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SPLITTING OF GROMOV-WITTEN INVARIANTS

WITH TORIC GLUING STRATA

YIXIAN WU

Abstract

We prove a splitting formula that reconstructs the logarithmic Gromov—
Witten invariants of simple normal crossing varieties from the punc-
tured Gromov—Witten invariants of their irreducible components, un-
der the assumption of the gluing strata being toric varieties. The for-
mula is based on the punctured Gromov—Witten theory developed by
Abramovich, Chen, Gross, and Siebert.
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1. Introduction
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Relative Gromov—Witten invariants of a smooth projective variety Y and
a smooth divisor D, developed in [16], [13], [17], [18], have been one of the
most important techniques to calculate Gromov-Witten invariants. For a de-
generating family of projective schemes X — B with general fiber over b € B
a smooth variety X, and the central fiber X, the union of two smooth irre-
ducible components Y7, Y5 meeting along a smooth divisor D, a degeneration
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214 YIXIAN WU

formula is obtained to relate the Gromov—Witten invariants of X; with the
relative Gromov—Witten invariants of (Y1, D) and (Y, D).

Recently, logarithmic Gromov—Witten theory developed in [12], [9], [2] has
been proved to be a successful generalization of the relative Gromov—Witten
theory to the case of D being a normal crossing divisor of Y. Especially,
for a degenerating family with central fiber Xy a normal crossing variety,
a decomposition formula is obtained in [3] that relates the Gromov—Witten
invariants of X}, with the logarithmic Gromov-Witten invariants on Xy of
rigid decorated tropical types. The rigid decorated tropical types T restrict
the combinatorics of the maps, including the dual intersection graphs, the
image cones of irreducible components, marked and nodal points, the contact
orders and the curve classes.

To further decompose the logarithmic Gromov-Witten invariants of X¢ of
type T to the invariants of irreducible components of X, the theory of punc-
tured Gromov—Witten invariants is built in [4]. Punctured Gromov—Witten
theory studies logarithmic maps with domain being punctured logarithmic
curves, which naturally occur after splitting log smooth curves along nodal
points. The combinatorics of the split maps are encoded in tropical subtypes
T1, ..., Tr. There is a natural splitting morphism

.
M(X/B,7) = [[#(X/B, ).
i=1

In this paper, we prove an explicit formula (Theorem 1.5) presenting the
virtual fundamental class of .Z(X/B,T) under splitting as the products of
the strata of .#(X/B, T;) associated to 7;-marked tropical types, under the
assumption that the gluing strata are toric varieties whose log stratifications
are the same as the toric stratifications. A numerical splitting formula of
logarithmic Gromov-Witten invariants (Corollary 1.6) is obtained as a direct
corollary.

1.1. The main results. Let B be a log point (Speck, Mpg), whose log
structure is determined by a chart Qg — k with @p a toric monoid. Let
X — B be a projective log smooth morphism between fine, saturated log
schemes with Zariski log structures. Let 8 be a curve class in X.

The moduli space .# (X /B, T) of basic stable punctured maps marked by
a global decorated type 7T is a logarithmic algebraic stack [4, Thm A]. The
tropicalization of .Z(X/B,T) is locally determined by the tropical types of
the maps. For a geometric point in .#(X/B,T) with tropical type w, there
is an associated basic cone w (Definition 2.5) of w parametrizing the tropical
maps of type w. Supposing T’ is a geometric point lying in the closure of T,
there is a canonical contraction morphism (Definition 2.10) from w’ to w, with
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SPLITTING OF GROMOV-WITTEN INVARIANTS 215

w’ the tropical type associated to T’. The contraction morphism induces an
inclusion of the associated basic cone @ as a face of @’. The tropicalization of
A (X/B,T) is defined to be the colimit of the basic cones over the geometric
points under the above maps.

In order to define logarithmic evaluation maps, we need to modify the log
structure on .#(X/B,T) based on the set S of nodal and punctured points
where we evaluate at (Section 2.2). The tropicalizations of the modified mod-
uli spaces are now determined by the associated evaluation cones wg (Def-
inition 2.5), parametrizing the tropical maps with type w together with a
marking on each edge and leg corresponding to points in S. There is a tropi-
cal evaluation map by taking the evaluations at the markings

(1.1) evty, 1 @s — [[ (X)),

with ¥(X) the tropicalization of X.

Splitting a logarithmic map along nodal points of the domain can be de-
scribed easily using the tropical types. Fix a subset S of edges in the graph G
of 7. Cutting along each edge p € S results in a set of global decorated types
T1, ..., T with Sy, ..., S, the set of additional half legs from the edges in
each type. We use @ = wg and w; = w; g, to denote the associated evaluation
cones of types w and w; marked by 7 and T;.

Theorem 1.1 ([4, Thm C]). There is a finite, representable morphism of
moduli spaces of punctured log stable maps to X over B

-
§:.M(X/B,7)— [[#(X/B,T;).
i=1

For each edge p € S, the tropical type T determines a cone o(p) of X(X)
(Definition 2.1), and a log scheme V}, := Vx (o (p)), the logarithmic stratum
of X of o(p). The logarithmic subscheme V), is the gluing stratum where
the nodal point of p is restricted on by 7. The reverse process of gluing
punctured maps of type T; requires both schematic and tropical matching for
nodal points. Though in general complicated, under the case of the gluing
strata being toric varieties, the gluings of the logarithmic maps are completely
determined by the tropical information.

Assumption 1.2. Assume B = Spec(k — Qp) is a log point with Qp a
toric monoid. Suppose X — B is an integral, log smooth morphism between
fine, saturated log schemes. Assume My is globally generated, and for each
edge p € S, the strict closed subscheme V), of the log scheme X has the
underlying scheme a toric variety, and the log stratification of V), is the same
as the toric stratification.
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216 YIXIAN WU

Lemma 1.3 (Proposition 4.1 and Theorem 4.2). There ezists a toric vari-
ety X, associated to the fan (X,, N,) with canonical toric log structure, such
that V), is isomorphic to a toric stratum of X,.

For curves of types w;, the tropical matching condition is a fiber diagram

of cones
r -1 roo~
(Hi=1 5wi) 0) —— Hi:l Wi
1 -
0 HpGS prR’
with
T K J—
- evte,. ker A
(12) H€wi : le L> H Np,R X Np,R w H N, R-
i=1 i=1 pES pes

Here, the second map is the cokernel of the diagonal map. The map (1.2) tells
the difference by evaluating at two half edges after splitting. Instead of re-
quiring the evaluations to be matched along split edges, we introduce generic
displacement vectors and require the maps to be matched after the pertur-
bation along this vector. The minimal types satisfying the new matching
conditions determine the components of a substack of [[\_, .#(X/B, ;) ra-
tionally equivalent to §(.# (X/B,T)). The idea is inspired by the intersection
theory of toric varieties in [10].
Definition 1.4.

(1) A vector U € [[,cg Ny is a displacement vector if 9 lies in the sub-
lattice
Ny, X - % np Npg € T Nos
pEeES
where the map N,, — Np is induced by the tropicalization of the
map X,,, — B.
(2) For a displacement vector U, define A() to be the set of types [p] =
(p1,---,p,) such that

(i) p,; admits a contraction morphism to 7, fori =1, ..., n,
(ii) U e im(I];_; &p,), for [];_; €p, defined in (1.2) and
(i)

dimp, —dimT = ZdimNp — (S| =7 +1) rank Q%

r
i=1 peS

By condition (i), the types in A(Y) determine strata in

[[-#x/B.7).

i=1
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SPLITTING OF GROMOV-WITTEN INVARIANTS 217

Condition (ii) requires the existence of tropical maps with type
(p1,-.-,p,) that match along splitting edges after the perturbation
along U. Condition (iii) requires the types to have expected virtual
dimension.

(3) A displacement vector U is generic if for any type [p] € A(Y), the
map [[;_; €p. is injective and U lies in the interior of the image cone
im(ITi—; £p,)-

(4) For each [p] € A(U), we define the multiplicity

Mip) = [im(ngi)sat : im(ngi)]

=1

where g, is the lattice map associated to e, and im([];_; gp,)%*" is
the saturation of the sublattice im(J];_; £p,) in [I,es Np-

Now, we are ready to state the main result:

Theorem 1.5. Let X be a fine, saturated logarithmic projective scheme,
log smooth over a log point B = Spec(Qp — k), with Qp a toric monoid. Let
T be a decorated global tropical type. Fix a set of the splitting edges S and let
T1, ..., Tr be the decorated global types obtained after splitting.

Suppose Assumption 1.2 is satisfied. Let U be a generic displacement vector
defined in Definition 1.4. Then, for the finite, representable morphism of
moduli spaces of punctured stable log maps

§: M(X/B,T) = ﬁ%(X/B7Ti))

i=1
the following equation holds
(1.3)
m .
. X/B. T Vlrt [P] . L X/B. p. virt
Sl (X/B, 7 S Il o oA

[PlEA(D) i= 1

with jp -, the finite morphism from .#(X/B, p;) to .#(X/B, T;) associated to
the contraction morphism p; — T;, and Aut(p,/T;) the automorphism group
of p; relative to T;.

A special case of Theorem 1.5 is the splitting of 7 at all edges. Then each
split type 7; consists of one vertex with a number of legs, with the associated
image stratum strictly smaller than the full target. In this case, (1.3) expresses
the punctured invariants of type 7 in terms of punctured invariants of these
logarithmic strata. For example, in a degeneration situation as in [3], this
expresses the Gromov-Witten invariants of a general fiber in terms of the
punctured invariants of the strata of the central fiber. Such localization to
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218 YIXIAN WU

the strata does not follow from the general gluing formulas in [23], [4, Thm
C] and [24].

A direct corollary of Theorem 1.5 is a numerical formula of logarithmic
Gromov—Witten invariants.

Corollary 1.6. Follow the situation in Theorem 1.5. Fiz a subset P of
legs of the graph of T, which corresponds to a subset of punctured points. Let
P, be the legs that lie in T; after splitting, for i = 1, ..., n. There are
evaluation maps e : M (X/B,T) — X'PI glong punctured points in P and
ep,  Mp (X/B,Ti) = XIPil along punctured points P;, for p, the T;-marked
decorated types.

Let B € H*(XIP!) be a cohomology class with a Kiinneth decomposition

:Zau'ﬁu,llg"'lgﬁu,ra
"

where B,,; € H*(XPil), fori=1, ..., n. Then,

5*{/[//1()(/3 e <)
ZZ Z o H|Aum[p]

j*iTie*i(/Bu,i)'
i [pleA(D) t(p;/74)l w/[‘//[(X/B,pi)]virt p P

Proof. The claim is a direct result of Theorem 1.5, following the projection
formula. ®

1.2. Idea of the proof and structure of the paper. The foundation
of the paper is based on the punctured Gromov—Witten invariants in [4]. In
Section 2, we provide a brief review of punctured Gromov—Witten theory and
the gluing formalism. We briefly cover the basic theory of the moduli spaces
of punctured logarithmic maps and the virtual theory over the moduli of the
maps to the relative Artin fans in Section 2.1. We study the evaluation log
structures in Section 2.2. There are canonical evaluation idealized structures
on the modified moduli spaces such that they are idealized log smooth (Propo-
sition 2.8). In Section 2.3, we recall the gluing formalism studied in [4, §5.2].
It is shown in Proposition 2.14 that up to a reduction of the moduli spaces,
it is sufficient to study the commutative diagram

— 66\' —
glev red T ev
f)ﬁred Hi:l mri ,red

(1.4) lev ln eva,

following the fiber diagram (2.6).
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SPLITTING OF GROMOV-WITTEN INVARIANTS 219

Such diagram has nice properties. First, the moduli spaces H:Zl ﬁf_‘i’red
and the evaluation maps are both idealized log smooth (Proposition 2.8, Corol-
lary 2.9). Hence, locally they admit charts of toric morphisms. Second, under
Assumption 1.2, the gluing strata X, and X, have global toric structures.
The global toric structures provide a canonical patching of the splitting for-
mulas from the local charts.

Since the local gluings are toric, we review the intersection theory in toric
varieties in Section 3 following [10]. We give the necessary generalization of
the Fulton-Sturmfels formula to toric stacks in Corollary 3.6.

