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A R T I C L E I N F O A B S T R A C T
Editor: A. Schwenk Nucleon momentum distributions calculated with a common one-body operator vary with the resolution scale 

(and scheme) of the Hamiltonian used. For high-resolution potentials such as Argonne !18 (AV18) there is a high-
momentum tail, reflecting short-range correlations in the nuclear wave function, which is reduced or absent for 
softer, lower-resolution interactions. We explore if the similarity renormalization group (SRG) can be used to 
quantitatively reproduce the high-resolution distributions from variational Monte Carlo at all momenta using 
SRG-evolved operators and empirically fit single-particle orbitals rather than a full RG evolution of many-body 
wave functions. The goal of this approach is to enable calculations of high-resolution distributions for a wider 
range of nuclei as well as for other interactions, and provides connections to phenomenological analyses of 
experiments.

1. Introduction

Nuclear experiments often seek to isolate process-independent quan-
tities, which are expressed theoretically as matrix elements of well-
defined operators. For some kinematic regimes these quantities are 
quark and gluon parton distributions; the analogs for low-energy nu-
clear physics include nucleon momentum distributions. For both we 
need robust factorization of reaction and structure in the analysis. This 
separation induces a scale (and scheme) dependence to the distributions 
but quantities at different scales are naturally related using renormaliza-
tion group (RG) transformations [1]. In this paper we use the similarity 
RG (or SRG) [2–5] to compare single-nucleon momentum distributions 
calculated at high resolution, which entails matrix elements of a one-
body operator in many-body wave functions that include short-range 
correlations (SRCs), to distributions using SRG-evolved operators eval-
uated using simple wave functions appropriately matched. Such an 
approach would enable comparisons between results from different nu-
clear Hamiltonians and from phenomenogical analyses of experiments, 

* Corresponding author.
E-mail addresses: atropiano@anl.gov (A.J. Tropiano), bogner@frib.msu.edu (S.K. Bogner), furnstahl.1@osu.edu (R.J. Furnstahl), 

hisham.3@buckeyemail.osu.edu (M.A. Hisham), lovato@alcf.anl.gov (A. Lovato), wiringa@anl.gov (R.B. Wiringa).

and extends the range of nuclei for which high-resolution momentum 
distributions can be calculated.

A high-resolution Hamiltonian is one that couples momentum modes 
well above the Fermi momentum into low-energy states, in particular 
inducing SRCs in many-body wave functions. A prototypical example is 
the Argonne !18 (AV18) nucleon-nucleon (NN) interaction [6], which 
when supplemented with appropriate three-body forces [7,8], has a 
long history of phenomenological successes [9,10]. In conjunction with 
the generalized contact formalism (GCF) [11–14], these successes in-
clude the reproduction of SRC phenomenology from recent experiments 
that kinematically isolate the effects of short-distance physics [15–23]. 
But this phenomenology was also shown in Ref. [1] to be reproduced 
with simple calculations at low resolution after RG evolution, which 
shifts the SRCs from wave functions to operators. (For a simple pedagog-
ical model of these shifts in the context of field theory transformations, 
see Ref. [24].) We build on these results to test whether this approach 
can work quantitatively to reproduce high-resolution momentum distri-
butions across all momenta without sacrificing the simplicity.
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In principle we can exactly reproduce high-resolution reaction cal-
culations by consistently SRG-evolving both the operators and wave 
functions (or the Hamiltonian used to generate them). SRG transforma-
tions are unitary, thus preserving observables at all scales. However, 
treating both structure and reaction parts at the same SRG scale and 
scheme is required for consistent prediction of observables when com-
paring different theoretical approaches. The SRG resolution scale is 
associated with the flow parameter ", which roughly corresponds to 
the maximum-momentum components in low-energy wave functions of 
the transformed Hamiltonian. Note that the RG resolution scale " is not 
to be confused with the experimental resolution, which is set by the 
kinematics of the experiment.

