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Nuclear energy density functionals successfully reproduce properties of nuclei across almost the entire nuclear
chart. However, nearly all available functionals are phenomenological in nature and lack a rigorous connection to
systematically improvable nuclear forces. This issue might be solved with an energy density functional obtained
from first principles. As an intermediate step towards this goal we construct the GUDE family of functionals that
is obtained from a hybrid scheme consisting of long-range pion-exchange contributions derived from chiral
effective field theory at the Hartree-Fock level and a phenomenological Skyrme part. When including pion
contributions beyond next-to-leading order in the chiral expansion, we find significant improvements over a
reference Skyrme functional constructed following the same protocol. We analyze the importance of different
pion contributions and identify which terms drive the observed improvements. Since pions are incorporated
without adding further optimization parameters to the functionals, the improvements can be attributed to the
functional form of these terms. Our work therefore suggests that the considered chiral contributions constitute
useful ingredients for true ab initio energy density functionals.

DOI: 10.1103/PhysRevC.109.014319

I. INTRODUCTION

Tremendous progress has been made in calculating nu-
clear structure from first principles [1,2], pushing descriptions
toward heavy [3–5] and doubly open-shell [6–11] nuclei,
and employing high-precision interaction models [12–14] and
high-order many-body methods [15–17]. However, due to
their huge numerical cost, these microscopic approaches, usu-
ally generically referred to as ab initio methods [18], are
not yet ready to be employed in large-scale, high-precision
calculations of nuclear ground-state observables. Even if one
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could overcome this computational challenge, it is unclear
whether ab initio calculations are going to be able to compete
with less microscopic methods regarding the accuracy they
can achieve. At present, they generally cannot [1,2,15,19].

Nuclear density functional theory (DFT) [20,21] is cur-
rently the most microscopic theoretical framework that can be
used in global surveys thanks to its favorable computational
scaling [22]. It is rooted in the seminal work by Hohenberg
and Kohn proving the existence of a universal functional of
the density which, when minimized for fixed particle number,
gives the ground state density and energy of a many-body sys-
tem confined in an external potential [23]. While this is most
commonly employed for the description of electronic systems,
later works extended the existence proof to self-bound sys-
tems as constituted by finite nuclei [24–27]. In practice most
calculations are carried out in the Kohn-Sham formulation
of DFT [28], which allows for an efficient description of the
kinetic energy of the system and of shell effects by expressing
the density of interest in terms of auxiliary single-particle
orbitals of an independent-particle system.

In nuclear physics different Ansätze have been established
for the form of the energy density functional (EDF). In the
nonrelativistic sector, the Skyrme [29] and Gogny [30] EDFs
are based on effective nucleon-nucleon interactions. Genuine

2469-9985/2024/109(1)/014319(19) 014319-1 Published by the American Physical Society

https://orcid.org/0000-0003-0763-7613
https://orcid.org/0000-0003-1584-011X
https://orcid.org/0000-0002-3483-333X
https://orcid.org/0000-0003-3646-5574
https://orcid.org/0000-0002-9203-6849
https://orcid.org/0000-0001-8027-4076
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.109.014319&domain=pdf&date_stamp=2024-01-17
https://doi.org/10.1103/PhysRevC.109.014319
https://creativecommons.org/licenses/by/4.0/


L. ZUREK et al. PHYSICAL REVIEW C 109, 014319 (2024)

energy functionals (not derived from an underlying potential)
include the Fayans [31], the SeaLL1 [32], and the BCPM [33]
functionals. Different forms are also available in covariant
DFT; see, e.g., Refs. [34,35]. Here we will limit ourselves to
nonrelativistic functionals.

Significant progress in nuclear DFT has been achieved
by using increasingly sophisticated parameter optimization
protocols but it is widely believed that this avenue has been ex-
plored to such a degree that further improvements, necessary
for instance for the description of r-process nucleosynthesis
[36–40] or of single-particle energies [41], need to come from
elsewhere [41–43]. The two most obvious routes are the ex-
plicit treatment of static correlations within a multireference
framework [21,30,44,45] and the extension of the form of the
employed EDFs.

In the latter direction, different empirical strategies have
been pursued (see, e.g., Refs. [46–52]). They often consist in
adding similar or higher-order terms to existing EDF struc-
tures and typically involve introducing additional adjustable
parameters. Properly fitting such parameters is a nontriv-
ial task since they cannot always be well constrained with
available experimental data. This does not address the phe-
nomenological nature of the EDFs, which is the root cause
for potentially uncontrolled extrapolations outside the fitting
regions [43,53–56].

A unifying construction principle for nuclear EDFs might
therefore be helpful. While different ideas to formulate an
effective field theory (EFT) for EDFs have been discussed
[57–59], none of them has been implemented yet. Alter-
natively, one can remain within the overall framework of
nuclear DFT while seeking guidance from microscopic ab
initio theories. By employing interactions derived from chiral
EFT, which establishes a construction scheme based on a
power counting estimating the importance of individual terms
[60,61], ab initio calculations become systematically improv-
able by going to higher orders in the chiral expansion. At
present the most accurate potentials are constructed at fifth
order for nucleon-nucleon (NN) forces [12,13] and fourth
order for three-nucleon (3N) forces [2]. Different ideas exist
for how to combine ab initio approaches and nuclear DFT
[19,22,33,62–69]. They range from determining EDF param-
eters [64,67] and constraining the form of some functional
terms [33,63,68] based on microscopic calculations to ideas
for a full determination of the functional form from a chiral
interaction model [22,62,65].

In this work, we follow a hybrid strategy first suggested
in Refs. [19,70]. It consists in adding terms arising from
pion exchanges as described by chiral EFT interactions at the
Hartree-Fock (HF) level on top of a Skyrme EDF structure.
There are two motivations for this strategy. First, the form
of the Skyrme EDF corresponds to calculating HF energies
from contact interactions. Following chiral EFT, the first ad-
ditional degree of freedom that appears when increasing the
resolution of the description of the considered systems are
the pions exchanged between the nucleons. Adding them ex-
plicitly should lead to a more accurate description of nuclear
properties. Second, one notices that ab initio calculations with
chiral EFT interactions often build correlations on top of an
initial mean-field solution. In our approach, we employ the

same interactions but instead of generating correlations via
the many-body method, we adjust the short-range part of the
interactions. This is because the dominant bulk correlations in
nuclei, e.g., in expansions around HF, appear to be short range
in nature [71] and could therefore be mimicked by contact
interactions.

This semiphenomenological strategy was implemented in a
series of papers, Refs. [70,72–76]. While improvements over
EDFs without chiral terms were observed, the dependency
of the results on the order of the chiral interactions showed
large variability and puzzling systematics [76]. The goal of
the present work is to carefully revisit the construction of
EDFs incorporating chiral physics via a density-matrix ex-
pansion (DME). We study in detail the dependence of the
results on the order of the employed chiral interaction and
identify which terms are crucial to obtain improvement over
EDFs without pion-exchange terms. To perform these investi-
gations we construct a new set of nuclear EDFs which we dub
“Germany-USA DME EDFs” (GUDE1 for short).

We begin by laying out the theoretical framework of this
study in Sec. II. In particular, we discuss the structure of
the EDFs including the chiral contributions, the numerical
setup used to determine nuclear properties from them, and the
parameter optimization protocol. In Sec. III we present the
obtained GUDE parametrizations and investigate their perfor-
mance by comparing against experimental data. In particular,
we construct a GUDE variant which reproduces the main
improvements found in this work by adding only a minimal
number of terms arising from pion exchanges. Section IV
contains a detailed analysis of the order-by-order behavior of
the functionals in the GUDE family. We end by summarizing
our findings in Sec. V, where we also give an outlook on
avenues for future work.

II. METHOD

The EDFs we construct in this work can be split into six
parts according to

E = Eχ
H + Eχ

F + ESkyrme + ECoulomb + Epair + Ekin. (1)

They are solved at the Hartree-Fock-Bogoliubov (HFB) level
using the code HFBTHO [77], as detailed in Sec. II E. The
conventional part of the EDFs consists of the latter four terms.
The Skyrme part reads

ESkyrme =
∑

t=0,1

∫
dR

[
Cρρ

t (ρ0)ρ2
t + Cρτ

t ρtτt

+ Cρ$ρ
t ρt$ρt + Cρ∇J

t ρt∇ · Jt

+ CJJ
t Jt,abJt,ab

]
, (2)

where

Cρρ
t (ρ0) = Cρρ

t0 + Cρρ
tD ρ

γ
0 , (3)

and the isospin index t = 0 (t = 1) labels isoscalar (isovector)
densities. Summations over spacial indices a, b are implied. In

1gude [gu:d@] is a common greeting in the Hessian dialect of
German that is spoken in Darmstadt, among other places.
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Eq. (2), we have suppressed the dependence on the position
R of the (quasi)local densities, for which expressions can be
found in Refs. [20,78]. Since we only apply our EDFs for
calculations of even-even nuclei, time-odd densities are not
taken into account in the construction. Skyrme and pairing
Epair (Sec. II D) contributions contain the parameters that are
adjusted to data as described in Sec. II F. The Coulomb energy
is obtained here as in Refs. [42,76,79,80]: the Hartree term
is calculated exactly using the Gaussian substitution method
[81,82] and the exchange term is calculated with the Slater
approximation [83]; see Ref. [84] for an assessment of the
accuracy of these methods. The kinetic energy is given by

Ekin =
∫

dR
h̄2

2m
τ0(R), (4)

with h̄2/(2m) = 20.735 53 MeV fm2.
In Sec. III we construct a conventional functional, below

labeled as “no chiral”, that contains only these four terms
and serves as a reference functional for comparing the perfor-
mance of the other EDFs that we construct following the same
optimization protocol. These additionally contain the first two
terms in Eq. (1), Eχ

H and Eχ
F , which represent the Hartree

and Fock energy from pion exchanges, respectively. The ex-
pressions for the pion exchanges which enter the definitions
of Eχ

H and Eχ
F are taken directly from interactions derived

from chiral EFT at different orders; see Sec. II A. Because the
low-energy constants of the pion exchanges are determined
from few-body data [85] and are not adjusted in the present
work, the additional inclusion of these terms does not lead to
an increase in the number of adjustable functional parameters.
See Secs. II B and II C for details regarding the pion Hartree
and Fock terms.

