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SPLITTING OF GROMOV–WITTEN INVARIANTS

WITH TORIC GLUING STRATA

YIXIAN WU

Abstract

We prove a splitting formula that reconstructs the logarithmic Gromov–

Witten invariants of simple normal crossing varieties from the punc-

tured Gromov–Witten invariants of their irreducible components, un-

der the assumption of the gluing strata being toric varieties. The for-

mula is based on the punctured Gromov–Witten theory developed by

Abramovich, Chen, Gross, and Siebert.
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1. Introduction

Relative Gromov–Witten invariants of a smooth projective variety Y and

a smooth divisor D, developed in [16], [13], [17], [18], have been one of the

most important techniques to calculate Gromov–Witten invariants. For a de-

generating family of projective schemes X → B with general fiber over b ∈ B

a smooth variety Xb and the central fiber X0 the union of two smooth irre-

ducible components Y1, Y2 meeting along a smooth divisor D, a degeneration
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214 YIXIAN WU

formula is obtained to relate the Gromov–Witten invariants of Xb with the

relative Gromov–Witten invariants of (Y1, D) and (Y2, D).

Recently, logarithmic Gromov–Witten theory developed in [12], [9], [2] has

been proved to be a successful generalization of the relative Gromov–Witten

theory to the case of D being a normal crossing divisor of Y . Especially,

for a degenerating family with central fiber X0 a normal crossing variety,

a decomposition formula is obtained in [3] that relates the Gromov–Witten

invariants of Xb with the logarithmic Gromov–Witten invariants on X0 of

rigid decorated tropical types. The rigid decorated tropical types τ restrict

the combinatorics of the maps, including the dual intersection graphs, the

image cones of irreducible components, marked and nodal points, the contact

orders and the curve classes.

To further decompose the logarithmic Gromov–Witten invariants of X0 of

type τ to the invariants of irreducible components of X0, the theory of punc-

tured Gromov–Witten invariants is built in [4]. Punctured Gromov–Witten

theory studies logarithmic maps with domain being punctured logarithmic

curves, which naturally occur after splitting log smooth curves along nodal

points. The combinatorics of the split maps are encoded in tropical subtypes

τ 1, . . . , τ r. There is a natural splitting morphism

M (X/B, τ ) →
r∏

i=1

M (X/B, τ i).

In this paper, we prove an explicit formula (Theorem 1.5) presenting the

virtual fundamental class of M (X/B, τ ) under splitting as the products of

the strata of M (X/B, τ i) associated to τ i-marked tropical types, under the

assumption that the gluing strata are toric varieties whose log stratifications

are the same as the toric stratifications. A numerical splitting formula of

logarithmic Gromov–Witten invariants (Corollary 1.6) is obtained as a direct

corollary.

1.1. The main results. Let B be a log point (Speck,MB), whose log

structure is determined by a chart QB → k with QB a toric monoid. Let

X → B be a projective log smooth morphism between fine, saturated log

schemes with Zariski log structures. Let β be a curve class in X.

The moduli space M (X/B, τ ) of basic stable punctured maps marked by

a global decorated type τ is a logarithmic algebraic stack [4, Thm A]. The

tropicalization of M (X/B, τ ) is locally determined by the tropical types of

the maps. For a geometric point in M (X/B, τ ) with tropical type ω, there

is an associated basic cone ω (Definition 2.5) of ω parametrizing the tropical

maps of type ω. Supposing x′ is a geometric point lying in the closure of x,

there is a canonical contraction morphism (Definition 2.10) from ω
′ to ω, with

Licensed to Univ of Texas at Austin. Prepared on Sat May 18 06:44:07 EDT 2024 for download from IP 128.62.216.51.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



SPLITTING OF GROMOV–WITTEN INVARIANTS 215

ω
′ the tropical type associated to x′. The contraction morphism induces an

inclusion of the associated basic cone ω as a face of ω′. The tropicalization of

M (X/B, τ ) is defined to be the colimit of the basic cones over the geometric

points under the above maps.

In order to define logarithmic evaluation maps, we need to modify the log

structure on M (X/B, τ ) based on the set S of nodal and punctured points

where we evaluate at (Section 2.2). The tropicalizations of the modified mod-

uli spaces are now determined by the associated evaluation cones ω̃S (Def-

inition 2.5), parametrizing the tropical maps with type ω together with a

marking on each edge and leg corresponding to points in S. There is a tropi-

cal evaluation map by taking the evaluations at the markings

(1.1) evtω : ω̃S →
∏

p∈S

Σ(X),

with Σ(X) the tropicalization of X.

Splitting a logarithmic map along nodal points of the domain can be de-

scribed easily using the tropical types. Fix a subset S of edges in the graph G

of τ . Cutting along each edge p ∈ S results in a set of global decorated types

τ 1, . . . , τ r with S1, . . . , Sr the set of additional half legs from the edges in

each type. We use ω̃ = ω̃S and ω̃i = ω̃i,Si
to denote the associated evaluation

cones of types ω and ωi marked by τ and τ i.

Theorem 1.1 ([4, Thm C]). There is a finite, representable morphism of

moduli spaces of punctured log stable maps to X over B

· : M (X/B, τ ) →
r∏

i=1

M (X/B, τ i).

For each edge p ∈ S, the tropical type τ determines a cone σ(p) of Σ(X)

(Definition 2.1), and a log scheme Vp := VX(σ(p)), the logarithmic stratum

of X of σ(p). The logarithmic subscheme Vp is the gluing stratum where

the nodal point of p is restricted on by τ . The reverse process of gluing

punctured maps of type τ i requires both schematic and tropical matching for

nodal points. Though in general complicated, under the case of the gluing

strata being toric varieties, the gluings of the logarithmic maps are completely

determined by the tropical information.

Assumption 1.2. Assume B = Spec(k → QB) is a log point with QB a

toric monoid. Suppose X → B is an integral, log smooth morphism between

fine, saturated log schemes. Assume MX is globally generated, and for each

edge p ∈ S, the strict closed subscheme Vp of the log scheme X has the

underlying scheme a toric variety, and the log stratification of Vp is the same

as the toric stratification.
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216 YIXIAN WU

Lemma 1.3 (Proposition 4.1 and Theorem 4.2). There exists a toric vari-

ety Xp associated to the fan (Σp, Np) with canonical toric log structure, such

that Vp is isomorphic to a toric stratum of Xp.

For curves of types ωi, the tropical matching condition is a fiber diagram

of cones
(∏r

i=1 ¸ωi

)−1
(0)

∏r
i=1 ω̃i

0
∏

p∈S
Np,R,

∏
εωi

with

(1.2)

r∏

i=1

¸ωi
:

r∏

i=1

ω̃i

∏
evtωi−−−−−→

∏

p∈S

Np,R ×Np,R

∏
coker∆p

−−−−−−−→
∏

p∈S

Np,R.

Here, the second map is the cokernel of the diagonal map. The map (1.2) tells

the difference by evaluating at two half edges after splitting. Instead of re-

quiring the evaluations to be matched along split edges, we introduce generic

displacement vectors and require the maps to be matched after the pertur-

bation along this vector. The minimal types satisfying the new matching

conditions determine the components of a substack of
∏r

i=1 M (X/B, τ i) ra-

tionally equivalent to ·(M (X/B, τ )). The idea is inspired by the intersection

theory of toric varieties in [10].

Definition 1.4.

(1) A vector V ∈
∏

p∈S
Np is a displacement vector if V lies in the sub-

lattice

Np1
×NB

· · · ×NB
Np|S|

⊆
∏

p∈S

Np,

where the map Npi
→ NB is induced by the tropicalization of the

map Xpi
→ B.

(2) For a displacement vector V, define ∆(V) to be the set of types [ρ] =

(ρ1, . . . ,ρr) such that

(i) ρi admits a contraction morphism to τ i, for i = 1, . . . , n,

(ii) V ∈ im(
∏r

i=1 ¸ρi
), for

∏r
i=1 ¸ρi

defined in (1.2) and

(iii)

r∑

i=1

dim ρ̃i − dim τ̃ =
∑

p∈S

dimNp − (|S| − r + 1) · rankQgp
B .

By condition (i), the types in ∆(V) determine strata in

r∏

i=1

M (X/B, τ i).
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SPLITTING OF GROMOV–WITTEN INVARIANTS 217

Condition (ii) requires the existence of tropical maps with type

(ρ1, . . . ,ρr) that match along splitting edges after the perturbation

along V. Condition (iii) requires the types to have expected virtual

dimension.

(3) A displacement vector V is generic if for any type [ρ] ∈ ∆(V), the

map
∏r

i=1 ¸ρi
is injective and V lies in the interior of the image cone

im(
∏r

i=1 ¸ρi
).

(4) For each [ρ] ∈ ∆(V), we define the multiplicity

m[ρ] =
[
im(

r∏

i=1

¸ρi
)sat : im(

r∏

i=1

¸ρi
)],

where ¸ρi
is the lattice map associated to ¸ρi

and im(
∏r

i=1 ¸ρi
)sat is

the saturation of the sublattice im(
∏r

i=1 ¸ρi
) in

∏
p∈S

Np.

Now, we are ready to state the main result:

Theorem 1.5. Let X be a fine, saturated logarithmic projective scheme,

log smooth over a log point B = Spec(QB → k), with QB a toric monoid. Let

τ be a decorated global tropical type. Fix a set of the splitting edges S and let

τ 1, . . . , τ r be the decorated global types obtained after splitting.

Suppose Assumption 1.2 is satisfied. Let V be a generic displacement vector

defined in Definition 1.4. Then, for the finite, representable morphism of

moduli spaces of punctured stable log maps

· : M (X/B, τ ) →
r∏

i=1

M (X/B, τ i),

the following equation holds

(1.3)

·∗[M (X/B, τ )]virt =
∑

[ρ]∈∆(V)

r∏

i=1

m[ρ]

|Aut(ρi/τ i)|
· jρiτ i∗[M (X/B,ρi)]

virt,

with jρiτ i
the finite morphism from M (X/B,ρi) to M (X/B, τ i) associated to

the contraction morphism ρi → τ i, and Aut(ρi/τ i) the automorphism group

of ρi relative to τ i.

A special case of Theorem 1.5 is the splitting of τ at all edges. Then each

split type τ i consists of one vertex with a number of legs, with the associated

image stratum strictly smaller than the full target. In this case, (1.3) expresses

the punctured invariants of type τ in terms of punctured invariants of these

logarithmic strata. For example, in a degeneration situation as in [3], this

expresses the Gromov–Witten invariants of a general fiber in terms of the

punctured invariants of the strata of the central fiber. Such localization to
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218 YIXIAN WU

the strata does not follow from the general gluing formulas in [23], [4, Thm

C] and [24].

A direct corollary of Theorem 1.5 is a numerical formula of logarithmic

Gromov–Witten invariants.

Corollary 1.6. Follow the situation in Theorem 1.5. Fix a subset P of

legs of the graph of τ , which corresponds to a subset of punctured points. Let

Pi be the legs that lie in τ i after splitting, for i = 1, . . . , n. There are

evaluation maps e : M (X/B, τ ) → X |P| along punctured points in P and

eρi
: Mρi

(X/B, τ i) → X |Pi| along punctured points Pi, for ρi the τ i-marked

decorated types.

Let β ∈ H∗(X |P|) be a cohomology class with a Künneth decomposition

β =
∑

μ

αμ · βμ,1 � · · ·� βμ,r,

where βμ,i ∈ H∗(X |Pi|), for i = 1, . . . , n. Then,

·∗

[ ∫

[M (X/B,τ )]virt
e∗(β)

]

=
∑

μ

∑

[ρ]∈∆(V)

αμ ·
r∏

i=1

m[ρ]

|Aut(ρi/τ i)|
·

∫

[M (X/B,ρi)]
virt

j∗ρiτ i
e∗ρi

(βμ,i).

Proof. The claim is a direct result of Theorem 1.5, following the projection

formula. ♠

1.2. Idea of the proof and structure of the paper. The foundation

of the paper is based on the punctured Gromov–Witten invariants in [4]. In

Section 2, we provide a brief review of punctured Gromov–Witten theory and

the gluing formalism. We briefly cover the basic theory of the moduli spaces

of punctured logarithmic maps and the virtual theory over the moduli of the

maps to the relative Artin fans in Section 2.1. We study the evaluation log

structures in Section 2.2. There are canonical evaluation idealized structures

on the modified moduli spaces such that they are idealized log smooth (Propo-

sition 2.8). In Section 2.3, we recall the gluing formalism studied in [4, §5.2].

It is shown in Proposition 2.14 that up to a reduction of the moduli spaces,

it is sufficient to study the commutative diagram

(1.4)

M̃
gl,ev
red

∏r
i=1 M̃

ev
τ i,red

Xτ

∏r
i=1 Xτ i

δevred

ev
∏

evτi

∆X

following the fiber diagram (2.6).
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SPLITTING OF GROMOV–WITTEN INVARIANTS 219

Such diagram has nice properties. First, the moduli spaces
∏r

i=1 M̃
ev
τ i,red

and the evaluation maps are both idealized log smooth (Proposition 2.8, Corol-

lary 2.9). Hence, locally they admit charts of toric morphisms. Second, under

Assumption 1.2, the gluing strata Xτ and Xτ i
have global toric structures.

The global toric structures provide a canonical patching of the splitting for-

mulas from the local charts.

Since the local gluings are toric, we review the intersection theory in toric

varieties in Section 3 following [10]. We give the necessary generalization of

the Fulton-Sturmfels formula to toric stacks in Corollary 3.6.

The local form of the splitting formula is explored in detail in the first two

sections of Section 4. In Section 4.1, we study the structures of the gluing

strata Xτ and Xτ i
, based on the logarithmic fiber products of toric varieties

studied in Appendix B. Each of them is a disjoint union of log schemes

isomorphic with each other, denoted Zτ and Zτ i
correspondingly. In Section

4.2, we study the local chart of the gluing formalism (1.4). Étale locally, the

moduli space
∏r

i=1 M̃
ev
τ i,red

admits a smooth map to a quotient stack of a

toric variety by an algebraic torus. The quotient stack Aev is an evaluation

enhancement of the Artin cone defined in (4.8) and has a canonical evaluation

map to the gluing strata
∏r

i=1 Xτ i
. By studying the gluing of Aev using the

generalized Fulton-Sturmfels formula, we obtain the splitting formula for Aev

in Lemma 4.6 and the local splitting formula in Proposition 4.5. In Section

4.3, we finish the proof of the global splitting formula Theorem 1.5 (Proof of

Theorem 4.2) by showing the splitting formula patches under a fixed generic

displacement vector.

