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1. Introduction

Shimura varieties were formally defined in Deligne’s Bourbaki seminar talk
[18]. Let (G, X) be a Shimura datum, in the sense of Deligne. Attached to
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(G, X) is a pro-system of quasi-projective algebraic varieties ShK(G, X) over
C whose members are enumerated by the open compact subgroups K of
the finite adèle group G(Af ). These have canonical models ShK(G, X)E over
the reflex field E ⊂ Q̄ of (G, X). Throughout the paper, we will impose the
blanket assumption that the Q-split rank and the R-split rank of the center
of G coincide.

Part of Deligne’s philosophy of Shimura varieties is that (if the associated
central character wX is defined over Q and the connected center of G splits
over a CM-field [80, Lem. B 3.9]) the Shimura variety ShK(G, X)E is a moduli
space of motives over Spec (E) (with level-K-structure). This philosophy has
been a guiding principle behind much of the work on Shimura varieties in
the last decades. However, a draw-back of this idea is that the concept of a
motive is still eluding a precise definition. Scholze, in a lecture in Jan. 2019 in
Essen, suggested that it might be profitable to instead view Shimura varieties
as moduli spaces of certain shtukas over Z, cf. also his ICM talk in Rio [83]
and his Berkeley lectures [85]. In particular, he suggested constructing a
“universal” G-shtuka over the Shimura variety ShK(G, X)E. Here a G-shtuka
should be the number field analogue of the concept of G-shtuka for global
function fields, cf. [85, §11.1]. However, at the moment it is also not clear
how to define this concept.

Let p be a prime number. Scholze is able to define the concept of a shtuka
over Zp, comp. [85]. Therefore, after base change to the completion E = Ev of
E at some p-adic place v, the Shimura variety ShK(G, X)E = ShK(G, X)E⊗EE
should come with a family of Zp-shtukas. In fact, Scholze uses this insight
to define local Shimura varieties which are the analogues over p-adic fields
of Shimura varieties. This puts into reality a hope spelled out in [77] and is
a p-adic avatar of Scholze’s idea on global Shimura varieties.

Let (G, b, µ) be a local Shimura datum. We recall [77] that this means
that G is a reductive group over Qp, that b ∈ G(Q̆p), and that µ is a
conjugacy class of minuscule cocharacters of GQ̄p

. Let E ⊂ Q̄p be the local
reflex field. Then Scholze associates to (G, b, µ) a pro-system of rigid-analytic
spaces over the completion Ĕ of the maximal unramified extension of E
(with Weil descent datum down to E) whose members are enumerated by
the open compact subgroups K ⊂ G(Qp). These spaces are moduli spaces
MG,b,µ = (MG,b,µ,K)K⊂G(Qp) of G-shtukas (with level-K-structures). One
important class of local Shimura varieties arises from Rapoport-Zink spaces:
if the local Shimura datum arises from rational RZ data [78], then the RZ
tower associated with the corresponding RZ space is a local Shimura variety,
cf. [85, Cor. 24.3.5]. In this special case, the theory of non-archimedean
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uniformization of Shimura varieties of PEL-type provides a link between
global Shimura varieties and local Shimura varieties, cf. [78, chap. 6].

In this paper we develop Scholze’s idea. We establish basic results on
p-adic shtukas and apply them to the theory of local and global Shimura va-
rieties, and on their interrelation. We derive some interesting consequences,
such as a construction of canonical integral models for (local, and global)
Shimura varieties of Hodge type with parahoric level structure.

Let us now be more specific. In our formulations, we will use Scholze’s
language of diamonds, v-sheaves, etc.

1.1. Results on shtukas

Let us start with stating our results1 on shtukas. Let k be an algebraically
closed field of characteristic p. For most of the time, k is the residue field
of Ĕ. We recall from [85] that a shtuka of height h over a perfectoid space
S = Spa (R, R+) ∈ Perfdk with leg at the untilt S♯ of S is a vector bundle

of rank h on the analytic adic space S
.
× Zp, together with a meromorphic

Frobenius map φP which has a pole along the Cartier divisor S♯ of S
.
× Zp.

Here

S
.
× Zp = S

.
× Spa(Zp) = Spa(W (R+)) \ {[ϖ] = 0},

where [ϖ] is the Teichmüller lift of a pseudo-uniformizer of R+. For µ ∈
(Zh)≥, there is also the notion of a shtuka of rank h bounded by µ. Given
a smooth group scheme G over Zp, there is also the variant notion of a G-
shtuka over S and, given a conjugacy class of cocharacters µ of the generic
fiber G of G, also the variant notion of a G-shtuka over S bounded by µ.
Finally, there are corresponding notions of families of such objects over adic
spaces or schemes, which are defined, roughly speaking, as sections of the
v-stack of shtukas over the diamond or v-sheaf attached to the adic space
or to the scheme, see §2.1.1–2.1.3, and Definitions 2.3.1, 2.3.2 below. As an
illustration, a shtuka over Spec (K), for a perfect field K of characteristic
p, can be shown to correspond to a free W (K)-module M of finite rank,
equipped with an isomorphism φM : Frob∗(M)[1/p]

∼−→ M [1/p], comp. The-
orem 1.1.3 below. For instance, a p-divisible group G over a scheme of finite
type over OE defines a shtuka of height equal to the height of G and bounded
by µ = (1(d), 0(h−d)), where d is the dimension of G .

1Some of these results have been extended in very recent works of Gleason-Ivanov
[33] and Güthge [36], which were completed during the refereeing process of this
paper.
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When the adic space is in characteristic zero, there is a more explicit
description of G-shtukas which is étale-sheaf theoretic in nature, provided
that µ is minuscule:

Proposition 1.1.1 (see Proposition 2.5.3). Let X be a locally Noetherian
adic space over Spa (E, OE), with associated diamond X♦. Fix (G, µ), where
G is a connected smooth model over Zp of a reductive group G over Qp, and
where µ is a conjugacy class of minuscule cocharacters of GQ̄p

. There is a
functor P '→ (P, HT(P)) which gives an equivalence between the categories
of:

1) G-shtukas (P,φP) over X with one leg bounded by µ, and

2) pairs (P, H) consisting of a pro-étale G(Zp)-torsor P over X♦ and a

G(Zp)-equivariant map of sheaves H : P → F♦
G,µ−1 over Spd E.

Here FG,µ−1 denotes a partial flag variety and HT is the sheaf-theoretic
analogue of Scholze’s Hodge-Tate period map. The latter is also constructed
by Hansen [39].

Let us now assume that X is the adic space attached to a smooth
scheme X . Then, under some hypotheses, a pro-étale G(Zp)-cover defines
a pair as in Proposition 1.1.1 above:

Proposition 1.1.2 (see Proposition 2.6.3). Let P be a pro-étale G(Zp)-
cover over the smooth E-scheme X which is de Rham and bounded by the
minuscule cocharacter µ. Then there is a natural G-shtuka bounded by µ
over X which under the correspondence of Proposition 1.1.1 arises from the
G(Zp)-torsor defined by P and the Hodge-Tate period map defined by P.

The property of being de Rham is defined by Scholze in [81]. It implies
that at every classical point x of X , the fiber Px is a Galois representation of
Gal(E(x)/E(x)) in G(Qp) of de Rham type and is associated by Fontaine’s
functor DdR to a filtered G-isocrystal with filtration type given by µ. The
map H maps x to the point in the flag variety given by the corresponding
filtration of the G-isocrystal.

Shtukas in characteristic p are crystalline in nature. This is more trans-
parent when the topology on the rings is discrete. Let X = Spec (A) be
a perfect k-scheme. A meromorphic Frobenius crystal over X is a vector
bundle M over Spec (W (A)) equipped with an isomorphism

(1.1.1) φM : Frob∗(M )[1/p]
∼−→ M [1/p].
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Theorem 1.1.3 (see Theorem 2.3.8). There is an exact tensor equivalence
between the category of meromorphic Frobenius crystals over Spec (A) and
the category of shtukas over Spec (A).

This statement is subtle, even when A is an algebraically closed field. In
this case an essential ingredient in the proof is the relation between Frobenius
isocrystals and vector bundles over the Fargues-Fontaine curve (see [25, 2]).

The relation between characteristic zero and characteristic p is given
by the following shtuka analogue of Tate’s theorem on homomorphisms of
p-divisible groups.

Theorem 1.1.4 (see Theorem 2.7.7). Let X be a separated scheme which
is normal and of finite type and flat over Spec (OE). Let us denote by X =
X ×Spec (OE) Spec (E) the generic fiber. Let (V ,φV ) and (V ′,φV ′) be two
shtukas over X . Any homomorphism ψX : (V ,φV )|X → (V ′,φV ′)|X between
their restrictions to X extends uniquely to a homomorphism ψ : (V ,φV ) →
(V ′,φV ′).

In particular, using the Tannakian formalism, there is at most one ex-
tension of a G-shtuka on X to a G-shtuka on X . An important ingredient of
the proof of Theorem 1.1.4 is the full-faithfulness result of Proposition 2.1.3
which allows us, under a certain condition, to extend homomorphisms of
shtukas over the divisor “at infinity” [ϖ] = 0.

1.2. Results on local Shimura varieties

Let us now state our results on local Shimura varieties. As mentioned above,
Scholze defines, starting with local Shimura data (G, b, µ), the local Shimura
variety MG,b,µ = (MG,b,µ,K)K⊂G(Qp). It is instructive to compare local
Shimura varieties and global Shimura varieties. For local Shimura varieties,
it is easy to see that they support a G-shtuka. This follows from the definition
of MG,b,µ as a moduli space of G-shtukas. In contrast, for global Shimura
varieties, constructing the G-shtuka over them is quite an effort. On the
other hand, contrary to their global counterpart where one can write down
the set of C-points, there does not seem to be an explicit description of the
set of Cp-points of MG,b,µ. Just as global Shimura varieties, local Shimura
varieties can be explicitly described when G is a torus or when µ is cen-
tral; however, contrary to global Shimura varieties, local Shimura varieties
have good functorial properties, e.g., they obey pushout functoriality, comp.
Proposition 3.1.2.

When K = G(Zp) is a parahoric subgroup (with G a corresponding para-
horic model of G over Zp), then Scholze defines an integral model Mint

G,b,µ of
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MG,b,µ,K over OĔ as a v-sheaf: just as its general fiber MG,b,µ,K , it represents
a moduli problem of G-shtukas. Scholze conjectures that it is always repre-
sentable by a formal scheme MG,b,µ over Spf (OĔ). The conjecture holds true
if the data (G, b, µ) come from integral RZ data in the sense of [78] (this ex-
cludes the cases of type (D) since they yield non-connected groups). In fact,
in this case Mint

G,b,µ is represented by the corresponding RZ formal scheme,
cf. [85, Cor. 25.1.3]. We give the following characterization of the represent-
ing formal scheme. In the formulation, there appears the (b, µ−1)-admissible
locus XG(b, µ−1) inside the Witt vector partial flag variety over the algebraic
closure k of the residue field of E [97] and the specialization map on the set
of classical points spM : |MG,b,µ,K |class → XG(b, µ−1)(k) defined by Gleason
[31, 32].

Proposition 1.2.1 (see Proposition 3.5.1). Assume that Mint
G,b,µ is repre-

sentable by the formal scheme MG,b,µ. Then MG,b,µ is the unique normal for-
mal scheme R which is flat and locally formally of finite type over Spf (OĔ)
and is equipped with identifications

(i) Rrig = MG,b,µ,K ,

(ii) Rperf
red = XG(b, µ−1),

such that the following diagram is commutative:

(1.2.1)

|Rrig|class spR

=

Rred(k)

=

|MG,b,µ,K |class spM
XG(b, µ−1)(k).

Here Rrig is the generic fiber of the formal scheme R in the sense of
Berthelot [78, chap. 5]. That MG,b,µ has the properties stated in the propo-
sition follows from p-adic Hodge theory; the characterization follows from
the fully faithfulness of the diamond functor, cf. [85, 18.4].

Gleason defines the v-sheaf formal completion2 Mint
G,b,µ/x of Mint

G,b,µ at a

point x ∈ XG(b, µ−1)(k). If Scholze’s conjecture on the representability of
Mint

G,b,µ is true, then the formal completion Mint
G,b,µ/x is representable, i.e.,

is given by Spf (R) for a complete Noetherian local OĔ-algebra R. Indeed,

if Mint
G,b,µ is represented by MG,b,µ, then R = ÔMG,b,µ,x. We prove a kind of

2Gleason denotes this formal completion by M̂int
G,b,µ/x

. Here, we simplify the

notation of formal completions.
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converse in the local Hodge type case. Here, we call the tuple (p, G, µ, G) of
local Hodge type if the following conditions are satisfied.

1) (G, µ) is of local Hodge type, i.e. there is a closed embedding ρ : G ↪→ GLn

such that ρ ◦ µ is minuscule.

2) G is the Bruhat-Tits stabilizer group scheme Gx of a point x in the ex-
tended Bruhat-Tits building of G(Qp) and is connected, i.e., we have
G = Gx = G◦

x.

Theorem 1.2.2 (see Theorem 3.7.1). Let (G, b, µ) be a local Shimura da-
tum and G a parahoric model of G such that (p, G, µ, G) is of local Hodge
type. Assume that Mint

G,b,µ /x is representable for all x ∈ XG(b, µ−1)(k). Then

Mint
G,b,µ is representable by a normal formal scheme MG,b,µ which is flat and

locally formally of finite type over Spf OĔ.

The proof of Theorem 1.2.2 consists in first showing that the Hodge
embedding ρ induces a closed immersion of v-sheaves from Mint

G,b,µ into

Mint
GLn,ρ(b),ρ(µ) and then showing, by imitating de Jong’s construction of

closed formal subschemes of formal schemes [17], that this morphism is rel-
atively representable.

Let us comment on the assumption appearing in the statement above.
Scholze defines, using the Beilinson-Drinfeld style affine Grassmannian, for
any local Shimura datum (G, b, µ) a v-sheaf Mv

G,µ. Scholze conjectures in

[85, Conj. 21.4.1] that this v-sheaf is representable by a normal scheme Mloc
G,µ

proper and flat over OE and with reduced special fiber. The scheme Mloc
G,µ

with its action by G is called the scheme local model.3 This conjecture may
be viewed as a linearized version of the representability of Mint

G,b,µ. Indeed, it

may be conjectured that Mint
G,b,µ /x is represented by the formal completion

Mloc
G,µ /y of the scheme Mloc

G,µ, where y is a point of Mloc
G,µ(k) corresponding to

x, cf. Conjecture 3.3.5.
The representability of Mv

G,µ is more accessible than the representability

of Mint
G,b,µ. Indeed, Scholze’s conjecture is now proved: work of Anschütz,

Gleason, Lourenço and Richarz [3], cf. also Lourenço’s thesis [65], proves
the conjecture in all cases, except when p = 2 and there is a simple factor
of Gad ⊗Q2 Q̆2 of the form ResF/Q̆2

H, where H is the adjoint group corre-
sponding to an odd ramified unitary group, or when p = 3 and there is a
simple factor of Gad ⊗Q3 Q̆3 of the form ResF/Q̆3

H, where H is the adjoint

3Under more restrictive hypotheses, these local models also agree with the local
models as defined in [73], and in [44].
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group corresponding to a ramified triality group; the general case is treated
by Gleason and Lourenço in [35], basing themselves on [3].

Remark 1.2.3. Consider the case when (p, G, µ, G) is of local Hodge type
which can be embedded, in the sense of Remark 3.7.2, into a tuple (p, G, X, K)
of global Hodge type (see below for this terminology). If all x ∈ XG(b, µ−1)(k)
can be “realized” (in the sense of Remark 3.7.2) by points x in the reduc-
tion of ShK(G, X)E , then the assumption in Theorem 1.2.2 holds by Theo-
rem 1.3.2 below. This realization hypothesis would follow from the resolution
of the axioms on the reduction of Shimura varieties in [45], which is known in
many cases, cf. [95, 90]. We therefore can view Theorem 1.2.2 as a blueprint
to prove the representability of Mint

G,b,µ by global methods. In particular,
for p ̸= 2, we can dispense with the assumption on the representability of
Mint

G,b,µ /x in Theorem 1.2.2 when G is unramified [68] or when G is tamely

ramified and residually split [95].

Remark 1.2.4. In a sequel to this paper [72], we prove the representability
of Mint

G,b,µ in greater generality by a local method, again using the method
of proof of Theorem 1.2.2. In particular, in the situation of Theorem 1.2.2,
the representability of Mint

G,b,µ always holds when p ̸= 2.

1.3. Results on global Shimura varieties

Now let us state our results on global Shimura varieties. Start with Shimura
data (G, X) as above, and denote, as before, by Sh(G, X)E its canonical
model over E = Ev. We assume that K ⊂ G(Af ) is of the form K = KpKp,
with Kp = G(Zp), where G is a smooth model of G = G ⊗Q Qp and where
Kp ⊂ G(Ap

f ) is sufficiently small. Then there is a pro-étale G(Zp)-cover PK

over ShK(G, X)E obtained by the system of covers

(1.3.1) ShK′(G, X)E −→ ShK(G, X)E ,

where K′ = K′
pK

p ⊂ K = KpKp, with K′
p running over all compact open

subgroups of Kp = G(Zp), comp. [66, III], [62, §4] (note that G(Zp) =
lim←−K′

p

Kp/K′
p.) By Liu-Zhu [62], the pro-étale G(Zp)-cover PK over ShK(G, X)E

is de Rham (and bounded by µX). Using Proposition 1.1.2, we obtain a G-
shtuka as postulated by Scholze:

Proposition 1.3.1 (see Proposition 4.1.2). There exists a G-shtuka PK,E

over ShK(G, X)E with one leg bounded by µX which is associated with the
pro-étale G(Zp)-cover PK, in the sense of Proposition 1.1.2.
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Furthermore, PK,E are supporting prime-to-p Hecke correspondences,
i.e., for g ∈ G(Ap

f ) and K′ p with gK′ pg−1 ⊂ Kp, there are compatible iso-
morphisms [g]∗(PK,E) ≃ PK′,E which cover the natural morphisms [g] :
ShKpK′ p(G, X)E → ShKpKp(G, X)E .

When (G, X) is of abelian type and K = KpKp, where Kp is a para-
horic, Kisin and the first author [57] have constructed integral models SK

of ShK(G, X)E , provided that p is odd, G = G ⊗Q Qp splits over a tamely
ramified extension and p " |π1(Gder)|. By an integral model, here we mean
a scheme which is separated and of finite type over Spec (OE) and whose
generic fiber is identified with ShK(G, X)E . This construction has been ex-
tended by Kisin and Zhou [58] to cover many more cases. Here we construct
such integral models in even greater generality when (G, X) is of Hodge type
and K = KpKp, where Kp is a parahoric with corresponding parahoric group
scheme G over Zp.

We call a tuple (p, G, X, K), with K = KpKp, of global Hodge type if the
following conditions are satisfied.

1) (G, X) is of Hodge type, i.e. there is a closed embedding of Shimura data
(G, X) ↪→ (GSp2g, S

±
2g) into a group of symplectic similitudes with its

Siegel datum.

2) Kp = G(Zp), where G is the Bruhat-Tits stabilizer group scheme Gx of
a point x in the extended Bruhat-Tits building of G(Qp) and G is con-
nected, i.e., we have G = Gx = G◦

x.

Note that when (p, G, X, K) is of global Hodge type, then (p, G, µX , G) is of
local Hodge type.

Theorem 1.3.2 (see Theorem 4.5.2). Let (p, G, X, K) be of global Hodge
type. Then there exists a pro-system of normal and flat integral models SK

with generic fiber ShK(G, X)E, with finite étale transition maps for varying
Kp, with the following properties.

a) For every dvr R of characteristic (0, p) over OE,

(1.3.2) (lim←−Kp
ShK(G, X)E)(R[1/p]) = (lim←−Kp

SK)(R).

b) The G-shtuka PK,E extends4 to a G-shtuka PK on SK.

4When G is reductive (i.e., in a good reduction case), an integral extension PK

of the G-shtuka PK,E was also constructed by Wu [93]. His extension lives over the
integral model SK given in Kisin [54] (which is canonical in the sense of Milne).
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c) For x ∈ SK(k), with associated bx ∈ G(Q̆p), there exists an isomorphism
of formal completions

Θx : Mint
G,bx,µ /x0

∼−→ (SK /x)♦,

such that the pullback shtuka Θ∗
x(PK) coincides with the tautological

shtuka on Mint
G,bx,µ that arises from the definition of Mint

G,bx,µ as a moduli

space of shtukas. Here x0 denotes the base point of Mint
G,bx,µ. In particular,

Mint
G,bx,µ /x0

is representable.

Here the element bx ∈ G(Q̆p) is well-defined up to σ-conjugacy by G(Z̆p),
and is determined by the fiber of PK at x, as follows. The pull-back x∗(PK)
is a G-shtuka over Spec (k), and yields a G-torsor Px over Spec (W (k)) with
an isomorphism

φPx
: φ∗(Px)[1/p]

∼−→ Px[1/p].

The choice of a trivialization of the G-torsor Px then defines bx ∈ G(Q̆p).
The σ-conjugacy class [bx] lies in the subset B(G, µ−1) of B(G).

The construction of SK is quite straightforward. The Hodge embedding
defines a closed embedding of Shimura varieties into the Siegel type Shimura
variety,

ShK(G, X)E ↪→ ShK♭(GSp2g, S
±
2g)Q ⊗Q E.

Here, we need to choose the Siegel moduli level structure K♭ appropriately,
in particular so that K = K♭ ∩ G(Af ). After identifying ShK♭(GSp2g, S

±
2g)Q

with the generic fiber of the Siegel moduli space AK♭ over Z(p), one defines
SK to be the normalization of the Zariski closure of ShK(G, X)E inside
AK♭ ⊗Z(p) OE . It turns out a posteriori that SK is independent of the choice
of the Hodge embedding, cf. Theorem 1.3.4. A bonus of this independence is
that we obtain for an inclusion Kp ⊂ K′

p of parahoric subgroups an extension
SK → SK′ of the natural morphism ShK(G, X)E → ShK′(G, X)E to the
integral models. Here K = KpKp and K′ = K′

pK
′ p, with K′ p = Kp. This is

a consequence of the functoriality of the formation of our integral models
with respect to embeddings (G, X, K) ↪→ (G′, X ′, K′) of Shimura data (see
Theorem 4.3.1 for a precise formulation).

Let us compare this theorem (for Shimura varieties of Hodge type) with
the main result of [57] and its generalization by Kisin and Zhou in [58] (these
references consider, more generally, Shimura varieties of abelian type). Un-
like in [57], for our result we do not need any tameness hypothesis and we
also dispense with the assumption p " π1(Gder). The tameness hypothesis is
significantly relaxed in the paper [58], which ends up covering essentially all
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cases when p ≥ 5. Nevertheless, our construction is, at least conceptually,
simpler. In particular, in contrast to [57, 58], there is no need for a judicious
choice of a Hodge embedding. By the independence of the Hodge embed-
ding, we see that our integral models agree with those in [57, 58], when the
latter exist. (Without this independence that we show here, the extension
of the morphism ShK(G, X)E → ShK′(G, X)E between Shimura varieties for
different parahorics to integral models as above, was known to exist only
when the models were constructed using “compatible” Hodge embeddings,
cf. [95, §7].) On the other hand, we do not produce a local model diagram,
and do not even assert that there is an isomorphism

SK /x ≃ Mloc
G,µ /y,

although this last fact follows a posteriori by combining our results with the
main theorem of [72], at least when p is odd. Based on the Hodge type case,
one should be able to extend the theorem to Shimura varieties of abelian
type using Deligne’s theory of connected components and “twisting”, as in
[54, 57, 58].

Let us comment on the proof of Theorem 1.3.2. Property a) for the
model SK follows from the Néron-Ogg-Shafarevich criterion of good reduc-
tion for abelian varieties. For property b), one realizes the G-shtuka PK,E

in the generic fiber through some tensors in the pull-back to SK,E under the
Hodge embedding of the shtuka defined by the universal abelian scheme.
Using Theorem 1.1.4, these tensors extend over SK. The crux is now to
show that these tensors indeed define a G-shtuka over SK. Here the main
tool is the theorem of Anschütz [1] that for an algebraically closed non-
archimedean field C of characteristic p, any G-torsor on the punctured spec-
trum Spec (W (OC)) \ {s} is trivial. Finally, property c) essentially comes
down to showing that the pull-back of the G-shtuka PK to the completed
local ring ÔSK,x admits a “framing”.

We note that Theorem 1.3.2 c) provides a link between local and global
Shimura varieties. This link is a priori different from the one provided by the
theory of non-archimedean uniformization of Shimura varieties of PEL-type
mentioned earlier, since it holds only point-wise. The following theorem is
the non-archimedean uniformization statement in our context.

Theorem 1.3.3 (see Theorem 4.10.6). Let (p, G, X, K) be of global Hodge
type. Let x ∈ SK(k). Then Mint

G,bx,µ is representable by a formal scheme
MG,bx,µ and there is non-archimedean uniformization along the isogeny class
I(x) in SK ⊗OE

k, i.e., an isomorphism of formal schemes over OĔ,

Ix(Q)\(MG,bx,µ × G(Ap
f )/Kp)

∼−→ (SK ⊗OE
OĔ)

/I(x)
.
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This isomorphism is to be interpreted (especially when x is non-basic) as
for its PEL counterpart in [78, Thm. 6.23].

Here the relation to the previous theorem is the obvious one: If (x0, g) ∈
MG,bx,µ(k) × G(Ap

f )/Kp is a point representing the base point x, the iso-
morphism Θx from Theorem 1.3.2 c) coincides with the completion of the
uniformization morphism at x.

The proof of Theorem 1.3.3 is modelled on [47, 38], and proceeds by re-
lating the integral local Shimura variety Mint

G,bx,µ to a Rapoport-Zink space
obtained by a global construction using the Hodge embedding. In the state-
ment of Theorem 4.10.6, we make the assumption that a certain condition
(Ux) is satisfied. This condition guarantees that the abelian varieties that are
obtained by isogenies from k-points of the LHS of the uniformization map
actually do define points on the Shimura variety in question (this is not ob-
vious since the Hodge type Shimura variety lacks a global moduli-theoretic
interpretation). In our original submitted version of our paper, we conjec-
tured that Condition (Ux) is always satisfied. (Note that condition (Ux) is
identical with Axiom A in [38, §4.3]; Hamacher and Kim also conjectured
that, in the tame case, it is always satisfied.) During the refereeing period
of our paper, this conjecture has been proved in general by Gleason-Lim-Xu
[34, Cor. 1.10]. We refer to Remark 4.10.4 for previous partial results of
Zhou and Nie.

We also prove that the integral models SK are uniquely determined by
their characteristic properties. The following uniqueness theorem should be
compared with the main theorem of [70], where an analogous uniqueness
theorem is proved. In loc. cit., instead of G-shtukas, “(G, µ)-displays” are
used for this characterization. The characterization of [70] seems more con-
crete since it is adapted to p-divisible groups and gives more information
when it applies. For example, it is directly linked to the existence of a local
model diagram; this is a useful feature which is harder to see here (com-
pare the discussion in §4.9). On the other hand, it is more limited in its
applicability (essentially to Shimura varieties of Hodge type). An “a priori”
relation between the characterization in [70] and the one given here is not
clear; and something similar is true for the relation to the characterization of
the good reduction model in the hyperspecial case by the extension property,
comp. [54, §2.3.7]. However, in practice, the integral models that have been
constructed in various cases satisfy all these characterizations, provided the
assumptions for them to apply are met. It is remarkable that to obtain such
a characterization, even in classical PEL type cases, one needs this more
sophisticated approach.
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Theorem 1.3.4 (see Theorem 4.2.4). Let (G, X) be an arbitrary Shimura
datum and consider open compact subgroups K ⊂ G(Af ) of the form K =
KpKp, with Kp = G(Zp), where G is a (connected) parahoric model of G =
G ⊗Q Qp. There is at most one pro-system of normal and flat integral mod-
els SK with generic fiber ShK(G, X)E, with finite étale transition maps for
varying sufficiently small Kp, with properties a)–c) above.