While the structure of the functionals constructed here
agrees with the one from Ref. [76], we introduce several
changes and improve various aspects in the construction and
optimization of the functionals compared to that work. These
changes, stated in detail in Secs. II A to II F, are mostly driven
by the idea to enable a cleaner comparison of the functionals
constructed at (different) chiral orders.

A. Chiral interactions

For the construction of the EDFs we consider pion ex-
changes at different orders in the chiral expansion up to
next-to-next-to-leading order (N2LO) both with and without
the explicit inclusion of intermediate $ isobars as well as with
and without three-nucleon (3N) forces. Chiral EFT interac-
tions contain pion exchanges and contact interactions. We take
only the finite-range parts of the pion exchanges explicitly into
account. Expressions for the corresponding interaction terms
in coordinate space are given in Refs. [75,76]. The low-energy
constants that appear are taken from the determination of
Ref. [85] (columns “Q2, no $” and “Q2, fit 1” of Table 1
therein). Note that we use gA = 1.27 and hA = 3gA/

√
2 as

chosen in Ref. [85]. The previous implementation [76] used
the Fock coefficient functions derived in Ref. [75] for which
the slightly inconsistent combination of gA = 1.29 with low-
energy constants from Ref. [85] had been considered. The
finite-range interactions are regularized by multiplying them

with the local regulator function

f (r) =
[

1 − exp
(

− r2

R2
c

)]n

, (5)

where we choose Rc = 1.0 fm and n = 6 (cf. [86]). Investigat-
ing the choice of the regularization scheme is left for future
work.

Contact interactions as well as correlations involving pions
beyond the HF level are assumed to be effectively captured by
the EDFs by adjusting the parameters of ESkyrme and Epair to
data from finite nuclei.

B. Long-range Hartree terms

The Hartree terms from the pion exchanges are included
essentially exactly by evaluating the corresponding integrals.
Since we consider only even-even nuclei, the spin density van-
ishes due to time-reversal symmetry so that only the central
part of the NN interactions contribute:

Eχ
H = 1

2

∑

t=0,1

∫
dR dr Vt (r)ρt

(
R + r

2

)
ρt

(
R − r

2

)
. (6)

To make use of the capability of HFBTHO to solve the HFB
equations for potentials given by sums of Gaussians [77], we
approximate the central chiral potentials as

V0(r) = VC (r) → ṼC (r) =
N∑

i=1

(
Wi − Hi

2

)
e−r2/µ2

i , (7)

V1(r) = WC (r) → W̃C (r) = −
N∑

i=1

Hi

2
e−r2/µ2

i . (8)

A similar idea was implemented in Ref. [87]. Together
with Bi = Mi = 0 (which do not contribute here due to
time-reversal invariance), Eqs. (7) and (8) correspond to a
Gogny-like interaction,

VG =
N∑

i=1

(Wi + BiPσ − HiPτ − MiPσ Pτ )e−r2/µ2
i . (9)

Note that in Eqs. (7) to (9) we correct several mistakes com-
pared to Eqs. (30) to (33) of Ref. [76]. The wrong equations in
Ref. [76] led to an incorrect implementation of the Hartree
terms in the functionals constructed therein.

To reproduce the behavior of the regulator [Eq. (5)] at the
origin, the conditions

HN = −
N−1∑

i=1

Hi, WN = −
N−1∑

i=1

Wi (10)

are imposed. The remaining free parameters Wi, Hi, µi are
obtained by a fitting routine.

As in Ref. [76], N = 5 Gaussians are used here as a
compromise between accuracy of the approximation and
computational requirements for evaluating and storing the
resulting integrals [88]. The Gaussians used in Ref. [76] were
obtained by simultaneously fitting all 13 parameters for the
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FIG. 1. r2-weighted difference between isoscalar central poten-
tial at N2LO in the chiral expansion and its approximations by sums
of five Gaussians according to Eq. (7). Both the approximation of
Refs. [76,88] and the one obtained here are shown.

isoscalar VC and isovector WC potentials. Here, we fit first
only the nine parameters for the isoscalar potential VC since
it contributes significantly more to the energy of finite nuclei
than its isovector counterpart. We keep the resulting Gaussian
widths µi fixed for the subsequent fitting of the remaining
four parameters of the isovector potential WC . We obtain the
parameters of the Gaussians by χ2 minimizations where the
loss functions are given by

χ2 =
∑

r

{r2[Ṽt (r) − Vt (r)]}2, (11)

which are evaluated on an evenly spaced grid from r = 0 to 8
fm with step width 0.125 fm. We include the r2 prefactor in the
definition of the χ2 to account for the increased importance
of larger r due to the presence of the volume element in the
Hartree energy, Eq. (6). This factor had not been included in
the determination of the Gaussian parameters in Refs. [76,88].
We provide the Gaussian parameters obtained in the new fit in
the Supplemental Material [89].

In Figs. 1 and 2 we plot r2[Vt (r) − Ṽt (r)] including contri-
butions up to including N2LO in the chiral expansion (without
explicitly resolved $ excitations). The new fitting strategy
improves the fit of VC without a significant degradation in
fitting WC . When evaluating the Hartree energy expectation
value in 208Pb the difference between the value obtained with
the exact and the approximated potential at N2LO is about
5 MeV (on a total Hartree energy of about 4000 MeV) with
the Gaussian parameters obtained in this work. This is a sig-
nificant improvement over the difference of 37 MeV obtained
with the Gaussian parameters of Refs. [76,88]. Similar im-
provements are obtained for the fits of the potentials at other
chiral orders. For these comparisons the underlying single-
particle orbitals were generated from a self-consistent HF
calculation with the SLy4 EDF [90] using the code HOSPHE
[91].

Note that it is not clear if and how the observed improve-
ments translate into improvements of the constructed EDFs.
This is because the Skyrme parameters are fitted to data after

FIG. 2. Same as Fig. 1 but for the isovector potential.

adding the terms originating in the chiral potentials and this
fitting can (partly) compensate the errors from the nonperfect
Gaussian approximations. For the same reason it is also hard
to gauge a priori the impact of other changes we introduced
compared to Ref. [76].

For later reference we introduce a notation for contribu-
tions arising when performing a Taylor expansion of one
density entering Eq. (6) in the relative coordinate r about the
argument of the other density. We write

Eχ
H =

∑

t=0,1

∫
dR

∞∑

n=0

T ρ$nρ
t ρt (R)$nρt (R) (12)

with

T ρ$nρ
t = 2π

∫
dr r2Vt (r)

r2n

(2n + 1)!
. (13)

Finally, we recall that there are no Hartree contributions from
the long-range parts of 3N forces at the orders we consider.

C. Long-range Fock terms

The Fock energy arising from a local NN interaction Vχ is
given by

Eχ
F,NN = −1

2
Trστ

12

∫
dR dr 〈r|Vχ (σ1, σ2, τ1, τ2)|r〉 Pστ

12

× ρ(1)
(

R − r
2
, R + r

2

)
ρ(2)

(
R + r

2
, R − r

2

)
.

(14)

A DME allows one to approximately rewrite the nonlocal
one-body density matrix ρ as a sum of terms in which the
nonlocality is factored out [92]. After applying the DME
and carrying out the traces and the integral in the non-
locality r, one obtains a quasilocal approximation for the
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Fock energy, which for the NN forces used here reads [75]

Eχ
F,NN =

∑

t=0,1

∫
dR

{
gρρ

t (ρ0)ρ2
t + gρτ

t (ρ0)ρtτt + gρ$ρ
t (ρ0)ρt$ρt + gJJ,2

t (ρ0)Jt,abJt,ab + gJJ,1
t (ρ0)[Jt,aaJt,bb + Jt,abJt,ba]

}
. (15)

As before we consider only terms that contribute in time-reversal invariant systems. Note Jt,aa = 0 when axial symmetry is
conserved [93], which is the case for all calculations performed in this work. Equation (15) looks very similar to the Skyrme
part of the functional, Eq. (2). However, in Eq. (15) the prefactors of the density bilinears (the g coefficient functions guv

t ) are not
constants but functions of the isoscalar density ρ0 and are fixed once one picks a chiral interaction model and a DME variant.