The local form of the splitting formula is explored in detail in the first two
sections of Section 4. In Section 4.1, we study the structures of the gluing
strata X, and X.,, based on the logarithmic fiber products of toric varieties
studied in Appendix B. Each of them is a disjoint union of log schemes
isomorphic with each other, denoted Z, and Z,, correspondingly. In Section
4.2, we study the local chart of the gluing formalism (1.4). Etale locally, the
moduli space H:Zl ﬁf_‘i’red admits a smooth map to a quotient stack of a
toric variety by an algebraic torus. The quotient stack AV is an evaluation
enhancement of the Artin cone defined in (4.8) and has a canonical evaluation
map to the gluing strata [;_, X,,. By studying the gluing of A" using the
generalized Fulton-Sturmfels formula, we obtain the splitting formula for 4°Y
in Lemma 4.6 and the local splitting formula in Proposition 4.5. In Section
4.3, we finish the proof of the global splitting formula Theorem 1.5 (Proof of
Theorem 4.2) by showing the splitting formula patches under a fixed generic
displacement vector.

1.3. Other approaches. Relative Gromov—Witten invariants for smooth
pairs (X, D), studied in [16], [13], [17], [18], are defined through the moduli
spaces of stable maps to expansions of X along D. The stable maps to the
expansions are transverse, hence the degeneration formulas are obtained by
gluing the underlying stable maps. Using the idea of expansion, the degenera-
tion formulas for smooth pairs are studied using twisted stable maps in [5] and
logarithmic stable maps in [14], [8]. These different approaches are proved to
be identical with logarithmic Gromov—Witten invariants for smooth pairs in
[6]. In [15], Kim, Lho and Ruddat provided a proof of the gluing formula for
logarithmic Gromov—Witten invariants for smooth pairs without expansions
using logarithmic technique. Because of the transverse nature of the under-
lying tropical geometry, all these approaches come with splitting formulas
according to strata similar to our Corollary 1.6.

Combining the idea of expanded degenerations and tropical geometry, Ran-
ganathan showed a general gluing formula of log Gromov—Witten invariants
in the normal crossing settings in [24]. The numerical degeneration formula
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220 YIXIAN WU

there requires the knowledge of a Kiinneth decomposition of universal divi-
sor expansions. We expect a similar splitting formula as we present can be
obtained by proving an explicit Kiinneth formula for universal expansions of
toric varieties.

The gluing and splitting formalism using punctured Gromov—Witten in-
variants has a symplectic parallel by the theory of exploded manifolds due to
Brett Parker in [22], [23]. The concept of generic deformation vectors in [22]
partially inspires our definition of the generic displacement vectors here. In
a special case for rigid analytic Gromov—Witten invariants, a gluing formula
has been proved by Yu [29].

1.4. Conventions. We follow the conventions in [3] and [4]. All logarith-
mic schemes and stacks are fine and defined over an algebraically closed field
k over characteristic 0.

The affine log scheme with a global chart defined by a homomorphism
@ — R from a monoid @ to a ring R is denoted Spec(Q — R). For @ a toric
monoid, we define QY := Hom(Q,N) and Q* := Hom(Q,Z). We use Sg to
denote affine toric variety Spec(k[Q]) with the canonical toric log structure
and T to denote Spec(k[Q®P]). We define Ag := [Sg/Tg] to be the Artin
cone of ). Suppose L C @ is an ideal of @, then we use Sg 1, to denote that
subscheme of Sg determined by the ideal generated by L. We use Ag, 1, for
the stack [Sg 1./To].

For a toric variety X and a cone o € £(X) in the fan of X, we use Ox (o)
to denote the algebraic torus Speck[o N M] that is a subscheme of X, and
we use Vx (o) to denote the closure of Ox (o) in X. For a Zariski log scheme
X and a cone o in the tropicalization of X, we use Vx (o) to denote the closed
stratum whose dual cone of the stalk My at the generic point of Vx (o) is 0.
For a logarithmic stack X and a cone o in the tropicalization of X, we use
Vx (o) to denote the strict closed integral substack with pullback Viy (o) on
each Zariski smooth chart W — X. For a proper, representable morphism
between logarithmic integral stacks f : X — Y, we use f.[X] to denote the
push-forward class f [X], as studied in [27, Def 3.6] and [7, Appendix B.
We use |S| to denote the cardinality of a finite set S.

2. Punctured invariants and the gluing formalism

In this section, we give a brief introduction to the punctured Gromov-
Witten invariants and the gluing formalism studied in [4]. We show the glu-
ing formalism admits a local model of fiber product of toric varieties in the
category of fine, saturated log schemes.
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SPLITTING OF GROMOV-WITTEN INVARIANTS 221

2.1. Punctured Gromov—Witten invariants. Let X be a projective
log smooth scheme over a log scheme B. A punctured log curve over a log
scheme W is given by

(CO &CLVV,DZ (pla"'7pn))a

where

(1) C—W is alogarithmic curve with a set of disjoint sections {p1,...,pn}.
(2) C° is a logarithmic curve with the underlying curve C' and log struc-
ture

MCO C MC @Oé‘ ng

for P C M the divisorial log structure along sections p, such that for

any geometric point T € C and sz ¢ Mz @Oé Pz, we have aco(sz) =

0.
We note that Mce is not necessarily saturated. Figure 1 in [4] provides a
nice example. A punctured log map to X — B over W — B is a punctured
log curve (C° — C' — W, p) and a morphism f : C° — X over B. It is stable
if Mco is generated by M¢ and f°(f*(Mx)) and the underlying map f is
stable in the usual sense. B

The contact order of a punctured map over a log point W = Spec(Q — k)

at point p € p is the composition

_ b .
up s M, g 13 Moy = Q@ Z 22 7.,

The contact order is negative if the image of u, is not contained in N, which
naturally occurs over the points p with Mc¢ , a strict submonoid of Mceo 5.
Via the functoriality of the tropicalization functor, a stable punctured log
maps gives rise to a family of tropical punctured maps [4, §2.2.1], where we
extract the combinatorial data of global types. As in the theory of logarithmic
Gromov—Witten, the moduli spaces of the stable punctured log maps to X
are stratified by global types.
Definition 2.1 ([4, Def. 3.4]). A global type T of a family of tropical
punctured maps is a tuple (G, g, U, o) consisting of
(1) A connected graph G with a set of vertices V(G), a set of edges E(G)
and a set of legs L(G).
(2) A genus map g: V(G) — N.
(3) An image cone map o : V(G) U E(G)U L(G) — Z(X).
(4) A global contact order map u

U:EG)ULG) — || €(X)

ceX(X)
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222 YIXIAN WU

such that u(z) € €4 (;)(X), with o(z) the image cone of any edge or
leg . Here, for any cone o € 3(X), we define

¢ (X) = colimfg""/i(a) No,

for a point y € X. By the cone o, we mean the dual cone ﬂ;y

A global decorated type T is a tuple (7, A) with 7 a global type and A a
function from V(G) to a monoid of curve classes of X. We say a global type
7 or a global decorated type 7 = (7, A) is realizable if there exists a tropical
map to (X)) with associated global type 7.

A marking by T of a punctured map (C°/W, p, f) is defined in [4, Def.3.7].
Roughly speaking, a map is marked by 7 if the genus decorated dual graph
of the curve C admits a contraction to (G, g,), the image of each node and
punctured point lies in the associated logarithmic strata of the cone o, both
the contact orders of non-contracted edges and legs and the curve classes after
contraction are determined by 7. Theorem 2.2 in [4] lays the foundation of
the punctured Gromov-Witten theory.

Theorem 2.2 ([4, Thm A]). Let T be a global decorated type. Then the
moduli space M (X /B, T) of T-marked basic stable punctured maps to X — B
18 a Deligne-Mumford logarithmic algebraic stack and is proper over B.

The insights of Olsson’s category of logarithmic schemes [21] lead to the
concept of Artin fans. As defined in [3, §2.2], for a log Deligne-Mumford
stack X, the Artin fan of X is the algebraic stack constructed by gluing
toric quotient stacks, called Artin cones, of stalks of My. Let T be a geo-
metric point on X and let Pz be ﬂxvf- We define an Artin cone Az =
[Speck[Pg]/ Speck[P£P]]. The generization of points results in open embed-
dings of Artin cones. The Artin fan Ax is the colimit of Artin cones along all
points. Artin fans play an important role in the virtual theory and connect
the tropical picture with the log picture.

Let X = Ax X 4, B be the relative Artin fan. The moduli space M (X /B, T)
of 7-marked basic stable punctured maps to X — B is again an algebraic
stack. For 7 realizable, the moduli space MM(X /B, T) is pure dimensional
[4, Prop.3.28].

There is a natural evaluation map

m(X/B,T)%iXE---XQK,
taken over all the edges and legs of type 7. We define
(21) meV(X/B,T) Zm(X/B,T) X(ixg”'xﬁi) (K XB - XQX)

Let S be a subset of edges of the graph G of 7. By splitting G along the
edges in S, we obtain a collection of types 7;, i = 1, ..., r. As shown by
Theorem 2.3, the virtual theory of the splitting morphism of the moduli spaces
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SPLITTING OF GROMOV-WITTEN INVARIANTS 223

of punctured maps to X — B is compatible with the splitting morphism of
the moduli spaces of punctured maps to the relative Artin fans X — B.

Theorem 2.3 ([4, Thm C, Prop 5.15, Thm 5.17]). There is a Cartesian
diagram

M(X)B,7) —>— T\, #(X/B, )

(2.2) }A ls

M (X /B, ) — [}, M (X/B, 1),

with horizontal splitting maps finite and representable, and vertical maps strict
morphisms. There are obstruction theories
G = Lz (x/Br)/mev(x/B,),
Gopt = Ly, o (X/ B0/ TT, 9 (/B
such that the obstruction theory of the left vertical map is the pullback of the
obstruction theory of the right vertical map. For a € A, (MM (X /B, 1)), there
18
5.2() = £'9/(a),
where & and &' are the Manolache’s virtual pullback defined using these two
obstruction theories.

2.2. Logarithmic evaluation maps. Different from Jun Li’s situation
using expanded degenerations, the gluing of a logarithmic stable map from the
restrictions to closed subcurves requires more than gluing on the schematic
level. In order to obtain a gluing formalism, we first need to fix the problem
of the non-existence a logarithmic evaluation map from the moduli space
M(X/B, ) to X. It requires us to do a modification of the log structure on
the moduli space.

For ease of notation, we use M. := M(X' /B, T) and M := MV (X /B, 1)
for the rest of the paper. Let G be the graph associated to 7. For each element
p € E(G)UL(G), let s, : M, — €° be the universal section of the punctured
or nodal point associated to p. Define ﬁp to be the logarithmic algebraic
stack with the underlying stack 9, and the log structure sy Mco. With this
log structure, there is a canonical evaluation map ﬁp — X on the section of
p. Note that the log structure on ﬁp is fine, but may not be saturated.

For a subset S C E(G)U L(G), let ﬁsy.,. be the saturation of the fine fiber
product

(2.3) M, xhe .. xfreon, . pes

in the category of fine log stacks. For the rest of the section, we fix a subset
S and use M, for Mg . Define M = M X, M.
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224 YIXIAN WU

Proposition 2.4 ([4, Prop.5.5]). The canonical map ﬁ?,_" — MY is an
isomorphism on the underlying stacks provided S C E(G), and generally in-
duces an isomorphism on the reductions.

There is a canonical idealized structure on M-, such that N, is idealized
log smooth [4, Thm 3.24]. The idealized structure in [4, Def 3.22] comes from
the fixed combinatorial conditions including dual graph G, image strata fixed
by o, the contraction to the global type 7 and the puncturing ideal. We will
construct an evaluation idealized structure on %.,. following Construction 2.7,
with which ﬁ,. is also idealized log smooth. Similar to the log structures
on M,, both log structures and evaluation idealized structure on {Dv?.,. are
determined by the global type 7.

For a basic punctured log map of type T over a point w, the dual cone of
the stalk (Mo, )y, is called associated basic cone of T. The associated basic
cone parametrizes the tropical maps of type 7, which we describe concretely
in Definition 2.5. Similarly, the dual cone of the stalk (ﬂgﬁﬂm)ﬂg also admits
a simple description by associated evaluation cone of 7, which parametrizes
the tropical maps of type 7 with an additional marking on each edge or leg
in S.

Definition 2.5. Let 7 be a realizable global decorated type. Define the
associated basic cone T of T the set of elements

(Vo)vev(a), lE)EcE(@G)) € H o(v) x H R>o,
veV(G) EEE(G)

such that V,, — Vir = lg - U(E). Here vg and v} are the vertices of the
edge F, with order specified by u(F). As V,, and V., both lie in o (E), the
difference V,,, — Vs well-defined.