1.3. Other approaches. Relative Gromov–Witten invariants for smooth

pairs (X,D), studied in [16], [13], [17], [18], are defined through the moduli

spaces of stable maps to expansions of X along D. The stable maps to the

expansions are transverse, hence the degeneration formulas are obtained by

gluing the underlying stable maps. Using the idea of expansion, the degenera-

tion formulas for smooth pairs are studied using twisted stable maps in [5] and

logarithmic stable maps in [14], [8]. These different approaches are proved to

be identical with logarithmic Gromov–Witten invariants for smooth pairs in

[6]. In [15], Kim, Lho and Ruddat provided a proof of the gluing formula for

logarithmic Gromov–Witten invariants for smooth pairs without expansions

using logarithmic technique. Because of the transverse nature of the under-

lying tropical geometry, all these approaches come with splitting formulas

according to strata similar to our Corollary 1.6.

Combining the idea of expanded degenerations and tropical geometry, Ran-

ganathan showed a general gluing formula of log Gromov–Witten invariants

in the normal crossing settings in [24]. The numerical degeneration formula
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220 YIXIAN WU

there requires the knowledge of a Künneth decomposition of universal divi-

sor expansions. We expect a similar splitting formula as we present can be

obtained by proving an explicit Künneth formula for universal expansions of

toric varieties.

The gluing and splitting formalism using punctured Gromov–Witten in-

variants has a symplectic parallel by the theory of exploded manifolds due to

Brett Parker in [22], [23]. The concept of generic deformation vectors in [22]

partially inspires our definition of the generic displacement vectors here. In

a special case for rigid analytic Gromov–Witten invariants, a gluing formula

has been proved by Yu [29].

1.4. Conventions. We follow the conventions in [3] and [4]. All logarith-

mic schemes and stacks are fine and defined over an algebraically closed field

k over characteristic 0.

The affine log scheme with a global chart defined by a homomorphism

Q → R from a monoid Q to a ring R is denoted Spec(Q → R). For Q a toric

monoid, we define Q∨ := Hom(Q,N) and Q∗ := Hom(Q,Z). We use SQ to

denote affine toric variety Spec(k[Q]) with the canonical toric log structure

and TQ to denote Spec(k[Qgp]). We define AQ := [SQ/TQ] to be the Artin

cone of Q. Suppose L ⊆ Q is an ideal of Q, then we use SQ,L to denote that

subscheme of SQ determined by the ideal generated by L. We use AQ,L for

the stack [SQ,L/TQ].

For a toric variety X and a cone Ã ∈ Σ(X) in the fan of X, we use OX(Ã)

to denote the algebraic torus Speck[Ã⊥ ∩M ] that is a subscheme of X, and

we use VX(Ã) to denote the closure of OX(Ã) in X. For a Zariski log scheme

X and a cone Ã in the tropicalization of X, we use VX(Ã) to denote the closed

stratum whose dual cone of the stalk MX at the generic point of VX(Ã) is Ã.

For a logarithmic stack X and a cone Ã in the tropicalization of X, we use

VX(Ã) to denote the strict closed integral substack with pullback VW (Ã) on

each Zariski smooth chart W → X. For a proper, representable morphism

between logarithmic integral stacks f : X → Y , we use f∗[X] to denote the

push-forward class f
∗
[X], as studied in [27, Def 3.6] and [7, Appendix B].

We use |S| to denote the cardinality of a finite set S.

2. Punctured invariants and the gluing formalism

In this section, we give a brief introduction to the punctured Gromov–

Witten invariants and the gluing formalism studied in [4]. We show the glu-

ing formalism admits a local model of fiber product of toric varieties in the

category of fine, saturated log schemes.
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SPLITTING OF GROMOV–WITTEN INVARIANTS 221

2.1. Punctured Gromov–Witten invariants. Let X be a projective

log smooth scheme over a log scheme B. A punctured log curve over a log

scheme W is given by

(C◦ p
−→ C

π
−→ W,p = (p1, . . . , pn)),

where

(1) C→W is a logarithmic curve with a set of disjoint sections {p1, . . . , pn}.

(2) C◦ is a logarithmic curve with the underlying curve C and log struc-

ture

MC◦ ⊂ MC ⊕O×
C
Pgp

for P ⊂ MC the divisorial log structure along sections p, such that for

any geometric point x ∈ C and sx /∈ Mx ⊕O×
C
Px, we have αC◦(sx) =

0.

We note that MC◦ is not necessarily saturated. Figure 1 in [4] provides a

nice example. A punctured log map to X → B over W → B is a punctured

log curve (C◦ → C → W,p) and a morphism f : C◦ → X over B. It is stable

if MC◦ is generated by MC and f �(f∗(MX)) and the underlying map f is

stable in the usual sense.

The contact order of a punctured map over a log point W = Spec(Q → k)

at point p ∈ p is the composition

up : MX,f(p)
f�

−→ MC,p → Q⊕ Z
pr2−−→ Z.

The contact order is negative if the image of up is not contained in N, which

naturally occurs over the points p with MC,p a strict submonoid of MC◦,p.

Via the functoriality of the tropicalization functor, a stable punctured log

maps gives rise to a family of tropical punctured maps [4, §2.2.1], where we

extract the combinatorial data of global types. As in the theory of logarithmic

Gromov–Witten, the moduli spaces of the stable punctured log maps to X

are stratified by global types.

Definition 2.1 ([4, Def. 3.4]). A global type Ä of a family of tropical

punctured maps is a tuple (G,g,u,σ) consisting of

(1) A connected graph G with a set of vertices V (G), a set of edges E(G)

and a set of legs L(G).

(2) A genus map g : V (G) → N.

(3) An image cone map σ : V (G) ∪ E(G) ∪ L(G) → Σ(X).

(4) A global contact order map u

u : E(G) ∪ L(G) →
⊔

σ∈Σ(X)

Cσ(X)

Licensed to Univ of Texas at Austin. Prepared on Sat May 18 06:44:07 EDT 2024 for download from IP 128.62.216.51.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



222 YIXIAN WU

such that u(x) ∈ Cσ(x)(X), with σ(x) the image cone of any edge or

leg x. Here, for any cone Ã ∈ Σ(X), we define

Cσ(X) := colimSets
y∈VX (σ) Nσy

for a point y ∈ X. By the cone Ãy we mean the dual cone M
∨
X,y.

A global decorated type τ is a tuple (Ä,A) with Ä a global type and A a

function from V (G) to a monoid of curve classes of X. We say a global type

Ä or a global decorated type τ = (Ä,A) is realizable if there exists a tropical

map to Σ(X) with associated global type Ä .

A marking by τ of a punctured map (C◦/W,p, f) is defined in [4, Def.3.7].

Roughly speaking, a map is marked by τ if the genus decorated dual graph

of the curve C admits a contraction to (Gτ ,gτ ), the image of each node and

punctured point lies in the associated logarithmic strata of the cone σ, both

the contact orders of non-contracted edges and legs and the curve classes after

contraction are determined by τ . Theorem 2.2 in [4] lays the foundation of

the punctured Gromov–Witten theory.

Theorem 2.2 ([4, Thm A]). Let τ be a global decorated type. Then the

moduli space M (X/B, τ ) of τ -marked basic stable punctured maps to X → B

is a Deligne-Mumford logarithmic algebraic stack and is proper over B.

The insights of Olsson’s category of logarithmic schemes [21] lead to the

concept of Artin fans. As defined in [3, §2.2], for a log Deligne-Mumford

stack X, the Artin fan of X is the algebraic stack constructed by gluing

toric quotient stacks, called Artin cones, of stalks of MX . Let x be a geo-

metric point on X and let Px be MX,x. We define an Artin cone Ax =

[Speck[Px]/ Speck[P
gp
x ]]. The generization of points results in open embed-

dings of Artin cones. The Artin fan AX is the colimit of Artin cones along all

points. Artin fans play an important role in the virtual theory and connect

the tropical picture with the log picture.

Let X = AX×AB
B be the relative Artin fan. The moduli spaceM(X/B, τ )

of τ -marked basic stable punctured maps to X → B is again an algebraic

stack. For τ realizable, the moduli space M(X/B, τ ) is pure dimensional

[4, Prop.3.28].

There is a natural evaluation map

M(X/B, τ ) → X ×B · · · ×B X ,

taken over all the edges and legs of type τ . We define

(2.1) M
ev(X/B, τ ) = M(X/B, τ )×(X×B ···×BX ) (X ×B · · · ×B X).

Let S be a subset of edges of the graph G of τ . By splitting G along the

edges in S, we obtain a collection of types τ i, i = 1, . . . , r. As shown by

Theorem 2.3, the virtual theory of the splitting morphism of the moduli spaces
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SPLITTING OF GROMOV–WITTEN INVARIANTS 223

of punctured maps to X → B is compatible with the splitting morphism of

the moduli spaces of punctured maps to the relative Artin fans X → B.

Theorem 2.3 ([4, Thm C, Prop 5.15, Thm 5.17]). There is a Cartesian

diagram

(2.2)

M (X/B, τ )
∏r

i=1 M (X/B, τ i)

M
ev(X/B, τ )

∏r
i=1 M

ev(X/B, τ i),

δ

ε̂ ε

δ′

with horizontal splitting maps finite and representable, and vertical maps strict

morphisms. There are obstruction theories

G → LM (X/B,τ )/Mev(X/B,τ ),

Gspl → L∏
r
i=1

M (X/B,τ i)/
∏

r
i=1

Mev(X/B,τ i),

such that the obstruction theory of the left vertical map is the pullback of the

obstruction theory of the right vertical map. For α ∈ A∗(M
ev(X/B, τ )), there

is

·∗ ˆ̧
!(α) = ¸!·′∗(α),

where ˆ̧! and ¸! are the Manolache’s virtual pullback defined using these two

obstruction theories.

2.2. Logarithmic evaluation maps. Different from Jun Li’s situation

using expanded degenerations, the gluing of a logarithmic stable map from the

restrictions to closed subcurves requires more than gluing on the schematic

level. In order to obtain a gluing formalism, we first need to fix the problem

of the non-existence a logarithmic evaluation map from the moduli space

M(X/B, τ ) to X . It requires us to do a modification of the log structure on

the moduli space.

For ease of notation, we use Mτ := M(X/B, τ ) and M
ev
τ := M

ev(X/B, τ )

for the rest of the paper. Let G be the graph associated to τ . For each element

p ∈ E(G)∪L(G), let sp : Mτ → C
◦ be the universal section of the punctured

or nodal point associated to p. Define M̃p to be the logarithmic algebraic

stack with the underlying stack Mτ and the log structure s∗pMC◦ . With this

log structure, there is a canonical evaluation map M̃p → X on the section of

p. Note that the log structure on M̃p is fine, but may not be saturated.

For a subset S ⊆ E(G)∪L(G), let M̃S,τ be the saturation of the fine fiber

product

(2.3) M̃p1
×fine

Mτ
· · · ×fine

Mτ
M̃p|S|

, pi ∈ S

in the category of fine log stacks. For the rest of the section, we fix a subset

S and use M̃τ for M̃S,τ . Define M̃
ev
τ = M̃τ ×Mτ

M
ev
τ .
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Proposition 2.4 ([4, Prop.5.5]). The canonical map M̃
ev
τ → M

ev
τ is an

isomorphism on the underlying stacks provided S ⊆ E(G), and generally in-

duces an isomorphism on the reductions.

There is a canonical idealized structure on Mτ , such that Mτ is idealized

log smooth [4, Thm 3.24]. The idealized structure in [4, Def 3.22] comes from

the fixed combinatorial conditions including dual graph G, image strata fixed

by σ, the contraction to the global type τ and the puncturing ideal. We will

construct an evaluation idealized structure on M̃τ following Construction 2.7,

with which M̃τ is also idealized log smooth. Similar to the log structures

on Mτ , both log structures and evaluation idealized structure on M̃τ are

determined by the global type τ .

For a basic punctured log map of type τ over a point w, the dual cone of

the stalk (MMτ ,w)
∨
R
, is called associated basic cone of τ . The associated basic

cone parametrizes the tropical maps of type τ , which we describe concretely

in Definition 2.5. Similarly, the dual cone of the stalk (M
M̃τ ,w

)∨
R
also admits

a simple description by associated evaluation cone of τ , which parametrizes

the tropical maps of type τ with an additional marking on each edge or leg

in S.

Definition 2.5. Let τ be a realizable global decorated type. Define the

associated basic cone τ of τ the set of elements

((Vv)v∈V (G), (lE)E∈E(G)) ∈
∏

v∈V (G)

σ(v)×
∏

E∈E(G)

R≥0,

such that VvE − Vv′
E

= lE · u(E). Here vE and v′E are the vertices of the

edge E, with order specified by u(E). As VvE and Vv′
E
both lie in σ(E), the

difference VvE − Vv′
E
is well-defined.

Define the associated evaluation cone τ̃S of τ with respect to a set S ⊆

E(G) ∪ L(G) to be the set of elements

((Vv)v∈V (G), (lE)E∈E(G), (tp)p∈S) ∈
∏

v∈V (G)

σ(v)×
∏

E∈E(G)

R≥0 ×
∏

p∈S

R≥0,

such that VvE − Vv′
E
= lE · u(E), Vvp + tp · u(p) ∈ σ(p) and te ≤ le for e in

E(G) ∩ S. Here, if p ∈ L(G), we define the vertex vp to be the vertex of leg

p; if p is an edge E ∈ E(G), we define the vertex vp to be the vertex v′E with

VvE −Vv′
E
= lE ·u(E), specified by the orientation of the contact order. There

is a tropical evaluation map

evtτ : τ̃S →
∏

p∈S

σ(p),

((Vv)v∈V (G), (lE)E∈E(G), (tp)p∈S) �→ (Vvp + tp · u(p))p∈S.
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Under the case of B = Spec(QB → k), the tropical evaluation map evtτ
factors through the fiber product of cones σ(p) over Q∨

B . The map

(2.4) evτ : τ̃S → σ(p1)×Q∨
B
· · · ×Q∨

B
σ(p|S|)

that evtτ factors through is later used in Lemma 4.6.

Lemma 2.6. Let τ be the tropical type of the punctured map over a geo-

metric point w on M̃τ . Then, there is an isomorphism between the dual cone

(M
∨
M̃τ ,w)R and τ̃S.

Proof. By the definition of M̃τ in (2.3), there is a projection from M̃τ →

M̃p, for every p ∈ S. Let wp be the geometric point in M̃p under the projec-

tion. Let Q̃p be the monoid M
M̃p,wp

. From the tropical interpretation of the

basic log structure in [4, §2.2], for p ∈ S and the associated punctured or nodal

point sp : Mτ → C
◦, there are isomorphisms between Q̃∨

p,R = s∗p(MC◦,sp(w))

and the cone

((Vv)v∈V (G), (lE)E∈E(G), tp) ∈
∏

v∈V (G)

σ(v)×
∏

E∈E(G)

R≥0 × R≥0

with VvE − Vv′
E
= lE · u(E), Vvp + tp · u(p) ∈ σ(p) and tp ≤ lp if p ∈ E(G).