From a computational point of view, using a DME does not provide a significant benefit when considering only chiral NN
interactions, but it is a suitable strategy to make the addition of 3N interactions feasible. For those interactions the equation for
the Fock contributions is determined analogously to the NN case and reads [75]

Eχ
F,3N =

∫
dR

{
gρ3

0 (ρ0)ρ3
0 + gρ2

0 τ0 (ρ0)ρ2
0τ0 + gρ2

0 $ρ0 (ρ0)ρ2
0$ρ0 + gρ0(∇ρ0 )2

(ρ0)ρ0∇ρ0 · ∇ρ0 + gρ0ρ
2
1 (ρ0)ρ0ρ

2
1

+ gρ2
1 τ0 (ρ0)ρ2

1τ0 + gρ2
1 $ρ0 (ρ0)ρ2

1$ρ0 + gρ0ρ1τ1 (ρ0)ρ0ρ1τ1 + gρ0ρ1$ρ1 (ρ0)ρ0ρ1$ρ1 + gρ0(∇ρ1 )2
(ρ0)ρ0∇ρ1 · ∇ρ1

+ ρ0εi jk[gρ0∇ρ0J0 (ρ0)∇iρ0J0, jk + gρ0∇ρ1J1 (ρ0)∇iρ1J1, jk]

+ ρ1εi jk[gρ1∇ρ1J0 (ρ0)∇iρ1J0, jk + gρ1∇ρ0J1 (ρ0)∇iρ0J1, jk]

+ ρ0
[
gρ0J2

0 ,1(ρ0)J0,aaJ0,bb + gρ0J2
0 ,2(ρ0)J0,abJ0,ab + gρ0J2

0 ,3(ρ0)J0,abJ0,ba
]

+ ρ0
[
gρ0J2

1 ,1(ρ0)J1,aaJ1,bb + gρ0J2
1 ,2(ρ0)J1,abJ1,ab + gρ0J2

1 ,3(ρ0)J1,abJ1,ba
]

+ ρ1[gρ1J0J1,1(ρ0)J1,aaJ0,bb + gρ1J0J1,2(ρ0)J1,abJ0,ab + gρ1J0J1,3(ρ0)J1,abJ0,ba]
}
. (16)

In the actual HFB calculations with HFBTHO the g coef-
ficients are approximated with interpolation functions of the
form

guv
t (ρ0) → g̃uv

t (ρ0) = g̃uv
t (0) +

N∑

i=1

ai arctan
(
biρ

ci
0

)i
, (17)

guvw(ρ0) → g̃uvw(ρ0) = g̃uvw(0) +
N∑

i=1

ai arctan
(
biρ

ci
0

)i
,

(18)

where N = 3 and the coefficients g̃uv(w)
t (0), ai, bi, ci are fitted

separately for each g coefficient. For details on the interpola-
tion see Ref. [76]. Note that Eq. (47) therein contains an error
which is corrected in Eqs. (17) and (18) above.

In this work we stick to the choice of Refs. [75,76] and use
the (simplified) phase-space averaging (PSA) DME [70,74].
The DME is applied to the isoscalar and isovector parts of
the one-body density matrix using an isoscalar momentum
scale, which works well for the former, but not for the latter
[92]. However, the isovector Fock contributions are small and
again we expect the Skyrme parameter fitting to partly com-
pensate the errors. We leave the investigation of the impact of
choosing a different DME variant in the EDF construction for
future work; see Ref. [92] for a study where similar tests are
performed in a non-self-consistent scenario. In that work we
found DMEs work well even for pion exchanges at leading
order (LO) in the chiral expansion despite the long range
of this interaction. Interaction terms at higher orders are of
shorter range and therefore expected to be even more suited
for a DME treatment.

Note that some of the 3N Fock terms used in Ref. [76]
were incorrect; these have been corrected in the present work.
We provide the resulting interpolation parameters entering
Eqs. (17) and (18) in the Supplemental Material [89] and
introduce the notation

W uv
t (ρ0) = Cuv

t (ρ0) + T uv
t + g̃uv

t (ρ0) + g̃ρ0ut vt (ρ0)ρ0 (19)

for the combination of Skyrme coefficient, Taylor-expanded
Hartree contribution, as well as NN and 3N g coefficient
functions of the same kind.

D. Pairing contribution

Within the HFB framework, the pairing contribution to our
EDFs is given in the mixed-pairing prescription [94] as

Epair = 1
4

∑

q=n,p

∫
dR V q

0

[
1 − 1

2
ρ0(R)

ρs

]
ρ̃2

q (R), (20)

where ρ̃q(R) are the pairing densities and ρs = 0.16 fm−3.
The neutron and proton pairing strengths V n

0 and V p
0 are

adjusted to data as described in Sec. II F. Because of the
zero range of the underlying effective pairing force, a cut-
off of Ecut = 60 MeV to truncate the quasiparticle space is
employed. This cutoff was missing in the implementation
of Ref. [76]. Thus, in that work the quasiparticle space was
truncated implicitly only, via the finite size of the employed
basis.

In Ref. [76], we approximated particle number projec-
tion with a variant of the Lipkin-Nogami (LN) prescription
derived for a seniority-pairing interaction with an adjusted
effective strength [95]. In Ref. [96] it was shown that this
scheme compared well against the numerically expensive

014319-5



L. ZUREK et al. PHYSICAL REVIEW C 109, 014319 (2024)

variation-after-projection scheme in well-deformed nuclei,
but not near closed shells; see also Ref. [97]. In addition to the
lack of consistency between the actual pairing interaction and
the one used for the LN scheme, the LN scheme is not varia-
tional. For these reasons, we drop this prescription and work at
the HFB level only. Future development of this work’s EDFs
should involve revisiting particle-number restoration. Note
that the UNEDF1-HFB parametrization of the Skyrme EDF
was also performed without the seniority-based LN scheme
of its parent UNEDF1 and its performance was only slightly
worse [98].

E. Hartree-Fock-Bogoliubov calculations

We obtain nuclear ground states based on the EDFs
described in the previous subsections by performing HFB cal-
culations. The HFB equations are solved with the DFT code
HFBTHO, which expands the single-particle wave functions in
a harmonic-oscillator (HO) basis in cylindrical coordinates
[84]. For calculations of ground states, bases without axial
deformation are used. In all cases the basis consists of 20 HO
shells and the spherical frequency ω0 of the HO basis is set
according to the empirical formula ω0 = 1.2 × 41/A1/3 MeV
[82] unless noted otherwise. HFB solutions are obtained it-
eratively using the kickoff mode of HFBTHO in which an
axial quadrupole deformation constraint is applied during at
most the first ten HFB iteration steps to guide the solution
towards the correct local minimum, then the constraint is lifted
[77,82].

F. Optimization of Skyrme and pairing parameters

ESkyrme and Epair contain in total 15 parameters Cuv
t , γ , and

V q
0 which need to be determined from fitting to data. Note

that Eχ
H and Eχ

F are free of adjustable parameters. Thus, the
number of optimization parameters is the same for functionals
constructed here with and without chiral terms. The volume
parameters Cρρ

t0 ,Cρρ
tD ,Cρτ

t , and γ can be related to properties
of infinite nuclear matter (INM). Expressing the exponent γ
in terms of INM parameters at saturation gives

γ =
{

− (K − Kfr ) − 9
(

Esat − Esat,fr + Pfr

ρc

)

+ h̄2

2m

[
4
(
M∗−1

s − M∗−1
s,fr

)
− 3

]
Cρ2/3

c + Aγ (uc)

}

/{

9
(

Esat − Esat,fr + Pfr

ρc

)

+ 3h̄2

2m

[
2
(
M∗−1

s − M∗−1
s,fr

)
− 3

]
Cρ2/3

c + Bγ (uc)

}

, (21)

where quantities indexed “fr” represent the contributions
from the finite-range Hartree terms to the INM parame-
ters (see Ref. [99]). P denotes the pressure of symmetric
matter at saturation density, C = (3/5)(3π2/2)2/3, and uc =
(3π2ρc/2)1/3/mπ . The expressions for Aγ (uc) and Bγ (uc) are
given in Appendix C of Ref. [73]. The equations for the other

TABLE I. Parameters optimized in this work and their bound
constraints.

x Lower bound Upper bound

ρc (fm−3) 0.15 0.17
Esat (MeV) −16.2 −15.8
K (MeV) 180 260
M∗−1

s 0.9 1.5
asym (MeV) 28 36
Lsym (MeV) 30 80
Cρ$ρ

0 −∞ ∞
Cρ$ρ

1 −∞ ∞
Cρ∇J

0 −∞ ∞
Cρ∇J

0 −∞ ∞
CJJ

0 −∞ ∞
CJJ

1 −∞ ∞
V n

0 −∞ ∞
V p

0 −∞ ∞

volume parameters can easily be obtained from the ones given
in Ref. [73] by adding the respective contributions from the
finite-range Hartree terms [99].

Proceeding in this way we express the volume parameters
via saturation density ρc, saturation energy Esat, incompress-
ibility of symmetric nuclear matter K , isoscalar effective mass
M∗

s , symmetry energy at saturation density asym, its slope
Lsym, and isovector effective mass M∗

v . As in previous works
[42,76,79,80] we do not optimize the isovector effective mass
but instead keep it fixed at its SLy4 value, M∗−1

v = 1.249,
which leaves 14 parameters to be optimized.