Define the associated evaluation cone Ts of T with respect to a set S C
E(G) U L(G) to be the set of elements

(Vo)vev(a), UE)EeE(@): (tp)pes) € H o(v) x H R>g x HRZ(J,
veV(G) EcE(G) pES
such that V,,, — Vi =lg-U(E), V,, + 1, -U(p) € o(p) and te <. for e in
E(G)NS. Here, if p € L(G), we define the vertex v, to be the vertex of leg
p; if p is an edge E € E(G), we define the vertex v, to be the vertex v} with
Vip — Vi, = lp-U(E), specified by the orientation of the contact order. There
is a tropical evaluation map

evt, : Tg — H o(p),

(Vo)vev(a), ) EcE(@): (tp)pes) = (Va, +tp - U(P))pes-
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Under the case of B = Spec(Qp — k), the tropical evaluation map evt,
factors through the fiber product of cones o (p) over QY. The map

(2.4) evy : Ts = o(p1) XQy,  XQy, o(ps)
that evt, factors through is later used in Lemma 4.6.

Lemma 2.6. Let T be the tropical type of the punctured map over a geo-
metric point W on 51,. Then, there is an isomorphism between the dual cone
(Myﬁﬂw)ﬂg and Tg.

Proof. By the definition of M, in (2.3), there is a projection from M, —
ﬁp, for every p € S. Let w, be the geometric point in ﬁp under the projec-
tion. Let Qp be the monoid M~ . From the tropical interpretation of the
basic log structure in [4, §2.2], for p E S and the associated punctured or nodal
point s, : M, — €°, there are isomorphisms between QpJR = §p(M¢o7§p(@))
and the cone

(Vo)oev(e) (B)per@) to) € [ o@) x [] RsoxRxo
veV(QG) E€E(G)
with V,, — Vi =g -u(E), va—i—tp U(p) € o(p) and ¢, <lpifpeE(G)
As Q is the saturation of Qpl Do B Qp‘s‘, the dual cone Q]R is the fiber

product of cones Qm R XQY " XQyY QPISI .- Thus, there is an isomorphism of

cones QR — Tg. 'Y
Now we construct the idealized structure on E/DVT,., with which ﬁ.,. is ide-
alized log smooth over B. It follows from the following general construction
of an idealized log structure on a logarithmic stack M, assuming there is a
strict closed embedding of (M, M) — (N, My) determined by a sheaf of
log ideals of My and there is an idealized log structure Kny on N. The
construction is the same as the log scheme case in [20, Prop II1.1.3.4].

Construction 2.7. Assume there is a strict closed embedding of (M, M)
— (N, My), such that M is the closed substack of N determined by the ideal
generated by an(K'), with K a log ideal sheaf of My and ay the structure
morphism. We construct an idealized structure KCp; to be the ideal sheaf of
M generated by the pullback of K’ and Ky.

It is easy to check that ap(Kpr) = 0, thus Ky is a well-defined idealized
structure. The morphism (M, My, Kyr) = (N, My, Ky) is idealized log
smooth by [20, Variant 1V.3.1.21]. Note that by definition, a logarithmic
stratum M of N is determined by a logarithmic ideal sheaf, hence satisfies
the condition for the construction.

Let Kon,. be the canonical idealized structure on 9., defined in [4, Def.3.22].
For p € S, the map e, : ﬁp — M is the composition of the strict section
map S, : ﬁp — €° and the universal curve €° — 9t.. The section map
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ﬁp — €° is a closed immersion of the logarithmic stratum of €° associated

to the puncturing p. We define an idealized log structure K¢o on €° by the

pullback of Koy, on M,. Define Kg; to be the canonical idealized structure
P

on 53/?,, associated to s, constructed in Construction 2.7 and Kg;  to be the
sheaf of ideals generated by the pullbacks of ideals Kg; under the projection
P

maps M, — %p,
Proposition 2.8. The logarithmic algebraic stack ﬁ, with log ideal Kgy
1s idealized log smooth over B.

Proof. With the idealized structure K¢o on €°, the universal curve €° —
M. is ideally strict, that is, the idealized structure on €° is generated by the
pullback of idealized structure on 90,. Since €° — 9, is log smooth, it is
idealized log smooth by [20, Variant IV.3.1.22]. By [20, Variant IV.3.1.21],
the closed embedding ﬁp — €° is idealized log smooth. Hence, we obtain
that e, : E/DVTP 22, €0 — 9, is idealized log smooth.

Let ﬁine be the fiber product of fine logarithmic stacks

ﬁ1?1 Xg‘%ﬁ T ngltli ﬁImsw
with p; going over elements in S. As the idealized log smoothness is stable
under fine fiber products, with ideal sheaf Kﬁgne on E)Aﬁ?_ne generated by the
pullback of ideals Kﬁp, the projection map ﬁﬁ“e — M. is idealized log
smooth. By the idealized log smoothness of 9t over B, we obtain that ﬁﬁne
is idealized log smooth over B.

Let g : M, — ﬁﬁ“e be the saturation morphism. By [20, §II1.3.1.11], the
saturation morphism g is log étale. As the projection maps ﬁ, — ﬁp factor
through ¢, the ideal sheaf ,CDTTT is generated by g* (Kﬁgne). The morphism
g is ideally strict, hence is idealized log smooth. The logarithmic algebraic
stack ﬁ.,. is idealized log smooth over B. 'Y

Corollary 2.9. Let M be the reduced induced logarithmic stack of

T,red

ﬁ?r". Let Kﬁev i be the idealized structure on ﬁf_‘jred associated to the strict

closed embedding to ﬁf_‘fmd — ﬁi" constructed in Construction 2.7. Then
the corresponding idealized log stack E/)Jva,fred 1s tdealized log smooth over B.
Proof. The statement follows from [20, Variant IV.3.1.21]. [ ]
Following the idealized smoothness of ﬁ.,., we obtain that the stratification
of ﬁ.,. is encoded in the global types with contraction morphisms to T, similar
to [4, Rmk 3.29].
Definition 2.10. A contraction morphism of global decorated types w —
T is a map of the graphs G,, — G, contracting a subset of edges, such that
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the following properties are satisfied:

(1) the global contact order of T associated to an edge or a leg p is the
same as the global contact order of the edge or leg in w surjective
onto p,

(2) the genus and the curve class of a vertex in 7 are the sum of those of
the vertices in w mapped to v and

(3) the cone of a vertex, edge or leg in 7 is a subcone of any vertices,
edges or legs contained in the preimage.

Suppose w — T is a contraction of global decorated type. The preimages of
elements in S form a subset of the edges and legs of w, which we again denote
S. Then, by the definition of the associated evaluation cones in Definition 2.5,
there is a face inclusion 7s — ws whose image is the locus corresponding to
points with [ = 0 for the contracted edges in the graph of G. The evaluation
map evt, in Definition 2.5 is the restriction of evt,, on Tg.

Remark 2.11. Let us give the idealized structure on ﬁf_‘fred a local de-
scription.

Let w be a global decorated type that admits a contraction morphism to 7.
We first take a look at the idealized structure of 9M,,. Let @, = Hom(wz, N)
be the associated basic monoid of w as defined in [4, Def 2.38] and Q. =
Hom(7z,N) be the associated basic monoid of 7. Let L, be the stalk of
the ideal sheaf Koy, at a geometric point of type w. Since T is realizable,
by [4, Prop.3.23]), the ideal L, is generated by the inverse image of Q,\{0}
under the generization map Qo — Q.

Next, we take a look at the local structure of punctured points. Let Qu, , C
Q. @® Z be the stalk of Mgo at the punctured or nodal point associated to
p € S of a punctured map with type w. Let L, , be the ideal generated by
the preimage of L,, under Q. , — Qu and the ideal Qu , N (Quw € Zso). It
follows that L, , is generated by the preimage of L, , under the generization
map Qu.p — Q- p, thus is generated by the preimage of Q- ,\{0}.

Now, we are ready to study the idealized structure of ﬁf_v Let @w =
Hom(&@z,N) and L, be the stalk of the ideal sheaf Kﬁiy at the geometric
point T — mev a— ﬁ;’." As the monoid @w is the saturation of the fibered

T,re
sum

Qw,;ﬂl Q. " Da., C24«',P|s|

in the category of fine monoids, the ideal L is generated by the image of
L p, together with the elements in @w which are mapped to the nilpotent
elements under the structure morphism. For type 7, the ideal ZT admits a
similar description. The ideal L., = Q- ,\{0}, hence L, is the prime ideal
@T\{O}. As L, ,, is generated by the preimage of L, ,, we obtain that Ew is

Licensed to Univ of Texas at Austin. Prepared on Sat May 18 06:44:07 EDT 2024 for download from IP 128.62.216.51.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



228 YIXIAN WU

the preimage of Z,.. The toric variety

Speck[Qul/(Lw) = Vipeero. ()

is the toric strata associated to the subcone T in @.

Corollary 2.12. Let E(ﬁ.,.) be the tropicalization of the Artin stack M,
as mentioned in [3, §2.1.4] and constructed in [1] and [26]. Then, the image
of the finite morphism ,‘337‘,, — 5’.7?., is the substack Vﬁf (ws) associated to the

cone Wg € L(M).

Proof. Tt follows from the idealized smoothness of ﬁw and iﬁ: and the
local description of the associated basic monoids and idealized structure in
Remark 2.11. 'Y

2.3. The gluing formalism. Fix a decorated global tropical type T =
(1, A) with 7 realizable and S C E(G) a subset of edges of the graph G of T.
By splitting along edges in S, we obtain subtypes 71, T2, ..., 7. For i =1,
2, ..., r, let S; be the subset of legs of the graph in 7;, obtained from the
splitting edges.

In the rest of the section, we use T and 7; to denote the evaluation cones
Ts and T;g,. For a global decorated type w that admits a contraction to T,
the set S is a subset of edges of w, we use @ to denote the evaluation cone wg.
Similarly, we use @; to denote the evaluation cone w; g, for w; that admits a
contraction to T;.

In the previous section, we constructed the logarithmic evaluation map
evp : ﬁi" — X for each p € S. The global type restricts the reduction of the
image strata of ev, to Vx(o(p)). We use V,, to denote Vx (o (p)). Define

(2.5) Xpi=Vp, x5 x5 Vg, pjES.

As 53/??;_" is reduced by [4, Prop.3.28], we obtain an evaluation map ev, from
MY to Xr. Similarly, let

- fs fs
X‘l’i = Vpl XB"'XBVP\SH, pj €S,

and ev,, be the corresponding evaluation map ﬁ?r" — Xr,.

Define 984 to be the following fiber product in the category of fine,
saturated logarithmic stacks

(2.6) lev _ln evr,

The gluing formalism of [4, Cor.5.13] relates the fiber product MeLeY with
M. By the reducedness of MSY in [4, Prop.3.28], we obtain Lemma 2.13.
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Lemma 2.13. Let imgl Y be the reduction of logarithmic algebraic stack
Mielev Then, the morphism from ﬁev to MEYSY induced by the fiber dia-
gram factors through the map E)ﬁgl —5 Meley, Furthermore, it induces an
isomorphism between Dﬁgl oL and zmev

Before we prove Lemma 2.13, let us first use it to show the main result
of this section Proposition 2.14, which implies that in order to study the
pushforward of the virtual fundamental class under the splitting morphism
(1.1), it is enough to study the map 6°¥ in diagram (2.6).

