4The correspondence is transparent from the intrinsic mirror symmetry perspective [GS6, GST7].
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We would like to thank Denis Auroux, Mark Gross and Helge Ruddat for valuable discus-

sions.

1. LANDAU-GINZBURG TROPICAL DATA AND SCATTERING DIAGRAM

Throughout the paper we assume familiarity with the basic notions of toric degenera-
tions from [GS1], as reviewed in [GS3, §§1.1-1.2]. We quickly review the basic picture. Let
(B, 2, %) be the polarized intersection complex or cone picture [GS3, Expl. 1.13] associated
to a (schematic or formal) proper polarized toric degeneration (7 : X — T,9) of log Calabi-
Yau varieties [GS3, Defs. 1.8/1.9]. Here T is the (formal) spectrum of a discrete valuation
k-algebra, typically k[t]. Recall that B is a topological manifold with a Z-affine structure
outside a codimension two cell complex A C B, also called the discriminant locus; 2 is a
decomposition of B into integral, convex, but possibly unbounded polyhedra containing A
as subcomplex of the first barycentric subdivision disjoint from vertices and the interiors of
maximal cells; and ¢ is a (generally multivalued) strictly convex piecewise linear function
with integral slopes. The irreducible components of the central fiber X C ¥ are the toric
varieties with momentum polytopes the maximal cells in &2, and lower dimensional cells
describe their intersections.

Equivalently, one has the discrete Legendre dual data (B, &, ¢), referred to as the dual
intersection complex or fan picture of the same degeneration [GS3, Expl.1.11], or the cone
picture of the mirror via discrete Legendre duality [GS3, Constr. 1.16].

While [GS1] only treated the case of trivial canonical bundle or closed B, [GS3] gave the
straightforward generalization to the case of interest here of log Calabi-Yau varieties, that
is, a variety X and an anticanonical divisor D C X. These correspond to compact B with
locally convex boundary 0B, with 9B # 0 iff D # (. It holds B # 0 iff the discrete
Legendre-dual B is non-compact. The proof of [GS1, Thm. 5.4] then still shows that under a
primitivity assumption on the local affine geometry (“simple singularities, [GS1, Def. 1.60]),
the corresponding central fibers (Xg, M Xo) of toric degenerations of log Calabi-Yau varieties
(X = T,9), as a log space, are classified by the cohomology groups

HY(B,i.Ap ®7 Gy (k) = H'(B,i.A 5 @7 G (k))

computed from the affine geometry of B or B. Here Ap denotes the sheaf of integral tangent
vectors on the complement of the real codimension two singular locus A C B, i : B\
A — B is the inclusion, and Ap = Hom(Ap,Zp). Similar notations apply to B. The
correspondence works via twisting toric patchings of standard affine toric models for the
degeneration via so-called open gluing data s [GS3, Def. 1.18] and showing that any choice of
s gives rise to a log structure on Xo = X(s) over the standard log point. This log structure
is unique up to isomorphisms fixing Xo. Unlike in abstract deformation theory, the space of
deformations is not just a torsor over the controlling cohomology group, but a group itself. In
particular, trivial gluing data s = 1 lead to a distinguished choice of log Calabi-Yau central
fiber (Xo, M %,)- The log structure also carries the information of the anticanonical divisor
Do C Xy, which hence is suppressed in the notation.

Conversely, [GS3, Thm. 3.1] constructs a canonical formal polarized toric degeneration 7 :

(X — T,9) with given logarithmic central fiber (X, M %, )» even under a weaker assumption
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(local rigidity, [GS3, Def. 1.26]) than simplicity. Thus we understand this side of the mirror
correspondence rather well.

The objective of this paper is to give a similarly canonical picture on the mirror side. The
mirrors of Fano varieties are suggested to be so-called Landau-Ginzburg models (LG-models).
Mathematically these are non-compact algebraic varieties with a holomorphic function, re-
ferred to as superpotential, see e.g. [HV, CO, AKO, FOOQ]. Following the general program
laid out in [GS1] and [GS3], we construct LG-models via deformations of a non-compact
union of toric varieties. The superpotential is constructed by canonical extension from the
central fiber.

Our starting point in this paper is as follows.

Assumption 1.1. Let (B, 22, ¢) be a non-compact, polarized, (integral) tropical manifold
without boundary [GS3, Def.1.2]. We further assume that (B, #, ¢) comes with a compatible
sequence of consistent (wall) structures .7} as defined in [GS3, Defs. 2.22, 2.28, 2.41], for some
choice of open gluing data s.

For applications in mirror symmetry, (B, 2, ¢) is the Legendre-dual of a compact (B, 2, ¢)
with locally convex boundary. Unfortunately, the algorithmic construction of consistent struc-
tures in [GS3] is problematic at several places in the non-compact case.

The only practical general assumption we are aware of to make the algorithm work in the
non-compact case adds the following convexity requirement at infinity.

Definition 1.2. We call a tropical manifold (B, &) with or without boundary compactifiable
if there exists a compact subset K C B containing a neighborhood of the union of all bounded
cells of & and a proper continuous map ¢ : B\ K — R>g with the following properties:
(1) ¢ is locally on B\ (K UA) a convex function. (2) Each unbounded cell o € & has a finite
integral polyhedral decomposition &7, such that ¥|,~(p\k) is a convex, integral, piecewise
affine function with respect to &2,.

The existence of ¢ in Definition 1.2 makes it possible to exhaust B by tropical manifolds
as follows.

Lemma 1.3. Assume that (B, Z?) is compactifiable (Definition 1.2). Then there exists a
sequence of compact subsets By C Bs C ... C B with (1) B = Uy B,, and (2) (B,, 2,)
with P, = {a N B, } o€ @} is a tropical manifold in the sense of [GS3, Def. 1.32].

Proof. Let K C B and ¢ : B\ K — R be as in Definition 1.2. Define B, = KUy~ ([0, v]).
Properness of ¢ implies B = |J, B, as claimed in (1). Next observe that all bounded cells
of & are contained in all B, since they are contained in K. For an unbounded cell ¢ € &,
Definition 1.2,(2) implies that the intersection ¢ N B, is a compact convex polyhedron defined
over Q. The denominators appearing in the vertices of d(c N B,) disappear when going over
to an appropriate multiple of v. Thus up to going over to a subsequence, & induces an
integral polyhedral decomposition &, of B,,.

Convexity at boundary points as required in [GS3, Def. 1.32,(2)] follows from convexity of
1 posited in Definition 1.2,(1), provided 0B, N K # (. The last condition clearly holds for
v > 0, hence can be achieved for all v by relabelling the B,,. O

The proof of Lemma 1.3 motivates the following definition.
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Definition 1.4. We call a tropical manifold (B, 2?), with compact B C B containing all

bounded cells of & and intersecting the interior of each unbounded cell, a truncation of

(B, 2).

With an exhaustion as in Lemma 1.3 we can now apply the main theorem of [GS3] to
produce a compatible sequence of consistent wall structures on (B, &, ¢).

Proposition 1.5. Let (B, 2, ) be a polarized, tropical manifold with (B, &) compactifiable.
Assume further that each (B,, 2,) from Lemma 1.8 describes the intersection complex of a
locally rigid, positive, pre-polarized toric log Calabi-Yau variety (Xo, Bo) [GS3, Defs. 1.4,
1.26, 1.23]5. Then there exists a compatible sequence of consistent (wall) structures 73, on
(B, Z, ).

The formal toric degeneration [GS3, Def.1.9] 7w : (X,D) — Spfk[t] defined by the .
according to [GS3, Prop. 2.42] has an open embedding into a proper formal family (X,D) —
Spfk[t], with central fiber X.

Moreover, assuming H* (X, OYO) = H?*(Xo, OYO) =0, this family is algebraizable: There
exists a proper flat morphism 7 : (X, D) — Speckl[t], a toric degeneration in the sense of
[GS3, Def.1.8], and a divisor Z C X flat over Speck[t] such that m is isomorphic to the

completion of ﬂf\z at the central fiber.

Proof. For each v, [GS3, Thm. 3.1] produces a compatible sequence .7}, of consistent wall
structures on (B,, Z,). Comparing the inductive construction of v for fixed k, but taking
v — oo shows that the sets of walls stabilize on any compact subset of B. Note that by
convexity no walls emanate from 9B,. We can therefore take the limit over v to define .%
on B. Mutual compatibility and consistency follows by consideration on compact subsets of
B, using consistency and compatibility for the wall structure on (B,, &,) for v sufficiently
large.

The compactification (X, D) is constructed by observing that for each k the proper schemes
over k[t]/(t*1) obtained from .# , stabilize for v — oo. Taking this limit first and then the
limit over k now defines the formal scheme X proper over Spfk[t] and containing (X,D) as
an open dense formal subscheme.

With the additional assumptions, algebraizability follows from the Grothendieck alge-
braization theorem as in [GS3, Cor. 1.31]. O

Remark 1.6. The compactifying divisor 3 C X with X = X\ 3 can be described by inspection
of the polyhedral decomposition &2, of B, for any sufficiently large v and the asymptotic
behavior of .#%. For each sequence F' = (F},), of mutually parallel maximal flat affine subsets
F,, C OB, there exists a maximal closed reduced subscheme 37 C 3, and 3 is the schematic
union of the 3p. The restriction of w to 3 is itself a toric degeneration defined by the walls
of ¥, that intersect F), for all v, with wall functions obtained by disregarding all monomials
not tangent to Fj,.

These statements follow directly from the gluing construction [GS3, §2.6]. See §5 for a
further discussion in the context of fibers of the superpotential.

5The assumptions are fulfilled for example if (B, &) has simple singularities.
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2. THE SUPERPOTENTIAL AT t-ORDER ZERO

Recall from [GS3, Constr. 2.7] the definition of the rings R’;’U used to build X over k[t]/(tF+1).
These depend on an inclusion g : w — 7 of cells w,7 € & and a maximal reference cell o
containing 7 (hence w). The ring R’;,U provides the k-th order thickening inside X of the stra-
tum X, C Xy with momentum polytope 7 in an affine open neighbourhood of the w-stratum
X € X;. The order is measured with respect to all irreducible components of X containing
the T-stratum. The reference cell o is necessary to fix the affine chart to work on. The rings
obtained in this way from affine toric models are then localized at all functions carried by
codimension one cells (“slabs”) containing 7.

The details of this construction are rather irrelevant for what follows except that the

k
g’o-

underlying tangent vector m € A,, and an order of vanishing ord,s 2™ for each maximal cell

ring R _ is a localization of a monomial ring, with each monomial 2" having an associated
o' D 7. If 7 = 0 and ord, 2™ = I then 2™ restricts to 2™t in the Laurent polynomial ring
Rfdm » = A[A,] describing the trivial k-th order deformation of the big cell of the irreducible
component X, C X defined by o over A = k[t]/(t*1).

We need the following definition.

Definition 2.1. We call unbounded edges w,w’ € & parallel if there exists a sequence of
unbounded edges w = wg, w1, . ..,w, = «’ and maximal cells oy, ...,0, € P withw;_1,w; C 0;
parallel (A, = A, as sublattices of A,) and unbounded in the same direction.

A tropical manifold (B, Z?) with all unbounded edges parallel is called asymptotically

cylindrical.

Let now o € & be an unbounded maximal cell. For each unbounded edge w C o there
is a unique monomial 2™« € R?dg,o with ord,(m,) = 0 and —mn,, a primitive generator of
A, C A, pointing in the unbounded direction of w. Denote by #Z(o) the set of such monomials
my,. We identify monomials for parallel unbounded edges w,w’. So these contribute only one
exponent my, = myy to Z(o).

Now at any point of do, the tangent vector —m,, points into . Hence
(2.1) Woo)= > 2"

me#(o)
extends to a regular function on the component X, C Xy corresponding to ¢. For bounded
o define W%(o) = 0. To simplify the following discussion, from now on we only consider the

following situation.®

Assumption 2.2. One of the following two conditions hold.

(1) If w,w’ € & are parallel edges there exists a maximal cell 0 € £ with wUw' C 0.
(2) The open gluing data s are trivial.

Since by Assumption 2.2 the restrictions of the W%(o) to lower dimensional toric strata
agree, they define a function W9 € O(Xy). This is our superpotential at order 0. A motivation
for this definition in terms of counts of tropical analogues of holomorphic disks will be given
in Section 6.

6This assumption was missing in preliminary versions of this paper and fixes a subtlety arising with non-

trivial gluing data. The correct treatment of gluing data is given in [GHS, §5.2].
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One insight in this paper is that in studying LG-models tropically it is advisable to restrict
to asymptotically cylindrical B.

Proposition 2.3. The order zero superpotential W° : Xo — Al is proper iff (B, ) is
asymptotically cylindrical.

Proof. 1t suffices to show the claimed equivalence after restriction to a non-compact irre-
ducible component X, C X, that is, for W%(o) from (2.1). If all unbounded edges are
parallel, W9(o) is a multiple of a monomial with compact zero locus, and hence is proper.

For the converse we show that if m,, # m,, for some w,w’ C o then W°(c) is not proper.
The idea is to look at the closure of the zero locus of W9(o) in an appropriate toric compact-
ification X5 O X,.

Let wyp, ..., w, be the unbounded edges of o and write m; = m,,, for their primitive gener-
ators. By assumption conv{0,myg,...,m,} has a face not containing 0 of dimension at least
one. Let H C A, be a supporting affine hyperplane of such a face. After relabeling we may
assume my, ..., mg are the vertices of this face. Note that all m; — mg are contained in the
affine half-space H — R>omg. Now & = o N (H — R>¢my) is a rational bounded polytope
6 C o with a single facet 7 C ¢ not contained in a facet of o. Thus the toric variety Xz with
momentum polytope & contains X, as the complement of the toric prime divisor X, C X;.
Note that A, = H — mg by construction.

To study the closure of the zero locus of W) in X5 consider the rational function
z7™0 . W9) on Xz. This rational function does not contain X in its polar locus, and its
restriction to the big cell of X, is

s
L+ 2™ € k[A].
i=1
In fact, 2™7™0 for ¢ > s vanishes along X,. Since s > 1 this Laurent polynomial has a
non-empty zero locus. This proves that unless m; = m; for all 7, j the closure of the zero
locus of W%(o) in X5 has a non-empty intersection with X, and hence W°(o) can not be
proper. U

Thus if one is to study LG models via our degeneration approach, then to obtain the full
picture one has to restrict to asymptotically cylindrical (B, &).

The interpretation on the mirror side of the condition that (B, Z?) be asymptotically
cylindrical brings us to one of the main insights of this paper. We first formulate the Legendre-
dual of Definition 2.1.

Definition 2.4. A tropical manifold (B3, @) is said to have flat boundary if OB is locally flat
in the affine structure.

Theorem 2.5. Let ¥ — Spfk[t] and (7 : ¥ — T,D) be polarized toric degenerations with
Legendre dual intersection complezes (B, 2,¢), (B, 2,). Then the following are equivalent.
(1) The order zero superpotential W° : Xq — A defined in (2.1) is proper.
(2) (B, Z) is asymptotically cylindrical.
(3) (B, P) has flat boundary.
(4) The restriction m|g : ® — T of m: X — T is itself a toric degeneration.
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Proof. The equivalence of (1) and (2) is the content of Proposition 2.3.

The Legendre dual of the condition that (B, Z?) is asymptotically cylindrical says that
OB C B is itself an affine manifold with singularities to which our program applies. If this is
the case then from the definition of ® C X it follows that © — T is obtained by restricting
the slab functions to Dy € X and run our gluing construction [GS3, §2.6,8§2.7] on dB. The
result is hence a toric degeneration of Calabi-Yau varieties.

Conversely, assume that p, o’ C B are two neighboring (n — 1)-faces with A, # Ay as
subspaces of A, for v € pNp/. In the notation of [GS3, Constr.2.7], the toric local model
of X — T is given by k[P, ] for o € & a maximal cell containing p N o/, with ® locally
corresponding to p U p'. It is now easy to see that ® — 7' is not formally a smoothing of Dg
at the generic point of X pnp unless OB is straight at pN p’. Hence B has to be smooth for
© — T to be a toric degeneration. O

Theorem 2.3,(4) motivates the following definition.

