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Shimura varieties were formally defined in Deligne’s Bourbaki seminar talk
[18]. Let (G, X) be a Shimura datum, in the sense of Deligne. Attached to
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(G, X) is a pro-system of quasi-projective algebraic varieties Shk (G, X) over
C whose members are enumerated by the open compact subgroups K of
the finite adele group G(A). These have canonical models Shk (G, X )g over
the reflex field E C Q of (G, X). Throughout the paper, we will impose the
blanket assumption that the Q-split rank and the R-split rank of the center
of G coincide.

Part of Deligne’s philosophy of Shimura varieties is that (if the associated
central character wx is defined over Q and the connected center of G splits
over a CM-field [80, Lem. B 3.9]) the Shimura variety Shi (G, X )g is a moduli
space of motives over Spec (E) (with level-K-structure). This philosophy has
been a guiding principle behind much of the work on Shimura varieties in
the last decades. However, a draw-back of this idea is that the concept of a
motive is still eluding a precise definition. Scholze, in a lecture in Jan. 2019 in
Essen, suggested that it might be profitable to instead view Shimura varieties
as moduli spaces of certain shtukas over Z, cf. also his ICM talk in Rio [83]
and his Berkeley lectures [85]. In particular, he suggested constructing a
“universal” G-shtuka over the Shimura variety Shi (G, X )g. Here a G-shtuka
should be the number field analogue of the concept of G-shtuka for global
function fields, cf. [85, §11.1]. However, at the moment it is also not clear
how to define this concept.

Let p be a prime number. Scholze is able to define the concept of a shtuka
over Zy, comp. [85]. Therefore, after base change to the completion £ = E, of
E at some p-adic place v, the Shimura variety Shk (G, X)g = Shk(G, X )g®eFE
should come with a family of Z,-shtukas. In fact, Scholze uses this insight
to define local Shimura varieties which are the analogues over p-adic fields
of Shimura varieties. This puts into reality a hope spelled out in [77] and is
a p-adic avatar of Scholze’s idea on global Shimura varieties.

Let (G, b, 1) be a local Shimura datum. We recall [77] that this means
that G is a reductive group over Q,, that b € G(@p), and that p is a
conjugacy class of minuscule cocharacters of Gg . Let E' C @p be the local
reflex field. Then Scholze associates to (G, b, ) a pro-system of rigid-analytic
spaces over the completion E of the maximal unramified extension of E
(with Weil descent datum down to E) whose members are enumerated by
the open compact subgroups K C G(Qp). These spaces are moduli spaces
Mapy = Mapur)kca,) of G-shtukas (with level- K-structures). One
important class of local Shimura varieties arises from Rapoport-Zink spaces:
if the local Shimura datum arises from rational RZ data [78], then the RZ
tower associated with the corresponding RZ space is a local Shimura variety,
cf. [85, Cor. 24.3.5]. In this special case, the theory of non-archimedean
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uniformization of Shimura varieties of PEL-type provides a link between
global Shimura varieties and local Shimura varieties, cf. [78, chap. 6].

In this paper we develop Scholze’s idea. We establish basic results on
p-adic shtukas and apply them to the theory of local and global Shimura va-
rieties, and on their interrelation. We derive some interesting consequences,
such as a construction of canonical integral models for (local, and global)
Shimura varieties of Hodge type with parahoric level structure.

Let us now be more specific. In our formulations, we will use Scholze’s
language of diamonds, v-sheaves, etc.

1.1. Results on shtukas

Let us start with stating our results' on shtukas. Let k be an algebraically
closed field of characteristic p. For most of the time, k is the residue field
of E. We recall from [85] that a shtuka of height h over a perfectoid space
S = Spa (R, R*) € Perfd; with leg at the untilt S* of S is a vector bundle
of rank h on the analytic adic space S x 2y, together with a meromorphic
Frobenius map ¢4 which has a pole along the Cartier divisor S? of S x L.
Here

S X Z, =S x Spa(Zy) = Spa(W(R1)) \ {[w] = 0},

where [w] is the Teichmiiller lift of a pseudo-uniformizer of R*. For p €
(Z")s, there is also the notion of a shtuka of rank h bounded by p. Given
a smooth group scheme G over Z,, there is also the variant notion of a G-
shtuka over S and, given a conjugacy class of cocharacters p of the generic
fiber G of G, also the variant notion of a G-shtuka over S bounded by pu.
Finally, there are corresponding notions of families of such objects over adic
spaces or schemes, which are defined, roughly speaking, as sections of the
v-stack of shtukas over the diamond or v-sheaf attached to the adic space
or to the scheme, see §2.1.1-2.1.3, and Definitions 2.3.1, 2.3.2 below. As an
illustration, a shtuka over Spec (K), for a perfect field K of characteristic
p, can be shown to correspond to a free W (K)-module M of finite rank,
equipped with an isomorphism ¢,;: Frob*(M)[1/p] = M][1/p], comp. The-
orem 1.1.3 below. For instance, a p-divisible group ¢ over a scheme of finite
type over O defines a shtuka of height equal to the height of ¢4 and bounded
by p = (119, 0("=4)) where d is the dimension of ¥.

!Some of these results have been extended in very recent works of Gleason-Ivanov
[33] and Giithge [36], which were completed during the refereeing process of this

paper.
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When the adic space is in characteristic zero, there is a more explicit
description of G-shtukas which is étale-sheaf theoretic in nature, provided
that p is minuscule:

Proposition 1.1.1 (see Proposition 2.5.3). Let X be a locally Noetherian
adic space over Spa (E, Og), with associated diamond X°. Fix (G, ), where
G is a connected smooth model over Z, of a reductive group G over Q,, and
where p is a conjugacy class of minuscule cocharacters of Gg, . There is a
functor & — (P,HT(Z?)) which gives an equivalence between the categories

of:
1) G-shtukas (2, ¢5) over X with one leg bounded by , and

2) pairs (P,H) consisting of a pro-étale G(Z,)-torsor P over X and a

G(Zy)-equivariant map of sheaves H : P — ]:8 -1 over Spd E.

Here Fg -1 denotes a partial flag variety and HT is the sheaf-theoretic
analogue of Scholze’s Hodge-Tate period map. The latter is also constructed
by Hansen [39].

Let us now assume that X is the adic space attached to a smooth
scheme X. Then, under some hypotheses, a pro-étale G(Zj)-cover defines
a pair as in Proposition 1.1.1 above:

Proposition 1.1.2 (see Proposition 2.6.3). Let P be a pro-étale G(Zy)-
cover over the smooth E-scheme X which is de Rham and bounded by the
minuscule cocharacter p. Then there is a natural G-shtuka bounded by p

over X which under the correspondence of Proposition 1.1.1 arises from the
G(Zy)-torsor defined by P and the Hodge-Tate period map defined by P.

The property of being de Rham is defined by Scholze in [81]. It implies
that at every classical point x of X', the fiber P, is a Galois representation of
Gal(E(z)/E(x)) in G(Qp) of de Rham type and is associated by Fontaine’s
functor Dgr to a filtered G-isocrystal with filtration type given by p. The
map H maps = to the point in the flag variety given by the corresponding
filtration of the G-isocrystal.

Shtukas in characteristic p are crystalline in nature. This is more trans-
parent when the topology on the rings is discrete. Let 2~ = Spec(A) be
a perfect k-scheme. A meromorphic Frobenius crystal over % is a vector
bundle .# over Spec (W (A)) equipped with an isomorphism

(1.1.1) b4 Frob* (L)1 /p] = 4 [1/p).
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Theorem 1.1.3 (see Theorem 2.3.8). There is an exact tensor equivalence
between the category of meromorphic Frobenius crystals over Spec (A) and
the category of shtukas over Spec (A).

This statement is subtle, even when A is an algebraically closed field. In
this case an essential ingredient in the proof is the relation between Frobenius
isocrystals and vector bundles over the Fargues-Fontaine curve (see [25, 2]).

The relation between characteristic zero and characteristic p is given
by the following shtuka analogue of Tate’s theorem on homomorphisms of
p-divisible groups.

Theorem 1.1.4 (see Theorem 2.7.7). Let 2" be a separated scheme which
is normal and of finite type and flat over Spec (Og). Let us denote by X =
X XSpec (05) Spec (E) the generic fiber. Let (¥, ¢y) and (V' ¢y1) be two
shtukas over 2. Any homomorphism x : (¥, ¢y)jx — (V' dy7) 5 between
their restrictions to X extends uniquely to a homomorphism v : é”//, dy) —

(7/7 ¢’V’)-

In particular, using the Tannakian formalism, there is at most one ex-
tension of a G-shtuka on X to a G-shtuka on Z". An important ingredient of
the proof of Theorem 1.1.4 is the full-faithfulness result of Proposition 2.1.3
which allows us, under a certain condition, to extend homomorphisms of
shtukas over the divisor “at infinity” [w] = 0.

1.2. Results on local Shimura varieties

Let us now state our results on local Shimura varieties. As mentioned above,
Scholze defines, starting with local Shimura data (G, b, 1), the local Shimura
variety Mgy, = (Mapuk)kca,) It is instructive to compare local
Shimura varieties and global Shimura varieties. For local Shimura varieties,
it is easy to see that they support a G-shtuka. This follows from the definition
of M@y, as a moduli space of G-shtukas. In contrast, for global Shimura
varieties, constructing the G-shtuka over them is quite an effort. On the
other hand, contrary to their global counterpart where one can write down
the set of C-points, there does not seem to be an explicit description of the
set of C,-points of Mg . Just as global Shimura varieties, local Shimura
varieties can be explicitly described when G is a torus or when g is cen-
tral; however, contrary to global Shimura varieties, local Shimura varieties
have good functorial properties, e.g., they obey pushout functoriality, comp.
Proposition 3.1.2.

When K = G(Z,) is a parahoric subgroup (with G a corresponding para-
horic model of G over Zj), then Scholze defines an integral model ./\/lg‘tb u of
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M@ b,k over O, as a v-sheaf: just as its general fiber Mg p, . k¢, it represents
a moduli problem of G-shtukas. Scholze conjectures that it is always repre-
sentable by a formal scheme .#g , , over Spf (O ). The conjecture holds true
if the data (G, b, u) come from integral RZ data in the sense of [78] (this ex-
cludes the cases of type (D) since they yield non-connected groups). In fact,
in this case Mg‘tb " is represented by the corresponding RZ formal scheme,
cf. [85, Cor. 25.1.3]. We give the following characterization of the represent-
ing formal scheme. In the formulation, there appears the (b, u~1)-admissible
locus Xg(b, 1) inside the Witt vector partial flag variety over the algebraic
closure k of the residue field of E [97] and the specialization map on the set
of classical points spaq: [Map k|85 — Xg(b, p=1) (k) defined by Gleason
[31, 32].

Proposition 1.2.1 (see Proposition 3.5.1). Assume that Miéltbu 1S repre-
sentable by the formal scheme Mgy, ;. Then Mgy, is the unique normal for-
mal scheme % which is flat and locally formally of finite type over Spf (O )

and is equipped with identifications
(i) #7¢ = M by xc

. f _

(ii) Ziog = Xg(b,u™),

such that the following diagram is commutative:

| Rrie ’class SPz Rrod ( k‘)

(1.2.1) :J J:

Mg = Xg (b, =) (k).

Here #"¢ is the generic fiber of the formal scheme Z in the sense of
Berthelot [78, chap. 5]. That .4, has the properties stated in the propo-
sition follows from p-adic Hodge theory; the characterization follows from
the fully faithfulness of the diamond functor, cf. [85, 18.4].

2 £ gint int
Gleason defines the v-sheaf formal completion Mlgn,b,u/x of M};,b,u at a

point € Xg(b, p~ ) (k). If Scholze’s conjecture on the representability of
./\/llgntb L is true, then the formal completion Mgltb e is representable, i.e.,

is given by Spf (R) for a complete Noetherian local O -algebra R. Indeed,
if /\/lig%# is represented by .#gy ,, then R = 6-//9,17,;1,@' We prove a kind of

—

2Gleason denotes this formal completion by Mig“tb’ e Here, we simplify the

notation of formal completions.
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converse in the local Hodge type case. Here, we call the tuple (p, G, i, G) of
local Hodge type if the following conditions are satisfied.

1) (G, p) is of local Hodge type, i.e. there is a closed embedding p: G — GL,
such that p oy is minuscule.

2) G is the Bruhat-Tits stabilizer group scheme G, of a point x in the ex-
tended Bruhat-Tits building of G(Qp) and is connected, i.e., we have
G=0G:=0,.

Theorem 1.2.2 (see Theorem 3.7.1). Let (G,b,u) be a local Shimura da-
tum and G a parahoric model of G such that (p,G,p,G) is of local Hodge

type. Assume that Mi(;%y/x is representable for all x € Xg(b, u= 1) (k). Then

Mig%,# is representable by a normal formal scheme gy, ,, which is flat and
locally formally of finite type over Spf Op.

The proof of Theorem 1.2.2 consists in first showing that the Hodge
embedding p induces a closed immersion of v-sheaves from Mignfb’u into
Ml(r;‘in (5),p(12) and then showing, by imitating de Jong’s construction of
closed formal subschemes of formal schemes [17], that this morphism is rel-
atively representable.

Let us comment on the assumption appearing in the statement above.
Scholze defines, using the Beilinson-Drinfeld style affine Grassmannian, for

any local Shimura datum (G, b, u) a v-sheaf Mg .- Scholze conjectures in
[85, Conj. 21.4.1] that this v-sheaf is representable by a normal scheme Mlgo‘;
proper and flat over Op and with reduced special fiber. The scheme Mlgoi

with its action by G is called the scheme local model.> This conjecture may
be viewed as a linearized version of the representability of ./\/lgltb .- Indeed, it

may be conjectured that Mig“fb# /o is represented by the formal completion

MlgOL Iy of the scheme I\\/I[lgoi, where y is a point of Mlgoi(k:) corresponding to
x, cf. Conjecture 3.3.5.

The representability of Mg ., 1s more accessible than the representability
of ./\/lignfw. Indeed, Scholze’s conjecture is now proved: work of Anschiitz,
Gleason, Lourengo and Richarz [3], cf. also Lourenco’s thesis [65], proves
the conjecture in all cases, except when p = 2 and there is a simple factor
of Gaa ®@q, QQ of the form Res /Q2H , where H is the adjoint group corre-
sponding to an odd ramified unitary group, or when p = 3 and there is a
simple factor of Gaq ®q, Qg of the form Res, /©3H , where H is the adjoint

3Under more restrictive hypotheses, these local models also agree with the local
models as defined in [73], and in [44].
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group corresponding to a ramified triality group; the general case is treated
by Gleason and Lourenco in [35], basing themselves on [3].

Remark 1.2.3. Consider the case when (p, G, u,G) is of local Hodge type
which can be embedded, in the sense of Remark 3.7.2, into a tuple (p, G, X, K)
of global Hodge type (see below for this terminology). If all z € Xg(b, u=1)(k)
can be “realized” (in the sense of Remark 3.7.2) by points x in the reduc-
tion of Shk(G, X)g, then the assumption in Theorem 1.2.2 holds by Theo-
rem 1.3.2 below. This realization hypothesis would follow from the resolution
of the axioms on the reduction of Shimura varieties in [45], which is known in
many cases, cf. [95, 90]. We therefore can view Theorem 1.2.2 as a blueprint
to prove the representability of /\/ligrttlw by global methods. In particular,
for p # 2, we can dispense with the assumption on the representability of
./\/lign,tlw /5 0 Theorem 1.2.2 when ' is unramified [68] or when G is tamely
ramified and residually split [95].

Remark 1.2.4. In a sequel to this paper [72], we prove the representability
of ./\/lg‘tb , in greater generality by a local method, again using the method
of proof of Theorem 1.2.2. In particular, in the situation of Theorem 1.2.2,
the representability of ./\/l‘g“tb u always holds when p # 2.

1.3. Results on global Shimura varieties

Now let us state our results on global Shimura varieties. Start with Shimura
data (G, X) as above, and denote, as before, by Sh(G, X)g its canonical
model over E = E,. We assume that K C G(Ay) is of the form K = K,K?,
with K, = G(Z,), where G is a smooth model of G = G ®g Q, and where
KP C G(AI}) is sufficiently small. Then there is a pro-étale G(Z,)-cover Px
over Shk (G, X)g obtained by the system of covers

(1.3.1) ShKl(G,X)E —)ShK(G,X)E,

where K' = K/ KP C K = K,KP, with Kj, running over all compact open
subgroups of K, = G(Z,), comp. [66, III], [62, §4] (note that G(Z,) =
I'&HK; Kp/K}.) By Liu-Zhu [62], the pro-étale G(Zj)-cover Pk over Shy (G, X) g
is de Rham (and bounded by px). Using Proposition 1.1.2, we obtain a G-
shtuka as postulated by Scholze:

Proposition 1.3.1 (see Proposition 4.1.2). There exists a G-shtuka Pk g
over Shy (G, X)g with one leg bounded by px which is associated with the
pro-étale G(Zy)-cover Pk, in the sense of Proposition 1.1.2.
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Furthermore, Pk g are supporting prime-to-p Hecke correspondences,
ie., for g € G(A’}) and K'P with gK'Pg~! C K,, there are compatible iso-
morphisms [¢]*(Pk ) ~ Pk g which cover the natural morphisms [g] :
ShKPK/p (G, X)E — SthKp (G, X)E

When (G, X) is of abelian type and K = K,KP, where K,, is a para-
horic, Kisin and the first author [57] have constructed integral models .k
of Shk(G, X)g, provided that p is odd, G = G ®g Q) splits over a tamely
ramified extension and p { [71(Gqer)|- By an integral model, here we mean
a scheme which is separated and of finite type over Spec (Og) and whose
generic fiber is identified with Shx (G, X)g. This construction has been ex-
tended by Kisin and Zhou [58] to cover many more cases. Here we construct
such integral models in even greater generality when (G, X) is of Hodge type
and K = K,KP, where K, is a parahoric with corresponding parahoric group
scheme G over Z,.

We call a tuple (p, G, X, K), with K = K,KP, of global Hodge type if the
following conditions are satisfied.

1) (G, X) is of Hodge type, i.e. there is a closed embedding of Shimura data
(G, X) — (GSpQQ,SQig) into a group of symplectic similitudes with its
Siegel datum.

2) K, = G(Z,), where G is the Bruhat-Tits stabilizer group scheme G, of
a point x in the extended Bruhat-Tits building of G(Q,) and G is con-
nected, i.e., we have G = G, = G;.

Note that when (p, G, X, K) is of global Hodge type, then (p, G, ux,G) is of
local Hodge type.

Theorem 1.3.2 (see Theorem 4.5.2). Let (p, G, X,K) be of global Hodge
type. Then there exists a pro-system of normal and flat integral models Sk
with generic fiber Shx(G, X)g, with finite étale transition maps for varying
KP, with the following properties.

a) For every dvr R of characteristic (0,p) over O,
(132)  (lim,, She(G, X)p)(RI1/p) = (im,, Hc)(R).

b) The G-shtuka Pk kg extends* to a G-shtuka P on k.

“When G is reductive (i.e., in a good reduction case), an integral extension g
of the G-shtuka Pk g was also constructed by Wu [93]. His extension lives over the
integral model .k given in Kisin [54] (which is canonical in the sense of Milne).
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¢) For x € S(k), with associated by € G(@p), there exists an isomorphism
of formal completions

O Miél,tbm,p/:vg — (yK/x)Oa

such that the pullback shtuka ©%(Pk) coincides with the tautological
shtuka on Mgltbl ., that arises from the definition of ME‘%, u as @ moduli

space of shtukas. Here xy denotes the base point of Mignfbm“. In particular,

int ;
Mgvbm,u/aro is representable.

Here the element b, € G (Qp) is well-defined up to o-conjugacy by Q(Zp),
and is determined by the fiber of Pk at z, as follows. The pull-back z*(Pk)
is a G-shtuka over Spec (k), and yields a G-torsor Z2, over Spec (W (k)) with
an isomorphism

bz, 0" (Za)[L/p] — Pu[1/p].
The choice of a trivialization of the G-torsor &, then defines b, € G(@p).
The o-conjugacy class [b,] lies in the subset B(G,u~1) of B(G).
The construction of .k is quite straightforward. The Hodge embedding

defines a closed embedding of Shimura varieties into the Siegel type Shimura
variety,

Shi(G, X ) < Shy» (GSpyy, S3; )0 ®g E.

Here, we need to choose the Siegel moduli level structure K® appropriately,
in particular so that K = K> N G(Ay). After identifying Shy» (GSpay, Szig)Q
with the generic fiber of the Siegel moduli space Ay» over Z,), one defines
% to be the normalization of the Zariski closure of Shk (G, X)g inside
Ag» ®z,,, Op. It turns out a posteriori that .7k is independent of the choice
of the Hodge embedding, cf. Theorem 1.3.4. A bonus of this independence is
that we obtain for an inclusion K, C K;, of parahoric subgroups an extension
Sk — ko of the natural morphism Shg (G, X)p — Shg/ (G, X)g to the
integral models. Here K = K,K? and K" = K[ K'P, with K'? = KP. This is
a consequence of the functoriality of the formation of our integral models
with respect to embeddings (G, X,K) < (G, X',K’) of Shimura data (see
Theorem 4.3.1 for a precise formulation).

Let us compare this theorem (for Shimura varieties of Hodge type) with
the main result of [57] and its generalization by Kisin and Zhou in [58] (these
references consider, more generally, Shimura varieties of abelian type). Un-
like in [57], for our result we do not need any tameness hypothesis and we
also dispense with the assumption p t 71(Gger). The tameness hypothesis is
significantly relaxed in the paper [58], which ends up covering essentially all



12 Georgios Pappas and Michael Rapoport

cases when p > 5. Nevertheless, our construction is, at least conceptually,
simpler. In particular, in contrast to [57, 58], there is no need for a judicious
choice of a Hodge embedding. By the independence of the Hodge embed-
ding, we see that our integral models agree with those in [57, 58], when the
latter exist. (Without this independence that we show here, the extension
of the morphism Shk(G, X)g — Shi/ (G, X)g between Shimura varieties for
different parahorics to integral models as above, was known to exist only
when the models were constructed using “compatible” Hodge embeddings,
cf. [95, §7].) On the other hand, we do not produce a local model diagram,
and do not even assert that there is an isomorphism

1l
54</x'—'mﬂé%2/y’

although this last fact follows a posteriori by combining our results with the
main theorem of [72], at least when p is odd. Based on the Hodge type case,
one should be able to extend the theorem to Shimura varieties of abelian
type using Deligne’s theory of connected components and “twisting”, as in
[54, 57, 58].

Let us comment on the proof of Theorem 1.3.2. Property a) for the
model .#k follows from the Néron-Ogg-Shafarevich criterion of good reduc-
tion for abelian varieties. For property b), one realizes the G-shtuka Pk g
in the generic fiber through some tensors in the pull-back to %« g under the
Hodge embedding of the shtuka defined by the universal abelian scheme.
Using Theorem 1.1.4, these tensors extend over .#k. The crux is now to
show that these tensors indeed define a G-shtuka over .#k. Here the main
tool is the theorem of Anschiitz [1] that for an algebraically closed non-
archimedean field C of characteristic p, any G-torsor on the punctured spec-
trum Spec (W(Oc¢)) \ {s} is trivial. Finally, property c) essentially comes
down to showing that the pull-back of the G-shtuka %k to the completed
local ring O 4, , admits a “framing”.

We note that Theorem 1.3.2 ¢) provides a link between local and global
Shimura varieties. This link is a priori different from the one provided by the
theory of non-archimedean uniformization of Shimura varieties of PEL-type
mentioned earlier, since it holds only point-wise. The following theorem is
the non-archimedean uniformization statement in our context.

Theorem 1.3.3 (see Theorem 4.10.6). Let (p, G, X,K) be of global Hodge
type. Let © € Sk(k). Then Mign,tbl,,u is representable by a formal scheme
MG b, . and there is non-archimedean uniformization along the isogeny class
I(x) in Sk o, k, i.e., an isomorphism of formal schemes over O,

L(Q\(Agp, u < GA])/KP) = (Fk @0, Of) 17y
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This isomorphism is to be interpreted (especially when z is non-basic) as
for its PEL counterpart in [78, Thm. 6.23].

Here the relation to the previous theorem is the obvious one: If (xg, g) €
Mg p, (k) X G(AZ})/KI’ is a point representing the base point z, the iso-
morphism O, from Theorem 1.3.2 c¢) coincides with the completion of the
uniformization morphism at x.

The proof of Theorem 1.3.3 is modelled on [47, 38], and proceeds by re-
lating the integral local Shimura variety Mgltbm , toa Rapoport-Zink space
obtained by a global construction using the Hodge embedding. In the state-
ment of Theorem 4.10.6, we make the assumption that a certain condition
(U,) is satisfied. This condition guarantees that the abelian varieties that are
obtained by isogenies from k-points of the LHS of the uniformization map
actually do define points on the Shimura variety in question (this is not ob-
vious since the Hodge type Shimura variety lacks a global moduli-theoretic
interpretation). In our original submitted version of our paper, we conjec-
tured that Condition (U,) is always satisfied. (Note that condition (Uy) is
identical with Axiom A in [38, §4.3]; Hamacher and Kim also conjectured
that, in the tame case, it is always satisfied.) During the refereeing period
of our paper, this conjecture has been proved in general by Gleason-Lim-Xu
[34, Cor. 1.10]. We refer to Remark 4.10.4 for previous partial results of
Zhou and Nie.

We also prove that the integral models .7k are uniquely determined by
their characteristic properties. The following uniqueness theorem should be
compared with the main theorem of [70], where an analogous uniqueness
theorem is proved. In loc. cit., instead of G-shtukas, “(G, u)-displays” are
used for this characterization. The characterization of [70] seems more con-
crete since it is adapted to p-divisible groups and gives more information
when it applies. For example, it is directly linked to the existence of a local
model diagram; this is a useful feature which is harder to see here (com-
pare the discussion in §4.9). On the other hand, it is more limited in its
applicability (essentially to Shimura varieties of Hodge type). An “a priori”
relation between the characterization in [70] and the one given here is not
clear; and something similar is true for the relation to the characterization of
the good reduction model in the hyperspecial case by the extension property,
comp. [54, §2.3.7]. However, in practice, the integral models that have been
constructed in various cases satisfy all these characterizations, provided the
assumptions for them to apply are met. It is remarkable that to obtain such
a characterization, even in classical PEL type cases, one needs this more
sophisticated approach.
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Theorem 1.3.4 (see Theorem 4.2.4). Let (G, X) be an arbitrary Shimura
datum and consider open compact subgroups K C G(Ay) of the form K =
K,KP, with K, = G(Zy), where G is a (connected) parahoric model of G =
G ®q Qp. There is at most one pro-system of normal and flat integral mod-
els S« with generic fiber Shk(G, X)g, with finite étale transition maps for
varying sufficiently small KP, with properties a)—c) above.

The main point in the proof of this theorem is a rigidity property of
the isomorphisms O, in (c). This essentially amounts to a rigidity property
of the framing of the pull-back of the G-shtuka Pk to Oy ., which was
constructed in the proof of property (c) of Theorem 1.3.2. For this, we show
that the diamond automorphism group of the G-shtuka given by the trivial
G-torsor and the Frobenius ¢, = b x Frob has as its global sections over
the completed local ring O, , only the obvious ones, i.e. the o-centralizer
group J,(Qy).

We conjecture that models .7k with these properties exist for general
Shimura varieties, cf. Conjecture 4.2.2. This conjecture should be compared
with Deligne’s proposal to construct the models .7k as moduli spaces of
motives: whereas it seems quite difficult to make this precise, our conjec-
ture, which is based on Scholze’s idea of moduli spaces of shtukas, is quite
concrete and seems accessible in many cases (e.g., for Shimura varieties of
abelian type). The conjecture should be seen in conjunction with Scholze’s
conjecture on the representability of the v-sheaf local model (which is now
proved, see above), and the conjectured representability of the v-sheaf lo-
cal model diagram, cf. Conjecture 4.9.2. Also, the construction of the map
x +— b, above would define a map to the set of G (Zp)—a—conjugacy classes as
predicted in [45, Axiom 4],

Tk: Jk(k) — G(Qp)/G(Zy)s,

which would define in the general case the Newton-stratification, the KR-
stratification, the EKOR-stratification and the central leaves in the special
fiber, without the use of abelian varieties. Finally, Theorem 1.3.3 should be
seen in conjunction with the Langlands-Rapoport conjecture enumerating
the isogeny classes in the special fiber, comp. [55, 75]. It should hold true in
general.

This picture is quite general, and may not be easy to implement. The
most immediate next task is to establish this picture for Shimura varieties of
abelian type. Also, one can hope to extend the results to parahoric subgroups
which are not the stabilizer of a point in the building, but only equal to the
neutral component of a stabilizer. In addition, for applications to moduli
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spaces, it would be useful to also allow non-connected stabilizer subgroups
(called “quasi-parahoric” in [85, §25.3]) as the level, comp. [57].

Our normalizations impose that for a Shimura datum (G, X) of PEL-
type, with universal abelian variety Ak over the integral model .7k, the
fiber Pk, at a point x € Fk(k) corresponds under the natural represen-
tation of G to (Frobfl)*(H};rys(.Ax)*), the Frobenius descent of the linear
dual of the crystalline cohomology of A,, i.e., the Frobenius descent of the
linear dual of the contravariant Dieudonné module D(A,)* of the p-divisible
group of A, cf. Example 2.3.4. For the crystalline period map, we trivial-
ize D(A;)* and vary the Hodge filtration so that the Grothendieck-Messing
period map has its target in the flag variety Fq ,. For the Hodge-Tate pe-
riod map, we trivialize the associated local system so that the Hodge-Tate
period map has its target in the flag variety Fg ,-1. The relation with pris-
matic cohomology given by Pk , corresponding to (Frob_l)*(H}:rys(Az)*) =
H}A(Ax/W(k))*(W(k), (p)) leads us to expect that the models .k support
a more refined object L@Ky A Wwhich is a deperfection of the G-shtuka k.
Here, “deperfection” is meant in the sense of the theory of prisms of Bhatt
and Scholze [9, §1] and the object L@K’A should be, roughly, a G-torsor with

Frobenius over the prismatic site of the p-adic completion 3; (More pre-
cisely, it should be a prismatic Frobenius crystal with G-structure over .7k,

see §4.4). In the Hodge type case, it should be constructed from the prismatic
cohomology of the universal abelian scheme.

Notations. The following general conventions are used.

e We fix an algebraic closure @p of the p-adic numbers Q,. If F'/Q,, is a finite
extension with F' C Q,, we denote by F' the completion of the maximal
unramified extension of F' in @Q,. The rings of integers are denoted by
Op, resp. by O or Op.

e We often write X ®a B for X Xgpec(a) Spec (B).

e If (A, AT) is a Huber pair, we will denote the v-sheaf (Spa (4, A*))® by
Spd (A, AT). If AT = A°, we simply write Spd (4).

2. Shtukas
2.1. v-sheaves and other preliminaries

We will use heavily many of the constructions and results of [85] and, in
particular, the language and techniques of perfectoid spaces and v-sheaves
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of Scholze. Here, we recall some of the basic terms and notations. The reader
is referred to [85] and [82] for more details and to [52] for more background
and other important constructions. Let k be a perfect field of characteristic p.

Let (R, R™) be perfectoid over k, so that S = Spa (R, R") € Perfdy is
affinoid perfectoid. Then, in particular, R is a complete Tate Huber ring and
is uniform, so we can take the subring of power-bounded elements R° as a
ring of definition. Now pick a pseudouniformizer w € R°. We can regard R as
a (uniform) Banach ring by using the sub-multiplicative norm | | : R — R>¢
defined by

2| = inf (| mnaere1 D™

(See [85, p. 11], [52, Chapt. 2].) We will also need the spectral norm

(2.1.1) afz) = lim |2°'/%,

S——+00

which is power-multiplicative and defines the same topology on R. Then
RP={zeR|a(x) <1}

and RT C R°.
As in [85, §11.2], for S = Spa (R, R") € Perfdy as above, we set

(2.1.2) S x Z, =S x Spa(Z,) = Spa(W(R")) \ {[=] = 0},

where @ € R* is a pseudouniformizer of (R, R") and [w] € W(R™) the
Teichmiiller representative. By [85, Prop. 11.2.1] and its proof, this is a sous-
perfectoid (analytic) adic space covered by the affinoid subsets Spa (R, R;),
n=1,2,..., of Spa(W(RT)), where

IS (2 N v er |
(2.1.3) R, = {22;[ ] <[w1/p"]> | ri € R, 7; —> 0}
Set also
(2.1.4) Y(R,R") = Spa(W(R™))\ {[w] =0,p = 0}.

This is also a sousperfectoid (analytic) adic space (see [85, §13.1] for the case
(R,RT) = (C,0¢), or the proof of Proposition 3.6 in [51], in general). We
can define a continuous map (see [85, §15] for the case (R,R") = (C,O¢),
and [26, §11.1.12] in general)

(2.1.5) k| V(R,RT)| — [0, 00],
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which sends a point # € Y(R, RT) with rank-1-generalization Z to the ratio
log(|[zo](Z)])/ log(|p(Z)|). (This map depends on the choice of the pseudo-
uniformizer w). For an interval I = [a,b] C [0, 00] with rational endpoints,
we denote by YV;(R,R"), or Y;(S), the open of Y(R,R*") contained in
k~1(I), given by

Yi(S) = {lpl” < [[w]| < [p|"}.
Then,

Vio,00) (R, RT) = Spa(W(R')) \ {[w] =0} = S x Z,
V(0,00 (R, RT) = Spa(W(R)) \ {p = 0}.

We also have Vi ,»(S) = Spa (R, R,}) as above. In this, we can see that R,
is independent of the choice of RT. This, together with a result of Kedlaya-
Liu [52, Thm. 2.7.7], implies that the (exact) category of vector bundles
on YVjo,e0)(S) = S X Z, does not depend on the choice of Rt in the pair
(R, R™). In particular, we obtain:

(2.1.6)

Proposition 2.1.1. The natural restriction map gwes an exact equiva-
lence between vector bundles over Spa (R, RT) x Z, and vector bundles over

Spa (R, R°) x Z,. O

Note that the construction of Vg .)(R, R*) “globalizes” and one can
make sense of Y|y o) () for a general perfectoid space S over k, cf. [26, Prop.
I1.1.13]. We also have the following descent result, cf. [85, Prop. 19.5.3].

Proposition 2.1.2. Sending a perfectoid space S over k to the groupoid of
vector bundles over Yo o) (S) gives a v-stack. O

For an interval I C [0,00] and S = Spa (R, R") affinoid perfectoid, we
will write

(2.1.7) Bhpe = B§ =T(Vi(R,R"),0y).

If r =m/n >0, then

s (S5

where W(R+)<%> is the p-adic completion of W (R™) [[Z}] Recall also
the p-adic completion of the universal divided power hull

Aere (B2 ) = W () (%)) R/,
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and set
Bl (RY /@) = Auys(RT [@)[1/p].

For r > 0, there are natural homomorphisms

(2.1.8)  W(R') — Bh(R*/w) — BY™ =T ()0 (R, RT), Oy),

crys

see, for example, [24, §6.2]. Note again that if co & I, then BL = BJI%,R+ does
not depend on R* and we can denote it as B;’%.

The Frobenius of RT induces a ring homomorphism W(R") — W (R™).
This gives morphisms Vj,. o) (R, RT) = Vipr.oo) (R, RT) = V. 00)(R, RT) and
also Vo] (R, RT) = Vipr oo (R, RT) = Vo) (R, RY), which we will denote
Frobg or simply ¢, if no confusion arises. Let us denote by Vecg’][rm)( R.R+)
the category of vector bundles ¥ over Y, ) (R, R") with (isomorphism)
¢-structure, i.e. an isomorphism

by * (V) =V,

and similarly for Y, .| (R, R™). There is a similar definition of Vecgil( RR+)
for any interval I with endpoints 0 and oco.

Assume 7 > 0. Since Vo) (R, RT) is affinoid and sheafy (since it is
sousperfectoid, see [51, Prop. 3.6]), we can see by using [85, Thm. 5.2.8],
[52, Thm. 2.7.7], that taking global sections gives an equivalence of cate-

gories between Vecg’) and the category of projective finitely gener-

[r,00] (R, RT)
ated Bg’oo]—modules with a Frobenius semilinear map whose linearization
is an isomorphism. Following [52, §6], [85, §12.3, §13.2], we call them “¢-
modules over Bg’m] ” or “¢-modules over Y, (R, R*)”.

The following result is implicitly stated in [24, §6].

Proposition 2.1.3. Suppose that R™ = R°. Then, for r > 0, the restriction
functor

) ¢
Veey, L mre) — Vel (r R+

is fully-faithful. It is an equivalence of categories when (R, R°) = (C,O¢) is
an algebraically closed perfectoid field.

The result follows directly from the work in [25, §11] when (R, R°) is
a perfectoid field (K, K°). (See [25, Rem. 11.1.11] and [85, §13.3]. In this
case, the restriction functor is not an equivalence in general, unless K is
algebraically closed.) Also, as was pointed out to the authors by Scholze,
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full-faithfulness fails to hold if RT # R°, even when R is a complete non-
archimedean algebraically closed field. Indeed, by Proposition 2.1.1, the tar-
get category does not depend on the choice of R™ C R° but the source
category does.

Remark 2.1.4. The usual argument of “continuation by Frobenius” shows
that the restriction functors

— Vec?

]
Vec Viro0) (R,RY)

¢
— Vec Vo) (R.RF)

¢
Vecy, Vir ool (R,RF)?

(0,001 (R,RT)
are equivalences of categories for all » > 0 (see [85, Prop. 22.1.1]). Using
this we see that Proposition 2.1.3 is equivalent to the statement that, when
RT™ = R°, the restriction functor

— Vec‘Zs

]
Ve Yo,00) (R,RT)

Cy((>,m](R7R+)
is fully-faithful. Note that, by [52, Thm. 6.3.12], there is an equivalence
of categories between Vecg’,(oyw) (R.R*) and the category of ¢-modules over
Bg’oo), with “¢-modules” defined as above.
Proof of Proposition 2.1.3. By applying the functor to the internal Hom be-
tween vector bundles with ¢-structure, we see that it is enough to show that,
for ¥ € Ob(Vecf,{rm]( R.R +)), restriction gives an isomorphism
F(.)}[r,oo} (R7 R+)’ 7/)¢V:1 :> ]-—‘(y['r,oo) (Rv R+)v 7/)(%/:1-

The vector bundle 7 is given by a ¢-module over BZ’?}. Set for simplicity

Bt = Bl pr. — B> B = BO>l B, — B Recall that a

7,4 . . . . . 7"7+
- ’ -
¢-module over By" is a pair (M, ¢pr) of a finite projective By -module M
and an isomorphism

G i M @prs BET 5 M,

which is linear over ¢ : B%T’Jr = B}”f. The statement amounts to the claim
that the natural map

M=t — (M @ g Bp)*=!

is bijective.
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We first reduce to the case that the module M = I'(}, ) (R, RY), ) is
finite free over B;f. This reduction follows the argument in the proof of [26,
Thm. I1.2.6] (cf. [52, Cor. 1.5.3]): We pick a surjection 1 : F = (BR")™ — M
with N = ker(¢) and choose a splitting F' = M & N. We would like to give
the source F' a ¢-module structure

¢r: F@p+ BT S F

making 1 equivariant for ¢. The desired ¢ is a lift of ¢ via v, which has to
be an isomorphism. Hence, finding ¥ is possible if there is an isomorphism

¢*(N @pr+ By') = N@po+ , Bt =~ N

of BEJF—modu]es. Consider the Grothendieck group of finite projective B;;r—
modules. In this, the classes of both N and N Dprt BEJF are given by
[(BEF)™] — [M]. Hence, there is such an isomorphism after possibly increas-
ing m, i.e. after adding a finite free module to F'. We conclude that there
is a ¢g-module (N, ¢y) such that M & N = F ~ (B ")". Using this we see
that it is enough to show that, for a ¢-module (M, ¢ps) with M free, the
natural map

M¢M=1 — (M ®B;‘+ BE)¢M=1

is bijective. After fixing a basis M ~ (B}%J“)”, we can write the map ¢y on M
by using an nxn matrix A = (a;;) with entries in B;{r, ie. gr(z) = A-¢(x).
In fact, A € GL,(Bj") so the inverse A~! also has entries in Bj;".

We will use some more work of Kedlaya-Liu (see [52, §5.1, §5.2]): For
r > 0 we have

+0o0
B 1/p) = { > ' e WR)/p) | lim paw) = 0}~

1>>—00
For x = oo [Q;] J B[Oﬂ“] 1 dr>
=D iscoolmip’ € B '[1/p], and 7 > s > 0, set
400
lells = [ > lwalp’|| = max{p~a(z:)’}.
i>>—00 s

Here, « is the spectral norm for R, cf. (2.1.1). (In [52], ||z||s is denoted as
A(a®)(x).) This induces a power-multiplicative norm on B Ig’r][l /p] which

also extends on various other related rings described in loc. cit., see [52,
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Prop. 5.1.2]. In particular, for each s > 0 with s € [¢,#], the norm || |,
extends to B[;’t I Therefore, for each s with r < s, the norm || ||s extends to

By = Bg’oo) which contains B}%Jr = Bg’oo]. The following is an extension of
[52, Lem. 5.2.11 (a)] and [25, Prop. 1.10.7]. Recall R* = R° and r > 0.