Proposition 2.14. Let v, : ﬁe" MY and v; - ﬁe" ML be the
canonical maps from moduli spaces with evaluation logamthmzc structures to

basic log structures. Let [3; : imf_" red — im"" be the canonical maps from

the reduced induced stack im‘j,‘;red to Smf’,_" Then, for the splitting morphism
8 MY — [, MY defined in (2.2), in the Chow group of [[;_, M, the
following equation holds

o[y = Hvz FARRCT
Here 05y meeY 5 110, Sﬁfxwd is the map induced from 6% : IME-eY
IT_, zmgv in diagram (2.6) by taking the reduction.
Proof. By [4, Prop.5.5], which we recalled in Proposition 2.4, the underly-
ing stack morphism of ~, : ﬁf_" — MY is an isomorphism. Then, by Lemma
2.13, the following diagram is commutative

ME = My — = ey
=2 L;/
[Ty 90 g P25 T .
Therefore,
019N = 6y [ U]

= (H i © BZ) red*[milev]'

o

In order to show Lemma 2.13, we need punctured maps weakly marked
by a global type 7 defined in [4, Def.3.7], and the moduli space of basic log
punctured maps of weak marking by 7, which is denoted ﬁ;’)’/. In contrast
to the moduli spaces of punctured maps marked by 7, it carries an extra
non-reducedness obtained from the infinitesimal deformation along 7, which
naturally occurs in the gluing process. See [4, §3.5.6] for a more detailed
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discussion of moduli spaces of maps of weak marking. Here, we use this as a
bridge between ﬁ.,. and 9nsbev

Theorem 2.15 ([4, Cor.5.13]). There is a fine, saturated fiber product of
logarithmic stacks

arev’ aev’ arev’
MY — MY Xp - xg MG

1 1

X, 25 X, xp-xp Xy
Following the fiber diagram
MY xp - xp MY — [T, MY

1 1

r
)(7-1 XB--- XBX‘rr — Hi:lXTN

with horizontal maps induced from the universal property of the fiber prod-
ucts, we have

T
(27) my =[] xqp, x,, X
i=1
Proof of Lemma 2.13. It is shown in [4, Prop 3.28] that 9, is reduced.
The smoothness of the underlying stacks morphism of IS — M, induces
that 9" is reduced. As S is a subset of edges, by Proposition 2.4, the canon-
ical map of moduli spaces 9IS — MY is an isomorphism on the underlying
stacks. Therefore, the moduli space MY is reduced. By [4, Prop.3.31], there
are closed embeddings MM — smgV’ and MY — Emf_v' defined by nilpotent
ideals. Hence,
miv = 7e'\jred7 mi\;,red = i)inﬂe'\;,red'

Then, by Theorem 2.15 and equation (2.7), we obtain that

r

anev _ amev’ anev’

m'r - T,red — (H m'ri XH::1 X, XT)red
=1

r
_ Sev _ amelev
= (H m‘ri XTI, Xr; XT)er B Dnred ’

i=1

3. Generalization of Fulton-Sturmfels formula

The idealized log smoothness of the evaluation maps provides us with local
toric models, where the local splitting maps can be seen as a toric morphism
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of toric stacks. We defer the discussion of the local toric models to the next
section. In this section, we study the pushforward of fundamental class under
the morphisms of toric stacks. It is a generalization of the classical result
of Fulton and Sturmfels on the intersection product of toric varieties. This
section serves as a technical foundation for the splitting formula. The readers
can feel free to skip the section first and check back later.

Let X be a toric variety associated to a fan (X(X), N(X)). Let N(Y) C
N(X) be a saturated sublattice defining a subtorus Ty C Tx. Define the
scheme Y to be the closure of Ty in X.

Definition 3.1. A vector v € N(X) is generic with respect to pairs (X,Y)
if for any cone § € X(X) with dimension dim X — dimY’, the affine space
N(Y)r + v intersects ¢ at at most one point, and if they intersect, the inter-
section point lies in the interior of 4.

Define A%(v) to be the set of cones

A’(v):={0 € B(X) | dimé = dim X —dimY, (N(Y)r +v) NS # @}.

The Chow groups of a toric variety are generated by its toric strata. It is
proved in [10, Lemma 4.4] that the subvariety Y in X is rationally equivalent
to a linear combination of the toric strata determined by cones in A°(v), for
any generic displacement vector v with respect to (X,Y’). Here, we provide
a slightly different proof using the G,,-orbit of Y under the torus action
associated to a generic vector v.

Lemma 3.2. Letv € N(X) be a generic vector with respect to pairs (X,Y).
Then, in the Chow group Agimy (X),

(3.1) YI= > m(©) [Vx()]

SEAO(v)
Here m(6) = [N(X) : N5+ N(Y)], with Ns the sublattice of N(X) generated
by the cone §. The subscheme Vx(0) is the closed subvariety associated to
cone 6.

Proof. Let L be the toric variety X xP! with the product fan structure. Let
a : L — P! be the projection and @ : N(L) — Z be the associated projection
of lattices.

We first construct the G,,-orbit of Y under the torus action of v as a
subvariety of X x P!. Define N(K)g := {(z + tv,t) | z € N(Y)g and t € R}
and N(K) the saturated integral lattice N(K)r N N(L). Let T C T7 be
the corresponding subtorus. The closure of T defines a subvariety K of L.
By toric geometry, the preimage subscheme a|;;(1) is isomorphic to Ty and
| (1) is isomorphic to Y.

Let X(K) be the fan with lattice N(K) and cones § N N(K)g for 6 € X(L).
Let K be the toric variety associated to (S(K), N(K)). Then K is the image
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of K under the proper toric morphism associated to the lattice morphism
By :N(K)< N(L). Let o : K By L % P! be the induced projection to P1.
By [3, Prop 3.1], the subscheme (a’)~!(0) satisfies the equation

[(@)H O] =D me - V()]
where 7 goes over the rays in X(K), whose image under the R-linear map

@ N(K)p 25 N(L)p =5 R

is R>o. The multiplicity m, is given by the image of the primitive generator of
7 under a. Since « is a flat dominant morphism, by the alternative definition
of rational equivalence in [11, §1.6], we obtain a rational equivalence relation
in the Chow group of X:

Y] = [of' (D] ~ [alx' (0)] = Bi[(a’)71(0)]

(32) =3 BV

-

Here 3 : K — X is composition of the map 3 : K — L with the projection
L — X. It is sufficient to show that equation (3.2) is the same as equation
(3.1).

First, there is a one-to-one correspondence between rays 7 and cones in
A®(v). Note each ray 7 € X(K) is the intersection of § x R>q and N (K)g for
a cone § in (X). The preimage @ ' (1)N7 is a point (z+wv, 1) in dg x R for
some x € N(Y)g. Hence {(N(Y)r +v) Nd} is non-empty. By the genericity
of v, there is only one intersection point. It follows that the cone § lies in
A®(v). On the other hand, for every § in A°(v), the intersection of § x Rxg
and N(K)g is a ray with image R>( under aj.

Next, we need to show the corresponding multiplicities are the same. Under
the proper morphism 3 : K — K, the image of V(1) is VL(d x Rxo) up to
a multiplicity. The multiplicity is decided by the degree of the finite map of
the open toric strata from Oz(7) to OL(0 x Rx), that is, the lattice index

)/(Ns x Z) : N(K)/((Ns x Z) N N(K))]
L)/(Ns x Z) : (N5 x Z+ N(K))/(Ns x Z)]
)

Thus we have

(3.3) BilVr(T)] = [N(L) : Ns x Z+ N(K)] - [Vx (9)].
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The sublattice
NsxZ+N(K)=NsxZ+NY)x{0}+Z-(v,1)
=NsxZ+NY)x{0}+Z-(v,0)
=(Ns+NY))xZ+Z- (v,0),
with the second and the third equality following from the fact that (0,1) €

N5 X 2.
Write v = & -z + g—; -y, where x € N5, y € N(Y) and integers pairs

az
(a1, a2), (by,bs) are coprime. As N5 and N(Y') has complementary dimension

in N(X), such presentation of v is unique. The lattice index
[(Ns x Z+ N(K)) : (Ns+ N(Y)) x Z]
(3.4) =[(Ns+ NY))XZ+ (Z-v,0): (Ns+ N(Y)) x Z]
=[Ns+ N )+ (Z-v,0): Ns + N(Y)] = lem(az, ba),

where lem(ag, b2) is the least common multiple of integers as and bs. The
integral generator v, of the ray N(K)g N6 has form

Ur =T~ (U,l) + (y’,())

n-ay n-by ,
= (S e+ Ty yn)
ag b2

for ¥ € N(Y) and n € Z. Since v, is integral, then n is a multiple of
lem(ag, b2). As n is the smallest integer such that v, is integral, then n =
lem(asg, b2). Therefore

m, = lem(ag,b2) = [Ns X Z+ N(K) : (N5 + N(Y)) x Z].
The multiplicity
me - IN(L) : (N5 x Z + N(K)]
[Ns xZ+ N(K):(Ns+ N(Y)) xZ]-[N(L) : Ny x Z+ N(K)]
[N(L): (Ns + N(Y)) x Z]
[N(X) : N5+ N(Y)] = ms.
Then by (3.2) and (3.3), we obtain

me. Ve@l= Y ms-[Vx(9)].

§EA0(v)
[ ]
Example 3.3. Let m be a non-negative integer. Let X be the Hirzebruch
surface Fj,,, whose fan X x in Z? contains four rays ry, ..., 74 with directions

(1,0),(0,1),(—=1,m) and (0,—1). Let N(Y) be one dimensional sublattice
generated by vy = (1,1).
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Suppose the generic displacement vector v = (1,0), then A°(v) contains
rays r1 and 74. Since the lattice generated by vy and ry, vy and 74 are
both Z2, the multiplicities for both rays are 1. Suppose we take the generic
displacement vector v = (—1,0), then A°(v) contains rays ro and 73. The
multiplicity for ro is 1 and the multiplicity for r3 is m + 1. We obtain that in

AI(X)7
Y] =[Vx(r)l + [Vx (ra)] = [Vx (r2)] + (m + 1) - [Vx (r3)].

We generalize Lemma 3.2 to morphisms of toric strata. Let f: Y — X be
a proper morphism of toric varieties associated to an injective map of lattices
fn : N(Y) = N(X). Let 7 be a cone in (Y') and let 7/ be the smallest cone
in ¥(X) that contains the image of 7 € X(Y). Let f : Vy (1) = Vx (') be the
restriction of f on Vi (7). We wish to study f,[Vy ()] using the same idea.
Definition 3.4. A vector v € N(X) is generic with respect to (X,Y, Vy (7))
if its image under the quotient map ¢x : N(X) — N(X)/N,s is generic with
respect to the pair (Vx(7'), f(Vy(7))) as defined in Definition 3.1.
Similarly, we define A7 (v) to be the collection of cones ¢ in X(X) satisfying
that
(1) 7 <6,
(2) dim Ny = dim N(X) — dim fy(N(Y)) + dim(fn(N(Y)) N N;/),
(3) (fN(N(Y))r +v)NJ is not empty.
Proposition 3.5. In the Chow group A;(Vx(7')):
(3.5) LW ml= 32 m() - [Vx (),
SEAT (v)
where | = dim N(Y') — dim 7 and m(5) = [N(X) : fn(N(Y)) + Ns].
Proof. Let gx : N(X) — N(X)/N, be the quotient of the lattice. Let N’
be the saturation of the image ¢x (fn(N(Y))) in N(X)/N,,. Then the image
of Vy(7) under f is the closure of T € T (x)/n,, inside Vx (7). The degree

of the map is the degree of the cover of torus induced from the saturation
gx(fN(N(Y))) — N'. Therefore,

(3.6) Wy (M) = [N" 2 ax (fn (N - [f (Vy (7))].

We first apply Lemma 3.2 to study [f(Vy (7))]. By definition, the vector
gx (v) is generic with respect to (Vx (7'), f(Vy(7))). Hence, in the Chow group
of Vx (1),

37 W= > INX)/Ne: N+ No] - Vi oy (@)
wEA®(gx (v))

Let us first show that a cone w € A%(gx(v)) if and only if § € A7(v) for
0 the unique cone containing 7" and gx(§) = w. Note that the intersection
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wN(Ng +qx (v)) is not empty if and only if the preimage of it under gx is not
empty. That is, the intersection of 6 + N,/ g with fx(N(Y))r + N g + v is
not empty. It is equivalent to that the vector v lies in 6 + fn (N (Y))r + Ny g.
We claim that

(3.8) S+ IN(NY)r + Np g = 6+ fn(N(Y))z

Let w € fny(N(Y))r such that —w lies in the interior of 7/. Then, for any
v € Ny g, by taking an integer I large enough, the vector w’ 1= —w + %
lies in the interior of 7/. We have v = I - w’ + I - w. Hence, the vector v
lies in § + fn(N(Y))g, and the equality in equation (3.8) follows. Therefore,
the condition (3) of Definition 3.4 that (fny(N(Y))r +v) N4é is not empty is
equivalent to w N (N + ¢x (v)) being non-empty.

For the dimension condition, as 7/ C 4,

dimw = dim ¢x (Ns) = dim N5 — dim N,+.
Then
dimw = dim gx (N (X)) — dim gx (fn (N (Y)))

if and only if
dim N5 = dim N/ + dim ¢gx (N (X)) — dim gx (fn (N (Y)))
= dim N(X) — dimgx (fn (N (Y)))
= dim N(X) — dim fyy(N(Y)) + dim( fx (N(V)) 1 Ny»).
Hence w € A%(gx (v)) if and only if § € A7(v).