Definition 2.6. A toric degeneration of log Calabi-Yau varieties (7 : £ — T,®) is called of
compact type if © — T is as well a toric degeneration of Calabi-Yau varieties.

As a first example we consider the case of P2.

Example 2.7. The standard method to construct the LG-mirror for P? is to start from the
momentum polytope = = conv{(—1,—1),(2,—1),(—1,2)} of P? with its anticanonical polar-
ization [HV] . The rays of the corresponding normal fan associated to this polytope (using
inward pointing normal vectors as in [GS3]) are generated by (1,0), (0,1),(—1,—1). Calling
the monomials corresponding to the generators of the first two rays x and y, respectively,
we obtain the usual (non-proper) Landau-Ginzburg model on the big torus (G,,(k))?, the
function x +y + Iiy

To obtain a proper superpotential we need to make the boundary of the momentum poly-
tope flat in affine coordinates. To do this we trade the corners with singular points in the
interior. The simplest choice is a decomposition & of B = = into three triangles with three
singular points with simple monodromy, that is, conjugate to (1), as depicted in Figure 2.1.
A minimal choice of the PL-function ¢ takes values 0 at the origin and 1 on B.7 For this
choice of @ the Legendre dual of (B, Z,®) is shown in Figure 2.1 on the right. Note that
the unbounded edges are indeed parallel, so each unbounded edge comes with copies of the
other two unbounded edges parallel at integral distance 1.

Now let us compute Xy and WHQQ. The polyhedral decomposition has one bounded maximal
cell o9 and three unbounded maximal cells o1, 02,03. The bounded cell is the momentum
polytope of the X,,, a Z/3-quotient of P2, Each unbounded cell is affine isomorphic to
[0,1] x R>p, the momentum polytope of P! x Al =: X,., i = 1,2,3. The X,, glue together
by torically identifying pairs of P1’s and A!’s as prescribed by the polyhedral decomposition
to yield Xg. By definition, W]gz vanishes identically on the compact component X,,. Each
of the unbounded components has two parallel unbounded edges, leading to the pull-back to
P! x A! of the toric coordinate function of A!, say z; for the i-th copy. Thus WH,92| Xo, = Zi

7[GHS, Expl. 6.2] identifies the generic fiber of the algebraization (X — T, D) of the resulting toric degen-
eration with the family of elliptic curves g(t)(x3 + =5 + 23) + zox122 in the trivial deformation of P?. Here

g(t) =t + O(t?) is an analytic change of parameter related to Jacobian theta functions.
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Vg = (—3, —1)

FIGURE 2.1. An intersection complex (B, @) for P? with straight boundary
and its Legendre dual (B, ) for the minimal polarization, with a chart on
the complement of the shaded region and a chart showing the three parallel
unbounded edges.

for i =1,2,3 and W°: Xy — Al is proper. These functions are clearly compatible with the
toric gluings.

Remark 2.8. An interesting feature of the degeneration point of view is that the mirror
construction respects the finer data related to the degeneration such as the monodromy
representation of the affine structure. In particular, this poses a question of uniqueness of the
Landau-Ginzburg mirror. For the anticanonical polarization such as the chosen one in the case
of P2, the tropical data (B , @) is essentially unique, see Theorem 7.5 for a precise statement.
For larger polarizations (thus enlarging B) there are certainly many more possibilities. For
example, as an affine manifold with singularities one can perturb the location of the singular
points transversally to the invariant directions over the rational numbers and choose an
adapted integral polyhedral decomposition after appropriate rescaling. It is not clear to us
if all (B, éz) with flat boundary leading to P? can be obtained by this procedure.

3. SCATTERING OF MONOMIALS

A central tool in [GS3| are scattering diagrams. The purpose of this section is to study
the propagation of monomials through scattering diagrams. Assume .¥} is a structure that
is consistent to order k and let j be a joint of .. Recall that a joint for a wall structure is
a codimension two cell of the polyhedral decomposition of B with codimension one skeleton
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the union of walls in .%%. Thus each joint is the intersection of the walls that contain the
joint. These walls containing j define various scattering diagrams © = (v;, f.) that collect the
data carried by .#; relevant around j. Each joint defines several, closely related scattering
diagrams, one for each choice of vertex v € o and w € & with w C o see [GS3, Def. 3.3,
Constr. 3.4]. Here o € & is the minimal cell containing j. A scattering diagram is a collection
of half-lines R>¢m in the two-dimensional quotient space Qjp = (AB,U / AW)R along with a
function attached to each half-line. The double-bar notation denotes the image of an element
or subset in Q;R, such as m, . The functions lie in the ring k[P,] defining the local model
of X at some z € (jNIntw) \ A. Any codimension one cell p € & containing j produces one
or two half-lines, the latter in the case j N Int p # (). Half-lines obtained from codimension
one-cells are called cuts, all other half-lines rays.

For an exponent mg with mg € A, \ Aj we wish to define the scattering of the monomial

z™mo

; which we think of traveling along the ray —Rx>¢mo into the origin of Q/p ~ R2. In
a scattering diagram monomials travel along trajectories. These are defined in exactly the

same way as rays [GS3, Def. 3.3], but will have an additive meaning.

Definition 3.1. A trajectory in in,R is a triple (t,my, a¢), where m¢ is a monomial on a
maximal cell 0 3 v with £y € @ and m € P, for all z € j\ A, t = £R>¢m, and a; € k. The
trajectory is called incoming if t = R>om, and outgoing if t = —R>¢m. By abuse of notation
we often suppress m; and a¢ when referring to trajectories.

Here is the generalization of the central existence and uniqueness result for scattering
diagrams [GS3, Prop. 3.9] incorporating trajectories. This result is crucial for the existence
proof of the superpotential in Lemmas 4.7 and 4.9.

Proposition 3.2. Let © be the scattering diagram defined by %} for j € Joints(-%%), g :
w — 05, v € w. Let (R>gmg, mo, 1) be an incoming trajectory and o O j a mazimal cell with
my €. Form € Qp \ {0} denote by

. pk k
Gﬁ : Rg,a’ — Rg,a

the ring isomorphism defined by ® for a path connecting —m to Ty, where o’ is a mazximal
cell with —m € o’.

Then there is a set T of outgoing trajectories such that

(3.1) 0 = 5 o (™)

te¥
holds in R’;}U. Moreover, ¥ is unique if aiz™ # 0 in R';J, for all t € T, and if my # my
whenever t # t'.

Proof. The proof is by induction on [ < k. We first discuss the case that oj is a maximal
cell, that is, codimoj = 0. Then © has only rays, no cuts. In particular, any 6 is an
automorphism of R’;J that is the identity modulo I7°). Thus for I = 0, (3.1) forces one
outgoing trajectory (—Rxomg,mo,1) if ordy,(mg) = 0 or none otherwise. For the induction
step assume (3.1) holds in ng;}. Then in ngﬂ the difference of the two sides of (3.1) is a sum
of monomials az™ with orde, (m) = [. Since [ > 0 and since there are no cuts (these represent
slabs containing j), it holds 6m(az™) = az™. Thus after adding appropriate trajectories
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FIGURE 3.1. Scattering diagram with perturbed trajectories (cuts and rays
solid, perturbed trajectories dashed).

(—=R>pm, m,a) with ord,;(m) = [ to T, Equation (3.1) holds in ng’(,. This is the unique
minimal choice of €. This finishes the proof in the case codimoj = 0.

Under the presence of cuts we have several rings R’;’U, for various maximal cells o’ D j.
This possibly brings in denominators that are powers of f,, for cells p D j of codimension
one. In this case we show existence by a perturbation argument. To this end consider first
the simplest scattering diagram in codimension one consisting of only two cuts ¢+ = (%, f,)
dividing Q into two halfplanes 7+ and with the same attached function. The signs are chosen
in such a way that myp € o_. Let 0 : R’;,U_ — R;U . be the isomorphism defined by a path
from o_ to o4 and let n € Aj‘ C A}, be the primitive integral vector that is positive on o_.
Then (mg,n) > 0 and

0(z™°) = fl%om - 2Mo,

Expanding yields the finite sum

(3.2) 0=") = S ape™ = 0( 3 ame—l(zm)) = 9( 3 eﬁ(amzm)),
(m,n)>0 (m,n)>0 (m,n)>0

for some a,, € k. Note that §71(2™) = 6=(2™) by the definition of f5. Now (3.2) equals 6

applied to (3.1) for the set of trajectories

T = {(-Rx0m,m, am) | (m,n) >0, a,,2"™ # 0}.

Hence existence is clear in this case.

In the general case we work with perturbed trajectories as suggested by Figure 3.1. More
precisely, a perturbed trajectory is a trajectory with the origin shifted. There is one un-
bounded perturbed incoming trajectory, a translation of (—Rx>omg, mo, 1), and a number of
perturbed outgoing trajectories, each the result of scattering of other trajectories with rays or
cuts. At each intersection point of a trajectory with a ray or cut, the incoming and outgoing
trajectories at this point fulfill an equation analogous to (3.1). Similar to [GS3, Constr. 4.5]
with our additive trajectories replacing the multiplicative s-rays®, there is then an asymp-
totic scattering diagram with trajectories obtained by taking the limit A — 0 of rescaling

8For technical reasons s-rays were not asked to be piecewise affine. In the present situation we insist in

piecewise affine objects.
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the whole diagram by A € Rsp. Any choice of perturbed incoming trajectory determines
a unique minimal scattering diagram with perturbed trajectories. Moreover, for a generic
choice of perturbed incoming trajectory the intersection points of trajectories with rays or
cuts are pairwise disjoint, and they are in particular different from the origin. Hence the
perturbed diagram can be constructed uniquely by induction on [ < k. Taking the associated
asymptotic scattering diagram with trajectories now establishes the existence in the general
case.

Next we show uniqueness for codimoj > 0. For codim oj = 2 any monomial 2™ in k[A,,]
fulfills ordy,(m) = 0, and all 6 extend to k(A,,)-algebra automorphisms of ngig Ok [Ao,]
k(Ay,). Hence we can deduce uniqueness by induction on / < k as in codimension 0 by
taking the factors a of trajectories to be polynomials with coefficients in k(A,;). Thus we
combine all trajectories t with the same m and the same ord(,-j (my). Tt is clear that such
generalized trajectories can be split uniquely into proper trajectories with all m distinct,
showing uniqueness in this case.

Finally, for uniqueness in codimension one we can not argue just with ord,, because there
are monomials 2™ with ord,, (m) = 0 but m # 0. Instead we look closer at the effect of adding
trajectories. By induction it suffices to study the insertion of trajectories (—R>qm, m, a) with
ordy, (m) = I for each m and such that (3.1) continues to hold. By working with a perturbed
scattering diagram as in Figure 4.1 of [GS3] and the asociated asymptotic scattering diagram
as in [GS3, §4.3], it suffices to consider the case of only two cuts as already considered above.
In this case we have

l l
0= ZHﬁ(amzm) = Z Z O=(amz") = Z fp_,f) Z amz".
m i=0 (m,n)=i =0 (m,n)=i

Since all monomials in f,, have vanishing ord,, and only monomials 2™ with the same value

of (m,n) can cancel, this equation implies

o0 E amz™ =0

(m,n)=1i
holds for each i. Multiplying by f;'w thus shows E<m’n>:i amz™ = 0 in Réva, and hence
am = 0 for all m. This proves uniqueness also in codimension one. O

4. THE SUPERPOTENTIAL VIA BROKEN LINES

The easiest way to define the superpotential in full generality is by the method of broken
lines. Broken lines have been introduced by Mark Gross for dim B = 2 in his work on mirror
symmetry for P? [Gr2]. We assume we are given a locally finite scattering diagram .7}, for
the non-compact intersection complex (B, Z, ) of a polarized LG-model that is consistent
to order k, as given by Assumption 1.1. The notion of broken lines is based on the transport
of monomials by changing chambers of .%%. Recall from [GS3, Def. 2.22] that a chamber is
the closure of a connected component of B\ |.7%].

Definition 4.1. Let u,u’ be neighboring chambers of %, that is, dim(uNu’) =n — 1. Let
az™ be a monomial defined at all points of uNu’ and assume that m points from 1’ to u. Let
T:= 0oy Noy and

0:RF 5 RE

idr,ou idr,o,,
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be the gluing isomorphism changing chambers. Then if
(4.1) O(az™) = Zaizmi
i

we call any summand a;2™ with ord, ,(m;) < k a result of transport of az™ from u to w.

Note that since the change of chamber isomorphisms commute with changing strata, the
monomials ;2™ in Definition 4.1 are defined at all points of uNu’.

Definition 4.2. (Cf. [Gr2, Def. 4.9]) A broken line for .7} is a proper continuous maps
B :(—00,0] = B

with image disjoint from any joint of .#%, along with a sequence —co =ty <t < ... <t,_1 <
t, = 0 for some r > 0 with 8(t;) € | %%/, and for ¢ = 1,...,r monomials a;z™ defined at all
points of S([ti—1,t;]) (for i = 1, S((—o0,t1])), subject to the following conditions.
(1) Bl(t;_.t,) is a non-constant affine map with image disjoint from |-#%|, hence contained
in the interior of a unique chamber u; of %, and f'(t) = —m; for all t € (t;—1,t;).
Moreover, if t,, = t,_1 then u, # u,_1.
(2) a1 =1 and? there exists a (necessarily unbounded) w € 21 with 72, € A,, primitive
and ord,,(m;) = 0.
(3) For each ¢ = 1,...,r — 1 the monomial a;112z™+! is a result of transport of a;z™

from u; to u; 41 (Definition 4.1).

The type of 3 is the tuple of all u; and m;. By abuse of notation we suppress the data t;, a;, m;
when talking about broken lines, but introduce the notation

ag:=ap, mMg:=m,.
For p € B the set of broken lines § with 3(0) = p is denoted B(p).

Remark 4.3. 1) If (B, 2?) is asymptotically cylindrical (Definition 2.1) then in Definition 4.2
the existence of a one-cell w € & with m; € A, in (2) follows from (1).

2) A broken line g is determined uniquely by specifying its endpoint $(0) and its type. In
fact, the coefficients a; are determine inductively from a; = 1 by Equation (4.1).

According to Remark 4.3,(2) the map 8 — ((0) identifies the space of broken lines of a
fixed type with a subset of u,. This subset is the interior of a polyhedron:

Proposition 4.4. For each type (u;,m;) of broken lines there is an integral, closed, convex

polyhedron =, of dimension n if non-empty, and an affine immersion
d: = —u,,
so that <I>(Int E) is the set of endpoints 5(0) of broken lines B of the given type.

Proof. This is an exercise in polyhedral geometry left to the reader. For the statement on

dimensions it is important that broken lines are disjoint from joints. U

9The normalization condition a; = 1 has to be modified if there are parallel unbounded edges not contained

in one cell and the gluing data are not trivial, see [GHS, §5.2].
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Remark 4.5. A point p € ®(9=) still has a meaning as an endpoint of a piecewise affine map
B : (—00,0] — B together with data t; and a;2™, defining a degenerate broken line. For
not to be a broken line, im(3) has to intersect a joint.

Indeed, if § violates Definition 4.2,(1) then t,_; = t; or there exists t € (t;_1,t;) with
B(t) € |#%|. In the first case denote by p; € . the wall with 5'(t;) € p; for all 5’ € ®(Int E).
Then B(t;—1) = B(t;) lies in p;—1 N p;, hence in a joint. In the second case convexity of the
chambers implies that S([t;—1,t]) C Ou or B([t,t;]) C Ou. Thus 8 maps a whole open interval
to |-#%|. The break point ¢;_1 or t; contained in this interval again intersects two walls, hence
is contained in a joint. The other conditions in the definition of broken lines are closed.

The set of endpoints 3(0) of degenerate broken lines of a given type is the (n — 1)-
dimensional polyhedral subset ®(0=) C u,. The set of degenerate broken lines not transverse
to some joint of . is polyhedral of smaller dimension.

Any finite structure . involves only finitely many slabs and walls, and each polynomial
coming with each slab or wall carries only finitely many monomials. Hence broken lines for
|-7%| exist only for finitely many types. The following definition is therefore meaningful.