Lemma 2.1.5. An element x € B, belongs to B;%’Jr if and only if

limsup ||| }/* < 1.

S———+00

Proof. Note that [52, Lem. 5.2.11 (a)] gives the corresponding statement for
Bpr and BE. On the other hand, [25, Prop. 1.10.7] implies the statement of
the lemma, when R = K is a perfectoid field. The following is a variation of
the argument in the proof of [52, Lem. 5.2.11 (a)].
1) First consider these x in B}, which can be written in the form z =
Fla;]p, with z; € R. Then

lim sup |||/ —hmsupsup{p Usa(xi)}.
+

S———+00

If z; € R° then a(x;) < 1. So, if #; € R° for all 4, then sup,{p~"/*a(z;)} <
plal/s, so limsup,,, Hle/S < 1. On the other hand, if there is some
i such that a(z;) > 1, then for all € > 0 we can find s > 0 such that

p~/*a(z;) > 1+ ¢ and then limsup,, , . Hm||§/S > 1. This gives that if
limsup,, | Ha:Hl/S <1, then z; € R° for all 4, and so x € W(R°)[1/p] C
ByT.

2) Next we show that if x € BEJF, then limsup,, , ||:BHL};/S < 1, which
is the one direction of the implication. Suppose r = m/n. If = € B;%’Jr =
W(RO)( >[1/p] then p*z = y € W(R°)<[w] ) for some a > 1. We have
lp®z||s /S = p~ 3|z |s Ys . Hence, it is enough to show limsup,, , HyH;/s
1 for y € W(R°)<[zpﬂ] ). But all such y are p-adic limits of elements in
W (R°)[1/p] (so also of the type appearing in (1) above), and so this holds by
(1) and continuity. It follows that limsup,, | o H:BHl/S <lforallze BEJF.

3) We now deal with the converse in the case of a general element x € B.
We observe that for any such x, there is a € Z, so that we can write x = y+2

with y = S [y;]p’, yi € R, asin (1) above, and with z € B;;J“, cf. [52, Lem.
l/s

5.2.8]. Our assumption and (2) applied to z gives that limsup,, , o |yl[s
1. Hence by (1), y € By" and so 2 € By also. 0
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Choose a basis e1,...,e, of M. For & = (x1,...,1,)" € M®Bg+ B, ~
(BR)", and s > r, set

lzlls = max{ ]| | ¢ =1,....n}.

Hence, for © € M ®pr+ By with om(x) = A-p(x) = x, ie. with ¢(x) =
A=l 2, we find

(@)l = 1A~ 2]l /* < JATH|* - )l

: 1
where || Bll, = [[(bij)lls = max;; [[bi]ls. For b € By, limsup,,, o [[blls"* <
1, by Lemma 2.1.5. Recall that the entries of A~! are in BE”L so we also

have limsup,, , ; ||A*1H;/s < 1. Also observe that

o) 13/ = ll[l;L*.
So given € > 0, there is sg > 0 such that, for s > sg, we have
(Il p27)P < (1 +€) - |[l3*.
It follows from this and [52, Lem. 5.2.1] that

lim sup ||z]|}/* < 1.

S———+00

Now use Lemma 2.1.5 to conclude that z € (BEJF)” =M.

The second assertion, in the case when (R, R°) is an algebraically closed
perfectoid field (C,O¢), follows from [25, Thm. 11.1.9, Cor. 11.1.13] (see
also [85, Thm. 13.2.1]). O

Recall that given an untilt R* of R, there is a canonical surjection
W(RT) — R'" whose kernel is generated by an element & = &z € W(RY)
which is primitive of degree 1, comp. [85, §11.3]. Recall that B(TR(Rﬁ) is the
(¢)-adic completion of W (R*)[[w] 1] and that Bar(R*) = Bji(R*)[1/¢].
The element & defines a closed Cartier divisor on Y(R, RT), on Vio,00) (R, R™),
and a Cartier divisor on the scheme Y (R, RT), where

(2.1.9) Y(R,R") = Spec (W (R))\ V(p, [=]).

Consider the open immersion j(R, RT) : Y(R, R*) < Spec (W (R™)). There
is also a map of locally ringed spaces J(R, R") — Y (R, RT).
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Theorem 2.1.6 (Kedlaya [51]). a) (GAGA) Pull-back along the map of lo-
cally ringed spaces Y(R, RT) — Y (R, R") induces an exact tensor equiv-
alence between the corresponding categories of vector bundles.

b) The restriction j(R, RT)* induces a fully-faithful tensor functor between
the categories of vector bundles on Y (R, R") and on Spec (W (R™)).

c) If (R,RT) = (K,K™") is a perfectoid field, then the restriction functor
J(K, KT)* is an equivalence between the corresponding tensor categories
of vector bundles.

Proof. Part (a) is [61, Thm. 3.8]. For part (b) see [51, Rem. 3.11], cf. [32,
Thm. 2.5]. Part (c) follows from [51, Thm. 2.7], see also [85, Prop. 14.2.6]. O

2.1.1. The v-sheaf associated to an adic space. Let ) be an adic
space over Spa (Z,). The v-sheaf Y¢ — Spd (Z,) over Spd(Z,) is the functor
on Perfd; which associates to S = Spa(R, R") in Perfdy, the set of isomor-
phism classes of pairs (S¥, ) where

1) (S*%,1) = (Spa(RF, R**), 1) is an untilt of S over Z,,
2) x: St~ Yisa Z,-morphism of adic spaces.

(See [85, 18.1]. In fact, this construction of Y also applies to pre-adic spaces
Y over Spa(Zy); see [85, App. to §3] for the notion of pre-adic space. (There
is also a similar construction for pre-adic spaces over Spa(Q),) producing
v-sheaves over Spd (Qy).)

2.1.2. The v-sheaf associated to a formal scheme. Let X be a formal
scheme over Spf (Z,) which is locally formally of finite type. Consider the
corresponding adic space X*4 over Spa (Zy). We can then take the corre-
sponding v-sheaf (X24)¢ over Spd (Z,) as in §2.1.1; we denote this v-sheaf
simply by X9.

2.1.3. The v-sheaves associated to schemes. Following [3, §2.2], we
will give two (different) constructions of v-sheaves associated to schemes
over Zy,. These constructions are somewhat subtle. Suppose 2 = Spec (A)
is an affine scheme over Zj:

i) Let 2°* = Spec (A)* (“small diamond”) to be® the v-sheaf over Spd (Z,,)
which associates to the perfectoid Tate Huber pair (R, RT) the set of

°In [3], the notation used is 2 °. Our notation is intended to make the distinction
from 2 ¢ more transparent.
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isomorphism classes of triples (Rf, ¢, f), where (R, 1) is an untilt over Z,
and f: A — Rb is a ring homomorphism.

ii) Welet 2°¢ = Spec (A4)° (“large diamond”) to be the v-sheaf over Spd (Z,,)
which associates to the perfectoid Tate Huber pair (R, RT) the set of iso-
morphism classes of triples (R, ¢, f), where (Rf,:) is an untilt over Ly,
and f: A — R*is a ring homomorphism.

Both these constructions “glue” to give functors () — ( )*, resp. () —
()9, from the category of schemes over Spec (Z,) to the category of v-sheaves
over Spd (Z,). There is a natural transformation j : ( )* + ( )¢ such that

(2.1.10) jo XY — 2°

is an open immersion of v-sheaves if 2 is separated of finite type over Z,.
It is an isomorphism if 2 is proper, cf. [3, §2.2].

For schemes separated of finite type over Z,, both of these functors can
be obtained by first going through the category of (pre-)adic spaces: If 2" is
such a scheme, we denote by 27 the adic space over Spa(Zy) = Spa (Zy, Zy)
obtained from the formal scheme 2~ given by the p-adic completion of Z.
We can apply §2.1.1 to Y = 273, As in §2.1.2, we then just write (%”)<>
instead of (2 ad)<>. By [3, Rem. 2.11] we have a natural isomorphism for the
associated v-sheaves,

2= (2)°.

On the other hand, we can consider the adic space over Spa (Z,) given by
the fiber product defined as in [48, Prop. 3.§]

2= XSpec (Z,) Spa (Zp)

We then have 2°¢ = (2724)9. There is a natural open embedding of adic
spaces

22—y g,

which is an isomorphism if 2~ — Spec(Z,) is proper, cf. [48, Rem. 4.6
(iv)]. After applying the O-functor of §2.1.1, this gives the open immer-
sion (2.1.10).

Suppose now that X is a separated scheme of finite type over Q, or a
rigid analytic space over Q,. We can consider the corresponding adic space
X2 over Spa (Q,,Z,) and then its associated v-sheaf (X24)? over Spd (Q,)
as in §2.1.1 above, cf. [85, 10.2]. We denote this simply by X©. (This is a
diamond in the sense of Scholze, [85, 82].) This gives functors X — X (on
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the category of schemes over Qy, resp. of rigid-analytic spaces over Q,); in
the case of schemes over , this agrees with the functor X — X ¢ defined
above.

If 2 is a separated scheme of finite type over Z,, there is a natural
isomorphism of v-sheaves over Spd (Q,),

(Z0)y = 29 Xspaz,) SPd (Qp) = (2 @z, Q)°.

Similarly, we can consider the v-sheaf 2°® over Spd (Z,) and its “generic
fiber” which is a v-sheaf over Spd (Q,),

—

(2= 2 Xspaz,) Spd (Qp) = (2)° Xspa (z,) Spd (Qp).

We have a natural isomorphism of v-sheaves over Spd (Q)),
(%’)W = (%7]><>7

where é”; is Berthelot’s rigid analytic generic fiber of the formal scheme Z.
There is an open immersion of v-sheaves

(2.1.11) o, (2= (Z0)° — (X @z, Q)0 = (2%,

obtained by taking the generic fiber of (2.1.10). It also arises by applying
the O-functor to the open embedding 2;, < (2 ®z, Qp)"8 of rigid-analytic
spaces.

Proposition 2.1.7 ([85, Prop. 18.4.1], cf. [63]). The functor X — X9 from
flat and normal formal schemes locally formally of finite type over Spf (Zy)
to v-sheaves over Spd (Zy) is fully faithful. O

Corollary 2.1.8. Let 2", % be normal schemes which are flat and separated
of finite type over Spec(Zy,). Let ' : 2% — &% be a morphism between
the corresponding v-sheaves over Spd (Zy,) and g : X @z, Q, = % @z, Qp a
morphism of schemes between their generic fibers over Spec (Qp). Suppose
that the diagram of v-sheaf maps

Jay,
2® Xspa(z,) Spd (Qp) —— (2" ®z, Qp)°

(2.1.12) f”Xspd(Zp)idSpd(Qp)J/ Jgo

Ve

e Xspd (z,) Spd (Qp) —— (2" ®z, Qp)o
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commutes. Then there is a unique morphism f : X — % of schemes over
Spec (Z,) such that f* = f* and g = f ®z, idg, .

Proof. Using Proposition 2.1.7 we obtain that there is f: 2 = @\A between
formal p-adic completions which corresponds to f?, i.e. with f¥ = (f)¢ = f*¢.
By the full-faithfulness of the (-functor from normal rigid analytic spaces
to v-sheaves (see [85, Prop. 10.2.3]), f extends the morphism between the
rigid generic fibers induced by g. Note that the pair (g, f) defines a map of
underlying topological spaces |g|U|f] : |2'| = |#| which is continuous since
it commutes with specializations. Using this and uniqueness, we see that we
can reduce showing the existence of f to the case where 2" and % are affine.

But for a normal flat Zy-algebra A of finite type, we have A = (A®z, Qp) NA

intersection in A ®7 Q). It now follows that g respects the Z,-integral
( » Qp g resp p-integ
structures and extends to f. O

The above statement motivates the following definition.

Definition 2.1.9. For a scheme 2~ over Spec (Zy), we let
(2.1.13) 2O = X8 U aasgaespd(ey) (£ ®z, Qp)°

be the coproduct v-sheaf over Spd (Zp). Then & — 2 ¢/ gives a functor
from schemes over Spec (Z) to v-sheaves over Spd (Zy).

Remark 2.1.10. The considerations of §§2.1.1-2.1.3 extend to the case
where the ground ring 7Z, is replaced by a complete discrete valuation ring
with perfect residue field. We apply this to the ring of integers in a finite
extension E of Q,, or of Qp.

2.1.4. Products of points. For future use we record the construction,
following [82, 85], of a cover for the v-topology of the affinoid perfectoid
S = Spa(R,R") over k: Consider a product [],c; Vi of valuation rings V;
with complete algebraically closed fraction field K; of characteristic p, where
I ranges over the set of points of S, each point given by Spa (K;,V;) —
Spa (R, R™) (see [85, Prop. 4.2.5]). Let w € R* be a pseudouniformizer for
R and denote by w; € V; its image under R — K;; then w; is a pseudouni-
formizer for K;. Set w = (w;);. Now let BT = [],.; V; with the w-adic
topology and set B = B*[1/w] C [],.; Ki. The map T = Spa(B,B") —
S = Spa (R, R™) gives a v-cover of S. We call such a T a product of points.
Note that a product of points T' as above is a strictly totally disconnected
perfectoid space, in the sense of [82], see [31, Prop. 1.6]. Using v-covers
given by products of points, we can often reduce various questions to the
case S = Spa (C,C™") with C an algebraically closed field.
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2.2. Shtukas

We recall the definition of Scholze’s p-adic mixed characteristic shtukas over
perfectoid spaces.

Definition 2.2.1. Let S = Spa (R, R") € Perfdy, i.e. S is affinoid perfectoid
over k, and let S* = Spa (R*, R*") be an untilt of S over W (k). A shtuka
over S with one leg at S* is a vector bundle ¥ over the analytic adic space
S x Zy together with an isomorphism

oy - Fr0b§(7/)|skzp\sﬁ = 7/‘5*2?\5::

which is meromorphic along the closed Cartier divisor S* of S x L.

The rank of the vector bundle ¥ is also called the height of the shtuka.
Note that

(2.2.1) (S x Z,)° = 8 x Spd(Z,)

and that the untilt S* corresponds to a section of S x Spd(Z,) — S, or
equivalently to a morphism S — Spd(Z,), see [85, §11.2, §11.3]. Hence,
instead of saying “a shtuka over S with one leg at S*”, we may equivalently
say “a shtuka over S/ Spd (Z,)”.

Let us remark here that, by using Proposition 2.1.2, one sees that the no-
tion of shtuka extends to general perfectoid spaces S over k with a morphism
S — Spd (Z,) and that sending S/ Spd (Z,,) to the groupoid of shtukas over
S/ Spd (Z,,) gives a stack for the v-topology.

To simplify notations, we often write ¢ for Frobg.

Definition 2.2.2. A minuscule shtuka of height h and dimension d over S
with one leg at S* is a shtuka (¥, ¢y ) of height h over S with one leg at S*
such that

¥ C ¢y (Frobg (7))

with ¢y (Frobg(7))/? of the form (ig:).«(# '), where # is a vector bundle
of rank d over S*.

We note that in the theory of Shimura varieties, it is not enough to
only consider minuscule shtukas because in the context of G-shtukas (cf. §2.4
below), even if p is a minuscule cocharacter of G, there may not exist faithful
representations r: G — GLj such that r o p is a minuscule cocharacter
of GLh.
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2.2.1. Shtukas and BKF-modules. We recall the related notion of
a Breuil-Kisin-Fargues (BKF-) module, comp. [85, Def. 11.4.3] (for alge-
braically closed nonarchimedean fields).

Recall ([85, Def. 17.5.1]) that an integral perfectoid ring is a p-complete
Zp-algebra R such that Frobenius is surjective on R/p, such that there is an
element 7 € R with 7P = pu for a unit v € R*, and such that the kernel of
6: W(R’) — R is a principal ideal (£). Here R® = fm R

Remarks 2.2.3. (i) Let S = Spa (R, R") € Perfdy, i.e., S is affinoid per-
fectoid over k, and let S* = Spa (R?, R") be an untilt of S. Then R is
integral perfectoid (see [7, Lem. 3.20, in combination with Lem. 3.9 and the
discussion in Rem. 3.8]).

(i) If R is integral perfectoid with pR = 0, then R = R’ and (¢) = (p) C
W(R), cf [7, Lem. 3.10]. Hence R is a perfect ring. Conversely, a perfect ring
in characteristic p is integral perfectoid.

Definition 2.2.4. Let R be an integral perfectoid ring. A Breuil-Kisin-
Fargues (BKF-)module over R is a vector bundle ¥ over Spec (W (R?)) to-
gether with an isomorphism

¢y 1 " (V) [1/€] — V[1/€].

If S = Spa(R,R*) € Perfd, and S* = Spa(RF, R*) is an untilt of
S, we also speak of a BKF-module over S with leg along S* instead of a
BKF-module over Rt

Remark 2.2.5. In [85, 7], the terminology “Breuil-Kisin-Fargues (BKF-)
module over R” is also used for a vector bundle %, over Spec (W (R’))
together with an isomorphism

¢"Vinf : ¢*(%11f)[1/¢(€)] — me[l/gﬁ(f)]

For example, such a BKF-module is naturally associated to a p-divisible
group over R using Dieudonné theory, see [85, Thm. 17.5.2]. To distinguish
from the above, we will say that this has leg along ¢(§) = 0 (or along
=1 (S%)). Since ¢ : W(R") — W (R) is an isomorphism, there is an exact
equivalence between the categories of the two types of BKF-module, which
is obtained by twisting the W (R’)-module structure: ¥ = (¢~ 1)*(¥ur) =
W(R) Qg1 w(r) Ynt- (See also [85, Rem. 11.4.6].)

Definition 2.2.6. Let S = Spa (R, RT) € Perfd;, and let S* = Spa (R, RT)
be an untilt of S. Let ¥ be a BKF-module over S with leg at S*. The shtuka
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over S associated to ¥ with one leg at S? is the shtuka obtained by pull
back along the map of locally ringed spaces

Yio,00) (R, RT) — Spec (W (R™)).

We then also say that ¥ is an extension of the shtuka. In general, this
extension is not uniquely determined by the shtuka.

Proposition 2.2.7. Let S = Spa (R, R") € Perfdy. Let S* = Spa (Rf, R*Y)
be an untilt of S. The restriction functor from the category of BKF-modules
over S with leg at S* to the category of shtukas over S with leg at S¥ is
faithful. It is fully faithful if R* = R°. It is an equivalence of categories if
S = Spa(C,O¢) for an algebraically closed non-archimedean extension C
of k.

Proof. By Theorem 2.1.6 (b), restriction along
J(R,RY): Y(R, R") < Spec (W (R™))

is a fully faithful tensor functor from the category of vector bundles on
Spec (W(R™)) to the category of vector bundles on Y (R, R"). By Theo-
rem 2.1.6 (a), there is an equivalence of categories between the categories
of vector bundles on Y(R, R") and on Y (R, RT). The first assertion now
follows since the restriction along Vg «)(R, R") < V(R, RT) is also faith-
ful. By Proposition 2.1.3, it is fully faithful when R* = R°, but not in
general, by the comment after the statement of Proposition 2.1.3. The last
statement is Fargues’ theorem. See [85, Thm. 14.1.1] which states this result
(and more) when C* has characteristic 0. The statement in the case that C*
has characteristic p is shown by the same argument, as outlined in the proof
of [85, Thm. 14.1.1]. O

2.2.2. The Fargues-Fontaine curve. For S = Spa (R, R") affinoid per-
fectoid over k, we can consider the (adic) relative Fargues-Fontaine curve
Xrr s defined as the quotient

(2.2.2) Xrr,5 = y(o,oo)(s)/(FYObS)Z-

Let (7, ¢y) be a shtuka over S with one leg at S*. Then, there is r > 0
such that ), o)(S) does not intersect the divisor given by S%. Note that
Viroo)(S) — Xprs is surjective for all 7 > 0. The restriction of ¥ to
y[hoo)(S) descends to a vector bundle Y% on the quotient Xgp g. Also,
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there is 7' > 0 such that Y, (S) does not intersect the divisor given by St
and, as above, we can descend the restriction of (¥, ¢y ) to Vi ,1(S) to a
vector bundle ¥4 on Xyr g (see [85, §14.1 and Prop. 22.1.1]). We can see, by
pulling back to products of points, that both these functors (¥, ¢y ) — Yr
and (¥, ¢y ) — V¢ from the category of shtukas over S to the category of
vector bundles over Xpp g are faithful. (They are not fully faithful.)

Recall that X¢r g makes sense for all perfectoid spaces S, and sending
S to the groupoid of vector bundles on Xyp g defines a v-stack ([26, Prop.
I1.2.1]).

2.3. Families of shtukas

We will also want to consider “families” of shtukas. This leads to the follow-
ing definition.

Definition 2.3.1. Let F be a v-sheaf over Spd(Z,). A shtuka (7, ¢y ) over
F is a section of the v-stack given by the groupoid of shtukas over F. In other
words, a shtuka over F is a functorial rule which to any point in z € F(S5),
where S € Perfdy, associates a shtuka (75, ¢y, ) over S with one leg at the
untilt S* given by S = F — Spd (Z,).

As an example, let X be an adic space over Spa(Z,) and denote as
before, in Section 2.1.1, by X® — Spd (Zy) the corresponding v-sheaf. Then
we obtain the notion of a shtuka over X¢. We can think of the shtuka #
as having one leg at the “universal” untilt given by X¢ — Spd(W(k)) —
Spd(Zy).

Definition 2.3.2. Let O be a complete dvr of mixed characteristic with
perfect residue field. Let 2" be a scheme over Og. A shtuka over 2 is a
shtuka over the v-sheaf (over Spd (Og)),

3&/0/ = ¢ Ll(gO)n («% R0og E)Oa

cf. (2.1.13). In other words, a shtuka over 2" is given by a pair consisting
of a shtuka over the “small diamond” v-sheaf 2 ® and a shtuka over the
v-sheaf (2" ®0, E)¢ together with an isomorphism between their pull backs
to ('%")77 =2¢ XSpd (O5) Spd (E).

Remark 2.3.3. a) If p is a unit in I'(2",04), then a shtuka over 2 is
the same as a shtuka over the v-sheaf .2 ¢. By contrast, if p is nilpotent in
['(%Z,04), then a shtuka over 2 is a shtuka over the v-sheaf 2 ¢. Often,
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for clarity, we will still specify the v-sheaf (2°¢/, 2°¢ or 2°*), that we are
using when talking of shtukas over schemes.

b) By a shtuka over a formal scheme X over Spf (Of) we mean a shtuka
over the v-sheaf (¥24)?. In the above description of Definition 2.3.2, if 2~ —
Spec (Og) is separated of finite type, a shtuka over 2" ¢ is given by a shtuka
over the formal scheme 2~ given by the p-adic completion, see §2.1.3.

¢) There is a natural map of v-sheaves over Spd (Op)

20— 0.

This is an isomorphism if 2~ — Spec (Og) is proper, cf. [3, §2.2]. It is not
surjective in general, as one can see in the example of 2 = Spec (Oglt]).
One could also consider shtukas over the v-sheaf 2 ©; the “smaller” v-sheaf
2°°/ is better suited to our application.

Example 2.3.4. Let 4 be a p-divisible group of height h and dimension
d over 2", where 2 is a scheme over Spec (W (k)). Then there is an asso-
ciated shtuka £(%) of height h and dimension d over 2°¢ with one leg, as
follows. We may assume that 2~ = Spec (A). Let S = Spa (R, RT) € Perfd.
Suppose that (S*,x) is a point of 2°* over Spd(Z,), given by an untilt
S% = Spa (R, RT) of S and x* : A — R,

Recall that using [85, Thm. 17.5.2] we can associate to a p-divisible
group ¢ over Spec (R*t) a finite projective W (R*)-module Myt = Myt (9)
together with an isomorphism

M+ @ (Mint)[1/0(€)] = Ming[1/6(€)]-
Note that, in this, the leg is along ¢(£) = 0. We have

Mins C ¢Miuf (d)*(Mlnf)) - Mmf[l/d)(g)]

The module M;,s is obtained using Dieudonné theory. If pRtiJr = (0) so
that R = R, then M;,;(%) is canonically the W (R")-linear dual of the
value of the contravariant Dieudonné crystal D(¥4) of ¢4 at W(RT), i.e.
Mine(9) = D(@)(W(R"))*. For example, we have Min(pp=) = W(RT),
with ¢ given by p~1.

Then the value of the shtuka £(%) on (S*, x) is given by the following
shtuka £g on S with one leg at S*. Namely, let £ be equal to the restriction
to the complement Vg ooy (S) = Spa (W(R")) \ {[w] = 0} of the pull-back
(¢~ (Mint(2*(9)), drr(z-(9)))- In other words, (%) is the shtuka associ-
ated to the BKF-module (with leg along £ = 0)

(M(2*(9)), drta@y) = (¢~ (Mint(2*(9)), Ortr (2= @)))-
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Remark 2.3.5. Note that the previous construction does not apply to the
“large diamond” 2 ¢. For example, we do not know how to define for a
p-divisible group over Spec (F,[t]) a shtuka over Spec (F,[t]) that extends
the shtuka over Spec (F,[t])* given above. This is one reason that we mainly
consider shtukas over 2°*, or, in the mixed characteristic case, over 2 /.

2.3.1. Shtukas in characteristic p. We will see that shtukas in char-
acteristic p have a Dieudonné module like behaviour. We introduce the fol-
lowing definition.

Definition 2.3.6. Let 2 be a perfect quasi-compact and quasi-separated
k-scheme. A meromorphic Frobenius crystal over 2 is a pair (M, ¢.z4),
where .# is a finitely generated projective module over the sheaf of rings
W (Og4) and ¢ 4 is an isomorphism

b O (A)1/p] — A[1]p).

Here ¢ denotes the Frobenius on W(Og). The pair (AZ[1/p], ¢.4) is the
corresponding Frobenius isocrystal over 2 .

Remark 2.3.7. By Remark 2.2.3 (ii), we see that a meromorphic Frobenius
crystal over the perfect k-scheme Spec (A) is the same as a BKF-module over
the integral perfectoid ring A.

A meromorphic Frobenius crystal (.#, ¢ ,) over the perfect k-scheme
2 gives a shtuka over 2%, as follows. Suppose 2~ = Spec (A) is affine.
Let S = Spa (R, R") € Perfd,. Then a point of 2 * with values in S is
given by an untilt S* = Spa (R, R*T), where Rt is a k-algebra, and a
homomorphism z*: A — Rt. Then R? = R and the kernel of the natural
map W(RT) — R'T is generated by ¢ = p. By extension of scalars, the map
W(A) — W(R™) defines therefore a BKF-module .#% = .# ®y;(4) W(RT)
over S with leg along S¥, which in turn defines a shtuka over S with leg
along S%, cf. Definition 2.2.6.

Theorem 2.3.8. The functor given by the construction above gives an exact
fully faithful tensor equivalence from the category of meromorphic Frobenius
crystals over the perfect k-scheme Z to the category of shtukas over Z*.

Proof. We first show that the functor is fully faithful. We can quickly reduce
to the affine case 2 = Spec (4).

6A different proof of this Theorem is given in [33], see loc. cit. Thm. 10.4. The
proof in [33] still uses Sen theory as in II) below.
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Let ¢ : (Mnt, P.t,) — (Nents G.4z,) be a homomorphism between the
shtukas corresponding to the meromorphic Frobenius crystals (.#, ¢_,) and
(AN, bx). Set (R, RT) = (A(t'/P™), A[tY/P™]). Recall that here At'/P™]
is the (¢)-adic completion of the perfect algebra A[t, t1/7 +'/P* . ]. The ele-
ments of A[t'/P™] are represented as power series

Z aiti

i€Z[1/p]>0

with a; € A and with support (i.e. set of indices ¢ for which a; # 0) which is
either finite, or forms an increasing unbounded sequence. Then, A((t'/?™)) =
A[tYP™][1/t]. Consider the v-cover 7: S = Spa (R, RT) — Spec (A)*.

The homomorphism ) gives, by evaluating on S, a homomorphism of
vector bundles over YV o0\ (R, RT) = YV o0)(5),

¢(S> : '/lsht(s) — =/Vsht(S>

These bundles come by restriction from vector bundles .#(S) and 4 (S)
over Vo oo)(R, RT) = Y(R, R"). Note that R* = A[tY/P™] = R°, so we can
apply Proposition 2.1.3 to r > 0. Using this and then glueing, we see that
1 (S) uniquely extends to a homomorphism of vector bundles over (R, R™)
which respects the Frobenius structures,

Y(S) + A(S) — A(S).
Recall Z(S) is the pull-back of .# under Y(R, R") — Spec (W (R")) —
Spec (W (A)), and similarly for .47(S). By Lemma 2.1.6 (a), this comes from
a unique W (R™)-linear homomorphism

g(R+) : ///®W(A) W(R+) — N ®w(4) W(R+).

It remains to descend this to a W (A)-homomorphism. It is enough to show
that the image under ¢(R™) of A4 C M Ry a) W(RT) lands in A" C
N @ (ay W(RT). Since 4 is finite projective, there is a W (A)-module .4
such that A @ A7 ~ W(A)". Using A4 C A @& A" we can view (R") as
taking values in (A @ A") @y 4y W(RT) = W(R')™. Since B

(«/V @JV/) N (JV ®W(A) W(R+)) =N,

it is enough to show that the image of ¥ (R") lies in A & A" ~ W(A)".
Consider k-algebra homomorphisms z* : A — K(z) with K(z) a perfect
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field which induce z* : A[tY/P”] — K(z)[t'/?”]. Since A is perfect, A —
[1, K(z) for a set of 2, and to show that an element w(t) of W (A[t'/P™]) =
[Tisg A[tYP7] is “constant”, i.e. it lies in W(A) = [[;», 4, it is enough to
show that z*(w(t)) € W(K(z)) for all z. Indeed, -

WA D n [Tw (K (2) = w(4)

with the intersection taking place in [], W (K (z)[t'/?™]). This shows that
it is enough to prove that z*y(R™) is in W (K (z)), for all z as above, and
it allows us to reduce to the case that A is a field K. Now both .# and A4
are finite free, so ¢(R") is given by a matrix (r;;) with entries in W(R") =
W (K[t'/?~]) which we try to show are in W (K). We use that (S) comes
with descent data along m, i.e. we have the identity

(2.3.1) p1((5)) = p2(¥(95))

over S Xgpec (K)o S+ Note that
Ot (S x S) = O (D% puymey) = K[E/P7 41/77]
Spec (K)© K (/7)) 1 s Ug s

where ]5’;((( p1/p) 18 the perfectoid punctured open disk over K ((t'/7)) (com-

pare to the proof of [85, Prop. 18.3.1]). Let r;; € W(R™) be an entry of the
matrix giving ¢(R") as above. Using (2.3.1) above, we see that the images
of r;; under the two natural maps

W(R+) — F(y[O,oo)(S)7 O) — 1—W(J}[O,oo)(s X Spec (K)© S)? O)
agree. Since
W (O™ (S Xspee 110 5)) =W (KL 15/ 1) = T(Vo,00) (S Xspec (10 5), O),
the images of 7;; under the two natural maps
W(R) = WK ]) — WK™ 6" ])

given by t — t1, t = t2, agree. This implies that r;; has, at the same time,
only powers of t; and only powers of ¢3, so it is constant, i.e. belongs to
W (K). By the above, this completes the proof of full-faithfulness.

We now proceed to show that the functor gives an equivalence of cate-
gories by showing it is also essentially surjective.
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I) We first treat the case that A = K is an algebraically closed field. Let
(7,¢y) be a shtuka of rank d over Spec (K)*. This gives a corresponding
vector bundle 7#p of rank d over the (absolute) Fargues-Fontaine curve
XFF Spec (k)¢ - This is meant in the sense described in [2] (since there is not
really a relative FF curve Xpg spec (k)¢ ): there is a category whose objects
we think of as the “vector bundles over Xgp gpec(x)e”- The objects are

given by descent from a perfectoid v-cover, as follows. Set L = K ((t'/7™)),
which is perfectoid. Then 7 : T = Spa(L,01) — 2¢ = Spec(K)* is
a v-cover and 7*(¥,¢y) is a shtuka over T with descent data along .
By restriction from Y o0)(L,OL) to Vo,00)(L,Or) followed by descent, we
obtain a corresponding vector bundle & over the Fargues-Fontaine curve
Xvr,r = Xyr,r. The descent datum along 7 gives an isomorphism over
XFF T, oT>
pi(&) = py(&).

This describes #pp. In particular, by definition, & = 7*(¥pp).

Anschiitz [2] shows that the category of vector bundles on Xpg spec (k)¢
is equivalent to the category of Frobenius isocrystals over W (K)[1/p]. Hence,
there is a Frobenius isocrystal (V, ¢y ) over W(K)[1/p] such that & (with
its descent datum) is obtained from (V, ¢y ). It follows, by the construction
of this equivalence, that the pull-back of (V| ¢y ) under

V(0,00 (L, Or) — Spec (W(Or)[1/p]) — Spec (W (K)[1/p])

agrees with the restriction of 7* (7, ¢y ) from Vg o0\ (L, OL) to V(0,00) (L, OL).
In particular, we can choose a framing of 7*(¥#', ¢y ) over Spa (L, Or) which
respects the v-descent data, and thus obtain a Spa (L, Op,)-point of the mod-

uli stack of shtukas with framing /\/llé"i »., together with v-descent data, i.e.
d,0,

a point of Mi(l}lid,b,u with values in Spec (K)* = Spd (K). (See §3.2.1 for
the notation. Here, the element b is determined by (V, ¢y ) and we take p
sufficiently large.) The argument in the proof of [32, Prop. 2.30] now ap-
plies and implies that this point is given by a Spec (K)-valued point of a
corresponding affine Deligne-Lusztig variety (see §3.3, and especially The-
orem 3.3.3 (a)). This translates to the fact that the shtuka over the whole
Vi0,00)(L; Or) comes from a meromorphic Frobenius crystal (M, ¢pr); here
M is a W(K)-lattice in V and ¢y = @V |mi1/p)- This shows that our functor
is essentially surjective.

IT) We now consider the general affine case 2~ = Spec(A), with A a
perfect k-algebra. Let (¥, ¢y ) be a shtuka of rank d over 2 *. We consider
the v-cover

S = Spa (A7), A["/7"]) — Spd (A).
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We have a surjective map of v-sheaves

S x Spd (Z,) — Spd (A) x Spd (Z,).
We also have an isomorphism of v-sheaves over Spd (Z,),
(2.3.2) Spd (A) x Spd (Z,) =~ Spa (W (A))°,

obtained by the argument in the proof of [85, Prop. 11.2.1]. Here we write
Spa (W (A)) for Spa (W (A), W(A)) where W (A) is equipped with the p-adic
topology; this is a pre-adic space in the sense of [85, App. to §3]. By the
above ¥ gives a section of the v-stack of vector bundles over Spa (W (4)).
Set

(B, BY) = (W(A)[1/p], W(4)).
Note that as in [85, Rem. 13.1.2], the open U = Spa (B, B*") is an sousper-
fectoid analytic adic space. In fact, we can obtain a perfectoid cover

Uy — U® = Spa(B,B*)°

of the v-sheaf U as follows.

Denote by Ou = Zp|pp=] the p-adic completion of the ring of integers
Zplpp=] in the Z;-extension Koo = Qp(pp=) of Q,. Write, as usual, Z; =
(Z)pZ)* x (1+pZy) if p > 2, and Z5 = Z/2Z x (1+4Zy) for p = 2. For p > 2
set ' =Ty =1+4pZ, ~Z, and T, = 1 + p"T'Z, ~ p"Z,, so that K,, :=
(Koo)' = Qp(ppns1), O := Zpluynsi]. For p = 2, set T')y = 14 27127,
Then O, supports a continuous Z, -action. We now consider

Uoo = Spa (B®Z,,@om B+®Zp@oo)-

This is perfectoid. Indeed, set By = B®zp@oo; this is a Tate ring with
pseudo-uniformizer 1 — (2. Its subring of bounded elements is

B2 = B = B¢z, 00 = W(A)&7,Oc.
Since Zylpp~]/(p) = Fyle'/7™]/(27~1), we have
B2,/ (p) = Al /(a?Y)

and Frobenius is surjective on Bgo /(p). Hence, By is perfectoid and Uso =
Spa (B, BL) is a perfectoid space. The tilt U’ of Uy, is

U% = Spa (A(t"/77), A[#/77]).
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The map U, — Spa (W (A))° = Spd (A4) x Spd (Z,) is given by the map
Spa (A((t1/7™), A[t1/?*]) — Spd (A) and the choice of Us, as an untilt of
Spa (A(£1/7), A[¢7™]).

By restricting ¥ along the “generic fiber”

U® = Spa (W(A))® xspd z, Spd Q, — Spa (W(A))°

we obtain a section of the v-stack of vector bundles over U?. By v-descent
of vector bundles over perfectoid spaces, we see that its value at Use = U®
is given by an actual vector bundle over the affinoid perfectoid space Uoo,
given, in turn, by a finite projective Bog-module M. This comes with descent
data for the v-cover Uy, — U?. Here, one needs to be careful: Since U is
not perfectoid, the v-descent datum does not automatically give a module
over B. However, we can use that Us, — U is a pro-étale Z;—torsor. It is

enough to first show that the descent datum for [700 — U, is effective for
some I';,; then we can proceed with usual étale descent for U,, — U. We first
note that using [29, Cor. 5.4.42] we see that there is n and a finite projective
R,-module P,, with an isomorphism

Pn®UnU ~ M.

This allows to express the descent datum along Uso — U, by a continuous
1-cocycle

c: T, — Auth(Pn®Ban)

for the I',,-action on Boo coming from the I',,-action on Q4. For simplicity,
we can assume I' = I, by a base change and omit the subscript n throughout
the rest of the argument. After this change, we would like to show that this
descent datum is effective and gives an B-module M with a I'-equivariant
isomorphism
M® BBoo = M.

By “usual” étale descent, we see that the effectivity is true if ¢ is cohomol-
ogous to a cocycle ¢ which is trivial on a subgroup of finite index of I'.

By (I) the result holds (i.e. the module M obtained from a shtuka over
Spd (A) has effective descent datum) when A is an algebraically closed
field. Therefore, this is the case after base changing by A — k', where
k' is any algebraically closed field. In general, we can understand the set
HY, (T, Auty (P& BBso)) using the methods of Sen. In particular, the refer-

cont o
ence [86, §2], details a version of this method for Banach Q-algebras, which
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is sufficiently general for our purposes. (In fact, Sen considers the more com-
plicated case of continuous cocycles for the Galois group Gal(Q,/Q;) and
tensors with C,, = Qp; here we only need to consider I' = Gal(K/Q,) and

tensor with Km) First of all, by loc. cit. §2.3, there is a continuous cocycle
Coo : I —> AutBoo(P Xp Boo) C Auth(P(g)BBoo)

which is cohomologous to c¢. Using ¢, Sen defines in loc. cit. §2.3, an “op-
erator” ¢, p € Endp(P) (denoted ¢ there) whose vanishing is equivalent
to the triviality of the restriction of the cohomology class of ¢ on a fi-
nite index subgroup of I' (see loc. cit. §2.5). The specialization of v g by
B =W(A)[1/p] — W (K")[1/p] is ew ) /p- This is zero by the above, for
all A — k', with k&’ algebraically closed. Hence, since A is reduced and P is
a projective module, 1. p = 0 and the descent is effective. The Frobenius
structure on the module M respects the descent datum and so it descends
to a Frobenius structure on M.

So far our construction produced a finite projective W (A)[1/p]-module
M with

dar: M = M
which induces the pull-back (restriction) of the shtuka by

U® = Spa (W (A)[1/p], W(A))® — Spd (A) x Spd (Z).

It remains to show that there is a lattice, i.e. a projective finite W (A)-
submodule .#Z C M on which ¢ is meromorphic, such that the shtuka is
induced by .# . Using the v-cover

S = Spa (A(t/77)), A[t"/7"]) — Spd (A),
we see that the shtuka over S gives a finite projective W (A((t'/P™)))-module
Mo C M Dy (ayiym WA ))[L/p)

with descent data. We will show that the desired W(A)-module is .# =
M N .M, the intersection taking place in M ®yy (41 /p) W (AP ) [1/p] =
Mso|1/p]. We first show that 4 is a lattice in M, i.e. a finite projec-
tive W (A)-module with .Z[1/p] = M. By [8, Thm. 4.1], it is enough to
prove this after base changing to a (scheme-theoretic) v-cover of the per-
fect scheme Spec (A). By [50, Thm. 6.1], there is such a v-cover, given by
some algebra homomorphism A — A, such that the base change M :=
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M wayn/p) W (A)[1/p] is finite free, M ~ W(A)[1/p]". The base change
Moo = Mo Qw (A(#/7>Y) W (A(t'/77))) corresponds to a A((t*/P™))-point
of the Witt affine Grasmannian of [8] which parametrizes W (A’)-lattices in
M @y ay/p WA [L/p] = W(A)[1/p]", for a variable perfect A-algebra
A’. The existence of the descent data on the shtuka implies that this point
is invariant under the A-automorphism & of A((t'/P™)) determined by ¢
tP. Using the representability of the Witt affine Grassmannian of [8] and

A((tV/r™ ))521 = A, we can now see that this A((t!/?™))-point is induced by a
uniquely determined A-valued point; this corresponds to a finite projective
W (A)-lattice .#/ C M which is then necessarily .# = M N .#s. We con-
clude as above by v-descent that .# = M N ./, is a lattice in M. Now we
observe that, since .#[1/p] = A @y 4 W(A)[1/p] = M, the pair (A, ppr)
is a meromorphic Frobenius crystal. By the construction above, this pair
induces the shtuka (¥, ¢ ) over Spd (A).