Note that Vx (0) = Vi () (w) by definition. Equation (3.7) is then equiv-
alent to

(3.9) F ()= D IN(X)/No i N+ gx(Ns)] - [Vx(9)]-
SEAT (v)

Together with equation (3.6), we obtain that

(3.10)

FVWOl= Y IN:qx(In(NY))IN(X)/Nes 2 N’ + gx (Ns))] - [V (9)]-
SEAT (v)

Note N’ and ¢x(Ns) have complementary dimensions in the lattice
N(X)/N,, and the intersection of ¢x(fn(N(Y))) and gx(Ns) is zero di-
mensional. Thus,

(3.11)  [N"+ax(Ns) 1 ax (fn(N(Y))) + ax (Ns)] = [N" : gx (fn (N(Y)))],
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as both equal the lattice order of ¢x (fn(N(Y)))/lgx(fn(N(Y))) N agx(Ns)]
as a sublattice of N'/(N' N ¢gx(Ns)). Since the quotient lattice

ax (fn(N(Y))) + gx (Ns) = gx (fn(N(Y)) + Ns)
= (fn(N(Y)) + Ns) /N,

the lattice index in equation (3.10) satisfies that

[N": gx (fn(N(Y))] - [N(X)/Nor : N' 4 gx (N5))]

CLY [N (X) /N, ¢ ax (v (N(Y))) + gx (V)]

= [N(X)/Nz = (fn(N(Y)) + N5)/N~/]
= [N(X) : fn(N(Y)) + N.

We now finish the proof of equation (3.5). [ )

Corollary 3.6. With the same assumption in Proposition 3.5, let Ng be
a sublattice of N(Y'). The subtorus Tg C Ty induces a Tg-action on Vy(T)
and Vx (7'). The morphism f : Vy (1) — Vx(7') is Tg-equivariant.

Let fo : [Ww(1)/Tg] — [Vx(7')/Tq] be the induced map on the quotient
stacks. Let v be a generic displacement vector with respect to (X,Y,Vy- (7)) as
defined in Definition 3.4. Then there is a closed substack of [Vx(7')/Tg] x P!
which induces the rational equivalence of [fo([Vy (7)/Tg])] and

m(d)
Z [im(gx o fn)¥t @ im(gx o fn)]

SEAT (v)

[Vx(9)/Tq],

where im(qx o fn)%** is the saturation of sublattice im(qx o fn) in N(X)/N,
and

m(8) = [N(X) : fn(N(Y)) + Ns].
In the Chow group A([Vx(7")/Tg]),

(312) faulVy ([Tl = > m(6)- [Vx(9)/Tq),
sEAT (v)
where | = dimY — dim 7 — dim Ng.
Proof. Let N’ be the saturation of fy(N(Y)) in N(X). Then ¢x(N') is
saturated in N(X)/N,,. We first show that
(3.13)

fo(W(D)/ToDl = > [N(X)/Ne :qx(N') + qx (Ns)] - [Vx (6)/T¢)]
SEAT (v)

similar to equation (3.9) in the toric variety case.
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In the toric subvariety Vx (7'), the closure of the torus associated to N’ is
f(Vy(7)). Let v' be the vector ¢x(v) in N(X)/N,,. By Lemma 3.2, there is
a closed subvariety K in Vx(7') x P! defined to be the closure of the torus
associated to the subspace

{(x+1t-v,t) |z € N(X)p/Ny g and t € R},

such that the projection map « : K — P! induces the rational equivalence of

[f(Vy(7))] and

Z [N(X)/Ny : qx(N') + qx (Ns)] - [Vx (9)]-
SEAT (v)

The inclusion of lattices

fnxid gx xid

Ng x {0} = Ng x Z = N(Y) x Z 2% N(X) x Z 255 N(X) /Ny x Z

induces a Tp-action on Vx (/) x P1. An easy lattice computation tells us
that K is invariant under the Th-action and each fiber of o is Ti-invariant.
Therefore, the closed substack [K/Tg] together with the dominant morphism
o' 1 [K/Tg) — P! satisfies the equations

[0/ (D] = [f (W (7))/ Tl = [fo [V (7)/Ta))];

@O = Y IN(X)/Np s ax (N') + ax (No)] - [V (8)/Te)-
dEAT (v)

Hence this induces the rational equivalence of [f(Vy (7))/Tg] and

Z [N(X)/Nz = qx(N') + qx (Ns)] - [Vx (0)/Tq)].
seAT (v)

In Proposition 3.5, we showed that equation (3.9) induces that

LW @l= > m()-[Vx ()],
SEAT (v)

With the same argument, equation (3.13) induces that

foulVy (7)/TqQl = IN": In(N(Y)] - [fo(Vy (7)/TQ))]

= Y INX): fn(N(Y)) + Nsl - [V (6)/Tq)-
SEAT (v)
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4. Proof of the splitting formula

From now on, let us assume Assumption 1.2 is satisfied.

Assumption 1.2. Assume B = Spec(k — @Qp) is a log point with Qp a
toric monoid. Suppose X — B is an integral, log smooth morphism between
fine, saturated log schemes. Assume M x is globally generated, and for each
edge p € S, the strict closed subscheme V), of the log scheme X has the
underlying scheme a toric variety, and the log stratification of V), is the same
as the toric stratification.

4.1. Toric strata assumption. In the following two results, we show
that the gluing strata V}, in Assumption 1.2 are isomorphic to toric strata of
toric varieties.

Proposition 4.1. Suppose there is a log point B = Spec(k — Qp) with
Qp a toric monoid, and a log morphism X — B satisfying Assumption 1.2.
Then, for each logarithmic stratum V,, there is an idealized log structure KCp
on V,, such that V,, is idealized log smooth.

Proof. As B is a log point, we define an idealized structure on B with ideal
Kp = Qp\{0}. It determines an idealized structure on X such that X — B is
ideally strict. Following Construction 2.7, we construct an idealized structure
Ky, on V,, determined by the pullback of Kx and the ideal sheaf of V}, in X.
By [20, Variant IV.3.1.21], the idealized log scheme V), is idealized log étale
over log scheme X, hence is idealized log smooth over B. As B is idealized
log smooth, the log stratum V, is idealized log smooth. ®

Theorem 4.2. Suppose X is a fine, saturated idealized log smooth scheme
with Zariski log structure Mx and idealized structure Kx. Assume My is
globally generated. Suppose further that X satisfies the following conditions:

(1) The underlying scheme X is a toric variety.

(2) The log stratification of X is the same as the toric stratification of
X. In other words, for each point x of X, let o be the dual cone of
MX}I, the underlying scheme of the logarithmic stratum Vx (o) is the
smallest closed toric stratum of X containing x.

Then, there exist a toric variety Y and a cone oy € Xy, such that X is iso-
morphic to Vy (69) as an idealized log scheme. Here, the idealized log structure
on Vy (0q) is the idealized structure of Vy(cg) — Y following Construction
2.7, where Y has trivial idealized structure.

Proof. Let Qo = Mx(T) for T the maximal torus of X. Let N be the
cocharacter lattice and M be the character lattice of X. We first construct
the fan of Y in the lattice N = N x Q¢ by constructing a cone ¢ in N for
each cone o in fan X of X.
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Since M x |7 is a constant sheaf by assumption (2), there is an isomorphism
s: Mx(T) - k* @& M ® Qp. For each cone ¢ € X, the restriction map
Xo : Mx(U(o)) = Mx(T) determines a map

b : Mx(U(0)) X Mx(T) Sk &M Qy = M & Qo,

where U(c) = Speck|o¥ NM]. Define & in N to be the dual cone of the image
monoid im(¢,). For the zero cone 0 € 3, 7 is simply {0} x Qy. Although the
isomorphism s is not canonical, different s differs by a morphism Qg — M,
which results in a linear transformation of N x Qf of determinant 1.

We now show that the collection of cones & forms a fan in N. In the
commutative diagram

Mx(U(0)) ———— k[P,]

! /

M®Qy —— Mx(T)=k*®M®Qy —Z k[M],

the image of (im ¢, ) under a o factors through k[P,]. Hence, the subgroup
(im¢y)* is contained in (im¢,) N (P} @ {0}). Furthermore, as the map
k[P,] — k[M] is an inclusion map, the image of M x (U(0)) in k[M] contains
monomials P)X. Therefore, image (im ¢, ) contains P @ {0}. The subgroup
(im ¢ ) equals (im ¢, )N (P} @{0}). For cones o C 7, there is a commutative
diagram

(im ¢-) (im ¢-)/(im ¢ )

(lm¢a) ””””””””” 4 (im¢0)/(im¢a)x
T _—

Mx(U(0)) —————— Mx(U(0))

where the horizontal maps of the right face are the maps induced from left
face, by taking the quotient of the units. As (im ¢, ) is the image of M x (U(7))
in (im ¢, ), we have (im ¢, )/((im ¢,) N (im ¢,)*) is the image of Mx(U(7))
in (im ¢, )/(im ¢ ), which is the image of

(4.1) Mx(U(7)) = Mx(U(0)) — (im ¢5)/(im o5 ) *.

Since Mx is globally generated, the first map in (4.1) is surjective. On the
other hand, as the map Mx(U(0)) — (im ¢, ) is surjective by definition, the
map to (im ¢y)/(im ¢, )* is surjective. Hence the second map in (4.1) is also
surjective. So is the whole map (4.1). Therefore, the map (im ¢, )/(im ¢, )*
to (im @)/ (im ¢, )* is surjective, defined by taking the quotient by (im ¢,) N
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(P; @ {0}). Dually, we then obtain the face inclusions of the dual cones
7 < &. The collection of cones forms a fan % in N.

Let Y be the toric variety of (3, N). Note in the quotient fan in N/({0} x
Qy), the affine subvariety associated to (im ¢, )" is determined by the image
of monoid

(im o) = M & Qo = k[M],
where p sends (m,0) to z™ and (m,q) to 0 for ¢ # 0. Let F, be the face
(im ¢, ) N (M & {0}). We claim that p(F,) is isomorphic to P, =¥ N M. As
a consequence, the underlying variety Vy (69) is isomorphic to X.
First, as there is a commutative diagram

Mx (U(0)) — k[P,]

- l

the image of f, = ar o x, lies in k[P,]. Since the image of ar in k[M] is
monomial, the image of f, lies in (k* @ P,)U{0}, hence p(F,) is a subset of P,.
In order to prove that p(F,) is surjective on P,, we need a local description
of log scheme X in terms of monoids im(¢,). Before that, let us show that
the morphism

bo : Mx(U(0)) = im(¢y)/ im(d,)*
is an isomorphism of monoids. By definition of ¢,, the morphism is sur-
jective. Suppose p € Mx(U(c)) is mapped to 0 € im(¢,)/im(¢,)>, with
2P € Mx(U(o)) alift of p. As the units im(¢,)* = im(¢,) N (P} & {0}), we
have
a,(P) ek* @ P,

hence 2P lies in Mx (U(0))* and p = 0. The morphism ¢, is an isomorphism
of monoids. Note that X is idealized log smooth, with log structure on U(o)
determined by «,. Then, smooth locally Speck[P,] is isomorphic to the
product of a smooth scheme with

Speck[Mx (U(0))]/(Kx (U(0))) = Speck[(im ¢5)/(im ¢5) ]/ (Ko),

where K, is the image of Kx (U(c)) under ¢,. The ideal Kx (U(c)) contains
the elements of M x (U(c)) which lift to elements in M x (U(c)) whose image
under o, is zero. It follows that the ideal K, is generated by the image of
(im ¢ )\ F,, under the quotient of (im ¢, )*. Hence, smooth locally Speck[P;]
is isomorphic to the product of a smooth scheme with

SpecklF,/Fy] 2 Speck[F, /(P & {0}) 1 F,] = Speck[p(F,) /]
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Furthermore, since each toric stratum of U(c) is a logarithmic stratum, each
non-invertible element g € P, determines a monomial whose vanishing set
is the same as the vanishing set of an element in im(f,). It induces that
n - g € p(Fy) for some integer n. As Speck[P,] is isomorphic to the product
of a smooth scheme with k[p(F,)/P.J], it is only possible if n = 1. Therefore,
p(Fy) is isomorphic to P, = ¢ N M and Vy (09) is isomorphic to X.