As Q̃ is the saturation of Q̃p1
⊕Q · · ·⊕Q Q̃p|S|

, the dual cone Q̃∨
R
is the fiber

product of cones Q̃∨
p1,R

×Q∨
R
· · · ×Q∨

R
Q̃∨

p|S|,R
. Thus, there is an isomorphism of

cones Q̃∨
R
→ τ̃S. ♠

Now we construct the idealized structure on M̃τ , with which M̃τ is ide-

alized log smooth over B. It follows from the following general construction

of an idealized log structure on a logarithmic stack M , assuming there is a

strict closed embedding of (M,MM ) → (N,MN ) determined by a sheaf of

log ideals of MN and there is an idealized log structure KN on N . The

construction is the same as the log scheme case in [20, Prop III.1.3.4].

Construction 2.7. Assume there is a strict closed embedding of (M,MM )

→ (N,MN ), such that M is the closed substack of N determined by the ideal

generated by αN (K′), with K′ a log ideal sheaf of MN and αN the structure

morphism. We construct an idealized structure KM to be the ideal sheaf of

MM generated by the pullback of K′ and KN .

It is easy to check that αM (KM ) = 0, thus KM is a well-defined idealized

structure. The morphism (M,MM ,KM ) → (N,MN ,KN ) is idealized log

smooth by [20, Variant IV.3.1.21]. Note that by definition, a logarithmic

stratum M of N is determined by a logarithmic ideal sheaf, hence satisfies

the condition for the construction.

Let KMτ
be the canonical idealized structure onMτ defined in [4, Def.3.22].

For p ∈ S, the map ep : M̃p → Mτ is the composition of the strict section

map sp : M̃p → C
◦ and the universal curve C

◦ → Mτ . The section map
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M̃p → C
◦ is a closed immersion of the logarithmic stratum of C◦ associated

to the puncturing p. We define an idealized log structure KC◦ on C
◦ by the

pullback of KMτ
on Mτ . Define K

M̃p
to be the canonical idealized structure

on M̃p associated to sp constructed in Construction 2.7 and K
M̃S

to be the

sheaf of ideals generated by the pullbacks of ideals K
M̃p

under the projection

maps M̃τ → M̃p.

Proposition 2.8. The logarithmic algebraic stack M̃τ with log ideal K
M̃τ

is idealized log smooth over B.

Proof. With the idealized structure KC◦ on C
◦, the universal curve C

◦ →

Mτ is ideally strict, that is, the idealized structure on C
◦ is generated by the

pullback of idealized structure on Mτ . Since C
◦ → Mτ is log smooth, it is

idealized log smooth by [20, Variant IV.3.1.22]. By [20, Variant IV.3.1.21],

the closed embedding M̃p → C
◦ is idealized log smooth. Hence, we obtain

that ep : M̃p
sp
−→ C

◦ −→ Mτ is idealized log smooth.

Let M̃fine
τ be the fiber product of fine logarithmic stacks

M̃p1
×fine

Mτ
· · · ×fine

Mτ
M̃p|S|

,

with pi going over elements in S. As the idealized log smoothness is stable

under fine fiber products, with ideal sheaf K
M̃fine

τ

on M̃
fine
τ generated by the

pullback of ideals K
M̃p

, the projection map M̃
fine
τ → Mτ is idealized log

smooth. By the idealized log smoothness of Mτ over B, we obtain that M̃fine
τ

is idealized log smooth over B.

Let g : M̃τ → M̃
fine
τ be the saturation morphism. By [20, §III.3.1.11], the

saturation morphism g is log étale. As the projection maps M̃τ → M̃p factor

through g, the ideal sheaf K
M̃τ

is generated by g∗(K
M̃fine

τ

). The morphism

g is ideally strict, hence is idealized log smooth. The logarithmic algebraic

stack M̃τ is idealized log smooth over B. ♠

Corollary 2.9. Let M̃
ev
τ ,red be the reduced induced logarithmic stack of

M̃
ev
τ . Let K

M̃ev
τ,red

be the idealized structure on M̃
ev
τ ,red associated to the strict

closed embedding to M̃
ev
τ ,red → M̃

ev
τ constructed in Construction 2.7. Then

the corresponding idealized log stack M̃
ev
τ ,red is idealized log smooth over B.

Proof. The statement follows from [20, Variant IV.3.1.21]. ♠

Following the idealized smoothness of M̃τ , we obtain that the stratification

of M̃τ is encoded in the global types with contraction morphisms to τ , similar

to [4, Rmk 3.29].

Definition 2.10. A contraction morphism of global decorated types ω →

τ is a map of the graphs Gω → Gτ contracting a subset of edges, such that
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the following properties are satisfied:

(1) the global contact order of τ associated to an edge or a leg p is the

same as the global contact order of the edge or leg in ω surjective

onto p,

(2) the genus and the curve class of a vertex in τ are the sum of those of

the vertices in ω mapped to v and

(3) the cone of a vertex, edge or leg in τ is a subcone of any vertices,

edges or legs contained in the preimage.

Suppose ω → τ is a contraction of global decorated type. The preimages of

elements in S form a subset of the edges and legs of ω, which we again denote

S. Then, by the definition of the associated evaluation cones in Definition 2.5,

there is a face inclusion Ä̃S → ω̃S whose image is the locus corresponding to

points with lE = 0 for the contracted edges in the graph of G. The evaluation

map evtτ in Definition 2.5 is the restriction of evtω on τ̃S.

Remark 2.11. Let us give the idealized structure on M̃
ev
τ ,red a local de-

scription.

Let ω be a global decorated type that admits a contraction morphism to τ .

We first take a look at the idealized structure of Mω. Let Qω = Hom(ωZ,N)

be the associated basic monoid of ω as defined in [4, Def 2.38] and Qτ =

Hom(τZ,N) be the associated basic monoid of τ . Let Lω be the stalk of

the ideal sheaf KMτ
at a geometric point of type ω. Since τ is realizable,

by [4, Prop.3.23]), the ideal Lω is generated by the inverse image of Qτ\{0}

under the generization map Qω → Qτ .

Next, we take a look at the local structure of punctured points. Let Qω,p ⊆

Qω ⊕ Z be the stalk of MC◦ at the punctured or nodal point associated to

p ∈ S of a punctured map with type ω. Let Lω,p be the ideal generated by

the preimage of Lω under Qω,p → Qω and the ideal Qω,p ∩ (Qω ⊕ Z>0). It

follows that Lω,p is generated by the preimage of Lτ ,p under the generization

map Qω,p → Qτ ,p, thus is generated by the preimage of Qτ ,p\{0}.

Now, we are ready to study the idealized structure of M̃ev
τ . Let Q̃ω =

Hom(ω̃Z,N) and L̃ω be the stalk of the ideal sheaf K
M̃ev

τ

at the geometric

point x → M̃
ev
τ ,red → M̃

ev
τ . As the monoid Q̃ω is the saturation of the fibered

sum

Qω,p1
⊕Qω

· · · ⊕Qω
Qω,p|S|

in the category of fine monoids, the ideal L̃ω is generated by the image of

Lω,pi
together with the elements in Q̃ω which are mapped to the nilpotent

elements under the structure morphism. For type τ , the ideal L̃τ admits a

similar description. The ideal Lτ ,p = Qτ ,p\{0}, hence L̃τ is the prime ideal

Q̃τ\{0}. As Lω,p is generated by the preimage of Lτ ,p, we obtain that L̃ω is
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the preimage of L̃τ . The toric variety

Speck[Q̃ω]/(L̃ω) = VSpec k[Q̃ω](τ̃ )

is the toric strata associated to the subcone τ̃ in ω̃.

Corollary 2.12. Let Σ(M̃τ ) be the tropicalization of the Artin stack M̃τ

as mentioned in [3, §2.1.4] and constructed in [1] and [26]. Then, the image

of the finite morphism M̃ω → M̃τ is the substack V
M̃τ

(ω̃S) associated to the

cone ω̃S ∈ Σ(M̃τ ).

Proof. It follows from the idealized smoothness of M̃ω and M̃τ and the

local description of the associated basic monoids and idealized structure in

Remark 2.11. ♠

2.3. The gluing formalism. Fix a decorated global tropical type τ =

(Ä,A) with Ä realizable and S ⊆ E(G) a subset of edges of the graph G of τ .

By splitting along edges in S, we obtain subtypes τ 1, τ 2, . . . , τ r. For i = 1,

2, . . . , r, let Si be the subset of legs of the graph in τ i, obtained from the

splitting edges.

In the rest of the section, we use τ̃ and τ̃ i to denote the evaluation cones

τ̃S and τ̃ i,Si
. For a global decorated type ω that admits a contraction to τ ,

the set S is a subset of edges of ω, we use ω̃ to denote the evaluation cone ω̃S.

Similarly, we use ω̃i to denote the evaluation cone ω̃i,Si
for ωi that admits a

contraction to τ i.

In the previous section, we constructed the logarithmic evaluation map

evp : M̃ev
τ → X for each p ∈ S. The global type restricts the reduction of the

image strata of evp to VX(σ(p)). We use Vp to denote VX(σ(p)). Define

(2.5) Xτ := Vp1
×fs

B · · · ×fs
B Vp|S|

, pj ∈ S.

As M̃
ev
τ is reduced by [4, Prop.3.28], we obtain an evaluation map evτ from

M̃
ev
τ to Xτ . Similarly, let

Xτ i
:= Vp1

×fs
B · · · ×fs

B Vp|Si|
, pj ∈ Si,

and evτ i
be the corresponding evaluation map M̃

ev
τ i

→ Xτ i
.

Define M̃
gl,ev to be the following fiber product in the category of fine,

saturated logarithmic stacks

(2.6)

M̃
gl,ev

∏r
i=1 M̃

ev
τ i

Xτ

∏r
i=1 Xτ i

.

δev

ev
∏

evτi

∆X

The gluing formalism of [4, Cor.5.13] relates the fiber product M̃
gl,ev with

M̃
ev
τ . By the reducedness of M̃ev

τ in [4, Prop.3.28], we obtain Lemma 2.13.
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Lemma 2.13. Let M̃
gl,ev
red be the reduction of logarithmic algebraic stack

M̃
gl,ev. Then, the morphism from M̃

ev
τ to M̃

gl,ev induced by the fiber dia-

gram factors through the map M̃
gl,ev
red → M̃

gl,ev. Furthermore, it induces an

isomorphism between M̃
gl,ev
red and M̃

ev
τ .

Before we prove Lemma 2.13, let us first use it to show the main result

of this section Proposition 2.14, which implies that in order to study the

pushforward of the virtual fundamental class under the splitting morphism

(1.1), it is enough to study the map ·ev in diagram (2.6).

Proposition 2.14. Let γτ : M̃ev
τ → M

ev
τ and γi : M̃ev

τ i
→ M

ev
τ i

be the

canonical maps from moduli spaces with evaluation logarithmic structures to

basic log structures. Let βi : M̃
ev
τ i,red

→ M̃
ev
τ i

be the canonical maps from

the reduced induced stack M̃
ev
τ i,red

to M̃
ev
τ i
. Then, for the splitting morphism

·′ : Mev
τ →

∏r
i=1 M

ev
τ i

defined in (2.2), in the Chow group of
∏r

i=1 M
ev
τ i
, the

following equation holds

·′∗[M
ev
τ ] = (

r∏

i=1

γi ◦ βi)∗·
ev
red∗[M̃

gl,ev
red ].

Here ·evred : M̃gl,ev
red →

∏r
i=1 M̃

ev
τ i,red

is the map induced from ·ev : M̃gl,ev →
∏r

i=1 M̃
ev
τ i

in diagram (2.6) by taking the reduction.

Proof. By [4, Prop.5.5], which we recalled in Proposition 2.4, the underly-

ing stack morphism of γτ : M̃ev
τ → M

ev
τ is an isomorphism. Then, by Lemma

2.13, the following diagram is commutative

M̃
gl,ev
red = M̃

ev
τ M

ev
τ

∏r
i=1 M̃

ev
τ i,red

∏r
i=1 M

ev
τ i
.

γτ

δevred δ′

∏
γi◦βi

Therefore,

·′∗[M
ev
τ ] = ·′∗γτ∗[M̃

gl,ev
red ]

= (
r∏

i=1

γi ◦ βi)∗·
ev
red∗[M̃

gl,ev
red ].

♠

In order to show Lemma 2.13, we need punctured maps weakly marked

by a global type τ defined in [4, Def.3.7], and the moduli space of basic log

punctured maps of weak marking by τ , which is denoted M̃
ev′

τ . In contrast

to the moduli spaces of punctured maps marked by τ , it carries an extra

non-reducedness obtained from the infinitesimal deformation along τ , which

naturally occurs in the gluing process. See [4, §3.5.6] for a more detailed
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discussion of moduli spaces of maps of weak marking. Here, we use this as a

bridge between M̃τ and M̃
gl,ev.

Theorem 2.15 ([4, Cor.5.13]). There is a fine, saturated fiber product of

logarithmic stacks

M̃
ev′

τ M̃
ev′

τ1
×B · · · ×B M̃

ev′

τr

Xτ Xτ1
×B · · · ×B Xτr

.∆

Following the fiber diagram

M̃
ev′

τ1
×B · · · ×B M̃

ev′

τr

∏r
i=1 M̃

ev′

τ i

Xτ1
×B · · · ×B Xτr

∏r
i=1 Xτ i

,

with horizontal maps induced from the universal property of the fiber prod-

ucts, we have

(2.7) M̃
ev′

τ =
r∏

i=1

M̃
ev′

τ i
×∏

r
i=1

Xτi
Xτ .

Proof of Lemma 2.13. It is shown in [4, Prop 3.28] that Mτ is reduced.

The smoothness of the underlying stacks morphism of Mev
τ → Mτ induces

that Mev
τ is reduced. As S is a subset of edges, by Proposition 2.4, the canon-

ical map of moduli spaces M̃
ev
τ → M

ev
τ is an isomorphism on the underlying

stacks. Therefore, the moduli space M̃
ev
τ is reduced. By [4, Prop.3.31], there

are closed embeddings M̃
ev
τ → M̃

ev′

τ and M̃
ev
τ i

→ M̃
ev′

τ i
defined by nilpotent

ideals. Hence,

M̃
ev
τ = M̃

ev′

τ ,red, M̃
ev
τ i,red = M̃

ev′

τ i,red.

Then, by Theorem 2.15 and equation (2.7), we obtain that

M̃
ev
τ = M̃

ev′

τ ,red = (

r∏

i=1

M̃
ev′

τ i
×∏

r
i=1 Xτi

Xτ )red

= (

r∏

i=1

M̃
ev
τ i

×∏
r
i=1 Xτi

Xτ )red = M̃
gl,ev
red .