Using INM properties at saturation density as optimization
parameters instead of EDF volume parameters allows us to
impose physically motivated constraints on these parameters.
The bounds that we impose are not allowed to be violated
in our optimization procedure. We take the same bounds as
in Refs. [42,76,79,80] except for K and Lsym. For the incom-
pressibility K we extend the allowed range to [180, 260] MeV
based on the analysis of Ref. [100] using different forces from
chiral EFT, which obtained a range of [182, 262] MeV, and a
study assessing the nuclear matter properties of Skyrme EDFs,
which used [200, 260] MeV based on different experimental
and empirical results [101]. For the slope parameter Lsym we
use [30, 80] MeV based on the overlapping region of different
experimental and theoretical constraints; see Refs. [102,103].
Collectively we denote our set of optimization parameters as
x. The parameters and their ranges are summarized in Table I.

They are determined by minimizing a loss function, which
is given by a weighted sum of squared errors:

χ2(x) =
DT∑

i=1

ni∑

j=1

(
si, j (x) − di, j

wi

)2

, (22)

where si, j (x) are the EDF predictions and di, j the data. DT is
the number of different data types. In this work we consider
ground-state energies of spherical (Esph) and deformed (Edef)
nuclei, neutron ($n) and proton ($p) odd-even staggerings,
proton point radii (Rp), and fission isomer excitation energies
(E∗), therefore DT = 6. For every data type i we employ a
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TABLE II. Characteristics of the components of the loss func-
tion. ni is the number of data points for each data type i and wi is the
inverse weight. For the latter, all units are MeV except Rp which is in
fm.

i Esph Edef $n $p Rp E∗

ni 29 47 7 6 28 4
wi 1.95 0.227 0.0457 0.0703 0.0177 0.85

different inverse weight wi that represents the expected errors
in describing the different observables [98]. Rather than the
somewhat arbitrary values set in Ref. [76], we choose for the
weights the estimates determined from the Bayesian calibra-
tion of the UNEDF1 functional [104]; see Table II for the
numerical values. This choice is justified by the fact that the
data types contained in our fit data set are the same as for
UNEDF1. In addition, the form of the functionals (at least for
our reference EDF without contributions from chiral EFT) as
well as the employed optimization protocol are similar.

Figure 3 shows in detail which data types are considered
for which nuclei. The experimental data is similar to the data
used in Refs. [42,76]. However, we exclude single-particle
level splittings from the data set. These were introduced in
Ref. [42] together with removing the restriction of CJJ

0 =
CJJ

1 = 0 for the tensor part of UNEDF1 in an attempt to im-
prove the description of nuclear shell structure. The reported
standard deviations for the tensor coefficients were quite large
and the observed improvement of the shell structure relatively
small. Because the blocking calculations carried out to deter-
mine the single-particle structure are numerically expensive,
we therefore decide to remove the single-particle level split-
tings from the data set.

With those exceptions, we consider the same data types
for the same nuclei as in Refs. [42,76]. The experimental
binding energies—which determine Esph, Edef, $n, and $p—

FIG. 3. Experimental data used for optimization of EDF pa-
rameters. All even-even nuclei for which the ground-state binding
energies are given in the 2020 Atomic Mass Evaluation [105] (ex-
cluding evaluated masses) are depicted in gray. Nuclei included in the
fit protocol are shown with different red and blue symbols depending
on the considered data types.

are extracted from the 2020 Atomic Mass Evaluation (AME)
[105] and the charge radii from Ref. [106]; see Refs. [42,76]
for details. For 56Ni, which had not been measured yet, we
take the value determined in Ref. [107]. The conversion from
charge radius to proton point radius is based on the 2018
CODATA recommended value for the proton charge radius
rp = 0.8414 fm [108] and the 2022 Particle Data Group av-
erage for the neutron charge radius square r2

n = −0.1155 fm2

[109]. The fission isomer energies are taken from Ref. [110].
The EDF predictions si, j (x) are obtained for given values

of the parameters x at every optimization step by solving HFB
equations with the setup explained in Sec. II E. The value of
the quadrupole moment used to initialize the kickoff mode is
computed by assuming a ground-state deformation of β2 =
0.3 for deformed nuclei and a fission isomer deformation of
β2 = 0.6 [104]. In total, 81 HFB calculations are performed at
every optimization step: 77 for the ground states of the nuclei
in the data set, for which no axial basis deformation is used,
and 4 for the fission isomers, which are calculated with an
axial basis deformation parameter of β = 0.4.

We use the predicted average neutron (proton) HFB pairing
gap as a proxy for neutron (proton) odd-even staggering.
While this is an approximation [111], actually determining
odd-even mass differences would require calculating ground
states of odd nuclei for which additional EDF terms enter
due to broken time-reversal invariance and the determination
of odd ground states via blocking calculations is much more
involved than calculating ground states of even-even nuclei
[112].

To find the parameter set x for which χ2(x) is minimized
within the bound constraints discussed above we employ the
derivative-free optimization algorithm POUNDERS [113,114].
It solves the nonlinear least squares problem by constructing
a quadratic model for each term in the χ2. The resulting
quadratic model for the χ2 is assumed to be valid only within a
certain trust region. Minimizing the model in this region yields
a solution candidate point. Then new quadratic models are
constructed around this point and the trust region is updated.
In this way an iterative optimization procedure is obtained; see
Ref. [114] for details on the algorithm. POUNDERS needs sig-
nificantly fewer iteration steps to converge to a minimum than
a conventional Nelder-Mead optimization routine [79,113].

At every iteration step, the trust region is essentially a
hypersphere around the current candidate point (in a space
where the different optimization parameters are scaled as de-
scribed in Ref. [113]). The hypersphere’s radius shrinks when
getting closer to the minimum. Sometimes POUNDERS shrinks
this radius too quickly despite the current candidate point not
being sufficiently close to the optimum yet. In such scenarios,
restarting POUNDERS from the current candidate point helps
to accelerate the convergence and allows it to possibly jump
to another valley in the parameter landscape. Therefore, we
restart the optimization every 150 iteration steps and in do-
ing so set the trust region radius back to its initial value of
$0 = 0.1.

We use the parameter sets obtained at different orders in
the chiral expansion in Ref. [76] as starting points for the opti-
mization of the corresponding GUDE functionals constructed
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TABLE III. Parameters of the different GUDE variants obtained in this work. Values that are underlined correspond to cases where the
minimum was attained at a parameter bound. ρc is given in fm−3, Esat, K , asym, and Lsym are in MeV, the surface coefficients Cρ$ρ

t , Cρ∇J
t , and

CJJ
t are in MeV fm5, and the pairing strengths V q

0 are in MeV fm3. The last row gives the value of the loss function (22) at the minimum.

Class 0 Class 1 Class 2

no chiral LO NLO N2LO N2LO + 3N NLO$ NLO$ + 3N N2LO$ N2LO$ + 3N min. chiral

ρc 0.15463 0.15430 0.15423 0.15779 0.15749 0.15571 0.15615 0.15606 0.15681 0.15832
Esat −15.8 −15.8 −15.8 −15.8 −15.8 −15.8 −15.8 −15.8 −15.8 −15.830
K 260 260 260 222.2 215.2 240.8 230.9 236.0 222.4 223.6
M∗−1

s 0.9788 0.9579 0.9641 0.9048 0.9027 0.9 0.9 0.9 0.9057 0.9173
asym 29.95 30.98 30.99 28.07 28.45 28.43 28.63 28.37 28.60 28.58
Lsym 41.4 59.6 58.9 34.1 30 30 30 30 30 30
Cρ$ρ

0 −41.4 −37.5 −38.4 24.5 9.4 18.5 8.2 27.0 10.9 22.5
Cρ$ρ

1 −6.4 −25.0 −15.1 −83.2 −21.6 −12.9 −3.4 −17.3 −5.6 −38.8
Cρ∇J

0 −62.3 −72.9 −74.2 −82.6 −88.3 −65.5 −77.7 −65.3 −86.3 −61.4
Cρ∇J

1 11.0 18.1 15.5 −39.3 18.6 17.5 23.5 14.9 19.7 3.4
CJJ

0 −43.4 −75.1 −75.8 −53.4 −78.1 −100.4 −97.4 −103.3 −83.7 −38.8
CJJ

1 −30.1 −15.0 −12.3 12.3 1.3 −10.2 −8.0 −11.0 −2.6 −4.2
V n

0 −218.4 −219.9 −220.9 −207.2 −209.1 −205.8 −207.2 −206.5 −209.1 −206.5
V p

0 −259.9 −263.0 −263.2 −246.4 −255.5 −251.9 −253.7 −252.5 −255.3 −249.4
γ 0.467 0.546 0.541 0.358 0.320 0.432 0.385 0.418 0.352 0.363
χ 2 122.4 144.9 145.5 89.3 88.7 86.2 89.1 86.5 90.7 87.4

here. For the reference “no chiral” functional we start the
optimization from the UNEDF2 parameters [42]. For a few
EDFs we carry out the optimizations more than once employ-
ing also other Skyrme parametrizations as starting points (e.g.,
SLy4 [90]). We find that if those optimization runs converge,
they converge to the same solutions as the other optimiza-
tions. This gives us confidence that the parametrizations we
obtain constitute global optima (within the employed bound
constraints).