Definition 4.6. A point p € B is called general (for the given structure .#%) if it is not
contained in ®(J=), for any ® as in Proposition 4.4.

Recall from [GS3, §2.6] that .#; defines a k-th order deformation of X, by gluing the sheaf
of rings defined by R]g“’gu, with ¢ : w — 7 and u a chamber of .}, with wNu # 0, 7 C o,,. Given
a general p € u we can now define the superpotential up to order k locally as an element of

RF by

9,0u

(4.2) Wrp) = > agz™.

The existence of a canonical extension W* of W to X}, follows once we check that (i) W, (p)
is independent of the choice of a general p € u and (ii) the W;u(p) are compatible with
changing strata or chambers [GS3, Constr. 2.24]. This is the content of the following two
lemmas.

Lemma 4.7. Let u be a chamber of 7} and g: w — 7 withwNu# 0, 7 C oy. Then WE,(p)
is independent of the choice of p € u.

Proof. By Proposition 4.4 the set A C u of non-general points is a finite union of nowhere
dense polyhedra. Moreover, since all ® in Proposition 4.4 are local affine isomorphisms, for
each path 7 : [0,1] — u\ A and broken line Sy with 8y(0) = v(0) there exists a unique family
Bs of broken lines with endpoints 35(0) = y(s) and with the same type as [p. Hence Wg’fu(p)
is locally constant on u '\ A.

To pass between the different connected components of u\ A, consider the set A" C A
of endpoints of degenerate broken lines that are not transverse to the joints of .#;. More
precisely, for each type of broken line, the set of endpoints of broken lines intersecting a given
joint defines a polyhedral subset of u of dimension at most n — 1. Then A’ is the union of
the (n — 2)-cells of these polyhedral subsets, for any joint and any type of broken line. Since
dim A’ = n — 2, we conclude that u\ A’ is path-connected. It thus suffices to study the
following situation. Let v : [—1,1] — Intu\ A’ be an affine map with v(0) the only point of
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intersection with A. Let 3, : (—00,0] — B be the underlying map of a degenerate broken
line with endpoint v(0). The point is that 3, may arise as a limit of several different types
of broken lines with endpoints 7(s) for s # 0. The lemma follows once we show that the
contributions to W;u ('y(s)) of such broken lines for s < 0 and for s > 0 coincide. Note we
do not claim a bijection between the sets of broken lines for s < 0 and for s > 0, which in
fact need not be true.

For later use let V' C Intu be a local affine hyperplane intersecting 3, only in 5,(0) = ~(0)
and containing im(vy). Note that V is also transverse to A. Thus by the unique continuation
statement at the beginning of the proof, each broken line 8 with endpoint 3(0) € V fits into
a unique family of broken lines of the same type and with endpoint any other point of the
connected component of 3(0) in V' \ A.

In particular, since 7~ (A) = {0} any broken line 3 with endpoint v(sq) for so # 0 extends
uniquely to a family of broken lines (s for s € [-1,0) or s € (0,1]. Thus § has a unique limit
lim 8 := lims_,0 B, a possibly degenerate broken line. For s # 0 denote by 2B, the space of
broken lines 3 with endpoint v(s) and such that the map underlying lim 3 equals B3,. Since
Bo is the underlying map of a degenerate broken line, B, # () for some sufficiently small s,
hence also for all s of the same sign, by unique continuation. Possibly by changing signs in
the domain of v we may thus assume B, # ) for s < 0. We have to show

(4.3) Z agz™? = Z agz™”?.

BeEB_1 BEB1

Denote by T the set of types of broken lines in B,. Obviously, T only depends on the sign
of s.

The central observation is the following. Let J C B be the union of the joints of 7%
intersected by im B,. Let x := By(t) for t < 0 be a point far off to —oo. Thus z lies in
one of the unbounded cells of & and B, is asymptotically parallel to an unbounded edge
and does not cross a wall for ' < t. Let U C B be a local affine hyperplane intersecting 3y
transversally at x. By transversality with J the images of the degenerate broken lines of types
contained in any By lie in a local affine hyperplane H C U (dim H = n — 2). Note that each
joint that 3, meets defines such a local hyperplane H C U, and if (3, meets several joints,
the hyperplanes agree locally near x since y(0) € A’. Moreover, the images of degenerate
broken lines arising as the limit of broken lines of type in ¥_; U ¥ separate a contractible
neighbourhood of im 3, in B into two connected components. It follows that broken lines of
type in T for s < 0 intersect U only on one side of H, and for s > 0 only on the other.

Now let [5’ € B, be one family of broken lines, say for s < 0. Denote by t the type of 6
Thus 3 s is the unique broken line S of type t with endpoint 5(0) = v(s). Since lim B < = Bo,
the broken line BS does not pass a wall before hitting U, thus is a straight line. Denote by
xs € U\ H the point of intersection of B ¢ with U. The x4 vary affine linearly with s with
lims_,0 x5 = x, hence define an affine line segment in U. This line segment can be viewed as
a lift of v([—1,0]) C u to a line segment in U via broken lines of type t and their limits.

If 3¢ is another family of broken lines in B, for s < 0, of type t', then by the same argument
Bs hits U in another point z/, in the same connected component of U \ H. Moreover, there
is a unique such 3, with endpoint £.(0) € V, where V C Intu is the local affine hyperplane
chosen above. In particular, for each s there is a unique broken line S, of type t' passing
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through x,. In other words, each broken line 5; € B, s < 0, deforms uniquely to a broken
line B, with endpoint on V' and passing through x.

The set of . obtained in this way can alternatively be constructed as follows. For s < 0
all broken lines in B, have the same first chamber u; and monomial z™!. Now start with
the straight broken line ending at x5 and of type (u1, m1). This broken line can be continued
until it hits a wall or slab, where it splits into several broken lines, one for each summand in
(4.1). Iterating this process leads to the infinite set of all broken lines with asymptotic given
by my and running through zs. The 3. are the subset of the considered types, that is, with
the unique deformation for s — 0 having underlying map 3, and endpoint on V.

From this point of view it is clear that at each joint j intersected by im 3, the 8. compute
a scattering of monomials as considered in §3. In fact, the union of the . with the same
incoming part az™ near j induce a scattering diagram with perturbed trajectories as consid-
ered in the proof of Proposition 3.2. Thus the corresponding sum of monomials leaving a
neighborhood of j can be read off from the right-hand side of (3.1) in this proposition, applied
to the incoming trajectory (R>om,m,a).

We conclude that ZBG‘BS agz™? for s < 0 computes the transport of 2! along Bo- This
transport is defined by applying (3.1) instead of (4.1) at each joint intersected transversally
by By- The same argument holds for s > 0, thus proving (4.3). O

Remark 4.8. The proof of Lemma 4.7 really shows that the scattering of monomials introduced
in §3 allows to replace the condition that broken lines have image disjoint from joints by
transversality with joints. In the following we refer to these as generalized broken lines. The
set of degenerate broken lines with endpoint p is denoted B(p).

By Lemma 4.7 and Remark 4.8 we are now entitled to define

(4.4) Wy i=Wep) = Y agz™,

BEB(p)
for any choice of p € u\ A’, A’ the set of endpoints in u of degenerate broken lines not
transverse to all joints of .#%.

Lemma 4.9. The ng,u are compatible with changing strata and changing chambers.

Proof. Compatibility with changing strata follows trivially from the definitions. As for chang-
ing from a chamber u to a neighboring chamber v’ (dimuNu’ = n—1) the argument is similar
to the proof Lemma 4.7. Let g : w — 7 be such that w NunNu # 0, 7 C o, N oy and

. pk k
0: Ry, — Ry

be the corresponding change of chamber isomorphism [GS3, §2.4]. We have to show 6 (W;u) =
Who.

Let A C uU U be the set of endpoints of degenerate broken lines. Consider a path
v : [=1,1] = uNw’ connecting general points y(—1) € u, v(1) € v’ and with v~ (unw’) = {0}.
We may also assume that y(s) € A at most for s = 0, and that any degenerate broken line
with endpoint v(0) is transverse to joints. For s # 0 we then consider the space B, of broken
lines s with endpoint v(s) and with deformation for s — 0 a fixed underlying map of a
degenerate broken line 3. By transversality of 3, with the set of joints the limits of families
Bs, s — 0, group into generalized broken lines (Remark 4.8). Each such generalized broken
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line 8 has as endpoint pg := 7(0), but viewed as an element either of u or of u’. We call this
chamber the reference chamber of 8. Generalized broken lines with reference chambers u and
1’ contribute to ng,u and ng,u/’ respectively. Moreover, mg is either tangent to uNu’ or points
properly into u or into v’. We claim that 6 maps each of the three types of contributions
to Wg]fu to the three types of contributions to W;u,. Then H(Wg]fu) = ng,u’ and the proof is
finished.

Let us first consider the set of degenerate broken lines 8 with mg tangent to u N’
Then changing the reference chamber from u to 1’ defines a bijection between the considered
generalized broken lines with endpoint py and reference cell u and those with reference cell
1. Note that in this case 3 has to intersect a joint, so this statement already involves the
arguments from the proof of Lemma 4.7. Because 6(agz™#) = agz™# this proves the claim
in this case.

Next assume mg points from uNu’ into the interior of u. This means that 8 approaches pg
from the interior of u. If we want to change the reference chamber to 1’ we need to introduce
one more point t,4y1 := t, = 0 and chamber u,; := /. According to Equation (4.1)
in Definition 4.1 the possible monomials a,1z™+!1 are given by the summands in 0(az") =
> arp1,2" i Thus for each summand we obtain one generalized broken line with reference
cell w/. Clearly, this is exactly what is needed for compatibility with 6 of the respective
contributions to the local superpotentials.

By symmetry the same argument works for generalized broken lines 5 with reference cell
v and mg pointing from u N v’ into the interior of v/, and 6! replacing 6. Inverting ¢
means that a number of generalized broken lines with reference cell w,,1 = u and two points
tr+1 = t, (and necessarily 1, = '), one for each summand of §~!(agz™#), combine into a
single generalized broken line with reference cell u, = v'. This process is again compatible
with applying 6 to the respective contributions to the local superpotentials. This finishes the
proof of the claim, which was left to complete the proof of the lemma. O

Summarizing the construction and Lemmas 4.7 and 4.9, we now state the unique existence

of the superpotential W on canonical toric degenerations:

Theorem 4.10. Let 7 : X — Spfk[t] be the canonical toric degeneration given by the
compatible system of wall structures in Assumption 1.1. Then there exists a unique formal
function W : X — Al that modulo t**' agrees with the expressions (4.2) and (4.4) at each
point p. O

Having defined the superpotential W as a regular function on the formal scheme X, a
natural question concerns algebraizablity of W assuming X — Spf k[¢] is algebraizable. This
generally appears to be a difficult question, but sometimes more can be said by methods
going beyond the scope of this paper, as detailed in the following remark.

Remark 4.11. Given a toric degeneration, we have defined the superpotential W* locally at
p € B in the interior of a chamber u as an expression in the Laurent polynomial ring Ag[A,],
Ay = Kk[t]/(t*1), with 0 = 0, the maximal cell containing u. Increasing & may make u
smaller, but if we choose p sufficiently transcendental we can achieve that p never hits a wall
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of any order. Then the all order potential W := @ W* still has an expression in the ring
k[AU][t] = @Ak [AO']'
k

To understand the dependence on p note that by the construction of X as a colimit, a point
p € B contained in the interior of a chamber for each k defines an open embedding of the
formal algebraic torus

(4'5) Gm(AU) = Spfk[Aa] [t]

into X. Here o0 € & is the maximal cell containing p. The expression W(p) = @Wk (p)
computes the pull-back of W to this open formal subscheme. But the embedding G,,,(Ay) — X
depends on p. Expressions for W (p) for different choices of p inside the same maximal cell o
are related by a (typically infinite) series of wall crossing automorphisms. If p moves to a p’
in a neighboring maximal cell then one needs to use the codimension one relations XY = f,t°
from the proof of [GS3, Lem. 2.34] to see that a similar wall crossing transformation involving
quotients by slab functions relate W (p) and W (p').

In any case, for each general p we obtain an expression for W in k[A;][t] rather than in
the algebraic subring k[t][As].

However, as we will see in the examples in the last three section, sometimes X is algebraiz-
able and there exists a point p € B such that only finitely many broken lines have endpoint
p. Then W (p) lies in the subring of finite type

k[As][t] C k[t][As] C k[AS][t],

hence is even a Laurent polynomial with algebraic coefficients in ¢. It is then tempting to
believe that this algebraic expression describes a lift of W to an algebraization of X. But
this may not be the case: Formal local representability by an algebraic expression neither
means that W lifts to an algebraization, nor that such a lift could locally be represented with
polynomial coefficients in ¢ rather than with coefficients that are formal power series. In such
a situation we therefore say that W is ostensibly algebraic.

To conclude algebraizability of W, one rather has to write W as a finite sum of quotients
of sections of the polarizing line bundle Ox(1). This can indeed sometimes be achieved by
using generalized theta functions, defined analogously to W via sums of broken lines, see
[GS5, GHS]. This method, which is beyond the scope of this paper, appears to work for
example in all cases derived from reflexive polytopes via Construction 7.2.

5. FIBERS OF THE SUPERPOTENTIAL OVER 0, 1,00, AND THE LG MIRROR MAP

Given a finite scattering diagram % for a non-compact (B, &, ¢) consistent to order k as
in Assumption 1.1, we have constructed in the last section the superpotential

(5.1) W:x — AL

as a morphism of formal schemes.

In this section we discuss some general features of W. Denote by A C |X| = X the union
of complete irreducible components of X, that is, the union of the irreducible components
X, C Xy defined by the bounded maximal cells o € .
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We start with W ~1(0), viewed as a Cartier divisor on the ringed space X. To compute the
order of W along X, C X we define the following notion.

Definition 5.1. For a maximal cell o € &2, depth ¢ is the minimum of ord, mg for all broken
lines 8 with endpoint in Into.

Proposition 5.2. The multiplicity of the Cartier divisor W~1(0) C X on the irreducible
component X, C Xg given by a maximal cell 0 € & equals deptho.

Proof. This is obvious from the definition of Wy in (4.2). O

If (B, &) is asymptotically cylindrical, properness of W|x, (Proposition 2.3) implies that
if o0 € & is a maximal cell with W~1(0) N X, # () then o € & is bounded. In other words,
W=1(0) N Xy C A. Otherwise not much can generally be said about W~1(0).

We next turn to the behavior of W over co. This discussion makes only sense in the case
that X — Spfk[t] is compactifiable, that is, if it extends to a proper family X — Spfk[t].
But even in this case, W may not be a formal meromorphic function [SP, Tag 01X1] near
00. In other words, W may have essential singularities near a compactifiying formal closed
subscheme. We therefore assume (B, &) compactifiable and W to extend to a meromorphic
function on the corresponding partial completion X of X. A sufficient condition is if W itself
is algebraizable, as discussed in Remark 4.11.

Another problem is that the meromorphic lift may have a locus of indeterminacy containing
components of the added divisor at oo on the central fiber. Here is a purely toric example.

Example 5.3. Let (B, &) be given by the complete fan in R? with rays generated by (1,0),
(0,1), (0,—1) and (—1,k) for some k£ > 2, and ¢ the convex PL function with value 1 at
all the ray generators. The discriminant locus is empty. With trivial gluing data and trivial
wall structure we obtain the completion at ¢t = 0 of a toric threefold X over Al = Speck]t].
Letting x,y be the monomial functions defined by (1,0) and (0, 1), the superpotential equals

W=x+y+ty ' +tzlyF

on the big torus. Using ¢ for the truncation, we obtain a compactification X of X by
intersecting B with the 4-gon B with vertices (k,0), (0,k), (0, —k) and (—1, k). Now express
W in the neighborhood

Speck]u, ’Uil,t] cX, y=utlz=uly,

of the divisor D, C dX defined by the face p C B with vertices (k,0), (0, k):

I € B e e T T
v = .

W=vu '+ u™ 4 tu+ tu —

uk

This rational function on X has locus of indeterminacy u = t = 0.