The main point in the proof of this theorem is a rigidity property of
the isomorphisms Θx in (c). This essentially amounts to a rigidity property
of the framing of the pull-back of the G-shtuka PK to ÔSK,x, which was
constructed in the proof of property (c) of Theorem 1.3.2. For this, we show
that the diamond automorphism group of the G-shtuka given by the trivial
G-torsor and the Frobenius φb = b × Frob has as its global sections over
the completed local ring ÔSK,x only the obvious ones, i.e. the σ-centralizer
group Jb(Qp).

We conjecture that models SK with these properties exist for general
Shimura varieties, cf. Conjecture 4.2.2. This conjecture should be compared
with Deligne’s proposal to construct the models SK as moduli spaces of
motives: whereas it seems quite difficult to make this precise, our conjec-
ture, which is based on Scholze’s idea of moduli spaces of shtukas, is quite
concrete and seems accessible in many cases (e.g., for Shimura varieties of
abelian type). The conjecture should be seen in conjunction with Scholze’s
conjecture on the representability of the v-sheaf local model (which is now
proved, see above), and the conjectured representability of the v-sheaf lo-
cal model diagram, cf. Conjecture 4.9.2. Also, the construction of the map
x '→ bx above would define a map to the set of G(Z̆p)-σ-conjugacy classes as
predicted in [45, Axiom 4],

ΥK : SK(k) −→ G(Q̆p)/G(Z̆p)σ,

which would define in the general case the Newton-stratification, the KR-
stratification, the EKOR-stratification and the central leaves in the special
fiber, without the use of abelian varieties. Finally, Theorem 1.3.3 should be
seen in conjunction with the Langlands-Rapoport conjecture enumerating
the isogeny classes in the special fiber, comp. [55, 75]. It should hold true in
general.

This picture is quite general, and may not be easy to implement. The
most immediate next task is to establish this picture for Shimura varieties of
abelian type. Also, one can hope to extend the results to parahoric subgroups
which are not the stabilizer of a point in the building, but only equal to the
neutral component of a stabilizer. In addition, for applications to moduli
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spaces, it would be useful to also allow non-connected stabilizer subgroups
(called “quasi-parahoric” in [85, §25.3]) as the level, comp. [57].

Our normalizations impose that for a Shimura datum (G, X) of PEL-
type, with universal abelian variety AK over the integral model SK, the
fiber PK,x at a point x ∈ SK(k) corresponds under the natural represen-
tation of G to (Frob−1)∗(H1

crys(Ax)∗), the Frobenius descent of the linear
dual of the crystalline cohomology of Ax, i.e., the Frobenius descent of the
linear dual of the contravariant Dieudonné module D(Ax)∗ of the p-divisible
group of Ax, cf. Example 2.3.4. For the crystalline period map, we trivial-
ize D(Ax)∗ and vary the Hodge filtration so that the Grothendieck-Messing
period map has its target in the flag variety FG,µ. For the Hodge-Tate pe-
riod map, we trivialize the associated local system so that the Hodge-Tate
period map has its target in the flag variety FG,µ−1 . The relation with pris-
matic cohomology given by PK,x corresponding to (Frob−1)∗(H1

crys(Ax)∗) =
H1

∆(Ax/W (k))∗(W (k), (p)) leads us to expect that the models SK support
a more refined object PK,∆ which is a deperfection of the G-shtuka PK.
Here, “deperfection” is meant in the sense of the theory of prisms of Bhatt
and Scholze [9, §1] and the object PK,∆ should be, roughly, a G-torsor with

Frobenius over the prismatic site of the p-adic completion ŜK. (More pre-

cisely, it should be a prismatic Frobenius crystal with G-structure over ŜK,
see §4.4). In the Hodge type case, it should be constructed from the prismatic
cohomology of the universal abelian scheme.

Notations. The following general conventions are used.

• We fix an algebraic closure Q̄p of the p-adic numbers Qp. If F/Qp is a finite

extension with F ⊂ Q̄p, we denote by F̆ the completion of the maximal
unramified extension of F in Q̄p. The rings of integers are denoted by

OF , resp. by OF̆ or ŎF .

• We often write X ⊗A B for X ×Spec (A) Spec (B).

• If (A, A+) is a Huber pair, we will denote the v-sheaf (Spa (A, A+))♦ by
Spd (A, A+). If A+ = A◦, we simply write Spd (A).

2. Shtukas

2.1. v-sheaves and other preliminaries

We will use heavily many of the constructions and results of [85] and, in
particular, the language and techniques of perfectoid spaces and v-sheaves
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of Scholze. Here, we recall some of the basic terms and notations. The reader
is referred to [85] and [82] for more details and to [52] for more background
and other important constructions. Let k be a perfect field of characteristic p.

Let (R, R+) be perfectoid over k, so that S = Spa (R, R+) ∈ Perfdk is
affinoid perfectoid. Then, in particular, R is a complete Tate Huber ring and
is uniform, so we can take the subring of power-bounded elements R◦ as a
ring of definition. Now pick a pseudouniformizer ϖ ∈ R◦. We can regard R as
a (uniform) Banach ring by using the sub-multiplicative norm | | : R → R≥0

defined by

|x| = inf{n|ϖnx∈R◦}p
n.

(See [85, p. 11], [52, Chapt. 2].) We will also need the spectral norm

(2.1.1) α(x) = lim
s )−→+∞

|xs|1/s,

which is power-multiplicative and defines the same topology on R. Then

R◦ = {x ∈ R | α(x) ≤ 1}

and R+ ⊂ R◦.
As in [85, §11.2], for S = Spa (R, R+) ∈ Perfdk as above, we set

(2.1.2) S
.
× Zp = S

.
× Spa(Zp) = Spa(W (R+)) \ {[ϖ] = 0},

where ϖ ∈ R+ is a pseudouniformizer of (R, R+) and [ϖ] ∈ W (R+) the
Teichmüller representative. By [85, Prop. 11.2.1] and its proof, this is a sous-
perfectoid (analytic) adic space covered by the affinoid subsets Spa (Rn, R+

n ),
n = 1, 2, . . . , of Spa (W (R+)), where

(2.1.3) Rn =

{∑

i≥0

[ri]

(
p

[ϖ1/pn ]

)i

| ri ∈ R, ri −→ 0

}
.

Set also

(2.1.4) Y(R, R+) = Spa(W (R+)) \ {[ϖ] = 0, p = 0}.

This is also a sousperfectoid (analytic) adic space (see [85, §13.1] for the case
(R, R+) = (C, OC), or the proof of Proposition 3.6 in [51], in general). We
can define a continuous map (see [85, §15] for the case (R, R+) = (C, OC),
and [26, §II.1.12] in general)

(2.1.5) κ : |Y(R, R+)| −→ [0,∞],
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which sends a point x ∈ Y(R, R+) with rank-1-generalization x̃ to the ratio
log(|[ϖ](x̃)|)/ log(|p(x̃)|). (This map depends on the choice of the pseudo-
uniformizer ϖ). For an interval I = [a, b] ⊂ [0,∞] with rational endpoints,
we denote by YI(R, R+), or YI(S), the open of Y(R, R+) contained in
κ−1(I), given by

YI(S) = {|p|b ≤ |[ϖ]| ≤ |p|a}.

Then,

(2.1.6)
Y[0,∞)(R, R+) = Spa(W (R+)) \ {[ϖ] = 0} = S

.
× Zp

Y(0,∞](R, R+) = Spa(W (R+)) \ {p = 0}.

We also have Y[0,pn](S) = Spa (Rn, R+
n ) as above. In this, we can see that Rn

is independent of the choice of R+. This, together with a result of Kedlaya-
Liu [52, Thm. 2.7.7], implies that the (exact) category of vector bundles

on Y[0,∞)(S) = S
.
× Zp does not depend on the choice of R+ in the pair

(R, R+). In particular, we obtain:

Proposition 2.1.1. The natural restriction map gives an exact equiva-
lence between vector bundles over Spa (R, R+)

.
× Zp and vector bundles over

Spa (R, R◦)
.
× Zp. !

Note that the construction of Y[0,∞)(R, R+) “globalizes” and one can
make sense of Y[0,∞)(S) for a general perfectoid space S over k, cf. [26, Prop.
II.1.13]. We also have the following descent result, cf. [85, Prop. 19.5.3].

Proposition 2.1.2. Sending a perfectoid space S over k to the groupoid of
vector bundles over Y[0,∞)(S) gives a v-stack. !

For an interval I ⊂ [0,∞] and S = Spa (R, R+) affinoid perfectoid, we
will write

(2.1.7) BI
R,R+ = BI

S = Γ(YI(R, R+), OY).

If r = m/n > 0, then

B[m/n,∞]
S = W (R+)

〈 [ϖ]n

pm

〉[1

p

]
,

where W (R+)
〈 [ϖ]n

pm

〉
is the p-adic completion of W (R+)

[ [ϖ]n

pm

]
. Recall also

the p-adic completion of the universal divided power hull

Acrys(R
+/ϖ) = W (R+)

〈(
[ϖn]

n!

)

n≥1

〉
−→ R+/ϖ,



18 Georgios Pappas and Michael Rapoport

and set

B+
crys(R

+/ϖ) = Acrys(R
+/ϖ)[1/p].

For r ≫ 0, there are natural homomorphisms

(2.1.8) W (R+) −→ B+
crys(R

+/ϖ) −→ B[r,∞]
S = Γ(Y[r,∞](R, R+), OY),

see, for example, [24, §6.2]. Note again that if ∞ ̸∈ I, then BI
S = BI

R,R+ does

not depend on R+ and we can denote it as BI
R.

The Frobenius of R+ induces a ring homomorphism W (R+) → W (R+).
This gives morphisms Y[r,∞)(R, R+) → Y[pr,∞)(R, R+) ↪→ Y[r,∞)(R, R+) and
also Y[r,∞](R, R+) → Y[pr,∞](R, R+) ↪→ Y[r,∞](R, R+), which we will denote

FrobS or simply φ, if no confusion arises. Let us denote by VecφY[r,∞)(R,R+)

the category of vector bundles V over Y[r,∞)(R, R+) with (isomorphism)
φ-structure, i.e. an isomorphism

φV : φ∗(V )
∼−→ V ,

and similarly for Y[r,∞](R, R+). There is a similar definition of VecφYI(R,R+),

for any interval I with endpoints 0 and ∞.
Assume r > 0. Since Y[r,∞](R, R+) is affinoid and sheafy (since it is

sousperfectoid, see [51, Prop. 3.6]), we can see by using [85, Thm. 5.2.8],
[52, Thm. 2.7.7], that taking global sections gives an equivalence of cate-

gories between VecφY[r,∞](R,R+) and the category of projective finitely gener-

ated B[r,∞]
S -modules with a Frobenius semilinear map whose linearization

is an isomorphism. Following [52, §6], [85, §12.3, §13.2], we call them “φ-

modules over B[r,∞]
S ” or “φ-modules over Y[r,∞](R, R+)”.

The following result is implicitly stated in [24, §6].

Proposition 2.1.3. Suppose that R+ = R◦. Then, for r > 0, the restriction
functor

VecφY[r,∞](R,R+) −→ VecφY[r,∞)(R,R+)

is fully-faithful. It is an equivalence of categories when (R, R◦) = (C, OC) is
an algebraically closed perfectoid field.

The result follows directly from the work in [25, §11] when (R, R◦) is
a perfectoid field (K, K◦). (See [25, Rem. 11.1.11] and [85, §13.3]. In this
case, the restriction functor is not an equivalence in general, unless K is
algebraically closed.) Also, as was pointed out to the authors by Scholze,
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full-faithfulness fails to hold if R+ ̸= R◦, even when R is a complete non-
archimedean algebraically closed field. Indeed, by Proposition 2.1.1, the tar-
get category does not depend on the choice of R+ ⊂ R◦ but the source
category does.

Remark 2.1.4. The usual argument of “continuation by Frobenius” shows
that the restriction functors

VecφY(0,∞](R,R+) −→ VecφY[r,∞](R,R+), VecφY(0,∞)(R,R+) −→ VecφY[r,∞)(R,R+)

are equivalences of categories for all r > 0 (see [85, Prop. 22.1.1]). Using
this we see that Proposition 2.1.3 is equivalent to the statement that, when
R+ = R◦, the restriction functor

VecφY(0,∞](R,R+) −→ VecφY(0,∞)(R,R+)

is fully-faithful. Note that, by [52, Thm. 6.3.12], there is an equivalence

of categories between VecφY(0,∞)(R,R+) and the category of φ-modules over

B(0,∞)
R , with “φ-modules” defined as above.

Proof of Proposition 2.1.3. By applying the functor to the internal Hom be-
tween vector bundles with φ-structure, we see that it is enough to show that,
for V ∈ Ob(VecφY[r,∞](R,R+)), restriction gives an isomorphism

Γ(Y[r,∞](R, R+), V )φV =1 ∼−→ Γ(Y[r,∞)(R, R+), V )φV =1.

The vector bundle V is given by a φ-module over B[r,∞]
R,R◦ . Set for simplicity

Br,+
R = B[r,∞]

R,R◦ , Br
R = B[r,∞)

R , B+
R = B(0,∞]

R,R◦ , BR = B(0,∞)
R . Recall that a

φ-module over Br,+
R is a pair (M,φM ) of a finite projective Br,+

R -module M
and an isomorphism

φM : M ⊗Br,+
R

Bpr,+
R

∼−→ M,

which is linear over φ : Bpr,+
R

∼−→ Br,+
R . The statement amounts to the claim

that the natural map

MφM=1 −→ (M ⊗Br,+
R

Br
R)φM=1

is bijective.
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We first reduce to the case that the module M = Γ(Y[r,∞](R, R+), V ) is

finite free over Br,+
R . This reduction follows the argument in the proof of [26,

Thm. II.2.6] (cf. [52, Cor. 1.5.3]): We pick a surjection ψ : F = (Br,+
R )m → M

with N = ker(ψ) and choose a splitting F = M ⊕ N . We would like to give
the source F a φ-module structure

φF : F ⊗Br,+
R

Bpr,+
R

∼−→ F

making ψ equivariant for φ. The desired φF is a lift of φM via ψ, which has to
be an isomorphism. Hence, finding ψF is possible if there is an isomorphism

φ∗(N ⊗Br,+
R

Bpr,+
R ) = N ⊗Br,+

R ,φ Br,+
R ≃ N

of Br,+
R -modules. Consider the Grothendieck group of finite projective Br,+

R -

modules. In this, the classes of both N and N ⊗Br,+
R ,φ Br,+

R are given by

[(Br,+
R )m]− [M ]. Hence, there is such an isomorphism after possibly increas-

ing m, i.e. after adding a finite free module to F . We conclude that there
is a φ-module (N,φN ) such that M ⊕ N = F ≃ (Br,+

R )n. Using this we see
that it is enough to show that, for a φ-module (M,φM ) with M free, the
natural map

MφM=1 −→ (M ⊗Br,+
R

Br
R)φM=1

is bijective. After fixing a basis M ≃ (Br,+
R )n, we can write the map φM on M

by using an n×n matrix A = (aij) with entries in Br,+
R , i.e. φM (x) = A·φ(x).

In fact, A ∈ GLn(Br,+
R ) so the inverse A−1 also has entries in Br,+

R .
We will use some more work of Kedlaya-Liu (see [52, §5.1, §5.2]): For

r > 0 we have

B[0,r]
R [1/p] =

{
+∞∑

i≫−∞
[xi]p

i ∈ W (R)[1/p] | lim
i−→+∞

p−iα(xi)
r = 0

}
.

For x =
∑+∞

i≫−∞[xi]pi ∈ B[0,r]
R [1/p], and r ≥ s > 0, set

∥x∥s =

∥∥∥∥∥

+∞∑

i≫−∞
[xi]p

i

∥∥∥∥∥
s

= max
i

{p−iα(xi)
s}.

Here, α is the spectral norm for R, cf. (2.1.1). (In [52], ∥x∥s is denoted as

λ(αs)(x).) This induces a power-multiplicative norm on B[0,r]
R [1/p] which

also extends on various other related rings described in loc. cit., see [52,
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Prop. 5.1.2]. In particular, for each s > 0 with s ∈ [t, t′], the norm ∥ ∥s

extends to B[t,t′]
S . Therefore, for each s with r ≤ s, the norm ∥ ∥s extends to

Br
R = B[r,∞)

S which contains Br,+
R = B[r,∞]

S . The following is an extension of
[52, Lem. 5.2.11 (a)] and [25, Prop. 1.10.7]. Recall R+ = R◦ and r > 0.

Lemma 2.1.5. An element x ∈ Br
R belongs to Br,+

R if and only if

lim sup
s )−→+∞

∥x∥1/s
s ≤ 1.

Proof. Note that [52, Lem. 5.2.11 (a)] gives the corresponding statement for
BR and B+

R . On the other hand, [25, Prop. 1.10.7] implies the statement of
the lemma, when R = K is a perfectoid field. The following is a variation of
the argument in the proof of [52, Lem. 5.2.11 (a)].

1) First consider these x in Br
R which can be written in the form x =∑+∞

i=a [xi]pi, with xi ∈ R. Then

lim sup
s )−→+∞

∥x∥1/s
s = lim sup

s )−→+∞
sup

i
{p−i/sα(xi)}.

If xi ∈ R◦ then α(xi) ≤ 1. So, if xi ∈ R◦ for all i, then supi{p−i/sα(xi)} ≤
p|a|/s, so lim sups )→+∞ ∥x∥1/s

s ≤ 1. On the other hand, if there is some
i such that α(xi) > 1, then for all ϵ > 0 we can find s ≫ 0 such that

p−i/sα(xi) > 1 + ϵ and then lim sups )→+∞ ∥x∥1/s
s > 1. This gives that if

lim sups )→+∞ ∥x∥1/s
s ≤ 1, then xi ∈ R◦ for all i, and so x ∈ W (R◦)[1/p] ⊂

Br,+
R .

2) Next we show that if x ∈ Br,+
R , then lim sups )→+∞ ∥x∥1/s

s ≤ 1, which

is the one direction of the implication. Suppose r = m/n. If x ∈ Br,+
R =

W (R◦)⟨ [ϖ]n

pm ⟩[1/p], then pax = y ∈ W (R◦)⟨ [ϖ]n

pm ⟩ for some a ≥ 1. We have

∥pax∥1/s
s = p−a/s∥x∥1/s

s . Hence, it is enough to show lim sups )→+∞ ∥y∥1/s
s ≤

1 for y ∈ W (R◦)⟨ [ϖ]n

pm ⟩. But all such y are p-adic limits of elements in

W (R◦)[1/p] (so also of the type appearing in (1) above), and so this holds by

(1) and continuity. It follows that lim sups )→+∞ ∥x∥1/s
s ≤ 1 for all x ∈ Br,+

R .
3) We now deal with the converse in the case of a general element x ∈ Br

R.
We observe that for any such x, there is a ∈ Z, so that we can write x = y+z
with y =

∑+∞
i=a [yi]pi, yi ∈ R, as in (1) above, and with z ∈ Br,+

R , cf. [52, Lem.

5.2.8]. Our assumption and (2) applied to z gives that lim sups )→+∞ ∥y∥1/s
s ≤

1. Hence by (1), y ∈ Br,+
R and so x ∈ Br,+

R also.
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Choose a basis e1, . . . , en of M . For x = (x1, . . . , xn)t ∈ M ⊗Br,+
R

Br
R ≃

(Br
R)n, and s ≥ r, set

∥x∥s = max
i

{∥xi∥ | i = 1, . . . , n}.

Hence, for x ∈ M ⊗Br,+
R

Br
R with φM (x) = A · φ(x) = x, i.e. with φ(x) =

A−1 · x, we find

∥φ(x)∥1/s
s = ∥A−1 · x∥1/s

s ≤ ∥A−1∥1/s
s · ∥x∥1/s

s

where ∥B∥s = ∥(bij)∥s = maxij ∥bij∥s. For b ∈ Br,+
R , lim sups )→+∞ ∥b∥1/s

s ≤
1, by Lemma 2.1.5. Recall that the entries of A−1 are in Br,+

R so we also

have lim sups )→+∞ ∥A−1∥1/s
s ≤ 1. Also observe that

∥φ(x)∥1/s
s = ∥x∥1/s

ps .

So given ϵ > 0, there is s0 ≫ 0 such that, for s ≥ s0, we have

(∥x∥1/ps
ps )p ≤ (1 + ϵ) · ∥x∥1/s

s .

It follows from this and [52, Lem. 5.2.1] that

lim sup
s )−→+∞

∥x∥1/s
s ≤ 1.

Now use Lemma 2.1.5 to conclude that x ∈ (Br,+
R )n = M .

The second assertion, in the case when (R, R◦) is an algebraically closed
perfectoid field (C, OC), follows from [25, Thm. 11.1.9, Cor. 11.1.13] (see
also [85, Thm. 13.2.1]).

Recall that given an untilt R♯ of R, there is a canonical surjection
W (R+) → R♯+ whose kernel is generated by an element ξ = ξR♯ ∈ W (R+)
which is primitive of degree 1, comp. [85, §11.3]. Recall that B+

dR(R♯) is the
(ξ)-adic completion of W (R+)[[ϖ]−1] and that BdR(R♯) = B+

dR(R♯)[1/ξ].
The element ξ defines a closed Cartier divisor on Y(R, R+), on Y[0,∞)(R, R+),
and a Cartier divisor on the scheme Y (R, R+), where

(2.1.9) Y (R, R+) = Spec (W (R+)) \ V (p, [ϖ]).

Consider the open immersion j(R, R+) : Y (R, R+) ↪→ Spec (W (R+)). There
is also a map of locally ringed spaces Y(R, R+) → Y (R, R+).



p-adic shtukas and Shimura varieties 23

Theorem 2.1.6 (Kedlaya [51]). a) (GAGA) Pull-back along the map of lo-
cally ringed spaces Y(R, R+) → Y (R, R+) induces an exact tensor equiv-
alence between the corresponding categories of vector bundles.

b) The restriction j(R, R+)∗ induces a fully-faithful tensor functor between
the categories of vector bundles on Y (R, R+) and on Spec (W (R+)).

c) If (R, R+) = (K, K+) is a perfectoid field, then the restriction functor
j(K, K+)∗ is an equivalence between the corresponding tensor categories
of vector bundles.

Proof. Part (a) is [51, Thm. 3.8]. For part (b) see [51, Rem. 3.11], cf. [32,
Thm. 2.5]. Part (c) follows from [51, Thm. 2.7], see also [85, Prop. 14.2.6].

2.1.1. The v-sheaf associated to an adic space. Let Y be an adic
space over Spa (Zp). The v-sheaf Y♦ → Spd (Zp) over Spd(Zp) is the functor
on Perfdk which associates to S = Spa(R, R+) in Perfdk the set of isomor-
phism classes of pairs (S♯, x) where

1) (S♯, ι) = (Spa (R♯, R♯+), ι) is an untilt of S over Zp,

2) x : S♯ → Y is a Zp-morphism of adic spaces.

(See [85, 18.1]. In fact, this construction of Y♦ also applies to pre-adic spaces
Y over Spa (Zp); see [85, App. to §3] for the notion of pre-adic space. (There
is also a similar construction for pre-adic spaces over Spa (Qp) producing
v-sheaves over Spd (Qp).)

2.1.2. The v-sheaf associated to a formal scheme. Let X be a formal
scheme over Spf (Zp) which is locally formally of finite type. Consider the
corresponding adic space Xad over Spa (Zp). We can then take the corre-
sponding v-sheaf (Xad)♦ over Spd (Zp) as in §2.1.1; we denote this v-sheaf
simply by X♦.

2.1.3. The v-sheaves associated to schemes. Following [3, §2.2], we
will give two (different) constructions of v-sheaves associated to schemes
over Zp. These constructions are somewhat subtle. Suppose X = Spec (A)
is an affine scheme over Zp:

i) Let X " = Spec (A)" (“small diamond”) to be5 the v-sheaf over Spd (Zp)
which associates to the perfectoid Tate Huber pair (R, R+) the set of

5In [3], the notation used is X ⋄. Our notation is intended to make the distinction
from X ♦ more transparent.
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isomorphism classes of triples (R♯, ι, f), where (R♯, ι) is an untilt over Zp

and f : A → R♯,+ is a ring homomorphism.

ii) We let X ♦ = Spec (A)♦ (“large diamond”) to be the v-sheaf over Spd (Zp)
which associates to the perfectoid Tate Huber pair (R, R+) the set of iso-
morphism classes of triples (R♯, ι, f), where (R♯, ι) is an untilt over Zp

and f : A → R♯ is a ring homomorphism.

Both these constructions “glue” to give functors ( ) '→ ( )", resp. ( ) '→
( )♦, from the category of schemes over Spec (Zp) to the category of v-sheaves
over Spd (Zp). There is a natural transformation j : ( )" '→ ( )♦ such that

(2.1.10) jX : X " −→ X ♦

is an open immersion of v-sheaves if X is separated of finite type over Zp.
It is an isomorphism if X is proper, cf. [3, §2.2].

For schemes separated of finite type over Zp, both of these functors can
be obtained by first going through the category of (pre-)adic spaces: If X is

such a scheme, we denote by X̂ ad the adic space over Spa(Zp) = Spa (Zp, Zp)

obtained from the formal scheme X̂ given by the p-adic completion of X .
We can apply §2.1.1 to Y = X̂ ad. As in §2.1.2, we then just write (X̂ )♦

instead of (X̂ ad)♦. By [3, Rem. 2.11] we have a natural isomorphism for the
associated v-sheaves,

X " = (X̂ )♦.

On the other hand, we can consider the adic space over Spa (Zp) given by
the fiber product defined as in [48, Prop. 3.8]

X ad = X ×Spec (Zp) Spa (Zp).

We then have X ♦ = (X ad)♦. There is a natural open embedding of adic
spaces

X̂ ad ↪−→ X ad,

which is an isomorphism if X → Spec (Zp) is proper, cf. [48, Rem. 4.6
(iv)]. After applying the ♦-functor of §2.1.1, this gives the open immer-
sion (2.1.10).

Suppose now that X is a separated scheme of finite type over Qp or a
rigid analytic space over Qp. We can consider the corresponding adic space
Xad over Spa (Qp, Zp) and then its associated v-sheaf (Xad)♦ over Spd (Qp)
as in §2.1.1 above, cf. [85, 10.2]. We denote this simply by X♦. (This is a
diamond in the sense of Scholze, [85, 82].) This gives functors X '→ X♦ (on
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the category of schemes over Qp, resp. of rigid-analytic spaces over Qp); in
the case of schemes over Qp this agrees with the functor X '→ X♦ defined
above.

If X is a separated scheme of finite type over Zp, there is a natural
isomorphism of v-sheaves over Spd (Qp),

(X ♦)η := X ♦ ×Spd (Zp) Spd (Qp) = (X ⊗Zp Qp)
♦.