III. RESULTS

A. GUDE parametrizations

The parameter values obtained from the optimizations de-
scribed in Sec. II F are given in Table III. Parameters that
ended up at their bounds are underlined. We provide the EDF
parameters with larger precision in the Supplemental Material
[89], both in their explicit representation and equivalently in
terms of INM properties. We refer to the Skyrme-type GUDE
functional without any chiral terms as “no chiral”. The other
GUDE EDFs are labeled according to up to which order chiral
terms are included and whether they include interaction terms
with explicitly resolved intermediate $ excitations and 3N
forces. We categorize the EDFs according to their properties
discussed in the next paragraphs: we refer to the “no chiral”
functional as class 0, to the LO and next-to-leading order
(NLO) functionals collectively as class 1, and to the remaining
functionals as class 2. This latter class contains also a func-
tional labeled “min. chiral”. It is constructed with the idea of
adding as few terms as possible to the “no chiral” version
while still obtaining an EDF that behaves like a member
of class 2. Details of the construction of this functional are
discussed in Sec. III B. In Table III, the different classes are
indicated by vertical lines.

We start with a discussion of the INM parameters of the
different GUDE variants. The saturation energy Esat ends up
at its upper bound2 for almost all optimized functionals. This
also holds for the value of the incompressibility K for classes 0
and 1. For class 2 the incompressibility acquires lower values
inside the allowed parameter range. All other considered nu-
clear matter parameters also indicate a qualitative difference
between classes 0 and 1 on the one hand and class 2 on the
other hand: the variation of the INM parameters within these
groups is much smaller than the difference between them. The
main parameter difference between class 0 and class 1 lies in
an increased value of the slope parameter Lsym for the chiral
functionals. When going to the class 2 functionals, Lsym gets
significantly reduced and ends up at its lower bound for most
of the EDFs, with a correspondingly lower asym parameter.
Note that for some of the EDFs the inverse isoscalar effective
mass M∗−1

s attains its lower bound, too. While M∗−1
s = 0.9 is

relatively low compared to typical values [101], this value was
also obtained for UNEDF0 [79].

In Fig. 4 we show the energy per particle for pure neu-
tron matter and symmetric nuclear matter for four functionals
constructed in this work: one each from class 0 and 1 and
two from class 2. The differences between the EDFs are very
small up to about saturation density. This is not surprising
since this region is probed by finite nuclei and hence strongly
constrained by the fit to experimental data. The differences

2Note that for the N2LO + 3N (obtained value of Esat:
−15.801 MeV) and N2LO$ (−15.8001 MeV) EDFs the value of Esat

did not quite end up at the bound when the optimizations finished.
Given that these values are very close to the bounds we expect that
letting POUNDERS run longer would lead to parameter sets where
these parameters are right at the bound.
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FIG. 4. Energy per particle in infinite nuclear matter for selected
GUDE functionals constructed in this work. For each EDF, both pure
neutron matter and symmetric nuclear matter energies are shown.
The bound constraints on saturation density, saturation energy, and
symmetry energy employed in the optimization of the EDFs are also
depicted. For comparison, we show the 1σ uncertainty bands from
a calculation employing a chiral Hamiltonian by Drischler et al. for
ρ0 ! 0.05 fm−3 [102].

between the different classes become much more pronounced
for ρ0 ! ρc, in particular for neutron matter. This region is
not probed by finite nuclei, which is also why the deviation
from the additionally given ab initio result observed for class
2 in this density regime for neutron matter is not surprising.
The plotted uncertainty bands have been obtained by Drischler
et al. [102] based on the MBPT calculations from Ref. [115]
with a chiral NN + 3N Hamiltonian at N3LO with momentum
cutoff 500 MeV [116] and 3N forces fit to saturation. The
difference of the EDFs from the ab initio results that is visible
for symmetric matter is a consequence of the saturation energy
bounds employed in this work, which are not obeyed by the
ab initio results. Note that the curves for the two class 2 rep-
resentatives, the N2LO$ + 3N and the “min. chiral” variant,
are very close to each other even for ρ0 > ρc. This holds
analogously for other EDFs from the same class.

Overall, and in particular within the classes as defined
above, the description of INM at saturation density and below
shows a large consistency between the different function-
als. This may be considered surprising given that the chiral
contributions are quite different in size depending on the chi-
ral order. However, it indicates that the optimization of the
Skyrme and pairing coefficients to data can, to a large degree,
wash out the effect of the additional terms. We return to this
issue in Sec. IV.

In Table III we also provide the value of the γ exponent
for the different EDFs. Compared to the “no chiral” variant
it is larger for class 1, but smaller for class 2, indicating that
the density-dependent terms absorb different physics for the
two classes. Along the same lines we note that at every order

γ is smaller by about 0.05 for functionals including chiral 3N
contributions.

For all GUDE variants the generally observed hierarchy of
pairing strengths |V p

0 | > |V n
0 | [97,117] holds. The somewhat

weaker strengths obtained for the class 2 EDFs when compar-
ing to the other classes is in agreement with the lower M∗−1

s
values for class 2 [20].

Note that a direct comparison of the surface parameters of
the different GUDE variants makes little sense because the
chiral contributions to the corresponding terms depend on the
functional and are not included in the Cuv

t values given in
Table III.

Based on starting optimization runs of the same GUDE
variant from different initial points [118] we find that the
parameters of the isovector part of the EDF are relatively
ill-constrained with our optimization protocol. This is in
agreement with observations made in other nuclear EDF
optimizations [42,43,79,99,119]. To better determine the
isovector parameters the optimization data set has to be aug-
mented; see also Sec. V. Also the CJJ

0 parameter seems poorly
constrained. To quantify these statements a rigorous statistical
analysis should be carried out in future work.

The last row of Table III contains the value of the loss func-
tion χ2 at the optimum. For the “no chiral” EDF it is around
120. Adding the chiral terms at LO (and NLO) according to
the construction described in Sec. II worsens the χ2 at the
minimum: it attains values around 145. This stems from a
slightly worse description of ground-state and fission isomer
energies.

However, the additional inclusion of chiral terms at N2LO
or of the $ contributions at NLO reduces the χ2 at the
minimum to about 90. In particular experimental energies of
spherical nuclei in the fitting set are better described by the
class 2 functionals. The root-mean-square deviation (RMSD)
for those is 2.5 MeV for the “no chiral” EDF, but only
1.6 MeV for the class 2 GUDE variants. The other data types
in the χ2 are typically either slightly improved or are equally
well described when comparing to the “no chiral” functional.

We note that the N2LO EDF constitutes a slight deviation
to these general trends (which can also been seen from some
of the parameter values listed in Table III): it describes the
radii in the χ2 worse than all other EDFs but proton odd-even
staggerings are much improved.

B. Investigation of GUDE class 2
and construction of “min. chiral” functional

As discussed in the previous section and further in
Sec. III C we observe an improvement over the “no chiral”
functional when going to EDFs that include chiral terms en-
tering at N2LO (or NLO when including interactions with
explicit $ excitations). It turns out that only a small subset of
the terms that contribute at these orders is actually necessary
to achieve the improvement.

First, the inclusion of chiral isovector contributions is not
required. This is hardly surprising given that the Skyrme part
of the EDFs contains six parameters contributing solely to the
isovector part, which is to be compared to seven parameters
for the isoscalar terms, but the isoscalar energy contributions
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TABLE IV. Exact scalar Hartree energies and differences of
scalar Hartree energies calculated with Taylor expansions of the den-
sities up to a given order [cf. Eq. (12)] and the corresponding exact
energies (all in MeV). The densities are generated from calculations
with the SLy4 EDF. Results are given for the chiral pion exchanges
considered here at N2LO and for the finite-range parts of the Gogny
D1S functional [121].

Differences at order

Interaction Nucleus Exact energy 0 2 4

Chiral N2LO 48Ca −759 −118 22 −9
208Pb −3937 −290 40 −15

Gogny D1S 48Ca −9827 −433 27 −4
208Pb −47695 −1028 49 −7

are at least an order of magnitude larger than the isovector
ones [120]. The similar number of parameters for the two
EDF parts suggests one may expect a similar relative preci-
sion for the corresponding energy contributions. The resulting
absolute deviations would then be much bigger for isoscalar
energies. Thus, one can expect omitting chiral isovector con-
tributions does not significantly impact the description of bulk
properties of finite nuclei (after refitting the EDF parameters).
Of course this is amplified by the inadequacy of the optimiza-
tion data set to accurately fix the EDF isovector parameters.

Performing an optimization of an EDF as described by
Eq. (1) but taking into account from the chiral side only
Fock contributions up to N2LO yields a class-1-like functional
which suggests that the switch to class 2 is due to the Hartree
terms. Indeed N2LO (NLO with $s) is the first order which
for even-even systems has isoscalar pion-exchange Hartree
contributions. These are by far the largest chiral contributions
to the energy. In Table IV we show the expectation values of
the exact Hartree energy from pion-exchange contributions
up to N2LO in the chiral expansion. They are obtained with
densities generated from calculations performed with the code
HOSPHE [91] employing the SLy4 EDF [90]. Additionally, we
provide the difference to these exact values for energies that
we obtain when Taylor expanding one density entering the
Hartree energy; see Eq. (12). For comparison we also provide
the analogous numbers obtained with the finite-range parts of
the Gogny EDF in the D1S parametrization; see Ref. [120] for
a more extensive study.