Finally, we verify the exactness properties. The exactness of the original
functor is easy since meromorphic Frobenius crystals are supported on finite
projective modules. Showing that we have an exact equivalence needs more
care. We start with the following lemma.

Lemma 2.3.9. Let B — B’ be an injective ring homomorphism with the
property that the corresponding map Spec (B') — Spec (B) is surjective on
closed points. A complex

My : 00— My — My — M3 — 0

of finite projective B-modules is exact if and only if the base change Mq®p B’
18 ezact.

Proof. This follows by an argument as in [1, Lem. 11.4] which we repeat
here. It is enough to show that the exactness of M, ®p B’ implies that
M, is exact, so we assume M, @5 B’ is exact. First observe that, since
M, ®p B’ — My ®p B’ is injective and the M; are projective and B — B’ is
injective, the map M; — M is also injective. Now let Q) = coker(My — M3).
Then @ is finitely generated over B. If m C B is a maximal ideal then, by our
assumption, there is a maximal ideal m’ C B’ above m. We have Q®p B}, =
(0) which, by using Nakayama’s lemma, gives @ = (0). Therefore, since
Qm = (0) holds for all m, @ = (0). We can now write My = N & M3 and
apply the same argument to the cokernel of the composition

My — My=N&a M 25N
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to show it is also trivial. So, M; — N is surjective and hence an isomor-
phism. O

We will apply this Lemma to the natural map B = W(A4) — B’ =
W (A((tY/P™))), where A is a perfect k-algebra. The condition on closed points
is satisfied: Every maximal ideal of W(A) is the inverse image m + (p)
of a maximal ideal m of A via W(A) — A = W(A)/(p). The kernel of
W(A(/P7)) = A((tYP7) — (A/m)(#Y/P7)) is a maximal ideal that lies
over m + (p).

To show that we have an exact equivalence we can quickly reduce to the
affine case 2" = Spec (A). We suppose we have a sequence #, : 0 — 4 —
My — M3 — 0 of finite projective W(A)-modules underlying a sequence
of meromorphic Frobenius crystals over A. We assume that the induced
sequence of shtukas over Spec (4)* is exact and we would like to show ., is
exact. By our assumption, the induced sequence of shtukas over the v-cover
S = Spa (A((t/P7), A[t'/?"]) — Spec(A)* is also exact. By restricting
these shtukas from Vg )(S) to the affinoid Vg 1](S), we obtain an exact
sequence of finite projective I'(o1)(S), O)-modules. By the definition of
the functor, this sequence is obtained by base changing .#, along W(A) —
['(Vjo,11(5), O). Recall the natural ring homomorphisms

L(Vjo,00) (8); O) — L (Vo 11(5), O) — W(A(/P7)).

The composition W(A) — T'(V1(5),0) — W(A(t/?7) is the natu-
ral map W(A) — W (A(#/?™))). The above now shows that the sequence
of W (A((t*/P™)))-modules obtained by base changing .#, along W(A) —
W (A((#Y/P™))) is also exact. We now apply Lemma 2.3.9 to B = W(A) —
B’ = W(A((t'/7™))). We obtain that .#, is exact, which implies the re-
sult. (]

Remark 2.3.10. Let ¢4 be a p-divisible group over Spec (O¢), where C
is a complete non-archimedean algebraically closed field. Let kK = O¢/m¢
be the residue field and set ¥ = ¥ ®¢, x and i : Spec (k) — Spec (O¢).
Then, under the equivalence of Theorem 2.3.8, the pull-back i*(£(¥)) over
Spec (k)* of the shtuka £(¥) over Spec (O¢)* described in Example 2.3.4,
corresponds to the meromorphic Frobenius crystal over x given by

(2.3.3) DY) = (6~1)*(D(F)").

Here, D(¥) = D(¢)(W (k)) is the contravariant Dieudonné W (k)-module of
¢, and ( )* denotes the W (k)-linear dual.
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2.3.2. Shtukas and BKF-modules, revisited. Here we explain a cer-
tain extension of the shtuka associated to a BKF-module as in Defini-
tion 2.2.6.

Let S = Spa(R,R™) be affinoid perfectoid over F, and suppose that
S* = Spa (Rf, R*") is an untilt of S over Z,. Then R*" is integral perfec-
toid; let (¢) be the kernel of W(RT) — R, cf. §2.2.1. There is a func-
tor from BKF-modules over R** to shtukas over the v-sheaf Spd (R*") =
Spa (R, R*T)9 — Spd (Z,) which is given as follows. Let (A, A1) € Perfdy,
and let the Spa (A, AT)-point of Spd (R*") be given by Spa (Af, A*) —
Spa (R, R*) induced by R** — Af*. This induces a map W(R') —
W (AT). Now the functor is given by base change via W (R'T) — W(A™T)
followed by pullback along Yo o0y (4, AT) — Spec (W (AY)).

Proposition 2.3.11. The above functor from BKF-modules over R to
shtukas over the v-sheaf Spd (R*) = Spa (R, R**)9 — Spd (Z,) is fully
faithful. It is an equivalence of categories when (R, R¥) = (K, K*), where
K* is a perfectoid field with K an open and bounded valuation ring.

Proof. Let (M, ¢.4) and (AN, ¢ 4) be two BKF-modules over R** so .4
and .4 are finite projective W (R™)-modules. Let

w : (%Shfn ¢<//ﬁm) — (%ht? ¢=/Vsht)

be a homomorphism between the corresponding shtukas over Spd (Rft) —
Spd (Zp). Then Mg, N, give global sections of the v-stack of vector
bundles over Spd (R*) x Spd (Z,) =~ Spa (W (RT))®, cf. (2.3.2). Indeed, let
T = Spa (A, AT) be affinoid perfectoid over k and let a : T — Spd (R™) be
given by a continuous A™ — RT. Then the untilt Rt gives Spd (RT) —
Spd (Z,) and we obtain by composition an untilt T* = Spa (Af, AFF) with
R — A ([31, Lem. 4.7]); this gives o’ : T — Spd (R*"). Then the
restriction of the global section corresponding to .#gy, under T' x Spd (Z,,) =
Vio,00) (A, AT)® — Spd (R™) x Spd (Z,) is given by the evaluation (a’)* sy
of the shtuka at a'.

Consider now the pullbacks of .#,; and Ay via the map Y(R, RT)® —
Spa (W (R*))°. To prove that 1 is induced by a unique map .# — A
over W(R™), we first observe that by Theorem 2.1.6, it is enough to show
the corresponding statement for the vector bundles over the sousperfectoid
analytic adic space Y(R, R") which are obtained by pulling back .# and
A along Y(R, RT) — Spec (W (RT)). Recall that the structure sheaf of a
sousperfectoid analytic adic space is a sheaf for the v-topology (this follows
by extending [85, Thm. 17.1.3] or [52, Thm. 3.5.5], see [41]). This implies
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that the global sections of A4 ® .# ! over Y(R, R") agree with the global
sections of At ®///S£t1 over Y(R, RT)®. Since by the above, 1 gives a global
section of A ® //[SES over Y(R, R")® we obtain a unique corresponding
global section of A ® .#~! over Y(R, RT). This implies the desired fully-
faithfulness.

The last statement giving an equivalence of categories in the case of
(K*, K*), follows from Proposition 2.7.4, which we will show later, and the

remark immediately after it. U

Remark 2.3.12. We summarize as follows the functors introduced above.
Let R*" be an integral perfectoid ring, with tilt R*. Let S = Spa (R, Rt)
and S* = Spa (R*, R*"). Then we have a commutative diagram of functors,

{BKF-modules over R}

restr/eval restr

{shtukas over Spd (R**)/Spd (Zp)}%{shtukas over S, with leg at S*}.

Here, the arrow “restr” is referred to in Proposition 2.2.7, and is the re-
striction induced by the map Vg oo)(R, R") — Spec(W(R")): this func-
tor is faithful and, when Rt = R, even fully faithful. The functor “re-
str/eval” is referred to in Proposition 2.3.11 and is given by the evaluation on
(A, A*) € Perfdy, via restriction along Vg o0y (4, A*) — Spec (W(R")): this
functor is fully faithful and an equivalence in the case of a perfectoid field.
It is reasonable’ to expect that this functor is often an equivalence of cate-
gories. The arrow “eval” is the evaluation on Spa (R, RT) — Spd (Rf, R*).
In the proofs, the following various kinds of “vector bundles” play a role:
vector bundles over Spec (W (R")), vector bundles over the adic spaces
Y(R,R*%) and Yo o) (R, R"), and sections of the v-stack of vector bundles
over the v-sheaf Spa (W (RT))?.

2.4. G-shtukas

2.4.1. Background. We give some preliminaries and fix notations and
definitions.

"This indeed follows from [36, Thm. 4.25] for any integral perfectoid ring R**
(use loc. cit., Prop. 2.19, to relate perfect-prismatic F-crystals of loc. cit to our
BKF-modules). As a consequence, the proof of Proposition 2.7.6 can be simplified.
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We let G be a connected reductive group over Q, and {u} a G(Q,)-
conjugacy class of cocharacters p : G, = Gg,. Denote by E the field of
definition of {u}, i.e. the fixed field of all o € Gal(Q,/Q,) for which o(u) is
G(Qp)-conjugate to p. In the sequel, we will also write u for the conjugacy
class. Let k be an algebraic closure of the residue field kK = kg of E.

Let

P,={geq | tliﬂmoo ad(u(t))g exists}

be the parabolic associated to p. We consider also P,-1 which is the opposite
parabolic. We set

(2.4.1) Fau=G/P,,

which is a smooth projective variety defined over the reflex field E.

Let [b] be the o-conjugacy class of an element b € G(Q,). We will always
assume that [b] is neutral acceptable for u=1, i.e., [b] € B(G,p~1). In other
words, vy < (u 1)y, and s(b) = —puf, with the notation of [77]. If u is
minuscule, we will call (G, b, 1) as above a local Shimura datum, cf. [85, Def.
24.1.1], comp. [77].

2.4.2. Local models. Let G be a reductive group over Q,, with smooth
parahoric model G over Z,. Consider the “Beilinson-Drinfeld style affine
Grassmannian” v-sheaves

(2.4.2) Grg spae):  Grgspd(ox)

over Spd (E), resp. over Spd (Og), cf. [85, Ch. 20]. As in [85, Prop. 20.2.3]
and if p is minuscule, there is a closed immersion of the diamond associated
to the flag variety of parabolic subgroups of type w,

F& = Graspamyu C Ore spa()-

Assume g is minuscule. The following definition occurs implicitly in [85, Ch.
21]: we define the v-sheaf local model as the closure of .7-"O in Grg spd(0,);
in the sense of v-sheaves (i.e., the minimal closed buperset whose pullback
to any perfectoid space is stable under generalizations, see [3, 2.1]). We use
the following notation,

(2.4.3) G =M}, = Grg 8pd(0p) -

The following theorem was conjectured by Scholze-Weinstein, cf. [85, Conj.
21.4.1].
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Theorem 2.4.1 (Gleason-Lourengo [35]). There exists a proper flat scheme
Mlgo‘;t over Spec (O) with G-action and reduced special fiber such that its
associated v-sheaf over Spd(Op) is equal to Mg . (Note that by [85, Rem.
21.4.2], Mlgofu is necessarily a normal scheme, and that, by [85, Prop. 18.4.1],
such a scheme is unique if it exists.)

We call Mlgoz the (scheme) local model.

Remark 2.4.2. Before [35], the most complete result on this conjecture was
due to Anschiitz, Gleason, Lourengo and Richarz [3], comp. also [65]. They
proved that the conjecture holds for all (G, ) when p > 5 and in many cases
when p = 2, 3.

There is an a priori different general approach to (scheme) local models,
if G splits over a tamely ramified extension of Q,, or more generally, if G is
essentially tamely ramified as defined in Remark A.3.1, cf. [73, 61]. Conjec-
turally (see [44, Conj. 2.16]), the local models of 73] satisfy the conditions of
Theorem 2.4.1 (provided they are slightly adjusted when p divides |71 (Gder)|
by using a z-extension as in [44, §2.6].) Hence, this approach should also give
Mlgo‘;t as above. This conjectural agreement is proven in [44, Thm. 2.15], in
almost all cases when (G, u) is of abelian type, which is our main case of
interest, see also [65]. By definition [37, Def. 9.6], “of abelian type” means
that there is a central lift (G, p11) of (Gad, ptad) Which is of local Hodge type,
i.e., admits a closed embedding p : G; — GL,, with po u; minuscule, cf. [77,
Rem. 5.5 (i)].

2.4.3. Witt vector affine Grassmannian. Recall the Witt vector affine
Grassmannian Grg/ of [97, 8], which is an ind-perfectly proper scheme over
k. Suppose that S = Spa (R, Rt) € Perfd;, and take S* = S, i.e. the untilt
is in characteristic p. Then, since B;R(Rﬁ) = W(R) and £ = p, we have a
natural bijection

Grg spa(0r)(S) — (Grg)*(S)

functorial in S (see [85, §20.3], especially the passage after Prop. 20.3.2).
Here, as before, (Grg/ )* is the v-sheaf associated to Grg/. For a perfect
(discrete) k-algebra R, we set R* := Spa (R, R)®. We obtain

Gl“gspd(OE)(R’) ;> (Gl‘gvv)’(R’) = Grg/(R)

Here, the equality (Grg )*(R*) = Grg (R) is obtained by the full-faithfulness
of the functor Z — Z* from perfect schemes to v-sheaves.
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Composing with M&M(R’) — Grg s5pd(0s) (R?) gives
(2.4.4) v: Mg ,(R*) — Grg (R).
If K is a (discrete) algebraically closed field of characteristic p, this gives
Mg, (K%) — Grg (K) = G(W(K)[1/p)/G(W (K)).

If Mlgo‘z above exists, then ME,M(K‘) _ MlgoZ(K)
By [3, Thm. 6.16], the map (2.4.4) identifies ME,M(K') with the union
inside G(W (K)[1/p])/G(W (K)),

(2.4.5) tuEY = |J G, (K).
weAdm(u)g

Here, Adm(y)g denotes the admissible set in the double quotient Wg\W /Wg
of the Iwahori-Weyl group W of GG, and Grgf w 18 the Schubert cell in Grg/
corresponding to w. (For the abelian type case, see also [65, Chapt. 4, Cor.

4.24], which also gives this, provided that the conditions, for p = 2, 3, in
Remark 2.4.2 are satisfied.)

2.4.4. G-shtukas. We recall Scholze’s notion of a G-shtuka over a perfec-
toid space, cf. [85].

Definition 2.4.3. Let S € Perfdy, i.e., S is a perfectoid space over k, and
let S* be an untilt of S over O A G-shtuka over S with one leg at Stis a
pair

(2.4.6) (Z2,92),

where
1) & is a G-torsor over the analytic adic space S x Ly,
2) ¢ is a G-torsor isomorphism

~

(2.4.7) ¢ : Frobg () — P

|SxZ,\S* |SXZ,y\ S

which is meromorphic along the closed Cartier divisor S* C S x L.

We say that the G-shtuka & over S with one leg at S* is bounded by ju if the
relative position of ¢4 (Frob%(#)) and & at S* (in this order!) is bounded
by Mg,u'
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v

Let us explain the meaning of the term “bounded by MJ,”, comp. [85,
Def. 20.3.5]. For S = Spa(C,O¢), with C an non-archimedean complete
algebraically closed field, the complete local ring @y[o,m( s),z at the point
that corresponds to the untilt S* = Spa (C¥, O¢+) is a discrete valuation ring
with residue field C¥. In fact, 631[0,00)(8),:0 is isomorphic to B, (C*) (recall
that this is W(C*) if C* ~ C has characteristic p.) This ring is strictly
henselian so every G-torsor over its spectrum is trivial. Let S = Spa (R, R™)
be affinoid perfectoid over k, and let (£, ¢») be a G-shtuka over S with one
leg at S*. Let 2 : T = Spa(C,0¢) — S be a point over Spd (Og) with C
algebraically closed, as above. By the above, we can choose a trivialization

B : Frob:(Zr) 2) — G x Spec (@y[o,m(T),w)

|Spec (D, . o,

of the pull-back of the G-torsor Frob’(Zr) to the completion of T' x Z,
along the corresponding untilt T%. Fixing such a trivialization, we can con-
sider the pair

(Pr, B-d,)
where

¢, : Frobp(Pr) = (Zr)

| T Zp\T% | TXZ\T?"

This pair gives a G-torsor and a trivialization of its restriction to the com-
pletion Spec (FT&C(@y[O,OC)(T),x))- By [85, Def. 20.3.1, Prop. 20.3.2], such a
pair (together with the untilt T*%), corresponds to an T-valued point of
Grg spd(0p)- The boundedness condition on the relative position is that,
for all T" — S as above, this point factors through M}, = Grg spa(0,),0 <
G1g spd(0,)- To be clear, the point Frobr(r) is the base point of the affine
Grassmannian, and (¢») (1) is considered as a variable torsor to be
compared with Frob} (7).
Let us compare the above definition with Definition 2.2.1.

Lemma 2.4.4. Let G = GLy, and pg = (19,00=9). There is a functorial
equivalence of categories between G-shtuka over S/ Spd (Zy) bounded by jiq
and shtuka over S/ Spd (Zy) of height h and dimension d.

Proof. We use the equivalence of categories between the category of GLj-
bundles and the category of vector bundles of rank h. The statement then
follows from the description of Grqgr, spd (z,),u. 0 [85, §19, §20], see in par-
ticular [85, Prop. 19.4.2] and its proof. O
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By Proposition 2.1.1, for S = Spa (R, R") affinoid perfectoid, restriction
gives an exact equivalence between vector bundles over Spa (R, RT) X Ly,
and vector bundles over Spa (R, R°) x Zyp. Using the Tannakian interpreta-
tion of G-torsors as in [85, Thm. 19.5.1], it also follows that restriction gives
an equivalence between G-shtukas over Spa (R, RT) and Spa (R, R°).

The notion of a G-shtuka bounded by p generalizes to any perfectoid
space S over k with a map S — Spd (Og). Also, by [85, Prop. 19.5.3], sending
S/ Spd (Og) to the groupoid of G-shtukas over S/ Spd (Of) (bounded by p)

gives a v-stack.

2.4.5. G-BKF-modules. We can define the related notion of a G-Breuil-
Kisin-Fargues (BKF-) module.

Definition 2.4.5. Let R be an integral perfectoid ring, cf. §2.2.1. A G-
Breuil-Kisin-Fargues (BKF-)module over R is a G-torsor & over the scheme
Spec (W (R”)) together with an isomorphism

¢ 0" (P)[1/§] — P[1/€].

Here, again, £ is a primitive generator of the kernel of the map W(Rb) — R.

If S = Spa(R,R") € Perfdy, i.e., S is affinoid perfectoid over k, and
S% = Spa (R, R*T) is an untilt of S, we also speak of a G-BKF-module over
S with leg along S* instead of a G-BKF-module over Rt cf. Definition 2.2.4.

As in Definition 2.2.6, a G-BKF module over S € Perfd; with leg along
the untilt S of S defines a G-shtuka 22 over S with one leg at S%. We then
say that the shtuka &2 extends. Note that since the restriction functor from
Vi0,00] () t0 V[o,00)(:S) is not fully faithful in general (cf. the comment after
Proposition 2.1.3), such an extension may not be unique. If & is bounded
by u, in the sense above, then we will call the extension a (G, u)-Breuil-
Kisin-Fargues module.

2.4.6. Specializations of G-shtukas. Let C be a non-archimedean com-
plete algebraically closed field over O with a valuation of rank 1 and let
O¢ be its valuation ring. Set S = Spa(C",O"C) and let & be a G-shtuka
over S with leg at Spa (C,O¢). We can obtain a corresponding Frobenius
G-isocrystal over the residue field x of O¢ as follows. For r > 0, the ¢-G-
torsor given by &y, (s) descends to a G-torsor over the Fargues-Fontaine
curve V(,00)(S)/¢%, cf. Proposition 2.2.7. By Fargues’ theorem [85, Thm.
14.1.1], this corresponds to a Frobenius G-isocrystal over k.
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Proposition 2.4.6. Let (2, ¢») be a G-shtuka over Spa (C°,0%)/ Spd (Op)
with one leg at Spa (C,O¢). The G-shtuka & extends, in the sense of Def-
iniation 2.2.6, to a unique G-BKF-module PY over O¢, i.e., a module over
W(O%). Base changing 2% via W(0%) — W(0%/mes) = W (k) gives a
G-torsor over Spec (W (k)),

gz() = e@h ®W(Obc) W(H),

with Frobenius
b, : Frob*(2y)[1/p] — P[1/p).

Proof. Using Fargues’ theorem as above, we also see that the ¢-G-torsor
Py (5) extends to a ¢-G-torsor over V. o (5), for r > 0. By the Ex-
tension Conjecture A.1.2 proved by Anschiitz [1], & extends to a G-torsor
2% over Spec (Aig) = Spec (W(O%)) (this torsor is actually trivial). The
Frobenius ¢4 extends to a meromorphic map

G 6" (PH[1/E] == PU1/E]

which then defines the G-BKF-module. The second part of the statement
follows since £ = p mod W (me»). O

Remark 2.4.7. This proposition is the basis for the construction of the
specialization map for moduli of local shtuka as in [31, 32], see Theorem 3.3.3
below. We will explain this in detail later, see Remark 3.3.7. In fact, we can
see that if & is bounded by p, then the map ¢4, : Frob*(2)[1/p] —
P[1/p] also has pole bounded by pu.

2.4.7. Families of G-shtukas. We will also want to consider “families” of
G-shtukas, cf. §2.3. The following definition is modelled on the corresponding
definition of a family of “vector space” shtukas of §2.3.1.

Definition 2.4.8. Let F be a v-sheaf over Spd(Og). A G-shtuka (22, ¢ %)
over F, resp. a G-shtuka (£, ¢ ») over F with leg bounded by u, is a section
of the v-stack given by the groupoid of G-shtukas over F, resp. is a section
of the v-stack given by the groupoid of G-shtukas over F with leg bounded
by p. In particular, it is a functorial rule which to any point x of F with
values in S € Perfd;, associates a G-shtuka (Pg, ¢ »,) over S with one leg
at the untilt S* given by S & F — Spd(Og), in the resp. case bounded
by M.
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We can now define G-shtuka over adic spaces, schemes, or formal schemes
over Op, as G-shtukas over the corresponding v-sheaves, by generalizing the
“vector space” shtuka definitions of §2.3. For example, suppose that 2 is
a scheme over Spec (Og). Following §2.3.2, we can define a G-shtuka over
2 to be a G-shtuka over the v-sheaf 2¢/ over Spd (Og). Note that the
corresponding notion of a vector space shtuka (¥, ¢y) of rank n of §2.3
corresponds to taking G = GL,,.

Applying the Tannaka formalism to Theorem 2.3.8, we obtain the fol-
lowing example.

Example 2.4.9. Let 2~ = Spec(A), with A a perfect k-algebra. Then
there is an equivalence of categories between the category of G-shtukas over
Z* and the category of G-torsors & on Spec (W (A)) equipped with an
isomorphism

bzt ¢"(P)[1/p] — 2[1/p].
2.5. Shtukas and local systems

In this subsection, we consider shtukas in characteristic zero. We explain a
relation of shtukas with local systems which support a suitable sheaf theo-
retic Hodge-Tate period map.

2.5.1. G-shtukas and de Rham-Tate period maps. Suppose S =
Spa (R, R") is in Perfdy, i.e. S is affinoid perfectoid over k, and let S* =
Spa (Rﬁ, RH) be an untilt of S over O . Suppose now that the leg St is over
Spa (E,Op), i.e. that S — Spd (Og) factors through S — Spd (E). Then,
there exists r > 0 such that Vo, (S) C S x 7, \ S*. As before, in what
follows, we will often denote Frobg by ¢, for simplicity.

Let (2,¢5) be a G-shtuka over S, with leg at S*. The restriction of
(2,902) to Vo, (S) defines a ¢~ -equivariant G-torsor on Yy ,1(S). By [85,
Prop. 22.6.1], this defines a pro-étale G(Z,)-torsor P over S with an isomor-
1

phism of ¢~ "-equivariant G-torsors over Vo ,(.S),

‘@\y[o,r](S) ~P Xg(ZP) (g X Spa (Z,) y[O,r](S))

We say that the G(Zy)-torsor P is associated to &.
The ¢~ '-G-torsor e@mw( s) descends to a G-torsor & over the relative

Fargues-Fontaine curve Xpp s = Y (0,00)(5) /¢”. This gives, after pullback

and extension, a ¢-G-torsor over Vg o) (S) = S X Zp,

(2.5.1) Py =P x9%) (G xg10 2y Vo,00)(5))-
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In other words, & is a G-shtuka over S with no legs.
By construction, the G-torsors & and & over S x Z, agree away from
Uns1 ¢%(S%). In fact, by the argument in the proof of [85, Prop 12.4.1], there

is a unique ¢~ !-isomorphism

(2.5.2) 02 P30y (S\Upzr 67(55) = L0030,y (S\U, 21 67(51)-

In particular, i» gives an isomorphism of & and &, over the completion
of Vj,)(5) along the leg St

Suppose that the pro-étale G(Zy)-torsor P on S is trivial and choose a
trivialization a : P ~ G(Z,) x S. This gives a ¢-trivialization of the G-shtuka
with no legs,

a0 1 G Xspa(z,) (S X Zp) = P,.

By the above, ay composed with z;} induces a trivialization « of the pullback
of & to the completion of S x Z,, along S, Now consider the pair

(Frob%(2), a o ¢z).
This gives an S-point of Grg spq(g) over Spd (E), cf. [85, Def. 20.2.1, Prop.
20.2.2], which we denote by DRT(Z?)(a). This construction produces a
G(Zy)-equivariant map of v-sheaves, the de Rham-Tate map,
(2.5.3) DRT(2) : P — Grspa(m)-
Proposition 2.5.1. Let S/ Spd (E) be perfectoid. The functor
(#,¢2) — (P,DRT(2))

sending the G-shtuka (22, ) over S/ Spd (E) with one leg to the pair con-
sisting of a pro-étale G(Zy)-torsor P on S and a G(Z,)-equivariant map

DRT(Z) : P — Grgspd(r) over Spd (E) gives an equivalence between the
category of G-shtukas over S/ Spd (E) with one leg and the category of such
pairs (P, D).

Proof. The case of S = Spa (C”), where C” € Perfd;, is an algebraically
closed field, and where G = GL,,, is the content of [85, Prop. 12.4.6]. In this
case, a pair (P,D) corresponds to a finite free Z,-module T' equipped with
a BIR—lattice E C T ®z, Bgr- In the general case, by pro-étale descent, we
may assume that [P is trivial. Given the description of Grg gpq (E) provided
by [85, Prop. 20.3.2] (which uses Beauville-Laszlo glueing), we then see that
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the proof of [85, Prop. 12.4.6] goes over without change, see also [14, 3.5].
(But beware that, compared to [85], we have the leg on a different Frobenius
twist.) O

Suppose now that the G-shtuka (£, ¢ ») has leg bounded by 1, which we
assume minuscule. Then we can see that DRT(2?)(a) lies in® Grg gpd ( E)
The Bialynicki-Birula construction gives an isomorphism

N

Gre spd (B) -t — Ferpt-
Composing DRT(4?) with this isomorphism, we obtain the Hodge-Tate map,

(2.5.4) HT(2) : P — FG .

Proposition 2.5.2. Let S/Spd(E) be perfectoid. Fiz (G,u), where u is
minuscule. The functor

(Z,92) — (P,HT(2))

sending the G-shtuka &7 over S/ Spd (E) with one leg bounded by p to the
pair consisting of a pro-étale G(Zy)-torsor P on S and a G(Zp)-equivariant

map HT(Z) : P — .7:87“_1 over Spd (E) gives an equivalence between the
category of G-shtukas over S/Spd (E) with one leg bounded by u and the
category of such pairs (P,H). O

2.5.2. Variant for adic spaces. Let Y be alocally Noetherian adic space
over Spa (E, Og). Later, we will apply the set-up to Y = X the adic space
associated to a scheme X of finite type over F.

Let (2, ¢4) be a G-shtuka over Y /Spd (E). For S € Perfdy, with S-
valued point (Sf,z : S = Y) of Y°, the v-sheaf & gives Pg, a G-shtuka
over S with leg at S*. Since the construction of the previous paragraph,

P — (B(S),DRT(2)(S))

is functorial in S, it associates to & a pair (P, DRT(4?)), consisting of a
G(Zy)-torsor P over Y° and a G(Z,)-equivariant map of v-sheaves DRT :
P — Grgspa (p)- If & has leg bounded by the minuscule p then, by com-
posing with the Biatynicki-Birula morphism, we obtain

(2.5.5) HT : P — F& -

8Note the inverse in p~! here. This is due to the fact that & is the base point
of the affine Grassmannian and ¢z (Frob™(4?)) is considered variable.
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The previous proposition immediately gives:

Proposition 2.5.3. LetY be an adic space over Spa (E, Og) which is locally
Noetherian. Fiz (G, ), where p is minuscule. The functor & — (P,HT(2))
gives an equivalence between the categories of:

1) G-shtukas (2, ¢5) over Y — Spd(E) with one leg bounded by p, and

2) pairs (P, H) consisting of a pro-étale G(Z,)-torsor P over Y and a G(Z,)-
equivariant map of v-sheaves H : P — .7-"8 -1 over Spd E. O

2.6. Shtukas and de Rham local systems

Here, as an application of the last subsection, we show how to construct
a shtuka which is “associated” to a de Rham p-adic local system over a
smooth scheme (or smooth rigid analytic variety) which is defined over a
finite extension E of Q, or of @p. More generally, the construction works
when FE is replaced by any discretely valued complete non-archimedean field
extension of Q, with perfect residue field.

2.6.1. de Rham local systems. Let X be a smooth scheme (of finite
type) or a smooth rigid-analytic variety over E. Let Y = X be the corre-
sponding analytic adic space over Spa (F,Og).

Recall from [81, §6] the definitions of the sheaves of rings Oy, @y, (9?7
@Yb7 (5;;, Aingy = W(@;ﬁ), BXR, Byr. O]B%:{RX, OBgr v, on the pro-étale
site Yproet. Consider the morphisms of sites v : Yproet — Yo and A @ Y —
Yan, where Yy, is the site of open subsets of Y. There is a homomorphism
of sheaves of rings

(2.6.1) 0 : Ay — OF

whose kernel is locally principal on Yjreet, i.€. locally generated by a single
element, and hence the sheaf of rings Ai,fy[1/ker(€)] makes sense. The
reader is referred to [81, §4, §6, §7] for more details. In particular, [81, Lem.
7.3] shows how pulling back by v, resp. A, allows us to identify between
various possible notions of “vector bundles” over Y.

If L is a lisse Zp-local system over Yg;, denote by L the corresponding
Zp—local system over Y oet. We set

(2.6.2) Dar (L) = i (L ©; OBag,y).
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By [62], this is a vector bundle £ = Dgr(L) over Y with a (separated and
exhaustive decreasing) filtration by locally direct summands Fil’, i € Z, and
an integrable connection V satisfying Griffiths transversality with respect
to the filtration. There is a OBgg y-linear “comparison” map

(2.6.3) aqr(L) : v"Dar (L) ®0, OBgr,y — L ®;, OBdr,y-

Definition 2.6.1 ([81, 62, Def. 8.3]). The local system L is de Rham if
aqr (L) is an isomorphism.

We note that this property only depends on the Qp-local system V :=
L[1/p]. Then L is associated to (Dqr(L), Fil*, V), i.e.

L®; Bj = Fil’(Dar(L) ®o, OBary)"
Set M := L ®ZP BXR and also
MO = (DdR(]L’) ®OY O]BIR,Y)Vzoa

which is also a IB%(J{R y-local system. The IB%&FR y-local systems M and My have
filtrations FiVM = ker(6)’M and Fil’My = ker(f)’M obtained from the
filtration on B:;RY' For this filtration, we have

gI‘OM = I[AA ®Z,, @y.

Both M and M are “IB%IR y-lattices in the same Bygr, y-space” via a canonical
comparison isomorphism

¢: L ®g, Bary = M ®@gy  Bary —— M, g, Bary-
By [81, Prop. 7.9],
(M N Fil'My) /(M N Fil' ™ M) € gr'My
identifies with
Fil ' Dar (L) ®0, Oy (i) C Dar(L) ®o, Oy (i),

for all 7 € Z.
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Example 2.6.2. Let f : A — X be an abelian scheme. We consider the
Zp-local system on Y = X ad - given by the p-adic étale cohomology L =
R'f. &(Zy,). We refer to [14, Thm. 2.2] which uses [81]; by loc. cit. (or [62])
this Zy-local system is de Rham. We have

Dar(L) = Hyr(A/Y)
equipped with its Gauss-Manin connection and its Hodge filtration. Also
M:=L ®;, Biry = H' (A, By o),

which is compared to

V=0
Mo = (Hir(4/Y) ®o, OBXR,Y)

The comparison c¢ identifies
M N FilVMy /(M N FiV ™M) € gr/M
and

Fil7Hiz (A/Y) @0, Oy (j) C HiR(4/Y) ®0, Oy (j).

In particular, we obtain Mo C M. This also gives an ascending filtration on
gr'M = ]L®Z Oy defined by Fil_; (]L(XJZ Oy ) = MNFiV M,/ (Fil"MNFilMj).
So, we have

ker()M C My C M,
with the corresponding filtration on M/ ker(§)M = gr(M) = L ®z, Oy,
with graded pieces
ar;(L ®; Oy) =g/HiR(A/Y) ®0, Oy(-j).
This is the Hodge-Tate filtration:

M/My = R*f.(2}y) ®o, Oy (-1),
Mo/ ker(§)M = R' f.(04) ®0, Oy-.

We continue with a general de Rham Z,-local system LL over X. Since
Y = X we write, for simplicity, X¢/Spd (E) instead of Y°/Spd (F) =
(X24)0/Spd (E). Let n be the Z,-rank of L. Then the sheaf of trivializations
(“frames”)

Isom(Z, x Y, L)
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is a GLy(Zp)-torsor over Yppoet. For a point of X©/Spd (E) with values in

S/Spd (E), given by x : S* =Y = X2 over F, we set
B(S) = {a: (@)s: = * (L)},

This gives a v-sheaf which is a pro-étale GLy,(Z,)-torsor over X©.

Proposition 2.6.3. Let L. be a de Rham Zjy-local system of rank n over the
smooth E-scheme X, with associated pro-étale GLy(Z,)-torsor P over X°.

There is a unique GLy,(Zy)-equivariant map of v-sheaves over Spd (E),
DRT(L) P— GrGLmSpd (E)»

such that:

A point o € P(S) with values in an affinoid perfectoid S = Spa (R, RT)
over kg with x : S* = Spa (R, R*) — Y over E is mapped to the point of
Grar, spd (E) given by the IB%:{R(Rﬁ)—lattice equal to the inverse image under
a of .CL'*(M(]) cz* (Mo) ®]B(J{R(Rﬁ) BdR(Rﬁ) =¥ (]L) Rz, EdR(Rﬁ):

a N (z*(My)) C Bar(RH)™ 22 2*(LL) ®z, Bar(RY).

Proof. Here, the pull-backs z*(Mp) and z*(M) via z : S* = Spa (R*, R¥*) —
Y = X2 are first considered as sheaves for the pro-étale topology (as de-
fined in [81, §3]), over the affinoid perfectoid S* = Spa (R*, R*"). By descent
(see the proof of [14, Thm. 3.4.5]) these sheaves are given by finite projec-
tive E;R(Rﬁ)—modules which we also denote by z*(My) and x*(M), and the
construction above produces a point of Grqr,, spd (k) as claimed. Note that
there is a pro-étale cover U = l'mi U; — Y such that U = Spa (R*, RM) is
an affinoid perfectoid mapping to Y as above (see [81, Def. 4.3, Prop. 4.8]),
over which P has a point; then U% = X9 is v-surjective and the uniqueness
follows. O

Definition 2.6.4. Let L. be a de Rham Zy-local system of rank n over
the smooth E-scheme X. The shtuka (¥, ¢y) of rank n over X°/Spd (E)
corresponding to 1L is the vector space shtuka whose corresponding GL,,-
shtuka is given by the pair (P, DRT(L)) via Proposition 2.5.1.

Suppose that DRT(L) factors through Grgr,, spd (g),,—1» Where p is a
minuscule coweight of GL,,. Equivalently, we have, proétale locally on S,

(2.6.4)
a'(Mp) = g- Bl (RH)", g€ GLy(BIR(R)u(€) 'GL, (B (R)).
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We have a GLj,(Z,)-equivariant map of v-sheaves over Spd (E),

(2.6.5) HT(L) : P — Grar, spd (B)u— ~ FaL, 1

Then, in the above, the shtuka (7', ¢y) has leg bounded by u and also
corresponds to the pair (P, HT(L)) in the sense of Proposition 2.5.2.

2.6.2. Generalization to torsors. By the Tannakian formalism we can
extend the previous construction from local systems to torsors. More pre-
cisely, fix G over QQ, as before with parahoric model G, and let P be a
pro-étale G(Zjy)-cover over the smooth scheme X over E. For simplicity, we
denote also by P the corresponding pro-étale G(Z,)-torsor over Y = X©,
cf. [85, §9.3]. This amounts to giving, functorially, a pro-étale G(Z,)-cover
P(S) over S, for every S € Perfd;, and every S-valued point of X©/Spd (E),
ie., (S% ) with z : S* — X2 as above. Here, for S = Spa (R, RT), the
torsor P(S) is obtained by pulling-back P along z, followed by the tilting
equivalence.

If p: G — GL(W) is a finite dimensional Q,-rational representation,
then there exists a Z,-lattice A C W such that p(G(Z,)) C GL(A). Set L, A
for the corresponding Z,-local system over Ypret Whose torsor of frames is
given by

9(z,)
GL(A) x P.

Definition 2.6.5. We say that the pro-étale G(Z,)-cover P is de Rham, if
for each (p, A) as above the local system L,  is de Rham.

This definition is independent of A. It is enough to check this property
on one single faithful representation p.

Suppose that P is a de Rham pro-étale G(Zj,)-cover over X. Then &, :=
Dyr(LLp,a) with its connection and filtration only depends on L[1/p] and
p: G — GL(W), and not on the lattice A C W. For each classical point
x of X with residue field E(z) finite over E, this compares with Fontaine’s
theory in the sense that the fiber Dgr (L, a)z is canonically isomorphic to
the value Dgr((IL,)z) of Fontaine’s functor applied to the representation of
Gal(E(x)/E(x)) given by the fiber (L,)z.

The functor p + (&,4, Fil'(£,,)) from representations of G to filtered
vector spaces defines a conjugacy class {up.}, defined over E(z), of a co-
weight pp ;. of GW. If z, 2/ are in the same connected component of X, then

{pp 2} = {pp 2 }. Assume that for all classical points = of X, the conjugacy
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class {up} is constant, equal to {u}. Then [81, Prop. 7.9] implies that the
above construction gives a G(Zjy)-equivariant map of v-sheaves over Spd E,

(2.6.6) HT : P — Grg,spd (B)u-t = e pm1-

Definition 2.6.6. Let P be a de Rham pro-étale G(Z,)-cover over the
smooth E-scheme X and assume that {pp,} = {u} is constant. The G-
shtuka (2, ¢) over X©/Spd (E) with one leg bounded by p corresponding
to P is the G-shtuka corresponding to P and the morphism (2.6.6) via Propo-
sition 2.5.3.

Remark 2.6.7. The map HT : P — ]—"g#,l obtained from a de Rham pro-
étale G(Zy)-cover can be thought of as a sheaf analogue of Scholze’s Hodge-
Tate period map for Shimura varieties. This construction is also given by
Hansen in [39]. Hansen actually shows that P is given by a diamond. Here,
we only consider P as a wv-sheaf and we do not really need any additional
geometric structure.

2.7. Maps of G-shtukas

Our main goal is to show that maps between shtukas suitably extend and
show Theorem 2.7.7 of the introduction. In most of this section we discuss
the linear case, i.e. take G = GL4. The results in the general case are obtained
from this by applying the Tannakian equivalence.

2.7.1. Maps between bundles over the curve. Recall that for § =
Spa (R, R™) affinoid perfectoid over k, we have the (adic) relative Fargues-
Fontaine curve Xgr 5. Recall also that sending S to the groupoid of vector
bundles on Xyp g defines a v-stack ([26, Prop. 11.2.1]).

Let & and & be two vector bundles over Xyp g. Sending a perfectoid
space 1" over k to the set

(2.7.1)
Hs(61,6)(T) ={(o, [) |0 € T — S, f € Homx,, . (a"(61), a"(62)) }

gives a v-sheaf H¢(&1, &2) with a morphism
H:Hy(&,8) — S.