In the asymptotically cylindrical case a meromorphic extension of W has empty locus of
indeterminacy. We therefore now restrict ourselves to the following situation. Let (B, )
be compactifiable and asymptotically cylindrical and let (B,, Z2,) be an associated sequence
of truncations obtained by Lemma 1.3. Denote by X — Spfk[t] the corresponding formal
toric degeneration constructed in Proposition 1.5 from the associated sequence (B, Z,) of
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truncations from Lemma 1.3, and Z C X the compactifying reduced divisor. Assume further
that W lifts to a meromorphic function ¥V on an algebraization X of X.

For a sequence F' = (F,) of maximal flat affine subspaces of B, denote by Zr C Z the
irreducible component defined in Remark 1.6. For such an F' define a multiplicity ur € N\{0}
as follows. Let p C F be an (n — 1)-cell, 0 € & the unique maximal cell containing p and
¢ € A, the primitive generator of A, for an unbounded 1-cell w pointing in the unbounded
direction. Then

(5.2) pr=[Ag: Ay +Z- €]
Note that pr depends not on the choice of p C F.

Proposition 5.4. Let W be a meromorphic lift of the superpotential W to an algebraization
X of the partial compactification X of X from Proposition 1.5 of the compactifiable, asymp-
totically cylindrical (B, 2,¢). Then W defines a morphism of schemes W : X — P!, and it
holds

Wil(oo) = Z“F - Zp.
F

The sum is over all sequences of parallel maximal flat affine subspaces of OB, and pp is
defined in (5.2).

Proof. Since W defines a proper map to A! the locus of indeterminacy of W is empty. Thus
W defines a morphism to P'. Let 0 € & be an unbounded maximal cell and X, C Xj
the corresponding irreducible component of the central fiber. Then W|x, = Wlx, # 0, so
the multiplicity of a prime divisor Zr C W~1(c0) can be computed after restriction to the
central fiber Xy, that is, from W?, and X, is a component of the reduced divisor Z N Xj.
Moreover, in the coordinate ring k[A,] of the big torus of X, we have W° = 2¢. Thus the
coefficient of Zr N Xo in (W?)~1(0) equals

ordp, wo = ordp, 28 = —[As s Ap + Ayl

by a standard fact in toric geometry. O

The most interesting result in this section concerns a tropical description of the special
fiber W~1(1) in the asymptotically cylindrical case. We will see that it is described by the
asymptotic behaviors of (B, 2, ¢) and .#;. Moreover, W~1(1) is canonically the mirror
toric degeneration of the anticanonical divisor © — T from Theorem 2.5, up to a tropically

interesting mirror map reparametrizing the codomain A of W.

Construction 5.5. (Asymptotic tropical manifold and asymptotic scattering diagram.) As-
sume that (B, <) is asymptotically cylindrical. Denote by K C B the compact subset
defined by the union of bounded cells of &?. Then there exists a non-zero integral vector field
¢ € T'(B\ K, i) that is parallel to all unbounded 1-cells of &2. We fix £ uniquely by requiring
it to be primitive (indivisible) and pointing in the unbounded direction. The integral curves
of £ generate an equivalence relation ~ on B\ K. Define the asymptotic tropical manifold
By associated to B as the quotient (B \ K)/~.
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An explicit description of By runs as follows. Let o € & be an unbounded cell. Let & be

the convex hull of the vertices. Since B is asymptotically cylindrical it holds
=0+ Rzo . 5,

as an equation of subsets of Ay r. Then define o4, as the image of o or & under the canonical
quotient

(5.3) Aor = Aor/R>0 - €.

Clearly, this construction is compatible with the inclusion of faces. Taking the colimit of
the 0 defines B, along with a polyhedral decomposition &,,. The charts for the affine
structure at vertices of By, are induced by the charts of B along unbounded 1-cells of .
Note that unbounded 1-cells of & are disjoint from A. It is also clear that the strictly convex
PL function ¢ on (B, Z?) induces a strictly convex PL function ¢so on (Beo, Poo). We have
thus constructed a polarized tropical manifold (Bs, Peo, Poo) Of dimension dim B — 1, the
asymptotic tropical manifold of the asymptotically cylindrical (B, 2, ¢).

A monomial at a point z on an unbounded component of 7\ A for 7 € & induces a
monomial at the image o, of the corresponding cell 7. = 7/R>0€. Since .#} is finite there
exist a compact subset K’ C B such that only unbounded slabs or walls intersect B\ K’. We
call these slabs or walls asymptotic. In the present asymptotically cylindrical case £ is then
tangent to the suppport of any such asymptotic slab or wall. Thus for any asymptotic slab
b or wall p in . the image under the quotient map B\ K’ — B defines the support of a
slab or wall in (B, P0, o). The associated slab function or exponent is defined via the
projection of monomials (5.3). Define by #° the structure on By, obtained in this way. O

To further relate the wall structures .3 on B and .¥2° on By, only the rings ngcﬂ are
relevant with g : w — 7 an inclusion of unbounded cells. Denote by goo : Woo — Too the
induced inclusion of cells in &,. Taking a splitting of the inclusion Z - £ C A, provides a
(non-canonical) isomorphism

(5.4) (R’;’O)ZE ~ RF [w,w™!],

Joo ;000

where by abuse of notation £ denotes the unique monomial m of order 0 with ™ = £ € A,.
The isomorphism identifies 2¢ with w.

Mapping w to 1 now induces the canonical isomorphism of quotients

9,0 Joo,000 "

(5.5) (RS ,).e/(z*—1) ~RE

Note this isomorphism is compatible with the map of monomials discussed in Construction 5.5
and does not depend on choices. In particular, there is a well-defined formal function w on
X\ A locally given by w in (5.4). From (5.4) it is also obvious that consistency of .7 implies
consistency of .7>°.

Proposition 5.6. Let (7 : X — Spfk[t], W) be the Landau-Ginzburg model with an asymptot-
ically cylindrical intersection complex (B, 2). Then the composition w™ (1) — X = Spfk[t]
of the inclusion followed by m is canonically isomorphic to the toric degeneration defined by
the compatible system of wall structures /2° on (Boo, Pocs Poo)-
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Proof. 1t is enough to check the statement for a fixed finite order k. The key observation is
that the asymptotic vector field £ is tangent to all unbounded walls on B. Now for fixed &
the complement U C B of the compact subset K’ C B in Construction 5.5 only intersects
unbounded walls. Moreover, gluing the rings associated to chambers in U is enough to
describe X, \ A. The statement now readily follows from the construction of .#}>° and
(5.5). O

Remark 5.7. Monomials in unbounded walls or slabs proportional to z¢ map to elements of
the base ring k[t] under the homomorphism 5.5. Such constant terms do not appear in the
wall structures constructed either by the algorithm in [GS3] or in the canonical wall structure
of [GS7]. Thus . is a more general wall structure than previously constructed that also
involves undirectional walls, that is, walls p with f, € k[¢]*. This fact has been overlooked
in earlier versions of this paper and affects the mirror statements for w=1(1).

The corrected statement is given in Proposition 5.9 below.

To understand the influence of undirectional walls, we observe a close relationship to gluing
data.

Remark 5.8. Consider a wall structure . on an affine manifold with singularities B with
all walls and slabs undirectional. To emphasize the constant nature of the slab and wall
functions, we now write ¢y, ¢y € k[t]™ rather than f;, fy. Let j be a zero-codimensional joint,
that is, intersecting the interior of a maximal cell o. Then the automorphism 6, of k[t][A,]
associated to a wall p containing j equals

(5.6) Op : 2™ — (cp @ np,m) - 2™,

with n, € Ay = Hom(A,,Z) the primitive normal vector spanning Aﬁ-, with sign depending
on the direction of wall crosssing. Now all such automorphisms 6, with j C p commute.
Moreover, their product is trivial iff

(5.7) [[eo®n=120ckt]* zA,.

p
Note that in the tensor product the first factor is written multiplicatively, the second addi-
tively, so 1 ® 0 is the unit in this abelian group.

We observe that the consistency condition (5.7) for . at j is the cocycle condition at j for
the tropical 1-cocycle on B supported on || that assigns ¢, ® ny, ¢y ® ny to the elements of
.. This motivates to view a consistent, undirectional wall structure as a tropical 1-cocycle,
with the cocycle condition reflected by consistency in all codimensions. Let us denote the
group of tropical 1-cocyles by Cﬁgg (B).

Next note that the ring homomorphisms defined by undirectional walls have the same form
as in applying open gluing data, see e.g. [GHS, (5.2)]. In the simple singularity case, the group
of equivalence classes of lifted open gluing data obeying a similar local consistency condition
is given by the cohomology group H'(B, t,A @ k*) [GS1, Prop.4.25, Def. 5.1, Lem. 5.5]. Now
there is an obvious map

Clrop (B) — Hy—1(Bo, A ® k[1]),
which by consistency factors over H,_1(B, t,A @ k[t]*). Moreover, by [Ru, Thm. 1] we have
an isomorphism

H, 1(B, A @k[t]*) ~ H'(B, . A @ k[t]°).
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Thus we obtain a homomorphism

Ccn-1(B) — HY(B, 1,A @ k[t]*.

trop

This map associates to the tropical 1-cocycle given by the undirectional wall structure .
certain open gluing data that we denote s .

Now one can run the algorithm in [GS3] in two ways. First as usual with a cocycle
representative of the gluing data s, leading to a wall structure .¥’. Second, starting with
an initial wall structure that takes into account the reduction modulo ¢ of ./, interpreted
as gluing data; then run the algorithm with the undirectional walls inserted at each order
to obtain a wall structure .#”. Consistency of the undirectional wall structure .# should be
a necessary and sufficient condition for this to work. We conjecture that the two families
X', X" — T obtained from .’/,.#"” are isomorphic.

One can compare X', X” by choosing a general point in each cell as a reference point and
relate the diagrams of schemes in [GS3, §2.6] by sequences of wall crossing automorphisms.
To prove that this procedure induces an isomorphism of diagrams would require to carefully
analyze the scattering algorithm on a neighborhood of the interior of each cell of &, including
the difference of the presence of undirectional walls versus the associated gluing data.

For the application to our asymptotic wall structure .75, on By, one takes for the walls of
the undirectional wall structure all undirectional walls of the wall structure on the asymptot-
ically cylindrical B. Applying [GS3, Prop. 3.10,(2)] one can prove consistency at codimension
0 joints order by order. For the slabs one observes that undirectional monomials in an un-
bounded slab b are never of order 0. Hence as in [GS3, Thm. 5.2] we can factor

fo=Ffe- 1‘1‘
with fo € k[t][z*¢]* and f, having a product decomposition with no factors in k[t][z*¢].
We use f[|]| to define the slab of the undirectional wall structure on By, induced by b. A very

careful analysis of the algorithm, which we have not carried out, should now show that this

undirectional wall structure is consistent. O

We finally relate the mirror of ® — T to the LG-fiber w~'(1). This makes precise and
proves a conjecture of Auroux in our setup [Aul, Conj. 7.4].

Proposition 5.9. If ¥ — Spfk[t] is mirror dual to (X — T,9) then w (1) — Spfk[t]
is the mirror family to ® — T twisted by an undirectional wall structure as discussed in
Remarks 5.7 and 5.8.1°

Most interestingly, the function w in Proposition 5.6 and (5.4) is closely related to the
superpotential W. To explain this relation, note that for any fixed finite order k£ we may
restrict to the complement U C B of a compact set such that each broken line 8 ending in
U is parallel to the asymptotic vector field £. In other words, there exists ¢ € Z \ {0} with
mg = c¢-&. There are two types of such broken lines, depending on the sign of c. If ¢ > 0
then f is (part of) a broken line not intersecting any wall, and hence ¢ = 1 and the monomial
carried by 3 equals 2¢. Otherwise 3 is a broken line that returned from entering the compact

101 the interpretation of wall structures via punctured invariants [GS7], undirectional walls count punc-
tured Gromov-Witten invariants with one positive contact order with ©, hence relate to traditional log
Gromov-Witten invariants of (¥,9). Further details will appear in [GRS].
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set due to some non-trivial interaction with walls outside of U. We call these broken lines 3
and the corresponding monomial mg at the root vertex outgoing. In this case we can write
agz™P = agtlz_dg for some [ > 0 and d = —c > 0. Summing over all such broken lines with
general endpoint p € U leads to a polynomial with coefficients Ny ; € k:

k

(5.8) hi =Y Nggt'z=® e kft, 2.

=1 d>0

Lemma 5.10. The coefficients Nq; € k in (5.8) do not depend on the choices of U, p € U
ork >1.

Proof. Observe first that hy + w equals ng,u(p) from (4.2), for u any unbounded chamber
of .}, containing the chosen endpoint p € u of broken lines in (5.8), and ¢ : w — 7 any
inclusion of cells relevant to u, that is, with w Nu # @, 7 C o,. Since £ is tangent to all
walls intersecting U, this expression is unchanged under wall crossing automorphisms. The
statement now follows from the independence of Wg’fu(p) of the choice of p € u (Lemma 4.7)
and the compatibility of W;u with changing strata and chambers (Lemma 4.9).

The statement on the independence of k > [ follows since a broken line § interacting with
a term in a wall of order > £ has an outgoing monomial mg of order > k. O

We are now in position to define the map relating w and W as the automorphism @ of the
formal algebraic torus

G = G x Spfk[t] = Spf (k[u™"] & «k[t]) = Spf k[u™"][¢]
over k[t] defined by

(5.9) f(u) = u+ Z (ZNd’lu_d)fl =u (1 + Z <Z Ndylu_d_1>tl> .

1>0  d>0 1>0  d>0
Note that for each fixed [ there are only finitely many broken lines contributing to the
coefficient of # in (5.8). Hence ®%(u) € k[u*'][t] as required to define ®. Note also that ®
induces the identity on G,,, C G,,, x Spfk[t], the reduction modulo ¢.

Definition 5.11. We call the automorphism ® of G,, x Spfk[t] the Landau-Ginzburg (LG-)

MATrToT Map.
We emphasize that ® is not in general induced by an automorphism of the scheme

(Gm)Speck[t] = Spec k[t] [uil] :

For the following mirror map statement in the asymptotically cylindrical case we consider

~

both W|x\ 4 and w as maps to Gy, = Gy, x Spfk[t].
Theorem 5.12. In the situation of Proposition 5.6 it holds Wz 4 = ® o w.

Proof. The statement follows by observing that modulo 51,

(w' o &%) (u) = w + Z (Z Nde_d)tl

>0 d>0

equals Wg’fu = hy + w with hy as in (5.8), for all unbounded chambers u. O

Theorem 5.12 together with Proposition 5.9 yields the following.
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Corollary 5.13. Let X — Spfk[t] be mirror dual to (X — T,9). Then (®~1o W)~ (1) —
Spfk[t] is the mirror family of © — T twisted by the undirectional wall structure discussed
in Remarks 5.7 and 5.8. O

6. WALL STRUCTURES AND BROKEN LINES VIA TROPICAL DISKS
We now aim for an alternative construction of the potential W in terms of tropical disks.'?

6.1. Tropical disks. Our definition of tropical disks depends only on the integral affine
geometry of B and not on its polyhedral decomposition &. As usual let i : B\ A — B
denote the inclusion for A the singular locus of the integral affine structure, and let Ap
be the sheaf of integral tangent vectors. We restrict to the asymptotically cylindrical case
(Definition 2.1). Without reference to & we require that B is non-compact and for some
orientable compact subset K C B, I'(B \ K,i,A) has rank one. Then there exists a unique
primitive integral affine vector field £ on B \ K pointing away from K. We assume the

semiflow of £ is complete and call its integral curves the asymptotic rays.

Definition 6.1. Let I' be a tree with root vertex Vioot. Denote by F[H,F[O},I‘l[gllf the set of
edges, vertices, and leaf vertices (univalent vertices different from the root vertex), respec-
tively. We allow unbounded edges, that is, edges adjacent to only one vertex, defining a
subset T C T, Let w : T — N\ {0} be a weight function.

Let x € B\ A. A tropical disk bounded by x is a proper, locally injective, continuous map

h : (|F|7 {‘/I‘OOt}) — (B7 {ll})
with the following properties.

(1) hH(A) = Tk

(2) For every edge E € I'll the image h(E \ OE) is a locally closed integral affine sub-
manifold of B\ A of dimension one.