Similarly, we can consider the v-sheaf X " over Spd (Zp) and its “generic
fiber” which is a v-sheaf over Spd (Qp),

(X ")η := X " ×Spd (Zp) Spd (Qp) = (X̂ )♦ ×Spd (Zp) Spd (Qp).

We have a natural isomorphism of v-sheaves over Spd (Qp),

(X ")η = (X̂η)
♦,

where X̂η is Berthelot’s rigid analytic generic fiber of the formal scheme X̂ .
There is an open immersion of v-sheaves

(2.1.11) jXη
: (X ")η = (X̂η)

♦ ↪−→ (X ⊗Zp Qp)
♦ = (X ♦)η,

obtained by taking the generic fiber of (2.1.10). It also arises by applying

the ♦-functor to the open embedding X̂η ↪→ (X ⊗Zp Qp)rig of rigid-analytic
spaces.

Proposition 2.1.7 ([85, Prop. 18.4.1], cf. [63]). The functor X '→ X♦ from
flat and normal formal schemes locally formally of finite type over Spf (Zp)
to v-sheaves over Spd (Zp) is fully faithful.

Corollary 2.1.8. Let X , Y be normal schemes which are flat and separated
of finite type over Spec (Zp). Let fv : X " → Y " be a morphism between
the corresponding v-sheaves over Spd (Zp) and g : X ⊗Zp Qp → Y ⊗Zp Qp a
morphism of schemes between their generic fibers over Spec (Qp). Suppose
that the diagram of v-sheaf maps

(2.1.12)

X " ×Spd (Zp) Spd (Qp)
jXη

fv×Spd (Zp)idSpd (Qp)

(X ⊗Zp Qp)♦

g♦

Y " ×Spd (Zp) Spd (Qp)
jYη

(X ′ ⊗Zp Qp)♦
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commutes. Then there is a unique morphism f : X → Y of schemes over
Spec (Zp) such that f" = fv and g = f ⊗Zp idQp .

Proof. Using Proposition 2.1.7 we obtain that there is f̂ : X̂ → Ŷ between
formal p-adic completions which corresponds to fv, i.e. with fv = (f̂)♦ = f".
By the full-faithfulness of the ♦-functor from normal rigid analytic spaces
to v-sheaves (see [85, Prop. 10.2.3]), f̂ extends the morphism between the

rigid generic fibers induced by g. Note that the pair (g, f̂) defines a map of

underlying topological spaces |g|∪ |f̂ | : |X | → |Y | which is continuous since
it commutes with specializations. Using this and uniqueness, we see that we
can reduce showing the existence of f to the case where X and Y are affine.
But for a normal flat Zp-algebra A of finite type, we have A = (A⊗Zp Qp)∩Â

(intersection in Â ⊗Zp Qp). It now follows that g respects the Zp-integral
structures and extends to f .

The above statement motivates the following definition.

Definition 2.1.9. For a scheme X over Spec (Zp), we let

(2.1.13) X ♦/ := X " ⊔(X "×Spd (Zp)Spd (Qp)) (X ⊗Zp Qp)
♦

be the coproduct v-sheaf over Spd (Zp). Then X '→ X ♦/ gives a functor
from schemes over Spec (Zp) to v-sheaves over Spd (Zp).

Remark 2.1.10. The considerations of §§2.1.1–2.1.3 extend to the case
where the ground ring Zp is replaced by a complete discrete valuation ring
with perfect residue field. We apply this to the ring of integers in a finite
extension E of Qp, or of Q̆p.

2.1.4. Products of points. For future use we record the construction,
following [82, 85], of a cover for the v-topology of the affinoid perfectoid
S = Spa (R, R+) over k: Consider a product

∏
i∈I Vi of valuation rings Vi

with complete algebraically closed fraction field Ki of characteristic p, where
I ranges over the set of points of S, each point given by Spa (Ki, Vi) →
Spa (R, R+) (see [85, Prop. 4.2.5]). Let ϖ ∈ R+ be a pseudouniformizer for
R and denote by ϖi ∈ Vi its image under R → Ki; then ϖi is a pseudouni-
formizer for Ki. Set ϖ = (ϖi)i. Now let B+ =

∏
i∈I Vi with the ϖ-adic

topology and set B = B+[1/ϖ] ⊂
∏

i∈I Ki. The map T = Spa (B,B+) →
S = Spa (R, R+) gives a v-cover of S. We call such a T a product of points.
Note that a product of points T as above is a strictly totally disconnected
perfectoid space, in the sense of [82], see [31, Prop. 1.6]. Using v-covers
given by products of points, we can often reduce various questions to the
case S = Spa (C, C+) with C an algebraically closed field.
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2.2. Shtukas

We recall the definition of Scholze’s p-adic mixed characteristic shtukas over
perfectoid spaces.

Definition 2.2.1. Let S = Spa (R, R+) ∈ Perfdk, i.e. S is affinoid perfectoid
over k, and let S♯ = Spa (R♯, R♯+) be an untilt of S over W (k). A shtuka
over S with one leg at S♯ is a vector bundle V over the analytic adic space
S

.
× Zp together with an isomorphism

φV : Frob∗
S(V )|

S
.
×Zp\S♯

∼−→ V |
S

.
×Zp\S♯

which is meromorphic along the closed Cartier divisor S♯ of S
.
× Zp.

The rank of the vector bundle V is also called the height of the shtuka.
Note that

(2.2.1) (S
.
× Zp)

♦ = S × Spd(Zp)

and that the untilt S♯ corresponds to a section of S × Spd(Zp) → S, or
equivalently to a morphism S → Spd (Zp), see [85, §11.2, §11.3]. Hence,
instead of saying “a shtuka over S with one leg at S♯”, we may equivalently
say “a shtuka over S/ Spd (Zp)”.

Let us remark here that, by using Proposition 2.1.2, one sees that the no-
tion of shtuka extends to general perfectoid spaces S over k with a morphism
S → Spd (Zp) and that sending S/ Spd (Zp) to the groupoid of shtukas over
S/ Spd (Zp) gives a stack for the v-topology.

To simplify notations, we often write φ for FrobS .

Definition 2.2.2. A minuscule shtuka of height h and dimension d over S
with one leg at S♯ is a shtuka (V ,φV ) of height h over S with one leg at S♯

such that

V ⊂ φV (Frob∗
S(V ))

with φV (Frob∗
S(V ))/V of the form (iS♯)∗(W ), where W is a vector bundle

of rank d over S♯.

We note that in the theory of Shimura varieties, it is not enough to
only consider minuscule shtukas because in the context of G-shtukas (cf. §2.4
below), even if µ is a minuscule cocharacter of G, there may not exist faithful
representations r : G → GLh such that r ◦ µ is a minuscule cocharacter
of GLh.
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2.2.1. Shtukas and BKF-modules. We recall the related notion of
a Breuil-Kisin-Fargues (BKF-) module, comp. [85, Def. 11.4.3] (for alge-
braically closed nonarchimedean fields).

Recall ([85, Def. 17.5.1]) that an integral perfectoid ring is a p-complete
Zp-algebra R such that Frobenius is surjective on R/p, such that there is an
element π ∈ R with πp = pu for a unit u ∈ R×, and such that the kernel of
θ : W (R♭) → R is a principal ideal (ξ). Here R♭ = lim←−x )→xp

R.

Remarks 2.2.3. (i) Let S = Spa (R, R+) ∈ Perfdk, i.e., S is affinoid per-
fectoid over k, and let S♯ = Spa (R♯, R♯+) be an untilt of S. Then R♯+ is
integral perfectoid (see [7, Lem. 3.20, in combination with Lem. 3.9 and the
discussion in Rem. 3.8]).

(ii) If R is integral perfectoid with pR = 0, then R = R♭ and (ξ) = (p) ⊂
W (R), cf [7, Lem. 3.10]. Hence R is a perfect ring. Conversely, a perfect ring
in characteristic p is integral perfectoid.

Definition 2.2.4. Let R be an integral perfectoid ring. A Breuil-Kisin-
Fargues (BKF-)module over R is a vector bundle V over Spec (W (R♭)) to-
gether with an isomorphism

φV : φ∗(V )[1/ξ]
∼−−→ V [1/ξ].

If S = Spa (R, R+) ∈ Perfdk and S♯ = Spa (R♯, R♯+) is an untilt of
S, we also speak of a BKF-module over S with leg along S♯ instead of a
BKF-module over R♯+.

Remark 2.2.5. In [85, 7], the terminology “Breuil-Kisin-Fargues (BKF-)
module over R” is also used for a vector bundle Vinf over Spec (W (R♭))
together with an isomorphism

φVinf
: φ∗(Vinf)[1/φ(ξ)]

∼−−→ Vinf [1/φ(ξ)].

For example, such a BKF-module is naturally associated to a p-divisible
group over R using Dieudonné theory, see [85, Thm. 17.5.2]. To distinguish
from the above, we will say that this has leg along φ(ξ) = 0 (or along
φ−1(S♯)). Since φ : W (R♭) → W (R♭) is an isomorphism, there is an exact
equivalence between the categories of the two types of BKF-module, which
is obtained by twisting the W (R♭)-module structure: V = (φ−1)∗(Vinf) =
W (R♭) ⊗φ−1,W (R♭) Vinf . (See also [85, Rem. 11.4.6].)

Definition 2.2.6. Let S = Spa (R, R+) ∈ Perfdk and let S♯ = Spa (R♯, R♯+)
be an untilt of S. Let V be a BKF-module over S with leg at S♯. The shtuka
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over S associated to V with one leg at S♯ is the shtuka obtained by pull
back along the map of locally ringed spaces

Y[0,∞)(R, R+) −→ Spec (W (R+)).

We then also say that V is an extension of the shtuka. In general, this
extension is not uniquely determined by the shtuka.

Proposition 2.2.7. Let S = Spa (R, R+) ∈ Perfdk. Let S♯ = Spa (R♯, R♯+)
be an untilt of S. The restriction functor from the category of BKF-modules
over S with leg at S♯ to the category of shtukas over S with leg at S♯ is
faithful. It is fully faithful if R+ = Ro. It is an equivalence of categories if
S = Spa (C, OC) for an algebraically closed non-archimedean extension C
of k.

Proof. By Theorem 2.1.6 (b), restriction along

j(R, R+) : Y (R, R+) ↪→ Spec (W (R+))

is a fully faithful tensor functor from the category of vector bundles on
Spec (W (R+)) to the category of vector bundles on Y (R, R+). By Theo-
rem 2.1.6 (a), there is an equivalence of categories between the categories
of vector bundles on Y(R, R+) and on Y (R, R+). The first assertion now
follows since the restriction along Y[0,∞)(R, R+) ↪→ Y(R, R+) is also faith-
ful. By Proposition 2.1.3, it is fully faithful when R+ = R◦, but not in
general, by the comment after the statement of Proposition 2.1.3. The last
statement is Fargues’ theorem. See [85, Thm. 14.1.1] which states this result
(and more) when C♯ has characteristic 0. The statement in the case that C♯

has characteristic p is shown by the same argument, as outlined in the proof
of [85, Thm. 14.1.1].

2.2.2. The Fargues-Fontaine curve. For S = Spa (R, R+) affinoid per-
fectoid over k, we can consider the (adic) relative Fargues-Fontaine curve
XFF,S defined as the quotient

(2.2.2) XFF,S = Y(0,∞)(S)/(FrobS)Z.

Let (V ,φV ) be a shtuka over S with one leg at S♯. Then, there is r > 0
such that Y[r,∞)(S) does not intersect the divisor given by S♯. Note that
Y[r,∞)(S) → XFF,S is surjective for all r > 0. The restriction of V to
Y[r,∞)(S) descends to a vector bundle VFF on the quotient XFF,S . Also,
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there is r′ > 0 such that Y(0,r′](S) does not intersect the divisor given by S♯

and, as above, we can descend the restriction of (V ,φV ) to Y(0,r′](S) to a
vector bundle V ′

FF on XFF,S (see [85, §14.1 and Prop. 22.1.1]). We can see, by
pulling back to products of points, that both these functors (V ,φV ) '→ VFF

and (V ,φV ) '→ V ′
FF from the category of shtukas over S to the category of

vector bundles over XFF,S are faithful. (They are not fully faithful.)
Recall that XFF,S makes sense for all perfectoid spaces S, and sending

S to the groupoid of vector bundles on XFF,S defines a v-stack ([26, Prop.
II.2.1]).

2.3. Families of shtukas

We will also want to consider “families” of shtukas. This leads to the follow-
ing definition.

Definition 2.3.1. Let F be a v-sheaf over Spd(Zp). A shtuka (V ,φV ) over
F is a section of the v-stack given by the groupoid of shtukas over F . In other
words, a shtuka over F is a functorial rule which to any point in x ∈ F(S),
where S ∈ Perfdk, associates a shtuka (VS ,φVS

) over S with one leg at the

untilt S♯ given by S
x−→ F → Spd (Zp).

As an example, let X be an adic space over Spa (Zp) and denote as
before, in Section 2.1.1, by X♦ → Spd (Zp) the corresponding v-sheaf. Then
we obtain the notion of a shtuka over X♦. We can think of the shtuka V
as having one leg at the “universal” untilt given by X♦ → Spd(W (k)) →
Spd(Zp).

Definition 2.3.2. Let OE be a complete dvr of mixed characteristic with
perfect residue field. Let X be a scheme over OE . A shtuka over X is a
shtuka over the v-sheaf (over Spd (OE)),

X ♦/ := X " ⊔(X ")η (X ⊗OE
E)♦,

cf. (2.1.13). In other words, a shtuka over X is given by a pair consisting
of a shtuka over the “small diamond” v-sheaf X " and a shtuka over the
v-sheaf (X ⊗OE

E)♦ together with an isomorphism between their pull backs
to (X ")η = X " ×Spd (OE) Spd (E).

Remark 2.3.3. a) If p is a unit in Γ(X , OX ), then a shtuka over X is
the same as a shtuka over the v-sheaf X ♦. By contrast, if p is nilpotent in
Γ(X , OX ), then a shtuka over X is a shtuka over the v-sheaf X ". Often,
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for clarity, we will still specify the v-sheaf (X ♦/, X ♦ or X "), that we are
using when talking of shtukas over schemes.

b) By a shtuka over a formal scheme X over Spf (OE) we mean a shtuka
over the v-sheaf (Xad)♦. In the above description of Definition 2.3.2, if X →
Spec (OE) is separated of finite type, a shtuka over X " is given by a shtuka

over the formal scheme X̂ given by the p-adic completion, see §2.1.3.
c) There is a natural map of v-sheaves over Spd (OE)

X ♦/ −→ X ♦.

This is an isomorphism if X → Spec (OE) is proper, cf. [3, §2.2]. It is not
surjective in general, as one can see in the example of X = Spec (OE [t]).
One could also consider shtukas over the v-sheaf X ♦; the “smaller” v-sheaf
X ♦/ is better suited to our application.

Example 2.3.4. Let G be a p-divisible group of height h and dimension
d over X , where X is a scheme over Spec (W (k)). Then there is an asso-
ciated shtuka E(G ) of height h and dimension d over X " with one leg, as
follows. We may assume that X = Spec (A). Let S = Spa (R, R+) ∈ Perfdk.
Suppose that (S♯, x) is a point of X " over Spd (Zp), given by an untilt
S♯ = Spa (R♯, R♯,+) of S and x∗ : A → R♯+.

Recall that using [85, Thm. 17.5.2] we can associate to a p-divisible
group G over Spec (R♯+) a finite projective W (R+)-module Minf = Minf(G )
together with an isomorphism

φMinf
: φ∗(Minf)[1/φ(ξ)]

∼−→ Minf [1/φ(ξ)].

Note that, in this, the leg is along φ(ξ) = 0. We have

Minf ⊂ φMinf
(φ∗(Minf)) ⊂ Minf [1/φ(ξ)].

The module Minf is obtained using Dieudonné theory. If pR♯+ = (0) so
that R♯+ = R+, then Minf(G ) is canonically the W (R+)-linear dual of the
value of the contravariant Dieudonné crystal D(G ) of G at W (R+), i.e.
Minf(G ) = D(G )(W (R+))∗. For example, we have Minf(µp∞) = W (R+),
with φ given by p−1.

Then the value of the shtuka E(G ) on (S♯, x) is given by the following
shtuka ES on S with one leg at S♯. Namely, let ES be equal to the restriction
to the complement Y[0,∞)(S) = Spa (W (R+)) \ {[ϖ] = 0} of the pull-back
(φ−1)∗(Minf(x∗(G )),φM(x∗(G ))). In other words, E(G ) is the shtuka associ-
ated to the BKF-module (with leg along ξ = 0)

(M(x∗(G )),φM(x∗(G ))) = (φ−1)∗(Minf(x
∗(G )),φMinf(x∗(G ))).
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Remark 2.3.5. Note that the previous construction does not apply to the
“large diamond” X ♦. For example, we do not know how to define for a
p-divisible group over Spec (Fp[t]) a shtuka over Spec (Fp[t])♦ that extends
the shtuka over Spec (Fp[t])" given above. This is one reason that we mainly
consider shtukas over X ", or, in the mixed characteristic case, over X ♦/.

2.3.1. Shtukas in characteristic p. We will see that shtukas in char-
acteristic p have a Dieudonné module like behaviour. We introduce the fol-
lowing definition.

Definition 2.3.6. Let X be a perfect quasi-compact and quasi-separated
k-scheme. A meromorphic Frobenius crystal over X is a pair (M ,φM ),
where M is a finitely generated projective module over the sheaf of rings
W (OX ) and φM is an isomorphism

φM : φ∗(M )[1/p]
∼−→ M [1/p].

Here φ denotes the Frobenius on W (OX ). The pair (M [1/p],φM ) is the
corresponding Frobenius isocrystal over X .

Remark 2.3.7. By Remark 2.2.3 (ii), we see that a meromorphic Frobenius
crystal over the perfect k-scheme Spec (A) is the same as a BKF-module over
the integral perfectoid ring A.

A meromorphic Frobenius crystal (M ,φM ) over the perfect k-scheme
X gives a shtuka over X ", as follows. Suppose X = Spec (A) is affine.
Let S = Spa (R, R+) ∈ Perfdk. Then a point of X " with values in S is
given by an untilt S♯ = Spa (R♯, R♯+), where R♯+ is a k-algebra, and a
homomorphism x∗ : A → R♯+. Then R♯ = R and the kernel of the natural
map W (R+) → R♯+ is generated by ξ = p. By extension of scalars, the map
W (A) → W (R+) defines therefore a BKF-module M ♮ = M ⊗W (A) W (R+)

over S with leg along S♯, which in turn defines a shtuka over S with leg
along S♯, cf. Definition 2.2.6.

Theorem 2.3.8. The functor given by the construction above gives an exact
fully faithful tensor equivalence from the category of meromorphic Frobenius
crystals over the perfect k-scheme X to the category of shtukas over X ".

Proof. 6We first show that the functor is fully faithful. We can quickly reduce
to the affine case X = Spec (A).

6A different proof of this Theorem is given in [33], see loc. cit. Thm. 10.4. The
proof in [33] still uses Sen theory as in II) below.
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Let ψ : (Msht,φMsht
) → (Nsht,φNsht

) be a homomorphism between the
shtukas corresponding to the meromorphic Frobenius crystals (M ,φM ) and
(N ,φN ). Set (R, R+) = (A((t1/p∞

)), A[[t1/p∞
]]). Recall that here A[[t1/p∞

]]
is the (t)-adic completion of the perfect algebra A[t, t1/p, t1/p2

, . . .]. The ele-
ments of A[[t1/p∞

]] are represented as power series

∑

i∈Z[1/p]≥0

ait
i

with ai ∈ A and with support (i.e. set of indices i for which ai ̸= 0) which is
either finite, or forms an increasing unbounded sequence. Then, A((t1/p∞

)) =
A[[t1/p∞

]][1/t]. Consider the v-cover π : S = Spa (R, R+) → Spec (A)".
The homomorphism ψ gives, by evaluating on S, a homomorphism of

vector bundles over Y[0,∞)(R, R+) = Y[0,∞)(S),

ψ(S) : Msht(S) −→ Nsht(S).

These bundles come by restriction from vector bundles M (S) and N (S)
over Y[0,∞](R, R+) = Y(R, R+). Note that R+ = A[[t1/p∞

]] = R◦, so we can
apply Proposition 2.1.3 to r > 0. Using this and then glueing, we see that
ψ(S) uniquely extends to a homomorphism of vector bundles over Y(R, R+)
which respects the Frobenius structures,

ψ(S) : M (S) −→ N (S).

Recall M (S) is the pull-back of M under Y(R, R+) → Spec (W (R+)) →
Spec (W (A)), and similarly for N (S). By Lemma 2.1.6 (a), this comes from
a unique W (R+)-linear homomorphism

ψ(R+) : M ⊗W (A) W (R+) −→ N ⊗W (A) W (R+).

It remains to descend this to a W (A)-homomorphism. It is enough to show
that the image under ψ(R+) of M ⊂ M ⊗W (A) W (R+) lands in N ⊂
N ⊗W (A) W (R+). Since N is finite projective, there is a W (A)-module N ′

such that N ⊕ N ′ ≃ W (A)n. Using N ⊂ N ⊕ N ′ we can view ψ(R+) as
taking values in (N ⊕ N ′) ⊗W (A) W (R+) ≃ W (R+)n. Since

(N ⊕ N ′) ∩ (N ⊗W (A) W (R+)) = N ,

it is enough to show that the image of ψ(R+) lies in N ⊕ N ′ ≃ W (A)n.
Consider k-algebra homomorphisms x∗ : A → K(x) with K(x) a perfect
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field which induce x∗ : A[[t1/p∞
]] → K(x)[[t1/p∞

]]. Since A is perfect, A ↪→∏
x K(x) for a set of x, and to show that an element w(t) of W (A[[t1/p∞

]]) =∏
i≥1 A[[t1/p∞

]] is “constant”, i.e. it lies in W (A) =
∏

i≥1 A, it is enough to
show that x∗(w(t)) ∈ W (K(x)) for all x. Indeed,

W (A[[t1/p∞
]]) ∩

∏

x

W (K(x)) = W (A)

with the intersection taking place in
∏

x W (K(x)[[t1/p∞
]]). This shows that

it is enough to prove that x∗ψ(R+) is in W (K(x)), for all x as above, and
it allows us to reduce to the case that A is a field K. Now both M and N
are finite free, so ψ(R+) is given by a matrix (rij) with entries in W (R+) =

W (K[[t1/p∞
]]) which we try to show are in W (K). We use that ψ(S) comes

with descent data along π, i.e. we have the identity

(2.3.1) p∗1(ψ(S)) = p∗2(ψ(S))

over S ×Spec (K)♦ S. Note that

O+(S ×Spec (K)♦ S) = O+(D̃∗
K((t1/p∞))) = K[[t1/p∞

1 , t1/p∞

2 ]],

where D̃∗
K((t1/p∞)) is the perfectoid punctured open disk over K((t1/p∞

)) (com-

pare to the proof of [85, Prop. 18.3.1]). Let rij ∈ W (R+) be an entry of the
matrix giving ψ(R+) as above. Using (2.3.1) above, we see that the images
of rij under the two natural maps

W (R+) −→ Γ(Y[0,∞)(S), O) −→ Γ(Y[0,∞)(S ×Spec (K)♦ S), O)

agree. Since

W (O+(S×Spec (K)♦S))=W (K[[t1/p∞

1 , t1/p∞

2 ]]) ↪→Γ(Y[0,∞)(S×Spec (K)♦S), O),

the images of rij under the two natural maps

W (R+) = W (K[[t1/p∞
]]) −→ W (K[[t1/p∞

1 , t1/p∞

2 ]])

given by t '→ t1, t '→ t2, agree. This implies that rij has, at the same time,
only powers of t1 and only powers of t2, so it is constant, i.e. belongs to
W (K). By the above, this completes the proof of full-faithfulness.

We now proceed to show that the functor gives an equivalence of cate-
gories by showing it is also essentially surjective.
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I) We first treat the case that A = K is an algebraically closed field. Let
(V ,φV ) be a shtuka of rank d over Spec (K)". This gives a corresponding
vector bundle VFF of rank d over the (absolute) Fargues-Fontaine curve
XFF,Spec (K)" . This is meant in the sense described in [2] (since there is not
really a relative FF curve XFF,Spec (K)"): there is a category whose objects
we think of as the “vector bundles over XFF,Spec (K)"”. The objects are

given by descent from a perfectoid v-cover, as follows. Set L = K((t1/p∞
)),

which is perfectoid. Then π : T = Spa (L, OL) → X " = Spec (K)" is
a v-cover and π∗(V ,φV ) is a shtuka over T with descent data along π.
By restriction from Y[0,∞)(L, OL) to Y(0,∞)(L, OL) followed by descent, we
obtain a corresponding vector bundle E over the Fargues-Fontaine curve
XFF,T = XFF,L. The descent datum along π gives an isomorphism over
XFF,T×X "T ,

p∗1(E ) ≃ p∗2(E ).

This describes VFF. In particular, by definition, E = π∗(VFF ).
Anschütz [2] shows that the category of vector bundles on XFF,Spec (K)"

is equivalent to the category of Frobenius isocrystals over W (K)[1/p]. Hence,
there is a Frobenius isocrystal (V,φV ) over W (K)[1/p] such that E (with
its descent datum) is obtained from (V,φV ). It follows, by the construction
of this equivalence, that the pull-back of (V,φV ) under

Y(0,∞)(L, OL) −→ Spec (W (OL)[1/p]) −→ Spec (W (K)[1/p])

agrees with the restriction of π∗(V ,φV ) from Y[0,∞)(L, OL) to Y(0,∞)(L, OL).
In particular, we can choose a framing of π∗(V ,φV ) over Spa (L, OL) which
respects the v-descent data, and thus obtain a Spa (L, OL)-point of the mod-
uli stack of shtukas with framing Mint

GLd,b,µ together with v-descent data, i.e.

a point of Mint
GLd,b,µ with values in Spec (K)" = Spd (K). (See §3.2.1 for

the notation. Here, the element b is determined by (V,φV ) and we take µ
sufficiently large.) The argument in the proof of [32, Prop. 2.30] now ap-
plies and implies that this point is given by a Spec (K)-valued point of a
corresponding affine Deligne-Lusztig variety (see §3.3, and especially The-
orem 3.3.3 (a)). This translates to the fact that the shtuka over the whole
Y[0,∞)(L, OL) comes from a meromorphic Frobenius crystal (M,φM ); here
M is a W (K)-lattice in V and φM = φV |M [1/p]. This shows that our functor
is essentially surjective.

II) We now consider the general affine case X = Spec (A), with A a
perfect k-algebra. Let (V ,φV ) be a shtuka of rank d over X ". We consider
the v-cover

S = Spa (A((t1/p∞
)), A[[t1/p∞

]]) −→ Spd (A).
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We have a surjective map of v-sheaves

S × Spd (Zp) −→ Spd (A) × Spd (Zp).

We also have an isomorphism of v-sheaves over Spd (Zp),

(2.3.2) Spd (A) × Spd (Zp) ≃ Spa (W (A))♦,

obtained by the argument in the proof of [85, Prop. 11.2.1]. Here we write
Spa (W (A)) for Spa (W (A), W (A)) where W (A) is equipped with the p-adic
topology; this is a pre-adic space in the sense of [85, App. to §3]. By the
above V gives a section of the v-stack of vector bundles over Spa (W (A))♦.
Set

(B,B+) = (W (A)[1/p], W (A)).