Proposition 2.7.1. a) The v-sheaf Hg(&1,82) is represented by a locally
spatial diamond over S.

b) The morphism H : Hq(&1,82) — S is partially proper (in the sense
of [85, 17.4.7)).
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Proof. Since
Homy,, , (a*(&),a*(&)) = H'(Xpp, o (6 © &),

both assertions follow immediately from [26, Prop. I1.2.15] applied to the
bundle & ® &’. Note here that the (quasi-)separatedness of H follows by
using the group structure, and showing that the zero section Og : S —
Hg(&E1,8) is a closed immersion. O

In general, if Y is a v-sheaf over Spd (k), and & and &, vector bundles
“over Xppy” (in the sense described in [2]), we can consider the v-sheaf
given by

Hy (61,6)(T) = {(o, f) |« € Y(T), f € Homy,, , (2" (¢1), " (£2))},

which affords a map H : H, (61,62) = Y.

Proposition 2.7.2. IfY is formally separated (in the sense of Gleason [31,
Def. 3.27]), then the map H : Hy (&1, 62) — Y is also formally separated.

Proof. For simplicity, set F = Hy (81, 82).

1) First we observe that H : F — Y is separated, i.e. the diagonal
F — F Xy F is a closed immersion: This follows from [26, Prop. I1.2.16],
see also Proposition 2.7.1 above.

2) We next prove that the diagonal F — F xy F is formally adic in the
sense of [31, Def. 3.20]. Then, by (1), F — F Xy F is formally closed, so,
by definition, H : F — Y is formally separated.

Since Y is formally separated, A : Y — Y x Y is formally adic. By [31,
Prop. 3.24], we see that the base change of Y - Y xY by Hx H : F x F —
Y x Y, which is

(FXF)Xyxy Y =~ F xy F — F X F,

is formally adic. Now, if F — F x F is formally adic, it follows by the
definition and standard properties of Cartesian diagrams that F — F xy F
is also formally adic.

It remains to show that 7 — F x F is formally adic. By [31, Lem. 3.30],
it is enough to show that the homomorphism

(fred)’ — F

induced by adjunction, is an injective map of v-sheaves. Here, F¢q is the
reduction of the v-sheaf defined in [31, Def. 3.12], see also §3.3.1. By the proof
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of [31, Lem. 3.30], (Freq)* is the v-sheaf associated to the presheaf which
sends an affinoid perfectoid Spa (R, R*) to F(Spec (R*)*). The adjunction
map

adj(R, R") : F(Spec (RT)*) — F(Spa(R,R"))

is given by evaluating at Spa (R, RT) — Spec (RT)* = Spd (R") given by
(RY,R") — (R, R"). It will be enough to show that adj(R, R") is injective,
for all (R, RT).

Set

(A4, A%) = (RT (/7)) R[]

Recall that A* = RT[t'/P™] is the t-adic completion of the perfect algebra
RF[t, ¢/ /P ] and A = RT((t'/P7)) = RT[t'/?"][1/t]. The elements of
RH[tY/P™] are represented as power series

Z T5 ti

i€Z[1/p]>0

with 7, € RT and with support (i.e. set of indices i for which r; # 0)
which is either finite, or forms an increasing unbounded sequence. Then
T = Spa (A4, A") is an affinoid perfectoid (with the ¢-topology) and

c:T =Spa(A,AT) — Spd (R™).

is a v-cover.
By v-descent

F(Spec (RT)*) — F(T) = F(Spa (A4, A1)).

Choose a pseudouniformizer w of R*. For any such choice, the morphism
a:Spa(R,RT) — Spec (RT)* = Spd (RY) is equal to the composition

Spa (R, RT) == Spa (A, AT) 5 Spd (RT).
So, it will be enough to show that

F(Spd (R")) — F(Spa(A,AT)) — [[ F(Spa (R, R"))

is injective, where the product is over all pseudouniformizers of RT. We will
use:
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Lemma 2.7.3.

(ker(R*(#'/77) === R) = (0).

Proof. Suppose f is in the intersection above. There is N > 0 such that
tNf e Rt [[tl/ P™] and so, without loss of generality, we can suppose that
f = f(t) € RT[tY/P~]. Assuming f # 0 we will obtain a contradiction.
There exists a perfectoid Spa (K,V) — Spa(R,R"), with V a valuation
ring and K its fraction field, such that f # 0 in V[t'/P~]. Write

f=f)=>) ait™
i=0
with a; € V, 0 <mg <mi < -+ <my < ---, all in Z[1/p], and ay # 0.

Choose a pseudouniformizer @ € R™, it is topologically nilpotent and a unit
in R, and w # 0 in V. Since w is topologically nilpotent, there is m > 1
such that

) < Jagl.
Since @™ is still a pseudouniformizer of (R, R'), we have f(@™) =0in R
and so also in V. This implies

lag|[@ ™™ = lar@™™ + -+ ap@™™" + - | < supysq [{|an| @™}
S ’w’mml
which contradicts our choice of m. O

Take two elements of F(Spec (R")*) given by (a;, fi), i = 1, 2, in
F(Spa (A, A")), with the same image in [[_ F(Spa(R,R")). Since Y is
formally separated, the diagonal Y — Y x Y is formally adic. Hence, by [31,
Lem. 3.30] and an argument as above, we have oy = ag and o 1= a1 = ag
factors as Spa (A4, AT) 5 Spec (RT)* — Y. Write f = f1 — fo.

Choose I = [1,p] and consider the affinoid Y7 ; = Yr 1 (notation as in
[26]), after fixing the choice of t as a pseudouniformizer of (A4, A*). We will
use the map 7 : Yr 1 — Xppr = Y7 1/¢ in the definition of the FF curve
([26, Prop. 11.1.6]). We see that

Homyx,, ,(a*&1,a"6,) C Homy, ,(7*(a*61), 7" (a*62)).

Now enlarge the projective modules corresponding to é71; = a*&; over Xpp 1
as in the proof of [26, Thm. I1.2.6], i.e. find G/ over X pp 7, such that 7*&p; ®
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7*G, are the sheaves given by finite free O(Y7;) = I'(Y7 1, Oy, )-modules
of rank n;. Then, since

Homy, , (7" &1, 7 &p2) C Homy, , (7* &y @ m*G1, &2 & 7°G))
and
HOIIIYTJ (71'*(9@7“71 ) ﬂ*gi, 77*5’]"’2 &) F*gé) ~ Matanm,(O(YTJ)),

an element (a, f) of F(T) = F(Spa (A, A")) is determined by o € Y(T')
and a matrix M = M(f) with entries in O(Y7 ), i.e. functions on Y7 ;.

Assume that f is in the kernel of the map given by F(Spa (A, A")) —
[1, F(Spa(R,R")); then f is also zero after pulling back by YR roys —
Yr 1, given by t — w, to all such Y(% R (Note here that we include
the superscript on Y(}”% R),1 1O emphasize that this depends on the choice
of w, see [26, 11.1.2].) The locus |Z(f)| on Yy where M(f) is zero is a
“Zariski closed” subset of the topological space |Y7 ;| underlying Y7 r; by
our assumption, this contains the images of |Y(’I”% RY), ;| for all t — .

We now claim that |Z(f)| = |Yrz|; this implies that M(f) = 0 and
hence f =0 in F(Spa (A, AT)). In turn, this implies the desired injectivity.
By [26, Lem. IV.4.23., p. 142] (this uses that “Zariski closed is strongly
Zariski closed”, shown in [8, Rem. 7.5]), the complement of the image of
\Yr.1| —|Z(f)| under v : |Yp ;| — |T| is Zariski closed. Hence

T = v(|Yre| = [Z(f)])

is a Zariski closed subset || of |T'| underlying an affinoid perfectoid W =
Spa (B, Bt) — T defined by an ideal J C R*((t'/?™)). By our assumption
and the same reference, all the morphisms Spa (R, R*) — T given by t — @
factor through W and we have

J  (ker(R*(#/77) === R).

Lemma 2.7.3 gives J = (0) which implies |Y7 ;| = |Z(f)|. As we just saw
above, this concludes the proof. O

2.7.2. Maps between shtukas. Let R be an integral perfectoid flat
Zy-algebra in the sense of [85, Def. 17.5.1], cf. §2.2.1; in particular, it is p-
adically complete. We can take an element of the form 7 = p'/? . (unit) e



62 Georgios Pappas and Michael Rapoport

R* as a pseudouniformizer. Set Rf = R [1/p] = R¥[1/7] and also con-
sider the tilt Spa (R, R*) of Spa (R*, R*). We consider the v-sheaves St =
Spa (R, RFT)¢ and S = Spa (R*, R*) = Spa (R*, R**)® over Spd (Z,,).

Proposition/Construction 2.7.4. Let (¥, ¢y) be a shtuka over ST —
Spd (Z,). There is a vector bundle with meromorphic Frobenius (¥, ¢y+)
over Y(R, RY) which extends the shtuka (¥, ¢y)s given as the evaluation
of (V,¢y) on the affinoid perfectoid

S = Spa (R} R*t) — ST,

Remark 2.7.5. We expect that, in many cases at least, (¥ 1, ¢y+) “further
extends along [w] = p = 07, i.e. it is obtained by restriction along the
morphism of locally ringed spaces

Y(R,R") — Spec (W (R"))

from a uniquely determined W (R™)-module with meromorphic Frobenius
structure, more precisely from a BKF module over R**. For example, when
(R,R") = (K,K™") with K™ a valuation ring of the perfectoid field K,
this follows from the result of Kedlaya (Theorem 2.1.6). Combined with
Proposition 2.7.4 above, this shows that in this case of a perfectoid field, the
functor of Proposition 2.3.11 is essentially surjective and hence an equiv-
alence of categories. In fact, the same conclusion holds when (R, R") =
((IL;e; K)[1/(wi)], [ ;s K;7) is a product of points, when one restricts to
shtukas of fixed rank. Indeed, we can apply the argument above, by using
the extension of Kedlaya’s result given in [32, Prop. 2.7].

Proof. Note that the shtuka (¥, ¢y)|s is a vector bundle with meromorphic

Frobenius over Vi o) (R, RT). Let w = 7 € RT be the pseudo-uniformizer
of RT that corresponds to 7. Consider the sousperfectoid adic space

=]

U — Spa <W<R+> <p—> [1/p], W(R") <Zﬂ>>

for a > 0. Here, W(R‘*)(%) is the completion of W(R*)[[;f—a]] for the p-adic
topology. (Note that [w]™ — 0 in the p-adic topology). We can consider B =
W(R+)<[;)ﬂ—a]>[1/p] as a Banach Qp-algebra. As in the proof of Theorem 2.3.8,
we can pull back by

U® — Spa (W(RM))® = ST x Spd (Z,)
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and then use the Z;-pro-étale perfectoid cover
0 — U =spa (wirH (D L wirn ()

constructed by complete tensoring with Oso: Here
Uoo = Spa (BOCM Bjo)
with

(=] (]

By := W(RY) <p—a> [1/p)®2,000, BL :=W(R") <p—a> 82,000

We obtain a finite projective Boo-module M with Z, -pro-étale descent data.
The argument in the proof of Theorem 2.3.8 now applies for the Banach
algebra B = W(R“L)([;ia]ﬂl/p]: This gives that M descends to a B-module
M if there is such descent for the base changes after

v () —wion ()

b

given by all the continuous
f: (R7R+) —>(C’OC)’ f(w>:wc

This allows us to reduce the proof of descent to the case of a shtuka over
Spd (O¢:), where O¢: has the analytic topology and C* is algebraically
closed. In this case, we know by Fargues-Fontaine (cf. [85, 13.2]) that the
restriction of the shtuka via Spa (C*, O¢s) — Spd (O¢+) uniquely extends to
a BKF module M (O¢) over W(Oc¢). By full-faithfulness of the restriction
“away from oo” (Proposition 2.1.3, see also the proof of Proposition 2.3.11)

we see that this W(OC)<[ZZ—QC])—module M(Oc)@w 0y W(Oc)( [Zf} ) provides
the descent module; so descent holds in this situation.

By the above we see that there is a vector bundle with Frobenius struc-
ture over the (sousperfectoid) analytic adic space U which descends the vec-
tor bundle with Frobenius structure over Us, obtained by the shtuka (Y, dy)
over ST. Note that Y(R, RT) is a (sousperfectoid) analytic adic space which
is covered by the open subspaces U and Yoy (R, RT) C Vo o0)(R, RT).
We can now obtain, by glueing, the desired vector bundle (¥, ¢y +) over
Y(R, R") that extends (¥, ¢y)s. O
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We will now assume in addition that Rt = R¥. Then we also have
Rt = R°.

Proposition 2.7.6. For R'" integral perfectoid as above with RfT = R,
consider the v-sheaves St = Spa (R¥, R¥)® and S = Spa (R*, R*T)¢ over
Spd (Z,). Let (¥, ¢y) and (¥, dy) be two shtukas over ST/ Spd (Z,). Every

homomorphism
Vs (V,o9)is — (V' 09)is

between their restrictions to S/ Spd(Zy), extends uniquely to a homomor-
phism

(G (7/7¢7/) — (/V,aqb'y’)
over ST/ Spd (Zy).

Proof. Since ST is formally separated, the uniqueness follows from Propo-
sition 2.7.2 and [31, Prop. 4.9], together with the fact that the functor
(¥, ¢y) — Ypr is faithful. (In fact, this argument implies that if an ex-
tension exists, it is unique, even when R # Rﬁo.)

Let us discuss the existence. By Proposition 2.7.4 above, (¥, ¢y ) and
(V' ¢y) give vector bundles ¥+ and ¥'* over Y(R, RT) with meromor-
phic Frobenius. Suppose that r > 0 is large enough so that y[mo)(R, R™)
does not intersect the divisor S where the Frobenius is not an isomorphism.
By Proposition 2.1.3, since R™ = R°, restriction from Vir,oo] (1, R*) to
Virso) (R, R™) gives a fully-faithful functor from the category of vector bun-
dles with ¢-structure over Y, o (R, R™) to the category of vector bundles
with ¢-structure over Y, o) (R, R"). This implies that the homomorphism
g over y[ojoo)(R, R™) uniquely extends to a homomorphism of vector bun-
dles Yy p+y: ¥t — ¥'T over the adic space Voo (R, RY) = V(R, RT).
Hence, by the GAGA-equivalence of Theorem 2.1.6, this corresponds to a
homomorphism of vector bundles over the scheme Y (R, RT),

Yyrpr): VI — V'
Note the open immersion
j : Spec (W(RF)[1/p]) = Y(R,R).
We set Yy (rt)1/p) = 7" Vy (R,R+)-
Now let z : T = Spa(B,B*) — ST = Spd(R'), with T affinoid

perfectoid over k, given by an untilt 7% = Spa(Bﬁ, B’H) and a continuous
R — B*t which corresponds to RT — Bt. We want to construct a
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homomorphism r: z*(¥) — x*(¥') over T x Z,. We will first assume
that T = Spa(C,C™"), with C a complete nonarchimedean algebraically
closed field over k.

1) Suppose that z is adic, so that 7 maps to a pseudouniformizer of C'T.
Then x factors through S = Spa (R?, R¥")® and we set 17 to be the pull-
back of g by x : T'— S.

Note that in this case, we also have a homomorphism ¢ (z) : z*(¥) —
x*(¥") over Y(C,Ct) = Spa(W(CT)) \ {[wec] = 0,p = 0} obtained by
pulling back 1y g g+) by . Then 1 is also given by the restriction of ¢ (x)
to y[opo)(C? O+)

By results of Kedlaya (see [51, Thm. 3.8] and [85, Prop. 14.2.6]), ¢(x)
uniquely extends to a homomorphism ¥ (z)" : (z*¥)" — (2*¥’)" of cor-
responding W (CT)-modules. The homomorphism z* : RT™ — C™T also gives
x*: W(RT) — W(CT) and we have

(2.7.2) D(@) T [1/p] = " Yw(r)1/),

as maps (z*¥)T[1/p] — (z*¥")[1/p].

2) Suppose that z is not adic. Then 7° maps to 0 in C+ and C#+ = CT,
i.e. the untilt 7% = T is in characteristic p. Set R, = (R*"/(7))rea =
(R /(7°))rea- The point  factors as

x:T = Spa(C,C") — Spec (Rjed)’ — Spd (R*Y),

and the shtukas z*(¥, ¢y ) and z*(¥, ¢y), are pull-backs of shtukas over
Spd (R},) = Spec (R ,)*.

Now, using that R+ is Z,-flat, we can find a point  : Spa (C,C*) — S+
as in case 1), i.e. with untilt (C*,C*") over (Q,,Z,), and such that the
corresponding i* : Rft — C¥F lifts «* : R¥t — R /(1) = Rt /(x") — CT.
This is meant in the sense that there is a map k(C*) = Op:/mpz, — C
restricting to C~’ﬁ+/mé,j — C7T which, when composed with Z* mod meay,
gives x*. There is a commutative diagram

Spd (C*T) —— Spd (Rjed)

(2.7.3) l l

Spd (C*F) —— Spd (Rf).

We have two shtukas (7, ¢) and Z*(¥, ¢y) over Spd (C*) obtained by
pulling back via # : Spd (C**) — St = Spd (R*). Pulling back these by
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Spd (C*) — Spd (C*) given by C*t — C, recovers the shtukas z*(¥, ¢y)
and z*(¥,¢y/). Note that there are equivalences of categories between
shtukas over Spd (C") and BKF-modules (with leg at p, i.e. meromor-
phic Frobenius crystals) over W (C%), shtukas over Spd (C#*) and BKF-
modules over W(CT) (with leg at C*F), see Proposition 2.3.11, also Re-
marks 2.3.12, 2.7.5, and also shtukas over Spd(R[,) and BKF-modules
(with leg at p, i.e. meromorphic Frobenius crystals) over W (RY,) (The-
orem 2.3.8); these equivalences are compatible with pull-backs. Using these
equivalences, we can now define

(@) " = (Z)" mod (W(mg))

as a map (z*¥)t — (z*¥’)" between the corresponding W (C™)-modules.
We can now see, using the commutativity of (2.7.3) and the above, that
Y (x)*[1/p], and therefore also ¢ (z)*, is independent of the lift Z. Indeed,
Y (z)*[1/p] is also given as the pull-back

(2.7.4) () [1/p] = 2w (re) )
of ¢W(R+)[1/p} = j*lﬂy(R’R-*—) under
x : Spec (W(C™)[1/p]) — Spec (W (Ryq)[1/p]) — Spec (W (ET)[1/p]).

We can now consider the general case in which 7' = Spa (B, B") is affinoid
perfectoid with = : T — ST. Choose a pseudo-uniformizer w of B+ and
form a product of points f : Z = Spa(([[;c; C;)1/ (@), [Lic; C;) = T
which is a v-cover of T. The composition ¢ = z - f is given by Rt —
[Lies C* which gives gt : ZT := Spd ([ Lie; C*) = S*. We have shtukas
(g")*Y, (97)*?" over ZT; by Remark 2.7.5 these correspond to BKF mod-
ules [[;(zf?)" and [[;(z;%")" over W([I;c; CY) = [Lic; W(C;"). These
modules are well-defined (up to canonical isomorphism) and only depend on
R™ — [L;e; Ci" and the shtukas ¥, ¥ over ST. For each i € I, the com-
position z; : Spa (C;, C;") — Z — ST gives a point of ST to which we can
apply the construction above. We obtain ¢ (z;)" : (2} %)t — (zf7#")" which
gives a homomorphism ¢} : [[;(z;%)" — [,(z;#")* over W([[; C;"); this
restricts to give a morphism ¢z : (z - f)*¥ — (x - f)*¥' of shtukas over Z.
Using the above we will see that ¢y satisfies the v-descent condition and
hence gives a homomorphism ¢y : x*¥ — z*¥"' of shtukas over T. We
want to check the equality pjyz = p51z of the two pull-backs of the mor-
phism 1z by the two projections p; : Z xrZ — Z,i = 1,2. Consider a point
t = (t1,t2) : Spa(C,CT) — ZxrZ. The two points t1, ts give by composition
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the same map Spa (C,C*") — T — ST. By the above, the pull-backs over
W (CH)[1/p] of the two maps pi (v} [1/p]), p3(¢¥;[1/p]) by t are given by the
base change of Yy (g+yj1/p by the map RT — C* given by the composition
Spa (C,CT) — ST, and so they are equal. Hence, the pull-backs of the two
maps pi(vz), p5(1z) by t are also equal as maps between vector bundles over
V0,00)(C, CT). But the restriction along all points Spa (C,C%) — Z xr Z is
faithful on maps of vector bundles over Vg )(Z X7 Z), cf. [23, Lem. 2.3],
and the descent property follows. Now by [85, Prop. 19.5.3], the map 1z
descends to Yr : ¥V — x*V.

Finally we need to show that the maps v : 2*¥ — a*¥” for variable
x:T — ST give a homomorphism of shtukas 1 : (¥, ¢y ) — (¥, py) over
the v-sheaf S*: Consider a v-cover W — S by a perfectoid space W. By
the work above, we obtain ¥y which we would like to show satisfies descent
along W — ST. This is done by an argument similar to the one above. Let T
be a product of points with a map 7' — S and set W/ = W x g+ T. We want
to check equality of the pull-backs over the perfectoid W’ x7 W' = (W x g+
W) x g+ T. Consider a point t = (t1,t3) : Spa (C,CT) — W' x7 W’'. The two
points t; : Spa (C,C*) — W' give the same map Spa (C,C*T) — T — ST
after composition, and by the argument above we see t{9y = t5¢y where
Yy is the pull-back of 1y,. This is enough to deduce that iy satisfies
descent. [l

2.7.3. Extending maps between shtukas. In this subsection, we es-
tablish a relation between shtukas in characteristic zero and characteristic p.
Let 2 be a separated scheme of finite type and flat over Spec (Og). Denote
by X = 2 Xgpec (05) SPec () the generic fiber.

Theorem 2.7.7. Assume that 2" is normal. Let (¥, ¢y ) and (V', dy+) be
two shtukas over Z . Any homomorphism ¥x : (¥, oy)|x — (¥, dy:)|x
between their restrictions to X extends uniquely to a homomorphism 1 :

(Y, dy) = (V' dy/) of shtukas over X .

Proof. Recall that a shtuka over 2" is, by Definition 2.3.2, a shtuka over
the v-sheaf 2%/ over Spd (Og). We can easily see that we may assume
that 2" is affine, 2" = Spec(A4) with A a normal domain. Consider the
v-sheaf H(¥,7"') — 2 % whose points with values in the affinoid perfectoid
T = Spec (B, B*) is the set

(2.7.5)
HOV)T) = {(0 f) |0 € Z4T) [ a’(F,dy) — " (V' 65)}.
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As usual, we denote by A the p-adic completion of A which is integrally
closed in R = A[1/p]. Applying [85, Lem. 10.1.6] to the Tate ring R = A[1/p)
(with R° = A) we obtain an affinoid perfectoid Spa (R, R*) over Spa (E, Of)
with a morphism

Spa (R, RT) — Spa (A[1/p], A) — Spa (4, A).

In this situation, (f?, R+) can be obtained as follows: Fix an algebraic closure
F of the fraction field F' of R and consider the filtered direct system ligj R;

over all finite étale extensions R;/R contained in F. Let B; be the integral
closure of A in R; and consider the p-adic completion

= liy B,

Finally, take R = R*[1/p]. Note that R* is the ring of power bounded
elements R° in the Tate ring R. Set

A A~

Y:Spa(A[l/p],A)O, Y+:Spd( ) )7
Y =Spa(R,R")°, YT =Spd(R",R").

They all come with morphisms to Spd (Z)).
Lemma 2.7.8. The morphism

B:YT —yt=2%=(2)°

18 a surjective morphism of v-sheaves.

Proof. The morphism Y — Y is a surjective morphism of v-sheaves and
the same result for Y+ — Y+ then follows from the more general result [3,
Prop. 2.31]. Here we give a more direct argument. We can apply [85, Lem.
17.4.9] (see also the comment below that lemma): The morphism S is quasi-
compact and for every complete non-archimedean algebraically closed field
C, a morphism Spa (C,C*) — Spa (A, A) given by A — CT C C factors as
A — Bj — C* (since Bj/A is integral and C* is a valuation ring) and so
to

A—>ligquj:R+—>C+.

This gives Spa(C,C") — Spa (Rt,R*), ie. a Spa(C,C%)-point of
Spd (RT). O
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The given homomorphism 1 x gives a morphism of v-sheaves f : Y —
H(¥,7"). We consider the composition

f:Y —Y —HWYW, V),

which corresponds to the shtuka homomorphism 3 obtained by pulling
back 1y to Y. Since Rt = R°, we can apply Proposition 2.7.6 to Yy-. This
gives an extension of f to f* : YT — H(¥,¥"). We would like to descend
this to ft: Y+ — H(#,¥") along the v-cover f: Y+ — Y+, Let

Z+:?+ ><y+)~/+, Z:Y/Xy?.

To show descent of 1 to ft e H(¥,%") (Y1), we have to check the equality
of the two pull-backs pi(fT), resp. p5(f*), in H(¥,¥")(Z"); this equality
is true in H(¥,7")(Z).

Let us set

— —

D* = o, i, D= (R @, 251/,

where the hat denotes the p-adic completion. Also let Dt be the p-adic
completion of the integral closure of RT ® ; R* in (RT ® ; R*)[1/p]. Then
we have Z = Spa (D, D*)® and Z+ = Spa (D*, DT)®. We also have Z T :=
Spa (DT, D)% — Z* which is a v-cover.

By its construction, D = D*[1/p] is perfectoid and D is flat over Z,,.
By Proposition 2.7.6, a point of H(¥,¥”)(Z) has at most one extension in
H(V,7")(Z7). It follows that pi(f*) = p5(f+) over Z* and so also over
Z: This concludes the proof of the existence of the extension to 2 ¢ =
(Z ). We can now see, by uniqueness, that we obtain the extension to
CAUEE A U2 8 Xspa (0,5)Spd (E) X0 U

Remark 2.7.9. The previous theorem bears a formal resemblance to the
theorem of de Jong-Tate on extending a homomorphism given outside a
divisor between p-divisible groups over a normal base scheme. It would be
interesting to extend Theorem 2.7.7 to this general setting.

Using the Tannakian equivalence, Theorem 2.7.7 immediately implies:

Corollary 2.7.10. Let (Z,¢%) and (P, ¢ 5:) be two G-shtukas over X .
Any isomorphism ¥x : (P, ¢5)|x — (P, ¢ )|x between their restric-
tions to X extends uniquely to an isomorphism v : (2, ¢p5) — (P, d5')
over Z . d



70 Georgios Pappas and Michael Rapoport

3. Local Shimura varieties and their integral models
3.1. Local Shimura varieties

We recall Scholze’s local Shimura varieties [85, §24] and list some functorial
properties of them.

3.1.1. Definitions. Let G be a smooth affine group scheme over Z, with
generic fiber G' a reductive group over Q,, and b € G (@p), and p a conjugacy
class of cocharacters of G. It is assumed that the o-conjugacy class of b lies in
B(G, 1) and that G has connected special fiber. Then Scholze associates to
a triple (G, b, ;1) a moduli space of shtukas Shtg, ,,. It is given as a “diamond
moduli space” of certain G-shtukas with one leg bounded by p with a fixed
associated Frobenius element, cf. [85, §§23.1, 23.2, 23.3].

More precisely, consider the functor on Perfd; that sends S to the set of
isomorphism classes of quadruples

(3.1.1) (S%, 2, ¢2,ir),

where
1) S*is an untilt of S over Spa (E),
2) (2, ¢5) is a G-shtuka over S with one leg along S* bounded by ,
3) i, is an isomorphism of G-torsors
(3.1.2) ir i Gy, (8) = P Vi) (9)
for large enough r (for an implicit choice of pseudouniformizer w), under
which ¢ is identified with ¢g . We call 4, a framing.
Here we have denoted by Gy, _ (s) the trivial G-torsor over Y, .)(S) (de-
noted G X Vi) (S) in [85, App. to §19]), and by

* bo
(3.1.3) b= dcp: ¢ (Gy, L (5) = Gy[%T,OC)(S) = Gy (9)

the ¢-linear isomorphism induced by right multiplication by b, denoted by
b x Frob in [85, Def. 23.1.1]. In 3) we mean more precisely an equivalence
class, where i, and i, are called equivalent if there exists " > r 7’ such

. —_ gl
that ZT‘ D}[T”’M)(S) — ZT" ‘y[r”,oo)(s)'
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Note that the definition above makes sense even when we do not make
the hypothesis that p is minuscule. One of the main results of [85] is that,
in this generality, Shtg , is a v-sheaf and is represented by a locally spatial
diamond over Spd (F); this is shown by employing the crystalline period
morphism (also called the “Grothendieck-Messing period morphism”),

(3.1.4) TTGM : Shtg’b”u — GrG,Spd (B),<p?

which is étale. We set

(3.1.5) Jo(Qp) = {g € GW(K)[1/p]) | gbo(g)™" = b}.

The group J3(Qp) acts on Shtgy , by changing the framing,
g- (Sﬂa ,@,QS@’iT) — (Sﬁ> yagb'@)iT Og_l)'

Let K = G(Zy). Using the period morphism, one sees that Shtgy , =
Shtq p i only depends on G via K. Then K varies through the open com-
pact subgroups of G(Q,) and there is an action of G(Q,) on the tower
(Shtc b, k) K -

There is a Weil descent datum on the tower. Let 7 be the relative Frobe-
nius automorphism of E over E, and define the v-sheaf Shtg’?), 4 by

Sht) ,(S) = Shtg (S Xspa (),- Spa (k).

If S = Spa(R,R"), with structure morphism e: k¥ — R, denote by Ri7

Tz

the same ring with the k-algebra structure defined by k “= k - R. Here
q = |kg|. Then SXgpa k- Spa k = Spa (R, R[t}). We define the Weil descent

datum

(3.1.6) w: Shtg,p, — Shtg)

G.b,p

by sending a point (S*, 2, ¢ 5, i,) of Shtgp,, with values in S = Spa (R, R™)
to the point of Shtg ,((R, RY)|;) given by (S¥, P, pp,il.). Here r' = qr,
and we use the identification

¢: y[r,oo)(Ra R+) = y[r’,oo)((Ra R+)[’T])

Then 4/, is defined as the composition

ol ~
Gy oy (BEH) ) — Gy (RED) = P ) (REF) = L W) (RE) )
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where ¢ = p/ and where ng = (¢p)! denotes the f-fold iteration of the
¢-linear automorphism of the trivial G-torsor in (3.1.3).

Any group homomorphism p: G — G’ compatible with the other data
(G,b,n) — (G, ¥, /) induces a morphism of towers of v-sheaves,

(3.1.7) Shte e — Shtar by Xgpq () SPA (E),

compatible with descent data. Here E D E’ denote the corresponding reflex
fields.

The local Shimura varieties (LSV) correspond to the cases that p is
minuscule, i.e., when (G, b, 1) is a local Shimura datum, cf. §2.4.1. This is
the main case of interest here, and we will concentrate on it. In this case,

_ .
Graspa (B)<p = ]:G,M,E and as in [85, §24.1],

(3.1.8) ShtGbuic = ME i

for a uniquely-determined smooth rigid analytic space Mgy, , x over E.

Proposition 3.1.1. (i) Assume that p~'(Z¢/) C Zg, where Zg and Zg
denote the centers of G and G'. Then the induced morphism of towers of
rigid-analytic spaces with G'(Qp)-action is a closed immersion,

M <) G(Qp) — M Xgpgsry SP(E).

(ii) Suppose that p : G — G’ has finite kernel. Then, for p(K) C K', the
morphism (3.1.7) induces a qcqs morphism,

MG7b7M7K — Mleb/7M/7K/ XSp(E’) Sp(E)'
Proof. For (i), we claim that the assumption implies
(3.1.9) (Fap) ™ = 07 (Far i Xsp(izry SPEE)™™).

Here there appear the admissible sets, which are by definition the images
under the crystalline period maps, comp. (3.1.4). This then implies that

9

MG,b,M X G(QP)G/(QP) = (Mleblvﬂ/ XSp(E/)Sp(E)) x (]:G’,;L’,E‘/ XSP(E/)SP(E))fG,H,E7

hence the LHS is a closed subspace of Mgy 1/ Xgp(5) Sp(E). This means
that for any K C G(Q,), there exists K’ C G'(Q,) with K’ D p(K) such
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that the induced map Mgy, x — Mgy v Kk Xsp () Sp(E) is a closed
immersion.

To prove the claim, consider a C-valued point = of fa% ;- Then z lies
in the admissible locus if and only if the corresponding modification &, of
& at oo is a trivial G-bundle on the FF curve, cf. [85, Thm. 22.6.2]. Note
that, as we are assuming that [b] € B(G,u~!), we have that s(b) = —pu?,
and hence &, is trivial if and only if &, , is semi-stable, or, equivalently, the
corresponding element in B(G) is basic. We note that this characterization
shows that the admissible locus is open, as follows from the upper semi-
continuity of the Newton point ([85, Cor. 22.5.1]) and the local constancy
of the Kottwitz invariant in 71 (G)r ([26, Thm. II1.2.7]). Now the image of =
lies in the admissible set in ]:G/,w,  if and only if the G’-bundle &, p(z) =
p«(Epz) is a semi-stable G’-bundle on the FF curve. If &, , is the trivial G-
bundle then, obviously, also p.(& ) is the trivial G’-bundle. Conversely, if
ps(Epz) corresponds to a basic element in B(G') then, since p~(Z¢/) C Zg,
the same holds for & ,. In fact, under our assumption the natural map
px + B(G) — B(G') satisfies p;1(B(G")pasic) = B(G)pasic- Indeed, v is
central in G if and only v,;) = po 1, is central in G.

For (ii), we note that the assumption of (i) is satisfied: indeed, any
element Z € p~!(Z¢) defines a morphism G — ker(p) : g — ZgZ 1g~!; since
G is connected and ker(p) finite, the morphism is constant, i.e., Z € Zg. The
morphism in (ii) factors as

M — Map x4 @) G(Q,) /K — Mer o 10 X Sp(5) Sp(E).

By (i), the second morphism is gsqc. The first two spaces map by étale
morphisms to (g , )24 (with fibers G(Qp)/K, resp. G'(Qp)/K’). Hence

the first morphism is gsqc, and therefore also the composed morphism. [J

3.1.2. Pushout functoriality. Let p: G — G’ be a group homomor-
phism compatible with the other data (G, b, u) — (G, V', ') of local Shimura
varieties. We assume that the kernel is a central subgroup and that the cok-
ernel is a torus, i.e., p induces an isomorphism

(3.1.10) pad: Gad — Ghg.

In [72] such p are called ad-isomorphisms (following Kottwitz).
Proposition 3.1.2. Assume (3.1.10). The morphism (3.1.7) of pro-systems

M — M pr Xgpa () SPa (E)



74 Georgios Pappas and Michael Rapoport

with action of G(Qp), resp. G'(Qyp), induces an isomorphism of pro-systems
with G'(Qyp)-action,

(3.1.11) My x5 G(Qp) == My Xgpn (1) SP2(E).

Proof. By Proposition 3.1.1 (ii), the morphism of pro-systems is qcgs. There-
fore it remains to show the bijectivity of (3.1.11) on C-valued points, for any
algebraically closed non-archimedean field C. Consider the following com-
mutative diagram of (pro-systems of) rigid analytic spaces over E, in which
the vertical arrows are the crystalline period maps,

MG,b“LL MG/’b’”u,’ Xspa (EVV) Spa (E)

| |

FGrastina Ena XSpa (Eaq) SDP2(E) —— Far B, XSpa(E2,) SPa (E).

The images of the vertical maps are the admissible sets. By our assumption,
the lower horizontal arrow is an isomorphism. Under this isomorphism, the
admissible sets correspond to each other, as follows from the argument in
the proof of (ii) of Proposition 3.1.1. Now consider the following diagram,
where in the lower line appear the admissible sets,

MG,b,,u XG(QP) G/<Qp) MG/,b’,,u/ XSpa (E,,) Spa (E)

| |

(‘FGad,MamEad XSpa(Ead)Spa (E))adm — (fG’

a

v

Bl XSpa(Er,)Spa ()24,

We observe that the fibers of the left vertical arrow are identified with
G(Q,) x%@) ¢'(Q,) = G'(Q,), and hence map bijectively to the fibers
of the right vertical arrow. O

3.1.3. LSV of dimension zero. Recall that dim Mg, = dim Fg , =
(1, 2p). Hence

dimMegp, =0 <= p: G, 5 — Gg, Is central.

Let us assume this. Denote by Z° the connected center of G, and by uz €
X.(Z°) the element corresponding to p. Then E(G,u) = E(Z°,uz). We
now let by € Z°(Q)) be a representative of the unique o-conjugacy class in
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B(Z°, ~1). Via push-out of torsors along the map Z° — G, we obtain a
morphism of rigid-analytic spaces over F,

(3.1.12) Mzobspz — M-

Proposition 3.1.3. Let dim Mg, = 0. The morphism (3.1.12) induces

an isomorphism of towers of rigid-analytic spaces over E, compatible with
Weil descent down to E = E(G, u),

Mzo bz xZ(@) G(Qp) — Mapp-

Proof. Both F(Z° ) and F(G, u) reduce to a point. The assertion fol-
lows because the map is gsqc and since for any algebraically closed non-
archimedean extension C' of E, the C-points of both source and target are
identified with G(Q,). O

3.1.4. The torus case. Let G = T be a torus. In this case, there is
a unique [b] € B(T, pY), and My, is zero-dimensional. Let C, be the
completion of Q,,.

Proposition 3.1.4. The rigid-analytic space My, has a natural model
over Sp(E), compatible with its Weil descent datum. There is an identifica-
tion

Merpur(Cp) =T(Qp)/K, K CT(Qp),

such that v € Gal(Q,/E) acts through its quotient Gal(Q,/E)*"; further-
more, v with preimage ¢ € E* wunder the reciprocity map recg: E* —

Gal(Q,/E)™ acts as
rK — Ny(e)zK.

Here N, is the composition

R E NE
Nu: Resgg (Gu) ——= W Rosp o (T) 2222 T

Proof. By push-out functoriality, we are reduced to the case where T' = Ty =
Resg g, (Gm) and pu = po, where pug € X (T) = Indgp (Z) is the canonical

element given by
1, ifp=id
(,UO)w = {

0, otherwise.

Consider the rational RZ-data of EL-type given by the semi-simple Q-
algebra F, the standard E-vector space V of dimension 1 and the cocharacter
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o, comp. [77, §4.1]. The associated algebraic group over QQ, associated to
these rational RZ-data is Ty. Let (Mg v,,)) K, K C To(Qp) be the associated

RZ-tower over E, with its descent datum to E. Then (M(E,v,u)) K coincides
with My b0,k cf. [85, Cor. 24.3.5]. The result follows after identifying
(M(E,v,u0))x With the Lubin-Tate tower, cf. [15, §3]. More precisely, let X,
be the Lubin-Tate group over E corresponding to a uniformizer 7 of E. Then
the p-adic Tate module T),(X) is independent of 7 ([87, §3.7]), the space of
trivializations of T,(Xz) is (M(g,v,,)) K, and the Galois action by Galg is
given by Lubin-Tate theory, cf. [87, §3.4]. O

3.2. Integral models

Suppose in addition that K is parahoric with G the corresponding Bruhat-
Tits group scheme. Then Scholze gives in [85, Def. 25.1.1] also a construction
of an “integral model” ./\/lignfb# of Shtq .,k over Spd (Op).

Definition 3.2.1. Let (G,b, 1) be a local Shimura datum, and let G be a
parahoric group scheme which is a model of G over Z,. The integral moduli
space of local shtuka Mgltb 418 the functor that sends S € Perfdj, to the set
of isomorphism classes of tuples

(3.2.1) (S*, 2, 62,ir),

where
1) S*is an untilt of S over Spa (O}),
2) (2, $») is a G-shtuka over S with one leg along S* bounded by p,

3) i, is a framing, i.e. an isomorphism of G-torsors
(322) ir : Gy[r‘x)(s) l) gzw[hw)(s)

for large enough r (for an implicit choice of pseudouniformizer w), under
which ¢ & is identified with ¢p = b x Frobg.

This definition makes sense even if p is not minuscule. By loc. cit.,
Mgﬁ%# is a v-sheaf whose generic fiber is Shtqg , k. In fact, by [32, Prop.
2.23], Mlgmb u s a small v-sheaf. If p is minuscule, we can think of the v-
sheaf /\/lignfb, . 85 an integral model of the rigid-analytic local Shimura variety
Mepu,k and call it the integral local Shimura variety (integral LSV). The
Weil descent datum (3.1.6) on Mgy, x extends to a Weil descent datum
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on Mig“tbu from O down to Op. Also note that if ¥ = g~'bo(g), then
the association (S, P, ¢p,i,) — (S% P, dp, i, o g) induces an isomorphism
int ~ int
Mgh = MGy
The following conjecture is implicit in [85, §25.1].

Conjecture 3.2.2 (Scholze). Assume that p is minuscule. There ezists a
normal formal scheme Mgy, ., flat and locally formally of finite type over
Spf Oy, whose associated v-sheaf is equal to Miglttlw, (Note that by [85, Prop.
18.4.1] this formal scheme is unique if it exists.)