♠

3. Generalization of Fulton-Sturmfels formula

The idealized log smoothness of the evaluation maps provides us with local

toric models, where the local splitting maps can be seen as a toric morphism
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of toric stacks. We defer the discussion of the local toric models to the next

section. In this section, we study the pushforward of fundamental class under

the morphisms of toric stacks. It is a generalization of the classical result

of Fulton and Sturmfels on the intersection product of toric varieties. This

section serves as a technical foundation for the splitting formula. The readers

can feel free to skip the section first and check back later.

Let X be a toric variety associated to a fan (Σ(X), N(X)). Let N(Y ) ⊆

N(X) be a saturated sublattice defining a subtorus TY ⊆ TX . Define the

scheme Y to be the closure of TY in X.

Definition 3.1. A vector v ∈ N(X) is generic with respect to pairs (X,Y )

if for any cone · ∈ Σ(X) with dimension dimX − dimY , the affine space

N(Y )R + v intersects · at at most one point, and if they intersect, the inter-

section point lies in the interior of ·.

Define ∆0(v) to be the set of cones

∆0(v) := {· ∈ Σ(X) | dim · = dimX − dimY, (N(Y )R + v) ∩ · 
= ∅}.

The Chow groups of a toric variety are generated by its toric strata. It is

proved in [10, Lemma 4.4] that the subvariety Y in X is rationally equivalent

to a linear combination of the toric strata determined by cones in ∆0(v), for

any generic displacement vector v with respect to (X,Y ). Here, we provide

a slightly different proof using the Gm-orbit of Y under the torus action

associated to a generic vector v.

Lemma 3.2. Let v ∈ N(X) be a generic vector with respect to pairs (X,Y ).

Then, in the Chow group AdimY (X),

(3.1) [Y ] =
∑

δ∈∆0(v)

m(·) · [VX(·)].

Here m(·) = [N(X) : Nδ +N(Y )], with Nδ the sublattice of N(X) generated

by the cone ·. The subscheme VX(·) is the closed subvariety associated to

cone ·.

Proof. Let L be the toric varietyX×P
1 with the product fan structure. Let

α : L → P
1 be the projection and α : N(L) → Z be the associated projection

of lattices.

We first construct the Gm-orbit of Y under the torus action of v as a

subvariety of X × P1. Define N(K)R := {(x+ tv, t) | x ∈ N(Y )R and t ∈ R}

and N(K) the saturated integral lattice N(K)R ∩ N(L). Let TK ⊆ TL be

the corresponding subtorus. The closure of TK defines a subvariety K of L.

By toric geometry, the preimage subscheme α|−1
TK

(1) is isomorphic to TY and

α|−1
K (1) is isomorphic to Y .

Let Σ(K) be the fan with lattice N(K) and cones ·∩N(K)R for · ∈ Σ(L).

Let K̃ be the toric variety associated to (Σ(K), N(K)). Then K is the image
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of K̃ under the proper toric morphism associated to the lattice morphism

βN : N(K) ↪→ N(L). Let α′ : K̃
β
−→ L

α
−→ P1 be the induced projection to P1.

By [3, Prop 3.1], the subscheme (α′)−1(0) satisfies the equation

[(α′)−1(0)] =
∑

τ

mτ · [VK̃(Ä )],

where Ä goes over the rays in Σ(K), whose image under the R-linear map

α′
R
: N(K)R

βN,R
−−−→ N(L)R

αR−−→ R

is R≥0. The multiplicity mτ is given by the image of the primitive generator of

Ä under α′
R
. Since α is a flat dominant morphism, by the alternative definition

of rational equivalence in [11, §1.6], we obtain a rational equivalence relation

in the Chow group of X:

[Y ] = [α|−1
K (1)] ∼ [α|−1

K (0)] = β′
∗[(α

′)−1(0)]

=
∑

τ

mτ · β′
∗[VK̃(Ä )].

(3.2)

Here β′ : K̃ → X is composition of the map β : K̃ → L with the projection

L → X. It is sufficient to show that equation (3.2) is the same as equation

(3.1).

First, there is a one-to-one correspondence between rays Ä and cones in

∆0(v). Note each ray Ä ∈ Σ(K) is the intersection of ·×R≥0 and N(K)R for

a cone · in Σ(X). The preimage α−1
R

(1)∩Ä is a point (x+v, 1) in ·R×R≥0 for

some x ∈ N(Y )R. Hence {(N(Y )R + v) ∩ ·} is non-empty. By the genericity

of v, there is only one intersection point. It follows that the cone · lies in

∆0(v). On the other hand, for every · in ∆0(v), the intersection of · × R≥0

and N(K)R is a ray with image R≥0 under α′
R
.

Next, we need to show the corresponding multiplicities are the same. Under

the proper morphism β : K̃ → K, the image of VK̃(Ä ) is VL(· × R≥0) up to

a multiplicity. The multiplicity is decided by the degree of the finite map of

the open toric strata from OK̃(Ä ) to OL(· × R≥0), that is, the lattice index

[N(L)/(Nδ × Z) : N(K)/Nτ ]

=[N(L)/(Nδ × Z) : N(K)/((Nδ × Z) ∩N(K))]

=[N(L)/(Nδ × Z) : (Nδ × Z+N(K))/(Nδ × Z)]

=[N(L) : Nδ × Z+N(K)].

Thus we have

β′
∗[VK̃(Ä )] = [N(L) : Nδ × Z+N(K)] · [VX(·)].(3.3)
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The sublattice

Nδ × Z+N(K) = Nδ × Z+N(Y )× {0}+ Z · (v, 1)

= Nδ × Z+N(Y )× {0}+ Z · (v, 0)

= (Nδ +N(Y ))× Z+ Z · (v, 0),

with the second and the third equality following from the fact that (0, 1) ∈

Nδ × Z.

Write v = a1

a2
· x + b1

b2
· y, where x ∈ Nδ, y ∈ N(Y ) and integers pairs

(a1, a2), (b1, b2) are coprime. As Nδ and N(Y ) has complementary dimension

in N(X), such presentation of v is unique. The lattice index

[(Nδ × Z+N(K)) : (Nδ +N(Y ))× Z]

=[(Nδ +N(Y ))× Z+ (Z · v, 0) : (Nδ +N(Y ))× Z]

=[Nδ +N(Y ) + (Z · v, 0) : Nδ +N(Y )] = lcm(a2, b2),

(3.4)

where lcm(a2, b2) is the least common multiple of integers a2 and b2. The

integral generator vτ of the ray N(K)R ∩ · has form

vτ = n · (v, 1) + (y′, 0)

=
(n · a1

a2
· x+

n · b1
b2

· y + y′, n
)

for y′ ∈ N(Y ) and n ∈ Z. Since vτ is integral, then n is a multiple of

lcm(a2, b2). As n is the smallest integer such that vτ is integral, then n =

lcm(a2, b2). Therefore

mτ = lcm(a2, b2) = [Nδ × Z+N(K) : (Nδ +N(Y ))× Z].

The multiplicity

mτ · [N(L) : (Nδ × Z+N(K))]

=[Nδ × Z+N(K) : (Nδ +N(Y ))× Z] · [N(L) : Nδ × Z+N(K)]

=[N(L) : (Nδ +N(Y ))× Z]

=[N(X) : Nδ +N(Y )] = mδ.

Then by (3.2) and (3.3), we obtain

[Y ] =
∑

τ

mτ · β′
∗[VK̃(Ä )] =

∑

δ∈∆0(v)

mδ · [VX(·)].

♠

Example 3.3. Let m be a non-negative integer. Let X be the Hirzebruch

surface Fm, whose fan ΣX in Z2 contains four rays r1, . . . , r4 with directions

(1, 0), (0, 1), (−1,m) and (0,−1). Let N(Y ) be one dimensional sublattice

generated by vY = (1, 1).
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Suppose the generic displacement vector v = (1, 0), then ∆0(v) contains

rays r1 and r4. Since the lattice generated by vY and r1, vY and r4 are

both Z2, the multiplicities for both rays are 1. Suppose we take the generic

displacement vector v = (−1, 0), then ∆0(v) contains rays r2 and r3. The

multiplicity for r2 is 1 and the multiplicity for r3 is m+1. We obtain that in

A1(X),

[Y ] = [VX(r1)] + [VX(r4)] = [VX(r2)] + (m+ 1) · [VX(r3)].

We generalize Lemma 3.2 to morphisms of toric strata. Let f̃ : Y → X be

a proper morphism of toric varieties associated to an injective map of lattices

fN : N(Y ) → N(X). Let Ä be a cone in Σ(Y ) and let Ä ′ be the smallest cone

in Σ(X) that contains the image of Ä ∈ Σ(Y ). Let f : VY (Ä ) → VX(Ä ′) be the

restriction of f̃ on VY (Ä ). We wish to study f∗[VY (Ä )] using the same idea.

Definition 3.4. A vector v ∈ N(X) is generic with respect to (X,Y, VY (Ä ))

if its image under the quotient map qX : N(X) → N(X)/Nτ ′ is generic with

respect to the pair (VX(Ä ′), f(VY (Ä ))) as defined in Definition 3.1.

Similarly, we define ∆τ (v) to be the collection of cones · in Σ(X) satisfying

that

(1) Ä ′ ⊆ ·,

(2) dimNδ = dimN(X)− dim fN (N(Y )) + dim(fN (N(Y )) ∩Nτ ′),

(3) (fN (N(Y ))R + v) ∩ · is not empty.

Proposition 3.5. In the Chow group Al(VX(Ä ′)):

(3.5) f∗[VY (Ä )] =
∑

δ∈∆τ (v)

m(·) · [VX(·)],

where l = dimN(Y )− dim Ä and m(·) = [N(X) : fN (N(Y )) +Nδ].

Proof. Let qX : N(X) → N(X)/Nτ ′ be the quotient of the lattice. Let N ′

be the saturation of the image qX(fN (N(Y ))) in N(X)/Nτ ′ . Then the image

of VY (Ä ) under f is the closure of TN ′ ⊆ TN(X)/Nτ′ inside VX(Ä ′). The degree

of the map is the degree of the cover of torus induced from the saturation

qX(fN (N(Y ))) → N ′. Therefore,

f∗[VY (Ä )] = [N ′ : qX(fN (N(Y )))] · [f(VY (Ä ))].(3.6)

We first apply Lemma 3.2 to study [f(VY (Ä ))]. By definition, the vector

qX(v) is generic with respect to (VX(Ä ′), f(VY (Ä ))). Hence, in the Chow group

of VX(Ä ′),

(3.7) [f(VY (Ä ))] =
∑

ω∈∆0(qX(v))

[N(X)/Nτ ′ : N ′ +Nω] · [VVX (τ ′)(ω)].

Let us first show that a cone ω ∈ ∆0(qX(v)) if and only if · ∈ ∆τ (v) for

· the unique cone containing Ä ′ and qX(·) = ω. Note that the intersection
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ω∩ (N ′
R
+qX(v)) is not empty if and only if the preimage of it under qX is not

empty. That is, the intersection of · +Nτ ′,R with fN (N(Y ))R +Nτ ′,R + v is

not empty. It is equivalent to that the vector v lies in ·+fN (N(Y ))R+Nτ ′,R.

We claim that

· + fN (N(Y ))R +Nτ ′,R = · + fN (N(Y ))R.(3.8)

Let w ∈ fN (N(Y ))R such that −w lies in the interior of Ä ′. Then, for any

v ∈ Nτ ′,R, by taking an integer I large enough, the vector w′ := −w + v
I

lies in the interior of Ä ′. We have v = I · w′ + I · w. Hence, the vector v

lies in · + fN (N(Y ))R, and the equality in equation (3.8) follows. Therefore,

the condition (3) of Definition 3.4 that (fN (N(Y ))R + v) ∩ · is not empty is

equivalent to ω ∩ (N ′
R
+ qX(v)) being non-empty.

For the dimension condition, as Ä ′ ⊆ ·,

dimω = dim qX(Nδ) = dimNδ − dimNτ ′ .

Then

dimω = dim qX(N(X))− dim qX(fN (N(Y )))

if and only if

dimNδ = dimNτ ′ + dim qX(N(X))− dim qX(fN (N(Y )))

= dimN(X)− dim qX(fN (N(Y )))

= dimN(X)− dim fN (N(Y )) + dim(fN (N(Y )) ∩Nτ ′).

Hence ω ∈ ∆0(qX(v)) if and only if · ∈ ∆τ (v).

Note that VX(·) = VVX(τ ′)(ω) by definition. Equation (3.7) is then equiv-

alent to

(3.9) [f(VY (Ä ))] =
∑

δ∈∆τ (v)

[N(X)/Nτ ′ : N ′ + qX(Nδ)] · [VX(·)].

Together with equation (3.6), we obtain that

(3.10)

f∗[VY (Ä )] =
∑

δ∈∆τ (v)

[N ′ : qX(fN (N(Y )))][N(X)/Nτ ′ : N ′ + qX(Nδ))] · [VX(·)].

Note N ′ and qX(Nδ) have complementary dimensions in the lattice

N(X)/Nτ ′ , and the intersection of qX(fN (N(Y ))) and qX(Nδ) is zero di-

mensional. Thus,

[N ′ + qX(Nδ) : qX(fN (N(Y ))) + qX(Nδ)] = [N ′ : qX(fN (N(Y )))],(3.11)

Licensed to Univ of Texas at Austin. Prepared on Sat May 18 06:44:07 EDT 2024 for download from IP 128.62.216.51.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



236 YIXIAN WU

as both equal the lattice order of qX(fN (N(Y )))/[qX(fN (N(Y ))) ∩ qX(Nδ)]

as a sublattice of N ′/(N ′ ∩ qX(Nδ)). Since the quotient lattice

qX(fN (N(Y ))) + qX(Nδ) = qX(fN (N(Y )) +Nδ)

= (fN (N(Y )) +Nδ)/Nτ ′ ,

the lattice index in equation (3.10) satisfies that

[N ′ : qX(fN (N(Y )))] · [N(X)/Nτ ′ : N ′ + qX(Nδ))]

(3.11)
= [N(X)/Nτ ′ : qX(fN (N(Y ))) + qX(Nδ)]

= [N(X)/Nτ ′ : (fN (N(Y )) +Nδ)/Nτ ′ ]

= [N(X) : fN (N(Y )) +Nδ].

We now finish the proof of equation (3.5). ♠

Corollary 3.6. With the same assumption in Proposition 3.5, let NQ be

a sublattice of N(Y ). The subtorus TQ ⊆ TY induces a TQ-action on VY (Ä )

and VX(Ä ′). The morphism f : VY (Ä ) → VX(Ä ′) is TQ-equivariant.