We finish the proof by showing the idealized log structures of Vi (dy) is
the same as the idealized log structure on X. For each toric affine subvariety
U (o) with morphisms

Mx(U(o)) = im(ps) 2 K[P,],

the idealized log structure as a subvariety of V() is induced by the second
map and ideal K, = (im ¢, )\ F,. The log structure from X is induced by the
whole map. Since Mx(U(c)) — im(¢y)/im(¢y)* is an isomorphism, and
both idealized structures are obtained by the preimages of 0, two idealized
log structures are isomorphic. We now finish the proof that two idealized log
structures are the same. '

Following the above discussion, for each gluing stratum V, = Vy (o), there
exists a toric variety X, such that V, is a strict toric stratum of X,. Let
(Xp, Np) be the fan of X, and d, be the cone with V,, = Vx, (0,). The log
map V, = B induces a lattice map N, — Q% dual of

&P “ 8P
B =Mp (B) > My (Tp) = Q" — M & Qg’,
for T,, the maximal torus of X,. Hence, there is a toric morphism X, —

Speck|[@g]. The map V,, — B is the restriction of X, — Speck[@p] on X.
Recall the definitions of X, and X, in (2.5)

) f f
Xr =V, xg---gip‘s‘, pj €8,

) f f
Xro=Vp, x5 xg Vs, Dpj€ES:

Proposition 4.3 studies the structure of X, and X,. By [19], the fine, satu-
rated fiber product of toric varieties is determined by the fiber product of fans,
which is defined in Definition B.1. As X, and X, are fiber products of toric
strata, they are the subschemes of the fiber product of toric varieties. Though
the ideal determining X, and X, which is generated by the pullback ideals
from V},, might not be radical, the reduction of them is well understood in
terms of toric strata.

Proposition 4.3. The fiber product X, is a disjoint union of log schemes
and each of them is isomorphic to an irreducible, but possibly non-reduced
subscheme Z, of the toric variety X, with fan

Yr =3 Xs(B) " Xu(B) Ypgs Pj €S,
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and with the toric log structure. The reduction of Zr is Vx: (), with & the
fiber product of cones 9, for p € S over 0p.

Similarly, for eachi=1,2, ..., r, the fiber product X, is a disjoint union
of log schemes and each of them is isomorphic to an irreducible, but possibly
non-reduced subscheme Zr, of the toric variety X with fan

Y = Xp, Xu(B) " Xn(B) Ypgs,» Pi € Si,

with the toric log structures. The reduction of Zr, is Vx. (6;), with 0; the
fiber product of 6, for p € S; over ip. '

The fiber product X, x11r_ x: [li=y Z7, is Zr. With Zz, — X, being
the embedding of one component, the fiber product X; Xr_, X, [I_, Z-, is
a disjoint union of N' schemes, each of which is isomorphic to Z,. Here,

T
N=[L:I], L=im(4,)+[[im@A,),
i=1
where A, is the diagonal map of [Lhes No = [les
lattice projection from [[;_, X+, to HpES Np x Np.
Proof. By Lemma B.2, the fine, saturated log fiber product

N, x N, and A, is the

f f
(4.2) Xp, Xg, = X3, Xps» Pj€ S

is a disjoint union of log schemes, each of which is isomorphic to the toric
variety X_ of the fiber product of fans (X, N, ), with its toric log structure.
Let I,, be the ideal sheaf of X, that defines V,,. The scheme X, is then
the subscheme of (4.2) generated by the pullback of I,,,. For toric morphisms
X, — X, and a cone § € ¥(X'), the image of V. (9) is contained in V, if and
only if the image of § under the fan map IV, — N, intersects with the interior
of §,. Hence, the reduction of Z, is determined by the minimal cones § with
image intersecting with the interior of d,. Let 6 = d,, X, -+ Xg5 0p . The
maps d, — dp are surjective, following the integrality of X over B. Thus
is mapped to the interior of §, under the projection map, and is the minimal
cone satisfying the conditions. Therefore, the ideal I defines an irreducible
subscheme Z, whose reduction is the toric strata Vx: (d). The proof works
the same for T;.

The subscheme Z, and the fiber product X/ xj-  x: [[i_; Z-, are both
the subschemes of X! determined by the pullback of ideals I, under X, —
Hp Xp. Hence they are the same. For the last statement, by Lemma 4.4, the
equation

X, X (M x0,) (i]f[lzﬁ) = HX,, X1

pES

XpxX,) (f[lz"i)

pPES
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holds. By Lemma B.2, the right side is the union of Z, with the number of
the components A/ being the lattice index

N = [(m(&,) + [[im(E ) im(E,) + [ im(Es)

)

Lemma 4.4. Assume the graph G of T is connected. There is a Cartesian
diagram in the category of fine, saturated logarithmic schemes

Xo o T X,
o
HpES X, =3 HpES Xp x X,

with horizontal maps the diagonal maps and the vertical maps the composition
of the projections

9r  Xe > [[Vor gr: X = [[ Vo
pEeES PES;
with the closed embeddings V, — Xp.

Proof. As V,, — X, is a strict closed embedding, it is sufficient to show
that the following diagram is Cartesian in the category of fine, saturated log
schemes

Ax r
Xr ———— [Licy Xrs

(43) l T ll_[ 9r;
Ap
Hpes Vo — HpES Vp X Vp.

Let Z be a fine, saturated log scheme with a : Z — [[;_, X7, and 8: Z —
[1,es Vp, such that [T;—, gr. ca = A, o B as logarithmic maps. Then, there
is a commutative diagram

Z —— i1 Xr, —— Iliei B
lﬁ A Mg

Hpes Vpy = Hpes Vo xVp
4 T~

Hpes B HpES B x B.

By the universal property of the fiber products, there is a morphism

Z — (lf[lB) X (1,0 BxB) (]I B)-

pES

pPES
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As the dual graph G of 7 is connected, the pullback of [[;_, B along the

diagonal map identifies the base of each X,,. Thus ([],_, B) X(H 5xB)
pES

(Hpes B) = B, with the maps from B to each factor being diagonal maps.
For each p € S, the projection Z — V,, = B is the same as the map

Z—B25[[B"> B
peES
By the universal property of the logarithmic fiber products, there is a unique
morphism
w:Z—)X.,-:‘/pl XB”'XB‘/p‘s“

with g o4 = . On the other hand, both « and Ax o are the unique
morphisms induced from the universal property of the fiber product

eriz(l:[lB)x(n Bx5) HV x V)

€s
v pES

Hence A x 09 = a and we finish the proof of the diagram (4.3) being Cartesian
in the category of log fine, saturated schemes. ®

4.2. Local toric models of the gluing formalism. We are now ready
to study the gluing formalism under Assumption 1.2. We first study the local
structure of the splitting morphism

. gl ev ev
(44) red rcd H mrl,red'

The main result of this section is Proposition 4.5, which provides a local
splitting equation (x) of a geometric point after a base change to an étale
neighborhood. The idea is to analyze §5; under the following commutative
diagram obtained from the fiber diagram (2.6)

anelev r ev
£)ﬁred Hz 1 TL ,red

Let us first construct the étale base change for a geometric point T on
ﬁtgl,ev L
rod - Let

Qf = MH mi—: red’ red (5)7 Lf - ]CH m‘rv ,red’ red(f).

By [4, Appendix B. 2] there is a connected strict étale neighborhood Uz of
the geometric point 05y, (T) in [[;_; MY 4 such that there is a commutative
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diagram

H::l ﬁ‘er\;,red Uz AQEqLE
(45) \LH evr, levU \L
szl X"’i — szl Z"'i i H::1 -ATw

with A, the Artin fan of the toric variety X7 . Define

(4.6) UL = Ug xpp,_ e meLeY
We wish to study the map 68 : U — Us.

Proposition 4.5. Let U, A(D) and my,) be the global gluing data associ-
ated to the splitting morphism 6 : M (X/B,7) — [[,_, #(X/B,T;) defined
in Definition 1.4. Let 0y : UEgl — Uz be an étale local model of (4.4) at a
geometric point T of ﬁfi’dcv, defined by diagrams (4.5) and (4.6). Let

T

p_ anev
Uf = Uz x T H EDtpiﬂ-,;,rcdv

T;.red
i=1
with E)ﬁzv rired the image substack of the finite morphism Epm’i : ﬁep‘:’red —

ev
T,;,red”

Then, in the Chow group of Ug,

(%) L ([U2) Z mip
[pleA(D)
Proof. Note that smgl 1V is the reduction of [];_, T" red XTT7_, X, X7 SO

U§1 is the reduction of Uz XTT7_, X, X-. As Uz is connected, the evaluation
map evy factors through one component of []i_; Z,,. Hence,

.
1
Ufg = [UT TIr_y Xrs Xr]red = [UE XTI, Zr; (H Z"'i XTIy Xr; XT)]red-
i=1

By Proposition 4.3, there is a lattice index NV, such that [T,_, Z,, x e, x., Xr
is a disjoint union of A/ schemes, each of which is isomorphic to Z.. Hence,
U§1 is the disjoint union of A schemes, each of which is isomorphic to the
reduction of

y
(4.7) Uz = Us Xq1_, 20, Zr = Us X1, xp, X7
where the equality follows from Proposition 4.3. Hence, it is sufficient to study
the diagonal map 4y, : Ufgl’lr — Us.

First, we observe that the evaluation map Uz — [[;_; X/ is idealized log

smooth. It is sufficient to show that ﬁ?r‘;red — X, is idealized log smooth.
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By Corollary 2.9, ﬁﬂ’red is idealized log smooth over B. Locally, the map

M. rea = B factors through

My, rod — Z, < XL, — B,

with Z, being the relative Artin fan Az_ x4, B and X7, being Ar, X 4, B.
Note A7 is logarithmically étale over B, hence the evaluation map M, red —
X is idealized log smooth. The map from the evaluation enhancement

Nev an an a /
m red — mri,red XX” X‘ri = m'ri,red XZTi ZTi = SIn‘ri,red XX_f_i X-,-i

Ti,
to X is then idealized log smooth.

Next, we study the local splitting morphism using the toric local model of
idealized log smooth morphisms. Following (4.5), let us define

T
1
(4.8) AY = A 1. XIT7_, A, HX;_ and  AZY = A XT11, X0, X’
i=1

In the fine, saturated Cartesian diagram

Ugl,ir i> A§178V X’
T T T
1oy Lo {
(49 e~ A T X,
i I
Az — H::1 Ari,

the map ¢ : Uz — AY is induced by the universal property of the fiber
product. Since the evaluation map Uz — [[;_; X~ is idealized log smooth, by
[4, Appendix B.4], the map ¢ is smooth. As the diagonal map X, — [];_, X7,
is proper, both vertical maps d;; and 6% in diagram (4.9) are proper. We
obtain that

(4.10) U [UE™] = 67,97 [AB] = 0765 [AE]

for ¢ : UEY™ — AB"Y in the diagram (4.9).

It is sufficient to study ¢, [A%l Y] using the concrete toric stack descrip-
tion of A2"*Y and AZ. Let [w] = (w1,...,w,) be the global type of 62, (7).
For [p] = (py,-.-,p,) a global type that admits a contraction to [T] =
(T1,...,7), we define

e Vaer(p), if [p] is a contraction of [w],
* g, otherwise,

where p = [[;_, p; is the evaluation cone associated to [p] defined in Definition
2.5. By Lemma 2.6 and Corollary 2.12, the evaluation cone p is a subcone of
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w = Qy, hence the stratum Vev(p) is well-defined. Lemma 4.6 provides a
description of 6%, [.A2"*Y], whose proof we defer to later.

Lemma 4.6. Let U be a generic displacement as defined in Definition 1.4.
Then, in the Chow group of AY,

(4.11) SR [AZ Y = Y mipy - [AS),
PEA(D)

where
= [[[ N~ : im(B) + [ [ im(ev,,)]
i=1 i=1

Here A : Ny — [[,_, N, is the lattice diagonal map of X, — [];_y XL . The
map evp, : Np. — Nr, is defined by the factorization of the tropical evaluation
maps discussed in (2.4)

— ey,
evty, : N5, —= Ny, = [ Ny
PES;

At last, we are ready to finish the proof by the following arguments. By
Lemma 4.6 and equation (4.10), in the Chow group of Uz,

dulUS™ = 3 mi LTHAT = D0 m,
[pleA (D) [plea (D)

The second equality follows from Corollary 2.12. Hence, following the discus-
sion in the proof of Proposition 4.5,

28 Z N - m ue].
[pleA(DT)

It is now sufficient to show N - mf o] = M- All the involved lattices can
be fit into a commutative diagram

Np X117, N, N2 N- [Tes Ny

lz lzp
Mev A
=1 i

lr i T i=1 Ar;
(4.12) Np = [Ti- NF)L — Hi:1 Nz, — Hpes Np x Np
Jicoker J{coker A Jicoker Zp

Cs C, C,.