Note that as in [85, Rem. 13.1.2], the open U = Spa (B,B+) is an sousper-
fectoid analytic adic space. In fact, we can obtain a perfectoid cover

Û∞ −→ U♦ = Spa (B,B+)♦

of the v-sheaf U♦ as follows.
Denote by Ô∞ = Ẑp[µp∞ ] the p-adic completion of the ring of integers

Zp[µp∞ ] in the Z×
p -extension K∞ = Qp(µp∞) of Qp. Write, as usual, Z×

p =

(Z/pZ)××(1+pZp) if p > 2, and Z×
2 = Z/2Z×(1+4Z2) for p = 2. For p > 2

set Γ = Γ0 = 1 + pZp ≃ Zp and Γn = 1 + pn+1Zp ≃ pnZp, so that Kn :=
(K∞)Γn = Qp(µpn+1), On := Zp[µpn+1 ]. For p = 2, set Γn = 1 + 2n+2Z2.

Then Ô∞ supports a continuous Z×
p -action. We now consider

Û∞ = Spa (B⊗̂ZpÔ∞, B+⊗̂ZpÔ∞).

This is perfectoid. Indeed, set B̂∞ = B⊗̂ZpÔ∞; this is a Tate ring with
pseudo-uniformizer 1 − ζp2 . Its subring of bounded elements is

B̂◦
∞ = B̂+

∞ = B+⊗̂ZpO∞ = W (A)⊗̂ZpÔ∞.

Since Ẑp[µp∞ ]/(p) ≃ Fp[x1/p∞
]/(xp−1), we have

B̂◦
∞/(p) ≃ A[x1/p∞

]/(xp−1)

and Frobenius is surjective on B̂◦
∞/(p). Hence, B̂∞ is perfectoid and Û∞ =

Spa (B̂∞, B̂+
∞) is a perfectoid space. The tilt Û ♭

∞ of Û∞ is

Û ♭
∞ ≃ Spa (A((t1/p∞

)), A[[t1/p∞
]]).
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The map Û∞ → Spa (W (A))♦ = Spd (A) × Spd (Zp) is given by the map

Spa (A((t1/p∞
)), A[[t1/p∞

]]) → Spd (A) and the choice of Û∞ as an untilt of
Spa (A((t1/p∞

)), A[[t1/p∞
]]).

By restricting V along the “generic fiber”

U♦ = Spa (W (A))♦ ×Spd Zp
Spd Qp −→ Spa (W (A))♦

we obtain a section of the v-stack of vector bundles over U♦. By v-descent
of vector bundles over perfectoid spaces, we see that its value at Û∞ → U♦

is given by an actual vector bundle over the affinoid perfectoid space Û∞,
given, in turn, by a finite projective B̂∞-module M̃ . This comes with descent
data for the v-cover Û∞ → U♦. Here, one needs to be careful: Since U is
not perfectoid, the v-descent datum does not automatically give a module
over B. However, we can use that Û∞ → U is a pro-étale Z×

p -torsor. It is

enough to first show that the descent datum for Û∞ → Un is effective for
some Γn; then we can proceed with usual étale descent for Un → U . We first
note that using [29, Cor. 5.4.42] we see that there is n and a finite projective
Rn-module Pn with an isomorphism

Pn⊗̂Un
Û∞ ≃ M̃.

This allows to express the descent datum along Û∞ → Un by a continuous
1-cocycle

c : Γn −→ AutB̂∞
(Pn⊗̂Bn

B̂∞)

for the Γn-action on B̂∞ coming from the Γn-action on O∞. For simplicity,
we can assume Γ = Γn by a base change and omit the subscript n throughout
the rest of the argument. After this change, we would like to show that this
descent datum is effective and gives an B-module M with a Γ-equivariant
isomorphism

M⊗̂BB̂∞
∼−→ M̃.

By “usual” étale descent, we see that the effectivity is true if c is cohomol-
ogous to a cocycle c′ which is trivial on a subgroup of finite index of Γ.

By (I) the result holds (i.e. the module M̃ obtained from a shtuka over
Spd (A) has effective descent datum) when A is an algebraically closed
field. Therefore, this is the case after base changing by A → k′, where
k′ is any algebraically closed field. In general, we can understand the set
H1

cont(Γ, AutB̂∞
(P ⊗̂BB̂∞)) using the methods of Sen. In particular, the refer-

ence [86, §2], details a version of this method for Banach Qp-algebras, which
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is sufficiently general for our purposes. (In fact, Sen considers the more com-
plicated case of continuous cocycles for the Galois group Gal(Q̄p/Qp) and
tensors with Cp = Q̄∧

p ; here we only need to consider Γ = Gal(K∞/Qp) and

tensor with K̂∞.) First of all, by loc. cit. §2.3, there is a continuous cocycle

c∞ : Γ −→ AutB∞(P ⊗B B∞) ⊂ AutB̂∞
(P ⊗̂BB̂∞)

which is cohomologous to c. Using c∞, Sen defines in loc. cit. §2.3, an “op-
erator” ψc,B ∈ EndB(P ) (denoted φ there) whose vanishing is equivalent
to the triviality of the restriction of the cohomology class of c on a fi-
nite index subgroup of Γ (see loc. cit. §2.5). The specialization of ψc,B by
B = W (A)[1/p] → W (k′)[1/p] is ψc,W (k′)[1/p]. This is zero by the above, for
all A → k′, with k′ algebraically closed. Hence, since A is reduced and P is
a projective module, ψc,B = 0 and the descent is effective. The Frobenius

structure on the module M̃ respects the descent datum and so it descends
to a Frobenius structure on M .

So far our construction produced a finite projective W (A)[1/p]-module
M with

φM : φ∗M
∼−→ M

which induces the pull-back (restriction) of the shtuka by

U♦ = Spa (W (A)[1/p], W (A))♦ −→ Spd (A) × Spd (Zp).

It remains to show that there is a lattice, i.e. a projective finite W (A)-
submodule M ⊂ M on which φM is meromorphic, such that the shtuka is
induced by M . Using the v-cover

S = Spa (A((t1/p∞
)), A[[t1/p∞

]]) −→ Spd (A),

we see that the shtuka over S gives a finite projective W (A((t1/p∞
)))-module

M∞ ⊂ M ⊗W (A)[1/p] W (A((t1/p∞
)))[1/p]

with descent data. We will show that the desired W (A)-module is M =
M ∩M∞, the intersection taking place in M⊗W (A)[1/p]W (A((t1/p∞

)))[1/p] =
M∞[1/p]. We first show that M is a lattice in M , i.e. a finite projec-
tive W (A)-module with M [1/p] = M . By [8, Thm. 4.1], it is enough to
prove this after base changing to a (scheme-theoretic) v-cover of the per-
fect scheme Spec (A). By [50, Thm. 6.1], there is such a v-cover, given by
some algebra homomorphism A → Ã, such that the base change M̃ :=
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M ⊗W (A)[1/p] W (Ã)[1/p] is finite free, M̃ ≃ W (Ã)[1/p]h. The base change

M̃∞ = M∞ ⊗W (A((t1/p∞ ))) W (Ã((t1/p∞
))) corresponds to a Ã((t1/p∞

))-point
of the Witt affine Grasmannian of [8] which parametrizes W (A′)-lattices in
M ⊗W (A)[1/p] W (A′)[1/p] ≃ W (A′)[1/p]h, for a variable perfect A-algebra
A′. The existence of the descent data on the shtuka implies that this point
is invariant under the Ã-automorphism δ of Ã((t1/p∞

)) determined by t '→
tp. Using the representability of the Witt affine Grassmannian of [8] and

Ã((t1/p∞
))
δ=1

= Ã, we can now see that this Ã((t1/p∞
))-point is induced by a

uniquely determined Ã-valued point; this corresponds to a finite projective
W (Ã)-lattice M̃ ⊂ M̃ which is then necessarily M̃ = M̃ ∩ M̃∞. We con-
clude as above by v-descent that M = M ∩ M∞ is a lattice in M . Now we
observe that, since M [1/p] = M ⊗W (A) W (A)[1/p] = M , the pair (M ,φM )
is a meromorphic Frobenius crystal. By the construction above, this pair
induces the shtuka (V ,φV ) over Spd (A).

Finally, we verify the exactness properties. The exactness of the original
functor is easy since meromorphic Frobenius crystals are supported on finite
projective modules. Showing that we have an exact equivalence needs more
care. We start with the following lemma.

Lemma 2.3.9. Let B → B′ be an injective ring homomorphism with the
property that the corresponding map Spec (B′) → Spec (B) is surjective on
closed points. A complex

M• : 0 −→ M1 −→ M2 −→ M3 −→ 0

of finite projective B-modules is exact if and only if the base change M•⊗BB′

is exact.

Proof. This follows by an argument as in [1, Lem. 11.4] which we repeat
here. It is enough to show that the exactness of M• ⊗B B′ implies that
M• is exact, so we assume M• ⊗B B′ is exact. First observe that, since
M1 ⊗B B′ → M2 ⊗B B′ is injective and the Mi are projective and B → B′ is
injective, the map M1 → M2 is also injective. Now let Q = coker(M2 → M3).
Then Q is finitely generated over B. If m ⊂ B is a maximal ideal then, by our
assumption, there is a maximal ideal m′ ⊂ B′ above m. We have Q⊗B B′

m′ =
(0) which, by using Nakayama’s lemma, gives Qm = (0). Therefore, since
Qm = (0) holds for all m, Q = (0). We can now write M2 = N ⊕ M3 and
apply the same argument to the cokernel of the composition

M1 −→ M2 = N ⊕ M3
pr−→ N
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to show it is also trivial. So, M1 → N is surjective and hence an isomor-
phism.

We will apply this Lemma to the natural map B = W (A) → B′ =
W (A((t1/p∞

))), where A is a perfect k-algebra. The condition on closed points
is satisfied: Every maximal ideal of W (A) is the inverse image m + (p)
of a maximal ideal m of A via W (A) → A = W (A)/(p). The kernel of
W (A((t1/p∞

))) → A((t1/p∞
)) → (A/m)((t1/p∞

)) is a maximal ideal that lies
over m + (p).

To show that we have an exact equivalence we can quickly reduce to the
affine case X = Spec (A). We suppose we have a sequence M• : 0 → M1 →
M2 → M3 → 0 of finite projective W (A)-modules underlying a sequence
of meromorphic Frobenius crystals over A. We assume that the induced
sequence of shtukas over Spec (A)" is exact and we would like to show M• is
exact. By our assumption, the induced sequence of shtukas over the v-cover
S = Spa (A((t1/p∞

)), A[[t1/p∞
]]) → Spec (A)" is also exact. By restricting

these shtukas from Y[0,∞)(S) to the affinoid Y[0,1](S), we obtain an exact
sequence of finite projective Γ(Y[0,1](S), O)-modules. By the definition of
the functor, this sequence is obtained by base changing M• along W (A) →
Γ(Y[0,1](S), O). Recall the natural ring homomorphisms

Γ(Y[0,∞)(S), O) −→ Γ(Y[0,1](S), O) −→ W (A((t1/p∞
))).

The composition W (A) → Γ(Y[0,1](S), O) → W (A((t1/p∞
))) is the natu-

ral map W (A) → W (A((t1/p∞
))). The above now shows that the sequence

of W (A((t1/p∞
)))-modules obtained by base changing M• along W (A) →

W (A((t1/p∞
))) is also exact. We now apply Lemma 2.3.9 to B = W (A) →

B′ = W (A((t1/p∞
))). We obtain that M• is exact, which implies the re-

sult.

Remark 2.3.10. Let G be a p-divisible group over Spec (OC), where C
is a complete non-archimedean algebraically closed field. Let κ = OC/mC

be the residue field and set Ḡ = G ⊗OC
κ and i : Spec (κ) → Spec (OC).

Then, under the equivalence of Theorem 2.3.8, the pull-back i∗(E(G )) over
Spec (κ)" of the shtuka E(G ) over Spec (OC)" described in Example 2.3.4,
corresponds to the meromorphic Frobenius crystal over κ given by

(2.3.3) D♮(Ḡ ) = (φ−1)∗(D(Ḡ )∗).

Here, D(Ḡ ) = D(Ḡ )(W (κ)) is the contravariant Dieudonné W (κ)-module of
Ḡ , and ( )∗ denotes the W (κ)-linear dual.
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2.3.2. Shtukas and BKF-modules, revisited. Here we explain a cer-
tain extension of the shtuka associated to a BKF-module as in Defini-
tion 2.2.6.

Let S = Spa (R, R+) be affinoid perfectoid over Fp and suppose that
S♯ = Spa (R♯, R♯+) is an untilt of S over Zp. Then R♯+ is integral perfec-
toid; let (ξ) be the kernel of W (R+) → R♯+, cf. §2.2.1. There is a func-
tor from BKF-modules over R♯+ to shtukas over the v-sheaf Spd (R♯+) =
Spa (R♯+, R♯+)♦ → Spd (Zp) which is given as follows. Let (A, A+) ∈ Perfdk,
and let the Spa (A, A+)-point of Spd (R♯+) be given by Spa (A♯, A♯+) →
Spa (R♯+, R♯+) induced by R♯+ → A♯+. This induces a map W (R+) →
W (A+). Now the functor is given by base change via W (R+) → W (A+)
followed by pullback along Y[0,∞)(A, A+) → Spec (W (A+)).

Proposition 2.3.11. The above functor from BKF-modules over R♯+ to
shtukas over the v-sheaf Spd (R♯+) = Spa (R♯+, R♯+)♦ → Spd (Zp) is fully
faithful. It is an equivalence of categories when (R♯, R♯+) = (K♯, K♯+), where
K♯ is a perfectoid field with K♯+ an open and bounded valuation ring.

Proof. Let (M ,φM ) and (N ,φN ) be two BKF-modules over R♯+, so M
and N are finite projective W (R+)-modules. Let

ψ : (Msht,φMsht
) −→ (Nsht,φNsht

)

be a homomorphism between the corresponding shtukas over Spd (R♯+) →
Spd (Zp). Then Msht, Nsht, give global sections of the v-stack of vector
bundles over Spd (R+) × Spd (Zp) ≃ Spa (W (R+))♦, cf. (2.3.2). Indeed, let
T = Spa (A, A+) be affinoid perfectoid over k and let a : T → Spd (R+) be
given by a continuous A+ → R+. Then the untilt R♯+ gives Spd (R+) →
Spd (Zp) and we obtain by composition an untilt T ♯ = Spa (A♯, A♯+) with
R♯+ → A♯+ ([31, Lem. 4.7]); this gives a′ : T → Spd (R♯+). Then the
restriction of the global section corresponding to Msht under T ×Spd (Zp) =
Y[0,∞)(A, A+)♦ → Spd (R+)× Spd (Zp) is given by the evaluation (a′)∗Msht

of the shtuka at a′.
Consider now the pullbacks of Msht and Nsht via the map Y(R, R+)♦ →

Spa (W (R+))♦. To prove that ψ is induced by a unique map M → N
over W (R+), we first observe that by Theorem 2.1.6, it is enough to show
the corresponding statement for the vector bundles over the sousperfectoid
analytic adic space Y(R, R+) which are obtained by pulling back M and
N along Y(R, R+) → Spec (W (R+)). Recall that the structure sheaf of a
sousperfectoid analytic adic space is a sheaf for the v-topology (this follows
by extending [85, Thm. 17.1.3] or [52, Thm. 3.5.5], see [41]). This implies
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that the global sections of N ⊗ M−1 over Y(R, R+) agree with the global
sections of Nsht⊗M−1

sht over Y(R, R+)♦. Since by the above, ψ gives a global
section of Nsht ⊗ M−1

sht over Y(R, R+)♦ we obtain a unique corresponding
global section of N ⊗ M−1 over Y(R, R+). This implies the desired fully-
faithfulness.

The last statement giving an equivalence of categories in the case of
(K♯, K♯+), follows from Proposition 2.7.4, which we will show later, and the
remark immediately after it.

Remark 2.3.12. We summarize as follows the functors introduced above.
Let R♯+ be an integral perfectoid ring, with tilt R+. Let S = Spa (R, R+)
and S♯ = Spa (R♯, R♯+). Then we have a commutative diagram of functors,

{BKF-modules over R♯+}

restr/eval restr

{shtukas over Spd (R♯+)/ Spd (Zp)}
eval {shtukas over S, with leg at S♯}.

Here, the arrow “restr” is referred to in Proposition 2.2.7, and is the re-
striction induced by the map Y[0,∞)(R, R+) → Spec (W (R+)): this func-

tor is faithful and, when R♯+ = R♯◦, even fully faithful. The functor “re-
str/eval” is referred to in Proposition 2.3.11 and is given by the evaluation on
(A, A+) ∈ Perfdk via restriction along Y[0,∞)(A, A+) → Spec (W (R+)): this
functor is fully faithful and an equivalence in the case of a perfectoid field.
It is reasonable7 to expect that this functor is often an equivalence of cate-
gories. The arrow “eval” is the evaluation on Spa (R, R+) → Spd (R♯, R♯+).
In the proofs, the following various kinds of “vector bundles” play a role:
vector bundles over Spec (W (R+)), vector bundles over the adic spaces
Y(R, R+) and Y[0,∞)(R, R+), and sections of the v-stack of vector bundles
over the v-sheaf Spa (W (R+))♦.

2.4. G-shtukas

2.4.1. Background. We give some preliminaries and fix notations and
definitions.

7This indeed follows from [36, Thm. 4.25] for any integral perfectoid ring R♯+

(use loc. cit., Prop. 2.19, to relate perfect-prismatic F -crystals of loc. cit to our
BKF-modules). As a consequence, the proof of Proposition 2.7.6 can be simplified.
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We let G be a connected reductive group over Qp and {µ} a G(Q̄p)-
conjugacy class of cocharacters µ : GmQ̄p

→ GQ̄p
. Denote by E the field of

definition of {µ}, i.e. the fixed field of all σ ∈ Gal(Q̄p/Qp) for which σ(µ) is
G(Q̄p)-conjugate to µ. In the sequel, we will also write µ for the conjugacy
class. Let k be an algebraic closure of the residue field κ = κE of E.

Let

Pµ = {g ∈ G | lim
t−→∞

ad(µ(t))g exists}

be the parabolic associated to µ. We consider also Pµ−1 which is the opposite
parabolic. We set

(2.4.1) FG,µ = G/Pµ,

which is a smooth projective variety defined over the reflex field E.
Let [b] be the σ-conjugacy class of an element b ∈ G(Q̆p). We will always

assume that [b] is neutral acceptable for µ−1, i.e., [b] ∈ B(G, µ−1). In other
words, νb ≤ (µ−1)dom and κ(b) = −µ♯, with the notation of [77]. If µ is
minuscule, we will call (G, b, µ) as above a local Shimura datum, cf. [85, Def.
24.1.1], comp. [77].

2.4.2. Local models. Let G be a reductive group over Qp, with smooth
parahoric model G over Zp. Consider the “Beilinson-Drinfeld style affine
Grassmannian” v-sheaves

(2.4.2) GrG,Spd(E), GrG,Spd(OE)

over Spd (E), resp. over Spd (OE), cf. [85, Ch. 20]. As in [85, Prop. 20.2.3]
and if µ is minuscule, there is a closed immersion of the diamond associated
to the flag variety of parabolic subgroups of type µ,

F♦
G,µ = GrG,Spd(E),µ ⊂ GrG,Spd(E).

Assume µ is minuscule. The following definition occurs implicitly in [85, Ch.
21]: we define the v-sheaf local model as the closure of F♦

G,µ in GrG,Spd(OE),
in the sense of v-sheaves (i.e., the minimal closed superset whose pullback
to any perfectoid space is stable under generalizations, see [3, 2.1]). We use
the following notation,

(2.4.3) Mv
G,µ = Mv

µ = GrG,Spd(OE),µ.

The following theorem was conjectured by Scholze-Weinstein, cf. [85, Conj.
21.4.1].
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Theorem 2.4.1 (Gleason-Lourenço [35]). There exists a proper flat scheme
Mloc

G,µ over Spec (OE) with G-action and reduced special fiber such that its
associated v-sheaf over Spd(OE) is equal to Mv

G,µ. (Note that by [85, Rem.

21.4.2], Mloc
G,µ is necessarily a normal scheme, and that, by [85, Prop. 18.4.1],

such a scheme is unique if it exists.)

We call Mloc
G,µ the (scheme) local model.

Remark 2.4.2. Before [35], the most complete result on this conjecture was
due to Anschütz, Gleason, Lourenço and Richarz [3], comp. also [65]. They
proved that the conjecture holds for all (G, µ) when p ≥ 5 and in many cases
when p = 2, 3.

There is an a priori different general approach to (scheme) local models,
if G splits over a tamely ramified extension of Qp, or more generally, if G is
essentially tamely ramified as defined in Remark A.3.1, cf. [73, 61]. Conjec-
turally (see [44, Conj. 2.16]), the local models of [73] satisfy the conditions of
Theorem 2.4.1 (provided they are slightly adjusted when p divides |π1(Gder)|
by using a z-extension as in [44, §2.6].) Hence, this approach should also give
Mloc

G,µ as above. This conjectural agreement is proven in [44, Thm. 2.15], in
almost all cases when (G, µ) is of abelian type, which is our main case of
interest, see also [65]. By definition [37, Def. 9.6], “of abelian type” means
that there is a central lift (G1, µ1) of (Gad, µad) which is of local Hodge type,
i.e., admits a closed embedding ρ : G1 ↪→ GLn with ρ◦µ1 minuscule, cf. [77,
Rem. 5.5 (i)].

2.4.3. Witt vector affine Grassmannian. Recall the Witt vector affine
Grassmannian GrW

G of [97, 8], which is an ind-perfectly proper scheme over
k. Suppose that S = Spa (R, R+) ∈ Perfdk and take S♯ = S, i.e. the untilt
is in characteristic p. Then, since B+

dR(R♯) = W (R) and ξ = p, we have a
natural bijection

GrG,Spd(OE)(S)
∼−−→ (GrW

G )"(S)

functorial in S (see [85, §20.3], especially the passage after Prop. 20.3.2).
Here, as before, (GrW

G )" is the v-sheaf associated to GrW
G . For a perfect

(discrete) k-algebra R, we set R" := Spa (R, R)♦. We obtain

GrG,Spd(OE)(R
")

∼−−→ (GrW
G )"(R") = GrW

G (R).

Here, the equality (GrW
G )"(R") = GrW

G (R) is obtained by the full-faithfulness
of the functor Z '→ Z" from perfect schemes to v-sheaves.
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Composing with Mv
G,µ(R") ↪→ GrG,Spd(OE)(R

") gives

(2.4.4) ι : Mv
G,µ(R") −→ GrW

G (R).

If K is a (discrete) algebraically closed field of characteristic p, this gives

Mv
G,µ(K") −→ GrW

G (K) = G(W (K)[1/p])/G(W (K)).

If Mloc
G,µ above exists, then Mv

G,µ(K") = Mloc
G,µ(K).

By [3, Thm. 6.16], the map (2.4.4) identifies Mv
G,µ(K") with the union

inside G(W (K)[1/p])/G(W (K)),

(2.4.5) Mv
G,µ(K") =

⋃

w∈Adm(µ)G

GrW
G,w(K).

Here, Adm(µ)G denotes the admissible set in the double quotient WG\W̃/WG
of the Iwahori-Weyl group W̃ of G, and GrW

G,w is the Schubert cell in GrW
G

corresponding to w. (For the abelian type case, see also [65, Chapt. 4, Cor.
4.24], which also gives this, provided that the conditions, for p = 2, 3, in
Remark 2.4.2 are satisfied.)

2.4.4. G-shtukas. We recall Scholze’s notion of a G-shtuka over a perfec-
toid space, cf. [85].

Definition 2.4.3. Let S ∈ Perfdk, i.e., S is a perfectoid space over k, and
let S♯ be an untilt of S over OĔ . A G-shtuka over S with one leg at S♯ is a
pair

(2.4.6) (P,φP),

where

1) P is a G-torsor over the analytic adic space S
.
× Zp,

2) φP is a G-torsor isomorphism

(2.4.7) φP : Frob∗
S(P)|S

.
×Zp\S♯

∼−→ P|S
.
×Zp\S♯

which is meromorphic along the closed Cartier divisor S♯ ⊂ S
.
× Zp.

We say that the G-shtuka P over S with one leg at S♯ is bounded by µ if the
relative position of φP(Frob∗

S(P)) and P at S♯ (in this order!) is bounded
by Mv

G,µ.
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Let us explain the meaning of the term “bounded by Mv
µ”, comp. [85,

Def. 20.3.5]. For S = Spa (C, OC), with C an non-archimedean complete
algebraically closed field, the complete local ring ÔY[0,∞)(S),x at the point x

that corresponds to the untilt S♯ = Spa (C♯, OC♯) is a discrete valuation ring
with residue field C♯. In fact, ÔY[0,∞)(S),x is isomorphic to B+

dR(C♯) (recall

that this is W (C♯) if C♯ ≃ C has characteristic p.) This ring is strictly
henselian so every G-torsor over its spectrum is trivial. Let S = Spa (R, R+)
be affinoid perfectoid over k, and let (P,φP) be a G-shtuka over S with one
leg at S♯. Let x : T = Spa (C, OC) → S be a point over Spd (OE) with C
algebraically closed, as above. By the above, we can choose a trivialization

β : Frob∗
T (PT )| Spec (ÔY[0,∞)(T ),x)

∼−→ G × Spec (ÔY[0,∞)(T ),x)

of the pull-back of the G-torsor Frob∗
T (PT ) to the completion of T

.
× Zp

along the corresponding untilt T ♯. Fixing such a trivialization, we can con-
sider the pair

(PT , β · φ−1
PT

)

where

φPT
: Frob∗

T (PT )|T
.
×Zp\T ♯

∼−→ (PT )|T
.
×Zp\T ♯ .

This pair gives a G-torsor and a trivialization of its restriction to the com-
pletion Spec (Frac(ÔY[0,∞)(T ),x)). By [85, Def. 20.3.1, Prop. 20.3.2], such a

pair (together with the untilt T ♯), corresponds to an T -valued point of
GrG,Spd(OE). The boundedness condition on the relative position is that,
for all T → S as above, this point factors through Mv

µ = GrG,Spd(OE),µ ↪→
GrG,Spd(OE). To be clear, the point Frob∗

T (PT ) is the base point of the affine
Grassmannian, and (φP)−1(PT ) is considered as a variable torsor to be
compared with Frob∗

T (PT ).

Let us compare the above definition with Definition 2.2.1.

Lemma 2.4.4. Let G = GLh and µd = (1(d), 0(h−d)). There is a functorial
equivalence of categories between G-shtuka over S/ Spd (Zp) bounded by µd

and shtuka over S/ Spd (Zp) of height h and dimension d.

Proof. We use the equivalence of categories between the category of GLh-
bundles and the category of vector bundles of rank h. The statement then
follows from the description of GrGLh,Spd (Zp),µd

in [85, §19, §20], see in par-
ticular [85, Prop. 19.4.2] and its proof.
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By Proposition 2.1.1, for S = Spa (R, R+) affinoid perfectoid, restriction

gives an exact equivalence between vector bundles over Spa (R, R+)
.
× Zp

and vector bundles over Spa (R, R◦)
.
× Zp. Using the Tannakian interpreta-

tion of G-torsors as in [85, Thm. 19.5.1], it also follows that restriction gives
an equivalence between G-shtukas over Spa (R, R+) and Spa (R, R◦).