The low-SRG-resolution approach naturally describes factorization 
of mean-field nuclear structure and two-body high-momentum physics 
associated with SRC pairs, as the SRG transformations themselves fac-
torize when there is a large scale separation in momentum [25–27]. A 
full SRG evolution would involve tracking induced many-body forces 
and reaction operators beyond the two-body level, and accurately 
treating the long-range correlation structure of the many-body wave 
function. We seek to incorporate all of the important details of a low-
SRG resolution wave function by using phenomenological Woods-Saxon 
orbitals in a single Slater determinant roughly matched to the low-
momentum part of the high-resolution distribution. In doing so, we 
sacrifice full consistency for simplicity and wider applicability, with-
out the need for computationally expensive machinery.

High-resolution nucleon momentum distributions are characterized 
by a “mean-field” distribution up to roughly the Fermi momentum 
joined to a high-momentum tail, with the latter dominantly attributed 
to SRCs (see Fig. 2). At low RG resolution the wave function becomes 
increasingly uncorrelated (soft), such that the momentum distribution 
from matrix elements of the same one-body operator used at high res-
olution would only exhibit the mean-field part. To recover the high-
resolution distribution, one includes the induced two-body operator 
from RG evolution. Reference [1] demonstrated that a local density ap-
proximation (LDA) for the ground-state wave functions was sufficient 
to accurately reproduce the high-momentum tail of nucleon momen-
tum distributions, but was not quantitative at lower momenta. Here we 
improve upon this approach by using a Slater determinant with phe-
nomenologically fit single-particle (s.p.) wave functions.

Our detailed comparison to high-resolution results with the same 
short-distance physics uses variational Monte Carlo (VMC) calcula-
tions. VMC is an ab initio nuclear many-body method that solves the 
Schrödinger equation using local interactions in coordinate space [9]. 
VMC performs a variational minimization of the stochastically deter-
mined energy of a trial-state wave function, which is given by a cor-
relation operator applied to a mean-field state. In contrast to many 
other nuclear many-body methods, it can accommodate high-resolution 
interactions and the resulting highly correlated wave functions with-
out difficulties. Since there is no truncation in the correlation effects, 
the VMC approach scales exponentially with the number of nucleons, 
presently limiting its practical applicability to light nuclear systems. For 
larger nuclei, a cluster VMC (CVMC) method has been developed [10] in 
which a full 3#-dimensional integral is made for the mean-field state, 
including central SRCs, while a linked cluster expansion (up to five-
body) is made for the spin-isospin correlations.

In Sec. 2 we review the formalism for evaluating SRG-evolved mo-
mentum distributions and the methodology for VMC momentum distri-
butions. In Sec. 3 SRG distributions evolved from AV18 are compared 
to VMC and CVMC distributions for AV18 with a three-nucleon poten-
tial added, for a range of nuclei. We find quantitative reproductions 
of the proton momentum distributions after matching using a single 
choice of SRG scale ", with a clean factorization at low resolution. We 
show the sensitivity to the choice of " and also how momentum distri-
butions from other Hamiltonians can be SRG-transformed to compare 
with AV18 results. Section 4 gives a summary and an outlook with pos-
sible extensions of the present work.

2. Methodology

The single-nucleon momentum distributions at high and low resolu-
tion are given by matrix elements in the #-nucleon ground state |||Ψ

#
0
⟩,

⟨
Ψ#
0
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, (1)

where SRG transformations '̂" are applied to both the wave function 
and operator [1] (after which they are labeled by "). The overall matrix 
element does not change because SRG transformations are unitary. Here 
the initial operator and evolved operators are given in second quantiza-
tion by

%̂&∞(!) =
∑
(
)†!(&)!(& , (2)

%̂&"(!) = '̂" %̂
&
∞(!)'̂†

" , (3)
where ! is the single-nucleon momentum, ( is the spin projection, and &
is the isospin projection. The subscript of the operator indicates whether 
it is SRG-evolved or not (" =∞ is unevolved). Up to this point, Eq. (1)
is exact, regardless of the chosen SRG resolution scale ".