One can see that the energies obtained with the Taylor
series converge relatively slowly towards the exact values. In
particular when going to second order in the Taylor expansion
the approximated value is still off by about 40 MeV in 208Pb.
The second-order expression for the energy has a Skyrme-like
structure (density bilinears consisting of up to second-order
densities multiplied with constant prefactors). Therefore, one
may expect that a Skyrme EDF cannot fully account for the
chiral Hartree contributions at N2LO if they are left out (as is
the case for classes 0 and 1). It is thus conceivable that class-2
GUDE variants behave differently from classes 0 and 1.3

3Note that the argument put forward above is not a direct proof
because the fitting of the EDF parameters may shuffle around

FIG. 5. Contributions to gρρ
0 arising at different chiral orders.

We show contributions at LO, NLO, and N2LO calculated from the
interaction specified in Sec. II A using the PSA-DME. In addition,
we show the LO contribution when using the Slater approximation
instead of the PSA-DME.

Carrying out the optimization of an EDF where in the
chiral part only the isoscalar Hartree contributions entering at
N2LO are included leads to a functional with χ2 ≈ 112 at the
minimum, which is clearly larger than the values observed for
class 2. For this EDF the pairing strengths take a nonphysical
value V q

0 ≈ 40 MeV fm3. These observations suggest another
term is additionally needed to reproduce the class-2 behavior.

In Fig. 5 we show the contributions to the gρρ
0 coefficient

arising at different chiral orders, but the following discussion
applies also similarly to other g coefficients. The total gρρ

0
coefficient at a given order is the sum of all depicted con-
tributions $gρρ

0 up to that order. The LO contribution shows
a strong density dependence with its value at ρ0 = 0 being
about five times as large as the value at ρ0 = ρc. The contri-
butions at NLO and N2LO are much smaller and their density
dependence is much weaker, which is why their effects can be
easily captured by simply adjusting Skyrme coefficients. In
principle even the strongly density-dependent LO coefficient
could be quite well mimicked by a Skyrme EDF due the
presence of the Cρρ

tD ρ
γ
0 term, but, since this term has to capture

several different types of unresolved physics [122], one may
expect that adding the LO gρρ

0 contribution explicitly still
has a relevant effect. Optimizing an EDF with both isoscalar
chiral long-range Hartree contributions at N2LO and Fock
contributions at LO yields a functional belonging to class 2
as desired.

We showed in previous work [92] that Fock energies from
a Yukawa interaction can be well approximated by using the
Slater approximation instead of the more involved PSA-DME
applied in this work so far. However, this comes at the price
of a worse local reproduction of the Yukawa Fock energy
density essentially everywhere in the nucleus. Using the Slater
approximation instead of the PSA-DME reduces the amount

contributions among more terms than the ones technically entering
the Taylor-expanded energy.
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TABLE V. Deviations of ground-state energies, two-neutron and two-proton separation energies (all in MeV), and charge radii (in fm)
calculated with the different GUDE variants and the corresponding experimental values. The upper half of the table contains root-mean-square
deviations, the lower half lists mean deviations. The values are calculated from all even-even nuclei with Z ! 8 included in the experimental
data sets; see text for details on those.

Class 0 Class 1 Class 2

no chiral LO NLO N2LO N2LO + 3N NLO$ NLO$ + 3N N2LO$ N2LO$ + 3N min. chiral

RMSD E 2.11 2.09 2.13 1.56 1.41 1.47 1.50 1.42 1.53 1.45
S2n 0.86 0.85 0.89 0.74 0.73 0.73 0.75 0.73 0.77 0.75
S2p 0.74 0.74 0.77 0.61 0.61 0.60 0.62 0.59 0.64 0.63
rch 0.024 0.024 0.025 0.024 0.023 0.022 0.022 0.023 0.023 0.022

Mean dev. E 0.630 0.532 0.560 0.324 0.302 0.369 0.393 0.296 0.387 0.293
S2n 0.089 0.093 0.094 −0.060 −0.015 0.001 0.010 −0.006 −0.003 −0.015
S2p −0.027 −0.036 −0.044 0.153 0.082 0.064 0.053 0.073 0.069 0.081
rch −0.0092 −0.0093 −0.0090 −0.0017 0.0003 −0.0018 −0.0025 −0.0006 −0.0014 −0.0010

of nonvanishing isoscalar NN g coefficient functions from five
to one. We show the nonzero gρρ

0 coefficient at LO in Fig. 5.
We find that the resulting EDFs differ by similar amounts as
other functionals in class 2 differ from each other. Therefore
it seems safe to use the simpler Slater approximation in the
present EDF construction, at least for bulk properties.

We refer to the EDF constructed according to Eq. (1) in-
cluding for Eχ

H only the isoscalar NN pion-exchange Hartree
contribution entering at N2LO and as Eχ

F the isoscalar NN
pion-exchange Fock contribution at LO (described by the
Slater approximation) as the “min. chiral” GUDE variant. The
parameters obtained when optimizing this functional are given
in Table III and with higher precision in the Supplemental
Material [89], where we also provide the parameters used in
the interpolations for the chiral Hartree and Fock contributions
according to Eqs. (7) and (17). The INM parameters and
the χ2 value at the optimum are in the ranges of the other
class-2 functionals (see Table III), indicating that the “min.
chiral” variant indeed also belongs to this class. This explic-
itly demonstrates that the two identified terms are enough to
achieve the improvement over classes 0 and 1.

C. Global comparison to experiment

We now investigate the performance of the different func-
tional variants in the GUDE family obtained in Sec. III A by
calculating the ground states of even-even nuclei included in
the 2020 AME [105]. We include all 663 nuclei with actual
measured masses, leaving out those for which only evaluated
masses are available. Every nucleus is calculated five times
with HFBTHO in kickoff mode setting the initial deformation
constraint to β = −0.2,−0.1, 0, 0.1, 0.2 . This is done so that
oblate deformed, spherical, and prolate deformed solutions
are considered as possible ground states for every nucleus.
The HFB calculations are carried out until they are converged
(typically within at most about 100 HFB iteration steps) or
until the amount of unconverged calculations for a given func-
tional does not get further reduced for at least 800 HFB steps.
For most GUDE variants only about a handful of the 3315
calculations end up unconverged at the end of this procedure.
The N2LO EDF is the only exception from this rule: even after
more than 3000 HFB steps, 111 calculations are still uncon-

verged. Note, however, that only four of those constitute the
calculation with lowest binding energy for the corresponding
nucleus.

For every nucleus, we pick among the converged calcula-
tions the one with the lowest energy as a first ground-state
candidate and apply on it two filters to exclude unphysical so-
lutions. Whenever a filter is triggered, the calculation with the
next-lowest energy for the same nucleus is considered instead.
First we do not consider solutions with E/A < −11 MeV.
This filter turns out to be triggered only a few times by
calculations with EDFs that include interactions with explicit
$ isobars in the chiral terms. Second we apply a filter to
remove solutions with unphysically large deformations. This
is done by applying the 1.5 interquartile range rule, which is a
simple measure to detect outliers of a distribution, on the val-
ues of the deformation parameter β2 of all remaining ground
state candidates. The β2 parameter is much less mass-number
dependent than the axial quadrupole moment of the nucleus
Q20 and is related to it according to

β2 =
√

π

5
Q20/

(
AR2

m

)
(23)

with the root-mean-square matter point radius Rm. The defor-
mation filter is in practice triggered at most for two nuclei per
EDF.

We compare the resulting ground-state energies against
the values extracted from the 2020 AME. Table V contains
the corresponding root-mean-square and mean deviations ob-
tained for nuclei with Z ! 8. We also give the deviations of
the two-neutron (S2n) and two-proton (S2p) separation energies
obtained from the same data set, and of the charge radii from
Ref. [106]. GUDE variants of the same class behave very
similar for all these quantities with the only exception be-
ing somewhat larger mean deviations observed for separation
energies for the N2LO functional compared to other class-2
EDFs.

While classes 0 and 1 perform similarly, an improvement is
observed for all observables when going to class 2. In partic-
ular, the ground-state energy RMSD is significantly reduced
by roughly 30% from 2.1 MeV for classes 0 and 1 to about
1.5 MeV for the various class-2 EDFs. The mean deviation
〈Etheo − Eexp〉 is almost halved down to 0.3 MeV, indicating
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FIG. 6. Distributions of ground-state energy differences between
calculated and experimental results. They are shown for the “no
chiral” and “min. chiral” GUDE functionals in bins with a width of
1 MeV each. Note that the last bin contains also values with an
energy difference larger than 10.5 MeV.

that the energies are less biased towards underbinding for
class 2. This can also be seen in Fig. 6,4 which shows the
histogram of the quantity Etheo − Eexp. Calculations which
produce extremely underbound nuclei (those at the very right
of the distribution) occur much less often for the class-2 “min.
chiral” functional than for the reference “no chiral” EDF.
Such cases correspond mostly to very light nuclei. For the

4Note that this and following figures contain also nuclei with Z <

8, unlike the values provided in Table V.

class-2 variants almost half of all nuclei are described with
a mass error of less than 0.5 MeV. Note that while the binding
energies included in the χ2 are described better by class 0 than
by class 1, the performance on all even-even nuclei binding
energies is very similar for these two classes.