The notion of a G-shtuka bounded by µ generalizes to any perfectoid
space S over k with a map S → Spd (OE). Also, by [85, Prop. 19.5.3], sending
S/ Spd (OE) to the groupoid of G-shtukas over S/ Spd (OE) (bounded by µ)
gives a v-stack.

2.4.5. G-BKF-modules. We can define the related notion of a G-Breuil-
Kisin-Fargues (BKF-) module.

Definition 2.4.5. Let R be an integral perfectoid ring, cf. §2.2.1. A G-
Breuil-Kisin-Fargues (BKF-)module over R is a G-torsor P over the scheme
Spec (W (R♭)) together with an isomorphism

φP : φ∗(P)[1/ξ]
∼−−→ P[1/ξ].

Here, again, ξ is a primitive generator of the kernel of the map W (R♭) → R.
If S = Spa (R, R+) ∈ Perfdk, i.e., S is affinoid perfectoid over k, and

S♯ = Spa (R♯, R♯+) is an untilt of S, we also speak of a G-BKF-module over
S with leg along S♯ instead of a G-BKF-module over R♯+, cf. Definition 2.2.4.

As in Definition 2.2.6, a G-BKF module over S ∈ Perfdk with leg along
the untilt S♯ of S defines a G-shtuka P over S with one leg at S♯. We then
say that the shtuka P extends. Note that since the restriction functor from
Y[0,∞](S) to Y[0,∞)(S) is not fully faithful in general (cf. the comment after
Proposition 2.1.3), such an extension may not be unique. If P is bounded
by µ, in the sense above, then we will call the extension a (G, µ)-Breuil-
Kisin-Fargues module.

2.4.6. Specializations of G-shtukas. Let C be a non-archimedean com-
plete algebraically closed field over OE with a valuation of rank 1 and let
OC be its valuation ring. Set S = Spa (C♭, O♭

C) and let P be a G-shtuka
over S with leg at Spa (C, OC). We can obtain a corresponding Frobenius
G-isocrystal over the residue field κ of OC as follows. For r ≫ 0, the φ-G-
torsor given by P|Y[r,∞)(S) descends to a G-torsor over the Fargues-Fontaine

curve Y(0,∞)(S)/φZ, cf. Proposition 2.2.7. By Fargues’ theorem [85, Thm.
14.1.1], this corresponds to a Frobenius G-isocrystal over κ.
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Proposition 2.4.6. Let (P,φP) be a G-shtuka over Spa (C♭, O♭
C)/ Spd (OE)

with one leg at Spa (C, OC). The G-shtuka P extends, in the sense of Def-
inition 2.2.6, to a unique G-BKF-module P♮ over OC , i.e., a module over
W (O♭

C). Base changing P♮ via W (O♭
C) → W (O♭

C/mC♭) = W (κ) gives a
G-torsor over Spec (W (κ)),

P0 = P♮ ⊗W (O♭
C) W (κ),

with Frobenius

φP0
: Frob∗(P0)[1/p]

∼−−→ P0[1/p].

Proof. Using Fargues’ theorem as above, we also see that the φ-G-torsor
P|Y[r,∞)(S) extends to a φ-G-torsor over Y[r,∞](S), for r ≫ 0. By the Ex-
tension Conjecture A.1.2 proved by Anschütz [1], P extends to a G-torsor
P♮ over Spec (Ainf) = Spec (W (O♭

C)) (this torsor is actually trivial). The
Frobenius φP extends to a meromorphic map

φP♮ : φ∗(P♮)[1/ξ]
∼−−→ P♮[1/ξ]

which then defines the G-BKF-module. The second part of the statement
follows since ξ ≡ p mod W (mC♭).

Remark 2.4.7. This proposition is the basis for the construction of the
specialization map for moduli of local shtuka as in [31, 32], see Theorem 3.3.3
below. We will explain this in detail later, see Remark 3.3.7. In fact, we can
see that if P is bounded by µ, then the map φP0

: Frob∗(P0)[1/p]
∼−−→

P0[1/p] also has pole bounded by µ.

2.4.7. Families of G-shtukas. We will also want to consider “families” of
G-shtukas, cf. §2.3. The following definition is modelled on the corresponding
definition of a family of “vector space” shtukas of §2.3.1.

Definition 2.4.8. Let F be a v-sheaf over Spd(OE). A G-shtuka (P,φP)
over F , resp. a G-shtuka (P,φP) over F with leg bounded by µ, is a section
of the v-stack given by the groupoid of G-shtukas over F , resp. is a section
of the v-stack given by the groupoid of G-shtukas over F with leg bounded
by µ. In particular, it is a functorial rule which to any point x of F with
values in S ∈ Perfdk associates a G-shtuka (PS ,φPS

) over S with one leg

at the untilt S♯ given by S
x−→ F → Spd (OE), in the resp. case bounded

by Mv
µ.
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We can now define G-shtuka over adic spaces, schemes, or formal schemes
over OE , as G-shtukas over the corresponding v-sheaves, by generalizing the
“vector space” shtuka definitions of §2.3. For example, suppose that X is
a scheme over Spec (OE). Following §2.3.2, we can define a G-shtuka over
X to be a G-shtuka over the v-sheaf X ♦/ over Spd (OE). Note that the
corresponding notion of a vector space shtuka (V ,φV ) of rank n of §2.3
corresponds to taking G = GLn.

Applying the Tannaka formalism to Theorem 2.3.8, we obtain the fol-
lowing example.

Example 2.4.9. Let X = Spec (A), with A a perfect k-algebra. Then
there is an equivalence of categories between the category of G-shtukas over
X " and the category of G-torsors P on Spec (W (A)) equipped with an
isomorphism

φP : φ∗(P)[1/p]
∼−→ P[1/p].

2.5. Shtukas and local systems

In this subsection, we consider shtukas in characteristic zero. We explain a
relation of shtukas with local systems which support a suitable sheaf theo-
retic Hodge-Tate period map.

2.5.1. G-shtukas and de Rham-Tate period maps. Suppose S =
Spa (R, R+) is in Perfdk, i.e. S is affinoid perfectoid over k, and let S♯ =
Spa (R♯, R♯+) be an untilt of S over OĔ . Suppose now that the leg S♯ is over
Spa (E, OE), i.e. that S → Spd (OE) factors through S → Spd (E). Then,

there exists r > 0 such that Y[0,r](S) ⊂ S
.
× Zp \ S♯. As before, in what

follows, we will often denote FrobS by φ, for simplicity.
Let (P,φP) be a G-shtuka over S, with leg at S♯. The restriction of

(P,φP) to Y[0,r](S) defines a ϕ−1-equivariant G-torsor on Y[0,r](S). By [85,
Prop. 22.6.1], this defines a pro-étale G(Zp)-torsor P over S with an isomor-

phism of ϕ−1-equivariant G-torsors over Y[0,r](S),

P|Y[0,r](S) ≃ P ×G(Zp) (G ×Spa (Zp) Y[0,r](S)).

We say that the G(Zp)-torsor P is associated to P.

The φ−1-G-torsor P|Y[0,r](S) descends to a G-torsor P0 over the relative

Fargues-Fontaine curve XFF,S = Y(0,∞)(S)/ϕZ. This gives, after pullback

and extension, a φ-G-torsor over Y[0,∞)(S) = S
.
× Zp,

(2.5.1) P0 = P ×G(Zp) (G ×Spa (Zp) Y[0,∞)(S)).
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In other words, P0 is a G-shtuka over S with no legs.
By construction, the G-torsors P0 and P over S

.
× Zp agree away from⋃

n≥1 φ
n
S(S♯). In fact, by the argument in the proof of [85, Prop 12.4.1], there

is a unique φ−1-isomorphism

(2.5.2) iP : P|Y[0,∞)(S)\
⋃

n≥1 φ
n(S♯) ≃ P0|Y[0,∞)(S)\

⋃
n≥1 φ

n(S♯).

In particular, iP gives an isomorphism of P and P0 over the completion
of Y[0,∞)(S) along the leg S♯.

Suppose that the pro-étale G(Zp)-torsor P on S is trivial and choose a

trivialization a : P ≃ G(Zp)×S. This gives a φ-trivialization of the G-shtuka
with no legs,

α0 : G ×Spa (Zp) (S
.
× Zp)

∼−→ P0.

By the above, α0 composed with i−1
P induces a trivialization α of the pullback

of P to the completion of S
.
× Zp along S♯. Now consider the pair

(Frob∗
S(P), α−1 ◦ φP).

This gives an S-point of GrG,Spd (E) over Spd (E), cf. [85, Def. 20.2.1, Prop.
20.2.2], which we denote by DRT(P)(a). This construction produces a
G(Zp)-equivariant map of v-sheaves, the de Rham-Tate map,

(2.5.3) DRT(P) : P −→ GrG,Spd (E).

Proposition 2.5.1. Let S/ Spd (E) be perfectoid. The functor

(P,φP) '−→ (P, DRT(P))

sending the G-shtuka (P,φP) over S/ Spd (E) with one leg to the pair con-
sisting of a pro-étale G(Zp)-torsor P on S and a G(Zp)-equivariant map

DRT(P) : P → GrG,Spd (E) over Spd (E) gives an equivalence between the
category of G-shtukas over S/ Spd (E) with one leg and the category of such
pairs (P, D).

Proof. The case of S = Spa (C♭), where C♭ ∈ Perfdk is an algebraically
closed field, and where G = GLn, is the content of [85, Prop. 12.4.6]. In this
case, a pair (P, D) corresponds to a finite free Zp-module T equipped with
a B+

dR-lattice Ξ ⊂ T ⊗Zp BdR. In the general case, by pro-étale descent, we
may assume that P is trivial. Given the description of GrG,Spd (E) provided
by [85, Prop. 20.3.2] (which uses Beauville-Laszlo glueing), we then see that
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the proof of [85, Prop. 12.4.6] goes over without change, see also [14, 3.5].
(But beware that, compared to [85], we have the leg on a different Frobenius
twist.)

Suppose now that the G-shtuka (P,φP) has leg bounded by µ, which we
assume minuscule. Then we can see that DRT(P)(a) lies in8 GrG,Spd (E),µ−1 .
The Bia'lynicki-Birula construction gives an isomorphism

GrG,Spd (E),µ−1
∼−→ F♦

G,µ−1 .

Composing DRT(P) with this isomorphism, we obtain the Hodge-Tate map,

(2.5.4) HT(P) : P −→ F♦
G,µ−1 .

Proposition 2.5.2. Let S/ Spd (E) be perfectoid. Fix (G, µ), where µ is
minuscule. The functor

(P,φP) '−→ (P, HT(P))

sending the G-shtuka P over S/ Spd (E) with one leg bounded by µ to the
pair consisting of a pro-étale G(Zp)-torsor P on S and a G(Zp)-equivariant

map HT(P) : P → F♦
G,µ−1 over Spd (E) gives an equivalence between the

category of G-shtukas over S/ Spd (E) with one leg bounded by µ and the
category of such pairs (P, H).

2.5.2. Variant for adic spaces. Let Y be a locally Noetherian adic space
over Spa (E, OE). Later, we will apply the set-up to Y = Xad, the adic space
associated to a scheme X of finite type over E.

Let (P,φP) be a G-shtuka over Y ♦/ Spd (E). For S ∈ Perfdk, with S-
valued point (S♯, x : S♯ → Y ) of Y ♦, the v-sheaf P gives PS , a G-shtuka
over S with leg at S♯. Since the construction of the previous paragraph,

PS '−→ (P(S), DRT(P)(S))

is functorial in S, it associates to P a pair (P, DRT(P)), consisting of a
G(Zp)-torsor P over Y ♦ and a G(Zp)-equivariant map of v-sheaves DRT :
P → GrG,Spd (E). If P has leg bounded by the minuscule µ then, by com-
posing with the Bia'lynicki-Birula morphism, we obtain

(2.5.5) HT : P −→ F♦
G,µ−1 .

8Note the inverse in µ−1 here. This is due to the fact that P is the base point
of the affine Grassmannian and φP(Frob∗(P)) is considered variable.
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The previous proposition immediately gives:

Proposition 2.5.3. Let Y be an adic space over Spa (E, OE) which is locally
Noetherian. Fix (G, µ), where µ is minuscule. The functor P '→ (P, HT(P))
gives an equivalence between the categories of:

1) G-shtukas (P,φP) over Y ♦ → Spd(E) with one leg bounded by µ, and

2) pairs (P, H) consisting of a pro-étale G(Zp)-torsor P over Y ♦ and a G(Zp)-

equivariant map of v-sheaves H : P → F♦
G,µ−1 over Spd E. !

2.6. Shtukas and de Rham local systems

Here, as an application of the last subsection, we show how to construct
a shtuka which is “associated” to a de Rham p-adic local system over a
smooth scheme (or smooth rigid analytic variety) which is defined over a
finite extension E of Qp or of Q̆p. More generally, the construction works
when E is replaced by any discretely valued complete non-archimedean field
extension of Qp with perfect residue field.

2.6.1. de Rham local systems. Let X be a smooth scheme (of finite
type) or a smooth rigid-analytic variety over E. Let Y = Xad be the corre-
sponding analytic adic space over Spa (E, OE).

Recall from [81, §6] the definitions of the sheaves of rings OY , ÔY , Ô+
Y ,

ÔY ♭ , Ô+
Y ♭ , Ainf,Y = W (Ô+

Y ♭), B+
dR, BdR, OB+

dR,Y, OBdR,Y, on the pro-étale
site Yproet. Consider the morphisms of sites ν : Yproet → Yét and λ : Yét →
Yan, where Yan is the site of open subsets of Y . There is a homomorphism
of sheaves of rings

(2.6.1) θ : Ainf,Y −→ Ô+
Y

whose kernel is locally principal on Yproet, i.e. locally generated by a single
element, and hence the sheaf of rings Ainf,Y [1/ ker(θ)] makes sense. The
reader is referred to [81, §4, §6, §7] for more details. In particular, [81, Lem.
7.3] shows how pulling back by ν, resp. λ, allows us to identify between
various possible notions of “vector bundles” over Y .

If L is a lisse Zp-local system over Yét, denote by L̂ the corresponding

Ẑp-local system over Yproet. We set

(2.6.2) DdR(L) = ν∗(L̂ ⊗Ẑp
OBdR,Y).
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By [62], this is a vector bundle E = DdR(L) over Y with a (separated and
exhaustive decreasing) filtration by locally direct summands Fili, i ∈ Z, and
an integrable connection ∇ satisfying Griffiths transversality with respect
to the filtration. There is a OBdR,Y-linear “comparison” map

(2.6.3) adR(L) : ν∗DdR(L) ⊗OY
OBdR,Y −→ L̂ ⊗Ẑp

OBdR,Y.

Definition 2.6.1 ([81, 62, Def. 8.3]). The local system L is de Rham if
adR(L) is an isomorphism.

We note that this property only depends on the Qp-local system V :=
L[1/p]. Then L is associated to (DdR(L), Fili,∇), i.e.

L̂ ⊗Ẑp
B+

dR
∼= Fil0

(
DdR(L) ⊗OY

OBdR,Y

)∇=0
.

Set M := L̂ ⊗Ẑp
B+

dR and also

M0 := (DdR(L) ⊗OY
OB+

dR,Y)∇=0,

which is also a B+
dR,Y -local system. The B+

dR,Y -local systems M and M0 have

filtrations FiljM = ker(θ)jM and FiljM0 = ker(θ)jM0 obtained from the
filtration on B+

dR,Y. For this filtration, we have

gr0M = L̂ ⊗Ẑp
ÔY .

Both M and M0 are “B+
dR,Y-lattices in the same BdR,Y-space” via a canonical

comparison isomorphism

c : L̂ ⊗Ẑp
BdR,Y = M ⊗B+

dR,Y
BdR,Y

≃−−−→ M0 ⊗B+
dR,Y

BdR,Y.

By [81, Prop. 7.9],

(M ∩ FiliM0)/(M ∩ Fili+1M0) ⊂ griM0

identifies with

Fil−iDdR(L) ⊗OY
ÔY (i) ⊂ DdR(L) ⊗OY

ÔY (i),

for all i ∈ Z.
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Example 2.6.2. Let f : A → X be an abelian scheme. We consider the
Zp-local system on Y = Xad, given by the p-adic étale cohomology L =
R1f∗,ét(Zp). We refer to [14, Thm. 2.2] which uses [81]; by loc. cit. (or [62])
this Zp-local system is de Rham. We have

DdR(L) = H1
dR(A/Y )

equipped with its Gauss-Manin connection and its Hodge filtration. Also

M := L̂ ⊗Ẑp
B+

dR,Y = H1(A, B+
dR,A),

which is compared to

M0 =
(
H1

dR(A/Y ) ⊗OY
OB+

dR,Y

)∇=0
.

The comparison c identifies

M ∩ FiljM0/(M ∩ Filj+1M0) ⊂ grjM0

and

Fil−jH1
dR(A/Y ) ⊗OY

ÔY (j) ⊂ H1
dR(A/Y ) ⊗OY

ÔY (j).

In particular, we obtain M0 ⊂ M. This also gives an ascending filtration on
gr0M = L̂⊗Ẑp

ÔY defined by Fil−j(L̂⊗Ẑp
ÔY ) = M∩FiljM0/(Fil1M∩FiljM0).

So, we have

ker(θ)M ⊂ M0 ⊂ M,

with the corresponding filtration on M/ ker(θ)M = gr0(M) = L ⊗Zp ÔY ,
with graded pieces

grj(L̂ ⊗Ẑp
ÔY ) = grjH1

dR(A/Y ) ⊗OY
ÔY (−j).

This is the Hodge-Tate filtration:

M/M0 = R0f∗(Ω
1
A/Y ) ⊗OY

ÔY (−1),

M0/ ker(θ)M = R1f∗(OA) ⊗OY
ÔY .

We continue with a general de Rham Zp-local system L over X. Since
Y = Xad, we write, for simplicity, X♦/ Spd (E) instead of Y ♦/ Spd (E) =
(Xad)♦/ Spd (E). Let n be the Zp-rank of L. Then the sheaf of trivializations
(“frames”)

Isom(Zn
p × Y, L)
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is a GLn(Zp)-torsor over Yproet. For a point of X♦/ Spd (E) with values in

S/ Spd (E), given by x : S♯ → Y = Xad over E, we set

P(S) = {α : (Zn
p )S♯

≃−−→ x∗(L)}.

This gives a v-sheaf which is a pro-étale GLn(Zp)-torsor over X♦.

Proposition 2.6.3. Let L be a de Rham Zp-local system of rank n over the
smooth E-scheme X, with associated pro-étale GLn(Zp)-torsor P over X♦.

There is a unique GLn(Zp)-equivariant map of v-sheaves over Spd (E),

DRT(L) : P −→ GrGLn,Spd (E),

such that:
A point α ∈ P(S) with values in an affinoid perfectoid S = Spa (R, R+)

over κE with x : S♯ = Spa (R♯, R♯+) → Y over E is mapped to the point of
GrGLn,Spd (E) given by the B+

dR(R♯)-lattice equal to the inverse image under

α of x∗(M0) ⊂ x∗(M0) ⊗B+
dR(R♯) BdR(R♯) = x∗(L) ⊗Zp BdR(R♯):

α−1(x∗(M0)) ⊂ BdR(R♯)n α⊗1−−→ x∗(L) ⊗Zp BdR(R♯).

Proof. Here, the pull-backs x∗(M0) and x∗(M) via x : S♯ = Spa (R♯, R♯+) →
Y = Xad are first considered as sheaves for the pro-étale topology (as de-
fined in [81, §3]), over the affinoid perfectoid S♯ = Spa (R♯, R♯+). By descent
(see the proof of [14, Thm. 3.4.5]) these sheaves are given by finite projec-
tive B+

dR(R♯)-modules which we also denote by x∗(M0) and x∗(M), and the
construction above produces a point of GrGLn,Spd (E) as claimed. Note that

there is a pro-étale cover U = lim←−i
Ui → Y such that Û = Spa (R♯, R♯+) is

an affinoid perfectoid mapping to Y as above (see [81, Def. 4.3, Prop. 4.8]),
over which P has a point; then Û♦ → X♦ is v-surjective and the uniqueness
follows.

Definition 2.6.4. Let L be a de Rham Zp-local system of rank n over
the smooth E-scheme X. The shtuka (V ,φV ) of rank n over X♦/ Spd (E)
corresponding to L is the vector space shtuka whose corresponding GLn-
shtuka is given by the pair (P, DRT(L)) via Proposition 2.5.1.

Suppose that DRT(L) factors through GrGLn,Spd (E),µ−1 , where µ is a
minuscule coweight of GLn. Equivalently, we have, proétale locally on S,

α−1(M0) = g · B+
dR(R♯)n, g ∈ GLn(B+

dR(R♯))µ(ξ)−1GLn(B+
dR(R♯)).

(2.6.4)
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We have a GLn(Zp)-equivariant map of v-sheaves over Spd (E),

(2.6.5) HT(L) : P −→ GrGLn,Spd (E),µ−1 ≃ F♦
GLn,µ−1 .

Then, in the above, the shtuka (V ,φV ) has leg bounded by µ and also
corresponds to the pair (P, HT(L)) in the sense of Proposition 2.5.2.

2.6.2. Generalization to torsors. By the Tannakian formalism we can
extend the previous construction from local systems to torsors. More pre-
cisely, fix G over Qp as before with parahoric model G, and let P be a
pro-étale G(Zp)-cover over the smooth scheme X over E. For simplicity, we
denote also by P the corresponding pro-étale G(Zp)-torsor over Y ♦ = X♦,

cf. [85, §9.3]. This amounts to giving, functorially, a pro-étale G(Zp)-cover
P(S) over S, for every S ∈ Perfdk and every S-valued point of X♦/ Spd (E),
i.e., (S♯, x) with x : S♯ → Xad, as above. Here, for S = Spa (R, R+), the
torsor P(S) is obtained by pulling-back P along x, followed by the tilting
equivalence.

If ρ : G → GL(W ) is a finite dimensional Qp-rational representation,
then there exists a Zp-lattice Λ ⊂ W such that ρ(G(Zp)) ⊂ GL(Λ). Set Lρ,Λ

for the corresponding Zp-local system over Yproet whose torsor of frames is
given by

GL(Λ)
G(Zp)

× P.

Definition 2.6.5. We say that the pro-étale G(Zp)-cover P is de Rham, if
for each (ρ,Λ) as above the local system Lρ,Λ is de Rham.

This definition is independent of Λ. It is enough to check this property
on one single faithful representation ρ.

Suppose that P is a de Rham pro-étale G(Zp)-cover over X. Then Eρ :=
DdR(Lρ,Λ) with its connection and filtration only depends on L[1/p] and
ρ : G → GL(W ), and not on the lattice Λ ⊂ W . For each classical point
x of X with residue field E(x) finite over E, this compares with Fontaine’s
theory in the sense that the fiber DdR(Lρ,Λ)x is canonically isomorphic to
the value DdR((Lρ)x̄) of Fontaine’s functor applied to the representation of

Gal(E(x)/E(x)) given by the fiber (Lρ)x̄.
The functor ρ '→ (Eρ,x, Fili(Eρ,x)) from representations of G to filtered

vector spaces defines a conjugacy class {µP,x}, defined over E(x), of a co-
weight µP,x of GE(x). If x, x′ are in the same connected component of X, then

{µP,x} = {µP,x′}. Assume that for all classical points x of X, the conjugacy
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class {µP,x} is constant, equal to {µ}. Then [81, Prop. 7.9] implies that the
above construction gives a G(Zp)-equivariant map of v-sheaves over Spd E,

(2.6.6) HT : P −→ GrG,Spd (E),µ−1 = F♦
G,µ−1 .

Definition 2.6.6. Let P be a de Rham pro-étale G(Zp)-cover over the
smooth E-scheme X and assume that {µP,x} = {µ} is constant. The G-
shtuka (P,φP) over X♦/ Spd (E) with one leg bounded by µ corresponding
to P is the G-shtuka corresponding to P and the morphism (2.6.6) via Propo-
sition 2.5.3.

Remark 2.6.7. The map HT : P → F♦
G,µ−1 obtained from a de Rham pro-

étale G(Zp)-cover can be thought of as a sheaf analogue of Scholze’s Hodge-
Tate period map for Shimura varieties. This construction is also given by
Hansen in [39]. Hansen actually shows that P is given by a diamond. Here,
we only consider P as a v-sheaf and we do not really need any additional
geometric structure.

2.7. Maps of G-shtukas

Our main goal is to show that maps between shtukas suitably extend and
show Theorem 2.7.7 of the introduction. In most of this section we discuss
the linear case, i.e. take G = GLd. The results in the general case are obtained
from this by applying the Tannakian equivalence.

2.7.1. Maps between bundles over the curve. Recall that for S =
Spa (R, R+) affinoid perfectoid over k, we have the (adic) relative Fargues-
Fontaine curve XFF,S . Recall also that sending S to the groupoid of vector
bundles on XFF,S defines a v-stack ([26, Prop. II.2.1]).

Let E1 and E2 be two vector bundles over XFF,S . Sending a perfectoid
space T over k to the set

HS(E1, E2)(T ) = {(α, f) | α ∈ T −→ S, f ∈ HomXFF,T
(α∗(E1),α

∗(E2))}
(2.7.1)

gives a v-sheaf HS(E1, E2) with a morphism

H : HS(E1, E2) −→ S.

Proposition 2.7.1. a) The v-sheaf HS(E1, E2) is represented by a locally
spatial diamond over S.

b) The morphism H : HS(E1, E2) → S is partially proper (in the sense
of [85, 17.4.7]).
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Proof. Since

HomXFF,T
(α∗(E1),α

∗(E2)) = H0(XFF,T ,α∗(E2 ⊗ E ∨
1 )),

both assertions follow immediately from [26, Prop. II.2.15] applied to the
bundle E2 ⊗ E ∨

1 . Note here that the (quasi-)separatedness of H follows by
using the group structure, and showing that the zero section 0S : S ↪→
HS(E1, E2) is a closed immersion.

In general, if Y is a v-sheaf over Spd (k), and E1 and E2 vector bundles
“over XFF,Y ” (in the sense described in [2]), we can consider the v-sheaf
given by

HY (E1, E2)(T ) = {(α, f) | α ∈ Y (T ), f ∈ HomXFF,T
(α∗(E1),α

∗(E2))},

which affords a map H : HY (E1, E2) → Y .

Proposition 2.7.2. If Y is formally separated (in the sense of Gleason [31,
Def. 3.27]), then the map H : HY (E1, E2) → Y is also formally separated.

Proof. For simplicity, set F = HY (E1, E2).
1) First we observe that H : F → Y is separated, i.e. the diagonal

F → F ×Y F is a closed immersion: This follows from [26, Prop. II.2.16],
see also Proposition 2.7.1 above.

2) We next prove that the diagonal F → F ×Y F is formally adic in the
sense of [31, Def. 3.20]. Then, by (1), F → F ×Y F is formally closed, so,
by definition, H : F → Y is formally separated.

Since Y is formally separated, ∆ : Y → Y × Y is formally adic. By [31,
Prop. 3.24], we see that the base change of Y → Y ×Y by H ×H : F ×F →
Y × Y , which is

(F × F) ×Y ×Y Y ≃ F ×Y F −→ F × F ,

is formally adic. Now, if F → F × F is formally adic, it follows by the
definition and standard properties of Cartesian diagrams that F → F ×Y F
is also formally adic.