We replace the fully evolved ground state |||Ψ
#
0 (")

⟩ by a single Slater 
determinant of Woods-Saxon orbitals
|||Ψ

#
0 (")

⟩
→

∏
*<F

)†* |0⟩ , (4)

where the indices run over occupied s.p. states * ≡ (%* , +* , ,* , -,* , -.* )with spin /* = 1∕2 and isospin .* = 1∕2, and F refers to the Fermi sur-
face. The quantum numbers denoted by * refer to the principal quantum 
number, orbital angular momentum, total angular momentum, total 
angular momentum projection, and isospin projection, respectively. In 
principle, the low-RG resolution wave function should be obtained by 
solving the Schrödinger equation associated with the evolved Hamilto-
nian, but in general it should reflect a dominantly “mean-field” descrip-
tion of nuclei. After this approximation, the combination of the wave 
functions with the evolved operator is no longer unitary, meaning the 
matrix element will depend on ". The rationale for how " is chosen is 
given in the following section.

The SRG unitary transformation at flow parameter " has the follow-
ing schematic form in second quantization:

'̂" = 0̂ +
∑

1' (2)
" )†)†))+

∑
1' (3)

" )†)†)†)))+⋯ , (5)
where we have suppressed the s.p. indices and combinatoric factors. In 
practice, 1' (2)

" is obtained in the relative momentum partial-wave basis 
by solving an SRG flow equation for the transformation directly, given 
an NN interaction. We apply SRG transformations to the initial mo-
mentum distribution operator (2) and use Wick’s theorem in operator 
form to truncate at the two-body (vacuum) level omitting three-body 
and higher-body operators of Eq. (5). There is an exact cancellation 
of evolved operators in computing the overall normalization of the 
nucleon momentum distribution, meaning that proton number 2 and 
neutron number 3 are preserved [1].

It has been shown that the major features of SRC physics are well 
described within a two-body approximation [1]. The validity of such 
an approximation dates back to the seminal work of Brueckner and 
collaborators [28]. This approximation is also supported by the GCF, 
which has made a truncation at the two-body level in several calcula-
tions [11–14]. Furthermore, both CVMC and correlated-basis function 
theory have shown that the two-body cluster contribution is by far the 
largest in the cluster expansion [10,29,30]. We plan to quantify the 
three-body operator contributions in a future study. See [31,32] for 
further details on three-body contributions from an SRG and GCF stand-
point, respectively.

The two-body evolved operator is evaluated with respect to antisym-
metrized two-nucleon plane-wave kets ||"1(1&1 "2(2&2⟩, where ( and 
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& refer to nucleon spin and isospin projections. Suppressing the mo-
mentum, spin, and isospin dependence, the evolved operator has the 
schematic form

%̂&" ≈ %̂
&
∞ +

∑
(1' (2)

" )†)†))+ 1'†(2)
" )†)†)))

+
∑

1' (2)
" 1'† (2)

" )†)†)). (6)
Equation (6) is approximate because the three-body and higher oper-
ators are truncated. To evaluate the matrix element, we transform the 
creation and annihilation operators from the plane-wave basis to the 
s.p. basis of Woods-Saxon orbitals using

)"(& =
∑
*
4*(";(, &))* , (7)

where 4*("; (, &) is a s.p. wave function with respect to orbital *, and 
contractions are given by
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0 (")

⟩
= 1*5 , (8)

for *, 5 < F and zero otherwise. Following this procedure, the single-
nucleon momentum distribution takes the form
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, (9)

where ! is the single-nucleon momentum, " and "′ are relative mo-
menta, and # is the total momentum. For further details on the deriva-
tion of Eq. (9), we refer the reader to the supplemental material.

We benchmark the SRG single-nucleon momentum distributions 
against those obtained with VMC calculations. The VMC method [9]
approximates the solution of the nuclear quantum many-body problem 
with a variational ansatz of the form

|Ψ7 ⟩ =
(
1 +

∑
8<,<9

:8,9
)(∏

8<,
:8,

)
|Ψ; ⟩ . (10)

Here, :8, and :8,9 represent two- and three-body correlation operators, 
respectively, which include both central and spin-isospin-dependent 
terms; the symbol  denotes a symmetrized product over nucleon pairs 
necessary for ensuring permutation invariance in the wave function for 
those components of :8, which do not commute. The *-cluster structure 
of light nuclei is explicitly accounted for by the antisymmetric Jastrow 
wave function |Ψ; ⟩ that is constructed from a sum over independent-
particle terms, each having four nucleons in an *-like core and the 
remaining (# − 4) nucleons in p-shell orbitals [33]. The optimal set 

of variational parameters, defining :8, , :8,9, and |Ψ; ⟩, is determined 
by minimizing the expectation value of the energy:

<7 ≡ ⟨Ψ7 |=|Ψ7 ⟩
⟨Ψ7 |Ψ7 ⟩

≥<0, (11)

where <0 represents the true ground-state energy of the system, sub-
ject to the constraint of obtaining approximately correct charge radii. 
Evaluating the above expectation value involves a multi-dimensional 
integration over the 3# spatial coordinates of the nucleons, performed 
stochastically using the Metropolis-Hastings algorithm [34,35]. Con-
versely, the sum over the 2# ×

(#
2

) spin-isospin coordinates is carried 
out explicitly, resulting in an exponential cost with the number of nu-
cleons which presently limits the applicability of the VMC to light (up 
to 12C) nuclear systems. For larger systems (16O, 40Ca), the exponential 
cost can be ameliorated by performing a linked cluster expansion in the 
spin-isospin-dependent correlations [10]. The |Ψ; ⟩ is now a product of 
shell-model-like s.p. determinants and a full 3#-dimensional integral is 
evaluated for these and the central parts of :8, , which include a sub-
stantial part of the SRCs.

We note that as a critical advantage with respect to quantum many-
body methods relying on a s.p. basis expansion, the VMC has no difficul-
ties in dealing with high-resolution nuclear potentials, which generate 
high-momentum components in the ground-state wave function. As dis-
cussed in detail in Refs. [9,36], the VMC momentum distributions are 
evaluated by

%(!) = ∫ 6$′16$16$2…6$#Ψ†($′1, $2… $#)>−8!⋅($1−$
′
1)

×Ψ($1, $2… $#). (12)
The above Fourier transform is computed by sampling configurations 
from |Ψ†($1, $2… $#)|2. We average over all particles 8 in each config-
uration, and for each particle, a grid of Gauss-Legendre points along 
a random direction is used to compute the Fourier transform. To re-
duce the statistical errors originating from the rapidly oscillating nature 
of the integrand, instead of just moving the position $′8 in the left-
hand wave function away from a fixed position $8 in the right-hand 
wave function, both positions are moved symmetrically away from 
$8. The VMC wave functions reproduce experimental charge radii of 
4He and 12C within ∼1%, while the kinetic energy matches the more 
precise Green’s function Monte Carlo calculations within ∼2-8%. Be-
cause nearly half the kinetic energy comes from the high-momentum 
tails [37], we believe these VMC momentum distributions to be slightly 
low but fairly accurate. The CVMC radii for 16O and 40Ca are ∼2-4% 
larger than experiment.

3. Results

In Fig. 1 we show single-proton high-resolution momentum distribu-
tions up to 2 fm−1 for 16O from CVMC calculations using both the AV18 
two-nucleon interaction only and with AV18 and the Urbana IX (UIX) 
three-nucleon potential [38]. The differences between the distributions 
are typical of other nuclei and also of differences between using UIX 
and the Urbana X (UX) potential [36]. To match to SRG distributions 
using Eq. (9) we need to choose an appropriate s.p. basis for each inter-
action. We use adjusted Woods-Saxon orbitals as a phenomenological 
way to build in the relevant nuclear saturation physics without having 
to explicitly evolve three- and higher-body forces.

Fig. 1 shows SRG results with two different Woods-Saxon paramet-
rizations dubbed “Universal” [39] and “Seminole” [40,41], with both 
using AV18 to SRG-evolve the operator to " = 1.5 fm−1. The Univer-
sal parametrization describes heavy nuclei such as 208Pb, whereas the 
Seminole parametrization is intended for shell model calculations of 
16O and heavier nuclei. The Universal distribution tends to be close 
to the CVMC distribution with AV18 and UIX, while the Seminole fa-
vors the AV18-only distribution. In all subsequent figures, we adjust the 
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Fig. 1. Proton momentum distributions of 16O with different Woods-Saxon 
parametrizations compared to CVMC results with and without a three-nucleon 
interaction. The SRG distributions are calculated using the AV18 interaction 
to evolve the operator to " = 1.5 fm−1, comparing the Seminole parametrization 
(solid green) and Universal parametrization (dashdotted red). The CVMC results 
are calculated either with AV18 only (blue points), or AV18 and the Urbana IX 
(UIX) three-nucleon potential (orange points).

strength and radius of the central potential to best describe VMC calcu-
lations using the same values as the Universal parametrization for the 
other Woods-Saxon parameters; however, no fine-tuning of the param-
eters is necessary.