In the upper row of Fig. 7 we show ground-state energy
residuals for four GUDE variants. One can clearly see that
the class-2 EDFs describe energies around the N = 82 and
N = 126 shell closures much better than the class-0 and -1
variants. We note that, due to the parameter optimization in-
volved in the construction of every functional, it is not clear if
the additional chiral terms entering the class-2 functionals are
actually directly improving the description of (near-)closed-
shell nuclei or if they instead improve the open shells and
indirectly allow the parameter optimization to yield a better
reproduction of closed shells. In addition, the observed under-
binding for light nuclei is reduced for the class-2 variants.

For both two-neutron and two-proton separation energies,
class-2 EDFs give a small improvement over classes 0 and
1: the RMSD values are reduced by about 12%. In addition,
the bias on S2n values is almost completely gone while it is
increased for S2p.

The description of charge radii is least affected by the
additional chiral terms added in class 2. This can also be seen
in the lower row of panels of Fig. 7. Charge radii are only
slightly better described for N ≈ 40 to 100 and their mean
deviation is slightly closer to zero for class 2.

D. Shell structure and deformation properties

To investigate the quality of the GUDE family with respect
to nuclear shell structure, we compute single-particle levels
using blocking calculations; see Refs. [80,112] for details on

FIG. 7. Differences of ground-state energies (upper panels) and charge radii (lower panels) for even-even nuclei between values obtained
with selected GUDE variants and experiment. See text for details on the experimental data.
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FIG. 8. Single-particle spectrum for neutrons in 208Pb for a se-
lection of EDFs.

the procedure. Using blocking calculations at the HFB level
is both logically consistent with the construction of the func-
tionals at the HFB level and helps with reducing systematic
errors when comparing with experiment [80]. Calculations
use the same setting for the HO basis as before, namely
with 20 full, spherical shells. In this context one should be
reminded that single-particle energies are not observables
but extracted in a model-dependent way from experiment
[123,124]. Here we compare to the values given in Ref. [125].
Furthermore, it is well known that the single-particle shell
structure depends strongly on beyond-mean-field effects such
as particle-vibration couplings [126–129]. As a consequence,
blocking calculations should not be expected to perfectly
match “experimental” single-particle data in closed shell nu-
clei. They are simply meant as a validation check to guarantee
that basic features of the nuclear shell structure are properly
reproduced.

As an illustrative example, we show in Fig. 8 the obtained
neutron single-particle spectra of 208Pb for selected GUDE
EDFs representative of the different classes. One can make
the following general observations. First, the single-particle
levels turn out to be largely insensitive to the GUDE variant.
Second, the obtained shell gaps in 208Pb are in good agreement
with the ones extracted from experiment and a little better
reproduced than for the UNEDF1 functional. Third, the level
ordering of the occupied neutron orbitals is also in slightly
better agreement with experiment. These qualitative conclu-
sions apply to other doubly closed shell nuclei and suggest
a decent reproduction of the shell structure by the GUDE
functionals.

Next, we test deformation properties of the EDFs on the
standard fission benchmark case of 240Pu. The HFB calcula-
tions are carried out in a deformed HO basis with 30 shells
included and with the HO frequency and basis deformation
optimized for that nucleus; see Ref. [130] for details. A con-
straint on the octupole moment is imposed during the first ten
iterations to ensure the fission goes through the most likely
pathway. Calculations assume axial symmetry.

FIG. 9. Deformation energy of 240Pu as a function of the axial
quadrupole moment. Calculations assume axial symmetry.

In Fig. 9 we show the deformation energy, i.e., the energy
difference between the configuration with given deformation
and the ground state, as a function of the quadrupole moment
for selected GUDE functionals as well as for UNEDF1 for
comparison. Since including triaxiality typically reduces the
height of the first fission barrier by about 2 MeV [81,130],
the overall agreement with values extracted from experiment
[131] is in fact very good for all considered GUDE variants.
The energy of the fission isomer E∗ is predicted too low by
about 1 MeV compared to the value used in the optimization
set (2.8 MeV) [110]. Seeing that the results for UNEDF1,
UNEDF2, and the DME EDFs of Ref. [76] agree very well
with this experimental value, this is probably a consequence
of the reduced weight of fission isomer energies in the present
optimization protocol. Note that a newer experimental esti-
mate for the fission isomer energy of 2.25 MeV [132] is closer
to the GUDE values.

For values of Q20 larger than the value at the fission isomer
state a clear difference between results obtained for classes
0 and 1 and class 2 emerge as already observed for other
quantities in this paper. We may speculate that such differ-
ences are the result of a competition between bulk and shell
effects. Table III and Fig. 10 show that the symmetry energy
asym and the surface coupling function Wsurf (defined below),
respectively, differ substantially for the class-0 and -1 and
the class-2 parametrizations. For classes 0 and 1, the value
of the symmetry energy is asym ≈ 30 MeV while it is asym ≈
28.5 MeV for class-2 EDFs. The surface coupling function,
which contains the full contribution to the isoscalar surface
energy (Skyrme plus chiral terms), is given by

Wsurf(ρ0) = W (∇ρ)2

0 (ρ0) + W ρ$ρ

0,
∫ (ρ0), (24)

where

W ρ$ρ

0,
∫ (ρ0) = −W ρ$ρ

0 (ρ0) −
∂W ρ$ρ

0 (ρ0)
∂ρ0

ρ0 (25)
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FIG. 10. Wsurf for different GUDE variants.

arises from integrating by parts:
∫

dR W ρ$ρ
0 (ρ0)ρ0$ρ0 =

∫
dR W ρ$ρ

0,
∫ (ρ0)∇ρ0 · ∇ρ0.

(26)

Wsurf is for intermediate densities much stronger for class-2
functionals than for classes 0 and 1. Together, asym and Wsurf
impact the surface and surface-symmetry contributions to the
bulk energy, which are known to be key drivers of deformation
properties [133,134]. At the same time, Fig. 8 also shows
a small but visible difference in the neutron shell structure
between class 2 and the other GUDE variants functionals, with
the N = 126 shell gap being a little smaller for class 2. Such
differences will be amplified as deformation increases and this
could play a role in the deformation energy.

IV. ANALYSIS OF CHIRAL CONTRIBUTIONS

In this section we analyze why the only significant effects
we obtain from including chiral interactions explicitly into the
GUDE functionals occur for the switch from class 1 to class
2, i.e., at N2LO (NLO when including $ isobars explicitly) in
the chiral expansion.

As stated in Sec. III, only little change over the reference
“no chiral” EDF is seen when going to LO in the present
construction; see especially Table V. This is not surprising
since one-pion exchange is known to largely average out for
bulk properties [73,135] because at this order pions enter at
the mean-field level only through Fock contributions, which
are small. For nonbulk quantities such as behaviors along
isotopic chains, small differences between the “no chiral” and
LO EDFs are visible; see for instance the oxygen chain shown
in Fig. 11.

At NLO pions enter at the HF level only through Fock and
isovector Hartree contributions. Since these are very small
and can be captured well by Skyrme terms due to the weak
density dependence of the resulting g coefficients (see, e.g.,
Fig. 5), the almost identical performance of the LO and NLO
functionals is to be expected.

FIG. 11. Ground-state energies of oxygen isotopes for selected
GUDE variants. We also show experimental and evaluated results as
provided in Ref. [105].

When going to N2LO a significant improvement is
achieved, in particular for the global description of ground-
state energies. The detailed analysis of Sec. III B indicates
that the interplay of two contributions is responsible for this.
The attractive pion Hartree contribution at N2LO is large and
apparently cannot be completely mimicked by Skyrme terms
only. Its addition together with LO Fock terms leads to the
improvement.

While the incompressibility is at its upper bound for classes
0 and 1, it is much smaller for the N2LO EDF (and the other
class-2 ones); see Table III. This is probably a consequence
of the strongly attractive central isoscalar two-pion exchange
entering at N2LO in the chiral expansion [136].

This observation raises the question whether the additional
chiral terms in class 2 lead to a better description of experi-
ment by themselves or whether the improvement is realized
indirectly by moving the unbounded optimum “closer” to
the bound constraint region and thereby reducing the achiev-
able χ2 values within this region. To address this issue one
could perform an unconstrained optimization for the different
GUDE functionals. Preliminary unconstrained optimizations
suggest that the latter mechanism is the dominant one because
the difference of the obtained χ2 values largely seems to
vanish for the unbounded optima. Note, however, that these
conclusions are preliminary, since for some of the EDFs
competing minima seem to occur during the unbounded op-
timizations and sometimes the unconstrained optima seem
to correspond to situations where some INM parameters at-
tain values far away from physically expected regions (e.g.,
Lsym ≈ 5 MeV). We leave the resolution of these issues for
future work.

Similar improvement as for the N2LO EDF is observed for
the NLO$ EDF. This reflects the fact that in $-full chiral
EFT the dominant two-pion-exchange contribution is pro-
moted from N2LO to NLO [85]. At N2LO$ some additional
attraction is brought in. For the interactions used here the
additional contributions (which in $-less chiral EFT would
occur in part at even higher orders) are similar in size as
the difference between the chiral contributions at N2LO and
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FIG. 12. W ρρ
0 for different GUDE variants.