Let fQ : [VY (Ä )/TQ] → [VX(Ä ′)/TQ] be the induced map on the quotient

stacks. Let v be a generic displacement vector with respect to (X,Y, VY (Ä )) as

defined in Definition 3.4. Then there is a closed substack of [VX(Ä ′)/TQ]×P1

which induces the rational equivalence of [fQ([VY (Ä )/TQ])] and

∑

δ∈∆τ (v)

m(·)

[im(qX ◦ fN )sat : im(qX ◦ fN )]
· [VX(·)/TQ],

where im(qX ◦ fN )sat is the saturation of sublattice im(qX ◦ fN ) in N(X)/Nτ ′

and

m(·) = [N(X) : fN (N(Y )) +Nδ].

In the Chow group Al([VX(Ä ′)/TQ]),

(3.12) fQ∗[VY (Ä )/TQ] =
∑

δ∈∆τ (v)

m(·) · [VX(·)/TQ],

where l = dimY − dim Ä − dimNQ.

Proof. Let N ′ be the saturation of fN (N(Y )) in N(X). Then qX(N ′) is

saturated in N(X)/Nτ ′ . We first show that

(3.13)

[fQ([VY (Ä )/TQ])] =
∑

δ∈∆τ (v)

[N(X)/Nτ ′ : qX(N ′) + qX(Nδ)] · [VX(·)/TQ]

similar to equation (3.9) in the toric variety case.
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In the toric subvariety VX(Ä ′), the closure of the torus associated to N ′ is

f(VY (Ä )). Let v′ be the vector qX(v) in N(X)/Nτ ′ . By Lemma 3.2, there is

a closed subvariety K in VX(Ä ′) × P1 defined to be the closure of the torus

associated to the subspace

{(x+ t · v′, t) | x ∈ N(X)R/Nτ ′,R and t ∈ R},

such that the projection map α : K → P1 induces the rational equivalence of

[f(VY (Ä ))] and

∑

δ∈∆τ (v)

[N(X)/Nτ ′ : qX(N ′) + qX(Nδ)] · [VX(·)].

The inclusion of lattices

NQ × {0} ↪→ NQ × Z ↪→ N(Y )× Z
fN×id
−−−−→ N(X)× Z

qX×id
−−−−→ N(X)/Nτ ′ × Z

induces a TQ-action on VX(Ä ′) × P1. An easy lattice computation tells us

that K is invariant under the TQ-action and each fiber of α is TQ-invariant.

Therefore, the closed substack [K/TQ] together with the dominant morphism

α′ : [K/TQ] → P1 satisfies the equations

[α′−1(1)] = [f(VY (Ä ))/TQ] = [fQ([VY (Ä )/TQ])],

[α′−1(0)] =
∑

δ∈∆τ (v)

[N(X)/Nτ ′ : qX(N ′) + qX(Nδ)] · [VX(·)/TQ].

Hence this induces the rational equivalence of [f(VY (Ä ))/TQ] and

∑

δ∈∆τ (v)

[N(X)/Nτ ′ : qX(N ′) + qX(Nδ)] · [VX(·)/TQ].

In Proposition 3.5, we showed that equation (3.9) induces that

f∗[VY (Ä )] =
∑

δ∈∆τ (v)

m(·) · [VX(·)].

With the same argument, equation (3.13) induces that

fQ∗[VY (Ä )/TQ] = [N ′ : fN (N(Y ))] · [fQ([VY (Ä )/TQ])]

=
∑

δ∈∆τ (v)

[N(X) : fN (N(Y )) +Nδ] · [VX(·)/TQ].

♠
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4. Proof of the splitting formula

From now on, let us assume Assumption 1.2 is satisfied.

Assumption 1.2. Assume B = Spec(k → QB) is a log point with QB a

toric monoid. Suppose X → B is an integral, log smooth morphism between

fine, saturated log schemes. Assume MX is globally generated, and for each

edge p ∈ S, the strict closed subscheme Vp of the log scheme X has the

underlying scheme a toric variety, and the log stratification of Vp is the same

as the toric stratification.

4.1. Toric strata assumption. In the following two results, we show

that the gluing strata Vp in Assumption 1.2 are isomorphic to toric strata of

toric varieties.

Proposition 4.1. Suppose there is a log point B = Spec(k → QB) with

QB a toric monoid, and a log morphism X → B satisfying Assumption 1.2.

Then, for each logarithmic stratum Vp, there is an idealized log structure Kp

on Vp, such that Vp is idealized log smooth.

Proof. As B is a log point, we define an idealized structure on B with ideal

KB = QB\{0}. It determines an idealized structure on X such that X → B is

ideally strict. Following Construction 2.7, we construct an idealized structure

KVp
on Vp, determined by the pullback of KX and the ideal sheaf of Vp in X.

By [20, Variant IV.3.1.21], the idealized log scheme Vp is idealized log étale

over log scheme X, hence is idealized log smooth over B. As B is idealized

log smooth, the log stratum Vp is idealized log smooth. ♠

Theorem 4.2. Suppose X is a fine, saturated idealized log smooth scheme

with Zariski log structure MX and idealized structure KX . Assume MX is

globally generated. Suppose further that X satisfies the following conditions:

(1) The underlying scheme X is a toric variety.

(2) The log stratification of X is the same as the toric stratification of

X. In other words, for each point x of X, let Ã̃ be the dual cone of

MX,x, the underlying scheme of the logarithmic stratum VX(Ã̃) is the

smallest closed toric stratum of X containing x.

Then, there exist a toric variety Y and a cone Ã̃0 ∈ ΣY , such that X is iso-

morphic to VY (Ã̃0) as an idealized log scheme. Here, the idealized log structure

on VY (Ã̃0) is the idealized structure of VY (Ã̃0) → Y following Construction

2.7, where Y has trivial idealized structure.

Proof. Let Q0 = MX(T ) for T the maximal torus of X. Let N be the

cocharacter lattice and M be the character lattice of X. We first construct

the fan of Y in the lattice Ñ = N × Q∗
0 by constructing a cone Ã̃ in Ñ for

each cone Ã in fan Σ of X.
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Since MX |T is a constant sheaf by assumption (2), there is an isomorphism

s : MX(T ) → k× ⊕ M ⊕ Q0. For each cone Ã ∈ Σ, the restriction map

χσ : MX(U(Ã)) → MX(T ) determines a map

φσ : MX(U(Ã))
χσ−−→ MX(T )

s
−→ k

× ⊕M ⊕Q0
pr
−→ M ⊕Q0,

where U(Ã) = Speck[Ã∨∩M ]. Define Ã̃ in Ñ to be the dual cone of the image

monoid im(φσ). For the zero cone 0 ∈ Σ, Ã̃0 is simply {0}×Q∨
0 . Although the

isomorphism s is not canonical, different s differs by a morphism Q0 → M ,

which results in a linear transformation of N ×Q∗
0 of determinant 1.

We now show that the collection of cones Ã̃ forms a fan in Ñ . In the

commutative diagram

MX(U(Ã)) k[Pσ]

M ⊕Q0 MX(T ) ∼= k× ⊕M ⊕Q0 k[M ],

ασ

i αT

the image of (imφσ) under αT ◦ i factors through k[Pσ]. Hence, the subgroup

(imφσ)
× is contained in (imφσ) ∩ (P×

σ ⊕ {0}). Furthermore, as the map

k[Pσ] ↪→ k[M ] is an inclusion map, the image of MX(U(Ã)) in k[M ] contains

monomials P×
σ . Therefore, image (imφσ) contains P×

σ ⊕ {0}. The subgroup

(imφσ)
× equals (imφσ)∩(P×

σ ⊕{0}). For cones Ã ⊆ Ä , there is a commutative

diagram

(imφτ ) (imφτ )/(imφτ )
×

MX(U(Ä )) MX(U(Ä ))

(imφσ) (imφσ)/(imφσ)
×

MX(U(Ã)) MX(U(Ã))

where the horizontal maps of the right face are the maps induced from left

face, by taking the quotient of the units. As (imφτ ) is the image ofMX(U(Ä ))

in (imφσ), we have (imφτ )/((imφτ ) ∩ (imφσ)
×) is the image of MX(U(Ä ))

in (imφσ)/(imφσ)
×, which is the image of

(4.1) MX(U(Ä )) → MX(U(Ã)) → (imφσ)/(imφσ)
×.

Since MX is globally generated, the first map in (4.1) is surjective. On the

other hand, as the map MX(U(Ã)) → (imφσ) is surjective by definition, the

map to (imφσ)/(imφσ)
× is surjective. Hence the second map in (4.1) is also

surjective. So is the whole map (4.1). Therefore, the map (imφτ )/(imφτ )
×

to (imφσ)/(imφσ)
× is surjective, defined by taking the quotient by (imφτ )∩
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(P×
σ ⊕ {0}). Dually, we then obtain the face inclusions of the dual cones

Ä̃ ↪→ Ã̃. The collection of cones forms a fan Σ̃ in Ñ .

Let Y be the toric variety of (Σ̃, Ñ). Note in the quotient fan in Ñ/({0}×

Q∗
0), the affine subvariety associated to (imφσ)

∨ is determined by the image

of monoid

(imφσ) → M ⊕Q0
p
−→ k[M ],

where p sends (m, 0) to zm and (m, q) to 0 for q 
= 0. Let Fσ be the face

(imφσ)∩ (M ⊕{0}). We claim that p(Fσ) is isomorphic to Pσ = Ã∨ ∩M . As

a consequence, the underlying variety VY (Ã̃0) is isomorphic to X.

First, as there is a commutative diagram

MX(U(Ã)) k[Pσ]

MX(T ) k[M ],

χσ

ασ

αT

the image of fσ = αT ◦ χσ lies in k[Pσ]. Since the image of αT in k[M ] is

monomial, the image of fσ lies in (k×⊕Pσ)∪{0}, hence p(Fσ) is a subset of Pσ.

In order to prove that p(Fσ) is surjective on Pσ, we need a local description

of log scheme X in terms of monoids im(φσ). Before that, let us show that

the morphism

φσ : MX(U(Ã)) → im(φσ)/ im(φσ)
×

is an isomorphism of monoids. By definition of φσ, the morphism is sur-

jective. Suppose p ∈ MX(U(Ã)) is mapped to 0 ∈ im(φσ)/ im(φσ)
×, with

zp ∈ MX(U(Ã)) a lift of p. As the units im(φσ)
× = im(φσ)∩ (P×

σ ⊕ {0}), we

have

ασ(z
p) ∈ k

× ⊕ P×
σ ,

hence zp lies in MX(U(Ã))× and p = 0. The morphism φσ is an isomorphism

of monoids. Note that X is idealized log smooth, with log structure on U(Ã)

determined by ασ. Then, smooth locally Speck[Pσ] is isomorphic to the

product of a smooth scheme with

Spec k[MX(U(Ã))]/(KX(U(Ã))) = Speck[(imφσ)/(imφσ)
×]/(Kσ),

where Kσ is the image of KX(U(Ã)) under φσ. The ideal KX(U(Ã)) contains

the elements of MX(U(Ã)) which lift to elements in MX(U(Ã)) whose image

under ασ is zero. It follows that the ideal Kσ is generated by the image of

(imφσ)\Fσ under the quotient of (imφσ)
×. Hence, smooth locally Speck[Pσ]

is isomorphic to the product of a smooth scheme with

Speck[Fσ/F
×
σ ] ∼= Spec k[Fσ/(P

×
σ ⊕ {0}) ∩ Fσ] ∼= Spec k[p(Fσ)/P

×
σ ].
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Furthermore, since each toric stratum of U(Ã) is a logarithmic stratum, each

non-invertible element g ∈ Pσ determines a monomial whose vanishing set

is the same as the vanishing set of an element in im(fσ). It induces that

n · g ∈ p(Fσ) for some integer n. As Speck[Pσ] is isomorphic to the product

of a smooth scheme with k[p(Fσ)/P
×
σ ], it is only possible if n = 1. Therefore,

p(Fσ) is isomorphic to Pσ = Ã∨ ∩M and VY (Ã̃0) is isomorphic to X.

We finish the proof by showing the idealized log structures of VY (Ã̃0) is

the same as the idealized log structure on X. For each toric affine subvariety

U(Ã) with morphisms

MX(U(Ã)) → im(φσ)
p
−→ k[Pσ],

the idealized log structure as a subvariety of VY (Ã̃0) is induced by the second

map and ideal Kσ = (imφσ)\Fσ. The log structure from X is induced by the

whole map. Since MX(U(Ã)) → im(φσ)/ im(φσ)
× is an isomorphism, and

both idealized structures are obtained by the preimages of 0, two idealized

log structures are isomorphic. We now finish the proof that two idealized log

structures are the same. ♠

Following the above discussion, for each gluing stratum Vp = VY (Ã), there

exists a toric variety Xp such that Vp is a strict toric stratum of Xp. Let

(Σp, Np) be the fan of Xp and ·p be the cone with Vp = VXp
(·p). The log

map Vp → B induces a lattice map Np → Q∗
B dual of

Qgp
B = M

gp

B (B) → M
gp

X (Tp) = Qgp
0 ↪→ M ⊕Qgp

0 ,

for Tp the maximal torus of Xp. Hence, there is a toric morphism Xp →

Speck[QB ]. The map Vp → B is the restriction of Xp → Speck[QB ] on X.

Recall the definitions of Xτ and Xτ i
in (2.5)

Xτ := Vp1
×fs

B · · · ×fs
B Vp|S|

, pj ∈ S,

Xτ i
:= Vp1

×fs
B · · · ×fs

B Vp|Si|
, pj ∈ Si.

Proposition 4.3 studies the structure of Xτ and Xτ i
. By [19], the fine, satu-

rated fiber product of toric varieties is determined by the fiber product of fans,

which is defined in Definition B.1. As Xτ and Xτ i
are fiber products of toric

strata, they are the subschemes of the fiber product of toric varieties. Though

the ideal determining Xτ and Xτ i
, which is generated by the pullback ideals

from Vp, might not be radical, the reduction of them is well understood in

terms of toric strata.

Proposition 4.3. The fiber product Xτ is a disjoint union of log schemes

and each of them is isomorphic to an irreducible, but possibly non-reduced

subscheme Zτ of the toric variety X ′
τ with fan

Στ = Σp1
×Σ(B) · · · ×Σ(B) Σp|S|

, pj ∈ S,
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and with the toric log structure. The reduction of Zτ is VX′
τ
(·), with · the

fiber product of cones ·p for p ∈ S over ·B.

Similarly, for each i = 1, 2, . . . , r, the fiber product Xτ i
is a disjoint union

of log schemes and each of them is isomorphic to an irreducible, but possibly

non-reduced subscheme Zτ i
of the toric variety X ′

τ i
with fan

Στ i
= Σp1

×Σ(B) · · · ×Σ(B) Σp|Si|
, pj ∈ Si,

with the toric log structures. The reduction of Zτ i
is VX′

τi
(·i), with ·i the

fiber product of ·p for p ∈ Si over ·B.