(3) IfV e ' there is a primitive integral vector m € A B,h(v) extending to a local vector
field tangent to h(E) and pointing away from h(V). Define the tangent vector of h
at V along E as my g := w(E) - m.

(4) For every V e Tl0 \FI[SLf the following balancing condition holds:

Z myp = 0.

{Ecrl|VeE}
(5) The image of an unbounded edge is an asymptotic ray.
Two disks h : |T'| = B, I/ : [I"| — B are identified if h = h' o ¢ for a homeomorphism
¢ : [T'| — || respecting the weights.
The Maslov index of h is defined as u(h) := 2 Z w(E). O
perly
Note that for a tropical disk h*(isAp) is a trivial local system. In particular, there is a

unique parallel transport of tangent vectors along h.

Hhe interpretation of wall structures and the superpotential in terms of tropical disks of Maslov indices
0 and 2 in this section has a more speculative and inconclusive nature than the rest of the paper. Recent
advances in our understanding of wall structures in the context of intrinsic mirror symmetry [GS7] makes it
now feasible to develop the picture given in this section in full generality. This section is therefore included

with only minor changes from the original version, but should be read with some caution.
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FIGURE 6.1. A tropical Maslov index zero disk bounding = belonging to a
moduli space of dimension 5. The dashed lines indicate a part of the discrim-

inant locus.

Example 6.2. Suppose dim B = 3 and A bounds an affine 2-simplex ¢ with T,0 contained
in the image of i,Ap , for all z € A. Such a situation occurs in the mirror toric degenerations
of local Calabi-Yau threefolds, for example in the mirror of Kp2 [GS4, Expl.5.2]. Then any
point z € o \ A bounds a family of tropical Maslov index zero disks of arbitrary dimension,

as illustrated in Figure 6.1.

So far, our definition of tropical disks only depends on |I'| and not on its underlying graph
I'. A distinguished choice of I' is by assuming that there are no divalent vertices. At an
interior vertex V e T'l0 (that is, neither the root vertex nor a leaf vertex) the rays R>o-mpg,y
of adjacent edges E define a fan ¥, v in ixAp 1) ®zR. Denote by E%,V the parallel transport
along h of ¥ 1y to Vieot. The type of h consists of the weighted graph (I',w) along with the
227‘/, vV el \FL%]. For x € B\ A and m € A, denote by M, (m) the moduli space
of tropical disks of Maslov index p and root tangent vector m. It comes with a natural
stratification by type: A stratum consists of disks of fixed type, and the boundary of a
stratum is reached when the image of an interior edge contracts to a vertex of higher valency.

From now on assume B is equipped with a compatible polyhedral structure &2 as defined
in [GS1, §1.3]. It is then natural to adapt I' to & by appending Definition 6.1 as follows:
(6) For any E € T there exists 7 € & with h(Int E) C Int(7), and if V € E is a divalent
vertex then h(V) C O7.
In other words, we insert divalent vertices precisely at those points of |I'| where h changes
cells of & locally. Note however that we still consider the stratification on M, (m) defined
with all divalent vertices removed.

Example 6.3. As it stands, the type does not define a good stratification of the moduli
space of tropical disks. For each vertex V' € I' mapping to a codimension one cell p € &
we also need to specify the connected component of p\ A containing h(V') (that is, specify a
reference vertex v € p). This is illustrated in Figure 6.2. Here the dotted lines in the right
picture correspond to generalized tropical disks, fulfilling all but (1) in Definition 6.1.

Tropical disks are closely related to broken lines as follows. We place ourselves in the

context of §4. In particular, we assume given a structure %% that is consistent to order k.
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FIGURE 6.2. Disks near A (left) and their moduli cell complex (right).

Lemma 6.4 (Disk completion). 12° As a map, any broken line is the restriction of a Maslov
index two disk h : |T'| — B to the smallest connected subset of |I'| containing the root vertex
and the (unique) unbounded leaf. The restriction of h to the closure of the complement of

this subset consists of Maslov index zero disks.

Proof. We continue to use the terminology of [GS3]. First we show that any projected
exponent m at a point p of a wall or slab in .% is the root tangent vector of a Maslov index
zero disk h rooted in h(Vieot) = p. This is true for .# since by simplicity the exponents of
a slab function f,, are root tangent vectors of Maslov index zero disks with only one edge.
Assume inductively this holds as well for .#, 0 < [ < k, and show the claim for walls in
141 \ 77 arising from scattering. We must show that the exponents of the outgoing rays are
generated by those of the incoming rays or cuts. But if there existed an additional exponent,
it would be preserved by any product with log automorphisms attached to the rays or cuts,
as up to higher orders the latter are multiplications by polynomials with non trivial constant
term. This contradicts consistency.

In particular, if p = 5(¢;) is a break point of a broken line  then ¢; can be turned into a
balanced trivalent vertex by attaching a Maslov index zero disk h with root tangent vector
m equal to the projected exponent taken from the unique wall or slab containing p. O

We call any tropical disk as in the lemma a disk completion of the broken line. The disk

completion is in general not unique due to the following reasons:

(1) First, Example 6.2 shows that tropical Maslov index zero disks may come in families
of arbitrarily high dimension.

(2) Even if the moduli space of tropical Maslov index zero disks is of expected finite
dimension, there may be joints with different incoming root tangent vectors.

(3) There may exist several Maslov index zero disks with the same root tangent vector,

for example a closed geodesic of different winding numbers.

We now take care of these issues.

6.2. Virtual tropical disks. Example 6.2 illustrates that for dim B > 3, a tropical disk
whose image is contained in a union of slabs leads to an unbounded dimension of the moduli
space of tropical Maslov index 2u disks. In order to get enumerative invariants which recover

broken lines we need a virtual count of tropical disks. Throughout we assume B is oriented.

Suppose A is straightened as in [GS1, Rem. 1.49], that is, A defines a subcomplex A® of
the barycentric refinement of the polyhedral decomposition &2 of B. Note that the simplicial
structure of A® refines the natural stratification of A given by local monodromy type. Let

12¢y, [GS7, Prop.4.13] for a refined treatment in a slightly different setup.
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Amax denote the set of maximal cells of A® together with an orientation, chosen once and
for all. Each 7 € Apax is contained in a unique (n — 1)-cell p € &2. Then monodromy along
a small loop about 7 defines a monodromy transvection vector m, € A,, where the signs are
fixed by the orientations via some sign convention. In view of the orientations of 7 and B we
can then also choose a maximal cell o D 7 unambiguously.

For each 7 € Apax let w; be the choice of a partition of |w,;| € N (with w, = () for
|w,| = 0). To separate leaves of tropical disks we will now locally replace A by a branched
cover. We can then consider deformations of a disk A whose leaves end on that cover instead
of A, with weights and directions prescribed by the partitions w := (w;|7 € Apax).

Deformations of A. We first define a deformation of the barycentric refinement Ay, of A
as a polyhedral subset of B. For each 7 € Ay, denote by s, C o, the 1-cell connecting
the barycenter b, of 7 to the barycenter of o,. Note that A;. ®z R intersects i.Ap Q7 R =
span(A-, m.) transversally. Moving the barycenter of the barycentric refinement 7., of 7
along s, while fixing 07,,, now defines a piecewise linear deformation 75 of 7 over s € s, as
a polyhedral subset of o,. Thus we obtain a deformation {Ag|s € S} of A over the cone
S =1, s, Itis trivial as deformation of cell complexes, as parallel transport in direction
s, in each cell o, induces an isomorphism of cell complexes Ap.r = Ag.

For an infinitesimal point of view let i, : 7 — ¢ be the inclusion. Consider the preim-
age of the deformation of 7 C A under the natural inclusion o, — i To,. For s =

length . . . .
(81, Slengthw, ) € s 8T with s; pairwise different,
length w,
Ty = U Ts, C i To,
k=1

is then a length w,-fold branched cover of 7, via the natural projection
wiirTor —T.

Note that 7% = @) if |w,| = 0 and 73" C 7% if lengthw, < lengthw!. and if the entries of
s agree with the first length w, entries of s’. We make 7% into a weighted cell complex by
equipping each cell of 7)Y with the weight defined by the partition w,. Finally, set SV :=
IL, ST and AW = U, 75V, where s € SV. We still call AY a deformation of A, as for

W . . .
e — 0, A, converges to A as weighted complexes in an obvious sense.

Deformations of tropical disks. We now want to define a virtual tropical disk as an infinites-
imal deformation & of a tropical disk h such that the leaves of h end on AY as prescribed by
w.

The idea is that for small € > 0 and suitable environments U, C T, B of 0, v = h(V') the

image of an internal vertex, the rescaled exponential map exp ‘U (2 o €idp(p\a) maps the

Uv
union of the tropical curves hy in the following Definition 6.5 onto t)he image of a tropical
disk he : T — B with leaves emanating from AY. By choosing € > 0 sufficiently small,
the image of h. is contained in an arbitrary small neighborhood of the image of h. Thus
he indeed defines a deformation of h. Conversely, for e sufficiently small, he determines h
uniquely. Hence in order to simplify language and visualization, we may and will identify a
virtual curve h with its “images” he in B for small € > 0.
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Definition 6.5. Let h : [T| — B be a tropical disk not intersecting |A[A™B=3l| A yirtual

tropical disk h of intersection type w deforming h consists of:

(1) For each interior vertex V € 'O a possibly disconnected genus zero ordinary tropical
curve hy : Iy — T, B with respect to the fan ¥j v, This means that I, isa possibly
disconnected graph with simply connected components and without di- and univalent
vertices, the map hy satisfies conditions (2)—(4) of Definition 6.1, while instead of (5)
the unbounded edges are parallel displacements of rays of X, v .

(2) A cover hp of each edge E of h by weighted parallel sections of the normal bundle
h|TB/Th(E). For each edge E adjacent to an interior vertex V', we require that the
inclusion defines a weight-respecting bijection between the cosets of B;l(V) over V
and rays of hy in direction E. Moreover, the intersection defines a weight-preserving
bijection between the cosets of {E;l(V) |h(V') € 7, E > V} over the leaf vertices in 7
and branches of 7}¥.

(3) A virtual root position, that is, a point hy;_, (‘Z;;) in T, (v;,,,) B such that AVioon (‘Z;;)—i—

Th(E) = ﬁ;;l (Vioot), where E' is the root edge.

We denote by M, (A¥, h) the moduli space of virtual Maslov index y disks of intersection
type w deforming h.

In order to exclude the phenomenons in Example 6.2, we now restrict to sufficiently general
tropical disks. For such tropical disks a local deformation of the constraints on ﬁ(f‘[o]) lifts
to a local deformation of h preserving the type. Formally, we define:

Definition 6.6. Let s € S™ and p € {0,1}. A virtual tropical disk h € My, (AY,h) is
sufficiently general if:

(1) h has no internal vertices of valency higher than three,
(2) all intersections of & with the codimension one cells of & are transverse intersections
at divalent vertices outside |Z2dimB=2]|
(3) there exists a subspace L C Tjy;,,,)B of dimension max{1 — y,0} and an open cone
C% C S%W containing s such that the natural map
(6.1) X evi— : U Mu(AY,h) — C™ x (Tyw,oo B) /L
seCw
is open.
AY is in general position if for all Maslov index zero disks h the complement of the set
Mo(AY, h)9¢" of sufficiently general disks in Mo(AY, h) is nowhere dense.

Lemma 6.7. Given w, the space of non-general position deformations of A is nowhere dense

in S™. For general position, Mo, (AY, h) is of expected dimension dim B + p — 1.

Proof. (Sketch) Consider a generalized class of tropical disks by forgetting the leaf constraints,
allowing edge contractions and replacing condition (6) by the assumption that the graph
contains no divalent vertices. Fix a type with a trivalent graph I". Then any tropical disk
of the given type is determined by the position of the root vertex x and the length of the
N := M| —p= Q\Fgﬁ —1— p bounded edges. This shows that the inverse map restricts to
an open embedding (J,c gw M (AY) — B x RY, in obvious identifications dictated by I'. The
statement now follows from the observation that the map (6.1) expressed in the induced affine
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structure on M, (AY, h) is piecewise linear, and any violation of stability defines a subset of
a finite union of hyperplanes. In particular, the dimension statement follows by noting that

the positions of the leaf vertices define constraints of codimension 2(|Fl[gllf\ — ). O

Remark 6.8. A stratum of My(m) admits a natural affine structure. Hence a disk h €
Mo () belonging to a k-dimensional stratum naturally comes with the k-dimensional sub-

space of induced infinitesimal vertex deformations
jv (W) = Thevy (T MY (m)) € Ty B.

Likewise, infinitesimal deformations of a sufficiently general Maslov index zero disk & give rise
to virtual joints, that is, the codimension two subsets defined by restricting the deformation
family to the vertices. Such virtual joints converge to some codimension two space jv(ﬁ) €
Tyv)B, as s — 0 € C™. Moreover, if the limiting disk A of h belongs to a (dim B—2)-stratum
of My(m) such that (6.1) extends to an open map at 0 € ACY, then jy (k)™ B=2 = j,(h).

This may be used to define stability for tropical disks.

6.3. Structures via virtual tropical disks. We now relate the counting of virtual Maslov
index zero disks with the structures of [GS3]. Let # be the set of closures of connected
components of the codimension one cells of & when A is removed. For b € £ contained in
pe 21 and v € p a vertex contained in b denote by fp := fow the order zero slab function
attached to b € A via the log structure. Then f, € k[C}y] where Cy is the monoid generated
by one of the two primitive invariant 7-transverse vectors +m., for each positively oriented
T e Almar] with b £ 0.
Let k € N. Define the order k scattering parameter ring by

Rk = k[t’r ’T € Amax]/Ika Iy = (t7]f+1|7- = Amax)a

and let R be its completion as k — oo.
As fp has a non-trivial constant term, we can take its logarithm as in [GPS]
(6.2) log fo = Y _ length(m)apm="" € k[Cs],
meCy
defining virtual multiplicities ap 7 € k. We consider log f, as an element of k[Cy] ®y R via
the completion of the inclusions

L : k[Cb} — ]k[Cb] Rk Rk, P

Definition 6.9. Attach the following numbers to a sufficeintly general virtual tropical disk
h € M, (AY, h)9en.
(1) The virtual multiplicity of a vertex V € T'% of h is

apm if V' is univalent, 7(h(V)) € b
vmulty (h) :={ s(m) if V' is divalent
im A, if V is trivalent
jv (h)

where ™ denotes the tangent vector of h at V in the direction leading to the root,
m’ the tangent vector of a different edge of h at V, ap,m the coefficients in (6.2),
S: AE(V)B — k* the change of stratum function at E(V) coming from the gluing data,

and the last expression the quotient density on Tj, B /iv(h) induced from the natural
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density on B\ A. Explicitly, letting J, ..., ,_» be generators of ji- (k) N A vy (cf.
Remark 6.8) then

|m A | =[mAM AjL A NGyl

jv(h)

(2) The virtual multiplicity vmult(h) of iL is the total product

vmult(h) := TAut(w)] Aut H vmulty (b
verlo
Here w is the intersection type of h, and Aut(w) is the product of the automor-
phisms'® of the partitions w, over all 7 € Amax]-
(3) The t-order of h is the sum of the changes in the t-order of the tangent vectors my
at divalent vertices V under changing the adjacent maximal strata O"j/:, that is

ord h := Z ‘<d<p|0‘; —d<p|a$,mv>’.

vertl:
E(V)Ea$ﬁa;69["*l]
Remark 6.10. The t-order may be considered as a combinatorial analogue of the symplectic
area of a holomorphic disk.

Note that the virtual multiplicity of a sufficiently general tropical disk depends only on its
type. Moreover, we have:

Lemma 6.11. The virtual multiplicity of a (type of) sufficiently general tropical disk h of
intersection type w deforming a Maslov index zero disk h is independent of the choice s € SW
of the general position deformation Ag.