Note that if one tried to use consistently calculated Hartree-Fock 
orbitals with soft NN-only Hamiltonians, the results would be poor 
because saturation would be distorted. The semi-phenomenological ap-
proach is in the spirit of hybrid calculations that successfully mix ac-
curate structure with effective field theory current operators as well 
as with the traditional phenomenological analysis of (>, >′?) experi-
ments [42]. Our justification here is empirical but is open to more con-
trolled validation through further benchmarking with ab initio many-
body calculations.

Spurious center-of-mass (CoM) effects can be sizable in calculations 
involving a Woods-Saxon s.p. basis for light nuclei. Subtracting the spu-
rious CoM effect from calculated wave functions is a nontrivial issue. 
However the VMC performs a Monte Carlo integration in which the 
CoM component is exactly subtracted from the wave function [43]. We 
have compared VMC calculations with and without the CoM subtrac-
tion for 4He and 12C finding a sizable effect in the former. Without 
the subtraction, the single-nucleon momentum distribution for 4He is 
shifted to higher momentum, meaning that the probability of finding a 
nucleon with low (high) momentum decreases (increases). This is due 
to the spurious CoM motion giving an overall enhancement to the ki-
netic energy. The low RG resolution calculations do not make any CoM 
subtraction because the Woods-Saxon potential is adjusted to match the 
CoM-subtracted VMC distributions.

Fig. 2 shows SRG proton momentum distributions of 4He, 12C, 16O, 
and 40Ca from Eq. (9) using AV18 with " = 1.5 fm−1 compared to VMC 
and CVMC results. The figure label AV18(1.5) refers to the AV18 po-
tential with " = 1.5 fm−1 for all SRG calculations shown in this section. 
VMC with AV18 and UX is used to calculate 4He and 12C, and CVMC 
with AV18 and UIX is used for 16O and 40Ca. See the supplemental ma-
terial for comparisons of SRG to VMC (or CVMC) with AV18 only. The 
orange dotted lines correspond to a single Slater determinant of Woods-
Saxon s.p. states adjusted to either VMC results with AV18 and UX, or 
CVMC with AV18 and UIX. Including operator evolution reduces the in-
dependent particle model (IPM) description by negative 1' and 1'†

linear contributions as seen in the linear y-scale @2%(@) Fig. 3. The high 
momentum tail arises from the 1'1'† two-body term dependent on 
the NN interaction. The tail agrees nicely with the VMC and CVMC cal-
culations regardless of nuclei because each calculation uses the same 

two-nucleon interaction AV18, which is the dominant contribution at 
high momentum.

Fig. 4 shows the contributions to the 16O SRG proton momentum dis-
tribution. The black solid line shows the total momentum distribution, 
the blue dotted shows the contribution from the unevolved operator 
(i.e., IPM), the green dashed line shows the absolute value of the 1'
and 1'† terms, and the red dash-dotted line shows the 1'1'† term. 
The 1' + 1'† contribution is negative up to about 1.4 fm−1 reducing 
(“quenching”) the distribution from the IPM. The IPM and 1' + 1'†

contributions are weighted by s.p. wave functions that carry the @
dependence. These wave functions do not have high momentum compo-
nents, hence the two contributions drop off at high @. The @ dependence 
of the 1'1'† contribution is entirely driven by the 1' and 1'† ma-
trix elements and gives the full contribution to the distribution at high 
@. This contribution corresponds to the tail at high resolution originat-
ing with pairs in the Fermi sea being kicked to high momentum by a 
hard interaction and then dropping back with another interaction [28].