It remains to show that F → F ×F is formally adic. By [31, Lem. 3.30],
it is enough to show that the homomorphism

(Fred)
" −→ F

induced by adjunction, is an injective map of v-sheaves. Here, Fred is the
reduction of the v-sheaf defined in [31, Def. 3.12], see also §3.3.1. By the proof
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of [31, Lem. 3.30], (Fred)" is the v-sheaf associated to the presheaf which
sends an affinoid perfectoid Spa (R, R+) to F(Spec (R+)"). The adjunction
map

adj(R, R+) : F(Spec (R+)") −→ F(Spa (R, R+))

is given by evaluating at Spa (R, R+) → Spec (R+)" = Spd (R+) given by
(R+, R+) ↪→ (R, R+). It will be enough to show that adj(R, R+) is injective,
for all (R, R+).

Set

(A, A+) = (R+((t1/p∞
)), R+[[t1/p∞

]])

Recall that A+ = R+[[t1/p∞
]] is the t-adic completion of the perfect algebra

R+[t, t1/p, t1/p2

, . . .] and A = R+((t1/p∞
)) = R+[[t1/p∞

]][1/t]. The elements of
R+[[t1/p∞

]] are represented as power series

∑

i∈Z[1/p]≥0

rit
i

with ri ∈ R+ and with support (i.e. set of indices i for which ri ̸= 0)
which is either finite, or forms an increasing unbounded sequence. Then
T = Spa (A, A+) is an affinoid perfectoid (with the t-topology) and

c : T = Spa (A, A+) −→ Spd (R+).

is a v-cover.
By v-descent

F(Spec (R+)") ↪→ F(T ) = F(Spa (A, A+)).

Choose a pseudouniformizer ϖ of R+. For any such choice, the morphism
a : Spa (R, R+) → Spec (R+)" = Spd (R+) is equal to the composition

Spa (R, R+)
t=ϖ−−−→ Spa (A, A+)

c−→ Spd (R+).

So, it will be enough to show that

F(Spd (R+)) −→ F(Spa (A, A+)) −→
∏

ϖ

F(Spa (R, R+))

is injective, where the product is over all pseudouniformizers of R+. We will
use:
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Lemma 2.7.3.
⋂

ϖ

ker(R+((t1/p∞
))

t )−→ϖ−−−−→ R) = (0).

Proof. Suppose f is in the intersection above. There is N ≥ 0 such that
tNf ∈ R+[[t1/p∞

]] and so, without loss of generality, we can suppose that
f = f(t) ∈ R+[[t1/p∞

]]. Assuming f ̸= 0 we will obtain a contradiction.
There exists a perfectoid Spa (K, V ) → Spa (R, R+), with V a valuation
ring and K its fraction field, such that f ̸= 0 in V [[t1/p∞

]]. Write

f = f(t) =
∞∑

i=0

ait
mi

with ai ∈ V , 0 ≤ m0 < m1 < · · · < mn < · · · , all in Z[1/p], and a0 ̸= 0.
Choose a pseudouniformizer ϖ ∈ R+, it is topologically nilpotent and a unit
in R, and ϖ ̸= 0 in V . Since ϖ is topologically nilpotent, there is m ≥ 1
such that

|ϖ|m(m1−m0) < |a0|.

Since ϖm is still a pseudouniformizer of (R, R+), we have f(ϖm) = 0 in R
and so also in V . This implies

|a0||ϖ|mm0 = |a1ϖ
mm1 + · · · + anϖ

mmn + · · · | ≤ supn≥1|{|an||ϖ|mmn}
≤ |ϖ|mm1

which contradicts our choice of m.

Take two elements of F(Spec (R+)") given by (αi, fi), i = 1, 2, in
F(Spa (A, A+)), with the same image in

∏
ϖ F(Spa (R, R+)). Since Y is

formally separated, the diagonal Y → Y ×Y is formally adic. Hence, by [31,
Lem. 3.30] and an argument as above, we have α1 = α2 and α := α1 = α2

factors as Spa (A, A+)
c−→ Spec (R+)" → Y . Write f = f1 − f2.

Choose I = [1, p] and consider the affinoid YT,I = YT,I (notation as in
[26]), after fixing the choice of t as a pseudouniformizer of (A, A+). We will
use the map π : YT,I → XFF,T = YT,I/φ in the definition of the FF curve
([26, Prop. II.1.6]). We see that

HomXF F,T
(α∗E1,α

∗E2) ⊂ HomYT,I
(π∗(α∗E1),π

∗(α∗E2)).

Now enlarge the projective modules corresponding to ET,i = α∗Ei over XFF,T

as in the proof of [26, Thm. II.2.6], i.e. find G′
i over XFF,T , such that π∗ET,i⊕
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π∗G′
i are the sheaves given by finite free O(YT,I) = Γ(YT,I , OYT,I

)-modules
of rank ni. Then, since

HomYT,I
(π∗ET,1,π

∗ET,2) ⊂ HomYT,I
(π∗ET,1 ⊕ π∗G′

1,π
∗ET,2 ⊕ π∗G′

2)

and

HomYT,I
(π∗ET,1 ⊕ π∗G′

1,π
∗ET,2 ⊕ π∗G′

2) ≃ Matn1×n2(O(YT,I)),

an element (α, f) of F(T ) = F(Spa (A, A+)) is determined by α ∈ Y (T )
and a matrix M = M(f) with entries in O(YT,I), i.e. functions on YT,I .

Assume that f is in the kernel of the map given by F(Spa (A, A+)) →∏
ϖ F(Spa (R, R+)); then f is also zero after pulling back by Y ϖ

(R,R+),I →
YT,I , given by t '→ ϖ, to all such Y ϖ

(R,R+),I . (Note here that we include
the superscript on Y ϖ

(R,R+),I to emphasize that this depends on the choice

of ϖ, see [26, II.1.2].) The locus |Z(f)| on YT,I where M(f) is zero is a
“Zariski closed” subset of the topological space |YT,I | underlying YT,I ; by
our assumption, this contains the images of |Y ϖ

(R,R+),I | for all t '→ ϖ.

We now claim that |Z(f)| = |YT,I |; this implies that M(f) = 0 and
hence f = 0 in F(Spa (A, A+)). In turn, this implies the desired injectivity.
By [26, Lem. IV.4.23., p. 142] (this uses that “Zariski closed is strongly
Zariski closed”, shown in [8, Rem. 7.5]), the complement of the image of
|YT,I | − |Z(f)| under v : |YT,I | → |T | is Zariski closed. Hence

|T | − v(|YT,I | − |Z(f)|)

is a Zariski closed subset |W | of |T | underlying an affinoid perfectoid W =
Spa (B,B+) → T defined by an ideal J ⊂ R+((t1/p∞

)). By our assumption
and the same reference, all the morphisms Spa (R, R+) → T given by t '→ ϖ
factor through W and we have

J ⊂
⋂

ϖ

ker(R+((t1/p∞
))

t )−→ϖ−−−−→ R).

Lemma 2.7.3 gives J = (0) which implies |YT,I | = |Z(f)|. As we just saw
above, this concludes the proof.

2.7.2. Maps between shtukas. Let R♯+ be an integral perfectoid flat
Zp-algebra in the sense of [85, Def. 17.5.1], cf. §2.2.1; in particular, it is p-
adically complete. We can take an element of the form π = p1/p · (unit) ∈
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R♯+ as a pseudouniformizer. Set R♯ = R♯+[1/p] = R♯+[1/π] and also con-
sider the tilt Spa (R, R+) of Spa (R♯, R♯+). We consider the v-sheaves S+ =
Spa (R♯+, R♯+)♦ and S = Spa (R♯, R♯+) = Spa (R♯, R♯+)♦ over Spd (Zp).

Proposition/Construction 2.7.4. Let (V ,φV ) be a shtuka over S+ →
Spd (Zp). There is a vector bundle with meromorphic Frobenius (V +,φV +)
over Y(R, R+) which extends the shtuka (V ,φV )|S given as the evaluation
of (V ,φV ) on the affinoid perfectoid

S = Spa (R♯, R♯+) −→ S+.

Remark 2.7.5. We expect that, in many cases at least, (V +,φV +) “further
extends along [ϖ] = p = 0”, i.e. it is obtained by restriction along the
morphism of locally ringed spaces

Y(R, R+) −→ Spec (W (R+))

from a uniquely determined W (R+)-module with meromorphic Frobenius
structure, more precisely from a BKF module over R♯+. For example, when
(R, R+) = (K, K+) with K+ a valuation ring of the perfectoid field K,
this follows from the result of Kedlaya (Theorem 2.1.6). Combined with
Proposition 2.7.4 above, this shows that in this case of a perfectoid field, the
functor of Proposition 2.3.11 is essentially surjective and hence an equiv-
alence of categories. In fact, the same conclusion holds when (R, R+) =
((
∏

i∈I Ki)[1/(ϖi)],
∏

i∈I K+
i ) is a product of points, when one restricts to

shtukas of fixed rank. Indeed, we can apply the argument above, by using
the extension of Kedlaya’s result given in [32, Prop. 2.7].

Proof. Note that the shtuka (V ,φV )|S is a vector bundle with meromorphic

Frobenius over Y[0,∞)(R, R+). Let ϖ = π♭ ∈ R+ be the pseudo-uniformizer
of R+ that corresponds to π. Consider the sousperfectoid adic space

U = Spa

(
W (R+)

〈
[ϖ]

pa

〉
[1/p], W (R+)

〈
[ϖ]

pa

〉)

for a ≫ 0. Here, W (R+)⟨ [ϖ]
pa ⟩ is the completion of W (R+)[ [ϖ]

pa ] for the p-adic

topology. (Note that [ϖ]n '→ 0 in the p-adic topology). We can consider B =

W (R+)⟨ [ϖ]
pa ⟩[1/p] as a Banach Qp-algebra. As in the proof of Theorem 2.3.8,

we can pull back by

U♦ −→ Spa (W (R+))♦ = S+ × Spd (Zp)
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and then use the Z×
p -pro-étale perfectoid cover

Û∞ −→ U = Spa

(
W (R+)

〈
[ϖ]

pa

〉
[1/p], W (R+)

〈
[ϖ]

pa

〉)

constructed by complete tensoring with Ô∞: Here

Û∞ = Spa (B̂∞, B̂+
∞)

with

B̂∞ := W (R+)

〈
[ϖ]

pa

〉
[1/p]⊗̂ZpÔ∞, B̂+

∞ := W (R+)

〈
[ϖ]

pa

〉
⊗̂ZpÔ∞.

We obtain a finite projective B̂∞-module M̃ with Z×
p -pro-étale descent data.

The argument in the proof of Theorem 2.3.8 now applies for the Banach
algebra B = W (R+)⟨ [ϖ]

pa ⟩[1/p]: This gives that M̃ descends to a B-module
M if there is such descent for the base changes after

W (R+)

〈
[ϖ]

pa

〉
−→ W (OC)

〈
[ϖ]

pa

〉

given by all the continuous

f : (R, R+) −→ (C, OC), f(ϖ) = ϖC .

This allows us to reduce the proof of descent to the case of a shtuka over
Spd (OC♯), where OC♯ has the analytic topology and C♯ is algebraically
closed. In this case, we know by Fargues-Fontaine (cf. [85, 13.2]) that the
restriction of the shtuka via Spa (C♯, OC♯) → Spd (OC♯) uniquely extends to
a BKF module M(OC) over W (OC). By full-faithfulness of the restriction
“away from ∞” (Proposition 2.1.3, see also the proof of Proposition 2.3.11)

we see that this W (OC)⟨ [ϖC ]
pa ⟩-module M(OC)⊗W (OC)W (OC)⟨ [ϖC ]

pa ⟩ provides
the descent module; so descent holds in this situation.

By the above we see that there is a vector bundle with Frobenius struc-
ture over the (sousperfectoid) analytic adic space U which descends the vec-
tor bundle with Frobenius structure over Û∞ obtained by the shtuka (V ,φV )
over S+. Note that Y(R, R+) is a (sousperfectoid) analytic adic space which
is covered by the open subspaces U and Y[0,b](R, R+) ⊂ Y[0,∞)(R, R+).
We can now obtain, by glueing, the desired vector bundle (V +,φV +) over
Y(R, R+) that extends (V ,φV )|S .
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We will now assume in addition that R♯+ = R♯◦. Then we also have
R+ = R◦.

Proposition 2.7.6. For R♯+ integral perfectoid as above with R♯+ = R♯◦,
consider the v-sheaves S+ = Spa (R♯+, R♯+)♦ and S = Spa (R♯, R♯+)♦ over
Spd (Zp). Let (V ,φV ) and (V ′,φV ′) be two shtukas over S+/ Spd (Zp). Every
homomorphism

ψS : (V ,φV )|S −→ (V ′,φV ′)|S

between their restrictions to S/ Spd (Zp), extends uniquely to a homomor-
phism

ψ : (V ,φV ) −→ (V ′,φV ′)

over S+/ Spd (Zp).

Proof. Since S+ is formally separated, the uniqueness follows from Propo-
sition 2.7.2 and [31, Prop. 4.9], together with the fact that the functor
(V ,φV ) '→ VFF is faithful. (In fact, this argument implies that if an ex-
tension exists, it is unique, even when R♯+ ̸= R♯◦.)

Let us discuss the existence. By Proposition 2.7.4 above, (V ,φV ) and
(V ′,φV ′) give vector bundles V + and V ′+ over Y(R, R+) with meromor-
phic Frobenius. Suppose that r > 0 is large enough so that Y[r,∞)(R, R+)
does not intersect the divisor S where the Frobenius is not an isomorphism.
By Proposition 2.1.3, since R+ = R◦, restriction from Y[r,∞](R, R+) to
Y[r,∞)(R, R+) gives a fully-faithful functor from the category of vector bun-
dles with φ-structure over Y[r,∞](R, R+) to the category of vector bundles
with φ-structure over Y[r,∞)(R, R+). This implies that the homomorphism
ψS over Y[0,∞)(R, R+) uniquely extends to a homomorphism of vector bun-
dles ψY(R,R+) : V + → V ′+ over the adic space Y[0,∞](R, R+) = Y(R, R+).
Hence, by the GAGA-equivalence of Theorem 2.1.6, this corresponds to a
homomorphism of vector bundles over the scheme Y (R, R+),

ψY (R,R+) : V + −→ V ′+.

Note the open immersion

j : Spec (W (R+)[1/p]) ↪→ Y (R, R+).

We set ψW (R+)[1/p] := j∗ψY (R,R+).

Now let x : T = Spa (B,B+) → S+ = Spd (R♯+), with T affinoid
perfectoid over k, given by an untilt T ♯ = Spa (B♯, B♯+) and a continuous
R♯+ → B♯+ which corresponds to R+ → B+. We want to construct a
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homomorphism ψT : x∗(V ) → x∗(V ′) over T
.
× Zp. We will first assume

that T = Spa (C, C+), with C a complete nonarchimedean algebraically
closed field over k.

1) Suppose that x is adic, so that π♭ maps to a pseudouniformizer of C+.
Then x factors through S = Spa (R♯, R♯+)♦ and we set ψT to be the pull-
back of ψS by x : T → S.

Note that in this case, we also have a homomorphism ψ(x) : x∗(V ) →
x∗(V ′) over Y(C, C+) = Spa (W (C+)) \ {[ϖC ] = 0, p = 0} obtained by
pulling back ψY(R,R+) by x. Then ψT is also given by the restriction of ψ(x)
to Y[0,∞)(C, C+).

By results of Kedlaya (see [51, Thm. 3.8] and [85, Prop. 14.2.6]), ψ(x)
uniquely extends to a homomorphism ψ(x)+ : (x∗V )+ → (x∗V ′)+ of cor-
responding W (C+)-modules. The homomorphism x∗ : R+ → C+ also gives
x∗ : W (R+) → W (C+) and we have

(2.7.2) ψ(x)+[1/p] = x∗ψW (R+)[1/p],

as maps (x∗V )+[1/p] → (x∗V ′)+[1/p].
2) Suppose that x is not adic. Then π♭ maps to 0 in C+ and C♯+ = C+,

i.e. the untilt T ♯ = T is in characteristic p. Set R+
red := (R♯+/(π))red =

(R+/(π♭))red. The point x factors as

x : T = Spa (C, C+) −→ Spec (R+
red)

" −→ Spd (R♯+),

and the shtukas x∗(V ,φV ) and x∗(V ,φV ′), are pull-backs of shtukas over
Spd (R+

red) = Spec (R+
red)

".

Now, using that R♯+ is Zp-flat, we can find a point x̃ : Spa (C̃, C̃+) → S+

as in case 1), i.e. with untilt (C̃♯, C̃♯+) over (Qp, Zp), and such that the
corresponding x̃∗ : R♯+ → C̃♯+ lifts x∗ : R♯+ → R♯+/(π) = R+/(π♭) → C+.
This is meant in the sense that there is a map k(C̃♯) = OC̃♯/mC̃♯ ↪→ C

restricting to C̃♯+/mC̃♯ → C+ which, when composed with x̃∗ mod mC̃♯ ,
gives x∗. There is a commutative diagram

(2.7.3)

Spd (C+) Spd (R+
red)

Spd (C̃♯+) Spd (R♯+).

We have two shtukas x̃∗(V ,φV ) and x̃∗(V ,φV ′) over Spd (C̃♯+) obtained by
pulling back via x̃ : Spd (C̃♯+) → S+ = Spd (R♯+). Pulling back these by
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Spd (C+) → Spd (C̃♯+) given by C̃♯+ → C+, recovers the shtukas x∗(V ,φV )
and x∗(V ,φV ′). Note that there are equivalences of categories between
shtukas over Spd (C+) and BKF-modules (with leg at p, i.e. meromor-
phic Frobenius crystals) over W (C+), shtukas over Spd (C̃♯+) and BKF-
modules over W (C̃+) (with leg at C̃♯+), see Proposition 2.3.11, also Re-
marks 2.3.12, 2.7.5, and also shtukas over Spd (R+

red) and BKF-modules
(with leg at p, i.e. meromorphic Frobenius crystals) over W (R+

red) (The-
orem 2.3.8); these equivalences are compatible with pull-backs. Using these
equivalences, we can now define

ψ(x)+ := ψ(x̃)+ mod (W (mC̃))

as a map (x∗V )+ → (x∗V ′)+ between the corresponding W (C+)-modules.
We can now see, using the commutativity of (2.7.3) and the above, that
ψ(x)+[1/p], and therefore also ψ(x)+, is independent of the lift x̃. Indeed,
ψ(x)+[1/p] is also given as the pull-back

(2.7.4) ψ(x)+[1/p] = x∗ψW (R+)[1/p]

of ψW (R+)[1/p] = j∗ψY (R,R+) under

x : Spec (W (C+)[1/p]) −→ Spec (W (R+
red)[1/p]) −→ Spec (W (R+)[1/p]).

We can now consider the general case in which T = Spa (B,B+) is affinoid
perfectoid with x : T → S+. Choose a pseudo-uniformizer ϖ of B+ and
form a product of points f : Z = Spa ((

∏
i∈I C+

i )[1/(ϖi)],
∏

i∈I C+
i ) → T

which is a v-cover of T . The composition g = x · f is given by R♯+ →∏
i∈I C♯+

i which gives g+ : Z+ := Spd (
∏

i∈I C♯+
i ) → S+. We have shtukas

(g+)∗V , (g+)∗V ′ over Z+; by Remark 2.7.5 these correspond to BKF mod-
ules

∏
i(x

∗
i V )+ and

∏
i(x

∗
i V

′)+ over W (
∏

i∈I C+
i ) =

∏
i∈I W (C+

i ). These
modules are well-defined (up to canonical isomorphism) and only depend on
R+ →

∏
i∈I C+

i and the shtukas V , V ′ over S+. For each i ∈ I, the com-
position xi : Spa (Ci, C

+
i ) → Z → S+ gives a point of S+ to which we can

apply the construction above. We obtain ψ(xi)+ : (x∗
i V )+ → (x∗

i V
′)+ which

gives a homomorphism ψ+
Z :

∏
i(x

∗
i V )+ →

∏
i(x

∗
i V

′)+ over W (
∏

i C
+
i ); this

restricts to give a morphism ψZ : (x · f)∗V → (x · f)∗V ′ of shtukas over Z.
Using the above we will see that ψZ satisfies the v-descent condition and
hence gives a homomorphism ψT : x∗V → x∗V ′ of shtukas over T . We
want to check the equality p∗1ψZ = p∗2ψZ of the two pull-backs of the mor-
phism ψZ by the two projections pi : Z×T Z → Z, i = 1, 2. Consider a point
t = (t1, t2) : Spa (C, C+) → Z×T Z. The two points t1, t2 give by composition
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the same map Spa (C, C+) → T → S+. By the above, the pull-backs over
W (C+)[1/p] of the two maps p∗1(ψ

+
Z [1/p]), p∗2(ψ

+
Z [1/p]) by t are given by the

base change of ψW (R+)[1/p] by the map R+ → C+ given by the composition
Spa (C, C+) → S+, and so they are equal. Hence, the pull-backs of the two
maps p∗1(ψZ), p∗2(ψZ) by t are also equal as maps between vector bundles over
Y[0,∞)(C, C+). But the restriction along all points Spa (C, C+) → Z ×T Z is
faithful on maps of vector bundles over Y[0,∞)(Z ×T Z), cf. [23, Lem. 2.3],
and the descent property follows. Now by [85, Prop. 19.5.3], the map ψZ

descends to ψT : x∗V → x∗V ′.
Finally we need to show that the maps ψT : x∗V → x∗V ′ for variable

x : T → S+ give a homomorphism of shtukas ψ : (V ,φV ) → (V ′,φV ′) over
the v-sheaf S+: Consider a v-cover W → S+ by a perfectoid space W . By
the work above, we obtain ψW which we would like to show satisfies descent
along W → S+. This is done by an argument similar to the one above. Let T
be a product of points with a map T → S+ and set W ′ = W ×S+ T . We want
to check equality of the pull-backs over the perfectoid W ′ ×T W ′ = (W ×S+

W )×S+ T . Consider a point t = (t1, t2) : Spa (C, C+) → W ′×T W ′. The two
points ti : Spa (C, C+) → W ′ give the same map Spa (C, C+) → T → S+

after composition, and by the argument above we see t∗1ψW ′ = t∗2ψW ′ where
ψW ′ is the pull-back of ψW . This is enough to deduce that ψW satisfies
descent.

2.7.3. Extending maps between shtukas. In this subsection, we es-
tablish a relation between shtukas in characteristic zero and characteristic p.
Let X be a separated scheme of finite type and flat over Spec (OE). Denote
by X = X ×Spec (OE) Spec (E) the generic fiber.

Theorem 2.7.7. Assume that X is normal. Let (V ,φV ) and (V ′,φV ′) be
two shtukas over X . Any homomorphism ψX : (V ,φV )|X → (V ′,φV ′)|X
between their restrictions to X extends uniquely to a homomorphism ψ :
(V ,φV ) → (V ′,φV ′) of shtukas over X .

Proof. Recall that a shtuka over X is, by Definition 2.3.2, a shtuka over
the v-sheaf X ♦/ over Spd (OE). We can easily see that we may assume
that X is affine, X = Spec (A) with A a normal domain. Consider the
v-sheaf H(V , V ′) → X " whose points with values in the affinoid perfectoid
T = Spec (B,B+) is the set

H(V , V ′)(T ) = {(α, f) | α ∈ X "(T ), f : α∗(V ,φV ) −→ α∗(V ′,φV ′)}.

(2.7.5)
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As usual, we denote by Â the p-adic completion of A which is integrally
closed in R = Â[1/p]. Applying [85, Lem. 10.1.6] to the Tate ring R = Â[1/p]
(with R◦ = Â) we obtain an affinoid perfectoid Spa (R̃, R̃+) over Spa (E, OE)
with a morphism

Spa (R̃, R̃+) −→ Spa (Â[1/p], Â) −→ Spa (Â, Â).

In this situation, (R̃, R̃+) can be obtained as follows: Fix an algebraic closure
F̄ of the fraction field F of R and consider the filtered direct system lim−→j

Rj

over all finite étale extensions Rj/R contained in F̄ . Let Bj be the integral

closure of Â in Rj and consider the p-adic completion

R̃+ := ̂lim−→j
Bj .

Finally, take R̃ = R̃+[1/p]. Note that R̃+ is the ring of power bounded
elements R̃◦ in the Tate ring R̃. Set

Y = Spa (Â[1/p], Â)♦, Y + = Spd (Â, Â),

Ỹ = Spa (R̃, R̃+)♦, Ỹ + = Spd (R̃+, R̃+).

They all come with morphisms to Spd (Zp).

Lemma 2.7.8. The morphism

β : Ỹ + −→ Y + = X " = (X̂ )♦

is a surjective morphism of v-sheaves.

Proof. The morphism Ỹ → Y is a surjective morphism of v-sheaves and
the same result for Ỹ + → Y + then follows from the more general result [3,
Prop. 2.31]. Here we give a more direct argument. We can apply [85, Lem.
17.4.9] (see also the comment below that lemma): The morphism β is quasi-
compact and for every complete non-archimedean algebraically closed field
C, a morphism Spa (C, C+) → Spa (Â, Â) given by Â → C+ ⊂ C factors as
A → Bj → C+ (since Bj/Â is integral and C+ is a valuation ring) and so
to

Â −→ ̂lim−→j
Bj = R̃+ −→ C+.

This gives Spa (C, C+) → Spa (R̃+, R̃+), i.e. a Spa (C, C+)-point of
Spd (R̃+).
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The given homomorphism ψX gives a morphism of v-sheaves f : Y →
H(V , V ′). We consider the composition

f̃ : Ỹ −→ Y −→ H(V , V ′),

which corresponds to the shtuka homomorphism ψỸ obtained by pulling

back ψX to Ỹ . Since R̃+ = R̃◦, we can apply Proposition 2.7.6 to ψỸ . This

gives an extension of f̃ to f̃+ : Ỹ + → H(V , V ′). We would like to descend
this to f+ : Y + → H(V , V ′) along the v-cover β : Ỹ + → Y +. Let

Z+ = Ỹ + ×Y + Ỹ +, Z = Ỹ ×Y Ỹ .

To show descent of f̃+ to f+ ∈ H(V , V ′)(Y +), we have to check the equality
of the two pull-backs p∗1(f̃

+), resp. p∗2(f̃
+), in H(V , V ′)(Z+); this equality

is true in H(V , V ′)(Z).
Let us set

D+ = ̂R̃+ ⊗Â R̃+, D = ( ̂R̃+ ⊗Â R̃+)[1/p],

where the hat denotes the p-adic completion. Also let D̃+ be the p-adic
completion of the integral closure of R̃+ ⊗Â R̃+ in (R̃+ ⊗Â R̃+)[1/p]. Then

we have Z = Spa (D, D̃+)♦ and Z+ = Spa (D+, D+)♦. We also have Z̃+ :=
Spa (D̃+, D̃+)♦ → Z+ which is a v-cover.

By its construction, D = D̃+[1/p] is perfectoid and D̃+ is flat over Zp.
By Proposition 2.7.6, a point of H(V , V ′)(Z) has at most one extension in
H(V , V ′)(Z̃+). It follows that p∗1(f̃

+) = p∗2(f̃
+) over Z̃+ and so also over

Z+. This concludes the proof of the existence of the extension to X " =
(X̂ )♦. We can now see, by uniqueness, that we obtain the extension to
X ♦/ = X " ⊔X "×Spd (OE)Spd (E) X♦.