NLO$. The GUDE functionals are generally not sensitive to
such differences on a qualitative level; see Table V.

All statements made above dealt with chiral NN interac-
tions only. The inclusion of 3N forces does not seem to have a
significant effect on the description of nuclei and INM at any
considered order; see Sec. III. In ab initio calculations, 3N
forces are important for a quantitative reproduction of nuclei,
and are key for shell structure and for the limits of bound
nuclei [137,138]. For instance, for the oxygen isotopes, the
additional repulsion from 3N forces moves the location of
the predicted neutron drip line in agreement with experiment
[7,139–142]. In Fig. 11 we show the ground-state energies of
oxygen isotopes as predicted by a few GUDE functionals.
Comparing the N2LO$ + 3N results with the other EDFs
shows that including 3N forces does not move the location of
the neutron drip line for the EDFs. Similar conclusions hold
for the other GUDE variants with 3N forces. In agreement
with other EDF calculations [54], all EDFs constructed in
this work predict 28O to be the heaviest oxygen isotope stable
against emitting two neutrons, while experimentally it is 24O.

The crucial difference between the negligible role of 3N
forces observed here and their relevant effects in ab initio
calculations lies in the fact that the EDFs constructed here
yield good saturation properties also without the presence
of chiral 3N forces—see Table III and Fig. 4—while they
are absolutely necessary to achieve reasonable saturation in
calculations of INM employing chiral interactions [143,144].
In such ab initio calculations, the role of 3N forces is already
visible at the HF level, so one could have expected an impact
also here. The fact that this is not the case suggests the fitted
EDF terms can compensate missing 3N pion exchanges in the
density regime relevant for finite nuclei.

For the terms which depend only on ρ0 this is illustrated
in Fig. 12, which shows W ρρ

0 for different GUDE functionals.
The curves for N2LO with and without 3N forces are basically
on top of each other, signaling that for the EDF without 3N
pion exchanges the Skyrme part of the EDF mostly takes over
the role of the 3N terms (see also the different γ values in
Table III). This observation correlates well with the original

reason to introduce a density-dependent coefficient into nu-
clear EDFs, namely to replace a genuine 3N interaction [145].

The observation that fitting the EDF parameters can almost
fully compensate missing 3N pion exchanges is in appar-
ent contradiction with the wrong drip line position observed
for the oxygen chain. In other words the question is, why
does the GUDE family predict the wrong drip line location
even though the functionals either explicitly contain or are
essentially able to effectively encapsulate chiral 3N physics?
One simple explanation is the lack of sufficiently neutron-rich
nuclei in the experimental data set used in the optimization.
Since chiral 3N contributions grow with increasing neutron
number [139,146], the description of nuclei closer to stabil-
ity might not be significantly altered but drip lines might
be much improved when optimizing an EDF with chiral
3N contributions using an experimental data set containing
more asymmetric nuclei. Another reason is the importance
of beyond-mean-field effects that are known to significantly
impact the nuclear structure in light nuclei [147,148].

As alluded to above, the existence of strict bounds that we
impose on some EDF parameters during their optimization
somewhat complicates the analysis of the effect of different
chiral contributions. Some conclusions drawn in the present
section might thus not hold in other optimization settings.

V. CONCLUSIONS AND OUTLOOK

In this paper, we constructed semiphenomenological
EDFs, dubbed GUDE, consisting of pion exchanges taken
from chiral EFT at different orders and a phenomenological
Skyrme part. The long-range pion-exchange interactions are
included at the Hartree-Fock level (using a DME for the Fock
contributions) without adjustment and thereby do not change
the number of free EDF parameters. The GUDE functionals
with chiral terms perform significantly better than a reference
Skryme functional without chiral terms constructed within
the same protocol, especially in terms of accurately describ-
ing ground-state energies. These improvements can be traced
back to the combination of two terms: Fock contributions
from one-pion exchange at leading order in the chiral ex-
pansion and Hartree contributions from two-pion exchange
at N2LO. This is demonstrated with the “min. chiral” variant
of the GUDE EDFs which contains only those two terms in
addition to the phenomenological part and achieves similar
improvements as observed for the other class-2 GUDE func-
tionals, which contain additional terms stemming from pion
exchanges.

Conversely, adding only pion-exchange terms at LO or
NLO does not give any improvement. While it might seem
like a contradiction to the chiral EFT power counting—
according to which the importance of additional terms is
reduced with every higher order included—it may simply
result from the fact that we include pion exchanges only at
the HF level, i.e., beyond-mean-field effects from pions are
not explicitly included and the structure of the contact inter-
actions present in the EDFs does not change with increasing
order, unlike in chiral EFT. Along similar lines, including
long-range 3N forces does not yield significant improvement
because the optimization procedure of the density-dependent
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contact terms in the traditional part of our EDFs allows for the
approximate capture of their effects.

The order-by-order systematics of the GUDE functionals
shows much less variability and surprising behavior compared
to what was observed in Ref. [76], where functionals had
been constructed following the same strategy as used here.
In particular, we consider it promising that the inclusion of
chiral long-range 3N forces does not lead to a worsening of
the EDFs, unlike before. We attribute this to the different
improvements, bug fixes, and other changes established in the
present work. The analysis carried out in Sec. IV mostly ex-
plains the obtained order-by-order behavior. In some regards
further insight is still needed. For instance, the detailed mech-
anism how the improvement is realized at N2LO (and why
some LO terms are additionally needed which on their own do
not provide improvement) is still unclear. We believe that in-
sight might be gained from performing optimizations without
imposing bound constraints on INM properties. It would also
be of interest to investigate if adding pion-exchange terms, in
particular those included in the “min. chiral” variant, to other
functionals, of Skyrme or other type, gives similar improve-
ment as observed here. We have also left the study of the
dependence of the EDFs on the chiral interactions including
their regulators for future work.

Going beyond NLO in the present construction does not
only improve the description of finite nuclei, it also con-
siderably changes properties of INM as shown in Table III.
The incompressibility K is significantly reduced and isovector
parameters also change strongly. The decrease of the slope
parameter Lsym is particularly strong, with it typically ending
up at our optimization protocol’s lower bound of 30 MeV.

However, in current EDFs isovector terms are generally
poorly constrained [43,149]; the present work is no exception.
This is not of significant consequence when comparing to bulk
properties of experimentally accessible nuclei as done here,
but limits the predictive power for applications to extreme
neutron-rich conditions in astrophysics. This is because the
size of isovector contributions grows significantly when going
to very neutron-rich systems. Including experimental data on
neutron skins or dipole polarizabilities [149–151] in the opti-
mization the EDF parameters, possibly combined with fitting
to ab initio results for neutron drops [152–155], is expected to
reduce the uncertainties on the isovector terms.

Extending the optimization data set could also be beneficial
in other ways. Examples are the inclusion of ground-state
information for nuclei close to the neutron drip line to better
constrain isovector terms and to study the effect of chiral 3N
forces, and the explicit inclusion of separation energies, which
could help with their description and would therefore have
significant impact on nucleosynthesis yields from r-process
calculations [37,38,40]. All GUDE variants underbind nuclei
on average. This might be remedied by increasing the amount
of data from open-shell nuclei in the fit or by adjusting the
data weights in the optimization.

For practical applications, correlated uncertainties (or
better, distributions) for the EDF parameters should be deter-
mined. They could be estimated using Bayesian inference; see
Refs. [43,104,156] for example applications to EDFs. Such
a scheme could also be extended to incorporate expectations

for INM parameters via prior distributions in the optimization
instead of imposing them as hard parameter bounds as done
here.

The GUDE family may be plagued be self-interaction is-
sues [157]. For the chiral contributions this is because Fock
contributions are included via a DME but the Hartree contri-
butions are included quasiexactly by approximating the chiral
potentials as sums of Gaussians. However, this could be reme-
died by also treating the Fock terms (at the same chiral order)
quasiexactly, which does not lead to significant computational
overhead. In this work, we used the DME because this simpli-
fies the inclusion of 3N forces in EDF frameworks. However,
their inclusion did not lead to significant improvement and
they could thus be left out (like in the N2LO GUDE version).
Treating self-pairing effects [157], that also occur for con-
ventional functional parametrizations, would require larger
adjustments of the EDF structure.

Our work shows that the explicit inclusion of long-range
pion-exchange interactions from chiral EFT at the HF level
into a Skyrme EDF improves the description of finite nuclei.
This suggests that such terms will be relevant when generating
an EDF completely from first principles. It might be neces-
sary to account for effects of different types of correlations
explicitly to create such an EDF. Collective correlations may
be expected to be captured by going beyond the mean-field
description. However, different instabilities and pathologies
occur when EDFs not derived from actual Hamiltonians are
used in those frameworks [45]. Therefore, functionals of the
GUDE form could not be used directly. Partially, these issues
would be addressed by incorporating the pion exchanges con-
sistently quasiexactly as discussed above. Including effects
from short-distance correlations from resummed ladder dia-
grams as described by Brueckner-Hartree-Fock theory should
be simpler: in Ref. [71] density-dependent Skyrme terms
generated from a counterterm expansion capturing such cor-
relations were computed. A next step towards ab initio EDFs
could therefore be the inclusion of such terms.
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