Remark 3.2.3. The conjecture holds true in many cases when the data
(G,b, 1) come from integral RZ data in the sense of [78] (this excludes the
cases of type (D) since they yield non-connected groups). In fact, in this
case Mg‘tb u is represented by the corresponding RZ formal scheme, cf. [85,
Cor. 25.1.3]. More precisely, one has to define the RZ formal scheme using
the flat closure local model instead of the naive local model, cf. [85, §21.6].
This is conditional on showing that the flat closure local model is normal.
Conjecture 3.2.2 is proved in [72] when the local Shimura datum (G, b, i) is
of abelian type, if p # 2 and if p = 2 and G,q is a product of simple factors
of type A or C.

Just as LSV, so also the formation of their integral models is functorial.
More precisely, let G — G’ be a group homomorphism compatible with
local Shimura data (G,b,u) — (G',0/,p'). Then there is an inclusion of
corresponding reflex fields, £ D E’. Let G and G’ be parahoric models of G,
resp. G’ such that G — G’ extends to G — G’. Push-out of torsors under
G — G’ gives a v-sheaf morphism

(323) p: Mign’%’p‘ — Migr'llt’b/’w X8pd (Og) Spd (OE),
compatible with Weil descent data.

3.3. The reduced locus of integral LSV and specialization

Recall that k£ denotes the algebraic closure of the residue field kK = kg of the
reflex field E of (G, p).

Definition 3.3.1. Let Xg(b, ') be the functor which to a perfect k-
algebra R associates the set of isomorphism classes of pairs (P, «) where

1) P is a G-torsor over Spec (W (R)),
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2) a is a G-torsor isomorphism
a: G x Spec (W(R)[1/p]) = P[1/p]

such that ¢pp = aogpop*(a) ! (where ¢y, = bx Frob) defines the structure
of a meromorphic Frobenius crystal

¢p : Frob™(P)[1/p] = P[1/p].

It is required that the corresponding G-shtuka has leg along the divisor
p = 0 with pole bounded by pu.

Remark 3.3.2. The above definition makes sense also when p is not minus-
cule. Explicitly, the term “pole bounded by p” comes down to the following
condition. Using the trivialization a we can view the pair (P, ¢p o ¢*(«)) as
a pair of a G-torsor over Spec (W (R)) together with a trivialization of the
restriction of this torsor to Spec (W (R)[1/p]). By [97, 3.1] (see also [8]), this
gives an R-valued point of the Witt vector affine partial flag variety Grg/.
Then the pole condition means that this R-valued point factors through
the map ¢: ME’H(R’) — Gry (R) of (2.4.4). By work of Anschiitz-Gleason-
Lourengo-Richarz [3, Thm. 6.16] (see §2.4.3), this condition is equivalent
to asking that for all K-valued points of Spec(R) with K algebraically
closed, the corresponding point in Gur;g/v(K) =GW(K)[1/p])/G(W(K)) lies
in Grg,/Adm(u) (K> = UwEAdm(u)g Gr w(K)

By [3, Thm. 6.16], the image (M&u)(K‘) — Gry (K) is equal to the set
of points of some finite union of affine Schubert varieties in the ind-perfectly
proper Witt affine Grassmannian Grgv . Using this, we can see as in [97, §1]
that the functor X¢(b, u~!) is represented by a perfect k-scheme which is, in
fact, locally perfectly of finite type over k. We call Xg(b, u~!) the (b, u=1)-
admissible locus inside the Witt affine Grassmannian. The group J,(Q),) acts
on Xg(b, ji~1) by

g- (’P,O&) - (,Paaogil)'

3.3.1. Specialization for v-sheaves. We now recall some constructions
and results of Gleason [31, 32]. Denote by Perfd the category of small v-
sheaves on Perfd. Recall the functor S — S* from perfect affine k-schemes
to Fe\rﬁ. If F is a small v-sheaf on Perfd;, then its reduction Freq € S&E’Erf
is the small scheme-theoretic v-sheaf (see [31, Rem. 3.13]) with

Fred(S) = Homg—(S*, F),
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for S a perfect k-scheme. It makes sense to consider the corresponding v-
sheaf (Freq)® and there is a natural adjunction morphism of v-sheaves

(3.3.1) (Fred)® — F.

Gleason explains certain conditions on F that allow for the construction of
a continuous spectalization map

(3.3.2) spr: |F| — | Fredl-

Here, |F| and |Fyeq| are the topological spaces associated to these sheaves as
in [82], comp. [31, §1], i.e., the equivalence classes of maps Spa (K, K) — F,
where K is a perfectoid field of characteristic p and KT a bounded open
valuation subring. If F comes with a map of sheaves 7 — Spd (Z,), we set
Fn = F Xspd(z,) Spd (Qp). Then we can consider the composition of the
natural map |F,| — |F| with the specialization map spr,

(3.3.3) spr, ¢ [Fyl — | Freal-

Assume in addition that F,eq is represented by a scheme and that the natural
adjunction map (3.3.1) is a closed immersion. In this situation, for a closed
point & € Fred, Gleason [31, Def. 4.18] defines a sub-v-sheaf F, of F that
he calls the tubular neighborhood of x in F. We will use the more traditional
name formal completion. Namely,

(3.34) Fra(8) ={y: § — F [sproy(|S]) C {x}}.

One can then take its generic fiber (which is traditionally called the tube
over )

(Fra)n = Fz Xspd (z,) SPd (Qp).

Let us exemplify these definitions when F = X¢, where X is a for-
mal scheme which is flat, separated and formally locally of finite type over
Spf (Zp). Then Freq is represented by the perfection of the underlying re-
duced k-scheme X,.q of X. In this case, there is a specialization map which
is a continuous map of topological spaces

sp 1 | X, — | Xred|s

where X, is the generic fiber of X considered as an adic space over Q,. There
is also a surjective map

sp : ’xrig|class N %red(k)y
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where |X"8|°1255 denotes the classical points of the rigid space X8 given by
the generic fiber of X, defined as by Berthelot, cf. [78, chap. 5]. For F = X°,
with X a formal scheme as above, there are natural identifications

|%77’ = |‘7:77‘7 |fred‘ = ’%red|>

and, under these, sp 7, agrees with the specialization map sp : |X;| = [X;ed]
(see [31], §4). For a closed point z € X,eq, by [31, Prop. 4.19], we can also
identify formal completions

f/ac = (%/ac)<> = Spa (@%,ma O%,x)o-

3.3.2. Specialization for integral models of LSV. One of the main
results of [32], is that, under certain assumptions, F = Mgltb ,, affords a

specialization map to Xg(b, u™1).

Theorem 3.3.3 (Gleason [32]). a) The v-sheaf /\/ligr%# is small and its

reduced locus (Migrftbju)red is represented by the perfect k-scheme Xg(b, pt).
The identification with the (b, u~')-admissible locus,

(Mign}),y)red — Xg(b, :uil)

is functorial in (G,b, ).
b) The adjunction morphism

in 1 .
(MEG )&~ Xg(b, 1) — MBS,

1$ a closed immersion.
c¢) The v-sheaf Mg‘tbu is “specializing” in the terminology of loc. cit.,
§1.4. Hence, there is a continuous specialization map

sp : |Shta b i — [Xg(b,u™h))|
functorial in (G, b, p), which also defines
sp : [Shtap x| — Xg(b, u™ 1) (k).

Proof. This follows from [32, Thm. 2] and its proof, see also [32, Prop. 2.30,
Lem. 2.31]. O

Theorem 3.3.3 above holds for all p, not necessarily minuscule. However,
in the sequel, we will return to our blanket assumption that p is minuscule.
The following conjecture is the local analogue of Scholze’s Conjecture 3.2.2.
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Conjecture 3.3.4. Assume that p is minuscule. Let x € Xg(b,u=1)(k).
Then the formal completion Mg“;)#/m is representable, i.e., there exists a

normal complete Noetherian local ring R such that
Mign’%#/z ~ Spd (R).

It is clear that Conjecture 3.3.4 follows from Conjecture 3.2.2: indeed, if
./\/llgrttlw is representable by .#g ., then Mlg“’%w Jz ™ Spd (0.4, ,.2)- In §3.7
we prove a kind of converse under some conditions.

The following conjecture makes Conjecture 3.3.4 more precise (see also

[32, Conj. 1]).

Conjecture 3.3.5. Letx € Xg(b,u=1)(k) and lety € Mlgo‘it(k) = Mg (k) C
Grg/(k:) be the point obtained after fixzing a trivialization of the corresponding
G-torsor over W (k). Then there is an isomorphism

(3.3.5) ME e = Mge, 1y = Spd (Owy),

loc

where, for simplicity of notation, M := Mgﬂ.

Remark 3.3.6. a) In the case of RZ-spaces, Conjecture 3.3.5 holds true, as
follows from the “classical” local model diagram, cf. [78].

b) The isomorphism in Conjecture 3.3.5 cannot be expected to be canon-
ical. In fact, the isomorphism between the completions of local models which
are induced using (3.3.5) and the functoriality of integral LSV’s is not al-
ways the one obtained by the functoriality of local models. To explain this
statement, consider (G, b, u) — (G', ¥, 1/). This induces natural morphisms

(3.3.6) MG 0 — Mg Xspa (0,) SPd (Or),
Mgl,tb,y, — Mlgr'llt’b/’lt/ XSpd (OIZ“’) Spd (OE)

Let x € Xg(b, 1) (k) and let y € Mg (k) C Grgv(k) be the point obtained
after fixing a trivialization of the corresponding G-torsor over W (k). Let
a' € Xgr(b')(k) be the image of z and let y' € Mg, (k) C Grg (k) be the
point obtained from the corresponding trivialization of the corresponding
G'-torsor over W (k). Then, assuming the conjecture, we obtain a diagram

Mign,tb,u /x Mign’t,b’,u/ /x’ X Spd (Ogr) Spd (OE)
M[vJ

Gty MGy XSpd(05) SPA(OF),
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where the upper and the lower morphism are derived from (3.3.6), and where
the vertical maps are the isomorphisms appearing in (3.3.5). This diagram
will in general not commute, no matter how the isomorphisms in (3.3.5) are
chosen. An example is given by GLg, when = (1,0) and b is basic, and G is
the Iwahori model of GLy and G’ is the hyperspecial model of GLs. In this
case, the upper horizontal arrow is represented by a finite morphism but the
lower horizontal morphism is induced by a blow-up morphism.

Remark 3.3.7. The basic idea behind the construction of the specialization
map for Shtg , x can be displayed as follows, see also Proposition 2.4.6 and
its proof.

Let S = Spa (C,C*) — Shtg .,k be a point over Spd (Op) which corre-
sponds to a G-shtuka (7, ¢ ») with trivialization i, over V|, »)(S). Using the
trivialization 7, we can extend (&, ¢%) over }j, o(S) and hence, by glue-
ing, over Vg o] (S). By the Extension Conjecture A.1.2 shown by Anschiitz
[1], this extends to a G-BKF-module 9% i.e., a module over Spec (W (CF)).
The trivialization extends to a trivialization i, of the pullback of £ via
Vi) (8) = Spec (W(CT)). Let & be the residue field of C*. Now the base
change by W (C™) — W (k) gives a G-torsor

Py = P* @y (ory) W(k)

over Spec (W (x)) with Frobenius ¢y defined on &[1/p|. Base-changing the
trivialization 4, under

Biichy — W()[1/p)

defines a trivialization a of Py[1/p]. We can see that the Frobenius on
Po[1/p] is bounded by p. Hence (P, ¢po,a) € Xg(b, u~ 1) (k). Unravelling
the definition of the specialization map ([31, Def. 4.12, Rem. 4.13]) gives

Sp(,@’ ¢@>iT) — (3207 ¢03 O[).
3.4. Structure of the formal completions of integral LSV

The aim of this subsection is to prove the following fact.

Proposition 3.4.1. Let (G, b, 1) be a local Shimura datum and let G be a
parahoric group scheme for G. Let v € Xg(b, u=1)(k).
1) The formal completion /\/lig“;)’ﬂ /o of the integral local Shimura variety

Migr%’u at x is topologically flat.
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2) The topological space |(Mign7%’u /x)n| given by (Migrl:%ju /x)T7 (the generic

fiber of the formal completion) is connected.

For the proof we need some preparation. For a small v-sheaf X over
Spd (Zy) we write X;) = X Xgpq(z,) Spd (Qp) for its “generic fiber”. This is
a small v-sheaf which comes with a map X, — X. We will say that X is
topologically flat, if | X,)| is dense in | X|. We need the following lemma.

Lemma 3.4.2. Suppose X is a formal scheme which is flat and formally of
finite type over Spf (Z,). Then the corresponding v-sheaf X° over Spd (Z,)
1s topologically flat. O

Proof. This is given in [65, Lem. 4.4], a similar argument also appears in
the proof of [3, Lem. 2.17]. O

In [31, Def. 2.34], Gleason defines a v-sheaf of groups IZ"V{,Q over Spd (Zy)
given by

(B41)  LHG(S) = {((S),0) | 9 € GOV(RT)), g =1mod [m,]}.
where S = Spa (R, RT) and (S% y) is an S-valued point of Spd (Z,), and

where w, is a pseudouniformizer of R (that depends on g). We can think

of ﬁﬁvg as the formal completion at the identity of the wv-sheaf of groups
WG x Spd (Z,) of loc. cit., with WG given by

W*G(Spa (R, RT)) = G(W(RT)).

Consider the v-sheaf W+ which associates to the affinoid perfectoid S =
Spa (R, R") over k the set W (R, R™) equal to

{a e W(R") | a € ([r4]), 74 a pseudo-uniformizer depending on a}.

Lemma 3.4.3. The subset W (R, R*) is an ideal of the ring W (R™).

. . . 1/pm
Proof. If m, m are two pseudo-uniformizers in R*, we have 7r1/ P77y and
1/pm
772/1; |m1 for some n. Then,

[ma]by + [malbe = [mlby + 117" bz = [my/" ([} /" by + [c]ba).

This shows that W*(R, R™) is a subgroup and, hence, also an ideal of
W(RT). O
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Recall the identity of Witt vectors (in characteristic p)

(b, b1, .- by ) - (70, 0,...,0,...) = (boma, by?, bom? . .).

a

Now choose a pseudo-uniformizer = and hence a norm | | on R.
So a = (ag,a1,...,an,...) € W(R") belongs to W (R, RT), if and only
if
an-1 € Bon g(R, RY)

with r = 7, = |7,|. Here, we have the ball of radius " over S
BTP",S = Spa (R<t7 t/ﬂ-gn>7 R+ <t7 t/ﬂ.g”»O’

so for (R,Rt) — (A, A%), B,un 5(A, At) = 78 AT. The Frobenius on R
extends to a ring isomorphism ¢ : R(t,t/7,) — R(t,t/7h) with ¢(t) = t.
This gives

(z) : an :> BTP’S.
Hence, we see

WH(R,R*) = | J(Brs x Bros x - )(R,RT) 5 (U(BT,S)N) (R,RY),

r<l r<l

the isomorphism given by (1,¢~!,..., ¢~™,...). This isomorphism gives

(3.4.2) W x S~ | J(B,s)".
r<l

Proposition 3.4.4. The map W+ — % is formally smooth in the sense of
[26, Def. 1V.3.1].

Proof. The proof of [26, Prop. IV.3.3], gives that BY — x is formally smooth
and so is

U®.s)¥ — s
r<l1
for all S. The result then follows from (3.4.2). O
Note here that
BY ~ lim B,

d
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where B? is the d-dimensional ball. If U C BE is a quasi-compact open then,
using [82, Prop. 6.4], one sees that there is some d > 1 such that U is the
inverse image of an open V' C Bg by the projection IB%E — ]B%g.

We write

G(W*(R,R")) := {g € GW(R")), g =1mod [w,]}.

—

Set O(G) =T1'(G,0g) and let O(G), be its completion along the kernel Ig of
the identity section. Since G is smooth over Spec (Z,), we have

0(G), ~ Zplu, . .., uq],

non-canonically, with Ig ~ (u1, ...,uq). An element g € G(W* (R, RT)) is
given by an algebra map

g 0(G) — W(R")

such that g*(Ig) C [my]W(RT) € WH(R, RY). Since W (R*) is [r,]-complete,
g* factors uniquely through

0(G) — 0(G), =2, & I.

Using that W*(R, RT) C W(RT) is an ideal (Lemma 3.4.3), we see that g*
is uniquely given by assigning the values g*(u;), i = 1,...,d. This gives

Lt.G(R,RT) ~ WH(R, R")% x Spd (Z,)(R, R"),
and so
(3.4.3) LG~ (WH? x Spd (2,),

non-canonically (as v-sheaves of sets).

Proposition 3.4.5. The map IAJVQ — Spd (Zp) is formally smooth in the
sense of [26, 1V.3].

Proof. This follows from (3.4.3) and Proposition 3.4.4. O

Corollary 3.4.6. The map I:;FVQ — Spd (Zy,) is universally open and topo-
logically flat.
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Proof. Proposition 3.4.5 together with [26, Prop. IV.3.2, p. 129] implies that
L?VQ — Spd (Z,,) is universally open. Hence, an open U C ]L G| maps to an
open in | Spd (Z,)|. Since Spd (Z,) is topologically flat (Lemma 3.4.2 above),
the image of U intersects the generic fiber | Spd (Zy),| = | Spd (Qp, Zp)|. Now
topological flatness also follows: indeed,

U X1 g (LGl = |U Xspa z,) Spd (Qp)] — U] X|spa 2,/ | Spd (Qp)]

is a surjection by [82, Prop. 12.10] and, by the above, the target is non-empty.
Hence the source is non-empty. This source maps

19 Xi%g (IA’IJ/rVg)ﬂ — U] XLl |(IA/1J/FVQ)77|

and so |U] x ;1 g |(L8G)ul = U0 (LG4 # 0. 0
We will also need:

Proposition 3.4.7. For any affinoid perfectoid field (K, K™) over k with
Spa (K, K*) — Spd (Z,), the topological space |Lyj,G Xspa (z,) Spa (K, KT)|
s connected.

Proof. Tt is enough to show this for (K, K*) = (C,C™") algebraically closed
over k. By (3.4.3) and (3.4.2),

d
(U Br ,Spa ( CC*)) :

r<l

|ﬁ§/g XSpd( )Spa(C C+ ’ ~

Lemma 3.4.8. Suppose that (C,C") is an algebraically closed affinoid field
over k. Then |IB%I(NC’C+)| = ]nga (C,C+)| is connected.

Proof. Note that
Bl oy = Spa (Clt1, b, ...), CF (b1, ta,...))°

is quasi-compact. Suppose that ‘BI(\TC,(/‘*)‘ = UUV, with U and V both clopen
subsets. Since \IB%I(VC’CH\ is quasi-compact, the closed subsets U and V are
also quasi-compact. Hence, by [82, Prop. 6.4], they are the inverse images of
open subsets U, V' C IB%(C c+) by the surjective projection pry : IB%I(\IQCJr) —

(C,C+)’ for some d. We have ’B?C,(ﬁ)’ =prq(UuUV) =prqU)Uprqg(V) =
U’ UV'. However, |B?C,C+)| is connected, so U' NV’ # (. This contradicts
that U and V are disjoint. O
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Since BE{Spa(C,C‘*’) ~ ]nga(c,c*') the lemma implies that |B§{Spa(0,c+)‘ is
also connected. The proof follows.

Assume now that b is u-admissible for G, i.e. b € G (Zp)wg (Zp), for some
w € Adm(p1)g, cf. Remark 4.2.3. Then Xg (b, p= 1) (k) = Mign,tbyu(Spd (k) C
G(W(k)[1/p])/G(W (k)) has a “base point” x given by the image of the unit
element.

Gleason ([32, Thm. 3]) constructs a diagram of v-sheaves over Spd (O};)

int
Lngb:H /330

(3.4.4) / \

int v
Mg,b,u/mo Mgvu/wo ’

Let us explain this diagram. For more details, the reader is referred to
[72, §3.6], [32, §2.4].

a) The v-sheaf LMign,tb,u /2, 35Signs to a perfectoid S = Spa (R, RT) over

k, the set LMignfb,u /2, (9) equal to

{((S%,9),h) | h € GW (RM)[1/€g:]), h=b mod [wp], [A~'] € Mg ,(5)},

where (S* = Spa (R, R*T),y) is an untilt of S over O and where [h™]
is the S-point of the Bgg-affine Grassmannian Grggpq(0,) defined by the
coset h1G (B, (RY)).

b) The map 7, is projection to the coset [h 1] = h™1G(BI; (RF)).

c¢) The map e sends ((S%, %), h) to the pair ((£,¢5),i,) € ME%’#(S),
where the G-shtuka over S with leg at y is given by the trivial G-torsor
& = G with Frobenius defined by ¢» = h¢ : (¢*G)[1/R:] = G[1/€R:], and
the framing ¢, is given by the unique lift (as in [31, Lem. 2.1.28]) of the
identity trivialization modulo [wop,].

Hence, for ((S%,y),h) € L/\/liatb,#/%(S) as above, the framing in (c) is
given by the unique element

i(h) = ir(h) € G(BiY.)

with i(h) = 1 mod [ey] and the property

h=i(h)™"-b- ¢(i(h)).
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d) The point xy € /\/liéltbu(Spd (k)) is the base point given as above.
Similarly zo € Mg , denotes the base point of Mg  (Spd(k)) C Grg/(k)
given by the coset b_lg(WA(k)).

The v-sheaf of groups L;FVQ acts on L/\/lign,tb# /o O the right by hx g =
g~ 'h and also by h e g = ¢(g) 'hg. R

By [32, Lem. 2.35, Lem. 2.36, proof of Thm. 2.33], both m, . are Li},G-
torsors (for the v-topology) for the two corresponding actions.

Proof of Proposition 3.4.1. We ﬁ_rst reduce the statement to the case where
x is the base point. Let = € ./\/lg‘tb#(k) given by (P, ¢p,i,), where P is a
G-bundle on W (k). Choose a trivialization of P. Then ¢p is given as

(3.4.5) ¢v, : G[1/p] — G[1/p],

which is bounded by . Furthermore, i, is given by g: G[1/p] — G[1/p] with
g 'b,0(g) = b. We obtain an isomorphism

(346) Tg - Mlgn,tb,,u ; Mign})x,,uﬂ Tg((gza(ﬁﬂ’)?ir) = ((ga(ﬁﬁ’%%“ : 9_1)7

which sends z to the base point zq of M4 ,- Then Mgltb ;i /o 18 isomorphic

to Mg‘tb Py It is thus enough to consider the case of the base point in
Proposition 3.4.1.

Recall that, by Theorem 2.4.1, M& u is representable by Mlgo‘; Hence,

/lg),u /xo = Spd (A7 A)?

where A is a complete normal local Noetherian flat Op-algebra. By Lem-
ma 3.4.2, Mlé,u /o is topologically flat; similarly for Mg’ - Proposition 3.4.1
follows from the next proposition. O
Proposition 3.4.9. Let (G,b,u) be a local Shimura datum and let G be
a parahoric group scheme for G. Assume b is p-admissible for G and let
xo € Xg(b, u~1)(k) be the base point.

1) The v-sheaf L/\/ligmbu/m0 is topologically flat.

2) The formal completion ./\/lig“';w/m0 of the integral local Shimura variety
./\/ligntbu at xg is topologically flat.

3) The topological space |(Mign,tb,u/x0)n| of the generic fiber (Mag,,“/xn)n of

the formal completion is connected.
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Proof. We recall the diagram (3.4.4). Note that 7, induces a continuous map
|me| between the corresponding topological spaces. Since 7, splits v-locally,
|me| is surjective. For simplicity, we will drop the subscripts G, p, b from the
notation.

dVVet first show (1). For simplicity set X = L./\/li/‘;to, Y =Mj, = Spd (A)
and se

T=ms: X —Y

for the I:?i,g—torsor. Let U C | X| be a non-empty open subset; we identify it
in notation with the corresponding open v-subsheaf of X ([82, Prop. 12.9]).
We would like to show U N |X,| # 0. It is enough to show that |7|(U) is
open in |Y'| = | Spd (A4)|. Then by Lemma 3.4.2, |7|(U) intersects |Y;|. Since
|X,| = 7| 71(]Y,)]), then U intersects |X,|.

Since 7 is a [A/%g—torsor for the v-topology (cf. [32, Lem. 2.35]), there is
a v-cover by a perfectoid space T,

q: T — Spd(4) =Y,
such that the base change of m by ¢ splits,
I:;E,g XSpd (Z,) T~X Xy T.

By Corollary 3.4.6, the image 7(|U xy T'|) is open in |T'|. By [82, Prop. 12.10]
the canonical map

|U Xy T| — |U| ><|y‘ |T’

is surjective. In the fibered product of sets

]
Ul Xy [T| ——— |U]

(3.4.7) 'ﬂll l,,
lal

lal =1 (|7 ([U1])) —— |=|(|U1),
the vertical maps are surjective. Hence,
7] U xy T| — la| (|7l (|U]))
is surjective and so

lal = (7 |(1U1)) = |7l (JU xy T)).
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Hence, |q|~1(|7|(JU])) is open in T. By [82, Prop. 12.9], the v-cover ¢ gives
a quotient map |q| : |[T'| — |Y|. It follows that |7|(|U]) is open in |Y|.
Part (2) follows quickly from (1) since |me| is continuous and surjective.
Finally, we show (3), i.e. that |(M1/I;Ct0)n| is connected. By continuity and
surjectivity of |me| in the diagram (3.4.4), it is enough to show that the
source \(L/\/ll/nxto)n| is connected. We will use the following standard lemma:

Lemma 3.4.10. Let f : Z — W be a continuous map of topological spaces
which is surjective and open. Assume that W is connected and that for each
w € W, the fiber Z xw {w} = f~H(w) C Z is connected with the subspace
topology. Then Z is connected. ]

We will apply Lemma 3.4.10 to
[l = (LM )l — (M, )nl-

Note that |m,| is surjective and open by the argument in the proof of (1)
above.

Proposition 3.4.11. The topological space \(M%O)n\ is connected.

Proof. Since M := Mlgo"; and its strict completion A are normal, the (Berth-
elot) rigid analytic fiber (M/xo)f,ig = Spf(A)"® is connected, cf. [17, Lem.
7.3.5]. In fact, by [17, Prop. 6.1.1], this is path connected in the sense con-
sidered in loc. cit. It then follows that the corresponding Berkovich space
and then also the corresponding analytic adic space, and the topological
space ’(Ml/]g;(,)n’ for the corresponding wv-sheaf are connected. For this last
step one can use a construction of [82, §13.7-§13.12]: By [82, Prop. 13.10],
there is a functor X + | X|® = “Berkovich topological space of X7, defined
for small v-sheaves X. This extends Berkovich’s construction for rigid an-
alytic spaces. There is a functorial continuous quotient map |X| — |X|5,
and each fiber of the map has a generic point, so it is connected. Hence, if
|X|? is connected, so is | X|, by a simple variation of Lemma 3.4.10. (Here,
again recall that the topological space for a v-sheaf which corresponds to an
analytic adic space agrees with that space.) O

Next, we show that the fibers of |m.| are connected. Set again X, =
(L/\/li/]f;o)T7 and Y, = (M7, ), and m = m.. Suppose that y € |Y;| is repre-
sented by Spa (K, KT) — Y,, with (K, KT) affinoid perfectoid over k. Then
y is the image of the unique closed point in |Spa (K, K)| and the map
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| Spa (K,Ok)| — | Spa (K, K)| gives a generization. Choose (C,C") alge-
braically closed with (K, KT) — (C,C"). We have a continuous surjective
map

| X, %y, Spa (C,CT)| — | X, Xy, Spa (K, K*)| — |X;| Xy, || Spa (K, K™)].

By the torsor property, X, xy, Spa(C,C") ~ IA/‘J,FVQ Xspd (z,) Spa (C,CT).
This is connected by Proposition 3.4.7. Hence, the fiber |m.|~1(y) over y is
also connected.

The proof of (3) now follows from Lemma 3.4.10. O

Remark 3.4.12. Using some more of the results of [3] we can see that 2)
in Proposition 3.4.9 (the formal completion Mlgntb 1 /o is topologically flat),
also holds for general u, i.e. not necessarily minuscule.

Indeed, the argument in the proof above shows that we can deduce
this by knowing that the formal completion M}i“ /2o is topologically flat.
By [3, Prop. 4.13], see also [65, Cor. 4.14], the general v-sheaf local model
M& u 18 topologically flat, without assuming representability, and this holds
even for general p (not necessarily minuscule). By [3, Prop. 4.14], Mg , is a
“prekimberlite” and {xz(} is constructible, also for general p. Then, by [32,
Prop. 4.22],

v v
GouJeo — Mg,

is an open immersion. Hence the topological flatness of MQQ’M implies the
topological flatness of M Py

3.5. Characterization of the formal scheme .Zg 4 ,,

In this subsection, we provide a more “classical” characterization of the
formal scheme .Zg;, ,, of Conjecture 3.2.2. In what follows we assume that
Mgp, as in Conjecture 3.2.2 actually exists.

Our main point is that the specialization map in (iii) of Gleason’s The-
orem 3.3.3

sp : [Shtgp x| — Xg(b, 1) (k)

can be interpreted using the theory of Breuil-Kisin modules as follows. Given
a classical point y € Shtgp . i (F) with F//E finite, we consider the corre-
sponding Galois representation

py : Gal(E/F) — G(Z) C G(Qy)
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obtained by evaluating the local system given by the period morphism over
the point waar(y). This representation is crystalline: indeed, the point y di-
rectly provides the corresponding admissible filtered Frobenius G-isocrystal
Derys(py) which is associated to p, by Fontaine’s functor, cf. [78, §1.6]. In
fact, the point y also gives an isomorphism of the underlying Frobenius
G-isocrystal over k with the Frobenius G-isocrystal given by b.

Fix a uniformizer # = 7p of F. Then by Breuil-Kisin theory (comp.
[57, Thm. 3.3.2]), to any Galois stable lattice in a crystalline representation
of Gal(E/F), there is an associated Breuil-Kisin module (90, ¢on) over Op.
Let us recall this notion, cf. [7, §4.1]. There is a natural surjection of W (k)-
algebras

(3.5.1) 0: 6 =Wk)[T] — Op,

sending 7" to . Its kernel is generated by an Eisenstein polynomial E(T).
There is a Frobenius ¢ on &, which is the Frobenius on W (k) and sends T
to TP.

A Brewil-Kisin module over Op is a vector bundle 9t over Spec (&)
equipped with an isomorphism

(3.5.2) don : ¢* (M) [ﬁ} = m[ﬁ]

As explained in [57, §3.3, Cor. 3.3.6] (see also [70, §4.2]), one can use the
extension result [1, Cor. 1.2] to upgrade the Breuil-Kisin construction and
obtain from a crystalline representation p, : Gal(E/F) — G(Z,) a G-torsor
Pk over G with a G-torsor isomorphism

G 1 O (PBR)E(T) '] = Ppx[E(T) ]

over G[E(T)7!]. The pair (g, ®) is called a G-Breuil-Kisin module in
[70] (G-BK module). By base changing via & — W(k), given by T +— 0,
we obtain a G-BKF-module (£, ¢»,) over k. By the properties of the
Breuil-Kisin functor (e.g. [57, Thm. 3.3.2 (1)]), the Frobenius G-isocrystal
(Po[1/p|, d2,[1/p]) over k is canonically the Frobenius G-isocrystal under-
lying Derys(py). Hence the point y € Shtqp, , x (F') also provides the data of
an isomorphism « of the Frobenius G-isocrystal (Z[1/p], ¢#,[1/p]) over k
with the one given by b. We set

(3.5.3) spEk () = (20, 02,[1/p] 0 ¢*(a)) € Crg (k).
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This, belongs to the subset Xg(b, p~1)(k) C Gry (k), as we will see in the
next proposition.

Proposition 3.5.1. (i) There is an identification of the generic fiber ///éi% u
with Mg p i, as rigid analytic varieties over E,

(ii) There is an identification of the perfection of the reduced special fiber
(MG pp)hea with Xg(b,u™").

(iii) The above identifications make the specialization map
(3:5.4) A5, | — (Mgt (F)
agree with the map

(3.5.5) P ¢ [Shtcp i[9 — Xg (b, i) (k).

given above.

Proof. Parts i) and ii) follow from Theorem 3.3.3 and it remains to show
iii).

Recall that the specialization map sp is described in Remark 3.3.7. We
extend the natural homomorphism W (k) — W(O¢») to

(3.5.6) i:6 — W(Oe)

by sending T to [7°] € W(O¢»). Here 7° is given by a choice of roots (7/?"),
in C. Then i is compatible with the Frobenius homomorphisms and the map
0 of (3.5.1), resp. the map 0: W(O¢») — O¢, in the sense that there is a
commutative diagram

S —5 W(Oe)

el Js

OF _— Oc.

Furthermore, the image of E(T) is a generator of the kernel of @ since it is
primitive of degree 1, comp. [7, proof of Prop. 4.32]. Hence, (i(E(T))) =
(&) as ideals in W (O¢»). Consider the map of locally ringed spaces j :
Y0,00)(C?,0c») — Spec (W (k)[T]) induced by i: W(k)[T] — W(Oc),
cf. (3.5.6). To show that sp agrees with sppk, it suffices to show that the
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pull-back j*(Zgk, ®) of the G-BK module attached to p, by the Breuil-
Kisin functor ([53]) is isomorphic to the G-shtuka (£, ¢ %) which is at-
tached to the (C,O¢)-point of Shtgy .k given by pre-composing y with
Spa (C,O¢) — Spa (F,OF).

Let first G = GL,. Then the BKF-module M @y (x)jrp W(Oc¢») given
by the Breuil-Kisin module (91, ®) extends the shtuka (2, ¢»). Indeed,
this shtuka is obtained by the de Rham Z,-étale local system over Spec (F')
given by py, as in Definition 2.6.4. Hence the assertion follows from [7, Prop.
4.34], which shows that 9T @y 4y W (Oc») gives the “correct” pair (T, Z)
(notation as in loc. cit., see also the proof of Proposition 2.5.1 above). (This
pair determines the shtuka by Fargues’ theorem [85, Thm. 14.1.1]).

This handles the case G = GL,,. The case of general G then follows by
a standard argument by writing G as the closed subgroup scheme of GL,
given as the stabilizer of a family of tensors; see also the discussion in §4.6.1.
(In particular, this shows that the construction of spgi is independent of
the choice of the uniformizer 7r and of 71'2;) O

Proposition 3.5.2. .#Zg , is the unique normal formal scheme % which
is flat and locally formally of finite type over Spf (O) and is equipped with
identifications

(1) 2% = Mgy
.. f _
(i) 85" = Xg(b, 1),

such that the following diagram is commutative:

|<@rig |c1ass —>Sp'6/2 %red(k)

(3.5.7) zl J:

[Shte x| =25 Xg(b, p=t) (k).

Proof. By Lourenco [63], see [85, Thm. 18.4.2], the triple (%", Z°" sp,)

red
characterizes such a formal scheme Z. O

3.6. Functoriality of integral LSV

Let G — G’ be a group embedding compatible with local Shimura data
(G,b,pu) — (G',V, ). Then there is an inclusion of corresponding reflex
fields, £ D E’'. Let G and G’ be parahoric models of G, resp. G’, such that

(3-6-1) g(Zp) - gl(Zp) N G(Qp)
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(intersection in G'(Q,)). Then, by [13, Prop. 1.7.6], G < G’ extends to
g—g.

Lemma 3.6.1. Under the above assumptions, G — G’ identiﬁe_s G with the
group smoothening (in the sense of [10]) of the Zariski closure G of G in G',

G=G"—=G—=g.

Proof. By the universal property of the group smoothening, we have a mor-
phism G — G By (3.6.1) we have G(Z,) = G'(Z,) N G(Q,) = G(Z,).
The group smoothening G — G satisfies G*(Z,) = G(Z,), so the mor-
phism G — G*™ induces a bijection G (Zp) = g‘sm(Zp). The characterization
of smooth integral models of G by their Zp—points given by the extension
property [13, Prop. 1.7.6] now implies G ~ G"™. O

In the above situation, G = G — G is a dilation (see [10]) and we will
call the group scheme morphism G — G’ a dilated immersion.
Consider the corresponding morphism (3.2.3) arising by functoriality,

(3.6.2) p: MGG, — ME% 1 Xspd (0,) SPA(Ojz).

Proposition 3.6.2. Under the assumption (3.6.1), p is a closed immersion
in the sense of [85, Def. 17.4.2].

Proof. By [85, Cor. 17.4.8], it is enough to show that the morphism is
quasi-compact, quasi-separated, satisfies the valuative extension criterion
for properness as in loc. cit. and that for any algebraically closed field C of
characteristic p, the induced map

p(C,0c) : M§, ,(C,00) — Mgty . (C,0c)

is injective. First note that using Proposition 2.1.1 and the Tannakian equiv-
alepfe, Mg‘fh ., and Mlinb',w satisfy “paurti'ault properness”: Mg‘fby#(R, R°) =
Mgy (R, RT) and Mgy, (R, R°) = M&Y, (R, RY), and so the valua-
tion criterion of properness is satisfied for p.

Note that if R is a flat Z,-algebra, we have
G(R) C G'(R).

Arguing as in the proof of [32, Prop. 2.25], we see that the injectivity of
p(C, O¢) follows from

(3.6.3) G(Bi5.)) NG (W(Oc)) = G(W(00)).
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To see this equality, observe that

[r,00) o [r,00)
9(B(¢.00)) = G(B(¢00)):

since p is a unit in BETCLOS)C). For simplicity, we will set

[ro0)  plroo) o)
BC - B(C,Oc) - B(C,C*)'

Since W(O¢)[1/p] C B[Cr’oo) and G — G’ is a closed immersion,

G(BL™) NG (W(Oc) € G(BE™)) NG (W(Oc)(1/p]) = G(W(Oc)[1/p)).

Now by the property of group smoothening, it follows from (3.6.1) that
GW(O)[1/p]) NG (W(C)) = GW(C)).

Hence G(BL™)) N G'(W(O¢)) is contained in G(W(C)) N G(W(O¢)[1/p]).
Since G is affine and W(C)NW (O¢)[1/p] = W(Oc¢), this last intersection is
G(W(O¢)), which proves (3.6.3). The same argument shows that p(R, RT) is
injective when (R, RT) is obtained as a product of points (C;, C;7), cf §2.1.4.
(Quasi-) Separateness now follows by the argument in [32, Prop. 2.25].

It remains to show that p is quasi-compact. Note that every element
® € G(W(R")[1/£R:]) with pole bounded by p defines a G-shtuka P over
(R,R*) with leg at (R, R*") by taking the trivial G-torsor with Frobe-
nius given by the element ®. As in [32, Def. 2.22] we consider the small
v-sheaf E/\/lignfb’u over Spd(Og) which classifies pairs (®,i,), where ® €
G(W(R™)[1/£R:]) is bounded by p and i, is a trivialization of the restriction
of Pg t0 Vjr.o0)(R, RT). The forgetful morphism of v-sheaves

™ LMES, — MG,
is surjective for the v-topology and is a torsor for the wv-topology and for
the v-sheaf in groups (R, RT) — G(W(R™)), see [32, Prop. 2.23|. It will be
enough to show that the natural morphism
p: LME, , — LME

is quasi-compact.
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The argument is inspired by the proof of [85, Thm. 21.2.1]. Let S =
Spa (A, AT) be affinoid perfectoid and let S — EMirifb,7 s given by (@', 1]).
Consider the fibered product (small) v-sheaf

T := EMEI%M XLMll/tbl , S,

which classifies (®,4,) such that (p(®), p(i,)) = (®’,4..). It is enough to show
that T is quasi-compact for all such S — EMin,t,b,’ e Each point ¢ € |T| is in

the image of some Spa (Cy, C;") — T given by (®¢,14:,). So, for each t € |T,
we have

®, € GW(CHL/&]), iry € GBE™).

We set € = (&) € W(D*) = [T, W(C7).

The composition Spa (C;,C;") — T — S gives A — C,". Choose a
pseudo-uniformizer w4 € AT and denote by w; € C't+ its image under
A — C;F. Now consider the product of points

(D, D*) = ((H i) [1/w1,1t1q+)

with @ = (), see §2.1.4. We have Spa(D,D") — S which extends
Spa (Cy, C;f) — S, for each t.

Observe that each ®; has pole bounded by p, which is the same for all ¢.
Choose a closed group scheme immersion j : G — GL,,. Then the entries
of the matrices j(®;), 7(®;)~" lie in &YW (C;") with N bounded above,
uniformily in ¢. It follows that

(@) € Hg(w (CHI/&]) = <HW (cHl 1/@])

actually lies in G(W (], C;)[1/€]) = GW(DT)[1/€]). Set & = (P4); €
G(W(D™")[1/€]). Now observe that

(plit)) € G (H B[c’“;’“’))

comes from G’ (B([T4 ?402)) via Ba’fﬁ) - I B[(;:”OO). Hence, (it )¢ lies in the
intersection

G(Bly 5k NG <H B[g;’“”) .

t
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This intersection is G(B ([ D/ DY) ) since Og = O¢r /1 is a quotient and we have

an injection
[rt,oo
D D+ - H Be

Hence, i» = (it )¢ is in G(BETD Ogl)). We now consider the pair (@, 4,.) which

gives a point Spa (D, D") — E./\/llgnfb’u. Combined with Spa (D, D") — S as
above gives Spa (D, D") — T which is surjective. This shows that T is
quasi-compact, as required. O

3.7. Representability of integral LSV

The aim of this subsection is to prove the following confirmation of Conjec-
ture 3.2.2 under some assumptions.