Remark 2.7.9. The previous theorem bears a formal resemblance to the
theorem of de Jong-Tate on extending a homomorphism given outside a
divisor between p-divisible groups over a normal base scheme. It would be
interesting to extend Theorem 2.7.7 to this general setting.

Using the Tannakian equivalence, Theorem 2.7.7 immediately implies:

Corollary 2.7.10. Let (P,φP) and (P ′,φP′) be two G-shtukas over X .
Any isomorphism ψX : (P,φP)|X

∼−−→ (P ′,φP′)|X between their restric-
tions to X extends uniquely to an isomorphism ψ : (P,φP)

∼−−→ (P ′,φP′)
over X . !
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3. Local Shimura varieties and their integral models

3.1. Local Shimura varieties

We recall Scholze’s local Shimura varieties [85, §24] and list some functorial
properties of them.

3.1.1. Definitions. Let G be a smooth affine group scheme over Zp with

generic fiber G a reductive group over Qp, and b ∈ G(Q̆p), and µ a conjugacy
class of cocharacters of G. It is assumed that the σ-conjugacy class of b lies in
B(G, µ−1) and that G has connected special fiber. Then Scholze associates to
a triple (G, b, µ) a moduli space of shtukas ShtG,b,µ. It is given as a “diamond
moduli space” of certain G-shtukas with one leg bounded by µ with a fixed
associated Frobenius element, cf. [85, §§23.1, 23.2, 23.3].

More precisely, consider the functor on Perfdk that sends S to the set of
isomorphism classes of quadruples

(3.1.1) (S♯, P,φP , ir),

where

1) S♯ is an untilt of S over Spa (Ĕ),

2) (P,φP) is a G-shtuka over S with one leg along S♯ bounded by µ,

3) ir is an isomorphism of G-torsors

(3.1.2) ir : GY[r,∞)(S)
∼−→ P |Y[r,∞)(S)

for large enough r (for an implicit choice of pseudouniformizer ϖ), under
which φP is identified with φG,b. We call ir a framing.

Here we have denoted by GY[r,∞)(S) the trivial G-torsor over Y[r,∞)(S) (de-
noted G × Y[r,∞)(S) in [85, App. to §19]), and by

(3.1.3) φb = φG,b : φ∗(GY[r,∞)(S)) = GY[ 1
p

r,∞)(S)
bφ−→ GY[r,∞)(S)

the φ-linear isomorphism induced by right multiplication by b, denoted by
b × Frob in [85, Def. 23.1.1]. In 3) we mean more precisely an equivalence
class, where ir and i′r′ are called equivalent if there exists r′′ ≥ r, r′ such
that ir |Y[r′′,∞)(S) = i′r′ |Y[r′′,∞)(S).
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Note that the definition above makes sense even when we do not make
the hypothesis that µ is minuscule. One of the main results of [85] is that,
in this generality, ShtG,b,µ is a v-sheaf and is represented by a locally spatial
diamond over Spd (E); this is shown by employing the crystalline period
morphism (also called the “Grothendieck-Messing period morphism”),

(3.1.4) πGM : ShtG,b,µ −→ GrG,Spd (Ĕ),≤µ,

which is étale. We set

(3.1.5) Jb(Qp) = {g ∈ G(W (k)[1/p]) | gbσ(g)−1 = b}.

The group Jb(Qp) acts on ShtG,b,µ by changing the framing,

g · (S♯, P,φP , ir) = (S♯, P,φP , ir ◦ g−1).

Let K = G(Zp). Using the period morphism, one sees that ShtG,b,µ =
ShtG,b,µ,K only depends on G via K. Then K varies through the open com-
pact subgroups of G(Qp) and there is an action of G(Qp) on the tower
(ShtG,b,µ,K)K .

There is a Weil descent datum on the tower. Let τ be the relative Frobe-
nius automorphism of Ĕ over E, and define the v-sheaf Sht(τ)

G,b,µ by

Sht(τ)
G,b,µ(S) = ShtG,b,µ(S ×Spa (k),τ Spa (k)).

If S = Spa (R, R+), with structure morphism ϵ : k → R, denote by R[τ ]

the same ring with the k-algebra structure defined by k
x )→xq

→ k
ϵ→ R. Here

q = |κE |. Then S×Spa k,τSpa k = Spa (R[τ ], R
+
[τ ]). We define the Weil descent

datum

(3.1.6) ω : ShtG,b,µ −→ Sht(τ)
G,b,µ

by sending a point (S♯, P,φP , ir) of ShtG,b,µ with values in S = Spa (R, R+)
to the point of ShtG,b,µ((R, R+)[τ ]) given by (S♯, P,φP , i′r′). Here r′ = qr,
and we use the identification

φ : Y[r,∞)(R, R+) = Y[r′,∞)((R, R+)[τ ]).

Then i′r′ is defined as the composition

GY[r′,∞)((R,R+)[τ])
φf

b−→ GY[r,∞)(R,R+)
∼−→ P |Y[r,∞)(R,R+) = P |Y[r′,∞)((R,R+)[τ]),
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where q = pf and where φf
b = (φb)f denotes the f -fold iteration of the

φ-linear automorphism of the trivial G-torsor in (3.1.3).
Any group homomorphism ρ : G → G′ compatible with the other data

(G, b, µ) → (G′, b′, µ′) induces a morphism of towers of v-sheaves,

(3.1.7) ShtG,b,µ −→ ShtG′,b′,µ′ ×Spd (Ĕ′) Spd (Ĕ),

compatible with descent data. Here E ⊃ E′ denote the corresponding reflex
fields.

The local Shimura varieties (LSV) correspond to the cases that µ is
minuscule, i.e., when (G, b, µ) is a local Shimura datum, cf. §2.4.1. This is
the main case of interest here, and we will concentrate on it. In this case,
GrG,Spd (Ĕ),≤µ = F♦

G,µ,Ĕ
and as in [85, §24.1],

(3.1.8) ShtG,b,µ,K = M♦
G,b,µ,K ,

for a uniquely-determined smooth rigid analytic space MG,b,µ,K over Ĕ.

Proposition 3.1.1. (i) Assume that ρ−1(ZG′) ⊂ ZG, where ZG and ZG′

denote the centers of G and G′. Then the induced morphism of towers of
rigid-analytic spaces with G′(Qp)-action is a closed immersion,

MG,b,µ ×G(Qp) G′(Qp) −→ MG′,b′,µ′ ×Sp(Ĕ′) Sp(Ĕ).

(ii) Suppose that ρ : G → G′ has finite kernel. Then, for ρ(K) ⊂ K ′, the
morphism (3.1.7) induces a qcqs morphism,

MG,b,µ,K −→ MG′,b′,µ′,K′ ×Sp(Ĕ′) Sp(Ĕ).

Proof. For (i), we claim that the assumption implies

(3.1.9) (FG,µ,Ĕ)adm = ρ−1((FG′,µ′,Ĕ′ ×Sp(Ĕ′) Sp(Ĕ))adm).

Here there appear the admissible sets, which are by definition the images
under the crystalline period maps, comp. (3.1.4). This then implies that

MG,b,µ×G(Qp)G′(Qp)≃(MG′,b′,µ′×Sp(Ĕ′)Sp(Ĕ))×(FG′,µ′,Ĕ′×Sp(Ĕ′)Sp(Ĕ))FG,µ,Ĕ ,

hence the LHS is a closed subspace of MG′,b′,µ′ ×Sp(Ĕ′) Sp(Ĕ). This means

that for any K ⊂ G(Qp), there exists K ′ ⊂ G′(Qp) with K ′ ⊃ ρ(K) such
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that the induced map MG,b,µ,K → MG′,b′,µ′,K′ ×Sp(Ĕ′) Sp(Ĕ) is a closed
immersion.

To prove the claim, consider a C-valued point x of FG,µ,Ĕ . Then x lies
in the admissible locus if and only if the corresponding modification Eb,x of
Eb at ∞ is a trivial G-bundle on the FF curve, cf. [85, Thm. 22.6.2]. Note
that, as we are assuming that [b] ∈ B(G, µ−1), we have that κ(b) = −µ♮,
and hence Eb,x is trivial if and only if Eb,x is semi-stable, or, equivalently, the
corresponding element in B(G) is basic. We note that this characterization
shows that the admissible locus is open, as follows from the upper semi-
continuity of the Newton point ([85, Cor. 22.5.1]) and the local constancy
of the Kottwitz invariant in π1(G)Γ ([26, Thm. III.2.7]). Now the image of x
lies in the admissible set in FG′,µ′,Ĕ′ if and only if the G′-bundle Eb′,ρ∗(x) =

ρ∗(Eb,x) is a semi-stable G′-bundle on the FF curve. If Eb,x is the trivial G-
bundle then, obviously, also ρ∗(Eb,x) is the trivial G′-bundle. Conversely, if
ρ∗(Eb,x) corresponds to a basic element in B(G′) then, since ρ−1(ZG′) ⊂ ZG,
the same holds for Eb,x. In fact, under our assumption the natural map
ρ∗ : B(G) → B(G′) satisfies ρ−1

∗ (B(G′)basic) = B(G)basic. Indeed, νb is
central in G if and only νρ(b) = ρ ◦ νb is central in G.

For (ii), we note that the assumption of (i) is satisfied: indeed, any
element z̃ ∈ ρ−1(ZG′) defines a morphism G → ker(ρ) : g '→ z̃gz̃−1g−1; since
G is connected and ker(ρ) finite, the morphism is constant, i.e., z̃ ∈ ZG. The
morphism in (ii) factors as

MG,b,µ,K −→ MG,b,µ ×G(Qp) G′(Qp)/K ′ −→ MG′,b′,µ′,K′ ×Sp(Ĕ′) Sp(Ĕ).

By (i), the second morphism is qsqc. The first two spaces map by étale
morphisms to (FG,µ,Ĕ)adm (with fibers G(Qp)/K, resp. G′(Qp)/K ′). Hence
the first morphism is qsqc, and therefore also the composed morphism.

3.1.2. Pushout functoriality. Let ρ : G → G′ be a group homomor-
phism compatible with the other data (G, b, µ) → (G′, b′, µ′) of local Shimura
varieties. We assume that the kernel is a central subgroup and that the cok-
ernel is a torus, i.e., ρ induces an isomorphism

(3.1.10) ρad : Gad
∼−→ G′

ad.

In [72] such ρ are called ad-isomorphisms (following Kottwitz).

Proposition 3.1.2. Assume (3.1.10). The morphism (3.1.7) of pro-systems

MG,b,µ −→ MG′,b′,µ′ ×Spa (Ĕ′) Spa (Ĕ)
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with action of G(Qp), resp. G′(Qp), induces an isomorphism of pro-systems
with G′(Qp)-action,

(3.1.11) MG,b,µ ×G(Qp) G′(Qp)
∼−→ MG′,b′,µ′ ×Spa (Ĕ′) Spa (Ĕ).

Proof. By Proposition 3.1.1 (ii), the morphism of pro-systems is qcqs. There-
fore it remains to show the bijectivity of (3.1.11) on C-valued points, for any
algebraically closed non-archimedean field C. Consider the following com-
mutative diagram of (pro-systems of) rigid analytic spaces over Ĕ, in which
the vertical arrows are the crystalline period maps,

MG,b,µ MG′,b′,µ′ ×Spa (Ĕ′) Spa (Ĕ)

FGad,µad,Ead
×Spa (Ead) Spa (Ĕ) FG′

ad,µ′
ad,E′

ad
×Spa (E′

ad) Spa (Ĕ).

The images of the vertical maps are the admissible sets. By our assumption,
the lower horizontal arrow is an isomorphism. Under this isomorphism, the
admissible sets correspond to each other, as follows from the argument in
the proof of (ii) of Proposition 3.1.1. Now consider the following diagram,
where in the lower line appear the admissible sets,

MG,b,µ ×G(Qp) G′(Qp) MG′,b′,µ′ ×Spa (Ĕ′) Spa (Ĕ)

(FGad,µad,Ead
×Spa (Ead)Spa (Ĕ))adm ≃ (FG′

ad,µ′
ad,E′

ad
×Spa (E′

ad)Spa (Ĕ))adm.

We observe that the fibers of the left vertical arrow are identified with
G(Qp) ×G(Qp) G′(Qp) = G′(Qp), and hence map bijectively to the fibers
of the right vertical arrow.

3.1.3. LSV of dimension zero. Recall that dim MG,b,µ = dim FG,µ =
⟨µ, 2ρ⟩. Hence

dim MG,b,µ = 0 ⇐⇒ µ : Gm,Q̄p
−→ GQ̄p

is central.

Let us assume this. Denote by Zo the connected center of G, and by µZ ∈
X∗(Zo) the element corresponding to µ. Then E(G, µ) = E(Zo, µZ). We
now let bZ ∈ Zo(Q̆p) be a representative of the unique σ-conjugacy class in
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B(Zo, µ−1). Via push-out of torsors along the map Zo → G, we obtain a
morphism of rigid-analytic spaces over Ĕ,

(3.1.12) MZo,bZ ,µZ
−→ MG,b,µ.

Proposition 3.1.3. Let dim MG,b,µ = 0. The morphism (3.1.12) induces

an isomorphism of towers of rigid-analytic spaces over Ĕ, compatible with
Weil descent down to E = E(G, µ),

MZo,bZ ,µZ
×Zo(Qp) G(Qp)

∼−→ MG,b,µ.

Proof. Both F(Zo, µ) and F(G, µ) reduce to a point. The assertion fol-
lows because the map is qsqc and since for any algebraically closed non-
archimedean extension C of E, the C-points of both source and target are
identified with G(Qp).

3.1.4. The torus case. Let G = T be a torus. In this case, there is
a unique [b] ∈ B(T, µ−1), and MT,b,µ is zero-dimensional. Let Cp be the
completion of Q̄p.

Proposition 3.1.4. The rigid-analytic space MT,b,µ has a natural model
over Sp(E), compatible with its Weil descent datum. There is an identifica-
tion

MT,b,µ,K(Cp) = T (Qp)/K, K ⊂ T (Qp),

such that γ ∈ Gal(Q̄p/E) acts through its quotient Gal(Q̄p/E)ab; further-
more, γ with preimage ϵ ∈ E× under the reciprocity map recE : E× →
Gal(Q̄p/E)ab acts as

xK '−→ Nµ(ϵ)xK.

Here Nµ is the composition

Nµ : ResE/Qp
(Gm)

ResE/Qp (µ)
−−−−−−−→ ResE/Qp

(T )
NE/Qp−−−−→ T.

Proof. By push-out functoriality, we are reduced to the case where T = T0 =
ResE/Qp

(Gm) and µ = µ0, where µ0 ∈ X∗(T ) = IndE
Qp

(Z) is the canonical
element given by

(µ0)ϕ =

{
1, if ϕ = id

0, otherwise.

Consider the rational RZ-data of EL-type given by the semi-simple Qp-
algebra E, the standard E-vector space V of dimension 1 and the cocharacter
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µ0, comp. [77, §4.1]. The associated algebraic group over Qp associated to
these rational RZ-data is T0. Let (M(E,V,µ0))K , K ⊂ T0(Qp) be the associated

RZ-tower over Ĕ, with its descent datum to E. Then (M(E,V,µ0))K coincides
with MT0,b0,µ0,K , cf. [85, Cor. 24.3.5]. The result follows after identifying
(M(E,V,µ0))K with the Lubin-Tate tower, cf. [15, §3]. More precisely, let Xπ

be the Lubin-Tate group over E corresponding to a uniformizer π of E. Then
the p-adic Tate module Tp(Xπ) is independent of π ([87, §3.7]), the space of
trivializations of Tp(Xπ) is (M(E,V,µ0))K , and the Galois action by GalE is
given by Lubin-Tate theory, cf. [87, §3.4].

3.2. Integral models

Suppose in addition that K is parahoric with G the corresponding Bruhat-
Tits group scheme. Then Scholze gives in [85, Def. 25.1.1] also a construction
of an “integral model” Mint

G,b,µ of ShtG,b,µ,K over Spd (OĔ).

Definition 3.2.1. Let (G, b, µ) be a local Shimura datum, and let G be a
parahoric group scheme which is a model of G over Zp. The integral moduli
space of local shtuka Mint

G,b,µ is the functor that sends S ∈ Perfdk to the set
of isomorphism classes of tuples

(3.2.1) (S♯, P,φP , ir),

where

1) S♯ is an untilt of S over Spa (OĔ),

2) (P,φP) is a G-shtuka over S with one leg along S♯ bounded by µ,

3) ir is a framing, i.e. an isomorphism of G-torsors

(3.2.2) ir : GY[r,∞)(S)
∼−→ P |Y[r,∞)(S)

for large enough r (for an implicit choice of pseudouniformizer ϖ), under
which φP is identified with φb = b × FrobS .

This definition makes sense even if µ is not minuscule. By loc. cit.,
Mint

G,b,µ is a v-sheaf whose generic fiber is ShtG,b,µ,K . In fact, by [32, Prop.

2.23], Mint
G,b,µ is a small v-sheaf. If µ is minuscule, we can think of the v-

sheaf Mint
G,b,µ as an integral model of the rigid-analytic local Shimura variety

MG,b,µ,K and call it the integral local Shimura variety (integral LSV). The
Weil descent datum (3.1.6) on MG,b,µ,K extends to a Weil descent datum
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on Mint
G,b,µ from OĔ down to OE . Also note that if b′ = g−1bσ(g), then

the association (S♯, P ,φP , ir) '→ (S♯, P ,φP , ir ◦ g) induces an isomorphism
Mint

G,b,µ
∼−→ Mint

G,b′,µ.
The following conjecture is implicit in [85, §25.1].

Conjecture 3.2.2 (Scholze). Assume that µ is minuscule. There exists a
normal formal scheme MG,b,µ, flat and locally formally of finite type over
Spf OĔ, whose associated v-sheaf is equal to Mint

G,b,µ. (Note that by [85, Prop.
18.4.1] this formal scheme is unique if it exists.)

Remark 3.2.3. The conjecture holds true in many cases when the data
(G, b, µ) come from integral RZ data in the sense of [78] (this excludes the
cases of type (D) since they yield non-connected groups). In fact, in this
case Mint

G,b,µ is represented by the corresponding RZ formal scheme, cf. [85,
Cor. 25.1.3]. More precisely, one has to define the RZ formal scheme using
the flat closure local model instead of the naive local model, cf. [85, §21.6].
This is conditional on showing that the flat closure local model is normal.
Conjecture 3.2.2 is proved in [72] when the local Shimura datum (G, b, µ) is
of abelian type, if p ̸= 2 and if p = 2 and Gad is a product of simple factors
of type A or C.

Just as LSV, so also the formation of their integral models is functorial.
More precisely, let G → G′ be a group homomorphism compatible with
local Shimura data (G, b, µ) → (G′, b′, µ′). Then there is an inclusion of
corresponding reflex fields, E ⊃ E′. Let G and G′ be parahoric models of G,
resp. G′ such that G → G′ extends to G → G′. Push-out of torsors under
G → G′ gives a v-sheaf morphism

(3.2.3) ρ : Mint
G,b,µ −→ Mint

G′,b′,µ′ ×Spd (OĔ′ ) Spd (OĔ),

compatible with Weil descent data.

3.3. The reduced locus of integral LSV and specialization

Recall that k denotes the algebraic closure of the residue field κ = κE of the
reflex field E of (G, µ).

Definition 3.3.1. Let XG(b, µ−1) be the functor which to a perfect k-
algebra R associates the set of isomorphism classes of pairs (P ,α) where

1) P is a G-torsor over Spec (W (R)),
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2) α is a G-torsor isomorphism

α : G × Spec (W (R)[1/p])
∼−→ P [1/p]

such that φP = α◦φb◦φ∗(α)−1 (where φb = b×Frob) defines the structure
of a meromorphic Frobenius crystal

φP : Frob∗(P)[1/p]
∼−→ P [1/p].

It is required that the corresponding G-shtuka has leg along the divisor
p = 0 with pole bounded by µ.

Remark 3.3.2. The above definition makes sense also when µ is not minus-
cule. Explicitly, the term “pole bounded by µ” comes down to the following
condition. Using the trivialization α we can view the pair (P ,φP ◦φ∗(α)) as
a pair of a G-torsor over Spec (W (R)) together with a trivialization of the
restriction of this torsor to Spec (W (R)[1/p]). By [97, 3.1] (see also [8]), this
gives an R-valued point of the Witt vector affine partial flag variety GrW

G .
Then the pole condition means that this R-valued point factors through
the map ι : Mv

G,µ(R") → GrW
G (R) of (2.4.4). By work of Anschütz-Gleason-

Lourenço-Richarz [3, Thm. 6.16] (see §2.4.3), this condition is equivalent
to asking that for all K-valued points of Spec (R) with K algebraically
closed, the corresponding point in GrW

G (K) = G(W (K)[1/p])/G(W (K)) lies
in GrW

G,Adm(µ)(K) =
⋃

w∈Adm(µ)G
GrW

G,w(K).

By [3, Thm. 6.16], the image (Mv
G,µ)(K") → GrW

G (K) is equal to the set
of points of some finite union of affine Schubert varieties in the ind-perfectly
proper Witt affine Grassmannian GrW

G . Using this, we can see as in [97, §1]
that the functor XG(b, µ−1) is represented by a perfect k-scheme which is, in
fact, locally perfectly of finite type over k. We call XG(b, µ−1) the (b, µ−1)-
admissible locus inside the Witt affine Grassmannian. The group Jb(Qp) acts
on XG(b, µ−1) by

g · (P ,α) = (P ,α ◦ g−1).

3.3.1. Specialization for v-sheaves. We now recall some constructions

and results of Gleason [31, 32]. Denote by P̃erfd the category of small v-
sheaves on Perfdk. Recall the functor S '→ S" from perfect affine k-schemes

to P̃erfd. If F is a small v-sheaf on Perfdk, then its reduction Fred ∈ ˜SchPerf
is the small scheme-theoretic v-sheaf (see [31, Rem. 3.13]) with

Fred(S) = Hom
P̃erfd

(S", F),
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for S a perfect k-scheme. It makes sense to consider the corresponding v-
sheaf (Fred)" and there is a natural adjunction morphism of v-sheaves

(3.3.1) (Fred)
" −→ F .

Gleason explains certain conditions on F that allow for the construction of
a continuous specialization map

(3.3.2) spF : |F| −→ |Fred|.

Here, |F| and |Fred| are the topological spaces associated to these sheaves as
in [82], comp. [31, §1], i.e., the equivalence classes of maps Spa (K, K+) → F ,
where K is a perfectoid field of characteristic p and K+ a bounded open
valuation subring. If F comes with a map of sheaves F → Spd (Zp), we set
Fη = F ×Spd (Zp) Spd (Qp). Then we can consider the composition of the
natural map |Fη| → |F| with the specialization map spF ,

(3.3.3) spFη
: |Fη| −→ |Fred|.

Assume in addition that Fred is represented by a scheme and that the natural
adjunction map (3.3.1) is a closed immersion. In this situation, for a closed
point x ∈ Fred, Gleason [31, Def. 4.18] defines a sub-v-sheaf F/x of F that
he calls the tubular neighborhood of x in F . We will use the more traditional
name formal completion. Namely,

(3.3.4) F/x(S) = {y : S −→ F | spF ◦ y(|S|) ⊂ {x}}.

One can then take its generic fiber (which is traditionally called the tube
over x)

(F/x)η := F/x ×Spd (Zp) Spd (Qp).

Let us exemplify these definitions when F = X♦, where X is a for-
mal scheme which is flat, separated and formally locally of finite type over
Spf(Z̆p). Then Fred is represented by the perfection of the underlying re-
duced k-scheme Xred of X. In this case, there is a specialization map which
is a continuous map of topological spaces

sp : |Xη| −→ |Xred|,

where Xη is the generic fiber of X considered as an adic space over Q̆p. There
is also a surjective map

sp : |Xrig|class −→ Xred(k),
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where |Xrig|class denotes the classical points of the rigid space Xrig given by
the generic fiber of X, defined as by Berthelot, cf. [78, chap. 5]. For F = X♦,
with X a formal scheme as above, there are natural identifications

|Xη| = |Fη|, |Fred| = |Xred|,

and, under these, spFη
agrees with the specialization map sp : |Xη| → |Xred|

(see [31], §4). For a closed point x ∈ Xred, by [31, Prop. 4.19], we can also
identify formal completions

F/x = (X/x)♦ = Spa (ÔX,x, OX,x)♦.

3.3.2. Specialization for integral models of LSV. One of the main
results of [32], is that, under certain assumptions, F = Mint

G,b,µ affords a

specialization map to XG(b, µ−1).

Theorem 3.3.3 (Gleason [32]). a) The v-sheaf Mint
G,b,µ is small and its

reduced locus (Mint
G,b,µ)red is represented by the perfect k-scheme XG(b, µ−1).

The identification with the (b, µ−1)-admissible locus,

(Mint
G,b,µ)red

∼−−→ XG(b, µ−1)

is functorial in (G, b, µ).
b) The adjunction morphism

(Mint
G,b,µ)"red ≃ XG(b, µ−1)" −→ Mint

G,b,µ

is a closed immersion.
c) The v-sheaf Mint

G,b,µ is “specializing” in the terminology of loc. cit.,
§1.4. Hence, there is a continuous specialization map

sp : |ShtG,b,µ,K | −→ |XG(b, µ−1)|

functorial in (G, b, µ), which also defines

sp : |ShtG,b,µ,K |class −→ XG(b, µ−1)(k).

Proof. This follows from [32, Thm. 2] and its proof, see also [32, Prop. 2.30,
Lem. 2.31].

Theorem 3.3.3 above holds for all µ, not necessarily minuscule. However,
in the sequel, we will return to our blanket assumption that µ is minuscule.
The following conjecture is the local analogue of Scholze’s Conjecture 3.2.2.
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Conjecture 3.3.4. Assume that µ is minuscule. Let x ∈ XG(b, µ−1)(k).
Then the formal completion Mint

G,b,µ /x is representable, i.e., there exists a
normal complete Noetherian local ring R such that

Mint
G,b,µ /x ≃ Spd (R).

It is clear that Conjecture 3.3.4 follows from Conjecture 3.2.2: indeed, if
Mint

G,b,µ is representable by MG,b,µ, then Mint
G,b,µ /x ≃ Spd (ÔMG,b,µ,x). In §3.7

we prove a kind of converse under some conditions.
The following conjecture makes Conjecture 3.3.4 more precise (see also

[32, Conj. 1]).

Conjecture 3.3.5. Let x ∈ XG(b, µ−1)(k) and let y ∈ Mloc
G,µ(k) = Mv

G,µ(k) ⊂
GrW

G (k) be the point obtained after fixing a trivialization of the corresponding
G-torsor over W (k). Then there is an isomorphism

(3.3.5) Mint
G,b,µ /x ≃ Mloc

G,µ /y = Spd (ÔM,y),

where, for simplicity of notation, M := Mloc
G,µ.