Proof. We only give a very rough sketch here: If the type only changes by the number of
divalent vertices, the claim follows immediately from the definition of ¢ as a continuous
and piecewise linear function. In dimension two, the result then reduces to a standard one,
cf. [GM]. In higher dimension, the only remaining instable hyperplanes consist of disks with
a four-valent vertex. Here the independence of their stable deformations reduces to the
dimension two case, as the virtual multiplicity is invariant under splitting each edge of T,
acting with the stabilizer SL(n, Z)jv(h) on each fan Y, y/, and regluing formally. U

We are now ready for our central definitions: Denote by #My(w,mm,£)9" the number
of types of sufficiently general virtual tropical disks with intersection type w and t-order £
which deform a tropical Maslov index zero disk with root tangent vector m € Apg\a , counted
with virtual multiplicity. More generally, for © € {0,2} we can define #M,(w,m,£)9" by
counting the corresponding disks themselves, but specifying the virtual root as follows: The
virtual root is 0 € T, B if p = 2, and belongs to a line in Tj,y;,.,)B transverse to Vioor (R) if
w=0.

Let 0 € Pnax, and P, , the associated monoid at v € o which is determined by ¢ as in
[GS3, Constr. 2.7]. Define the counting function to order k in x € o by

(6.3) log for = Z Zlength(ﬁ)#/\/lo(w,m, K)QE"ZWtEHtL“’T‘,
meAz,Bv w T
<k

13¢hat is, the number of permutations of the entries of w, that do not change the partition
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which is an element of the ring k[P, ;] ®k RF.

Conjecture 6.12. For each k € N, the counting polynomial (6.3) modulo (t**1) stabilizes

in w and then maps to the rings ng“p via t; — 1. The sets
(6.4) pk[x] = {y co\0o| log fsy =10g for #0 € R’gﬂg},

are either empty or define polyhedral subsets of codimension at least one. Up to refinement and
adding trivial walls, the p*[x] together with their functions log foy Teproduce the consistent
wall structure ., constructed in [GS3].

Remark 6.13. Note that general position of A is not essential as long as we obtain the same

virtual counts.
Proposition 6.14. The conjecture is true for dim B = 2.

Proof. (Sketch) It is sufficient to show the following two claims:
Claim 1: Over R*, the counting monomials arise via scattering. This can be proved by first
decomposing exp f, into products of binomials and then proceeding inductively by applying
[GPS, Thm. 2.7] to each joint. Alternatively, one can adapt their proof directly:

Consider the thickening

. k
kluri|1 <i<Ek,]
. k+1 il > 1> Ry A
v K[tr]/t — EN<i<h)’ t, — E 1 Urg.
1=

inducing a thickening ). ¢r : RF — R" of the scattering parameter ring. Then consider

virtual tropical disks with respect to the 2F-fold branched covering of A whose branches 7

S
over T are labeled by J C {1,...,k}. Denote u,; := [[,c;ur;. We say such a disk is special
if it has the following additional properties: The weight of a leaf is |J] if it emanates from

+J

. . !
-/ and u, ju,; # 0 whenever there are leaf vertices in 77 and 7/". We can now attach the

following function to the root tangent vector —mj, of such disks:

(6.5) [5, == 1+ length(m;,) vmult/(h) - Zmigerdh H |- wr .
7/ Oh(Flear) 0

where vmult’ equals vmult without the combinatorial factor | Aut(w)].

Now the order 0 terms appearing in the thickening of the exponential of (6.3) are precisely
the f; of those special disks h that contain only one edge. The others indeed arise from
scattering, meaning the following: Whenever the root vertices of two special disks h, B map
to the same point p with transverse root leaves, there at most two ways to extend both disks
beyond p locally: Either glue them to a single tropical disk, which is possible only if f; f;+ # 0,
or enlarge the root leaves such that p stays a point of intersection, which is always possible.

The functions attached to the two old and the three new roots then define a consistent
scattering diagram, that is the counterclockwise product of the automorphisms

P f}lmAmﬁl
equals one. This is the content of [GPS, Lem. 1.9], to which we refer for details. Now the proof
of [GPS, Thm.2.7] shows that the sum ) ; log f; over all special disks with k-intersection
type w, root tangent vector —m and t-order ¢ equals the thickening of the corresponding

monomial in (6.3).
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Claim 2: The counting functions (6.3) can be lifted. We must show that the scattering dia-
grams at each joint jv(ﬁ) produce liftable monomials:

In case of a codimension zero joint this follows from the observation that each incoming
non constant ray monomial has t-order greater than zero. Hence working modulo (¢) implies
working up to a finite k-order. In case of codimension one joints, by assumption there is
only one non constant monomial of zero t-order present in each scattering diagram, namely
that given by the log structure. In this case, we can apply [Gr3]. Finally, there are no

codimension two joints by assumption. From both claims it follows that the gluing functions

of both constructions must indeed coincide, as by our assumption on A both rely on scattering

only, and scattering is unique up to equivalence. O

6.4. Virtual counts of tropical Maslov index two disks. Assume now (B, 2, ¢) fulfills
Conjecture 6.12, for example dim B = 2.

Proposition 6.15. The coefficient ag of the last monomial 2™# of a general broken line (3
is the virtual number of tropical Maslov index two disks with root tangent vector mg which
complete B as in Lemma 6.4 and whose t-order equals the total change in the t-order of the
exponents along 3.

Proof. Let az™,a’z™ be the functions attached to the edges adjacent to a fixed break point
B(t) of B. Let h be a virtual Maslov index zero disk bounded by 5(t) and with root tangent
vector the required difference m — m’. Define the completed multiplicity of h as the virtual
multiplicity of h times that of the break point. By definition, a'/a is a coefficient in the
exponential of ap := |m AT/|log f; for the function f, belonging to the wall or slab with tan-
gent space containing m — m’. By formula (6.3), ap equals the virtual number of completing
virtual Maslov index zero disks with root tangent leaf 7 —m’ and t-order £, completed by the
break point multiplicity. Hence the required coefficient in exp ay is given by counting discon-
nected virtual tropical disks of total ¢-order £ and total root tangent leaf 72 with completed
multiplicity. O

7. TORIC DEGENERATIONS OF DEL PEZZO SURFACES AND THEIR MIRRORS

In this section we will compare superpotentials for mirrors of toric degenerations of del
Pezzo surfaces, using broken lines and tropical Maslov index two disks. Recall that apart
from P! x P! all non-singular del Pezzo surfaces dPj can be obtained by blowing up P? in
0 < k < 8 points. Note that dPy for £k > 5 is not unique up to isomorphism but has a
2(k — 4)-dimensional moduli space. For the anticanonical bundle to be ample the blown-
up points need to be in sufficiently general position. This means that no three points are
collinear, no six points lie on a conic and no eight points lie on an irreducible cubic which has
a double point at one of the points. However, rather than ampleness of —K x the existence
of certain toric degenerations is central to our approach. For example, our point of view
naturally includes the case k = 9.

7.1. Toric del Pezzo surfaces. Up to lattice isomorphism there are exactly five toric del
Pezzo surfaces X () whose fans ¥ are depicted in Figure 7.1, namely P? blown up torically
in at most three distinct points and P' x P'. To construct distinguished superpotentials for
these surfaces we consider the following class of toric degenerations. For the definition note
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FIGURE 7.1. Fans of the five toric del Pezzo surfaces

that by the Grothendieck algebraization theorem a toric degeneration (¥ — T,9) with ©
relatively ample can be algebraized. By abuse of notation we write (f%n, 3577) for the generic
fiber of an algebraization, and also simply speak of the generic fiber of (X — T,9).

Definition 7.1. A distinguished toric degeneration of Fano varieties is a toric degeneration
(X = T,9) of compact type (Definition 2.6) with ® relatively ample over T and with generic
fiber @,7 - %n of an algebraization an anticanonical divisor in a Gorenstein surface.

The associated intersection complex (B, 22, ) is the intersection complex of (X — T,9)

polarized by O(D).

The point of this definition is both the irreducibility of the anticanonical divisor and the
fact that this divisor extends to a polarization on the central fiber.

If the generic fiber 3%7, is a surface then it is a dP; for some k, together with a smooth
anticanonical divisor.

Starting from a reflexive polytope, there is a canonical construction of the intersection

complex of a distinguished toric degeneration as follows.

Construction 7.2. Let = be a reflexive polytope and vg € = the unique interior integral
vertex. Define the polyhedral decomposition & of B = Z with maximal cells the convex hulls
of the facets of = and vg. The affine chart at vg is the one defined by the affine structure of =.
At any other vertex define the affine structure by the unique chart compatible with the affine
structure of the adjacent maximal cells and making 0B totally geodesic. This works because
by reflexivity for any vertex v the integral tangent vectors of any adjacent facet together
with v — vy generate the full lattice. Moreover, (B , Lv@) has a natural polarization by defining
@(vg) = 0 and @(v) = 1 for each other vertex v.

The tropical manifold (B, 37) obtained in this way does not generally have simple singu-
larities. Using a similar computation from [Grl] on the Legendre dual side one can show,
however, that (B , Lv@) has simple singularities iff the normal fan 3 of = is elementary simpli-
cial, meaning that each cone is the cone over an elementary simplex. In dimensions two and
three this is equivalent to requiring the toric variety X (Z) with momentum polytope Z to be
smooth. See [Pu, Constr. 5.2] for more details.

Assuming (B, :@) has locally rigid singularities (e.g. simple singularities or in dimension
two) so we can run [GS3], or there is a consistent compatible sequence of wall structures on
(B, P, ®) by other means, we obtain a distinguished, anticanonically polarized toric degen-
eration X — Spfk[t] together with an irreducible anticanonical divisor ® C %.

The generic fiber .’%77 of this toric degeneration may not be isomorphic to the toric variety
X (Z). But by introducing an additional parameter s scaling the non-constant coefficients of
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X focus-focus point
o integral point of B

monodromy cut

FIGURE 7.2. The intersection complexes (B, &) of the five distinguished toric

degenerations of del Pezzo surfaces with simple singularities and their Le-
gendre duals (B, &).

the slab functions one can produce a two-parameter family with ¥ — Spfk[¢] the restriction
to s = 1 and the constant family with fiber X (Z) for ¢ # 0 the restriction to s = 0.

The discrete Legendre transform (B, &7, ¢) has a unique bounded cell op, isomorphic to
the dual polytope of =. Up to the addition of a global affine function, the dual polarizing
function ¢ is the unique piecewise affine function changing slope by one along the unbounded
facets.!

Remark 7.3. Alternatively, one can use an MPCP resolution [Ba, Thm.2.2.24] of X (Z) de-
fined by a simplicial subdivision of ¥ to split the discriminant locus of (B, 2 into simple
singularities. On the Legendre-dual side the subdivision is given by writing the bounded
maximal cell og as a union of elementary simplices. The resolution process leads to the
introduction of more Kéhler parameters on the log Calabi-Yau side, hence more complex
parameters on the Landau-Ginzburg side, reflected in the choice of ¢. See [Pu] for some
discussions in this direction.

Example 7.4. Specializing to del Pezzo surfaces, we start from the momentum polytopes
of the five non-singular toric Fano surfaces. The result of the construction is depicted in
Figure 7.2, which shows a chart in the complement of the dotted segments. Note that
the discrete Legendre transform (B, 2, p), also depicted in Figure 7.2, indeed has parallel
outgoing rays.

Conversely, in dimension 2 we have the following uniqueness result.

Theorem 7.5. Let (7 : X-T, @) be a distinguished toric degeneration of del Pezzo surfaces.

Then the associated intersection complex (B, :@) is a subdivision of the star subdivision of a

141y the present case ¢ is single-valued.
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reflexive polygon =, with the edges containing a singular point precisely those connecting the
interior integral point to a vertex of =.

If furthermore the toric degeneration has simple singularities [GS1, §1.5], then (B, ) is
isomorphic to an integral subdivision of one of the cases listed in Figure 7.2.

Proof. Let (7 : X - T,@) be the given toric degeneration. Thus the generic fiber j':n is
isomorphic to a del Pezzo surface dPj over 1 for some 0 < k < 8, or to P! x P. By
assumption OB is locally straight in the affine structure.

First we determine the number of integral points of B. Let £ = (’)%(@) be the polarizing
line bundle on X. By assumption

(7.1) hO(Xy, Llg,) = h*(dPy, —Kap,) =

Let t € O be a uniformizing parameter and X,, := Spec (k[t]/(t"™)) x7 X the n-th order
neighborhood of X := 771(0) in X. Denote by £, = Llx, -
Then for any n there is an exact sequence of sheaves on Xj,

0—>OXO — Lpt1 — Ly — 0.
By the analogue of [GS2, Thm. 4.2] for log Calabi-Yau varieties, we know
1% 1%
h'(Xo0,0%,) = h (Xy, 0%, ) = 0.

Thus the long exact cohomology sequence induces a surjection H° (X 0y Lny1) > H O(X 0, Ln)
for each n. By the theorem on formal functions and cohomology and base change [Ha,
Thms. 11.1 & 12.11], we thus conclude that 7, L is locally free, with fiber over 0 isomorphic
to H(Xo, Lo). In view of (7.1) we thus conclude

10—k, X,~dP;

hO(X()v[’O) = X
9, %, ~ P! x P,

Now on a toric variety the dimension of the space of sections of a polarizing line bundle
equals the number of integral points of the momentum polytope. Since X is a union of
toric varieties, each integral point € B provides a monomial section of £y on any irre-
ducible component X, C X with 0 € & containing z. These provide a basis of sections of
H°(Xy, Lo).*> Hence B has 10 — k integral points.

An analogous argument shows that the number of integral points of B equals

hO(D(]’EO) = ho(bn,[m)’

which by Riemann-Roch equals Kc2lPk =9—kor Kﬂglxpl = 8. In either case we thus have a
unique integral interior point vy € B. In particular, B has the topology of a disk, and each
interior edge connects vy to an integral point of JB.

Viewed in the chart at the interior integral point, B is therefore a reflexive polygon Z.
Moreover, since OB is locally straight, each of the interior edges with endpoint a vertex of
= has to contain a singular point. None of the other interior edges can contain a singular
point for otherwise 9B would not be straight in the affine structure (and B would not even
be locally convex on the boundary).

15T his also follows by the description of (5(0, Lo) by a homogeneous coordinate ring in [GS1, Def. 2.4].
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If the singularities are simple, one finds that OB is only locally straight in the five cases
shown in Figure 7.2, up to adding some edges connecting vg to 9B without singular point.

The remaining 11 cases are discussed in §8.1 below. (]

Remark 7.6. 1) The proof shows that the five types can be distinguished by dim H°(%,, £,),
except for P! xP! and dP;. Alternatively, by Proposition 7.13 below one could use H* (in, Q; ).
n

2) For each (B, 2) there is a discrete set of choices of ¢, which determines the local toric
models of X — ®. This reflects the fact that the base of (log smooth) deformations of the
central fiber X 3 as a log space over the standard log point k' is higher dimensional. In fact,
let 7 be the number of vertices on dB. Then taking a representative of » that vanishes on
one maximal cell,  is defined by the value at r — 2 vertices on dB. Convexity then defines
a submonoid @ C N"~2 with the property that Hom(Q,N) is isomorphic to the space of
(not necessarily strictly) convex, piecewise affine functions on (B, %) modulo global affine
functions. Running the construction of [GS3] with parameters then produces a log smooth
deformation over the completion at the origin of Speck[Q] with central fiber (Xg, Dg). For
the minimal polyhedral decompositions of Figure 7.2 with r = [ the number of singular point
we have rk Q) = [ — 2, which by Remark 7.14,2 below agrees with the dimension of the space
HY(X,, ®X5/kf)

this case the constructed deformation is in fact semi-universal.!6 O

of infinitesimal log smooth deformations of Xg /kf. One can show that in

The technical tool to compute superpotentials in the toric del Pezzo cases and in related
examples in finitely many steps is the following lemma, suggested to us by Mark Gross. It
greatly reduces the number of broken lines to be considered, especially in asymptotically
cylindrical situations and with a finite structure on the bounded cells.

Lemma 7.7. Let . be a structure for a non-compact, polarized tropical manifold (B, 2, y)
that is consistent to all orders. We assume that there is a subdivision &' of a subcomplex of
P with vertices disjoint from A and with the following properties.