Theorem 3.7.1. Let (G,b, ) be a local Shimura datum and G a parahoric
group scheme. The following assumptions are imposed.

1) (G, ) is of local Hodge type, i.e., there ezists a closed group embedding
p: G — GL, such that p o i is minuscule.

2) G is the Bruhat-Tits stabilizer group G, of a point in the extended Bruhat-
Tits building of G(Qyp), i.e., G =G, = G3.
int

3) Conjecture 3.3.4 on the representability of formal completions /\/lg bt Jo

int

is true for all points x € M5 (k).

Then ./\/llnt by 18 representable by a normal formal scheme .# which is flat
and locally Jormally of finite type over Spf Op.

Remark 3.7.2. Recall from (3.4.5) that to = we can associate b, € G(Q,),
well-defined up to o-conjugacy by Q(Zp), which is o-conjugate to b. Then
/\/lmt ,, has a natural base point zo and there is an isomorphism as in (3.4.6)
that 1nduces an isomorphism

int ~ int
MGy se = MG, 2o

Let us assume that the local data (p, G,b, u,G) come from a global datum
(p, G, X,KP,G) of Hodge type and that there is a point x € #k(k) in the
reduction of the integral model in §4.5 of the Shimura variety Shi(G, X)
such that b, = bx (up to o-conjugacy by G(Z,)). Here by is defined as
n (3.4.5), using the extension of the G-shtuka to .#k, comp. the passage
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before Remark 4.2.1. Then the hypothesis in 3) can be eliminated. Indeed,
it is automatically satisfied, as follows from Theorem 4.5.2 below.

The assumption can be formulated in the framework of [45] as follows.
Let

C(G, 1) = (9(Zp) Adm(u)G(Zy)) /G (L),

and let C(G,u~')p) be the inverse image of [b] under the natural map
C(G,p') = B(G,u™"). Then b, € C(G, ). Consider the map from
Remark 4.2.1

(3.7.1) Tk: Sk(k) — C(G, ).

It may be conjectured that YTy is surjective (this follows from the system
of axioms in [45], cf. [45, Cor. 4.2]). If this conjecture holds true, then the
assumption made above is satisfied. In [95] this conjecture is proved in the
Hodge type case if G is tamely ramified and residually split; and the same
proof works when G is unramified by using the results of Nie [68]; see also
[90] for more classes of Shimura varieties.

We note that this approach to Conjecture 3.2.2 is global, as it makes
use of the theory of Shimura varieties. By contrast, in [72] we pursue a
purely local approach, with more general results. Indeed, in [72] we prove
Conjecture 3.2.2 in the case when (G, pu) is of abelian type and p # 2 or
p =2 and G,q is of type A or C. However, even in this other approach, we
use Theorem 3.7.1 and its proof.

3.7.1. A construction of formal subschemes. By the main theorem
of [59], there is a (non-unique) equivariant embedding of extended buildings

p* : ‘%6(G7Qp) — ‘%e(GanQp)
which is associated to the embedding p : G < H := GL,. Set H = H, ()
for the stabilizer Bruhat-Tits group scheme given by the point p.(z) €
#°(H,Qp). In this case of GL,, this group scheme is the stabilizer of a
periodic lattice chain

A CpAgCA CAr 1 C---CAyCp A C---

in V' = Qy and is connected, so it is a parahoric group scheme. We have

g(Zp) - H(Zp) N G(Qp)-
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In this, we can assume at the cost of adjusting p, that H = GL(A) is hyper-
special and given by a single lattice. Indeed, we can replace V by V/ = V&
and the lattice chain A, by the lattice chain given by the multiples p®A’ of
the single lattice A’ = Ag @ -+ - @ A,..

Let G be the flat closure of G in GL(A). Here, G, = G is the Neron
group smoothening of G, comp. Lemma 3.6.1. Then

(3~7~2) g(Zp) = goc(zp) = ?(Zp) = H(Zp) N G(Qp)-

The “Grothendieck-Messing” period morphisms fit in a commutative dia-
gram of v-sheaves (in fact, diamonds) over Spd (E),

Shtghu —p> Sht’H,p(b)m(u) XSpd @,) Spd (E)

TI'GMJ JWGMXI

P o
T Spd (B) —* CTr8pd (@,).000) ¥$pd (3,) SPA(E),

comp. §3.1.1.
The diamonds Shtg p, , and Shty ) () are represented by the (smooth)

rigid analytic varieties Mg, and My 1) p() Over E; the period morphisms
are étale with fibers G(Q,)/G(Z,) and H(Q,)/H(Zy) respectively and the
bottom horizontal morphism is induced by the closed immersion of homo-
geneous spaces Fa . = Fpu) @, E. Since p also gives G(Q,)/G(Z,) <
H(Qp)/H(Zp), it follows that the top horizontal morphism is a closed im-
mersion. (This is in agreement with Proposition 3.6.2 which extends this to
a closed immersion of the corresponding v-sheaf integral models.)

By [85, Cor. 24.3.5], M1t is represented by a Rapoport-Zink for-

H,p(b).p(1)
mal scheme /3, ), pln)- It is normal, separated flat and locally formally of

finite type over Spf(Z,).

For simplicity of notation, set O = Op, let m be a uniformizer so that
k=0/(r).

Our construction of .#gy,, is based on the following “formal descent”
statement 1nsp1red by a similar statement in [17]. Suppose that X is a formal
scheme over Spf (O) which is separated, locally formally of finite type and
flat over O. Let X8 be the rigid analytic generic fiber of X over E in the
sense of Berthelot, cf. [78, chap. 5]. Let X,oq the reduced locus of X which
is a scheme locally of finite type over Spec (k). Let

(3.7.3) sp ¢ | X8 X eq (k)
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be the specialization map.

Proposition 3.7.3. Let the following data be given:

1) A closed rigid analytic subvariety Z C X"8,

2) A closed reduced k-subscheme T C X,eq-

3) For each t € T(k), a closed formal subscheme Vi C X, flat over 0.
It is assumed that sp(|Z|%) C T(k), and that for all t € T(k),

(3.7.4) (X,)"8NZ = (V)"

Then, there is a unique closed formal subscheme 3 C X such that:
a) 3e =7,

B) 3rea =T,

v) Forallt € T(k), 3/, = Vi as closed formal subschemes of X ;.

Proof. This is given by an argument as in the proof of [17, Prop. 7.5.2]. By
considering formal open subschemes Spf(A4) C X we can reduce to the case
that X = Spf(A). Let I be a maximal ideal of definition of A such that
X,eqa = Spec (A/I). As in loc. cit., 7.1.1, we set

—

B, = A[I"/x],
where the hat denotes I-adic completion. The natural map
A" /7] — A[I™ /7]

induces a continuous map By, +1 — By,. Then the association A — (B, (4)),
is functorial. Set C,, = By[1/7] which is an affinoid E-algebra. Then

2% = | JSp(Cn) = limy, Sp(Ch),

where Sp(C),) < Sp(Cjp+1) is an affinoid subdomain. Let U,, = Sp(C,,). The
intersection U, N Z is given by an ideal I, C B,; by replacing I, by its
saturation, we can suppose that B /I, is O-flat. (In fact, we can choose
I, to be the kernel of B,, — I'(U, N Z,0).) As in loc. cit. 7.1.13, there is

%

¢ =c(A,I) > 0 and compatible surjective O-algebra homomorphisms

Bn: By — A/I" €
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for all n > c.
For what follows, we will need some information on ¢. Choose generators
(f1,..., fr) of the ideal I C A and consider the graded homomorphism

v (A/mA)[ze,. ..,z — @(I”/ﬂ'[") =A/rA@I/rl® I?/n*® - -
n=0

sending z; to (0, f;,0,...). The kernel of ¢ is a homogenous ideal generated
by homogeneous polynomials (Pj, ..., Ps). In the construction of loc. cit.,
we can take

c=c(y) := max(deg(Pi))izl,,_,ys.
Hence, in our arguments we can always take ¢ = ¢(A4, I) to be the smallest
such integer ¢(¢)) among the possible presentations as above.
Now given = € Spec(A/I)(k), let I C M, C A be the corresponding
maximal ideal. For simplicity, write A, for the completed local ring Agy .

Lemma 3.7.4. Under our assumption on (A, I), there is C' such that
C(Ax, 95(95) <C

for all x € Spec (A/I)(k).

Proof. This follows by an application of the theory of normal flatness ([49],
see [, (2.2)]). Set R = A/mA, S = Spec(A/I). We can find a sequence
of reduced closed subschemes Syeq = So D S1 D --- D S, = 0, such that
U; = S; \ Si—1 is regular and which has the following property: Let J; be
the ideal of (A/mA) ® Oy, that corresponds to the diagonal section U; —
Spec (A/TA) Xgpee (k) Ui — Ui. Then, for all i,

Gry, ((A/mA) @, Op,) = G0y /I

is flat over Op,. Hence, we can calculate the blow-up Projo, (©m>0J]") of
Spec (A/mA) x;U; along U; — Spec (A/mA) X gpec (k) Ui by an exact sequence

0 — Ki —> ((A/mA) @5 Op )1, -y ar] 2 @m0 — 0,
in which all terms are flat over Op,. Write K; = (P;1, . .., P;s), where Pij are
homogeneous polynomials in z1,...,x,. Take € U;(k) given by Oy, — k.
By flatness, the base change of the above exact sequence by Oy, — k gives
a presentation of the Rees algebra for the blow-up of A/7rA at x. Hence,
the specialization of the polynomials P;; at all € U;(k) can be used to
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calculate the blow-up of A, /mA; at M, but also the blow-up of A, / A,
at 91,. Therefore,

C; = max(deg(-Pij))jzl,...,s > C(Axamx) > C(Axaifnx)
for all x € U;(k). We can now take C' = max(C})i=1,... n- O

Recall that for t € T(k) C Spec(A/I)(k) we are given V; C :%/t =
Spf(A,), which is given by an ideal

Jy C A

We also take J, = (1), for x € Spec (A4/1)(k) \ T'(k).
By [17], identity (1) on p. 93, for all ¢t € T'(k), there is ¢(t) such that for
every n > ¢(t), we have

(375) Bn(In> At/([/it)n_c(t) = Jt mod (IAt)n—c(t)‘
In fact, by the proof of identity (1) of loc. cit., we see that we can take
c(t) = max(c(A, I), c(At, 95?,5))

Therefore, the arguments below work for n > ¢ = max(c(4, I),C), where C
is as in the lemma above.
Also, since sp(|Z|%) ¢ T'(k), we have for = & T(k),

() A /(T A" = Ay /(L)

Now note that the natural homomorphism A — [], A, is faithfully flat and
so is

A — [[ Ae/ (T A"
Using this, descent and (3.7.5), we see that, for all n > ¢,
Bri1(Ins1) mod I = B (1),
(an equality of ideals in A/I™~¢.) This implies that
J = m, ()
gives an ideal in lim | A/I" ¢ = A. We set
3 =Spf(A/J)

which satisfies the desired («), (8), (7). O
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3.7.2. Application to integral LSV. For simplicity, in the rest of the
paragraph, we will omit b and z from the notation, and write M2, Xg, etc.
instead of Mignfbw Xg(b,pu™1), etc. and also /\/liqf[lt instead of Miﬁfp(b)vp(#),
etc.

Note that the perfection (.#y®; é)f:éf of ('//Z’Héz)z)é)red is identified
(see Theorem 3.3.3 (a)) with Xy. The closed immersion of v-sheaves of
Proposition 3.6.2

p:/\/lignt %Miﬁt

gives, after applying the functor ( );eq and the identification of Theorem 3.3.3
(a), a morphism of perfect k-schemes

Note that Xg C Grg/, Xy C Grf,v_[[, are closed and that p : Xg — Xy is
given by restricting the obvious p : Grg/ — Gr?v_‘[ which is a morphism of
(ind-) perfectly proper schemes over k such that p(k) is injective.

We now apply Proposition 3.7.3 to:

X = //wﬁ%pé,

Z = Mg C MH@Q,,E?
e T = scheme theoretic image of the composition
p:Xg— Xy = (.///H@szé)f:éf — (%y@zyé)red

where the last arrow is the natural morphism. We have p : Xg — TP¢!
which gives T'(k) = p(Xg(k)) C Xy /(k). In fact, this is a universal home-
omorphism and so, by [8, Lem. 3.8], p: Xg — TP is an isomorphism.

Let t € T(k) = p(Xg(k)) ~ Xg(k). By the local model diagram for the
RZ formal scheme .43, ;1) (), there exists an isomorphism .7, Jo(t) =
My, 5 Jp(t) where the target is the formal completion of the base-change

My, 5 = My ®; O of the local model My at a suitable point p(t).
Since we are assuming Conjecture 3.3.4 for ¢, we have a normal complete

Noetherian local ring R; such that Mg“}t ~ Spd (R;) and

int
(3.7.6) Spd (Ry) — Mt
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By the full faithfulness of the {-functor, we obtain a morphism of affine
formal schemes

(3.7.7) p : Spf (Ry) — A, 0 /p(t)’

which corresponds to a homomorphism of local rings p* : @ My 50(t) — Bt
The injectivity of (3.7.6) implies that the fiber of p* over the closed point
is given by an Artin local ring; hence p* is finite. We define

Vi = M1.6 o0)

to be the formal closed subscheme of ///H 3 /p(t) which corresponds to the
scheme-theoretic image of the correspondlng morphism of affine schemes
induced by (3.7.7), i.e. defined by the kernel of p*. Note that, by con-
struction, the morphism p factors through a morphism

Spf (Rt) — Vi.

Since R; is assumed to be normal, this identifies R; with the normalization
of Ov, := Oz, 5.p(t) / ker(p*). The corresponding morphism of v-sheaves
Spf (R)¢ — Vt<> is then surjective, but, since (3.7.6) is injective, it is also
injective. Hence,

Spf (Ri)® = Mgy, — V0
is an isomorphism of v-sheaves.

We now verify that these choices satisfy Sp(|Z|?#*%) ¢ T'(k) and (3.7.4).
We will again use the ¢-functor () — () into v-sheaves over Spd (O), or
over Spd (F V) and the fact that it is fully faithful when the source category
is either the category of flat normal formal schemes locally of finite type
over O or the category of smooth rigid-analytic spaces over E.

Note that classical points of Z = Mg over a finite extension F /E' are
uniquely given by morphisms Spa (F,Or)® — Z©. Such a point specializes
to a point in T(k) = Xg(k), by Theorem 3.3.3 and the compatibility of
Gleason’s specialization map with the “classical” specialization map. It re-
mains to show that (3.7.4) holds. Again, it is enough to show this for the
associated v-sheaves. The ¢-functor commutes with formal completions ([31,
Prop. 4.19]). It also commutes with taking generic fibers: This follows from
the fact that, under the functor from rigid spaces over E to adic spaces
over Spa (E, O}), Berthelot’s generic fiber Spf(A)"& of a formal scheme
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Spf(A) corresponds to the generic fiber of the corresponding adic space,
i.e. to Spa (4, A) Xspa(0,,0,) Spa(F,Of). Hence we have

((%/p))"™8)° = (X000 ) = ((X2) o)) = (Miﬂnfé Jo())

Since Z¢ = /\/l<> = Shtg and p : MP* — MY is a closed immersion (and
hence 1nJectlve)

((%/00)"8)® Xt Z° = (ME0)n X agy MG = (MG

In this, the RHS is the v-sheaf given as the generic fiber of the formal
completion Mg}t This is equal to the v-sheaf (Vt“g)<> associated to V;"8, by
our choice of V;.

Applying Proposition 3.7.3 gives a formal scheme .7 b Denote by
Mg, its normalization. Then gy, is as in the statement of Conjec-

ture 3.2.2 and, hence, this proves Theorem 3.7.1. ]
4. Global Shimura varieties and their universal G-shtukas

4.1. Shimura varieties

Let (G, X) be a Shimura datum. Let {u} be the G(Q)-conjugacy class of
the corresponding minuscule cocharacter p = px. We make the following
blanket assumption on the split ranks of the connected center of G:

(4.1.1) rankg(Z°) = rankgr (Z°).

Remark 4.1.1. Assumption (4.1.1) is equivalent to the condition that there
is no non-trivial subtorus of Z° which is anisotropic over Q but splits over R.
Imposing this condition allows the construction of the natural pro-étale tor-
sor on the Shimura variety Shik(G, X) used below. The main point is to
ensure that an arithmetic subgroup of Z°(Q) is finite, and this holds true
if and only if Assumption (4.1.1) is satisfied, cf. [88, Prop., Ch. II, A. 2].
When Z° splits over a CM-extension (Milne adds this to the axioms of a
Shimura variety, cf. [66, II. equ. (2.1.4)]), then this assumption holds if G is
replaced by its quotient by the maximal anisotropic subtorus of Z° which
splits over R.

Let E = E(G,X) € Q C C be the reflex field. For an open compact
subgroup K C G(Ay) of the finite adelic points of G, the Shimura variety

(4.1.2) Shi (G, X) = GQ\(X x G(A7)/K)
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has a canonical model Shg (G, X )g over E.

Now fix a prime p. Suppose that K = K,KP with K := K, C G(Q,) and
KP C G(Afc) compact open. We always assume that KP is sufficiently small.
Fix a parahoric group scheme G over Z, with G(Z,) = K = K.

Choose a place v of E over (p) given by E C Q,. Let E = E, be the
completion of E at v and consider u as also giving a conjugacy class of
cocharacters of G = G ®g Q,. We also denote this conjugacy class by {u};
then FE is the local reflex field of {u}. Recall that k denotes the algebraic
closure of the residue field; we also sometimes write k, for k.

Consider Shk (G, X ) := Shk (G, X)g ®e F and its pro-étale G(Zj)-cover
Pk obtained by the system of covers

(4.1.3) ShKl(G,X)E —>ShK(G,X)E,

where K' = K/ KP C K = K,KP, with K}, running over all compact open
subgroups of K, = G(Z,). (See [66, III], [62, §4].) Note that

G(Zp) = @K; Kp/Kfn-

By our condition on the smallness of KP| (4.1.3) gives a tower of smooth
varieties, with étale transition maps.

Proposition 4.1.2. Assume that (G, X) satisfies (4.1.1). There exists a
G-shtuka Pk g over ShK(G,X)% — Spd(E) with one leg bounded by pu
which is associated to the pro-étale G(Zy)-cover Pk, in the sense of Sec-
tion 2.6. Furthermore, Pk g are supporting prime-to-p Hecke correspon-
dences, i.e., for g € G(A’;p) and K'P with gK'Pg=1 C K,, there are compat-
ible isomorphisms [g]*( Pk g) ~ Pk, r which cover the natural morphisms
[g] : SthK/p(G,X)E — SthKp(G,X)E.

Proof. This follows by combining the results in section 2.6 with the ridigity
theorems of Liu-Zhu [62]. By [62, Thm. 1.2] combined with [62, Thm. 3.9
(iv)], the pro-étale G(Zjy)-torsors Pk over Shk g is de Rham in the sense of
Definition 2.6.5. The desired shtuka is the one associated to the de Rham
pro-étale G(Zy)-torsor Pk as in Definition 2.6.6. O

4.2. Integral models
We continue to assume Condition (4.1.1) on (G, X). Suppose that K, is

parahoric and let G be the corresponding Bruhat-Tits group scheme over
Z,. Then we conjecture the existence of a system of normal integral models
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Sk of Shx g that support a “universal” G-shtuka Pk over ./ with one
leg bounded by p that extends Pk g. The v-sheaves 5’& corresponding to
these models should formally locally coincide with Scholze’s integral local
Shimura varieties ./\/lg“;) , for varying b. More precisely, let = € .7k (k).

The pull-back x*(Zk) is a G-shtuka over Spec (k), i.e., yields by Exam-
ple 2.4.9 a G-torsor &, over Spec (W (k)) with an isomorphism

bz, : Qb*(’@x)[l/p] — gza:[l/p]

The choice of a trivialization of the G-torsor &, defines an element b, €
G(@p). This element is independent up to o-conjugacy by an element of
Q(Zp) of the choice of the trivialization and only depends on the point of
Sk underlying z. Since the shtuka Zk is bounded by p, the o-conjugacy
class [b,] under G(Q,) lies in the subset B(G, u~') of B(Q).

Remark 4.2.1. We obtain maps

Tk: Fi(k) — G(Q,)/G(Zy)o, Tesp.
0k: Fk(k) — B(G) = G(Qy)/G(Qy)s -

The fibers of these maps define the central leaves, resp. the Newton stratifi-
cation of Sk ®o, K, cf. [45, Rem. 3.4, (3)]. We recall from [45] the map

tk: G(Q)/G(Lp)e — G(Lp)\G(Qp)/G(Lp) = Wi\W W,

where W denotes the Iwahori-Weyl group of G(@p) and Wk the parabolic
subgroup corresponding to G (Zp). Let Ak = fx o Yk,

)\K: yK(/{) — WK\W/WK.

The fibers of this map define the Kottwitz-Rapoport (KR-) stratification of
FK Qo K, cf. [45, eq. (3.4)]. The map Yk also allows to define the EKOR-
stratification, cf. [45, §6].

The v-sheaf Mg”;)r 4, comes with a base point
(4.2.1) zg € Mg (k).

This base point associates to S € Perfdy, the tuple (S* P, p,, ir), where
St = S, and (P, ¢z,,ir) = (9Y0.)(5)» Pb,,1d). Indeed, the pair (Fp,id)
lies in Xg (b, u™ 1) ~ ( ign,tbz,u)red’ cf. Theorem 3.3.3, a). This follows since
the shtuka (Z2;, %, ) has leg bounded by .

We have the following conjecture.



p-adic shtukas and Shimura varieties 109

Conjecture 4.2.2. Let K, be parahoric, with corresponding parahoric model
G over Zp.

There exist normal flat models .k of Shk(G, X)g over Og, for K =
K,K?P with variable sufficiently small KP, with the following properties.

a) For every dvr R of characteristic (0,p) over Og,

(422)  (lim,, She(G, X))(R[1/p]) = (lim,, Fi)(R).

If Shk (G, X) g is proper over Spec (E), then Sk is proper over Spec (Op).
In addition, the system Sk supports prime-to-p Hecke correspondences,
e, for g € G(A?) and K'P with gK'Pg=! C KP, there are finite étale
morphisms [g] : Sk — Sk which extend the natural Hecke morphisms
[g] : SthK/p(G,X)E — SthKp(G,X)E.

b) The G-shtuka Pk g extends to a G-shtuka P on Fx.

¢) For x € F«(k), let b, € G(Q,) be defined by Pk, as explained above.
There is an isomorphism of completions

@wi Migny%mﬂ/ﬂco ; (yK/x)Ov

under which the pullback shtuka ©%(Pk) coincides with the tautological
shtuka on /\/llgnthu that arises from the definition of Mg%,u as a moduli
space of shtukas. Here xo denotes the base point of Mlgnfbmu, cf. (4.2.1).

We note that by Corollary 2.7.10, the extension Pk of Pk f is uniquely
determined. In addition, the prime-to-p Hecke morphisms [¢] : Sk — Fk
for g € G(A?) and K'P with gK'?g~! C KP in (a) induce by uniqueness
compatible isomorphisms [¢]*(Pk) ~ Pk .

Replacing b, by b, = gb,o~'(g), where g € G (Zp), defines an isomor-
phism /\/l‘gntbz = ./\/lgltb; u which preserves the base points. Hence Condition
¢) is independent of the choice of b,. Also, note that Condition c) implies
the representability of Mg%z,u S0 i.e., Conjecture 3.5.4 for Ma%m,u at xg.
Remark 4.2.3. An element b € G(Q,) is called p-admissible, if the homo-
morphism

¢p: Frob™(G x Spec (W (k)[1/p]) — Gspee (W (k)[1/p])
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has pole bounded by p, in the sense of Remark 3.3.2. By (2.4.5), this con-
dition is equivalent to asking that

(4.2.3) be |J  G(ZywG(Z,).

weAdm(pu—1)g

If [b] € B(G,p~t), then [b] contains an element b € G(Q,) satisfying this
last condition (He’s theorem [43]). If b is p-admissible, then Mgy, has a
canonical base point z¢, defined as above in (4.2.1) (with b, replaced by b).

If b = b, is attached to a point z € (k) (and a G-shtuka k) as
above, then b, is p-admissible.

Theorem 4.2.4. There is at most one system of normal flat models Hk
of Shk(G, X)g over O, for K = K,KP, with variable sufficiently small KP,
with the properties enumerated in Conjecture 4.2.2. More precisely, if Sk
and S are two Og-models which satisfy the above properties, then there
are isomorphisms Sk ~ S which induce the identity on the generic fibers
and are compatible with changes in KP.

Proof. We imitate the proof of [70, Thm. 6.1.5]. It suffices to construct these
isomorphisms after base change Op — Op. Let .#¢ be the normalization
of the closure of the generic fiber in .7k Xgpec (0,) Fk- Then ¢ is again a
tower with finite étale transition morphisms, for varying KP. The argument
of the proof of [70, Prop. 6.1.7] shows that the morphisms

TK: K — Ik, Tk IK — Tk

are proper and isomorphisms in the generic fibers. By uniqueness, we obtain
identifications of G-shtukas on .7,

(k)" (Pk) = (m)*(PK) = PK.

It suffices to show that mx and mj induce isomorphisms on the strict com-
pletions at geometric points of the special fibers. More precisely, let & €
Shy, (G, X)(F'), where F/E is a finite extension. By property a), & extends
to points Z of #k(OF) and &’ of /% (OF) and a point " of #{(Or) mapping
to Z, resp. Z’. By reduction, we obtain the points x € .#«k (k) and 2’ € S« (k)
and the point z” € .#¢(k) mapping to z, resp. 2. By uniqueness, the pull-
back G-shtukas *(Pk) and 2 (Z) and 2" (%) on Spec (OF) all coincide.
Hence the o-conjugacy classes [b,] and [b,] and [b,~] coincide. Let b € G(Q,)
be a representative of this class which is p-admissible, see Remark 4.2.3.
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Define, for r > 0, the v-sheaf Zx over (5”/,,3)(> by adding to a point y
of (5”/35)<> with values in S = Spa (R, R") € Perfdy a trivialization of the
G-shtuka N

ir: Gy, (8) = Y (PK) ey (5)

such that ¢y- () = ¢p = b x Frob. Then the map Zx — (5”/:10)<> is repre-
sentable in locally spatial diamonds. It is a torsor under the diamond group

(4.2.4) Gy = Aut(€"),

given as the automorphism v-sheaf of the G-bundle EY over the Fargues-
Fontaine curve, see [26, ch. IIT 5.1]. Then G}, is also the v-sheaf given by
S = Auty, (5 (G X Y 00)(S), b x Frob), automorphisms in the category
of G-torsors over V. »)(S) equipped with a Frobenius isomorphism. This
diamond group is an extension of G(Q,) by a smooth unipotent group v-
sheaf, see loc. cit.. Here, to conform to the notation of [26], we denote by
Gy, what was denoted J;, before, i.e. for a Qp-algebra A

Gy(A) = {g € G(Awg, Q) | bo(g) = gb}.

This is represented by a reductive group over Q, and G(Q,) is the locally

profinite v-sheaf given by the Q,-points G(Q),). We also define Z /o and

S jn In an analogous way.

Recall the integral model /\/lgltb " of the local Shimura variety correspond-
ing to the fixed element b, with its tautological G-shtuka (Puniv, ¢p,.,,) and
its trivialization ¢, for r > 0. By universality, we obtain natural morphisms
fitting in a commutative diagram,

%/I”

(4.2.5) / JHN

’

> nat i >y
S )y — /\/llgnfb,# —— S

On the other hand, since .7k satisfies property c) of Conjecture 4.2.2, we
obtain a commutative diagram for a suitable section g € Gy(-7),),

Sy~ T

int int
Mgvb,u Mg,b,u /z0’
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in which the right vertical arrow is the inverse W, of the isomorphism ©,.
Furthermore, by the nature of the morphism .%/, — .%,, this isomorphism
is uniquely determined by the rest of the diagram. Something analogous
holds for . and a global section ¢’ € Gb(fﬂ/’z,).

Proposition 4.2.5. The natural projection Gy — Gy»(Qp) induces an iso-
morphism on global sections,

Go(-12) — Gp(Qy).

Proof. Let éb>0 be the kernel of the natural projection. Then (N}b>0 is a suc-
cessive extension of positive (absolute) Banach-Colmez spaces, cf. [26, Prop.
I11.5.1]. More precisely, there is a filtration GbZA such that for every A > 0,
there is a natural isomorphism

GG = B((ad&) 2/ (ad&y) ™),

with target the Banach-Colmez space associated to the —\ isoclinic part of
the Frobenius isocrystal (Lie(G) ®q, @p, Ad(b)o).

We first prove the following lemma. A formal group version of this lemma
occurs in [14, Prop. 4.2.11].

Lemma 4.2.6. Let [b] € B(G, ), where p is minuscule. Then éb>0 is a
successive extension of positive (absolute) Banach-Colmez spaces of slopes
<1.

Proof. We need to prove that (vp,a) < 1 for any positive root . Equiv-
alently, we need to see that (v,&) < 1 for the highest root &. But since
[b] € B(G, 1), we have p—uv, € CV, where C'V denotes the obtuse Weyl cham-
ber (spanned by the positive coroots). Since (CV,a) > 0 (cf. [11, Ch. VI,
§1.8, Prop. 25]), we get (vp, &) < (u, &) < 1, since p is minuscule. O
We write B(\) = BC(O()\)) and we let B(\)(-#/,) to be the group
Hom(Spa (ayw)o, B(\)) of maps of v-sheaves over Spd (k). By Lemma 4.2.6,
it suffices to show
Lemma 4.2.7. For 0 < A <1, we have B(\)(#,) = (0).

Proof. Write A = r/s with coprime integers r,s > 0. Let X = X be the
simple p-divisible group of slope A over k£ and denote by the same symbol a
lift of X over W (k). Let

X:@X
Xp
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be the universal covering of X, cf. [84]. For any p-adically complete W (k)-
algebra A, we have

B(A)(A4) = X(4) = X(4/p),
comp. [60, §2.3], also [26, Prop. I1.2.5]. Now

X ~ Spf (W (k)[[T2P, ..., 7M7),

We therefore obtain
B()\)(A):( lim A°°> .

r——xP

After identifying the ideal of topologically nilpotent elements in 9) 7« With
the maximal ideal m» ,, we have

X(O0y.) = ( lim ﬁy,m)r-

T—> P
Since N, M, . = (0), we see that B(A\)(2) = (0). O
The proof of Proposition 4.2.5 follows. U

Remark 4.2.8. In fact, for every positive Banach-Colmez space &£, the
group of global sections £(A) is zero, for any noetherian p-adically complete
W (k)-flat algebra A. Here is a sketch of the proof of this statement, which
was suggested to the authors by Scholze. Observe first that it is enough
to show this for A a discrete valuation ring with perfect residue field and
E=B\), with A=1r/s > 0. Let K, resp. k, be the fraction field, resp. the

residue field of A. Set C' = K and, as usual, let O¢ be the integral closure of
Ain C. By v-descent, a section s € B(A)(A) is given by a G = Gal(K/K)-
invariant element of B(\)(O¢) = (B%,.)? =" C Bi... By a theorem of

crys crys:*

Fontaine (see [27, Thm. 4.12] or [28, Thm. 6.14]) (B, .)9% = W(k)[1/p],

crys
and we can see that the only such Galois invariant element is 0.

Hence g, ¢ € G,(Q,) and, after correcting ¥, resp. ¥,/ by the automor-
phism of ./\/lg“;) u corresponding to g, resp. ¢', we deduce from (4.2.5) a unique

left vertical isomorphism making the following diagram commutative,

y///x” (7TK77T{<) y/z % y//x,

:’J/ J/(\I/“‘IJJ'/)

int A int int
MG b jzo " MGy 12 X Mgy

7l1‘ /xU :
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This implies that 7k and 7 induce isomorphisms
y”/x// ; y/x, l“eSp. y”/w// ; y,/x/.
Since the point & was arbitrary, the assertion follows. O
4.3. Some functorialities of integral models

The uniqueness statement in Theorem 4.2.4 leads to some interesting func-
toriality properties.

Let (G, X) — (G, X’) be an embedding of Shimura data induced by a
group embedding ¢ : G < G'. Assume that K,, K;, are parahoric subgroups
of G(Qp) and G'(Qp) respectively, with corresponding Bruhat-Tits group
schemes G and G’ over Zy, such that

(4.3.1) Kp =1 (K)) N G(Qy).

(Note that given a parahoric K, of G(Q,) which is also a stabilizer, we can
always find a parahoric Kj, of G'(Q,) which satisfies (4.3.1). This uses Land-
vogt’s embedding of extended buildings #¢(G,Q,) — %°(G',Q,), [59].)
Then, ¢ : G — G’ extends uniquely to a group scheme homomorphism
¢t : G — G’ which is a dilated immersion, i.e. identifies G with the Neron
smoothening G*™ of the Zariski closure G of the image of G in G’ = G(’@p,

G=G" = G—(.

Let KP C G(A’}) and K'? ¢ G (A?) be compact open subgroups such that
the natural map induced by ¢ : (G, X) — (G, X’) gives an immersion

t: Shk(G, X)g — Shy (G', X') @ E.

Here, as usual, K = K KP, resp. K’ = K/ K'P. Note that, given a compact
open KP C G(A?), there is always a compact open K'? C G/ (AIJZ) for which
we have such an immersion, cf. [54, Lem. 2.1.2]. If K? is sufficiently small, as
we are always assuming, then we can also take K'? to be sufficiently small.

Theorem 4.3.1. Let Yk, resp. S, , be integral models of Shi (G, X) g, resp.
Shy/ (G, X) g over Og, resp. Og/, with the properties enumerated in Con-
jecture 4.2.2 and which are characterized by Theorem 4.2.4. Then, under
the above assumptions which include (4.3.1), the immersion of E-schemes
t: Shg(G, X)g — Shk/ (G, X') g ®p E above extends uniquely to a morphism
over Og,

L S — y{(/ RO Og.
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Before we discuss the proof, we give a consequence:

Corollary 4.3.2. Let K, and K}, be parahoric subgroups of G(Qy), with cor-
responding parahoric group schemes G and G' over Z,,. Assume that K, C K;.
For K = KyKP, resp. K' = KL KP, let Fk, resp. Sk, be integral models of
Shi (G, X)g, resp. Shk/ (G, X)g, over O with the properties listed in Con-
jecture 4.2.2 and characterized by Theorem 4.2.4. Then the morphism of E-
schemes Shy (G, X)g — Shk/(G, X) g extends uniquely to mx x : Sk — Sk
over Og.

Proof. We will apply Theorem 4.3.1 to (G, X’) = (G x G, X x X) and
t : G — G’ the diagonal embedding. Also, we take the parahoric of the
target group G(Q,) x G(Qp) to be K, x Kj,. The intersection of K, x R;, with
the diagonal is Rp C G(Qp)7 so (4.3.1) holds. We can see that .Sk x Sk is
the (unique by Theorem 4.2.4) integral model for Shtk.k (G x G, X x X)
with the properties enumerated in Conjecture 4.2.2. By Theorem 4.3.1 the
diagonal morphism extends to

yK —><5ﬂK XyK/.

This, composed with the projection, induces the desired map my k- : Sk —
S O

We now give an outline of the proof of Theorem 4.3.1. This proof will
be completed in §4.8 after we first give the argument in the special case
(", X) = (GSp(V), 5%).

Let YKT be the normalization of the closure of the image of Shy (G, X)g
in %, ®o,, Op. This is an integral model of Shtk (G, X)g and comes with
a morphism

L Yli — yk, ®0,, OF

which extends the natural morphism on the generic fibers. It will be enough
to show that YP}L satisfies the properties listed in Conjecture 4.2.2. Indeed,

then by Theorem 4.2.4, Yll = .%k. Note that in the case when (G', X') =
(GSp(V), S*) is a Siegel Shimura datum, (G,X) — (GSp(V),S*) is a
Hodge embedding. Then proving these properties for the normalization ﬂli
gives the construction of an integral model as in Conjecture 4.2.2 in the
Hodge type case, i.e. gives the proof of Theorem 4.5.2, as in §4.6, §4.7, be-
low. In what follows, we omit subscripts and write . := %%, %' = %,
P = Py, etc.

Step A. We will first show that the G-shtuka Zg over Shtk(G,X)g
extends to a G-shtuka 2T over .71, compatibly with the pull-back ¢*(2') of
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the G’-shtuka over .. “Compatibly” here is meant in the sense that there
is an isomorphism of G’-shtuka over .77,

G x9 Pt~ (P,

i.e. also respecting the Frobenius structures. Equivalently, we can think of
P71 as a shtuka obtained from ¢*(2') by reducing the structure group from
G' to G via G — G'. The proof of the existence of this extension of g to
2T will be explained in §4.8.1.

Step B. We will next show that the restriction of the G-shtuka 2T to the
formal completion of any point 2 of .#f(k) admits a framing; this provides
a morphism of v-sheaves,

T int
L je = MG, jay

This will provide the inverse of the desired isomorphism ©, in Conjec-
ture 4.2.2. This will be explained in §4.8.2.

The rest of the proof then closely follows the proof of Theorem 4.5.2,
which corresponds to the special case (G', X') = (GSp(V), S*), see §4.8.

4.4. A conjectural prismatic refinement

We conjecture that the integral models #k also support an object of pris-
matic nature which suitably refines the universal G-shtuka Px. We will now
try to make this more precise. To ease the notation, we omit the subscript K.

Recall that according to Bhatt and Scholze ([9]), a “prism” is a pair
(A,I) where A is a 6-ring and I C A is an ideal defining a Cartier divisor
in Spec (A), such that

(1) The ring A is derived (p, I)-adically complete.

(2) The ideal I + ¢4(I)A contains p, where ¢4(x) = zP + pda(z) is the
Frobenius lift ¢4 : A — A induced by the §-structure of A.

A map (A,I) — (B, J) of prisms is a map of é-rings A — B taking I to J.
Then, by [9, Prop. 1.5], one has J = IB.

Consider the big prismatic site (5/’7) A of the p-adic formal scheme 2
given by the p-adic completion of .. This is the opposite of the category
of pairs ((A,I),z) of prisms (A4, I) together with a map z : Spf (4/I) — .7,
endowed with faithfully flat covers, as defined in [9]. We have the structure
sheaf of rings O) on (é\)ﬁ taking a pair ((A,I),z) to A. This admits a
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Frobenius ¢) : Op — O) given by the Frobenius lifts ¢4 : A — A. There is
also a sheaf of ideals I C O) taking ((A,1),z) to I.

Our object, which one might call a prismatic Frobenius crystal with G-
structure over ., should be a pair (Z), ¢ A) of

—

a) a G ®z, Op-torsor ) over (),
b) an isomorphism
02), + (FhZD)ISpec©p\V(1p) = PbiSpec (0, V(1)

More concretely, it should assign to each z = ((A,I),z: Spf(A4/I) —
<) a pair (Pz, . ), where Pz is a G-torsor over Spec (A) and where

b2, : (04(P%2)) spec (ANV (1) — (Pa)| Spec (ANV (1)

is a G-isomorphism, together with compatible functorial base change iso-
morphisms for maps of prisms (A,I) — (B, J) with commutative diagrams

Spf (B/J) —— Spf (A/I)

Let R* be an integral perfectoid Op-algebra and suppose there is a map
xT : Spf (R¥) — 7. Denoting by R™ the tilt of R*", then

(W(RT), ker(W(R") — R*))

is a (perfect) prism. We can then evaluate (£, qbyA) at the point 7 given
by this prism together with 21. Suppose now that Rt is part of an affinoid

perfectoid pair (Rf, RfT). Then z* gives
x : Spa (R, R*Y) — Z

hence a Spa (R, RT)-point x of the v-sheaf .7*/Spd (OF).
We ask that (£, qﬁg;A) refines the G-shtuka (£, ¢») in the following

sense: for all such choices of (R, R*) and z%, there is an isomorphism
between the pull-back of (#3+,¢4_, ) along

y[O,oo)(Rv RJr) — Spec (W(R+))
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and the value of the shtuka (£, ¢») at x. Furthermore, these isomorphisms
are supposed to be compatible with the base change isomorphisms.

In the case of PEL Shimura varieties, one should be able to obtain
(Pp, b2 A) from the prismatic cohomology of the universal abelian scheme

A — .7 the value at

—

(A, I),z: Spf(A/I) — &)

z
should be the pair (%, ¢».) where &5 is given by appropriate frames of
H) (A x -, Spt (A/D)/A) = H) (A x -, Spf (A/1)/A), Op).
and ¢ . is induced by the ¢ 4-linearization of its Frobenius map.

4.5. Shimura varieties of Hodge type

In this subsection, we explain the class of Shimura varieties for which we
can prove Conjecture 4.2.2.

4.5.1. Shimura data of Hodge type. Fix a Q-vector space V with a
perfect alternating pairing 9. For any Q-algebra R, we write Vg =V ®q R.
Let GSp = GSp(V, %) be the corresponding group of symplectic similitudes,
and let ST be the Siegel double space, defined as the set of maps h : S —
GSpp such that

1. The C*-action on Vg gives rise to a Hodge structure

(4.5.1) Ve~V 0 gyt

of type (_17 0)7 (07 _1)
2. (z,y) — ¢¥(x,h(i)y) is (positive or negative) definite on Vi.
The Shimura datum (G, X) is of Hodge type if there is a symplectic faithful
representation p : G < GSp(V, ) inducing an embedding of Shimura data
(4.5.2) i: (G, X) — (GSp(V,v), SF).