The high momentum tail is explained by factorization of SRG trans-
formations when there is a separation of scales [25,26]. Mathemati-
cally, 1'"(9, @) ≈ : lo

" (9): hi
" (@) for 9 < " ≪ @, where the labels “hi” and 

“lo” in the functions : hi
" (@) and : lo

" (9) refer to the separation of momen-
tum scales above and below ". The low RG resolution wave function 
only supports momenta up to the Fermi momentum, which is generally 
less than " = 1.5 fm−1 for all nuclei considered in this paper. Thus at 
high @, the 1'1'† term factorizes into a universal two-body function 
|||:

hi
" (@)|||

2 that depends on the interaction but not the nucleus, and a low 
momentum nuclear matrix element independent of the interaction and 
@:

lim
@≫"

%"(@) ∝
|||:

hi
" (@)|||

2

∫ ⟨#|: lo
" (9): lo

" (9′)|#⟩ . (13)

This implies scaling of high-momentum tails because the high-@ depen-
dence cancels in ratios of nuclei leaving a quantity only sensitive to 
low momentum physics (e.g., SRC scaling factors )2). Note the univer-
sal high-momentum tail at @ ≫ " in the proton momentum distributions 
in Fig. 2.

Fig. 5 shows the contributions to the proton momentum distribu-
tion but using a local density approximation (LDA) to model the low 
RG resolution wave function. This approach is described in Ref. [1]
and was also utilized in Ref. [46]. The distribution in Fig. 5 uses 
proton densities generated from the SLy4 Skyrme functional [44] us-
ing the HFBRAD code [45]. The mean-field part of the momentum 
distribution will reflect the differences in modeling |||Ψ

#
0 (")

⟩, despite 
the SRG transformations and factorization arguments remaining the 
same. In the LDA version, there are sharp cutoffs at the SRG resolu-
tion scale " = 1.5 fm−1, whereas the Woods-Saxon version smoothly falls 
off before transitioning to the 1'1'† term. The LDA distributions also 
diverge as @→ 0 fm−1 due to it being a poor approximation at low mo-
mentum. However, at @ ≫ " where factorization holds, we retain the 
same high @ tail regardless of LDA or Woods-Saxon.

In Fig. 6 we show SRG proton momentum distributions for 16O with 
different NN interactions. We plot momentum distributions correspond-
ing to two phenomenological interactions, AV18 and CD-Bonn [47], 
and two chiral effective field theory interactions, EMN N4LO 500 MeV 
[48] and SMS N4LO 550 MeV [49]. The 1' matrix elements in Eq. (9)
change between each curve because of a different interaction including 
different regulator schemes. Variation in the potential has the most vis-
ible effect on the high momentum tails because of the dominant 1'1'†

term. There is also an effect at low momentum where the IPM distribu-
tion is quenched by some amount dependent on the interaction. Fig. 6
reflects the scale and scheme dependence associated with the choice of 
the NN interaction in combination with SRG evolving the same initial 
one-body operator for the distributions.

In Fig. 7 we vary the SRG scale ". The black dotted line shows the re-
sult using the unevolved operator, that is, the IPM distribution. The red 
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Fig. 2. Proton momentum distributions for 4He, 12C, 16O, and 40Ca. The solid blue lines show the SRG distributions in which the operator is evolved under the AV18 
interaction at " = 1.5 fm−1. The dashed orange lines show the IPM distributions (no operator evolution). The black points show VMC distributions calculated with 
AV18 and UX for 4He and 12C, and CVMC distributions calculated with AV18 and UIX for 16O and 40Ca. Each distribution is divided by the proton number 2 .

Fig. 3. Same as Fig. 2 but on a linear y-scale with a factor of @2 included.

Fig. 4. Contributions to the proton momentum distribution in 16O, correspond-
ing to the first (mean-field), second (1' + 1' †), and third (1'1' †) terms in 
Eq. (9), all evolved to SRG " = 1.5 fm−1 with AV18. The sum of the three is 
the solid line. Note that the dashed 1' + 1' † contribution is negative up to 
@ ∼ 1.4 fm−1.

line shows the " = 1.5 fm−1 distribution. The light red band indicates 
the variation in " from 2 fm−1 down to 1.35 fm−1. High " distributions 
approach the IPM description due to the mismatch of a low RG resolu-
tion wave function with a high-resolution operator. As " is lowered, the 
tail rises from the induced two-body operator, and the low-momentum 
part of the distribution begins to decrease from the IPM.