Note that N'= [N3#' : Ny and m{p] = [[Ii—; N+, : N,,,], where

Ny =im(4A,) + Him(zn), N,, = im(A) + Him(WPi).
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In other words, in diagram (4.12), the order N is obtained by taking the
saturation of the image lattice of two maps in the right corner of the upper
right square, while the order m’[ p comes from the two maps in the upper left
square. Let K =im(A,) + [[;_, im(A,, 0&,,) to be the image lattice from
the right corner of the big upper rectangle. We claim that

N -miy =[N3 Nyl [[[ N : N
=1

(4.13) = [(coker A, (K))*" : coker A, (K)]

= [im([ [z, - im([ [ 2p,)] = M.
i=1 =1

with €, is defined in equation (1.2) and Definition 1.4, where the first, the
third and the fourth equalities follow directly from the definition of N, m{ o)’
Ep, and m,).

In order to prove the second equality, we will utilize Proposition 4.7. Before
that, let us first show

(414)  (coker B, (K)™ = coker &, (K*) = coker &, (N5,

Since K = im(A,) +[[;_, im(A,, o0&V, ), the image im(A,,) is a sublattice of
K, hence

(coker A, (K))*™ = (K/im A,)%*".

Since lattice K/im A, is a sublattice of K***/im A,, and both lattices have
dimension dim K — dimim(A,), the saturation of K/imA, in K%/im A,
is the full lattice K2t/ imzp. Therefore, their saturations in the quotient
lattice C), in (4.12) are the same, that is,

(coker ZP(K))sat — (K/ imzp)sat — (Ksat/ imzp)sat.

Suppose for a € Hpes N, x N, and [a] € C,, there is an integer m such
that m - [a] lies in K®*'/imA,. As im A, is a subset of K, then the set
m-a+im A, is a subset of K***. Hence, m-a € K* and v € K. Tt follows
that [a] € K®/im A, and K**/im A, is saturated. The first equality of
(4.14) is proved. We now prove the second equality. Following the definition
of K and Ny, it is obvious that K C Ny, hence K®* C N32*. On the other
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hand, because

K =imA, +im H(Zﬂ 0&V,,)
i=1

=imA, +im [ [(A,, o&v,,) +im(J[Ar, 0 A)

=1 i=1

—im X, + im{[[ &, o B+ ¥},
=1

i=1

where the second equality follows as im([];_, A, o A) is a subset of im A,
Following Lemma 4.6 and the dimension argument of its proof, the image
im(A + [];_, &v,,) is a full dimensional sublattice of [];_, Nr,, hence K has
the same dimension as N, which induces that their saturation are the same.
We now finish the proof of equation (4.14).

Now we use Proposition 4.7 to prove (4.13). We postpone the proof of
Proposition 4.7 to the last of the section.

We call a homomorphism « : A — B of lattices of finite indez if im(a) C B
is of finite index. In this case, we define the index of a by

Ind(a) = [B:im(a)] = |B/im(a)|.
Proposition 4.7. Let

A——s B ——

L, bk

A—*sp_ "1 .,C

be a commutative diagram of lattices with v injective, and the right-hand
square is Cartesian. Let ¢ : C — C be the cokernel of 5. Suppose the ho-
momorphisms qoyo«, a+ 3 and v+ 0 are of finite index. Then it holds
that

Ind(goyoa) =Ind(a + ) - Ind(y + 9).

Following the diagram (4.12), we have

Nﬁ anzl Nor; Nr Nr HpGS NP

L

r

(4.15) l
T HWPi T i=1 A‘ri sat
N =1l Np, — [[i1 Noy —— N
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Then by equation (4.14) and Proposition 4.7,
[(coker A, (K))**" : coker A, (K )] = [coker A, (N2') : coker A, (K)]

s
= [st\7t t Nyl - [HN‘U t N
i=1
We finish the proof of (4.13) and hence Proposition 4.5. [ )
Proof of Lemma 4.6. First, we show that ¢ is the map of quotient stacks
induced from a T -equivariant map of toric varieties. By Proposition A.2,

= AQs.Lz X[T7_, A, HX [SQz.L X HTn/TQ J-

i=1 i=1

Let Y be Sq,.r, X [I;—; Tr, and let Y& := Y x| x;, X;

+, where the map
Y — H:zl X! is the composition of the quotient map Y — A% and projec-
tion A — []/_, X;,. By Lemma A.1, the torus action of T on Y induces
an action of T on Y8, such that the quotient stack [Y8!/T(.] is isomorphic
to A2"°Y. The diagonal map I ABYY 5 ASY s then induced from the

x

quotient of the T_-equivariant map Ygl — Y. In order to study &%, [AZ""],
gliev

= red] hence it is enough to study

it is sufficient to study its reduction 6%, [AZ
Vi =Y.

Next, we show that Yr‘ild — Y is the restriction of a toric morphism on
a toric stratum. Such description allows us to use the generalized Fulton-
Sturmfels formula in Corollary 3.6 to obtain Lemma 4.6. Let ) be Sq_ X
[I;_, Tr,. The tropicalization of A" — [];_, X/ induces a toric morphism

y : Y = [[i_, X... By Lemma B.2, the fine, saturated fiber product
VX1, X, X! is the disjoint union of n varieties, each of which is isomorphic

to a toric variety )8!, with

(4.16) HN‘n A(N7) +&vp(N(D)),
for A defined in (4.12). By Corollary A.3, the lattice map &vy is defined as
(4.17) &vy : N(Y) = Ng.. xHN —>HN,, b) — e(a) — b,

with e the lattice map of the evaluation map Ag. . — [[;_, Ar,. The map
evy is surjective, hence n = 1.
The scheme
vel = v X, X X, =Y xy yel

is the subscheme of )®' determined by the pullback of the ideal generated
by Lz in Sg.. In particular, we claim that the subscheme vel oq 1s the toric
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stratum Vye (08!), for 08! = 7 x {0}. By the idealized structure on ﬁ?,_‘fred

in Remark 2.11, Sg_ 1. is VSQE(H;'ﬂ:l 7;). Therefore Y is the toric stratum
Vy(IT,—; 7i x {0}). We use oy to denote [];_, 7; x {0}. Since T is realizable
and the types 7; are obtained by splitting 7, by the construction of the
evaluation cones in Definition 2.5, 08" = 7 x {0} is exactly the fiber product

of cones
oy XIT_, wxp,) B(X7),

from the fiber product of toric varieties ¥ xr_ x/ X’ Then, the cone o8 is

the unique minimal cone in ¥ ()’#!) whose image in ¥()) intersects the interior
of oy. The reduction Yr’ild is the toric stratum Vi (o®!).

Now, we are ready to use the generalized Fulton-Sturmfels formula to study
the diagonal map 6% : Agl’e‘é - AY

T,re x )

which is the toric morphism of toric
stacks

[Vom(0)/To, | = [Volov)/To, -

Let U € [],cs Np be a generic displacement vector defined in Definition
1.4. Let ¥ be the map

w:ﬁNﬁ%HprNp%HNp,
i=1

pES pEeS

whose first map is the projections of fiber products N, to N, and the second
map is the cokernel of the diagonal map of IV,,. We first show that there exists
an element v € N()) such that ¢ o evy(v) = L. Let N’ be the sublattice
of [[,cs IVp, whose images in Np under maps [[ g N, — N, — Np are the
same for any p € S. By definition, vector 2 lies in N’. Note that

’(/)(ZV,—1 XNg " XNg NTT) = NI.

Hence ¢~1(2) is non-empty. Since &vy is surjective, we obtain that there
exists v in N () such that ¢ o &vy(v) = Y. Next, we want to show that v is
a generic displacement vector associated to (), V!, Kf’;ld) as defined in Defini-
tion 3.4. Equation (4.11) can be obtained using Fulton-Sturmfels formula in
Corollary 3.6 associated to v.

(1) The vector v is generic with respect to (¥, V&, Yrild) Let f: N(Y#!) —
N(Y) be the lattice map and let ¢y : N() — N(Y)/N,, be the
lattice quotient map. We need to show for any cone w € X(Y) sat-
isfying the conditions (1), (2),(3) in Definition 3.4, the intersection
gy r((Im(f) +v) Nw) lies in the interior of the cone gy r(w). Follow-
ing conditions (1), (3), w determines a unique type [p] = (p1,--.,P0,)
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with property (i), (ii) in Definition 1.4(2). Furthermore, the dimen-
sion of w satisfies the dimension condition in property (iii) since

Z dimp; — dim7T
i=1
= dimw — dimo®

PeL3 gim N (V) — dimim(f) + dim(im(f) N oy) — dim 0%

—~
N2

= dim N(Y) - dimim(f) = Y _ N,, — dim N,
=1

= ZdimNp —(IS|=r+1) rank Q% .
peS

Here (1) is true since f is injective and im(f) N oy = im(o8!).
Recall that ¢, is defined in (1.2)

r r _

~ Ilevty, [ coker A,
TTen : T15: 120 T] Mo x Ny L5 5, T] ,
i=1 i=1 pes peS

As U is generic, the map []/_, €p, is injective and U lies in the interior
of its image. It is equivalent to saying that ([];_, £,,) ' () intersects
with the interior of w’, with w = w’ x {0}. Hence, (evy)~ 'y~ (0)
intersects with the interior of cone w. As im(f) contains the kernel of
1 oeVy, the set (evy)~tp~1() is contained in im(f)+v. Hence, the
intersection of im(f) + v with w is not empty and is in the interior
of w. It follows that the intersection ¢y r((im(f) + v) Nw) lies in the
interior of the cone gy r(w).

(2) Lemma 4.6 follows from Fulton-Sturmfels Formula in Corollary 3.6
on v. By Corollary 3.6, we have

05 [Vyur (%) T |

= > INW):im(f) + Ny - [V(p)/To. ),

p'€ATE (v)

with A (v) the set of cones in N()’) defined in Definition 3.4. There
is a bijection between types in A(Y) and cones in N (v), by tak-
ing a type [p] to [[i_, p; x {0}. The substack AZ"* is the same as
(V3 (p')/Tq.] following the stratification of the moduli space in Corol-
lary 2.12. As for multiplicities, since evy is surjective and the kernel
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is contained in im(f), by taking the quotient of ker(evy), we get
[INQ) s im(f) + Ny] = [[] N, : o0y (im(f) + N,y)]
i=1

= [[[ V-, : im(B) + [ [ im(&v,,)] = mi,;.
1=1 1=1

[ )

Remark 4.8. With the same assumption in Lemma 4.6, by Corollary 3.6,
there is a closed substack K4 C A% x P! and a projection map ay : K4 — P!
such that as algebraic cycles in A,

[ (] = 5 (A220], )= S Sl paee),

lplea(m) %

with Oz = [im(gy o f)*t : im(qy o )] for N(V¢)) L N(V) &5 N(V)/N,,
defined as above. The index Jz is the degree of map 6.

Similarly, take K. to be the preimage of K 4 under the smooth map ¢ x id
from Uz x P! to ALY x P!, Let ay : Ky — P! be the projection map. As the
diagram (4.9) is fine, saturated Cartesian, as algebraic cycles in Ug,

(4.18) o (D] =107 (U], [ag' (O] = >

[PleA(D)

mp]

Iz

U2,

€T

The closed substack K- induces the local splitting equation (x) in Proposition
4.5.

At last, we finish the proof of Proposition 4.7.

Proof of Proposition 4.7. The diagram induces a sequence

A, ",¢C

of cokernels of the vertical maps. Note that 7 is injective as -y is injective and
the right-hand square is Cartesian. We have

Ind(goyoa)=[C:im(goyoa)] =[C:im(Fo@)] = Ind(§ o @).

Applying Lemma 4.9 and then twice Lemma 4.10, we obtain the finite index
properties and the claimed equality:

Ind(govyoa)=Ind(¥oa) =Ind(@) - Ind(¥) = Ind(a + ) - Ind(7y + §).

)
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Lemma 4.9. Let

A—2,p- "¢

be a sequence of lattices with o, B8 of finite index and B injective. Then o «
18 of finite index, and it holds

Ind(B o ) = Ind(S) - Ind(«).

Proof. Notice first that by replacing A by A/ker(«) we may assume «
is also injective. Now consider the following diagram with exact rows and

columns:
0 0 0
0 A “ B Q1 0
B
0—— B(a(A)) C Q 0
0 Q2 Q2 0
0 0

Here we first fill in ¢); and @ by completing the second and third lines, and
then complete the diagram using the Snake Lemma.
The statement now follows from

Ind(Boa) = [C:B(a(A))] = |Q| = |Q1] - |Q2] = Ind(a) - Ind(B).