(1) Each o € &' is affine isomorphic to p x R>q for some bounded face p C o.
(2) B\ Int(|2?']) is compact and locally convex at the vertices (this makes sense in an
affine chart).
(3) If m is an exponent of a monomial of a wall or unbounded slab intersecting some
ceP, o= p+ R>omg, then —m € Ap + Rso - My
Then the first break point t; of a broken line B with im(B) € | 2’| can only happen after
leaving Int | 2’|, that is,

t1 > inf {t € (—00,0]| B(t) & |2'|}.

Proof. Assume (t1) € o \ p for some 0 = p + Rxom, € &'. Then f](_s 4, is an affine
map with derivative —m,, and ((¢1) lies on a wall. By the assumption on exponents of
walls on o, the result of nontrivial scattering at time t; only leads to exponents mo with
—ma € A, + R>omy,, the outward pointing half-space. In particular, the next break point
can not lie on p. Going by induction one sees that any further break point in o preserves
the condition that 3’ does not point inward. Moreover, by the convexity assumption, this
condition is also preserved when moving to a neighboring cell in &?’. Thus im(8) C |#'|. O

16[RS, Thm. 4.4] proves semi-universality for all simple toric degenerations of compact type.
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FiGURE 7.3. Tropical disks in the mirror of the distinguished base of dPs

indicating the invariance under change of root vertex.

Proposition 7.8. Let (B, Z?) be the dual intersection complex of a distinguished toric de-
generation of del Pezzo surfaces with simple singularities and let oo C B be the bounded cell.
Then there is a neighborhood U of the interior vertex vy € oo such that for any p € U there
is a canonical bijection between broken lines with endpoint p and rays of 3, the fan over the
proper faces of og.

Proof. We can embed X in the tangent space at vy by extending the unbounded edges to
vp in the chart shown in Figure 7.1. Each ray of ¥ can then be interpreted as the image of
a unique degenerate broken line. Because each such degenerate broken line has a positive
distance from the shaded regions in Figure 7.2 they can be moved with small perturbations
of p to deform to a proper broken line. Conversely, by inspection of the five cases, the result
of non-trivial scattering at dog leads to a broken line not entering Int(cg). There are no walls
entering Int oy, so by Lemma 7.7 any such broken line can bend at most at the intersection
with doy. O

Corollary 7.9. Let (X — Spfk[t],W) be the Landau-Ginzburg model mirror to a distin-
guished toric degeneration of del Pezzo surfaces with simple singularities. Then there is an
open subset U ~ Spf k[zT!, y*![t] C X such that W |y equals the usual Hori-Vafa monomial

sum times t. O

Remark 7.10. 1) For other than the anticanonical polarization of the del Pezzo surface, the

terms in the superpotential receive different powers of ¢, just as in the Hori-Vafa proposal.

2) Analogous arguments work for Landau-Ginzburg mirrors of smooth toric Fano varieties of
any dimension [Pu, Thm. 5.4].

Example 7.11. Let us study the mirror of the distinguished toric degeneration of dP3 with
the minimal polarization @ explicitly. In Figure 7.3 the first two pictures show all Maslov
index two tropical disks, respectively broken lines using disk completion (Lemma 6.4), for
two choices of root vertex. Moving the root vertex within the shaded open hexagon yields
the same result, that is, none of the six broken lines has a break point. In contrast, moving
the root vertex inside og out of the shaded hexagon leads to some bent broken lines, but the
set of root tangent vectors always remains (1,0),(1,1),(0,1),(—1,0),(—1,—1) and (0,—1),
all with coefficient 1. This illustrates the invariance under the change of root vertex proved

in Lemma 4.7.
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The potential in the chart for the bounded cell oq is thus computed as
1 1 1
Wapy(o0) = (2 +y+oy+—+-+—) 4,
r y xy

which for ¢ # 0 has six critical points.

The picture on the right shows two tropical disks with weight two unbounded leaves. These
do not contribute to the superpotential.

An analogous picture arises for the other four distinguished del Pezzo degenerations.

Morally speaking the last example shows that in toric situations ray generators of the fan
are sufficient to compute the superpotential, but really they should be seen as special cases
of tropical disks or broken lines.

7.2. Non-toric del Pezzo surfaces. In this section we consider del Pezzo surfaces dPj for
k > 4, referred to as higher del Pezzo surfaces. Let us first determine the topology of B and
the number of singular points of the affine structure.

We need the following statement for Fano varieties with smooth anticanonical divisor

Lemma 7.12. Let X be a smooth Fano variety and D C X a smooth anticanonical divisor.

Then H(X,Qx(log D)) = 0.

Proof. Tt is a folklore result in Hodge theory that the connecting homomorphism of the residue

sequence

res

0— Qx — Qx(logD) — Op — 0

maps 1 € H%(D,Op) to ¢1(Ox(D)) € H'Y(X) = HY(X,Qx). By ampleness of D this class
is nonzero. Thus H°(X,Qx(log D)) ~ HY(X,Qx).
The claim now follows from the Kodaira vanishing theorem:

HY(X,Qx) ~ H"(X,0x) = H*(X,Kx @ Ky') = 0. O

Proposition 7.13. Let (B, Z?) be the dual intersection complex of a distinguished toric de-
generation (m: ¥ — T,D) of del Pezzo surfaces with simple singularities (Definition 7.1). In
particular, we assume the generic fiber .’;En s a proper surface with :’jn a smooth anticanonical
divisor.

Then B is homeomorphic to R?, and the affine structure has | = dim Hl(in,Qén) + 2

singular points.

Proof. Since the relative logarithmic dualizing sheaf ws /@(— log ”}5) is trivial, the generaliza-
tion of [GS1, Thm. 2.39] to the case of log Calabi-Yau varieties shows that B is orientable. By
the classification of surfaces with effective anticanonical divisor we know H i(in, (’)gen) =0,
i = 1,2. As in the proof of Theorem 7.5 this implies H'(XY, Ox,) = 0. Thus by the log
Calabi-Yau analogue of [GS1, Prop. 2.37],

H'(B,k) = H'(X,,0%,) =0.

In particular, B has the topology of R2.
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As for the number of singular points, the generalization of [GS2, Thms. 3.21 & 4.2] to the
case of log Calabi-Yau varieties [Ts, Thm.3.5 & Thm.3.9] shows that dim Hl(in,Q;v€ ) is
n

related to an affine Hodge group:'”
(7.2) dimyy) H' (%, Q;n) = dimg H'(B, i, A @7 R).

To compute H(B,i,A ®zR) we choose the following Cech cover of B = R2. Let {4, ..., be
disjoint real half-lines emanating from the singular points py, . ..,p;. Define Uy = R?\ Ui:l l;,
and U; = Be(p;) for ¢ sufficiently small to achieve U; N ¢; = () unless ¢ = j. Then & :=
{U{],Ul, . .,Ul} is a Leray covering of B for i,Ag := i,A ®z R, cf. [GS1, Lem.5.5]. The
terms in the Cech complex are

CO(l, i AR) = R? x HR CHY, i AR) = HR2 C*(Y, i Ag) = 0 for k > 2.
i=1
The analogue of (7.2) for degree 0 cohomology groups shows that the kernel of the Cech
differential CO(4,i.Ag) — C(i,i.AR) computes HO(%,,Qx, (log®,)). This latter group
vanishes by Lemma 7.12. Hence

dim HY(B,i,Ag) =20 — (1+2) =1—2
determines the number [ of focus-focus points as claimed. O

Remark 7.14. 1) From the analysis in Proposition 7.5 and Proposition 7.13 it is clear that
for del Pezzo surfaces dP, with k > 4 the anticanonical polarization is too small to extend
over a toric degeneration with simple singularities. The associated tropical manifold would
simply not have enough integral points to admit the required number of singular points.

2) Essentially the same argument also computes the dimension of the space of infinitesimal

deformations:

h'(%,, 0%, (logDy)) = h'(Xo, Ogi ) = hY(B,iAR) =1 — 2. O

It is easy to write down toric degenerations of non-toric del Pezzo surfaces, since they can
be represented as hypersurfaces or complete intersections in weighted projective spaces, as
for example done for dPgs in [GS4, Expl.4.4]. The most natural toric degenerations in this
setup have central fiber part of the toric boundary divisor of the ambient space. But because
this construction gives nodal ©,, such toric degenerations are never distinguished. To obtain

proper superpotentials we therefore need a different approach.

Construction 7.15. Start from the intersection complex (B, &) of the distinguished toric
degeneration of dP3; depicted as a hexagon in Figure 7.2. The six focus-focus points in
the interior of the bounded two cell make the boundary p straight. There is no space to
introduce more singular points of the affine structure because all interior edges already contain
a singular point. To get around this, polarize by —2 - K4p, and adapt &2 in the obvious way,
see Figure 7.4. This scales the affine manifold B by two, but keeps the singular points
fixed. The new boundary now has 12 integral points and the union - of edges neither
intersecting the central vertex nor 0B is a geodesic. We can then introduce new singular
points on the boundary of the interior hexagon as visualized in Figure 7.4. Moreover, let ¢

17"The proof of [GS2, Thm. 4.2] has a gap fixed in [FFR, Thm. 1.10].
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FIGURE 7.4. Straight boundary models for higher del Pezzo surfaces obtained
by changing affine data for dPs and their Legendre duals.

FIGURE 7.5. An alternative base for higher del Pezzo surfaces and their mirror.

be unchanged on the interior cells and change slope by one when passing to a cell intersecting
0B. Plugging in up to five singular points, the Hodge numbers from Proposition 7.13 show
that the toric degenerations obtained from the tropical data are in fact toric degenerations
of dP;, 4 <k <8. O

Unlike in the anticanonically polarized case, the models constructed in this way are not
unique. The geodesic «y is divided into six segments by &2, and the choice on which of these
segments we place the singular points, modulo the Z/6-rotational symmetry, results in non-
isomorphic models. We will see in Example 7.18 how this choice influences tropical curve
counts.

Although there are other ways to define distinguished models for higher del Pezzo surfaces,
for example by choosing another polarization, in this way we can extend the unique toric
models most easily, since all tropical disks and broken lines we studied before arise in these

models without any change.
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FIGURE 7.6. Mirror base to dP; showing new broken lines contributing to

Wap,, indicating the wall crossing phenomenon and the invariance under
change of endpoint within a chamber.

Remark 7.16. Note that introducing six new points, for instance as in the rightmost picture
in Figure 7.4, corresponds to a blow up of P? in nine points, which is not Fano anymore, but
from our point of view still has a Landau-Ginzburg mirror.

From a different point of view this has already been noted in [AKO], where the authors
construct a compactification of the Hori-Vafa mirror as a symplectic Lefschetz fibration as
follows. Start with the standard potential x 4+ y + % for P2 and compactify by a divisor at
infinity consisting of nine rational curves. Then by a deformation argument it is possible to
push £ of those rational curves to the finite part and decompactify to obtain a potential for
dPy, including k£ = 9.

We can reproduce this result from our point of view by starting with P? rather than with
dPs, as illustrated in Figure 7.5. Moving rational curves from infinity to the finite part
is analogous to introducing new focus-focus points. In the present case one may put three
focus-focus points on each unbounded ray of (B, &) until the respective Legendre dual vertex
becomes straight. Figure 7.5 on the right shows nine such points (corresponding to the case
k = 9 above), and any additional singular point would result in a concave boundary. This
can be seen as an affine-geometrical explanation for why the compactification constructed by
the authors in [AKO] has exactly nine irreducible components.

Note that it is possible to introduce more singular points when passing to larger polariza-
tions, but in this way we will not end up with degenerations of del Pezzo surfaces.

In order to determine the superpotential, we depicted in Figure 7.4 an appropriate chart
of the relevant (B, Z?). When two regions to be removed overlap we shade them darker to

indicate the non-trivial transformation there.

Example 7.17. Figure 7.6 shows the dual intersection complex (B, &?) of a toric degenera-
tion of d P4 from Construction 7.15. The additional focus-focus point changes the structure .%
and allows broken lines to scatter with the wall in direction (1, 1) in the central cell oy which
subdivides o( into two chambers u,u’ and yields new root tangent directions. A broken line
coming from infinity in direction (41, 0) produces root tangent vectors (—1+1,—1), whereas
one with direction (0,+1) takes directions (—1,—1 4 1). By construction, every broken line
reaching the interior cell og has t-order at least 2.

Note also that by [GS4, Expl.4.3] only the wall indicated by a dotted line in Figure 7.6
enters 0g. Thus og is subdivided into two chambers u, v, in all orders. A broken line can
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FiGURE 7.7. Mirror bases to dPs showing all new broken lines.

have at most one break point within og, in which case the t-order increases by one. So let us
compute WC:?P4. We get two new root tangent directions, namely (—1, —2) and (—2, —1), and
possibly more contributions from directions (0, —1) and (—1,0). The two leftmost pictures
in Figure 7.6 show all new broken lines for different choices of root vertex, apart from the
six toric ones we have already encountered in Example 7.11. Depending on this choice, the
superpotential to order three is therefore either given by

111 11
de4(u):(x+y+xy+5+§+—)-t2+(—+—)-t3 or

Ty x  xly
1 1 1 1 1

Wap (W) = (e +y+ay+—+ -+ =) 24 (S 4+ —) - &%
r y Xy y oy

both of which have seven critical points, as expected. These superpotentials are not only
related by interchanging = and y, for symmetry reasons, but also by wall crossing along the
wall separating oy into two chambers. This is the first non-trivial example of an ostensibly
algebraic superpotential, as defined at the end of §4.

In the rightmost picture in Figure 7.6 we indicated the behaviour of a single broken line
of root tangent direction (—1, —2) under change of root vertex. If the root vertex changes a
chamber by passing one of the dotted lines drawn, the broken lines change accordingly.

Example 7.18. Attaching another singular point on the unbounded ray in direction (0, —1)
as in Figure 7.7 on the left we arrive at a degeneration of dPs. For a structure consistent to
all orders there are three walls in the bounded maximal cell necessary, indicated by dotted
lines in the figure. They are the extensions of the slabs with tangent directions (1,1) and
(0,1) caused by additional singular points, and the result of scattering of these, the wall
with tangent direction (1,2). Because (1,1) and (0,1) form a lattice basis, the scattering
procedure at the origin does not produce any additional walls. In any case, any broken line
coming in from direction (1, 1) and with endpoint p as indicated in Figure 7.7 can not interact
with any of the scattering products. Tracing any possible broken lines starting from ¢ = —oo

one arrives at only five broken lines with endpoint p, with only one, drawn in red, having
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FIGURE 7.8. Two mirror bases to dFs.

more than one breakpoint. We therefore obtain the following superpotential on the chamber
u containing p:
1 1 1 1 1 1 1 1
Wap, (W) = (z+y+ay+—+=+—) 2+ (C 4 —+ -+ =)+ it
z Yy oy y oy vy xy Yy
Example 7.19. We study another model of the mirror to dPs, which differs from the last
one in the position of the second focus-focus point. Instead of placing it on the ray with
generator (0, —1) we move it to the ray generated by (1,1), as shown in Figure 7.7 on the
right. This alternative choice yields the superpotential
1 1 1 1 1
Wap, (u) = (:v+y+:ry+f—|-f+—) 24 (7+m+x2y+72) -3
z Yy oy Y Y
on the selected chamber u. It is an interesting question to understand in detail the effect of

particular choices of singular points and the corresponding degenerations.

Example 7.20. As a last example, we study broken lines in the mirror of a distinguished
model of dPg, depicted on the left in Figure 7.8. This time we obtain the superpotential

Woap, () = <x+y+xy+l+l+i) 24 (2-%+i+2~1> Bl

Ty wy Ty Y Y Y
with nine critical points. Again, this potential comes from a special choice of positions
of critical points and root vertex among many others. This superpotential is ostensibly
algebraic although the three walls meeting at the origin produce an infinite wall structure on
the bounded cell .

In contrast, Figure 7.8 on the right shows the mirror base of an alternative d Ps-degeneration
featuring a finite wall structure in the bounded cell oy by [GS4, Expl.4.3]. We again obtain
an ostensibly algebraic superpotential

Wap, (1) = <x+y+xy+1+1+i> 24 <£+1+%+2,}+§> .
x Yy xy r xT  xY y oy

These examples illustrate that if we leave the realm of toric geometry, Landau-Ginzburg
potentials for del Pezzo surfaces can, at least locally, still be described by Laurent polynomials,
as in the toric setting.
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8. SINGULAR FANO AND SMOOTH NON-FANO SURFACES

Having studied smooth Fano surfaces, we now show that our approach also works if we

admit Gorenstein singularities or drop the Fano condition.