Reference [46] demonstrates how to use SRG transformations to ap-
proximately match different interactions. Here we match distributions 
from different interactions to the AV18 distribution, where we use a 
one-body operator for the AV18 distribution. Fig. 8 shows the 16O pro-

Fig. 5. Same as Fig. 4 but using a local density approximation to compute proton 
momentum distributions as described in Ref. [1]. Here the proton densities are 
generated from the SLy4 Skyrme functional [44] using the HFBRAD code [45].

ton momentum distributions for SMS N4LO 550 MeV and AV18, where 
the former has less contributions at high relative momentum. We apply 
SRG transformations from AV18 onto the initial momentum distribution 
operator for the SMS N4LO 550 MeV distribution: %̂sof t = '̂" %̂hard'̂

†
" . The initial operator for the soft potential %̂sof t becomes a two-body op-

erator at some SRG scale indicated by "-. We then apply the same 
method as before in evolving the operator and approximating the low 
RG resolution wave function. Fig. 8 shows the SMS N4LO 550 MeV with 
the initial two-body operator at "- = 4.5 fm−1, where the red band in-
dicates "- varying from 5 to 4 fm−1. The induced two-body operator in 
the initial operator is responsible for approximately matching the SMS 
N4LO 550 MeV distribution to the AV18 distribution. We have verified 
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Fig. 6. Proton momentum distributions of 16O using several interactions shown 
in the legend evolved to " = 1.5 fm−1.

Fig. 7. Proton momentum distribution for 16O varying the SRG " on a log y-
scale (a) and linear y-scale (b) using the AV18 interaction. The black dotted line 
shows the distribution with no SRG evolution (IPM distribution), and the red 
solid line shows the distribution evolved to " = 1.5 fm−1. The red band indicates 
the variation in " from 2 to 1.35 fm−1.

that other matching procedures work in a similar way, such as using 
unitary transformations that directly relate the eigenstates of both po-
tentials.

4. Summary and outlook

We have demonstrated in this paper that momentum distributions 
of the high-resolution AV18 potential for nuclei from # = 4 to # = 40
can be quantitatively reproduced at low- and high-momenta using an 
SRG-evolved operator truncated at the two-body level combined with 
structure described by Slater determinants of adjusted Woods-Saxon or-
bitals. The sensitivity to the choice of SRG flow parameter " is relatively 

Fig. 8. Proton momentum distributions using the matching procedure described 
in the text to match SMS N4LO 550 MeV to AV18. Here we calculate 16O set-
ting " = 1.5 fm−1 in all cases. The black dotted line shows the SMS N4LO 550 
MeV distribution without matching, and the solid blue line shows the AV18 dis-
tribution. The red dashed line shows the SMS N4LO 550 MeV distribution with 
"- = 4.5 fm−1 to match to AV18. The red band indicates variation in "- from 5
to 4 fm−1.

small, and the same “optimal” choice works for all the nuclei. The en-
hanced factorization of the low-resolution operators is reflected in a 
clean separation of mean-field and SRC contributions to the momentum 
distributions. We also show that other interactions, such as state-of-
the-art chiral EFT NN forces, can be matched to the reference AV18 
distributions to reproduce close to the same distributions.

A key question is whether these successes can be extended to other 
operators, and ultimately to comparisons with experiment. At the same 
time, we need to quantify the error introduced by both the trunca-
tion of induced many-body components in the operators and the use of 
simplified many-body wave functions (and whether we are exploiting 
cancellations between these errors). Work is in progress to examine pair 
momentum distributions as well as exclusive quantities, such as spec-
tral functions for analyzing (>, >′?) experiments at low resolution. The 
latter is a doorway to more controlled phenomenological analysis and 
a modern RG-based formulation of optical potentials [50] and spectro-
scopic factors. We will also evolve operators in single- and double-beta 
decay calculations to understand quenching from a low RG resolution 
perspective and connect to GCF approaches [51].
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