The fiber product X ′
τ ×∏

r
i=1 X′

τi

∏r
i=1 Zτ i

is Zτ . With Zτ i
→ Xτ i

being

the embedding of one component, the fiber product Xτ ×∏
r
i=1 Xτi

∏r
i=1 Zτ i

is

a disjoint union of N schemes, each of which is isomorphic to Zτ . Here,

N = [Lsat : L], L = im(∆p) +

r∏

i=1

im(∆τ i
),

where ∆p is the diagonal map of
∏

p∈S
Np →

∏
p∈S

Np × Np and ∆τ i
is the

lattice projection from
∏r

i=1 Στ i
to

∏
p∈S

Np ×Np.

Proof. By Lemma B.2, the fine, saturated log fiber product

(4.2) Xp1
×fs

SB
· · · ×fs

SB
Xp|S|

, pj ∈ S

is a disjoint union of log schemes, each of which is isomorphic to the toric

variety X ′
τ of the fiber product of fans (Στ , Nτ ), with its toric log structure.

Let Ipi
be the ideal sheaf of Xpi

that defines Vpi
. The scheme Xτ is then

the subscheme of (4.2) generated by the pullback of Ipi
. For toric morphisms

X ′
τ → Xp and a cone · ∈ Σ(X ′), the image of VX′

τ
(·) is contained in Vp if and

only if the image of · under the fan map Nτ → Np intersects with the interior

of ·p. Hence, the reduction of Zτ is determined by the minimal cones · with

image intersecting with the interior of ·p. Let · = ·p1
×δB · · · ×δB ·p|S|

. The

maps ·p → ·B are surjective, following the integrality of X over B. Thus ·

is mapped to the interior of ·p under the projection map, and is the minimal

cone satisfying the conditions. Therefore, the ideal I defines an irreducible

subscheme Zτ whose reduction is the toric strata VX′
τ
(·). The proof works

the same for τ i.

The subscheme Zτ and the fiber product X ′
τ ×∏

r
i=1

X′
τi

∏r
i=1 Zτ i

are both

the subschemes of X ′
τ determined by the pullback of ideals Ip under X ′

τ →∏
p Xp. Hence they are the same. For the last statement, by Lemma 4.4, the

equation

Xτ ×(∏
r
i=1 Xτi

) (
r∏

i=1

Zτ i

)
=

∏

p∈S

Xp ×(∏
p∈S

Xp×Xp

) (
r∏

i=1

Zτ i

)
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holds. By Lemma B.2, the right side is the union of Zτ with the number of

the components N being the lattice index

N = [(im(∆p) +
r∏

i=1

im(∆τ i
))sat : im(∆p) +

r∏

i=1

im(∆τ i
)].

♠

Lemma 4.4. Assume the graph G of τ is connected. There is a Cartesian

diagram in the category of fine, saturated logarithmic schemes

Xτ

∏r
i=1 Xτ i

∏
p∈S

Xp

∏
p∈S

Xp ×Xp,
∆p

with horizontal maps the diagonal maps and the vertical maps the composition

of the projections

gτ : Xτ →
∏

p∈S

Vp, gτ i
: Xτ i

→
∏

p∈Si

Vp

with the closed embeddings Vp ↪→ Xp.

Proof. As Vp ↪→ Xp is a strict closed embedding, it is sufficient to show

that the following diagram is Cartesian in the category of fine, saturated log

schemes

(4.3)

Xτ

∏r
i=1 Xτ i

∏
p∈S

Vp

∏
p∈S

Vp × Vp.

∆X

gτ
∏

gτi

∆p

Let Z be a fine, saturated log scheme with α : Z →
∏r

i=1 Xτ i
and β : Z →∏

p∈S
Vp, such that

∏r
i=1 gτ i

◦ α = ∆p ◦ β as logarithmic maps. Then, there

is a commutative diagram

Z
∏r

i=1 Xτ i

∏r
i=1 B

∏
p∈S

Vp

∏
p∈S

Vp × Vp

∏
p∈S

B
∏

p∈S
B ×B.

α

β
∏

gτi
∆p

By the universal property of the fiber products, there is a morphism

Z →
( r∏

i=1

B
)
×(∏

p∈S
B×B

) ( ∏

p∈S

B
)
.
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As the dual graph G of τ is connected, the pullback of
∏r

i=1 B along the

diagonal map identifies the base of each Xτ i
. Thus

(∏r
i=1 B

)
×(∏

p∈S
B×B

)
(∏

p∈S
B
)
= B, with the maps from B to each factor being diagonal maps.

For each p ∈ S, the projection Z → Vp → B is the same as the map

Z → B
∆B−−→

∏

p∈S

B
prp
−−→ B.

By the universal property of the logarithmic fiber products, there is a unique

morphism

ψ : Z → Xτ = Vp1
×B · · · ×B Vp|S|

,

with gτ ◦ ψ = β. On the other hand, both α and ∆X ◦ ψ are the unique

morphisms induced from the universal property of the fiber product

r∏

i=1

Xτ i
=

( r∏

i=1

B
)
×(∏

p∈S
B×B

) ( ∏

p∈S

Vp × Vp

)
.

Hence ∆X ◦ψ = α and we finish the proof of the diagram (4.3) being Cartesian

in the category of log fine, saturated schemes. ♠

4.2. Local toric models of the gluing formalism. We are now ready

to study the gluing formalism under Assumption 1.2. We first study the local

structure of the splitting morphism

(4.4) ·evred : M̃gl,ev
red →

r∏

i=1

M̃
ev
τ i,red.

The main result of this section is Proposition 4.5, which provides a local

splitting equation (�) of a geometric point after a base change to an étale

neighborhood. The idea is to analyze ·evred under the following commutative

diagram obtained from the fiber diagram (2.6)

M̃
gl,ev
red

∏r
i=1 M̃

ev
τ i,red

Xτ

∏r
i=1 Xτ i

.

δevred

ev
∏

evτi

∆X

Let us first construct the étale base change for a geometric point x on

M̃
gl,ev
red . Let

Qx = M∏
M̃ev

τi,red
,δev

red
(x)

, Lx = K∏
M̃ev

τi,red
,δev

red
(x)

.

By [4, Appendix B.2], there is a connected strict étale neighborhood Ux of

the geometric point ·evred(x) in
∏r

i=1 M̃
ev
τ i,red

such that there is a commutative
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diagram

(4.5)

∏r
i=1 M̃

ev
τ i,red

Ux AQx,Lx

∏r
i=1 Xτ i

∏r
i=1 Zτ i

∏r
i=1 Aτ i

,

∏
evτi

evU

with Aτi the Artin fan of the toric variety X ′
τ i
. Define

(4.6) Ugl
x := Ux ×∏

r
i=1 M̃ev

τi,red

M̃
gl,ev
red .

We wish to study the map ·evU : Ugl
x → Ux.

Proposition 4.5. Let V, ∆(V) and m[ρ] be the global gluing data associ-

ated to the splitting morphism · : M (X/B, τ ) →
∏r

i=1 M (X/B, τ i) defined

in Definition 1.4. Let ·evU : Ugl
x → Ux be an étale local model of (4.4) at a

geometric point x of M̃
gl,ev
red , defined by diagrams (4.5) and (4.6). Let

Uρ
x = Ux ×∏

r
i=1 M̃ev

τi,red

r∏

i=1

M̃
ev
ρi,τ i,red,

with M̃
ev
ρi,τ i,red

the image substack of the finite morphism j̃ρi,τ i
: M̃ev

ρi,red
→

M̃
ev
τ i,red

.

Then, in the Chow group of Ux,

(�) ·evU∗([U
gl
x ]) =

∑

[ρ]∈∆(V)

m[ρ] · [U
ρ
x ].

Proof. Note that M̃gl,ev
red is the reduction of

∏r
i=1 M̃

ev
τ i,red

×∏
r
i=1 Xτi

Xτ , so

Ugl
x is the reduction of Ux ×∏

r
i=1 Xτi

Xτ . As Ux is connected, the evaluation

map evU factors through one component of
∏r

i=1 Zτ i
. Hence,

Ugl
x = [Ux ×∏

r
i=1

Xτi
Xτ ]red = [Ux ×∏

r
i=1

Zτi
(

r∏

i=1

Zτ i
×∏

r
i=1

Xτi
Xτ )]red.

By Proposition 4.3, there is a lattice indexN , such that
∏r

i=1 Zτ i
×∏

r
i=1 Xτi

Xτ

is a disjoint union of N schemes, each of which is isomorphic to Zτ . Hence,

Ugl
x is the disjoint union of N schemes, each of which is isomorphic to the

reduction of

(4.7) Ugl,ir
x := Ux ×∏

r
i=1 Zτi

Zτ = Ux ×∏
r
i=1 X′

τi
X ′

τ ,

where the equality follows from Proposition 4.3. Hence, it is sufficient to study

the diagonal map ·′U : Ugl,ir
x → Ux.

First, we observe that the evaluation map Ux →
∏r

i=1 X
′
τ i

is idealized log

smooth. It is sufficient to show that M̃ev
τ i,red

→ X ′
τ i

is idealized log smooth.
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By Corollary 2.9, M̃τ i,red is idealized log smooth over B. Locally, the map

M̃τ i,red → B factors through

M̃τ i,red

evτi−−−→ Zτ i
↪→ X ′

τ i
→ B,

with Zτ i
being the relative Artin fan AZτi

×AB
B and X ′

τ i
being Aτ i

×AB
B.

Note X ′
τ i

is logarithmically étale over B, hence the evaluation map M̃τ i,red →

X ′
τ i

is idealized log smooth. The map from the evaluation enhancement

M̃
ev
τ i,red = M̃τ i,red ×Xτi

Xτ i
= M̃τ i,red ×Zτi

Zτ i
= M̃τ i,red ×X ′

τi
X ′

τ i

to X ′
τ i

is then idealized log smooth.

Next, we study the local splitting morphism using the toric local model of

idealized log smooth morphisms. Following (4.5), let us define

Aev
x = AQx,Lx

×∏
r
i=1

Aτi

r∏

i=1

X ′
τ i

and Agl,ev
x = Aev

x ×∏
r
i=1

X′
τi

X ′
τ .(4.8)

In the fine, saturated Cartesian diagram

(4.9)

Ugl,ir
x Agl,ev

x X ′
τ

Ux Aev
x

∏r
i=1 X

′
τ i

AQx,Lx

∏r
i=1 Aτ i

,

φ

δ′U δevA
ι

the map ι : Ux → Aev
x is induced by the universal property of the fiber

product. Since the evaluation map Ux →
∏r

i=1 X
′
τ i

is idealized log smooth, by

[4, Appendix B.4], the map ι is smooth. As the diagonal map X ′
τ →

∏r
i=1 X

′
τ i

is proper, both vertical maps ·′U and ·evA in diagram (4.9) are proper. We

obtain that

·′U∗[U
gl,ir
x ] = ·′U∗φ

∗[Agl,ev
x ] = ι∗·evA∗[A

gl,ev
x ](4.10)

for φ : Ugl,ir
x → Agl,ev

x in the diagram (4.9).

It is sufficient to study ·evA∗[A
gl,ev
x ] using the concrete toric stack descrip-

tion of Agl,ev
x and Aev

x . Let [ω] = (ω1, . . . ,ωr) be the global type of ·evred(x).

For [ρ] = (ρ1, . . . ,ρr) a global type that admits a contraction to [τ ] =

(τ 1, . . . , τ r), we define

Aev,ρ
x :=

{
VAev

x
(ρ̃), if [ρ] is a contraction of [ω],

∅, otherwise,

where ρ̃ =
∏r

i=1 ρ̃i is the evaluation cone associated to [ρ] defined in Definition

2.5. By Lemma 2.6 and Corollary 2.12, the evaluation cone ρ̃ is a subcone of
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ω̃ = Q∨
x , hence the stratum VAev

x
(ρ̃) is well-defined. Lemma 4.6 provides a

description of ·evA∗[A
gl,ev
x ], whose proof we defer to later.

Lemma 4.6. Let V be a generic displacement as defined in Definition 1.4.

Then, in the Chow group of Aev
x ,

(4.11) ·evA∗[A
gl,ev
x ] =

∑

ρ∈∆(V)

m′
[ρ] · [A

ev,ρ
x ],

where

m′
[ρ] = [

r∏

i=1

Nτ i
: im(∆) +

r∏

i=1

im(evρi
)].

Here ∆ : Nτ →
∏r

i=1 Nτ i
is the lattice diagonal map of X ′

τ →
∏r

i=1 X
′
τ i
. The

map evρi
: Nρ̃i

→ Nτ i
is defined by the factorization of the tropical evaluation

maps discussed in (2.4)

evtρi
: Nρ̃i

evρi−−−→ Nτ i
→

∏

p∈Si

Np.

At last, we are ready to finish the proof by the following arguments. By

Lemma 4.6 and equation (4.10), in the Chow group of Ux,

·
′

U∗[U
gl,ir
x ] =

∑

[ρ]∈∆(V)

m′
[ρ] · [ι

−1(Aev,ρ
x )] =

∑

[ρ]∈∆(V)

m′
[ρ] · [U

ρ
x ].

The second equality follows from Corollary 2.12. Hence, following the discus-

sion in the proof of Proposition 4.5,

·evU∗([U
gl
x ]) =

∑

[ρ]∈∆(V)

N ·m′
[ρ] · [U

ρ
x ].

It is now sufficient to show N ·m′
[ρ] = m[ρ]. All the involved lattices can

be fit into a commutative diagram

(4.12)

Nρ̃ ×∏
r
i=1 Nτi

Nτ Nτ

∏
p∈S

Np

Nρ̃ =
∏r

i=1 Nρ̃i

∏r
i=1 Nτ i

∏
p∈S

Np ×Np

Cρ̃ Cτ Cp.

∆ ∆p∏
evρi

coker

∏r
i=1 ∆τi

coker∆ coker∆p

Note that N = [N sat
N : NN ] and m′

[ρ] = [
∏r

i=1 Nτ i
: Nm], where

NN = im(∆p) +
r∏

i=1

im(∆τ i
), Nm = im(∆) +

r∏

i=1

im(evρi
).

Licensed to Univ of Texas at Austin. Prepared on Sat May 18 06:44:07 EDT 2024 for download from IP 128.62.216.51.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



248 YIXIAN WU

In other words, in diagram (4.12), the order N is obtained by taking the

saturation of the image lattice of two maps in the right corner of the upper

right square, while the order m′
[ρ] comes from the two maps in the upper left

square. Let K = im(∆p) +
∏r

i=1 im(∆τ i
◦ evρi

) to be the image lattice from

the right corner of the big upper rectangle. We claim that

N ·m′
[ρ] = [N sat

N : NN ] · [
r∏

i=1

Nτ i
: Nm]

= [(coker∆p(K))sat : coker∆p(K)]

=
[
im(

r∏

i=1

¸ρi
)sat : im(

r∏

i=1

¸ρi
)] = m[ρ],

(4.13)

with ¸ρi
is defined in equation (1.2) and Definition 1.4, where the first, the

third and the fourth equalities follow directly from the definition of N , m′
[ρ],

¸ρi
and m[ρ].