8.1. Singular Fano surfaces. We now classify the remaining distinguished toric degenera-
tions of del Pezzo surfaces (Definition 7.1) from Theorem 7.5 with non-simple singularities.
In this theorem we have already seen that the intersection complex (B, &) is obtained from
a star subdivision of a reflexive polygon = with a singular point on each of the interior edges,
and then posssibly a further subdivision adding more edges without a singular point con-
necting the interior integral point to a non-vertex point on dB. There are 16 well-known
isomorphism classes of reflexive polygons, among which five give rise to smooth varieties,
studied in the last section. The remaining eleven polygons are characterized by the property
that the dual polygon has at least one integral non-vertex boundary point. These 11 poly-
gons are in one-to-one correspondence with isomorphism classes of singular toric del Pezzo
surfaces.

To obtain a smooth boundary model (B = Z, £2), we now need to add a non-simple singular
point on some of the added edges to straighten the boundary. Non-simple means that the
affine monodromy along a counterclockwise loop about such a singular point is conjugate to
((1] _lk) for some k > 1. We refer to k as the order of the singular point. Legendre-duality
then yields an affine singularity of the same order & on the dual edge. As in the smooth case,
we polarize (B , 97) by the minimal polarizing function ¢ changing slope by one along each
interior edge.

Figure 8.1 depicts the discrete Legendre duals (B, &) thus obtained from star subdivision
of the remaining 11 reflexive polygons. Note that the affine monodromy of the singular point
is reflected in the shaded regions. The order k of a singular point now equals the number of
integral points on the edge of &2. We obtain the following addition to Theorem 7.5.

Theorem 8.1. In the situation of Theorem 7.5 assume that (7 : X — T,D) does not have
simple singularities. Then (B, 37) is Legendre-dual to one of the cases listed in Figure 8.1. [J

With non-simple singularities on some edges in (B, &), the slab functions are not uniquely
determined by the gluing data. If v is a vertex on an edge p containing an order k singularity,
the slab function f,, has the form 1+aj2+. .. ag_125 "1 +a,2* for z the generating monomial
for the p-stratum of Xy. The coefficient a; is determined by the gluing data, with a; = 1
for trivial gluing data. Thus in any case, there are k — 1 free coeflicients for each singular
point of order k. These coefficients reflect classes of exceptional curves on the resolution of
the Fano side. Ignoring these classes, as suggested by working with the unresolved del Pezzo
surface, leads to the slab function (1 4 z)*.

Theorem 8.2. ¥ Let (X — Speck[t], W) be mirror to a distinguished toric degeneration
(X = T,9) of del Pezzo surfaces (Definition 7.1), and (B, 2, ) the associated intersection

complex for the anticanonical polarization on X.

18The closely related superpotential of the corresponding 11 semi-Fano surfaces obtained by MPCP resolu-
tion has independently been computed in [CL] by other methods. See [Pu] for the reproduction and comparison
of their results with our method. Add reference to MPCP
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Denote by oo the bounded cell of the associated intersection complex (B, 2, ¢). For an
integral point m on an edge w C dog of integral length k define N, = (]i), where | is the
integral distance between m and one of the vertices of w. Then it holds

W(op) =t- Z Npz™.

man'oﬂAgO

e
¥

BN

FiGURE 8.1. The broken lines contributing to the proper superpotential of

the eleven singular toric del Pezzo surfaces.

Proof. Corollary 7.9 already treats the case with simple singularities. The remaining 11 cases
are most easily done by inspection of the set of broken lines ending at a specified point p as
given in Figure 8.1. Note that there are no walls in Int o, so the result of this computation
is independent of the choice of p. It is instructive to check this continuity property explicitly
in some cases.

Alternatively one can argue more generally as follows. If a broken line ends at p € Int(og)
then the next to last vertex of § maps to the intersection of the ray p + R>omg with doy.
Denote by w C dog the edge containing this point of intersection. Then by Lemma 7.7 there
are no more bending points of 3, and hence the remaining part of 5 has to be parallel to the
unbounded edges of the unbounded cell containing w. This determines the kink of 8 when



48 MICHAEL CARL, MAX PUMPERLA, AND BERND SIEBERT

crossing w. Note that this argument also limits the exponents m appearing in W (og) to be
contained in dog N Ag,. Moreover, each such exponent belongs to at most one broken line
ending at p.

Now choose p very close to the unique interior integral point of o¢ and let m € dog N Ay, .
Then p+R>q intersects dog very close to m. A local computation now shows that depending
on the choice of a vertex v € w the coefficient of 2" comes from either the [-th or the (k —1)-

k

th coefficient of the associated slab function (1 + x)”. In either case we obtain the stated

binomial coeflicient (]i) O

8.2. Hirzebruch surfaces. As a last application featuring some non-Fano cases, we will
study proper superpotentials for Hirzebruch surfaces F,,,. We fix the fan ¥ in N = Z2 of IF,,
to be the fan with rays po, ..., p3 generated by the four primitive vectors

vy = (0, 1), v = (—1,0), Vo = (0, —1), vy = (1,m).

Since F,, is only Fano in the cases Fy = P! x P! and F; = dP;, for m > 2 the normal fan of
the anticanonical polytope is not the fan of a Hirzeburch surface.

We fix m in the following and denote by D,, the torus-invariant divisor associated to p;.
Instead of the anticanonical divisor, which is not ample for m > 2, we now consider a smooth

divisor D on F,, in the ample class
DPO +DP1 + Dpz +m:- DPs'

Define the tropical manifold (B3, 2, ¢) with straight boundary as follows. B is obtained from
the Newton polytope

Ep = conv {(—1,-1), (2m, -1),(0,1),(-1,1)}

of D by joining each vertex with one of the endpoints of the line segment [0,m — 1] x {0} C
Int =p as shown in Figure 8.2 on the top, and then introducing a single focus-focus singularity
on each of the four joining one-cells. It is again elementary to check that this makes OB totally
geodesic. Moreover, setting @(v) = 1 for all vertices v of Zp and

(0,0) = @(m —1,0) =0

defines a strictly convex, integral PL-function ¢ on (B, 2).
The Legendre dual (B, &, ¢) has the four vertices vy, ..., v3 we started with, two bounded
cells

oo = conv(vg, v1,v2), o1 = conv(vg,v2,v3),

and four unbounded one-cells contained in R>qv;, ¢ = 0,...,3. These one-cells are indeed
parallel in any chart with domain an open set in the complement of the union of bounded
cells. Moreover, d(og U o1) has precisely four integral points, namely vy, vi, v and vs. Note
also that by the definition of the Legendre-dual, ¢ is uniquely determined by

p(vo) = p(v1) = p(v2) = 1, ¢(v3) =m,

and by the requirement to change slope by one along d(og U 01).

We see that for m > 3 the union oy U o7 is non-convex. In this case the scattering of the
two walls emanating from the singular points on the two edges with vertices v, vy, v3 produce
walls entering Int(og U o71).
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FIGURE 8.2. A straight boundary model for the Hirzebuch surfaces F,,, with

mirrors for m = 2, 3.

For m > 3 there is even an infinite number of walls to be added to make the wall structure
consistent to all orders. While all these walls are added in the half-plane below the line
R-(1,m) and hence there is an open set contained in oy not containing any wall, we have not
carried out the necessary analysis to decide if W (oy) is given to all orders by an algebraic
expression.

We now restrict to the cases m = 2,3 and explicitly compute the full superpotentials.

First, for the case m = 2 there are no walls in Int(og U 02). The broken lines ending at a
specified point p € Int(oy) are depicted on the lower left in Figure 8.2. The Landau-Ginzburg
superpotential can then be read off as

1 1
W(op) = (E—I—&—Fy) bt ay? - 12

This is indeed the full potential, as there is no scattering in ogUo, so we can apply Lemma 7.7.

For m = 3 let us first compute the walls entering Int(cgU o). These come from scattering
at the point (0, 1) of the adjacent edges with focus-focus singular points in directions (1, 1)
and (—1,—2). Locally this scattering situation is equivalent to the scattering of incoming
walls from directions (—1,0) and (0, —1) meeting at the origin. An explicit computation
carried out in [GS4, §4.1] shows that this scattering diagram can be made consistent to all
orders by introducing outgoing walls in directions (1,0), (0,1) and (1,1). These translate to
walls in directions (1,1), (—1,—2) and (0,—1) in our situation, as indicated by the dashed
lines in the lower right of Figure 8.2. Of course it will be necessary to insert more walls outside
of the bounded part, but this is unessential for the computation of the superpotential. Hence
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scattering on the bounded part oy U o7 is finite and we can once more apply Lemma 7.7.
For the choice of root vertex p’ € o1 as indicated in the lower right of Figure 8.2 we get the

following full superpotential for (B3, %3)
1 1
W(u) = <*+*+y+g) 2Ly (a:y3+y2) 13,
T Yy x x

Thus, neglecting t-orders for a moment, we have three new contributions that differ from the
Hori-Vafa potential % + % +y + 293, namely the monomial y? and twice the term 4. These
come from broken lines that have a break point at the new walls emanating from (0,1) in
direction (1,1), (0,—1) and (—1,—2), respectively. Note that these are precisely the terms
Auroux found in [Au2, Prop. 3.2], when we make the coordinate change = — % and y — %

The computation in [Au2, Prop. 3.2] is very explicit and rather long when compared with
our derivation. Of course all the hard work is hidden in the scattering process of [GS3] and
the propagation of monomials via broken lines, but still it is remarkably easy to compute
Landau-Ginzburg models with this approach, once everything is set up.

9. THREE-DIMENSIONAL EXAMPLES

So far we restricted ourselves to dim B = 2. We now turn to a few simple examples

illustrating some features of higher dimensional cases.

Example 9.1. Starting from the momentum polytope = for P? with its anticanonical polar-
ization, Construction 7.2 provides a model with a distinguished polarized tropical manifold
(B, 2, @) with B = = and with flat boundary. In dimension three this is done by trading
corners and edges with a one-dimensional singular locus of the affine structure. Explicitly,
2 is the star-subdivision of

E = conv {(27 _17 _1)7 (_17 27 _1)1 (_11 _17 2)7 (_17 _17 _1)}

that introduces six two-faces spanned by the origin and two distinct vertices of =. The
discriminant locus A is the subcomplex of the first barycentric subdivision of these six affine
triangles shown in Figure 9.1. The affine structure is fixed by the embedding of = into R3
at the origin, and by the affine charts at the vertices of B making 0= flat and inducing the
given affine chart on the maximal cells of &2. Finally, @ is determined by @(v) = 1 for every
vertex v of E and ¢(0) = 0.

The discrete Legendre dual (B, Z,¢)), also drawn in Figure 9.1, has four parallel un-
bounded rays and a discriminant locus A with six unbounded rays. Note that unlike in the
case of closed tropical manifolds or in dimension two, A and A are not homeomorphic, but A
is homeomorphic to the compactification of A that adds a point at infinity to each unbounded
one-cell of A. Every bounded two-face is subdivided into three 4-gons by A and at every
vertex of B three of these 4-gons meet. Denote the bounded three-cell by og. As in the proof
of Theorem 8.2 it now follows that any broken line ending at p € Int(og) is straight. This
shows

1
Wps(0p) = (a:—i—y—i—z—k—) - t.
TYZz
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(—1,2,-1) o

(-1,-1,-1)

FIGURE 9.1. The distinguished model of P? and its affine Legendre dual. The
trivalent graphs indicate the discriminant loci, the dashed lines on the left the
one-cells added in the star-subdivision. The little arrows indicate parts of

unbounded cells of the discriminant locus.

(-1,1,-1)

(0,0,-1)

FIGURE 9.2. A reflexive polytope with edges and corners pushed in and its
Legendre-dual, following the same conventions as in Figure 9.1.

Example 9.2. Consider the reflexive polytope = depicted on the left in Figure 9.2, a trun-
cated tetrahedron with parallel top and bottom facets that is symmetric under cyclic permu-
tation of the coordinates. The polar dual is the bounded polyhedron oy on the right of the
same figure.

Note that each edge of og has integral length two. This means that the toric Fano variety
X with anticanonical Newton polyhedron Z is singular along each one-dimensional toric
stratum; each such stratum has a neighborhood isomorphic to a product of a two-dimensonal

Aj-singularity with G,,.
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FIGURE 9.3. Refinement of the discriminant locus on a bounded two-cell of Z.

In exactly the same way as in Example 9.1, we arrive at a tropical manifold (B , 97,@)
with flat boundary and 2 given by the star subdivision of =. The Legendre-dual (B, Z,¢)
has a double tetrahedron as the unique bounded maximal cell. Both tropical manifolds are
depicted in a chart at the origin in Figure 9.2. The discriminant locus A of (B, £2) now is
contained in the union of triangles added in the star-subdivision, with the intersection of A
with one such triangle 7 three edges meeting in the barycenter of 7. The discriminant locus
A of (B, £) has nine rays emanating from the barycenters of the edges of oy, and then for
each facet 7 C 0g again a union of three edges intersecting in the barycenter of 7.

Now neither side has simple singularities. For example, the affine structure of (B, Z?)
at an interior point of an edge of A on doy is conjugate to ((1) _12 8), the square of the
monodromy of a focus-focus singularity times an interval. Thus although it is not hard to see
that (B, ) is compactifiable (Definition 1.2), the assumptions of [GS3, Def. 1.26] can not
be fulfilled for this compactification, and hence the existence of a consistent wall structure is
not immediately clear.

In the present case we can proceed as follows. Each of the bounded two-cells of (B, &) is
integral affine isomorphic to the planar triangle with vertices (0,0), (2,0), (0,2). Subdivide
each such two-cell as in Figure 9.3 and refine & by intersection with the fan over the faces
of this subdivision. The discriminant locus can then be refined as indicated by the dashed
graph in Figure 9.3, along with replacing each unbounded cell of A by two copies joined with
the rest of the graph at disjoint trivalent vertices lying on the edges of og. Now we can indeed
run the algorithm'® to construct a compatible sequence 1. of consistent wall structures. In
a second step undo the refinement process to show that the algorithm indeed works starting
with the non-rigid data (B, 2, ).

As in Theorem 8.2 we also have a choice for the initial slab function, with a distinguished
choice a square f,, = (1 + z + y)? for each bounded 2-cell p and vertex v € p.

Now the details of the construction of the wall structure are completely irrelevant for the
computation of the superpotential in the bounded cell og € &2: By the same arguments as in
Theorem 8.2, it is again just the sum over broken lines with at most one bend when crossing
doy. Moreover, the set of such broken lines with endpoint at any p € Int oy are in bijection
with the integral points of dog. For the distinguished slab functions the coefficient carried by
the broken line equals 1 for the ones without bend and 2 for the others. The superpotential

19T here is a technical problem to assure that the process is finite at each step. This can be done by working
with dp + v for d > 0 and an appropriate ¥ or by inspection of the local scattering situations in the case at
hand.
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A similar challenge concerns the existence of a consistent wall structure on (B P, @), but
analogous arguments apply. The resulting toric degeneration (¥ — T,9) then fits into an
algebraizable two-parameter family with the singular toric Fano manifold X with its toric
anticanonical divisor D as another fiber. We have not performed a more detailed analysis
to identify this family. Possibly it is just isomorphic to a deformation of D inside X, as in
Example 2.7 for P? and D a family of elliptic curves.

CONCLUDING REMARKS.

It would be interesting to more systematically analyze Landau-Ginzburg models for non-
toric Fano threefolds with our method. In [Prl, Pr2] so called very weak Landau-Ginzburg
potentials are found. The terms and coefficients of these Laurent polynomials have to be
chosen very carefully. As the potentials presented there do not come from a specific algorithm,
but rather are written down in an ad hoc way, one would like to have an interpretation of
the terms occurring. One might ask whether there are toric degenerations reproducing the
potentials in [Prl, Pr2] via tropical disk counting, as in the examples here.
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