®
Lemma 4.10. Let
AT 54 A 0
la' la la
BB B 0

be a commutative diagram of lattices with exact rows. Suppose o+ [ is a
homomorphism of finite index. Then @ is of finite index and Ind(@) = Ind(a+

B)-
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Proof. We consider the following commutative diagram with exact rows
and columns:

Aep Y Aep — A 0

o/JridJ( a+pB

Ql

0 0

After replacing A’ @ B’ by A’ @ B’/ ker(y ¢ id) and B’ by B’/ker(3) to turn
the first two rows into a morphism of short exact sequences, the Snake Lemma
shows that ¢ is an isomorphism and hence

Ind(a |Q|—|Q|_Ind a+ f).
[

4.3. Gluing of the local models. Now, we are ready to prove the main
theorem.

Proof of Theorem 1.5. For T a geometric point on Emfi;v, by Section 4.2,
there is an étale neighborhood Uz of §%Y,(Z) and UE such that Proposition
4.5 is satisfied. As T goes over the geometric points on zmred , we obtain an
étale cover | | Uz of [;_, i)ﬁf_‘i’red.

Let U be a generic displacement vector defined in Definition 1.4. By Propo-
sition 4.5 and Remark 4.8, there are closed substacks Kp.. of Uz x P! that
induce the rational equivalence condition (4.18). We first show that for the
geometric points T and 7’ in the same connected component of {Dv?fé’dev, the
indices Jz in (4.18) are the same. It is sufficient to show Jz = Jz supposing
T is a generization of Z'. As the idealized structure on ﬁi’gv is coherent, by
[20, Prop I1.2.6.1], the ideal Lz is generated by Lz under the map Qz — Q=
We then obtain an open embedding of stacks Ag, . — AQau L.,- Then there
is a fiber diagram

1, 1,
A% ev Ag ev X,./’.
l,‘;ev,z’ l,éA,E l«
ALY = I, X.

8 i 1

‘AQE,LE — AQ;/’L? — H::l ‘ATL
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As the indices J7 and Jz are the degrees of the morphisms 65 and 6%, it
follows from the diagram that they are the same. ’

Assume that ﬁiiv has one connected component and let J be the index
Jz for any geometric point Z. Let K, be the closure of the image of | | Ky
in [T;_, ﬁi‘;md x P1. Let o be the projection map a : K, — P'. Then, as

algebraic cycles in [[i_, MY 4,
=

[0 (W] = (U0 08 U)] = [52(055),

a7t = > T (=02
[pleA(D)
= Z mT H]Pw p7,red)]a
[pleA(D)

where 17 is the étale map from Uz to [[;_, ML eq and }pim m;Y)red —

ﬁ'ﬁihmd is the finite map induced from the contraction morphism from p; to
T; for each i =1, ..., r. As the degree of §%Y, is the same as J§), we obtain
the equation

1,ev l,ev ~ anev
(419) red*[mged ] =7 [ red(aﬁfed )] = Z m[p] : H[jpi,;‘l'i (m2i7red)]'
[PEA() i=1

Following the notations in Proposition 2.14, we have ~; from ﬁi" to MY and
B; from the reduced induced stack zmev red O zm and

ev e l,ev
5/ EUI = H’yl o 57« rcd*[ %ed ]

(4. 19) - Y anev
Z mip] H i © ﬁi)*[]pi,fi (mpi,red)]

[pleA(T) i=1
8 - ov
= Z Mmp] - pr7, (Sﬁ )]
[pleA(D) =1
Mg H
= Z Jporixl
plea () | Aut(p,/T4)] paley

with jp, =, MG — MT from the contraction morphism p, — 7;. Since myy
is reduced over B as shown in [4, Prop 3.28],

Jorr (M) =70 Bi 0 jp, v (MY ca)-
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By [4, Prop 5.5], v; induces an isomorphism on reductions. Hence «y; o 8; has
degree one and we get equality (1). The last equality follows from the fact
that j,, -, is finite of degree | Aut(p,/7;)|.

Now suppose ﬁfif" has more than one component, then by Lemma 2.13
and Proposition 2.4, moduli spaces ﬁﬁ." and 91 have more than one compo-
nent. For each component, we have equation (4.19). As m(,) is independent
of the geometric point T from the component, the above equation holds for
general M. Then, following Theorem 2.3, we finish the proof of Theorem
1.5. )

Appendix A. Lift of Artin cones

Recall that for an algebraic group G and a scheme X with a G-action, the
quotient stack [X/G] is the groupoid fibered over the category of schemes,
such that

E- X
(1) An object over a scheme B is a diagram { lﬂ } where F is a

B
principal G-bundle over B and h : E — X is a G-equivariant map.

)

B x
(2) A morphism from an object I over B’ to an object
B,

E - x
I over B is a pair (¢,¢') withg: B - Band ¢ : E' —
B,

E x g B’ such that ¢’ is a G-equivariant isomorphism and h' = hog'.

Let us first show a general lemma regarding quotient stacks.

Lemma A.1. Let G be an algebraic group and X be a scheme with a
G-action v: Gx X — X. Let Y and Z be algebraic stacks.

Assume there is a G-invariant morphism f' : X — Y, hence a map f from
the quotient stack [X/G] toY. Let g: Z — 'Y be a representable morphism of
algebraic stacks. There is a G-action on scheme X Xy Z induced by its action
on X. Then, there is a 2-isomorphism

(X xy Z/G] = [X/G] xy Z.
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Proof. By [28, Lemma 2.3.2], there is a 2-Cartesian diagram

(X xy Z/G] — [Z/G]
\J \J
[X/G] — [Y/G],

where [Z/G] and [Y/G] are the quotient stacks induced by the trivial G-
actions. As [Z/G] is 2-isomorphic to the product stack Z x BG and [Y/G] is
2-isomorphic to Y x BG, we obtain that

[Z/G]=[Y/G] xy Z.
Hence
X xy Z/G) = [X/G] x(y/c |2/G) = [X/G] xy Z.
o

Let P,Q be toric monoids. For a monoid morphism m : P — @, we let
f: Sg = Sp be the associated toric morphism, fr : Tg — Tp be the algebraic
torus morphism and f4 : Ag — Ap the morphism of Artin cones.

Proposition A.2. Let [Sq x Tp/Tg] be the toric stack obtained by the
torus action

TQX(SQXTP)—)SQXTP

associated to the monoid morphism
QOP® = Q¥ Qe PP, (¢p)— (g+m*(p),q¢,p).
Then there is a Cartesian diagram of Artin stacks

[SQ X TP/TQ} L) Sp

(A1) ln Jx

Ag B SN Ap,

where x : Sp — Ap is the quotient map, the morphism n is induced from the
Tq-equivariant map Sg x Tp to S by taking the projection and g is induced
from the i : Sg x T'p — Sp associated to the monoid morphism

(A.2) P—=Q&P®, p(m(p),-p),

invariant under the Tg-action on Sg x Tp.

Proof. With trivial T-action on Ap, the map Sg LSp = Apis To-
invariant. Since x : Sp — Ap is representable, by Lemma A.1,

Ag Xap Sp = 1[Sq X4, Sp/Tq]
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with Ty acting on the fiber product by acting on Sg. On the other hand,
there is a commutative diagram

SQXTPﬂ}SPXTp#SP

SQ SP X AP;

where a is the group action. By [25, Tag 04M9], the commutative diagram on
the right hand side is 2-Cartesian. We then obtain that Sg x 4, Sp = S xTp
as both squares are fiber diagrams. The induced Tg-action on Sg X Tp is given
by the monoid morphism in (A.2), which is the unique action that makes the
above fiber diagram Tg-equivariant. o

Proposition A.2 can be generalized to the toric strata of affine toric vari-
eties.

Corollary A.3. Let m : P — @ be a morphism of toric monoids. Let K
be an ideal of P and L be an ideal of @ such that m(K) C L. Then there is
a Cartesian diagram of idealized log stacks

[SQ7L X TP/TQ} L) SP,K

Jn |
fm
Ag,, —— Apk,

where x is the canonical quotient map and fy, is the map of toric stacks
associated to the monoid morphism m. The morphism n is induced from
the Tg-equivariant map Sq,;, X Tp to Sg,1. by taking the projection and g is
induced from the 17 : So.r x Tp — Sp i associated to the monoid morphism

P — Q @ nga P — (m(p)a _p)a

invariant under the Tg-action on Sq,r X Tp.

Proof. Since Spx = Ap,x XA, Sp, we obtain that

AQ.L Xapx SPk = AQ,L Xupx (APK X4p SP)
=Ag.L XA, Sp
= AqQ,L X4, (AQ X4 Sp)
= AqQ,L X4, [Sq xTp/Tq).
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The map [Sq xTp/Tg] — Ag is induced by the T-invariant map SgxTp ~—
Sg — Ag. By Lemma A.1, we then obtain that

AQ.L Xaq [Sq x Tp/Tg| = [Aq.L X g (Sq x Tp)/Tq]

= [(Aq,L Xaq Sq) x Tr/Tq] = [Sq,r. x Tr/Tqg)].
'

Appendix B. Logarithmic fiber product of toric varieties

In this section, we study the logarithmic fine, saturated fiber products of
toric varieties. Unlike the fiber product in the category of schemes, the log
fine, saturated fiber products of toric varieties are totally determined by the
fiber product of the fans.

Definition B.1. Let X(X) — X(Y) and X(Z) — X(Y) be morphisms of
fans. Define the fiber product of fans ¥(X) x5yy X(Z) to be the fan (3, N)
with

(1) N being the fiber product of lattices N(X) XNy N(Z),
(2) % consisting of the cones ox X4, 0z with ox € 2(X), oy € 2(Y)
and oz € (2).

Lemma B.2. Let f: X =Y and g : Z — Y be toric morphisms of toric
varieties. Then, the fine, saturated fiber product X ><§§ Z is a disjoint union
of toric varieties and each of them is isomorphic to the toric variety of the
fiber product of fans X(X) xsyvy X(Z). The number of the components is the
lattice index [(im @)% : im o] under the map

(B.1) a:NX)xN(Z)—=> NY), (z,2)— fn(z)—gn(2)

with fn and gy the lattice maps associated to the toric morphisms f and g.

In particular, if the lattice map o has full dimensional image in N(Y'), then
the lattice index is [N(Y) : im .

Proof. The fine, saturated logarithmic fiber product of the toric varieties
is discussed in [19, Rmk 2.2.5] in detail. By [19], the fine, saturated log fiber
product X ><§§ Z is a disjoint union of schemes, each of which is isomorphic
to the toric variety of the fiber product of fans (X ) xxyy X(Z). The reason
of the fiber products containing several components is due to the fact that
the torsion subgroup Tor of the fibered sum of monoids M (X) ©ar vy M(Z)
is nontrivial, with M (X), M(Y) and M (Z) the character lattices. As we are
working over a field of characteristic 0, the number of the components is the
order of the group Tor.
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Note that we have an exact sequence of monoids
w/

(B.2) MY) S M(X) e M(Z) L M(X) @) M(Z) — 0,
with ¢ = (fx,—gy) and ¢’ the cokernel map of ¢. Let

b M(X) @ M(Z) 5 M(X) @ vy M(Z) % M(X) @ vy M(Z)/ Tor .
Then, the torsion group

Tor = ker q = 1)’ (ker 1) = ker 1)/ (ker ) Nker1)’) = ker 1/ im ¢.

As im ¢ is a full dimensional sublattice of ker v, by lattice geometry, the order
of the torsion group Tor is the same as the lattice index [(im ¢)* : (ker ¢)*].
We finish the proof by showing that under the inclusion of the lattice

o i (img)* — N(Y),
the image of (im ¢)* is (im «)**, and the image of (ker¢)* — (im ¢)* is (im «),
with « defined in (B.1).

The cokernel of the map o’ is isomorphic to (ker ¢)*, following the dual of
the short exact sequence

0—ker¢ - M(Y) —im¢ — 0.

Hence, coker o’ is torsion free. Therefore, the image of (im ¢)* under o' is a
saturated sublattice of N(Y') containing (im «).

Note that « is the dual map of ¢ in (B.2). Taking the dual of the exact
sequence (B.2), we obtain an exact sequence of the lattices

0 = N(X) xnyv) N(Z) L5 N(X) x N(Z) 2 N(Y).

Therefore im o & coker ¢* = (kerv)*, with the second equality following the
dual of the short exact sequence

0 — ker(¢)) — M(Y) % im(1) — 0.
The lattice quotient
[(im¢)* : (kery)*] = [(im @)®*" : im o],

which equals the order of the torsion group Tor. o
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