Definition 4.5.1. Let p be a prime number. The tuple (p, G, X, K), with the
open compact subgroup K = KPK,,, is of global Hodge type if the following
conditions are satisfied.

1) (G,X) is a Shimura datum of Hodge type.
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2) K, = G(Z,), where G is the Bruhat-Tits stabilizer group scheme G, of
a point x in the extended Bruhat-Tits building of G(Q,) and G is con-
nected, i.e., we have G = G, = G.

4.5.2. Integral models in the Hodge type case. We now show how
to construct integral models .#k as in Conjecture 4.2.2, when (p, G, X, K) is
of global Hodge type. We start with a Hodge embedding i: G < GSp(V, ).
We can then find a parahoric group scheme H for the symplectic similitude
group H = GSp(Vg,,%q,) such that there is a homomorphism of group
schemes over Z,

(4.5.3) GG,

which is a dilated immersion and extends the closed embedding in the generic
fiber,

G, = GSp(Vg,, ¥g,) C GL (H(V@p S V@p)>,
i
see [57, 4.1.5] and Lemma 3.6.1, comp. §3.7.1. Here, H is the parahoric group
scheme GSp(A,) given by the stabilizer of some periodic self-dual Z,-lattice
chain

Ae: - CpAgCA. C---CANCAJC---CA CpthogCp Ay C---

Then

T
GSp(As) = [J(GL(A:) x GL(AY)),
=0
is a closed group immersion.
For A; in the lattice chain A, let Vi 7, = A; NV, and fix a Z-lattice
Viz CV such that V; z ®z Z,) = Viz,,, - Set Voum = [[;—o(V @ V) and

T
_ _ Y
‘/sum,Z(p) - H ‘/;,Z(p) &) ‘/ji’Z(p) C ‘/sum-
=0

Consider the Zariski closure Gz, of G in GL(Vsum,z,,); then Gz, ®z,,

Z, = G. Fix a collection of tensors (s,) C Vsﬁ)m,z(p) whose stabilizer is Gz, .

This is possible by the improved? version of [54, Prop. 1.3.2] given in [20].

%in the sense that one does not need the symmetric and alternating tensors used
in [54, Prop. 1.3.2].
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Finally, set

.
(4.5.4) A= Vanz @z, Zp = [ [ M @ A
=0

We then have K, = G(Z,). We define K} = H(Z,) = GSp(A.)(Z,) =
GSp(Vg,) N GL(A). By [54, Lem. 2.1.2], for any compact open subgroup
KP C G(A?) there exists K C GSp(A?) such that ¢ induces an embedding
over E

(4.5.5) i Shi (G, X)g < Shys (GSp(V, ), SF)g ®¢ E,

where K’ = K;Kbp.

The choice of lattices V; 7z gives rise to an interpretation of the Siegel
Shimura variety Shys (GSp, S*)g as a moduli scheme of chains of p-isogenies
between polarized abelian varieties A; with K*P-level structure; this extends
to Ax> over Z, (see [54, 57]). Denote by Lk the local system given by
the Tate module of the p-divisible group of the product A = [[;_, A; x AY
of the universal abelian schemes over Shy,(GSp, ST)g ®g E restricted to
Shk (G, X)e.

Recall Shk(G, X)g = Shk(G, X)g ®e E. The tensors s, € A® define,
using the compatibility between Betti cohomology and étale cohomology,
corresponding global sections ¢, ¢ of Lk over Shy(G, X)g, comp. [54, §2.2]
or [95, §6.5]. The pro-étale torsor Px under K, = G(Z,) is given by

ISOm(ta,ét%(su) (]LK7 AShK(G,X))7

i.e., Pk is the torsor of trivializations of Lk that respect the tensors.

We denote by 7 (G, X) the (reduced) closure of Shx(G, X)g in the
Og-scheme Ag» ®z,, Op. Then the integral model (G, X) is defined to
be the normalization of .#k(G, X)~, comp. [57]. For simplicity of notation,
we set

yK = yK(G,X).
The morphism (4.5.5) extends to a finite morphism
(4.5.6) i Sk — Ak Q% Og.
We also set

pr = yKP(G,X) = @Kl’ prKp(G, X)

Again, we can see that the transition maps are finite étale and so the limit
exists.
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Theorem 4.5.2. Let (p,G, X,K) be of global Hodge type. Then the sys-
tem of integral models Sk constructed above satisfies the properties a)-c) of
Conjecture 4.2.2. In particular (by uniqueness, Theorem 4.2.4), the system
Jk 1s independent of the Hodge embedding used in its construction. Fur-
thermore, for any x € Sk(k), the integral local Shimura variety /\/lgltbzu
satisfies Conjecture 3.3./ at the base point xg € Migrttbmu(k), i.e., Mign,tbm,u/aco
18 representable.

We note that property a) (the extension property (4.2.2)) is very simple:
for the Siegel model Ag» it holds by the Néron-Tate-Shafarevich criterion of
good reduction, and this implies the extension property for .#k by its defini-
tion as the normalization of the closure of the generic fiber in Ax» ®z,, OF.
Property b) is proved in Subsection 4.6. Property c) is proved in Subsec-

tion 4.7, which also contains the representability of Mg‘tb Py

4.6. Extension of shtukas

In this subsection we give the construction of the extension of the G-shtuka
Pk.i in part b) of Conjecture 4.2.2 for the integral models .7k of the last

subsection. For simplicity of notation, we write ./ = %« . Denote by & =

5/4\(? the formal scheme given by the p-adic completion of .

4.6.1. Torsors and tensors. We refer to [85, App. to §19] for a discussion
of the various notions of a “G-torsor”. Recall from Section 4.5 that we have

¢ %G GL(A).

In this, ¢ is the group smoothening (a dilation) which is the identity on
generic fibers and ¢ : G <— GL(A) is a closed immersion which realizes G as
the stabilizer of a finite family of tensors (s,) C A®, a € I, i.e.

G(A)={9€ GL(A®z, A) | g 50 = 5q,Ya € I}

for every Z,-algebra A. Note that it follows immediately from the construc-
tion of the group smoothening that § gives a bijection G(W (k)) = G(W (x)),
for every perfect field x, cf. [10, 3.1., Def. 1]. In fact, we have:

Lemma 4.6.1. The dilation § : G — G gives a bijection
(4.6.1) §(W(R)): G(W(R)) = G(W(R)),

for every perfect Fp,-algebra R.
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Proof. Both G and G are affine group schemes of finite type over Z,. Write
A=T(G,0qg), A=T(G,0;) for the corresponding affine coordinate rings.
The dilation ¢ induces an injection A C A with A[1/p] = A[1/p] and we can
write A = A[fi,..., f], for some fi,..., f. € A. There are n; > 1 such that
p"i - f; € A. Since p is not a zero divisor in W(R) we quickly obtain that
d(W(R)) is injective and it remains to show surjectivity: A W (R)-point of
G is given by h : A — W(R) and we want to show that h extends to h: A =
Alf1,..., fr] = W(R). We have h : A — W(R)[1/p] and p™h(f;) € W(R).
The existence of h follows if, for all i, the element h(p™ f;) lies in p™ W (R);
then h : A — W(R)[1/p] takes values in the subring W(R) C W(R)[1/p]
and gives the desired extension h. Since R is perfect, p"W(R) = V*"W(R) =
{(0,...,0,7n41,Tn42,...) | 7 € R}. This implies that an element of W (R)
belongs to p"W(R) if and only if this happens after base change to all
(perfect) residue fields o : R — k. Since by the above, 6(W (k)) is a bijection
for all perfect fields x, a(h(p™ f;)) € p™ W (k) for all such o and the result
follows. O

Let S be a scheme, or an adic space over Z,. Let & be a G-torsor over S.
Then by the Tannakian formalism, the representation G — GL(A) induces a
vector bundle ¥ over S. The tensors s, € A® induce corresponding tensors
to € ¥®(S). We can consider the sheaf of tensor-compatible trivializations
of 7V,

TV, (ta)) = Isom,,) (5,01 (¥ A @z, Os).
This has a natural action of G and can be identified with the G-torsor &2

given as the push-out P =G x9Pof P by §d: G — G. Note that, since
0[1/p] = id, we have

P(1/p] = 2[1/p].

Conversely, suppose that we are given a vector bundle ¥ over S and a
collection of tensors t, € ¥®(S), a € I, where t, has the same homogeneity
as Sq. Then, we can consider the (fppf or étale) sheaf

i(ﬂf/, (ta)) = Isom(ta)7($a®1)(7/, A ®Zp OS)
whose T-valued points for T" — S are given by isomorphisms
" 5A Rz, Or

such that f¥(t,) = s, ® 1, for all @ € I. There is an obvious left action
of Gon T (¥, (t,)). If 7 (¥, (t,))(T) is not empty, then the action of G(T')
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on the set .7 (7, (tq))(T) is free and transitive, i.e. ?(“V, (t))(T) ~ G(T).
Under certain conditions on 7', we will have G(T') = G(T), as for example in
(4.6.1) above. Then .7 (7, (t,))(T) also acquires a free and transitive action
of G(T).

4.6.2. Variant for Witt vectors. We will apply the previous remarks
not to G-torsors on S but rather to G-torsors over S x Z,, or, more generally,
over YVi(S). Let S = Spa (R, R") € Perfd;. If & is a G-torsor over V;(S)
(given for a example by a G-shtuka over S), we obtain a vector bundle ¥
over YVr(S), together with tensors (t,). We can consider the sheaf of tensor-
compatible trivializations of ¥,

TV, (ta)) = Isom,,) (.01 (¥, A @2, Oy,(s))-

This has a natural actign 0{ G and can be identified Yvith the G-torsor &2
given as the push-out & =G x9 P of P byd:G—G.

We will also use the following:

Proposition 4.6.2. Let R be a perfect k-algebra. Then G-torsors over W (R)
form a stack for the v-topology on Spec (R).

Proof. By [8] vector bundles of fixed rank over W(R) form a stack for the
v-topology on Spec (R). By the Tannakian equivalence, G-torsors over W (R)
are given by exact tensor functors Rep(G) — fin. proj. W (R)-modules ([85,
Thm. 19.5.1]). Using these facts we observe that it remains to show that if
R — R’ is v-surjective, a complex

Mg :0— My — My — Mg — 0

of finite projective W (R)-modules is exact if and only if the base change
M, @y (r) W(R') is exact. Observe that under our assumption, all maximal
ideals of Spec (W(R)) are in the image of Spec (W (R')) — Spec (W (R)).
Also R — R’ is dominant, hence injective (since perfect algebras are reduced)
and so W(R) — W(R') is also injective. The result now follows by applying
Lemma 2.3.9. O

Lemma 4.6.3. Let R be a perfect k-algebra and let &2, 2’ be two G-torsors
over W(R), inducing (7, (ta)), resp. (V' ,(t)). Let ¢ : ¥ = ¥ be an
isomorphism which preserves the corresponding tensors, i.e. ¢®(t,) = t.,
Va € I. Then ¢ is obtained from an isomorphism of G-torsors ¢ : P = '
which is unique.
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Proof. By Proposition 4.6.2, it is enough to produce the isomorphism v-
locally on R. Consider the natural map

Isomg (2, ') — Isomg (2, 7).

The claim is that this is bijective. The source, resp. target, are the global
sections of Isomg (22, 2'), resp. ISﬂg‘(@, 2", which are Autg(P)-, resp.
Autg(Z)-torsors. These group schemes are “pure” inner forms of G, resp.
G (see [26, Prop. IIT 4.1]). They split v-locally on R because the torsors &,
2" do. Since G(W(R)) = G(W(R)) by (4.6.1), we deduce that Autg(2) =
Autgs (). We can now see Isomg (2, ') = Isomg(, &') since they are
torsors for the same group and the result follows. O

Remark 4.6.4. By [85, Prop. 19.5.3], for S € Perfdy, G-torsors on S x Z,
form a v-stack over S. Hence there is a variant of Lemma 4.6.3 for G-torsors
P, P over S x Z, instead of W(R). Indeed, it is enough to produce é v-
locally, and so we can see it is enough to show the result for S = Spa (C,C™T),
where C' is an algebraically closed perfectoid field. Then, we can construct
¢ by Beauville-Laszlo glueing along p = 0: We see that ¢ defines @[1/p] :
21/p] = 2'[1/p] while the completion @y[o,@(C,Cﬂ,p:O is W(C) and we
have G(W(C)) = G(W(C)).

4.6.3. Extension of #g. Recall the G-shtuka P over the generic fiber
Sh¢ = Shi(G, X)$. By the Tannakian formalism as above, ¢ : G — GL(A)
and g give a vector bundle shtuka (¥z, ¢, ) over the generic fiber Sh%.
This is the vector space shtuka that corresponds to the de Rham local system
given by the Tate module of the pull-back of the universal abelian scheme
via the Hodge embedding, cf. §2.6. Again as above, (¥, ¢y, ) is endowed
with a finite family of tensors ¢, 5 € (¥&, dy,)®. We can view each such
tensor as a shtuka homomorphism over Sh]%,

(4.6.2) tap : (BVE™, bgpi) —> (BVE™, by yom),
for suitable m;,n; > 1. By the discussion in Section 4.6.2, we have
(4.6.3) P =T Vi, (ta,p))-
Recall from (4.5.6) the finite morphism
i Sk — Ax ®z,, O,

which extends the Hodge embedding in the generic fibers.
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We first extend ¥z to a vector shtuka (¥, ¢y ) over . as follows. First
observe that it is enough to extend compatibly over the p-adic completion 7.
Now consider S = Spa (R, R") € Perfd; and a map S — (#)° given by
Spa (Rf, RH) — .73, Let Miyr(RH) be the BKF-module (with leg along
#(€) = 0) of the pull-back to Spec (R**) of the p-divisible group A[p>] of
the universal abelian scheme over Ax» ®z,, O, cf. Example 2.3.4. This is a
finite locally free module over Ay,¢(R*) = W(R'). We denote by (¥5, ¢, )
the corresponding minuscule shtuka of height 2¢g and dimension g over S
with leg at S?, given by the restriction of

(4.6.4) M(W(RY)) = (¢~ )" Ming (R*)

to Spa (W(R™)) \ {[w] = 0} (as in Example 2.3.4).
Using (4.6.2), we see that Theorem 2.7.7 implies that the tensors t, g

extend (uniquely) to tensors t, € #®. We now define the v-sheaf over S x Ly,
with action of G,

(4.6.5) Ps =TV, (la)) = Isom,) (s,01)(Vs: A @z, Ogy ).
We will show that Pg is induced by a G-torsor Pg over S x Zy, which is
then uniquely determined. We do this in three steps.

Step 1. Let R be a perfect k-algebra and let Z = Spec (R) — . which
induces Spd (R) — (té\)<> Note that the pull-backs of the tensor powers
¥ @™ to shtukas over Spd (R) are given as in Theorem 2.3.8 by meromorphic
F-crystals, namely the tensors powers M (W (R))®™ of M (W (R)). Note that,
as in (2.3.3), M(W(R)) can be identified with

D¥(W(R)) = (¢~ H(DW(R))"),
where D(W (R))* is the linear dual of the contravariant Dieudonné module of
the pullback of the universal p-divisible group A[p>] to Spec (R). By pulling
back t, along this map and using the full-faithfulness

meromorphic F-crystals over R — shtukas over Spd (R)

given by Theorem 2.3.8, we obtain tensors t, crys € D#(W(R))®. We can now
consider the affine scheme with G-action over W(R),

Terys(R) :=Isom, o o1 (DHW(R)), A @z, W(R)).
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We also consider the affine scheme with G-action over W(R)[1/p],

Terys(R) = Isomyy, . (s,0n) (DF(W(R))[L/p], A @z, W(R)[1/p]),

which has a natural Frobenius action lifting the Frobenius on W (R).
Lemma 4.6.5. The G-scheme Tirys(R) is a G-torsor over Spec(W (R)[1/p]).

Using the Tannakian equivalence we see that the lemma implies that
Terys(R) gives a Frobenius G-isocrystal over the perfect scheme Z = Spec(R).
Recall that a Frobenius G-isocrystal over Z is a exact faithful tensor functor

Repg, (G) — F-Isoc(Z),

where F-Isoc(Z) is the tensor category of Frobenius isocrystals. However,
our argument proceeds in the opposite way.

Proof. We paraphrase the argument of [56, Cor. 1.3.12]. Suppose that xg is
a geometric point of Z = Spec (R). Let K = k(x). After replacing Z by
Z Qi K, we may assume that Z is defined over K and that xg is a K-rational
point. There is a specialization functor

(4.6.6) spec,, : F-Isoc(Z) — F-Isoc(xo)

between the categories of Frobenius isocrystals obtained by restricting to the
point xg. We may assume that Z is connected. Then this functor is faithful
and exact, and is in fact a fiber functor over L = W (K)[1/p], after forgetting
the Frobenius. The W (R)[1/p]-scheme T¢rys(R) specializes to Terys(20) which
is an affine L-scheme with G-action. Lift zy to a point Zy of .% with values
in a complete discrete valuation ring Og. Using the étale-crystalline com-
parison isomorphism applied to the crystalline representation of Gal(K /K)
given by the tensor powers of the Tate module T},(A[p™]) ®z, Qp, we see
that Terys(20) is a G-torsor and so it gives a Frobenius G-isocrystal over zg,
i.e. the exact tensor functor

wr, : Repg, (G) — F-Isoc(zg), Wr— W x @ Terys(o)-
We claim that wr, factors as a composition of tensor functors
wr, = Spec,, o w,

where the tensor functor w: Repg (G) — F-Isoc(Z) takes the representation
Ag of G to D¥(W(R))[1/p]. This last condition forces on us the definition
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of w(Vinn), where Vp,,, = Ag” ® A(’ng. But any object of Repg, (G) is
the kernel of a G-invariant map e: W — W, where W is a direct sum of
objects of the form V,, ,; we can even assume that e is an idempotent. By
considering e as a tensor to which we apply the previous construction, we
define a homomorphism w(e): w(W) — w(W) of F-isocrystals over Z and set
w(Kere) = Ker(w(e)). It is easy to see that this definition is independent
of the presentation and defines an exact faithful tensor functor into the
category F-Isoc(Z). We claim that the G-space Terys(Z) is isomorphic to the
G-torsor which corresponds to w. It suffices to prove that the corresponding
pushout functors coincide,

Repg, (G) — W(R)[1/p]-modules
W W X9 Toys(Z), W w(W).

However, by construction, both functors send Ag to D(W(R))[1/p] and the
morphisms s, : @®; Agmi — @ A%”“ t0 tacrys @ @i DEFW(R))[1/p]®™ —
@; DA(W(R))[1/p]®™. Since the tensor algebra of Ag and the tensors s,
allow us to recover the group algebra of G, it follows that both functors
coincide. O

Step 2. Now consider Spa (C,C™) with C a complete non-archimedean
algebraically closed field of characteristic 0 and with tilt Spa(Cb,C”) €
Perfdy. Let

z: Spa (C,Ct) — S* = Spa (R*, R*) — 25

be a morphism giving the point Spa (C?,C*t) — § — (¢5/’>)<>/Spd (Op).
Since C* C Og, this also gives Spa (C,O¢) — Spa (C,C1) — .24 which
we still denote by . We set

Ct =Ct/me C k(C) = k(C)

which is a valuation ring of k£(C) = O¢/mc.

As in Example 2.3.4, we have the Breuil-Kisin-Fargues module M over
Aing(CT) of the pull-back *(A[p™]) of the universal p-divisible group. By
the existence of the G-shtuka over the generic fiber ., we have a G-torsor

(467) <y[[),oo) = ‘y[(),oo) (Ca C+)

over y[oyoo)(cb, C’H). This induces a vector bundle ¥}y ) given by the pull-
back of M to y[ovoo)(cb,cﬂ) and Frobenius invariant tensors z*(t,) €
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Yo

tensors z*(t,) extend to tensors over the pullback of M® to

) By our construction of ¢, (see the proof of Proposition 2.7.6) the

V0,00 (C°, C°F) = Spa (Aine(C)) \ {[w] = 0,p = 0}.

Furthermore, by full-faithfulness, these extend to tensors t,, € M® over

Ape(CT).

Lemma 4.6.6. The G-torsor Jj «)(C,C™) from (4.6.7) extends to a scheme
theoretic G-torsor 7 (C) over Aijg(C™T) with the property that the construc-
tion of §4.6.2 applied to T (C™T) gives M with the tensors to, € M®. This
extension is canonical, i.e unique, up to a unique isomorphism. The G-torsor
T (C™") is trivial, since W(C™) is strictly henselian.

Proof. i) By Lemma 4.6.5, applied to R = C*, the tensors Lacrys give a
G-torsor

Too = Lcrys (é+)

over W (C*)[1/p] which underlies a Frobenius G-isocrystal over C7.

ii) By Proposition 2.2.7 and the main result of [1], the G-torsor g )
extends to a (trivial) G-torsor .7 (O¢) over Aine(Oc) = W(Og»). Using the
faithfulness of the pullback along

Y10,00)(C”, 08) — Vo.00)(C”, O3) — Spec (At (Oc)),

on vector bundles and their homomorphisms, we see that this G-torsor gives,
by the construction of §4.6.2, the BKF-module M ®4,  (c+) Ainf(Oc) of
z*(A[p>]) with the tensors tq, € M® @4, (c+) Aint(Oc).

The idea now is that Tw, Jjg ), and J(O¢) combine to give the G-
torsor 7 (C™T), by considering the fibered product

CT =C" Xy Oc,
which gives
Ains(CT)[1/p] = W(CH)[1/p] Xw (e /e Aime(Oc)[1/p)-
Set

A= Awe(CT[1/p,
A =W(CH[L/p], Az = Aine(Oc)[1/p), Ao =W (k(C))[1/p]
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so that we have
A= A1 X Ao Ag .
Set

T/pl = T(CH[1/p] = Tsomy,  (s.01)(M[1/p], A ®3z, A),
Till/pl = T[1/p] ®a A; = Isomyy, , ) (s.01)(Mi[1/p], A ®z, A;).

For each ¢ = 0,1,2, we know by the above that .Z[1/p] is a G-torsor. We
now use [1, Lem. 11.3], according to which the functor that associates to a
perfect valuation ring R over k the groupoid of G-torsors over W (R)[1/p] is
a stack for the arc topology. This implies that Z;[1/p], i =0, 1,2, “glue” to
give a G-torsor .7’ over A. The G-torsor .7’ can also be described by a finite
projective A-module M’ with tensors t,, , € M'®. By its construction and
the fact that M and t, € M® also satisfy the required compatibilities with
M; and t,.; € MZ@, we see that there is an isomorphism M ~ M’ taking
taz to ty .. Therefore, F[1/p] ~ 7' and J[1/p] is also a G-torsor. Now
the G-torsor 7 [1/p] glues with the G-torsor Jjy .y over y[o,oo)(cb, C") to
produce a G-torsor over Vg «)(C”, C*") = Spa (A (CT)) \ {[w] = 0,p = 0}.
This, using GAGA and [1, Cor. 11.6], extends to a G-torsor .7 (C'T) over
Spec (Aine(CT)) which is trivial. By the full-faithfulness of the restriction to
V0,00 (C?, C*F) and the construction, we see that the Ay, (CT)-module, resp.
the tensors, obtained from the G-torsor .7 (C) by the Tannakian formalism
is M, resp. to» € M®. The rest of the properties of .7 (C™") in the statement
also follow from the above full-faithfulness. O

Step 3. We now show that we obtain a corresponding G-torsor in charac-
teristic p also. Take Spa (D, D1) € Perfd given by an algebraically closed
affinoid field D, equal to its untilt, and a point

Spa (D,D%) — 2

We can lift this to a point of .7 with values in Spa (C,CT) with C as above
(of characteristic 0), and with C* = D¥. Then, by Step 2, we obtain a
G-torsor over Aj,¢(CH) = W(C*?) which, via C*?/p — DT, reduces to a
G-torsor over W (D). By its construction, this (trivial) G-torsor .7 (D) un-
derlies the Dieudonné crystal D of the pull-back of the universal p-divisible
group and the tensors (Z4,crys). The induced G-torsor .7 (D) is uniquely de-
termined (does not depend on the lifting) as we can see by using the tensors
(tacrys), and so is the G-torsor 7 (D*)[1/p] = 7 (D*)[1/p] which in fact is
trivial. Since G(W (D)) = G(W (D)), it follows that the G-torsor .7 (D)
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is also uniquely determined and does not depend on the choice of lifting
above, cf. Lemma 4.6.3.

Consider now
y:T =Spa(B,B*) — S — (#)°/Spd (Op),

a corresponding product of points as in Steps 2 and 3 above with BT =
Hj Cf such that T' — S is a v-cover. We first give a G-torsor Y over
T x Z,. By the work above, we have (trivial) G-torsors &; = (C’;r)
over Ainf(0;> = W(C;fb), for all j. By using the Tannakian formalism and
the fact that families (M/;) of finite free W(Cjb)—modules of constant rank
correspond to finite free modules over [, W(C’j%) = W(B™), we obtain a
G-torsor over W (B™) whose restriction along the j-th component gives Z;.
By restriction from W(B*) to T x Z,, this gives the G-torsor &7 over
T x Zyp.

By [85, Prop. 19.5.3], G-torsors on S x Zy, form a v-stack over S and so
there is an equivalence of categories between G-torsors on S X Zy, and G-
torsors on T x Z,, with suitable descent data. Here, we can obtain a descent
datum on Zr by using Lemma 4.6.3 and that both the underlying vector
bundle #7 and the tensors t, € ”1/T® have such descent data, since they are
obtained by base-change from S x Zy. This then gives a G-torsor #g over
S x Zy which, in turn, gives ¥s and (t,) € 7/S®. The G-torsor Hg supports
a Frobenius structure ¢4, obtained from the Frobenius structure of 75,
and (Xg, dp»,) is a G-shtuka over S. Also, (Xs, ¢»,) has leg bounded by
u. Indeed, this is true in the generic fiber by construction. In general, it
follows by reducing to (C,O¢)-valued points and using §3.3.7. (Note that
75 has dimension g and height 29 = ranky,_ (A), and that (ME}C#)Q(C, Oc¢) C
Gr(g,A)gE(C’, Oc¢).) The association S +— (Ps, p»,) gives the desired G-

shtuka over (.#)¢. This concludes the proof of the existence of the extension

&P of the G-shtuka Pg of .¥. O
4.7. Local completions
Recall the G-shtuka Pk g over Shk (G, X)g. By our work above, this extends

to a G-shtuka Pk over .#k. For simplicity of notation, we omit the subscript
K of %k in what follows.
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4.7.1. Completed local rings. Take z € .(k) and consider the strict
completion of the local ring R, = O, at the corresponding point of ..
Then R, is a Noetherian normal integral local domain. The induced mor-
phism

Spec (‘Rﬂﬂ) — Spec (éAKb@JZ(mOE,i(I))
is finite. Set A, = @AW@z( |Ox.i(z) for simplicity. Also set b = b,.
Proposition 4.7.1. There is a Spd (Rx)—valued point of /\/ligntbu such that
the corresponding G-shtuka over Spd (Rx) is equal to the pull-back of the
G-shtuka Pk via the morphism Spd (R,) — @/Spd (Og), and which lifts

the base point xo: Spd (k) — ./\/lgltb“

Here we recall that Spd (R,) denotes the v-sheaf Spa (R, R,)?. Note
that Spd (Rz) is quasi-compact and can be covered in the v-topology by
a finite union of representable affinoid perfectoids S. Then the statement
above essentially amounts to showing that there is 7 > 0 such that the pull-
back of the G-shtuka Pk under morphisms S — Spd (R,) — ﬂ/ Spd (Og)
admits a compatible (equivalence class of) trivialization(s) i, over the sectors
Vir,00) () which lift the trivializations induced by the base point.

Assuming this for the moment, we can show part (c) of Conjecture 4.2.2
for the models .k as defined above. Indeed, by Proposition 4.7.1 we obtain
using the definition of Mg‘tb L 85 a moduli functor, a morphism of v-sheaves

Vg : Spd (Ry) — MG .,

where b = b,.. This fits into a commutative diagram

(#72)° = Spd (R.) - MES /e

(4.7.1) J l/

A Vne in
Spd (Az) ———— M350 i) J20 Xspd () SPA(Oj).

In this diagram of v-sheaves over Spd(Oj), the map ¥y, is an iso-
morphism, and the two vertical maps i, and i/,, are closed immersions.
The generic fibers of all four v-sheaves in the diagram are representable
by smooth rigid analytic spaces over E. Both generic fibers Spd (1:235)77 and

(/\/ligmb " /xo)77 are smooth of the same dimension and by the above, are closed
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in Spd (A,),. By Proposition 3.4.2 (3), (M )n is connected, hence

g7b7u /1’0
Spd (Rz)y = (Mig‘f%’#/xo)n. It then follows by Proposition 3.4.2 (2) (topo-
logical flatness) that | Spd (R;)| and |Migntbu/mo| agree as closed subsets of

|Spd (A,)|; then ¥g , is an isomorphism by [85, Lem. 17.4.1] (or [82, Prop.
12.15 (iii)]).

This shows part (c) of Conjecture 4.2.2 for the integral model .#k, by
taking O, = \Ilalx In fact, this also shows that Spd (R,) is isomorphic to
the formal completion ./\/lign’tbmu Jzo? which is therefore representable.

4.7.2. Proofof Proposition 4.7.1. We need some preliminaries in which
we use set-up and notations from [26].

Let S = Spa(R,R") € Perfdy. In the following, we also need to use
the “schematic” (or “algebraic”) Fargues-Fontaine curve Xglg defined, for
example, in [26, I1.2.3] (see also [52]). Recall that by the GAGA type theorem
[52, Thm. 6.3.9] (also [26, Prop. II. 2.7]), there is an exact tensor equivalence
of categories between vector bundles on X;lg and on Xg. Hence, by the
Tannakian formalism, we have a similar equivalence between categories of
G-torsors. In addition, vector bundles that correspond under the equivalence
have isomorphic cohomology groups. We now consider the automorphism
group schemes

G = Aut (&), I = Auty (&)
over Xglg. These are forms of G, resp. H, over Xglg. We can also consider
97" = Aut (&), 47" = Auty g,(E)

which are parabolic subgroup schemes of %, resp. J%. These group schemes
support “HN filtrations” %bz/\, %EA, for A\ > 0, defined as in [26, §IIL.5].
Their global sections (see the proof of Prop. I11.5.1) are, for S € Perfdy,

>/ yal SN
G (Xg®) = Gy (9),
with ébz’\ as in [26, Prop. II1.5.1]. The group v-sheaves 6’?‘ satisfy
G = G = 30 % Gu(@,)

and for every A > 0, there is a natural isomorphism

G2 G2 2 B((ad&) > /(ad&) ™),
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with target the Banach-Colmez space associated to the —\ isoclinic part of
the Frobenius isocrystal (Lie(G) ®q, Qp, Ad(b)o). We can also consider the
fpgc quotient

R

over Xglg. To describe QZ,ZO, we need two lemmas. The proof of the first is
left to the reader.

Lemma 4.7.2. i) The quotient Ty, = Lie(H)/Lie(G) is naturally identi-
fied with the tangent space of the quotient affine scheme H/G at the identity
coset. Then (Thy;q ®q, Qp, Ad(b) - 0) is a Frobenius isocrystal.

ii) The quotient Hy/G) is represented (as a quotient of a reductive group
by a closed reductive subgroup) by an affine Qp-scheme. The tangent space
Th,/c, at the identity coset can be identified with the slope zero part of

(Trc ®g, Qp, Ad(D) - 0). 0

The points (Hy/Gp)(Qp) give a locally profinite set with a continuous
action of the group Hp(Q,). We will consider the corresponding v-sheaf

(Hy/Gp)(Qp)-

Lemma 4.7.3. Let S € Perfdy. The quotient szo is represented by a rela-

tively affine scheme over Xglg. There is a decreasing exhausting filtration
2% c 27°
by closed subschemes sz)‘ over Xglg, for A >0, such that
>0 alg >0
1) We have "@b ~ ((Hb/Gb) XQ, XS ) XXglg e@b .
2) For each A > 0, there is a surjective morphism
>A
257 — Vg,
with
-1 A
Iy (0) =2,
Here, Vi g is the vector bundle over Xglg which is associated to the
—A idsoclinic part of the Frobenius isocrystal (Tx /¢ ®q, Qp, Ad(b)o).
Proof. We set
> > >\
9" = H7 G
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V-\/e ﬁrSl ShOW lhal 1he nalural map

is injective, i.e. that
A7 NG = g2,

It suffices to check this on Lie algebras. Then it follows from the fact that
i : G — H is faithful. The rest is similar to the proof of [26, Prop. III 5.1]:
We first show the analogue of [26, Prop. III 5.2] for the quotient H/G. For
that we can reduce to the case that the G-bundle is trivial. The result then
follows as in loc. cit. by eventually reducing to considering the Lie algebras
and using Lemma 4.7.2. O

We can now prove Proposition 4.7.1. Consider the formal scheme Spf (R),
where R = R,. Since Spf (R) maps to the Rapoport-Zink formal scheme for
the symplectic group, we have for every R-algebra B € Nilpy, a universal
quasi-isogeny

q: Xo ®p B/pB -+ X®p B/pB

with X = A[p>]. We can take the base point here to be Xo = X ®g k and ¢
the identity modulo mp. Also, the Dieudonné crystal D(Xo)(W (k)) supports
the Frobenius invariant tensors tq crys € D(Xo) (W (k))®.

By [85, Thm. 25.1.2, Cor. 25.1.3], the v-sheaf of the RZ formal scheme for
the symplectic group coincides with Mi?-tn?i(b),i(u)' Therefore, we can obtain an
equivalence class of a framing of the corresponding #H-shtuka over Spd (R).
By following the proof of [85, Thm. 25.1.2], we see that this is given as
follows:

Let Spa(B,B™") be affinoid perfectoid over k and let Spa (B, Bt) —
Spd (R) be given by a map from Spa (B, B*) to Spa (R, R), so we have
a continuous map R — Bft. For a pseudo-uniformizer mg: of Bf, we have
R/mYN — B%/(ngs) = BY/(np) for some N. By evaluating the quasi-
isogeny on the Dieudonné crystal associated to the p-divisible group X =
A[p™], we obtain a trivialization over By (B*/mp) and so a trivialization
of the H-shtuka over y[r,oo)(B,BJr), for r > 0. This trivialization is com-
patible among all points Spa (B, BT) — Spd(R), so it gives a framing of
the corresponding H-shtuka over Spd (R) = Spa (R, R)®. Note that Spd (R)
accepts a surjective v-cover from a finite union of affinoid perfectoids, so we
can pick a single r > 0 such that the trivialization is defined over Y, ).
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We now want to show that this descends to a framing of the G-shtuka P
over Spd (R), i.e. that the trivialization giving the framing respects the G-
structure. Denote by & = Prr the G-torsor over!® the “relative FF curve”
Xpr = Xgpq(r) obtained in the usual way by first restricting the shtuka
P to a sector (r,00) and then descending to the quotient by Frobenius. It
is enough to show that the quasi-isogeny gives a trivialization of &£, i.e. a
G-torsor isomorphism &, ~ £ over Xg.

First we show that the Harder-Narasimhan (HN) filtration on & is con-
stant over points over Spd (R), i.e., for any representation p of G, the HN
polygon of the vector bundle p, (&) is constant, i.e. the same on all geomet-
ric points Spa (C,O¢) — Spd (R, R)®. Such points are given by R — Ocs,
for which k = R/m — O¢/ Wé«/ N and the constancy follows from a theorem
of Fargues-Fontaine, according to which Frobenius isocrystals over O¢/m¢
are isotrivial, i.e. obtained from k via base change by k — O¢/m¢ (see [25,
§11.1], especially Cor. 11.1.14). It now follows from [26, Thm. II. 2.18] (as in
the proof of [26, Prop. III. 5.3]) that the G-torsor £ admits a HN filtration
over Spd (R). This allows us to consider trivializations of £ over Xg,q (g
which respect this filtered structure.

For any a : S — Spd (R) with S € Perfdy, consider now

Ta,s = Isomg g1 (&, a*(€)),  Th,s = Isompy (&, a”(£))

which is a gbzo—torsor, resp. a %’gzo-torsor, over Xglg .By a gbzo—torsor Ta
over Xp := Xgpd (R), resp. a %Zo—torsor Ty over Xg, we mean a collection
of a5, resp. Ju g, over varying a : S — Spd (R), together with appropriate
glueing data. In our situation, the j‘ffo—torsor T over Xp is trivial with
a section provided by the universal quasi-isogeny as explained above. By
its definition, Z; is a reduction of Z77 in the sense that it comes with an
isomorphism

>
b

> @=0
y]{’ijﬁ*o x 7 g@.

The set of such reductions of Iy ~ %20 to a %bzo—torsor over Xg are
in bijection with the set HY(X R’szo) of global sections of the quotient
270 = #7°)97°. Set

QN R) = HY(Xg, 270).

ONote again that we do not really define a relative FF curve Xgpd (R), but just
consider a category whose objects we think of as the “G-torsors over Xg,q (r)”-
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We have

H'(Xg, 27°) = Q7°(R) = Q7 °(R) x (H,/Gs)(Qy)(Spd (R)).

Recall that the global sections of the vector bundle Vi g ) associated to
the Frobenius isocrystal (Tx,¢ ®q, Qp, Ad(b)o)_y are given by an absolute
Banach-Colmez space

B(\)®™ = BC(O(\))®™.

By Lemma 4.2.6, all the slopes A that appear here satisfy 0 < A < 1. By
Lemma 4.7.3, induction, and Lemma 4.2.7, we obtain

Q7" (Spd (R)) = 0.

So, we have
H(Xspa(r), 2°) = (Hy/Gp)(Q,)(Spd (R)).
Similarly Q7°(Spd (k)) = 0 and

(Hy/G)(Qp)(Spd (R)) = (Hb/Gs)(Qp)(Spd (k)
by specialization. Hence, we obtain that specialization identifies
H(Xspa(ry 27°) = H(Xspa k), 25°)-
Similarly, we have

H(Xspa vy, 77") = H*(Xspa ), 24,7°),
H(Xspa (r)» 47%) = H(Xgpq (k) 479).

Hence, the reductions of the trivial torsor 5 to a %bzo—torsor are uniquely
determined by their specialization over Xg,q (k). The torsor g is such a
reduction and its specialization over Xg,q ) is trivial with a section given
by the quasi-isogeny (which respects the G-structure over the point zg).
Therefore, ¢ is trivial over Xg: in fact, the section of Jy given by the
quasi-isogeny gives a section of J because this is true after specialization
to Spd (k). This section of J provides the desired framing of the G-shtuka
over Spd (R). This concludes the proof of Proposition 4.7.1. 4
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4.8. Completion of the proof of Theorem 4.3.1

In order to harmonize the notation with that used in the Hodge type case
above, we denote the group G’ by H and the parahoric group schemes by G
and H so that, by assumption, we have a dilated immersion

G=G" G < H.

By [54, 20, Prop. 1.3.2], there is a closed group immersion ‘H — GL(A), for
some finite free Z,-module A and finite collections of tensors sq, sp € A%,
with a € I, b € J, such that

H={g9€GL(A) | g-sp=spVb€E J},
QZ{QGGL(A)’g'sazsa,g-sb:sb,VaEI,bEJ}.

Recall that .#! denotes the normalization of the closure of the image of
Shk (G, X) g in .’ ®0,, O. Hence, by construction, .#T is normal and flat
over Op. We denote the natural morphism by

L:yT—>¢7/®oE, Og.

As explained in §4.3, it is enough to show that the integral model .1 sat-
isfies the conditions in Conjecture 4.2.2. Condition a) in Conjecture 4.2.2
follows from the corresponding condition for ./ and the construction of
1 as a normalization. It remains to show that conditions b) and c) in
Conjecture 4.2.2 are satisfied for .#1.

4.8.1. Condition b). We show that we can extend the G-shtuka Zp
over Shi(G, X)g to a G-shtuka 2T over the integral model T such that
M x9 27 is isomorphic to the pull-back via ¢ of the “universal” H-shtuka
P over ./" ®0p,, Op. This is done by following the arguments of §4.6, see
especially §4.6.3; below we point out the additions and adjustments needed
for the argument.

Applying H < GL(A) to &’ gives, by the Tannakian formalism, a vector
space shtuka ¥ over ./. We restrict this via ¢ above to obtain a vector space
shtuka 7T over .#f. The main idea now is to give tensors t, € (¥1)®, a € I,
corresponding to s, € A® that extend the tensors tq E given by the G-torsor
Pp on the generic fiber. (Note that we already have tensors t, € (#1)®,
b € J, that correspond to s, € A®, which are given using &?'). Then we
use the collection of t,, together with t;, to give the G-torsor underlying
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the desired shtuka 2T as in §4.6.3. We need to be careful in the following
two points where the argument somewhat deviates from §4.6.3: First, we
do not have a universal p-divisible group, or a corresponding “global” BKF
module that underlies the vector space shtuka ¥, hence we need to find
an alternative argument to obtain the meromorphic Frobenius crystal over
the special fiber of T used in Step 1 of §4.6.3. Instead of this explicit
construction, we use at this point Theorem 2.3.8. Second, to obtain the
Aine(C1)-module M that appears in Step 2, we use Proposition 2.3.11 in the
easier case of an algebraically closed perfectoid field. Given these ingredients,
the argument proceeds as in §4.6.3.