In order to prove the second equality, we will utilize Proposition 4.7. Before

that, let us first show

(4.14) (coker∆p(K))sat = coker∆p(K
sat) = coker∆p(N

sat
N ).

Since K = im(∆p)+
∏r

i=1 im(∆τ i
◦ evρi

), the image im(∆p) is a sublattice of

K, hence

(coker∆p(K))sat = (K/ im∆p)
sat.

Since lattice K/ im∆p is a sublattice of Ksat/ im∆p, and both lattices have

dimension dimK − dim im(∆p), the saturation of K/ im∆p in Ksat/ im∆p

is the full lattice Ksat/ im∆p. Therefore, their saturations in the quotient

lattice Cp in (4.12) are the same, that is,

(coker∆p(K))sat = (K/ im∆p)
sat = (Ksat/ im∆p)

sat.

Suppose for α ∈
∏

p∈S Np × Np and [α] ∈ Cp, there is an integer m such

that m · [α] lies in Ksat/ im∆p. As im∆p is a subset of K, then the set

m ·α+im∆p is a subset of Ksat. Hence, m ·α ∈ Ksat and α ∈ Ksat. It follows

that [α] ∈ Ksat/ im∆p and Ksat/ im∆p is saturated. The first equality of

(4.14) is proved. We now prove the second equality. Following the definition

of K and NN , it is obvious that K ⊆ NN , hence Ksat ⊆ N sat
N . On the other
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hand, because

K = im∆p + im

r∏

i=1

(∆τ i
◦ evρi

)

= im∆p + im
r∏

i=1

(∆τ i
◦ evρi

) + im(
r∏

i=1

∆τ i
◦∆)

= im∆p + im{
r∏

i=1

∆τ i
◦ (∆ +

r∏

i=1

evρi
)},

where the second equality follows as im(
∏r

i=1 ∆τ i
◦∆) is a subset of im∆p.

Following Lemma 4.6 and the dimension argument of its proof, the image

im(∆ +
∏r

i=1 evρi
) is a full dimensional sublattice of

∏r
i=1 Nτ i

, hence K has

the same dimension as NN , which induces that their saturation are the same.

We now finish the proof of equation (4.14).

Now we use Proposition 4.7 to prove (4.13). We postpone the proof of

Proposition 4.7 to the last of the section.

We call a homomorphism α : A → B of lattices of finite index if im(α) ⊆ B

is of finite index. In this case, we define the index of α by

Ind(α) =
[
B : im(α)

]
=

∣∣B/ im(α)
∣∣.

Proposition 4.7. Let

A′ ��

��

B′ ��

β

��

C ′

δ

��

A
α

�� B
γ

�� C

be a commutative diagram of lattices with γ injective, and the right-hand

square is Cartesian. Let q : C → C be the cokernel of ·. Suppose the ho-

momorphisms q ◦ γ ◦ α, α + β and γ + · are of finite index. Then it holds

that

Ind(q ◦ γ ◦ α) = Ind(α+ β) · Ind(γ + ·).

Following the diagram (4.12), we have

(4.15)

Nρ̃ ×∏
r
i=1

Nτi
Nτ Nτ

∏
p∈S

Np

Nρ̃ =
∏r

i=1 Nρ̃i

∏r
i=1 Nτ i

N sat
N .

∆ ∆p∏
evρi

∏r
i=1 ∆τi
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Then by equation (4.14) and Proposition 4.7,

[(coker∆p(K))sat : coker∆p(K)] = [coker∆p(N
sat
N ) : coker∆p(K)]

= [N sat
N : NN ] · [

r∏

i=1

Nτ i
: Nm]

We finish the proof of (4.13) and hence Proposition 4.5. ♠

Proof of Lemma 4.6. First, we show that ·evA is the map of quotient stacks

induced from a TQx
-equivariant map of toric varieties. By Proposition A.2,

Aev
x = AQx,Lx

×∏
r
i=1 Aτi

r∏

i=1

X ′
τ i

= [SQx,Lx
×

r∏

i=1

Tτ i
/TQx

].

Let Y be SQx,Lx
×

∏r
i=1 Tτ i

and let Y gl := Y ×∏
r
i=1 X′

τi
X ′

τ , where the map

Y →
∏r

i=1 X
′
τ i

is the composition of the quotient map Y → Aev
x and projec-

tion Aev
x →

∏r
i=1 Xτ i

. By Lemma A.1, the torus action of TQx
on Y induces

an action of TQx
on Y gl, such that the quotient stack [Y gl/TQx

] is isomorphic

to Agl,ev
x . The diagonal map ·evA : Agl,ev

x → Aev
x is then induced from the

quotient of the TQx
-equivariant map Y gl → Y . In order to study ·evA∗[A

gl,ev
x ],

it is sufficient to study its reduction ·evA∗[A
gl,ev
x,red], hence it is enough to study

Y gl
red → Y .

Next, we show that Y gl
red → Y is the restriction of a toric morphism on

a toric stratum. Such description allows us to use the generalized Fulton-

Sturmfels formula in Corollary 3.6 to obtain Lemma 4.6. Let Y be SQx
×∏r

i=1 Tτ i
. The tropicalization of Aev

x →
∏r

i=1 X
′
τ i

induces a toric morphism

evY : Y →
∏r

i=1 X
′
τ i
. By Lemma B.2, the fine, saturated fiber product

Y×∏
r
i=1 X′

τi
X ′

τ is the disjoint union of n varieties, each of which is isomorphic

to a toric variety Ygl, with

(4.16) n = [

r∏

i=1

Nτ i
: ∆(Nτ ) + evY(N(Y))],

for ∆ defined in (4.12). By Corollary A.3, the lattice map evY is defined as

evY : N(Y) = NQx
×

r∏

i=1

Nτ i
→

r∏

i=1

Nτ i
, (a, b) �→ e(a)− b,(4.17)

with e the lattice map of the evaluation map AQx,Lx
→

∏r
i=1 Aτ i

. The map

evY is surjective, hence n = 1.

The scheme

Y gl = Y ×∏
r
i=1 X′

τi
X ′

τ = Y ×Y Ygl

is the subscheme of Ygl determined by the pullback of the ideal generated

by Lx in SQx
. In particular, we claim that the subscheme Y gl

red is the toric
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stratum VYgl(Ãgl), for Ãgl = τ̃ × {0}. By the idealized structure on M̃
ev
τ ,red

in Remark 2.11, SQx,Lx
is VSQx

(
∏r

i=1 τ̃ i). Therefore Y is the toric stratum

VY(
∏r

i=1 τ̃ i ×{0}). We use ÃY to denote
∏r

i=1 τ̃ i ×{0}. Since τ is realizable

and the types τ i are obtained by splitting τ , by the construction of the

evaluation cones in Definition 2.5, Ãgl = τ̃ × {0} is exactly the fiber product

of cones

ÃY ×∏
r
i=1

Σ(X′
τi

) Σ(X
′
τ ),

from the fiber product of toric varieties Y×∏
r
i=1 X′

τi
X ′

τ . Then, the cone Ã
gl is

the unique minimal cone in Σ(Ygl) whose image in Σ(Y) intersects the interior

of ÃY . The reduction Y gl
red is the toric stratum VYgl(Ãgl).

Now, we are ready to use the generalized Fulton-Sturmfels formula to study

the diagonal map ·evA : Agl,ev
x,red → Aev

x , which is the toric morphism of toric

stacks [
VYgl(Ãgl)/TQx

]
→

[
VY(ÃY )/TQx

]
.

Let V ∈
∏

p∈S
Np be a generic displacement vector defined in Definition

1.4. Let ψ be the map

ψ :

r∏

i=1

Nτ i
→

∏

p∈S

Np ×Np →
∏

p∈S

Np,

whose first map is the projections of fiber products Nτ i
to Np and the second

map is the cokernel of the diagonal map of Np. We first show that there exists

an element v ∈ N(Y) such that ψ ◦ evY(v) = V. Let N ′ be the sublattice

of
∏

p∈S
Np, whose images in NB under maps

∏
p∈S

Np → Np → NB are the

same for any p ∈ S. By definition, vector V lies in N ′. Note that

ψ(Nτ1
×NB

· · · ×NB
Nτr

) = N ′.

Hence ψ−1(V) is non-empty. Since evY is surjective, we obtain that there

exists v in N(Y) such that ψ ◦ evY(v) = V. Next, we want to show that v is

a generic displacement vector associated to (Y ,Ygl, Y gl
red) as defined in Defini-

tion 3.4. Equation (4.11) can be obtained using Fulton-Sturmfels formula in

Corollary 3.6 associated to v.

(1) The vector v is generic with respect to (Y ,Ygl, Y gl
red). Let f : N(Ygl) →

N(Y) be the lattice map and let qY : N(Y) → N(Y)/NσY
be the

lattice quotient map. We need to show for any cone ω ∈ Σ(Y) sat-

isfying the conditions (1), (2), (3) in Definition 3.4, the intersection

qY,R((im(f) + v) ∩ ω) lies in the interior of the cone qY,R(ω). Follow-

ing conditions (1), (3), ω determines a unique type [ρ] = (ρ1, . . . ,ρr)
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with property (i), (ii) in Definition 1.4(2). Furthermore, the dimen-

sion of ω satisfies the dimension condition in property (iii) since

r∑

i=1

dim ρ̃i − dim τ̃

= dimω − dim Ãgl

Def 3.4
= dimN(Y)− dim im(f) + dim(im(f) ∩ ÃY )− dim Ãgl

(1)
= dimN(Y)− dim im(f) =

r∑

i=1

Nτ i
− dimNτ

=
∑

p∈S

dimNp − (|S| − r + 1) · rankQgp
B .

Here (1) is true since f is injective and im(f) ∩ ÃY = im(Ãgl).

Recall that ¸ρi
is defined in (1.2)

r∏

i=1

¸ρi
:

r∏

i=1

ρ̃i

∏
evtρi−−−−−→

∏

p∈S

Np,R ×Np,R

∏
coker∆p

−−−−−−−→
∏

p∈S

Np,R.

As V is generic, the map
∏r

i=1 ¸ρi
is injective and V lies in the interior

of its image. It is equivalent to saying that (
∏r

i=1 ¸ρi
)−1(V) intersects

with the interior of ω′, with ω = ω′ × {0}. Hence, (evY)
−1ψ−1(V)

intersects with the interior of cone ω. As im(f) contains the kernel of

ψ ◦ evY , the set (evY)−1ψ−1(V) is contained in im(f)+ v. Hence, the

intersection of im(f) + v with ω is not empty and is in the interior

of ω. It follows that the intersection qY,R((im(f) + v) ∩ ω) lies in the

interior of the cone qY,R(ω).

(2) Lemma 4.6 follows from Fulton-Sturmfels Formula in Corollary 3.6

on v. By Corollary 3.6, we have

·evA∗

[
VYgl(Ãgl)/TQx

]

=
∑

ρ′∈∆σgl (v)

[N(Y) : im(f) +Nρ′ ] · [VY(ρ
′)/TQx

],

with ∆σgl

(v) the set of cones in N(Y) defined in Definition 3.4. There

is a bijection between types in ∆(V) and cones in ∆σgl

(v), by tak-

ing a type [ρ] to
∏r

i=1 ρ̃i × {0}. The substack Aev,ρ
x is the same as

[VY(ρ
′)/TQx

] following the stratification of the moduli space in Corol-

lary 2.12. As for multiplicities, since evY is surjective and the kernel
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is contained in im(f), by taking the quotient of ker(evY), we get

[N(Y) : im(f) +Nρ′ ] = [

r∏

i=1

Nτ i
: evY(im(f) +Nρ′)]

= [

r∏

i=1

Nτ i
: im(∆) +

r∏

i=1

im(evρi
)] = m′

[ρ].

♠

Remark 4.8. With the same assumption in Lemma 4.6, by Corollary 3.6,

there is a closed substack KA ⊆ Aev
x ×P

1 and a projection map αA : KA → P
1

such that as algebraic cycles in Aev
x ,

[α−1
A (1)] = [·evA (Agl,ev

x,red)], [α−1
A (0)] =

∑

[ρ]∈∆(V)

m′
[ρ]

Ix
· [Aev,ρ

x ],

with Ix = [im(qY ◦ f)sat : im(qY ◦ f)] for N(Ygl)
f
−→ N(Y)

qY
−−→ N(Y)/NσY

defined as above. The index Ix is the degree of map ·evA .

Similarly, take KUx
to be the preimage of KA under the smooth map ι× id

from Ux ×P1 to Aev
x ×P1. Let αU : KUx

→ P1 be the projection map. As the

diagram (4.9) is fine, saturated Cartesian, as algebraic cycles in Ux,

[α−1
U (1)] = [·evU (Ugl

x )], [α−1
U (0)] =

∑

[ρ]∈∆(V)

m[ρ]

Ix
· [Uρ

x ].(4.18)

The closed substackKUx
induces the local splitting equation (�) in Proposition

4.5.

At last, we finish the proof of Proposition 4.7.

Proof of Proposition 4.7. The diagram induces a sequence

A
α

�� B
γ

�� C

of cokernels of the vertical maps. Note that γ is injective as γ is injective and

the right-hand square is Cartesian. We have

Ind(q ◦ γ ◦ α) = [C : im(q ◦ γ ◦ α)] = [C : im(γ ◦ α)] = Ind(γ ◦ α).

Applying Lemma 4.9 and then twice Lemma 4.10, we obtain the finite index

properties and the claimed equality:

Ind(q ◦ γ ◦ α) = Ind(γ ◦ α) = Ind(α) · Ind(γ) = Ind(α+ β) · Ind(γ + ·).

♠
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Lemma 4.9. Let

A
α

�� B
β

�� C

be a sequence of lattices with α, β of finite index and β injective. Then β ◦ α

is of finite index, and it holds

Ind(β ◦ α) = Ind(β) · Ind(α).

Proof. Notice first that by replacing A by A/ ker(α) we may assume α

is also injective. Now consider the following diagram with exact rows and

columns:

0

��

0

��

0

��

0 �� A
α

��

��

B ��

β

��

Q1
��

��

0

0 �� β(α(A)) ��

��

C ��

��

Q ��

��

0

0 �� Q2
��

��

Q2
��

��

0

0 0

Here we first fill in Q1 and Q by completing the second and third lines, and

then complete the diagram using the Snake Lemma.

The statement now follows from

Ind(β ◦ α) =
[
C : β(α(A))

]
=

∣∣Q
∣∣ =

∣∣Q1

∣∣ ·
∣∣Q2

∣∣ = Ind(α) · Ind(β).