4.8.2. Condition c). We now show that .71, together with the G-shtuka
PT given as in §4.8.1 above satisfies condition c) of Conjecture 4.2.2. The
proof follows the arguments in §4.7 with .%k and Pk now replaced by .77
and 21, Indeed, Proposition 4.7.1 extends to this situation with the same
proof and the rest of the result quickly follows. Note that in this, the fact
that Wp, of (4.7.1) is an isomorphism, is provided by our assumption that
the model .7 for H satisfies condition ¢) of Conjecture 4.2.2.

4.9. The local model diagram

Let %k be the integral model of Shik(G, X)g over Op, satisfying Conjec-
ture 4.2.2. In the classical theory, the local model diagram gives a global
way to relate the singularities of the integral model .#k to the singularities
of the local model. We now interpret this construction in our set-up.

4.9.1. The global v-sheaf local model diagram. Recall that the v-
sheaf group G® has S-valued points G°(S), for S = Spa (R, Rt) € Perfd,
given by pairs of an untilt S* = Spa (R, R*) of S and an element of G(R).
We define as follows a v-sheaf GO-torsor over yl? ! Spd (Og). For sim-
plicity, we will often omit the subscript K.

For S € Perfd,, and z : S = Spa (R, RT) — %/ with corresponding
untilt S* = Spa (R, R**), we consider the pull-back (restriction) Py(se) =
¢* ()¢ of the G-torsor ¢*(Z?) along

S Vo.oo)(S) = 8 x Z,.

This pull back gives a G-torsor over S* which, by [85, Thm. 19.5.3], corre-
sponds to a unique G-torsor over Spec (R*). For S = Spa (R, R") € Perfd,,,
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we now define 5”?{(5) to be the set of pairs (z, ), where z is a point of .79/
given by z : § = Spa (R, RT) — .79/, and

Oz:gXSjj %e@qﬁ(su)

is a G-isomorphism (i.e. a section), for S* = Spa (Rf, R**) the untilt given
by x. This defines a v-sheaf with a natural morphism of v-sheaves

(4.9.1) L —

which is a v-sheaf G®-torsor.

Given a section « of the G-torsor 93(;5(5” over S* (which amounts to a
section of the scheme theoretic G-torsor over Spec (Rf)) we can extend it,
using the smoothness of G, to a section

—

(4.9.2) a:g xS = (¢"(2)g

of the pull-back of ¢*(Z?) over the formal completion St = Spec (6SXZ 1)
of § x Z, along S*. Then by using Beauville-Laszlo glueing, we see that the
pair

(2, ¢,@Oa5gx(§ﬁ\5ﬁ)l>f@§u\5u)

gives an S-valued point in the affine Bygr-Grassmannian Grg spq(0,) over
Spd (Og) (see [85, Prop. 19.1.2, Prop. 20.3.2]). Since the G-shtuka & has
leg bounded by g, this point is, by definition, a point of the v-sheaf local
model Mg | C Grg spa(0y) (see the text after Definition 2.4.3). This defines

a morphism of v-sheaves over Spd (Og) which is G¢-equivariant,
(4.9.3) ¢’ " — MY,

Indeed, let LG be the positive v-sheaf loop group over Spd (Og) with values
in S = Spa (R, Rt) given by the untilt S* and

L*G(S) = 6B ().

Then BY;(R*) — R induces a homomorphism £tG — G¢ x Spd (Op).
Letting £'G denote the kernel of this homomorphism, any two choices of
extensions @ as in (4.9.2) differ by a section of £!G. Since x is minuscule,
the action of £7G on M{ , factors through G° x Spd (Og) (for details, see
[3]), and so, in the definition of the morphism (4.9.3), the image is indeed
independent of the choice of a.
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Altogether we obtain a diagram of morphisms of v-sheaves
7

(4.9.4) ™ \

o/
K Mg,

which we call the v-sheaf theoretic local model diagram for #k. Here 7 is a
v-sheaf G?-torsor and ¢¥ is G%-equivariant. Note that the existence of this
diagram is a formal consequence of the existence of the G-shtuka over .%k,
which is bounded by pu.

4.9.2. The scheme-theoretic local model diagram. We consider a
diagram of Opg-schemes

(4.9.5) / x

K Mg,

where 7 is a G-torsor and ¢ a G-equivariant morphism which is smooth. Here
Mg, = MlO% denotes the scheme local model as in Theorem 2.4.1.

The generic fiber of such a diagram can be given by the classical Borel
embedding construction: It is the canonical model over E of the natural dia-
gram obtained from the Borel embedding of the domain X, cf. [66, IIL, 4]. In
the Hodge type case, it can also be constructed using the de Rham cohomol-
ogy of the universal abelian scheme (see [14, 2.3]). Since the G-shtuka Pk
extends Pk g, we can see that the corresponding v-sheaf diagram agrees
with the base change of (4.9.4) to Spd (E).

Applying the ¢/-functor, cf. Definition 2.1.9, from schemes over Of to
v-sheaves over Spd (Op) to (4.9.5) gives

7!
O
(4.9.6) y \
70! M3

(CNT

where 79/ is a G9/-torsor, and ¢/ is G9/-equivariant. Here, note that since
Mg, is proper over Op, we have ng u = Mg/u and the group v-sheaf G
acts on Mg -
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The following definition attempts to give a v-sheaf interpretation of the
scheme local model diagram, analogous to Scholze’s v-sheaf definition of
scheme local models, cf. Theorem 2.4.1.

Definition 4.9.1. A scheme-theoretic local model diagram for Sk is a di-
agram (4.9.5) (where 7 is a G-torsor and ¢ is a G-equivariant smooth map)
such that the generic fiber is given by the Borel embedding construction and
which gives the v-sheaf local model diagram (4.9.4) after pushing out the
GO/ torsor 70/ of (4.9.6) by GO/ — go.

Conjecture 4.9.2. A scheme-theoretic local model diagram for Sk exists.

Let us remark that it is not clear that a scheme-theoretic local model
diagram for .%k is uniquely determined if it exists. Indeed, note that we can-
not apply Corollary 2.1.8 since the morphism 7%, which is obtained from the
universal shtuka as above, is a GO-torsor but does not obviously come from
a G%/-torsor. A canonical G¢/-torsor inducing ¥ by push out by QO/ — GO
might be obtained by assuming the existence of a “stronger” structure un-
derlying the universal shtuka, for example by assuming that the conjectural
prismatic refinement described in §4.4 exists.

This conjecture follows when (p, G, X,G) is of global Hodge type from
the main result of [57] under some additional tameness hypotheses: p # 2, G
splits over a tamely ramified extension of Q,, and p t |71 (Gger)|. Here we are
using implicitly the uniqueness of the integral model (Theorem 4.2.4), which
allows us to replace the original Hodge embedding by the Hodge embedding
that is used in [57]. The tameness conditions are relaxed in [58], where the
result is extended to most reductive groups whose corresponding adjoint
groups are essentially tamely ramified in the sense of Remark A.3.1, i.e.,
WEeil restrictions of scalars of tame groups from wildly ramified extensions.

4.9.3. The local v-sheaf local model diagram. The exact same ar-
gument as in §4.9.1 also gives the v-sheaf theoretic local model diagram for
./\/llgntb w0 i.e. a diagram of morphisms of v-sheaves,

int
G.b,u

(4.9.7) / \

int v
MQJ%M g7M )

where 7% is a G9-torsor, and ¢V is G®-equivariant. Again, there is a repre-
sentability conjecture.
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Conjecture 4.9.3. There is a diagram of morphisms of normal formal
schemes flat and locally formally of finite type

(4.9.8) / X

where T is a G\—torsor and q is formally smooth and g—equivariant. In addi-
tion, the diagram (4.9.7) is obtained from (4.9.8) by applying the O-functor

~

on formal schemes, followed by push out by G* = (G)® — G©. Here Mg .,
resp. G, denotes the completion of Mg ,, resp. G, along its special fiber.

4.10. Uniformization by LSV

We continue with the same assumptions and notations as in §4.5.2. In par-
ticular, (p, G, X, K) is of global Hodge type and we choose an appropriate
Hodge embedding which produces as in (4.5.6) a morphism

1: 5 — Ag» OZ Og,

which factors through the closed embedding . — Ag> ®z,, Op. We also
choose a point xg € Sk (k).

4.10.1. Construction of RZ spaces. Following [38, 47], we construct a
“Rapoport-Zink (RZ) formal scheme” RZg ,, ., over Spf (O).

Let RZqy i(z,) be the RZ formal scheme over Spf (Zy) for (H,u(u)) with
framing object given by the p-divisible group of the product of the abelian
varieties in the chain of isogenies that corresponds by the moduli interpre-
tation of Ak» to the point i(xg). We will denote this “framing” p-divisible
group by Xj.

The uniformization map for the Siegel moduli scheme is a morphism of
formal schemes

(4.10.1) @%mo) : RZ34i(a0) — Ao

Now consider the p-adic completion 5/”; of “k and the fiber product
induced by the morphism (4.5.6),

(4.10.2) RZG 100 = TK X 4,0 05 BLi(w0) @2, Of)-
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The fiber product RZ/g%m0 is a formal scheme which is locally of formally

finite type over Spf (O). Recall that 5/{? supports the G-shtuka Zk. By
its construction, it corresponds to a vector shtuka 7# over 5/’{? (obtained
from the BKF-module of the universal p-divisible group) and Frobenius
invariant tensors t, € ¥®, a € I. The tensors t, give corresponding Frobe-
nius invariant tensors t,crys on the Dieudonné isocrystal of the universal
p-divisible group over the perfection (#k ®o, k)P*. On the other hand,
over (RZyy i(z,) ®yz, OE)f:f, there is a universal quasi-isogeny ¢ between
the universal p-divisible group and the p-divisible group Xy. Hence, over
(RZ’g%zO)f;;f, we have Frobenius invariant tensors tq crys and ¢*(fq.crys0)
both on the Dieudonné isocrystal of the universal p-divisible group. By defi-
nition, the specialization of ¢, crys at the base point z is equal to ¢* (ta,crys,0)-
Now, by [38, Lem. 4.3.3], the locus where

ta,crys = q* (ta,crys,[))a Va € 1,

is an open and closed subscheme of (RZg ,, ... )Pt hence a union of connected
/ )perf

components of (RZg,M’I0 red - We let RZg ,, .+, be the unique open and closed
formal subscheme of RZg , , whose perfect reduced locus is this union. By
construction, we have a morphism of formal schemes

(4.10.3) O/ RZg pymy — Tk,

»Zo
which fits in a commutative diagram of formal schemes
RZg p.co — Ra1i() i(20) 3, O
(4.10.4) @g»zwol J/Q%Z,i(zo)(gZPOE
5//; —_— ./Z(Kb ®Zp OE .
Lemma 4.10.1. The formal schemes RZg , .~ and RZg , ., are normal

and flat over Spf (O). Furthermore, for each x € RZg ,4,(k), the mor-
phism (4.10.3) induces an isomorphism of formal completions

RZg 11,20 /2 — K Jz-

Here on the RHS we have written x for @520 (x).

Proof. The standard deformation theory of p-divisible groups (as for exam-
ple in [78]) implies that the morphism G%Zi(xo) induces an isomorphism of
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formal completions

RZ1 i) Jitz) — AKs Ji(a)-

It follows from the construction of RZg as fiber product and then of
RZg iz, as an open and closed formal subscheme that (4.10.3) gives an
isomorphism of formal completions

RZQ w,To /T RZQ»MIEO /x — yK/x
The result now follows since .k is normal and excellent. O

By [85, Cor. 25.1.3], there is an isomorphism of v-sheaves

[ ~ int
RZ34 ity itwo) — Matbitu)-

The top horizontal arrow in the diagram (4.10.4) becomes under this iden-
tification

(4.10.5) IRZ : RZ — Mi;[ﬂ:b,i(,u) XSpd (Zp) Spd (OE)

G,1,To

Lemma 4.10.2. a) The morphism (4.10.5) factors as

irz: RZG . 5 M, — M Xspd (2,) SPA (Oj),

G,1,T0
where i is the natural morphism.

b) For each x € RZg , 4, (k), the morphism c induces an isomorphism
on formal completions

~ int
RZG ju.2y jo — Mg, [e(x)

In particular, Mg byt o) is representable by the formal spectrum of a com-
plete local Ting.

Proof. Consider the pullback under (4.10.3) of the G-shtuka Zk on F«. The
corresponding H-shtuka H x9 P is equipped with a framing from the mor-
phism (4.10.5). By its construction, this framing respects the tensors ¢, crys,
hence comes from a framing of the G-shtuka. This defines the factorization
in a).

By Lemma 4.10.1, RZg ;, », /2 =~ Kk jo- On the other hand, by the proof
of Proposition 4.7.1 the morphism

int
I o > MGy

given by W,  there, is in fact an isomorphism. This shows b). O
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The following statement is to be compared to [95, Cor. 6.3].

Proposition 4.10.3. The morphism c : RZS

G o Mgltbu 1s a closed
immersion.

Proof. Recall that the map Mmb,u — /\/li;_ztz( b),i(i) X Spd (Z,) Spd (Op) is a
closed immersion, cf. Proposition 3.6.2. Consider the morphlsm of formal
schemes in the top of diagram (4.10.4),

d: RZQ’,,u,:):o — j/?-l,b,i(,u) ®Zp OE = RZ’H,Z'(M),i(xo) ®ZF OE

By its construction, the source RZg , ,, of this morphism is a union of con-
nected components of RZ’QWE0 which then maps to the target by a finite
morphism. Hence, the morphism d is quasi-compact and quasi-separated
and the induced map on topological spaces has Zariski closed image. The
formal scheme-theoretic image of d is defined and it is a formal closed sub-
scheme //é b of the formal scheme .#3 ;(,.) ®z, O The corresponding

v-sheaf (g bu) is, by Lemma 4.10.2 (a), a closed v-subsheaf of Migrttlw.
It suffices to prove that the resulting map c : RZg ,, », — /// b is an iso-
morphism of formal schemes. By Lemma 4.10.1 and Lemma 4. 10 2, the map
¢ induces isomorphisms on formal completions at each k-point. Hence it
suffices to prove that the induced map on k-points

Rz<>

is injective.

Recall that we have an inclusion of (b, u)-admissible sets,

M () = Xg(b, i) (k) © Xag(i(8), ()1 () = M 500 ()
Suppose we have z # 2’ € Rzg;w (k) with ¢(z) = c(2’). Then z, 2
map to the same point y = i(z) = i(2’) in RZ% i i(wo)(k). The points
x, 2’ also give k-points of %k which we still denote by z, ' and we have
y = i(z) = i(a') in Aks (k). Consider the G-shtukas &, . over Spd (k)
obtained by specializing the G-shtuka %k over 5”}? to the two points x
and 2. Here, these are given together with quasi-isogeny trivializations that
respect the G-structure and provide elements [(Zy,ir5)] and [(Py,ire)]
of ./\/lgltbu(k) = Xg(b, u~ 1) (k). Under our assumption c(z) = c(z) we have
s0 = [(Ps,irz)] = (Pa,ira)|in Mgtbu( ) with image to € MHz(b) Z(M)(k:)
Consider the map

yK/q;‘—lyK/x —)5” K /y C (Ag» ®2p OE)/y
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Set U, = yK/z and U, = yK/w, and Uy’ = YK_/y and V, = (Ago ®2P OE)/y.

By Proposition 4.7.1 and (4.7.1), we obtain commutative diagrams

U lI’G,z int ‘IlG%I/ int
z gvbuu‘ /SU UI/ Mgvbuu' /80
Wy int Yy int
Vy ’ (M"H,i(b),i(u) ®z, OE)/tw Vy  ( H,i(0)i() Do OE)/to‘

Note that these two diagrams share three vertices and the arrows between
them. All horizontal arrows are isomorphisms (by the proof of 4.2.2 (c) for
VU gy, see the text under (4.7.1)). It follows that the scheme-theoretic images
of Uy — Vy and U, — V,, are equal. Since U, and U, are both irreducible
components of the normalization of the image U, = .| Iy in V, it follows
that U, = Uy and so x = 2’ in k(k), and « = 2’/ in RZg 4, (k). This
contradiction shows the asserted injectivity. O

4.10.2. Condition U. We conjecture that c : RZgMU

isomorphism. By the above, this is equivalent to asking that ¢ : RZS oK) =

M‘g“tbu(k) = Xg(b,p 1) (k) is bijective, or also that it is surjective. In turn,
this is equivalent to the following condition.

(Uyy): Let zg € Sk(k), b = bs,. There is a morphism

— ./\/llg“tbu is an

Gz, : Xg(b, ™t — F«

which sends the base point to xg and is such that the diagram

Xg(b, 1) (k) —— X3 (i(b), i(p 1)) (k)

@9110 (k)l J/eﬂvi(fﬂo)(k)

yK(k) —_— AKb (k)

commutes.

Indeed, assuming (U,,) we obtain a morphism Xg(b, u~!) — RZG 1.

whose image lands in RZg , ;.. This morphism gives on k-points a map
Xg(b,p 1) (k) = RZg,u,(k) which is easily seen to be an inverse of ¢ :
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. Assuming (Uy,) we can identify I{Zg#@0 o~ ./\/lign’%,u.'ln parti.cular,. M.ign’%’ﬂ
is representable by a formal scheme .#g,,, and we obtain a “uniformization”

morphism
(4.10.6) OFZ Mgy — Fx.

which maps the base point to zg € (k).

Remark 4.10.4. Suppose that p is odd, G = G ®g Q,, splits over a tamely
ramified extension of Q, and p { |m1(Gger)|- In this case condition (Uy)
is identical with Axiom A in [38, §4.3]; Hamacher and Kim also conjecture
that, under these hypotheses, it is always satisfied. By work of Zhou [95, 92],
condition (Uj) is known to hold under these hypotheses if in addition x is
basic, or G is residually split or G is absolutely special. By Nie [68], it
is known if G is unramified. As mentioned in the Introduction, condition
(Ug) is now known to hold in general, due to work of Gleason-Lim-Xu [34,
Cor. 1.10].

4.10.3. Uniformization. Let xg € .#k(k). We assume that Condition
(Us,) from §4.10.2 is satisfied. Using the action of G(A’;) on Fk, as a group
of Hecke correspondences, the morphism 95’%0 from (4.10.6) induces a mor-
phism

(4.10.7) Mg p

sz

u X G(A?) — pr ®0g OE'

The image Z(xg) on k-points is called the isogeny class of xy. A point
x' € Fk, (k) lies in Z(x¢) if and only if the corresponding polarized abelian
varieties A,, and A,  are related by a quasi-isogeny respecting weakly the
polarizations and such that under the induced maps on rational Dieudonné
modules, resp. on rational Tate modules for ¢ # p, the tensors sq crys
and Sq crysa, T€SP. Sq 0,2, aNd Sq ¢4/, are mapped to one another, comp. [55,
Prop. 1.4.15].

Remark 4.10.5. If z( is basic, i.e., the class [by,] € B(G,u™!) is basic,
then Z(xo) is the set of k-points of a closed subscheme of .k, ®o, k which
is a proper k-scheme. In fact, one expects the following concrete description
of Z(xp) in this case. Consider the basic locus K, basic, a closed subscheme
of #, ®o, k, cf. [56, Thm. 1.3.13], with set of points .7k pasic(k) equal to

(4.10.8) {2/ € F, (k)| [bw] € B(G, ") the unique basic element}.
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Then 7k, basic (k) should always coincide with Z(xo), for any basic . This is
known to be true at least if p is odd and G is unramified and K, hyperspecial,
cf. [94, Cor. 7.2.16]. It also holds if p is odd, G is quasisplit and splits over a
tame extension, and p { |71 (Gaer)| and K, is special, cf. [46]. The statement is
also compatible with the Langlands-Rapoport conjecture which enumerates
isogeny classes by equivalence classes of admissible homomorphisms ¢ : Q —
B¢ from the quasi-motivic gerb 2 to the neutral gerb &¢. Indeed, up to
equivalence, there is a unique such ¢ whose p-component ¢, is basic, cf. [46].

The morphism (4.10.7) induces a morphism

(4.10.9) %g:b:co:# X G(A?)/Kp — yK ®0E OE
Let I,,(Q) be the group of self-isogenies of A,, which respect the tensors
Sa,crys,zos TSP Sq,¢,2,- Then we have an action of I, (Q) on RZg ,, », ~ Mg,
(through its action on the Dieudonné module respecting Sa,crys,a:o)a and an
action of I, (Q) on G(A’;) /KP, after fixing a level KP-structure on the rational
Tate modules of A;, respecting sq¢.,. These two actions combine to an
action of I (Q) on the LHS of (4.10.9).

Theorem 4.10.6. Let (p, G, X,K) be of global Hodge type. Let xg € Sk (k)
and assume that Condition (Ug,) in §4.10.2 holds. Then /\/lign’%wu is rep-
resentable by a formal scheme Mgy, . and there is non-archimedean uni-
formization along the isogeny class Z(xg) in Sk Qo k, i.e., an isomorphism

of formal schemes over O,
Iy, (Q)\(‘//lg,bzmu X G(A?)/Kp) — (yK ®0op OE)/I(%)-

This isomorphism is to be interpreted (especially when x is non-basic) as
for its PEL counterpart in [78, Thm. 6.23].

Proof. Asnoted in (4.10.6), the v-sheaf Mg‘:%wo u is representable by RZg .z,
We give the argument for the uniformization statement only in the basic
case, when Z(xg) is a closed subset of .7k ®o,, k. In the non-basic case, even
the interpretation of the statement of the theorem is more involved since
Z(x) is then a countable union of locally closed subsets of “«, ®o, k, cf.
the explanation in the PEL case in [78, Thm. 6.23]. In the basic case, one
checks:

(i) The formal scheme on the LHS is locally formally of finite type. Indeed,
in the basic case, I, is an inner form of G which is anisotropic at the
archimedean place, cf. [55, Cor. 2.1.7]. Hence the LHS is a finite disjoint
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sum of formal schemes of the form I'\.Zg, ., where I' C J(Qy) is a dis-
crete cocompact subgroup, comp. [78, proof of Thm. 6.23]. Furthermore, by
replacing KP by a subgroup of finite index, we may assume that the action
of I is free (see loc. cit.). Since .#g,, , is locally formally of finite type, the
assertion follows.

(ii) The morphism induced on the underlying reduced schemes is proper.
Indeed, in the diagram (4.10.4) the upper arrow induces a finite morphism on
the underlying reduced schemes, with target a union of projective schemes,
cf. [78, Prop. 2.32]. From (i) it follows that the underlying reduced scheme
of the LHS is proper over k.

(iii) The map induced on k-points
L(Q\(Xg (byy, 1) (k) x G(A})/KP) — I(x)

is a bijection. This follows from [95, Prop. 9.1] (which is based on [55, Prop.
2.1.3]). Indeed, the assumption [95, Assumpt. 6.1.7] is satisfied, thanks to
hypothesis (U, ).

(iv) For each point of Ly, (Q)\Xg(bs,, ) (k) x G(A?)/KP, represented by a
pair (7, g) € Xg(bsy, u~ 1) (k) x G(A’}), with corresponding point z’ € Z(x),
the induced map on completed local rings

Og 0 — Oy

is an isomorphism. Indeed, this follows from Lemma 4.10.1 after identifying
//gﬁwo’u with RZQ,M,IO'

The assertion follows, since any morphism of finite type between locally
noetherian formal schemes that is formally étale, proper and radicial is an
isomorphism, comp. [78, proof of Thm. 6.23]. O

Appendix A. Parahoric extension

This appendix is a remnant of an earlier version of the paper. We summarize
here some facts on extending torsors under parahoric group schemes over the
punctured spectrum of Aj,¢. Most of these results are due to Anschiitz [1],
which is our main reference. At the time when we wrote the earlier version,
the main conjecture was proved by Anschiitz in many cases, but not all. In
the meantime, he has proved the conjecture in its entirety. We give here a
proof of the conjecture in the tame case or when p > 5. (In fact, our result is
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somewhat more general, see Theorem A.3.2.) The reason for leaving in this
appendix is that our proof under these restrictive conditions is simpler and
more direct. We also give a simple proof of the extension lemma of Kisin
and the first author [57, Prop. 1.4.3]. In particular, we do not use results
on “Serre II” [30] which are used by Anschiitz and in [57], which ultimately
proceed on a case-by-case basis.

A.1. Statement of the conjecture

Let E be a p-adic field with perfect residue field k£ of characteristic p and
uniformizer 7 (Anschiitz considers also local fields of characteristic p). Let C
be a perfect non-archimedean field of characteristic p which is a k-algebra,
and let CT be an open and bounded valuation subring. We consider the
local ring Ap = Wg(Ct) = W(CT)®w ) Op, and

(A.1.1) X =Spec(Ag), U=X\S, V =Spec(Ar ®0, E).

Here S = V(7 [w]), where w is a pseudouniformizer of C*. If C* = O,
then S = {s} with s the unique closed point of X. When we want to stress
the dependence on (C,CT) or also on FE, we also write Xc,o+y and U o)
and V(g c+), or X(g,cc+) and Ug,cc+) and Vig,cc+). We consider the
following functors on the categories of coherent sheaves of modules,

Coh(X) — Coh(U), M+ Myy; Coh(U)— Coh(X), M s H(U,M)".
Here we use that HY(U, M) is a finitely generated Ag-module, and denote
by HY(U, ./\/l)’ the associated coherent sheaf of modules on X.

Theorem A.1.1. The above functors induce mutually inverse tensor equiv-
alences between Bun(X) and Bun(U). In particular, all vector bundles on U
are trivial, i.e., free.

Proof. This follows from a theorem of Kedlaya [51], cf. [85, Prop. 14.2.6]. O

Now let G be a reductive group over FE.

Conjecture A.1.2 (Extension conjecture). Let G be a parahoric model of
G over Og. Then any G-torsor over U extends to a G-torsor over X.

Note that if such an extension exists, then it is unique. As pointed out
above, Anschiitz has proved this conjecture (see [1, Thm. 1, Cor. 11.6]).
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Proposition A.1.3. Let C' and the residue field k of E be algebraically
closed. Let G be a parahoric model of G. Then a G-torsor P on U extends
to X if and only if the G-torsor Py is trivial. Moreover, this holds for all
G-torsors P on U if and only if HY(V, G) = {1}.

In particular, if the Extension Conjecture A.1.2 is true for one parahoric
model G of G, then it is true for any parahoric model G of G.

Proof. We show that the proof of [1, Cor. 9.3] (in which C™ = O¢) carries
over. Since C' is algebraically closed, C'T is strictly henselian. Since Of is
strictly henselian, so is Wg(C™T) = W(C+)®W(k)0E, and therefore G-torsors
over Wg(C™) are trivial. Hence a G-torsor on U extends to X if and only if
it is trivial. Let @ € C* be a pseudo-uniformizer. The m-adic completion of
We(CT)[1/[w]] is WE(C) = W(C)®w ) Op, which is a complete dvr with
algebraically closed residue field C, so is also strictly henselian. Set Og :=
Wg(C) and let € be its fraction field. Then any G-torsor on Og is trivial
and, by Steinberg’s theorem, any G-torsor on £ is trivial. By Beauville-
Laszlo glueing, there is a bijection between the set of isomorphism classes
of G-torsors on U which are trivial on V' = Spec (Wg(C1)[1/7]) and on
Spec (Og) and the double coset space

G(0e)\G(£)/G(WE(CT)[1/7)).

Hence for the first assertion of the proposition, since the triviality on Og¢ is
automatic, it suffices to show that this double coset space consists of only one
element. This follows as in the proof of [1, Prop. 9.2] from the ind-properness
of the Witt vector Grassmannian Grg, which implies identifications

GWe(C)[1/x])/G(WE(C)) = Grg(WE(C)))
= Grg(Wge(C™))
= G(We(CH[L/x])/G(Wr(CT)).

In the second assertion of the proposition, if H!(V,G) = {1}, then any G-
torsor on V is trivial. Hence, again by the triviality of the double coset
space, any G-torsor on U is trivial and therefore extends to X. Conversely,
let P be a G-torsor on V. By Steinberg’s theorem, the pullback Pz of P
to & is trivial. Hence, by Beauville-Laszlo glueing, we can glue P and the
trivial G-bundle on Og to obtain a G-bundle P on U. But by assumption, P
extends to X and hence is trivial. But then P is trivial, as claimed. O

We can reduce Conjecture A.1.2 to the case considered in the previous
proposition by the following descent lemma.
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Lemma A.1.4. a) Let C't be a faithful flat extension of CT. If Conjec-
ture A.1.2 holds for G-torsors over U(C’,C'+); then it does for G-torsors over
U(C,C*)'

b) Let E'/E be an unramified extension. If Conjecture A.1.2 holds for
parahoric Og:-models of G' = G @ E’, then it holds for parahoric models
of G.

Proof. For a), the argument of [1, Lem. 9.1] applies: any tensor functor
w: Rep(G) — Bun(X(¢,c+)) which is exact after composition with the re-
striction functor Bun(X ¢ c+)) — Bun(Uc,c+)) and with the base extension
functor Bun(X (¢ c+)) — Bun(X ¢ ¢ +)) is itself exact. For b), one uses that
the base change under O — Op' of a parahoric model is again a parahoric
model, cf. [1, p. 25]. O

Proposition A.1.5. Assume that G is unramified. Then G satisfies Con-
jecture A.1.2.

Proof. Let G be the reductive model of G over Op. Then the proof of [1,
Prop. 8.5] applies since there exists an embedding G < GL,, such that the
quotient GL,,/G is affine. O

Proposition A.1.6. (i) G satisfies the Extension Conjecture if and only if
Gaq does.

(ii) The class of groups satisfying the Extension Conjecture is closed under
direct products.

(iii) Let E'JE be a finite extension. If G' over E' satisfies the Extension
Conjecture, then so does Resg/ /p(G'"). Let G be over E and let G' = GRpE'.
If G’ satisfies the Extension Conjecture, then so does G, provided that E'/E
is an unramified extension.

Proof. Statement (i) is [1, Prop. 9.6 and Lem. 9.8]. Statement (ii) is triv-
ial. The first statement of (iii) follows, using Lemma A.1.4, from Propo-
sition A.1.3 by Shapiro’s lemma. For the last statement in (iii), we note
that the base change G ®0, Op is again a parahoric model. Since O =
W (E") @w (k) O, we have W(C™F) @y (1) Opr = W (CT) @w 1y (W (K) @w (x)
Ogp) = W(C") @w k) Op. Hence the argument in the proof of [1, Lem. 9.1]
applies. O

A.2. Descent under a tamely ramified extension

Let E'/E be a tamely ramified finite extension, which is Galois with Ga-
lois group I'. For simplicity of notation, set O’ = Og and O = Opg and
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denote by O’ and O the completions of the corresponding maximal unrami-
fied extensions. Let G be a reductive group over E and let G be a parahoric
model. By definition, G = G; where z € B(G, E) is a point in the (extended)
Bruhat-Tits building, and G, is the Bruhat-Tits smooth group scheme over
O with O-points given the stabilizer

G.(0)={g€GE) | g =z},

and G2 is the neutral component. Set G’ = G ®p E’. Recall that by work of
Prasad-Yu [74], since E'/FE is tame, we have an equivariant identification

B(G,E) = B(G',E')".

The point x can be considered also as a point of B(G’, E’) which is fixed
by T'.

By functoriality, the corresponding Bruhat-Tits group scheme G’ over
O’ supports a semilinear action of I' and so does its neutral component
G = (G.)°. Hence, the Weil restrictions of scalars

Resor0(Gy),  Resorjo(G'),

are smooth affine group schemes over O with an action of I'. Note that the
second group scheme is also connected. By [57, Prop. 1.3.9], we have

(A.2.1) + = Resor/0(G,)"

Let us recall here the argument for the proof of this isomorphism: The fixed
point loci

Resor0(G2)", Resor0(G)',

are smooth (using tameness and [21, Prop. 3.4]). We have
G:(0)={9cG(E) | g-w=a}={g € GE) | ¢ -z =a} =G, (O

Now (A.2.1) follows from the characterization of the Bruhat-Tits group
schemes as the unique smooth group schemes with group of O-points given
by the stabilizer.

Note that this gives a closed group scheme immersion G, < Resg. /O(g;)
which, by adjunction, induces a group scheme homomorphism G,®00" — G..

Set X' = Spec (Ag/), X = Spec(Ag) and denote by U’, resp. U, the
complement of the closed point. Then X' = X ®0c O’ and U' = U®o O’. The
following proposition extends the second statement of Proposition A.1.6,
(iii), which concerned unramified extensions.
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Proposition A.2.1. Let E'/E be a finite tamely ramified Galois extension,
with Galois group T. Let G be a reductive group over E and let G' = GRpE'.
If G’ satisfies the Extension Conjecture A.1.2, then so does G.

Proof. By Proposition A.1.3 and the argument in the proof of [1, Thm. 11.4],
we see that it is enough to assume CT = O¢ throughout. By Proposi-
tion A.1.6 (i) and (ii), we may assume first that G,q is simple and, passing
through G4, that G is also simply connected. It is enough to consider para-
horic group schemes G and G’ as above and, assuming that every G’-torsor
over U’ extends to X', to show that every G-torsor over U extends to X.
Since G is simply connected, ¢’ =G/ and G = G, = ResO//O(g’)F.

Using Lemma A.1.4 a), we can reduce to the case that C' is algebraically
closed, and by Lemma A.1.4 b) that k is also algebraically closed and that
X and X' are strictly local. Hence, every G-, resp. G'-torsor, over X, resp.
X', is trivial.

Note that G’ over O’ is a smooth affine I'-group scheme, i.e. it affords
a (O'-semilinear) I'-action which is compatible with the Hopf O’-algebra
structure on O(G’). We can make sense of the notion of a (I', G’)-torsor over
X' or U’ as in Balaji-Seshadri [4, §4].

Let P be a G-torsor over U. The base change of P by U’ — U followed
by the push-out by G ®o O’ — G’ gives naturally a (I', G’)-torsor P’ over U’.
Recall that we assume that all G’-torsors over U’ extend to X’. Consider the
G’-torsor P’ over U’ obtained by forgetting the I'-structure. This extends to
a G'-torsor P’ over X’ ; by faithfully flat descent, this is affine and given by a
flat Api-algebra O(P'). Now observe that the restriction from X’ to U’ gives
a fully faithful functor from affine flat schemes over X’ to affine flat schemes
over U’ (see [1, Prop. 8.2]; this uses Lazard’s theorem to write a general flat
algebra such as O(ﬁ’) as a direct limit of finite free modules. Alternatively,
using the Tannakian equivalence to reduce to vector bundles, we see that
the restriction of G’-torsors over X’ to G’-torsors over U’ is fully faithful, cf.
[1, Lem. 8.4]). By applying this full faithfulness to the isomorphisms given
by the elements of the Galois group, we obtain that the I'-action on P’
extends to a I-action on P’. Hence, we obtain a (I', G’)-torsor over X’ which
enhances P’

Claim. Resx/, < (P)T is a G-torsor over X which extends the G-torsor P
over U.

The proof that follows is due to Scholze. What has to be shown is that the
fiber of ResX//X(P/)F over the special point s € X is non-empty. Indeed, if
this fiber is non-empty, a section can be lifted to a section of Resy.,x (75' )
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over X (use the smoothness of ResX//X(ﬁ’)F), hence ResX//X(ﬁ’)F is a
(trivial) G-torsor over X.

Assume, by way of contradiction, that the fiber of Resx/, < (P over
s is empty. Then P = Resy, y(P)' = ResX//X(ﬁ’)F is an affine scheme.
Hence, P xy U' =P ®p O’ is also affine. Consider the push-out morphism

m:PxpU — P.
It induces a map on cohomology,
(A.2.2) H' (P, 0) — H' (P xy U', 0).

The map (A.2.2) is an isomorphism up to bounded p-torsion. Indeed, since
7 is an affine morphism, the map (A.2.2) is induced by the map of sheaves
on P’ given by

Opr — W*(OPXUU/)7

and this map is injective, with cokernel a skyscraper sheaf on U’ ®¢ k. Now
HY(P xy U',0) = 0 since P xyy U’ is affine. Since P’ is a trivial G’-torsor
over U’, the source of this map can be identified with H!(U’, 0) @ H(G', O).
Since HY(U’, 0) = H2 (Wg/(O¢)) is not of bounded p-torsion (it contains
the images of m € Wi (O¢) [z for any a > 0,b > 0), this is the desired
contradiction. O

Corollary A.2.2. If there exists a tamely ramified extension E' of E such
that G' = G ®g E' is of the form G’ ~ ResE,/E(G), where E' is a finite
extension of E' and G is an unramified group over E', then G satisfies the
Ezxtension Conjecture A.1.2.

Proof. This follows from Proposition A.2.1, Proposition A.1.6, (iii) and
Corollary A.1.5. O

A.3. Summary

Now combining everything above, we obtain the following result on the Ex-
tension Conjecture. We introduce the following terminology. We call a reduc-
tive group G over E essentially tamely ramified if Gaq ~ []; Resg,/p(H;),
where, for all ¢, H; splits over a tamely ramified extension of Fj.

Remark A.3.1. A reductive group G is essentially tamely ramified under
either of the following hypotheses:
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a) If p > 5.

b) If p =3 and Goq ®p E has no simple factors of type Df’) or Df) (ramified
triality).

Indeed, it is enough to show the following: If G is an adjoint simple group G
over E and, either p > 5, or p = 3 and the condition in (b) above is satisfied,
then G ~ Resg/, £(G"), where G’ splits over a tamely ramified extension of
E'. We can always write G ~ Resp//g(G’) and by Steinberg’s theorem,
G’ ®p E' is quasi-split. Hence, G/ @ E' is isomorphic to the quasi-split
outer form of its split form H’ and can be written

Q' R p E/ :ReSE///E/(H/ ®Qp E/)F’

where E”/E' is Galois with (inertial) group I' which acts via diagram au-
tomorphisms. By examining the possible local Dynkin diagrams (comp. [71,
§7a]), we see that e = [E” : '] can only take the values 1, 2 and 3. Hence,
if p > 5, G’ splits over a tamely ramified extension. We have e = 3 only in
one case, when the local Dynkin diagram is of type GI which corresponds

to the ramified triality Dfl3) or Diﬁ); this shows the result in case (b).

Theorem A.3.2. Let G be a reductive group over E which is essentially
tamely ramified. Then G satisfies the Extension Conjecture A.1.2.

Proof. By Proposition A.1.6 (i), (ii), we can assume that G is adjoint and
simple. Then G = Resp//5(G’), and G’ splits over a tamely ramified exten-
sion. By Proposition A.1.6 (iii), we reduce to the case that G splits over
a tamely ramified extension. Finally, by Proposition A.2.1, we reduce to
the case that G is, in fact, split. Then the result follows from Proposi-
tion A.1.5. O

Corollary A.3.3. a) If p > 5, then G satisfies the Extension Congec-
ture A.1.2.

b) If p = 3 and Gaq ®p E has no simple factors of type Df) or Diﬁ)
(ramified triality), then G satisfies the Eztension Conjecture A.1.2.

Proof. This follows from Theorem A.3.2 and Remark A.3.1. O

Remark A.3.4. In the proof in Remark A.3.1 above, we have e = #I" = 2,
when the local Dynkin diagram is of types B-C,, (n > 3), C-B,, (n > 2),
C-BC,, (n > 1), or F}. The types B-C,, C-BC,, correspond to ramified
unitary groups and C-B,, to (ramified) even orthogonal groups. The cases
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of wildly ramified unitary groups (for p = 2) can be handled by using un-
published work of Kirch, as shown in the first version of [1, §9]. Anschiitz’s
result covers this case, as well as the wildly ramified triality group (for p = 3),
wildly ramified even orthogonal groups (for p = 2), and the wildly ramified
outer form of Eg (for p = 2).

A.4. On the extension theorem of [57]

As before, let G be a reductive group over E and G a parahoric model
over Op. In [57], it is assumed that O = W (k), where k is a finite field or
algebraically closed. The following generalizes [57, Prop. 1.4.3].

Proposition A.4.1. Assume that G is essentially tamely ramified. Then
any G-torsor over Spec (Og[u]) \ {m} extends to Spec (Og[u]). (Here m
denotes the maximal ideal of the local ring Ogfu].)

Proof. Let C' be a perfect non-archimedean field which is a k-algebra, and
let

f: OE[U]] — WE(OC)

be the homomorphism defined by sending u to [w], for a fixed pseudouni-
formizer @ € me. Then f is faithfully flat, cf. [1, Lem. 10.2]. Hence Propo-
sition A.4.1 follows from Theorem A.3.2 by using descent [1, Prop. 8.2,
Lem. 8.3], comp. the argument in the proof of Proposition A.2.1. O

Remark A.4.2. Again, Anschiitz proves this in complete generality, i.e.,
without any tameness hypothesis, as a consequence of his proof of the FEx-
tension Conjecture A.1.2, cf. [1, Prop. 10.3].
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