♠

Lemma 4.10. Let

A′ γ
��

α′

��

A ��

α

��

A ��

α
��

0

B′ β
�� B �� B �� 0

be a commutative diagram of lattices with exact rows. Suppose α + β is a

homomorphism of finite index. Then α is of finite index and Ind(α) = Ind(α+

β).
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Proof. We consider the following commutative diagram with exact rows

and columns:

A′ ⊕B′ γ⊕id
��

α′+id

��

A⊕B′ ��

α+β

��

A

α
��

�� 0

B′ β
�� B ��

��

B ��

��

0

Q
φ

��

��

Q′

��

0 0

After replacing A′ ⊕B′ by A′ ⊕B′/ ker(γ ⊕ id) and B′ by B′/ ker(β) to turn

the first two rows into a morphism of short exact sequences, the Snake Lemma

shows that φ is an isomorphism, and hence

Ind(α) =
∣∣Q′

∣∣ =
∣∣Q

∣∣ = Ind(α+ β).

♠

4.3. Gluing of the local models. Now, we are ready to prove the main

theorem.

Proof of Theorem 1.5. For x a geometric point on M̃
gl,ev
red , by Section 4.2,

there is an étale neighborhood Ux of ·evred(x) and Ugl
x such that Proposition

4.5 is satisfied. As x goes over the geometric points on M̃
gl,ev
red , we obtain an

étale cover
⊔

x Ux of
∏r

i=1 M̃
ev
τ i,red

.

Let V be a generic displacement vector defined in Definition 1.4. By Propo-

sition 4.5 and Remark 4.8, there are closed substacks KUx
of Ux × P1 that

induce the rational equivalence condition (4.18). We first show that for the

geometric points x and x′ in the same connected component of M̃gl,ev
red , the

indices Ix in (4.18) are the same. It is sufficient to show Ix = Ix′ supposing

x is a generization of x′. As the idealized structure on M̃
gl,ev
red is coherent, by

[20, Prop II.2.6.1], the ideal Lx is generated by Lx′ under the map Qx′ → Qx.

We then obtain an open embedding of stacks AQx,Lx
→ AQx′ ,Lx′ . Then there

is a fiber diagram

Agl,ev
x Agl,ev

x′ X ′
τ

Aev
x Aev

x′

∏r
i=1 X

′
τ i

AQx,Lx
AQx′ ,Lx′

∏r
i=1 Aτ i

.

δev
A,x′ δevA,x
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As the indices Ix and Ix′ are the degrees of the morphisms ·evA,x and ·evA,x′ , it

follows from the diagram that they are the same.

Assume that M̃gl,ev
red has one connected component and let I be the index

Ix for any geometric point x. Let Kτ be the closure of the image of
⊔
KUx

in
∏r

i=1 M̃
ev
τ i,red

× P
1. Let α be the projection map α : Kτ → P

1. Then, as

algebraic cycles in
∏r

i=1 M̃
ev
τ i,red

,

[α−1(1)] =
[⋃

x

ψx ◦ ·evU (Ugl
x )

]
=

[
·evred(M̃

gl,ev
red )

]
,

[α−1(0)] =
∑

[ρ]∈∆(V)

m[ρ]

I
·
[⋃

x

ψx(U
ρ
x )

]

=
∑

[ρ]∈∆(V)

m[ρ]

I
·
[ r∏

i=1

j̃ρi,τ i
(M̃ev

ρi,red
)],

where ψx is the étale map from Ux to
∏r

i=1 M̃
ev
τ i,red

and j̃ρi,τ i
: M̃ev

ρi,red
→

M̃
ev
τ i,red

is the finite map induced from the contraction morphism from ρi to

τ i for each i = 1, . . . , r. As the degree of ·evred is the same as ·evU , we obtain

the equation

(4.19) ·evred∗[M̃
gl,ev
red ] = I · [·evred(M̃

gl,ev
red )] =

∑

[ρ]∈∆(V)

m[ρ] ·
r∏

i=1

[̃jρi,τ i
(M̃ev

ρi,red
)].

Following the notations in Proposition 2.14, we have γi from M̃
ev
τ i

to M
ev
τ i

and

βi from the reduced induced stack M̃
ev
τ i,red

to M̃
ev
τ i
, and

·′∗[M
ev
τ ] = (

r∏

i=1

γi ◦ βi)∗·
ev
red∗[M̃

gl,ev
red ]

(4.19)
=

∑

[ρ]∈∆(V)

m[ρ] ·
r∏

i=1

(γi ◦ βi)∗ [̃jρi,τ i
(M̃ev

ρi,red
)]

(1)
=

∑

[ρ]∈∆(V)

m[ρ] ·
r∏

i=1

[jρi,τ i
(Mev

ρi
)]

=
∑

[ρ]∈∆(V)

m[ρ]

|Aut(ρi/τ i)|
·

r∏

i=1

jρi,τ i∗[M
ev
ρi
],

with jρi,τ i
: Mev

ρi
→ M

ev
τ i

from the contraction morphism ρi → τ i. Since M
ev
ρi

is reduced over B as shown in [4, Prop 3.28],

jρi,τ i
(Mev

ρi
) = γi ◦ βi ◦ j̃ρi,τ i

(M̃ev
ρi,red

).
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By [4, Prop 5.5], γi induces an isomorphism on reductions. Hence γi ◦ βi has

degree one and we get equality (1). The last equality follows from the fact

that jρi,τ i
is finite of degree |Aut(ρi/τ i)|.

Now suppose M̃
gl,ev
red has more than one component, then by Lemma 2.13

and Proposition 2.4, moduli spaces M̃ev
τ and M

ev
τ have more than one compo-

nent. For each component, we have equation (4.19). As m[ρ] is independent

of the geometric point x from the component, the above equation holds for

general Mev
τ . Then, following Theorem 2.3, we finish the proof of Theorem

1.5. ♠

Appendix A. Lift of Artin cones

Recall that for an algebraic group G and a scheme X with a G-action, the

quotient stack [X/G] is the groupoid fibered over the category of schemes,

such that

(1) An object over a scheme B is a diagram

{ E X

B,

h

π

}
where E is a

principal G-bundle over B and h : E → X is a G-equivariant map.

(2) A morphism from an object

{
E′ X

B′,

h′

π

}
over B′ to an object

{
E X

B,

h

π

}
over B is a pair (g, g′) with g : B′ → B and g′ : E′ →

E ×B B′ such that g′ is a G-equivariant isomorphism and h′ = h ◦ g′.

Let us first show a general lemma regarding quotient stacks.

Lemma A.1. Let G be an algebraic group and X be a scheme with a

G-action γ : G×X → X. Let Y and Z be algebraic stacks.

Assume there is a G-invariant morphism f ′ : X → Y , hence a map f from

the quotient stack [X/G] to Y . Let g : Z → Y be a representable morphism of

algebraic stacks. There is a G-action on scheme X×Y Z induced by its action

on X. Then, there is a 2-isomorphism

[X ×Y Z/G] → [X/G]×Y Z.
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Proof. By [28, Lemma 2.3.2], there is a 2-Cartesian diagram

[X ×Y Z/G] [Z/G]

[X/G] [Y/G],

where [Z/G] and [Y/G] are the quotient stacks induced by the trivial G-

actions. As [Z/G] is 2-isomorphic to the product stack Z ×BG and [Y/G] is

2-isomorphic to Y ×BG, we obtain that

[Z/G] = [Y/G]×Y Z.

Hence

[X ×Y Z/G] = [X/G]×[Y/G] [Z/G] = [X/G]×Y Z.

♠

Let P,Q be toric monoids. For a monoid morphism m : P → Q, we let

f : SQ → SP be the associated toric morphism, fT : TQ → TP be the algebraic

torus morphism and fA : AQ → AP the morphism of Artin cones.

Proposition A.2. Let [SQ × TP /TQ] be the toric stack obtained by the

torus action

TQ × (SQ × TP ) → SQ × TP

associated to the monoid morphism

Q⊕ P gp → Qgp ⊕Q⊕ P gp, (q, p) �→ (q +mgp(p), q, p).

Then there is a Cartesian diagram of Artin stacks

(A.1)

[SQ × TP /TQ] SP

AQ AP ,

g

η χ

fA

where χ : SP → AP is the quotient map, the morphism η is induced from the

TQ-equivariant map SQ × TP to SQ by taking the projection and g is induced

from the η̃ : SQ × TP → SP associated to the monoid morphism

P → Q⊕ P gp, p �→ (m(p),−p),(A.2)

invariant under the TQ-action on SQ × TP .

Proof. With trivial TQ-action on AP , the map SQ
f
−→ SP → AP is TQ-

invariant. Since χ : SP → AP is representable, by Lemma A.1,

AQ ×AP
SP = [SQ ×AP

SP /TQ],
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with TQ acting on the fiber product by acting on SQ. On the other hand,

there is a commutative diagram

SQ × TP SP × TP SP

SQ SP AP ,

f×id

pr1

a

pr1 χ

f χ

where a is the group action. By [25, Tag 04M9], the commutative diagram on

the right hand side is 2-Cartesian. We then obtain that SQ×AP
SP = SQ×TP

as both squares are fiber diagrams. The induced TQ-action on SQ×TP is given

by the monoid morphism in (A.2), which is the unique action that makes the

above fiber diagram TQ-equivariant. ♠

Proposition A.2 can be generalized to the toric strata of affine toric vari-

eties.

Corollary A.3. Let m : P → Q be a morphism of toric monoids. Let K

be an ideal of P and L be an ideal of Q such that m(K) ⊆ L. Then there is

a Cartesian diagram of idealized log stacks

[SQ,L × TP /TQ] SP,K

AQ,L AP,K ,

g

η χ

fm

where χ is the canonical quotient map and fm is the map of toric stacks

associated to the monoid morphism m. The morphism η is induced from

the TQ-equivariant map SQ,L × TP to SQ,L by taking the projection and g is

induced from the η̃ : SQ,L × TP → SP,K associated to the monoid morphism

P → Q⊕ P gp, p �→ (m(p),−p),

invariant under the TQ-action on SQ,L × TP .

Proof. Since SP,K = AP,K ×AP
SP , we obtain that

AQ,L ×AP,K
SP,K = AQ,L ×AP,K

(AP,K ×AP
SP )

= AQ,L ×AP
SP

= AQ,L ×AQ
(AQ ×AP

SP )

= AQ,L ×AQ
[SQ × TP /TQ].
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The map [SQ×TP /TQ] → AQ is induced by the TQ-invariant map SQ×TP
pr1−−→

SQ → AQ. By Lemma A.1, we then obtain that

AQ,L ×AQ
[SQ × TP /TQ] = [AQ,L ×AQ

(SQ × TP )/TQ]

= [(AQ,L ×AQ
SQ)× TP /TQ] = [SQ,L × TP /TQ].

♠

Appendix B. Logarithmic fiber product of toric varieties

In this section, we study the logarithmic fine, saturated fiber products of

toric varieties. Unlike the fiber product in the category of schemes, the log

fine, saturated fiber products of toric varieties are totally determined by the

fiber product of the fans.

Definition B.1. Let Σ(X) → Σ(Y ) and Σ(Z) → Σ(Y ) be morphisms of

fans. Define the fiber product of fans Σ(X)×Σ(Y ) Σ(Z) to be the fan (Σ̃, Ñ)

with

(1) Ñ being the fiber product of lattices N(X)×N(Y ) N(Z),

(2) Σ̃ consisting of the cones ÃX ×σY
ÃZ with ÃX ∈ Σ(X), ÃY ∈ Σ(Y )

and ÃZ ∈ Σ(Z).

Lemma B.2. Let f : X → Y and g : Z → Y be toric morphisms of toric

varieties. Then, the fine, saturated fiber product X ×fs
Y Z is a disjoint union

of toric varieties and each of them is isomorphic to the toric variety of the

fiber product of fans Σ(X)×Σ(Y ) Σ(Z). The number of the components is the

lattice index [(imα)sat : imα] under the map

(B.1) α : N(X)×N(Z) → N(Y ), (x, z) �→ fN (x)− gN (z)

with fN and gN the lattice maps associated to the toric morphisms f and g.

In particular, if the lattice map α has full dimensional image in N(Y ), then

the lattice index is [N(Y ) : imα].

Proof. The fine, saturated logarithmic fiber product of the toric varieties

is discussed in [19, Rmk 2.2.5] in detail. By [19], the fine, saturated log fiber

product X ×fs
Y Z is a disjoint union of schemes, each of which is isomorphic

to the toric variety of the fiber product of fans Σ(X)×Σ(Y )Σ(Z). The reason

of the fiber products containing several components is due to the fact that

the torsion subgroup Tor of the fibered sum of monoids M(X)⊕M(Y ) M(Z)

is nontrivial, with M(X), M(Y ) and M(Z) the character lattices. As we are

working over a field of characteristic 0, the number of the components is the

order of the group Tor.
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Note that we have an exact sequence of monoids

M(Y )
φ
−→ M(X)⊕M(Z)

ψ′

−→ M(X)⊕M(Y ) M(Z) → 0,(B.2)

with φ = (f∗
N ,−g∗N ) and ψ′ the cokernel map of φ. Let

ψ : M(X)⊕M(Z)
ψ′

−→ M(X)⊕M(Y ) M(Z)
q
−→ M(X)⊕M(Y ) M(Z)/Tor .

Then, the torsion group

Tor = ker q = ψ′(kerψ) ∼= kerψ/(kerψ ∩ kerψ′) = kerψ/ imφ.

As imφ is a full dimensional sublattice of kerψ, by lattice geometry, the order

of the torsion group Tor is the same as the lattice index [(imφ)∗ : (kerψ)∗].

We finish the proof by showing that under the inclusion of the lattice

α′ : (imφ)∗ → N(Y ),

the image of (imφ)∗ is (imα)sat, and the image of (kerψ)∗ → (imφ)∗ is (imα),

with α defined in (B.1).

The cokernel of the map α′ is isomorphic to (kerφ)∗, following the dual of

the short exact sequence

0 → kerφ → M(Y ) → imφ → 0.

Hence, cokerα′ is torsion free. Therefore, the image of (imφ)∗ under α′ is a

saturated sublattice of N(Y ) containing (imα).

Note that α is the dual map of φ in (B.2). Taking the dual of the exact

sequence (B.2), we obtain an exact sequence of the lattices

0 → N(X)×N(Y ) N(Z)
ψ∗

−−→ N(X)×N(Z)
α
−→ N(Y ).

Therefore imα ∼= cokerψ∗ = (kerψ)∗, with the second equality following the

dual of the short exact sequence

0 → ker(ψ) → M(Y )
ψ
−→ im(ψ) → 0.

The lattice quotient

[(imφ)∗ : (kerψ)∗] = [(imα)sat : imα],

which equals the order of the torsion group Tor. ♠
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