Remark 3.3.6. a) In the case of RZ-spaces, Conjecture 3.3.5 holds true, as
follows from the “classical” local model diagram, cf. [78].

b) The isomorphism in Conjecture 3.3.5 cannot be expected to be canon-
ical. In fact, the isomorphism between the completions of local models which
are induced using (3.3.5) and the functoriality of integral LSV’s is not al-
ways the one obtained by the functoriality of local models. To explain this
statement, consider (G, b, µ) → (G′, b′, µ′). This induces natural morphisms

Mv
G,µ −→ Mv

G′,µ′ ×Spd (OE′ ) Spd (OE),

Mint
G,b,µ −→ Mint

G′,b′,µ′ ×Spd (OĔ′ ) Spd (OĔ).
(3.3.6)

Let x ∈ XG(b, µ−1)(k) and let y ∈ Mv
G,µ(k) ⊂ GrW

G (k) be the point obtained
after fixing a trivialization of the corresponding G-torsor over W (k). Let
x′ ∈ XG′,µ′(b′)(k) be the image of x and let y′ ∈ Mv

G′,µ′(k) ⊂ GrW
G′ (k) be the

point obtained from the corresponding trivialization of the corresponding
G′-torsor over W (k). Then, assuming the conjecture, we obtain a diagram

Mint
G,b,µ /x

≃

Mint
G′,b′,µ′ /x′ ×Spd (OĔ′ ) Spd (OĔ)

≃

Mv
G,µ /y Mv

G′,µ′ /y′ ×Spd (OĔ′ ) Spd (OĔ),
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where the upper and the lower morphism are derived from (3.3.6), and where
the vertical maps are the isomorphisms appearing in (3.3.5). This diagram
will in general not commute, no matter how the isomorphisms in (3.3.5) are
chosen. An example is given by GL2, when µ = (1, 0) and b is basic, and G is
the Iwahori model of GL2 and G′ is the hyperspecial model of GL2. In this
case, the upper horizontal arrow is represented by a finite morphism but the
lower horizontal morphism is induced by a blow-up morphism.

Remark 3.3.7. The basic idea behind the construction of the specialization
map for ShtG,b,µ,K can be displayed as follows, see also Proposition 2.4.6 and
its proof.

Let S = Spa (C, C+) → ShtG,b,µ,K be a point over Spd (OE) which corre-
sponds to a G-shtuka (P,φP) with trivialization ir over Y[r,∞)(S). Using the
trivialization ir we can extend (P,φP) over Y[r,∞](S) and hence, by glue-
ing, over Y[0,∞](S). By the Extension Conjecture A.1.2 shown by Anschütz

[1], this extends to a G-BKF-module P♮, i.e., a module over Spec (W (C+)).
The trivialization extends to a trivialization ĩr of the pullback of P♮ via
Y[r,∞](S) → Spec (W (C+)). Let κ be the residue field of C+. Now the base
change by W (C+) → W (κ) gives a G-torsor

P0 = P♮ ⊗W (C+) W (κ)

over Spec (W (κ)) with Frobenius φ0 defined on P0[1/p]. Base-changing the
trivialization ĩr under

B[r,∞]
(C,C+) −→ W (κ)[1/p]

defines a trivialization α of P0[1/p]. We can see that the Frobenius on
P0[1/p] is bounded by µ. Hence (P0,φ0,α) ∈ XG(b, µ−1)(κ). Unravelling
the definition of the specialization map ([31, Def. 4.12, Rem. 4.13]) gives

sp(P,φP , ir) = (P0,φ0,α).

3.4. Structure of the formal completions of integral LSV

The aim of this subsection is to prove the following fact.

Proposition 3.4.1. Let (G, b, µ) be a local Shimura datum and let G be a
parahoric group scheme for G. Let x ∈ XG(b, µ−1)(k).

1) The formal completion Mint
G,b,µ /x of the integral local Shimura variety

Mint
G,b,µ at x is topologically flat.
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2) The topological space |(Mint
G,b,µ /x)η| given by (Mint

G,b,µ /x)η (the generic

fiber of the formal completion) is connected.

For the proof we need some preparation. For a small v-sheaf X over
Spd (Zp) we write Xη = X ×Spd (Zp) Spd (Qp) for its “generic fiber”. This is
a small v-sheaf which comes with a map Xη → X. We will say that X is
topologically flat, if |Xη| is dense in |X|. We need the following lemma.

Lemma 3.4.2. Suppose X is a formal scheme which is flat and formally of
finite type over Spf (Zp). Then the corresponding v-sheaf X♦ over Spd (Zp)
is topologically flat.

Proof. This is given in [65, Lem. 4.4], a similar argument also appears in
the proof of [3, Lem. 2.17].

In [31, Def. 2.34], Gleason defines a v-sheaf of groups L̂+
W G over Spd (Zp)

given by

(3.4.1) L̂+
W G(S) = {((S♯, y), g) | g ∈ G(W (R+)), g ≡ 1 mod [ϖg]},

where S = Spa (R, R+) and (S♯, y) is an S-valued point of Spd (Zp), and
where ϖg is a pseudouniformizer of R+ (that depends on g). We can think

of L̂+
W G as the formal completion at the identity of the v-sheaf of groups

W+G × Spd (Zp) of loc. cit., with W+G given by

W+G(Spa (R, R+)) = G(W (R+)).

Consider the v-sheaf Ŵ+ which associates to the affinoid perfectoid S =
Spa (R, R+) over k the set Ŵ+(R, R+) equal to

{a ∈ W (R+) | a ∈ ([πa]), πa a pseudo-uniformizer depending on a}.

Lemma 3.4.3. The subset Ŵ+(R, R+) is an ideal of the ring W (R+).

Proof. If π1, π2 are two pseudo-uniformizers in R+, we have π1/pn

1 |π2 and

π1/pn

2 |π1 for some n. Then,

[π1]b1 + [π2]b2 = [π1]b1 + [π1/pn

1 c]b2 = [π1/pn

1 ]([π1−1/pn

1 ]b1 + [c]b2).

This shows that Ŵ+(R, R+) is a subgroup and, hence, also an ideal of
W (R+).
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Recall the identity of Witt vectors (in characteristic p)

(b0, b1, . . . , bn, . . .) · (πa, 0, . . . , 0, . . .) = (b0πa, b1π
p
a, b2π

p2

a , . . .).

Now choose a pseudo-uniformizer π and hence a norm | | on R.

So a = (a0, a1, . . . , an, . . .) ∈ W (R+) belongs to Ŵ+(R, R+), if and only
if

an−1 ∈ Brpn ,S(R, R+)

with r = ra = |πa|. Here, we have the ball of radius rpn

over S

Brpn ,S = Spa (R⟨t, t/πpn

a ⟩, R+⟨t, t/πpn

a ⟩)♦,

so for (R, R+) → (A, A+), Brpn ,S(A, A+) = πpn

a A+. The Frobenius on R

extends to a ring isomorphism φ : R⟨t, t/πa⟩
∼−→ R⟨t, t/πp

a⟩ with φ(t) = t.
This gives

φ : Br,S
∼−→ Brp,S .

Hence, we see

Ŵ+(R, R+) =
⋃

r<1

(Br,S × Brp,S × · · · )(R, R+)
≃−→

(⋃

r<1

(Br,S)N
)

(R, R+),

the isomorphism given by (1,φ−1, . . . , φ−n, . . .). This isomorphism gives

(3.4.2) Ŵ+ × S ≃
⋃

r<1

(Br,S)N.

Proposition 3.4.4. The map Ŵ+ → ∗ is formally smooth in the sense of
[26, Def. IV.3.1].

Proof. The proof of [26, Prop. IV.3.3], gives that BN → ∗ is formally smooth
and so is ⋃

r<1

(Br,S)N −→ S

for all S. The result then follows from (3.4.2).

Note here that

BN ≃ lim←−
d

Bd,
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where Bd is the d-dimensional ball. If U ⊂ BN
S is a quasi-compact open then,

using [82, Prop. 6.4], one sees that there is some d ≥ 1 such that U is the
inverse image of an open V ⊂ Bd

S by the projection BN
S → Bd

S .
We write

G(Ŵ+(R, R+)) := {g ∈ G(W (R+)), g ≡ 1 mod [ϖg]}.

Set O(G) = Γ(G, OG) and let Ô(G)e be its completion along the kernel IG of
the identity section. Since G is smooth over Spec (Zp), we have

Ô(G)e ≃ Zp[[u1, . . . , ud]],

non-canonically, with ÎG ≃ (u1, . . . , ud). An element g ∈ G(Ŵ+(R, R+)) is
given by an algebra map

g∗ : O(G) −→ W (R+)

such that g∗(IG) ⊂ [πg]W (R+) ⊂ Ŵ+(R, R+). Since W (R+) is [πg]-complete,
g∗ factors uniquely through

O(G) −→ Ô(G)e = Zp ⊕ ÎG .

Using that Ŵ+(R, R+) ⊂ W (R+) is an ideal (Lemma 3.4.3), we see that g∗

is uniquely given by assigning the values g∗(ui), i = 1, . . . , d. This gives

L̂+
W G(R, R+) ≃ Ŵ+(R, R+)d × Spd (Zp)(R, R+),

and so

(3.4.3) L̂+
W G ≃ (Ŵ+)d × Spd (Zp),

non-canonically (as v-sheaves of sets).

Proposition 3.4.5. The map L̂+
W G → Spd (Zp) is formally smooth in the

sense of [26, IV.3].

Proof. This follows from (3.4.3) and Proposition 3.4.4.

Corollary 3.4.6. The map L̂+
W G → Spd (Zp) is universally open and topo-

logically flat.
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Proof. Proposition 3.4.5 together with [26, Prop. IV.3.2, p. 129] implies that
L̂+

W G → Spd (Zp) is universally open. Hence, an open U ⊂ |L̂+
W G| maps to an

open in | Spd (Zp)|. Since Spd (Zp) is topologically flat (Lemma 3.4.2 above),
the image of U intersects the generic fiber | Spd (Zp)η| = | Spd (Qp, Zp)|. Now
topological flatness also follows: indeed,

|U ×L̂+
W G (L̂+

W G)η| = |U ×Spd (Zp) Spd (Qp)| −→ |U | ×| Spd (Zp)| | Spd (Qp)|

is a surjection by [82, Prop. 12.10] and, by the above, the target is non-empty.
Hence the source is non-empty. This source maps

|U ×L̂+
W G (L̂+

W G)η| −→ |U | ×|L̂+
W G| |(L̂+

W G)η|

and so |U | ×|L̂+
W G| |(L̂+

W G)η| = |U | ∩ |(L̂+
W G)η| ̸= ∅.

We will also need:

Proposition 3.4.7. For any affinoid perfectoid field (K, K+) over k with
Spa (K, K+) → Spd (Zp), the topological space |L̂+

W G ×Spd (Zp) Spa (K, K+)|
is connected.

Proof. It is enough to show this for (K, K+) = (C, C+) algebraically closed
over k. By (3.4.3) and (3.4.2),

|L̂+
W G ×Spd (Zp) Spa (C, C+)| ≃

∣∣∣∣

(⋃

r<1

BN
r,Spa (C,C+)

)d∣∣∣∣.

Lemma 3.4.8. Suppose that (C, C+) is an algebraically closed affinoid field
over k. Then |BN

(C,C+)| := |BN
Spa (C,C+)| is connected.

Proof. Note that

BN
(C,C+) ≃ Spa (C⟨t1, t2, . . .⟩, C+⟨t1, t2, . . .⟩)♦

is quasi-compact. Suppose that |BN
(C,C+)| = U⊔V , with U and V both clopen

subsets. Since |BN
(C,C+)| is quasi-compact, the closed subsets U and V are

also quasi-compact. Hence, by [82, Prop. 6.4], they are the inverse images of
open subsets U ′, V ′ ⊂ Bd

(C,C+) by the surjective projection prd : BN
(C,C+) →

Bd
(C,C+), for some d. We have |Bd

(C,C+)| = prd(U ⊔ V ) = prd(U) ∪ prd(V ) =

U ′ ∪ V ′. However, |Bd
(C,C+)| is connected, so U ′ ∩ V ′ ̸= ∅. This contradicts

that U and V are disjoint.



p-adic shtukas and Shimura varieties 87

Since BN
r,Spa (C,C+) ≃ BN

Spa (C,C+) the lemma implies that |BN
r,Spa (C,C+)| is

also connected. The proof follows.

Assume now that b is µ-admissible for G, i.e. b ∈ G(Z̆p)wG(Z̆p), for some
w ∈ Adm(µ−1)G , cf. Remark 4.2.3. Then XG(b, µ−1)(k) = Mint

G,b,µ(Spd (k)) ⊂
G(W (k)[1/p])/G(W (k)) has a “base point” x0 given by the image of the unit
element.

Gleason ([32, Thm. 3]) constructs a diagram of v-sheaves over Spd (OĔ)

(3.4.4)

LMint
G,b,µ /x0

π• π⋆

Mint
G,b,µ /x0

Mv
G,µ /x0

.

Let us explain this diagram. For more details, the reader is referred to
[72, §3.6], [32, §2.4].

a) The v-sheaf LMint
G,b,µ /x0

assigns to a perfectoid S = Spa (R, R+) over

k, the set LMint
G,b,µ /x0

(S) equal to

{((S♯, y), h) | h ∈ G(W (R+)[1/ξR♯ ]), h ≡ b mod [ϖh], [h−1] ∈ Mv
G,µ(S)},

where (S♯ = Spa (R♯, R♯+), y) is an untilt of S over OĔ and where [h−1]
is the S-point of the BdR-affine Grassmannian GrG,Spd (OĔ) defined by the

coset h−1G(B+
dR(R♯)).

b) The map π∗ is projection to the coset [h−1] = h−1G(B+
dR(R♯)).

c) The map π• sends ((S♯, y), h) to the pair ((P,φP), ir) ∈ Mint
G,b,µ(S),

where the G-shtuka over S with leg at y is given by the trivial G-torsor
P = G with Frobenius defined by φP = hφ : (φ∗G)[1/ξR♯ ]

∼−→ G[1/ξR♯ ], and
the framing ir is given by the unique lift (as in [31, Lem. 2.1.28]) of the
identity trivialization modulo [ϖh].

Hence, for ((S♯, y), h) ∈ LMint
G,b,µ /x0

(S) as above, the framing in (c) is
given by the unique element

i(h) = ir(h) ∈ G(B[r,∞)
(R,R+))

with i(h) ≡ 1 mod [ϖh] and the property

h = i(h)−1 · b · φ(i(h)).
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d) The point x0 ∈ Mint
G,b,µ(Spd (k)) is the base point given as above.

Similarly x0 ∈ Mv
G,µ denotes the base point of Mv

G,µ(Spd (k)) ⊂ GrW
G (k)

given by the coset b−1G(W (k)).
The v-sheaf of groups L̂+

W G acts on LMint
G,b,µ /x0

on the right by h ⋆ g =

g−1h and also by h • g = φ(g)−1hg.
By [32, Lem. 2.35, Lem. 2.36, proof of Thm. 2.33], both π•, π⋆ are L̂+

W G-
torsors (for the v-topology) for the two corresponding actions.

Proof of Proposition 3.4.1. We first reduce the statement to the case where
x is the base point. Let x ∈ Mint

G,b,µ(k) given by (P ,φP , ir), where P is a
G-bundle on W (k). Choose a trivialization of P . Then φP is given as

(3.4.5) φbx
: G[1/p] −→ G[1/p],

which is bounded by µ. Furthermore, ir is given by g : G[1/p] → G[1/p] with
g−1bxσ(g) = b. We obtain an isomorphism

(3.4.6) τg : Mint
G,b,µ

∼−→ Mint
G,bx,µ, τg((P,φP), ir) = ((P,φP), ir · g−1),

which sends x to the base point x0 of Mint
G,bx,µ. Then Mint

G,b,µ /x is isomorphic

to Mint
G,bx,µ /x0

. It is thus enough to consider the case of the base point in
Proposition 3.4.1.

Recall that, by Theorem 2.4.1, Mv
G,µ is representable by Mloc

G,µ. Hence,

Mv
G,µ /x0

= Spd (A, A),

where A is a complete normal local Noetherian flat OĔ-algebra. By Lem-
ma 3.4.2, Mv

G,µ /x0
is topologically flat; similarly for Mv

G,µ. Proposition 3.4.1
follows from the next proposition.

Proposition 3.4.9. Let (G, b, µ) be a local Shimura datum and let G be
a parahoric group scheme for G. Assume b is µ-admissible for G and let
x0 ∈ XG(b, µ−1)(k) be the base point.

1) The v-sheaf LMint
G,b,µ /x0

is topologically flat.

2) The formal completion Mint
G,b,µ /x0

of the integral local Shimura variety

Mint
G,b,µ at x0 is topologically flat.

3) The topological space |(Mint
G,b,µ /x0

)η| of the generic fiber (Mint
G,b,µ /x0

)η of
the formal completion is connected.
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Proof. We recall the diagram (3.4.4). Note that π• induces a continuous map
|π•| between the corresponding topological spaces. Since π• splits v-locally,
|π•| is surjective. For simplicity, we will drop the subscripts G, µ, b from the
notation.

We first show (1). For simplicity set X = LMint
/x0

, Y = Mv
/x0

= Spd (A)
and set

π = π∗ : X −→ Y

for the L̂+
W G-torsor. Let U ⊂ |X| be a non-empty open subset; we identify it

in notation with the corresponding open v-subsheaf of X ([82, Prop. 12.9]).
We would like to show U ∩ |Xη| ̸= ∅. It is enough to show that |π|(U) is
open in |Y | = | Spd (A)|. Then by Lemma 3.4.2, |π|(U) intersects |Yη|. Since
|Xη| = |π|−1(|Yη|), then U intersects |Xη|.

Since π is a L̂+
W G-torsor for the v-topology (cf. [32, Lem. 2.35]), there is

a v-cover by a perfectoid space T ,

q : T −→ Spd (A) = Y,

such that the base change of π by q splits,

L̂+
W G ×Spd (Zp) T ≃ X ×Y T.

By Corollary 3.4.6, the image π(|U×Y T |) is open in |T |. By [82, Prop. 12.10]
the canonical map

|U ×Y T | −→ |U | ×|Y | |T |

is surjective. In the fibered product of sets

(3.4.7)

|U | ×|Y | |T |
|q|

|π|

|U |

|π|

|q|−1(|π|(|U |))
|q|

|π|(|U |),

the vertical maps are surjective. Hence,

|π| : |U ×Y T | −→ |q|−1(|π|(|U |))

is surjective and so

|q|−1(|π|(|U |)) = |π|(|U ×Y T |).
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Hence, |q|−1(|π|(|U |)) is open in T . By [82, Prop. 12.9], the v-cover q gives
a quotient map |q| : |T | → |Y |. It follows that |π|(|U |) is open in |Y |.

Part (2) follows quickly from (1) since |π•| is continuous and surjective.
Finally, we show (3), i.e. that |(Mint

/x0
)η| is connected. By continuity and

surjectivity of |π•| in the diagram (3.4.4), it is enough to show that the
source |(LMint

/x0
)η| is connected. We will use the following standard lemma:

Lemma 3.4.10. Let f : Z → W be a continuous map of topological spaces
which is surjective and open. Assume that W is connected and that for each
w ∈ W , the fiber Z ×W {w} = f−1(w) ⊂ Z is connected with the subspace
topology. Then Z is connected.

We will apply Lemma 3.4.10 to

|π∗| : |(LMint
/x0

)η| −→ |(Mv
/x0

)η|.

Note that |π∗| is surjective and open by the argument in the proof of (1)
above.

Proposition 3.4.11. The topological space |(Mv
/x0

)η| is connected.

Proof. Since M := Mloc
G,µ and its strict completion A are normal, the (Berth-

elot) rigid analytic fiber (M/x0
)rigη = Spf(A)rig is connected, cf. [17, Lem.

7.3.5]. In fact, by [17, Prop. 6.1.1], this is path connected in the sense con-
sidered in loc. cit. It then follows that the corresponding Berkovich space
and then also the corresponding analytic adic space, and the topological
space |(Mv

/x0
)η| for the corresponding v-sheaf are connected. For this last

step one can use a construction of [82, §13.7-§13.12]: By [82, Prop. 13.10],
there is a functor X '→ |X|B = “Berkovich topological space of X”, defined
for small v-sheaves X. This extends Berkovich’s construction for rigid an-
alytic spaces. There is a functorial continuous quotient map |X| → |X|B,
and each fiber of the map has a generic point, so it is connected. Hence, if
|X|B is connected, so is |X|, by a simple variation of Lemma 3.4.10. (Here,
again recall that the topological space for a v-sheaf which corresponds to an
analytic adic space agrees with that space.)

Next, we show that the fibers of |π∗| are connected. Set again Xη =
(LMint

/x0
)η and Yη = (Mv

/x0
)η and π = π∗. Suppose that y ∈ |Yη| is repre-

sented by Spa (K, K+) → Yη, with (K, K+) affinoid perfectoid over k. Then
y is the image of the unique closed point in | Spa (K, K+)| and the map
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| Spa (K, OK)| → | Spa (K, K+)| gives a generization. Choose (C, C+) alge-
braically closed with (K, K+) → (C, C+). We have a continuous surjective
map

|Xη×Yη
Spa (C, C+)| −→ |Xη×Yη

Spa (K, K+)| −→ |Xη|×|Yη| | Spa (K, K+)|.

By the torsor property, Xη ×Yη
Spa (C, C+) ≃ L̂+

W G ×Spd (Zp) Spa (C, C+).
This is connected by Proposition 3.4.7. Hence, the fiber |π∗|−1(y) over y is
also connected.

The proof of (3) now follows from Lemma 3.4.10.

Remark 3.4.12. Using some more of the results of [3] we can see that 2)
in Proposition 3.4.9 (the formal completion Mint

G,b,µ /x0
is topologically flat),

also holds for general µ, i.e. not necessarily minuscule.
Indeed, the argument in the proof above shows that we can deduce

this by knowing that the formal completion Mv
G,µ /x0

is topologically flat.

By [3, Prop. 4.13], see also [65, Cor. 4.14], the general v-sheaf local model
Mv

G,µ is topologically flat, without assuming representability, and this holds
even for general µ (not necessarily minuscule). By [3, Prop. 4.14], Mv

G,µ is a
“prekimberlite” and {x0} is constructible, also for general µ. Then, by [32,
Prop. 4.22],

Mv
G,µ /x0

−→ Mv
G,µ

is an open immersion. Hence the topological flatness of Mv
G,µ implies the

topological flatness of Mv
G,µ /x0

.

3.5. Characterization of the formal scheme MG,b,µ

In this subsection, we provide a more “classical” characterization of the
formal scheme MG,b,µ of Conjecture 3.2.2. In what follows we assume that
MG,b,µ as in Conjecture 3.2.2 actually exists.

Our main point is that the specialization map in (iii) of Gleason’s The-
orem 3.3.3

sp : |ShtG,b,µ,K |class −→ XG(b, µ−1)(k)

can be interpreted using the theory of Breuil-Kisin modules as follows. Given
a classical point y ∈ ShtG,b,µ,K(F ) with F/Ĕ finite, we consider the corre-
sponding Galois representation

ρy : Gal(Ē/F ) −→ G(Zp) ⊂ G(Qp)
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obtained by evaluating the local system given by the period morphism over
the point πGM (y). This representation is crystalline: indeed, the point y di-
rectly provides the corresponding admissible filtered Frobenius G-isocrystal
Dcrys(ρy) which is associated to ρy by Fontaine’s functor, cf. [78, §1.6]. In
fact, the point y also gives an isomorphism of the underlying Frobenius
G-isocrystal over k with the Frobenius G-isocrystal given by b.

Fix a uniformizer π = πF of F . Then by Breuil-Kisin theory (comp.
[57, Thm. 3.3.2]), to any Galois stable lattice in a crystalline representation
of Gal(Ē/F ), there is an associated Breuil-Kisin module (M,φM) over OF .
Let us recall this notion, cf. [7, §4.1]. There is a natural surjection of W (k)-
algebras

(3.5.1) θ : S = W (k)[[T ]] −→ OF ,

sending T to π. Its kernel is generated by an Eisenstein polynomial E(T ).
There is a Frobenius φ on S, which is the Frobenius on W (k) and sends T
to T p.

A Breuil-Kisin module over OF is a vector bundle M over Spec (S)
equipped with an isomorphism

(3.5.2) φM : φ∗(M)

[
1

E(T )

]
∼−→ M

[
1

E(T )

]
.

As explained in [57, §3.3, Cor. 3.3.6] (see also [70, §4.2]), one can use the
extension result [1, Cor. 1.2] to upgrade the Breuil-Kisin construction and
obtain from a crystalline representation ρy : Gal(Ē/F ) → G(Zp) a G-torsor
PBK over S with a G-torsor isomorphism

φPBK
: φ∗(PBK)[E(T )−1]

∼−→ PBK[E(T )−1]

over S[E(T )−1]. The pair (PBK,Φ) is called a G-Breuil-Kisin module in
[70] (G-BK module). By base changing via S → W (k), given by T '→ 0,
we obtain a G-BKF-module (P0,φP0

) over k. By the properties of the
Breuil-Kisin functor (e.g. [57, Thm. 3.3.2 (1)]), the Frobenius G-isocrystal
(P0[1/p],φP0

[1/p]) over k is canonically the Frobenius G-isocrystal under-
lying Dcrys(ρy). Hence the point y ∈ ShtG,b,µ,K(F ) also provides the data of
an isomorphism α of the Frobenius G-isocrystal (P0[1/p],φP0

[1/p]) over k
with the one given by b. We set

(3.5.3) spBK(y) = (P0,φP0
[1/p] ◦ φ∗(α)) ∈ GrW

G (k).
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This, belongs to the subset XG(b, µ−1)(k) ⊂ GrW
G (k), as we will see in the

next proposition.

Proposition 3.5.1. (i) There is an identification of the generic fiber M rig
G,b,µ

with MG,b,µ,K , as rigid analytic varieties over Ĕ,

(ii) There is an identification of the perfection of the reduced special fiber

(MG,b,µ)perf
red with XG(b, µ−1).

(iii) The above identifications make the specialization map

(3.5.4) sp : |M rig
G,b,µ|class −→ (MG,b,µ)perf

red (k)

agree with the map

(3.5.5) spBK : |ShtG,b,µ,K |class −→ XG(b, µ−1)(k).

given above.

Proof. Parts i) and ii) follow from Theorem 3.3.3 and it remains to show
iii).

Recall that the specialization map sp is described in Remark 3.3.7. We
extend the natural homomorphism W (k) → W (OC♭) to

(3.5.6) i : S −→ W (OC♭)

by sending T to [π♭] ∈ W (OC♭). Here π♭ is given by a choice of roots (π1/pn

)n

in C. Then i is compatible with the Frobenius homomorphisms and the map
θ of (3.5.1), resp. the map θ : W (OC♭) → OC , in the sense that there is a
commutative diagram

S i

θ

W (OC♭)

θ

OF̆ OC .

Furthermore, the image of E(T ) is a generator of the kernel of θ since it is
primitive of degree 1, comp. [7, proof of Prop. 4.32]. Hence, (i(E(T ))) =
(ξ) as ideals in W (OC♭). Consider the map of locally ringed spaces j :
Y[0,∞)(C

♭, OC♭) → Spec (W (k)[[T ]]) induced by i : W (k)[[T ]] → W (OC♭),
cf. (3.5.6). To show that sp agrees with spBK, it suffices to show that the
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pull-back j∗(PBK,Φ) of the G-BK module attached to ρy by the Breuil-
Kisin functor ([53]) is isomorphic to the G-shtuka (P,φP) which is at-
tached to the (C, OC)-point of ShtG,b,µ,K given by pre-composing y with
Spa (C, OC) → Spa (F, OF ).

Let first G = GLn. Then the BKF-module M ⊗W (k)[[T ]] W (OC♭) given
by the Breuil-Kisin module (M,Φ) extends the shtuka (P,φP). Indeed,
this shtuka is obtained by the de Rham Zp-étale local system over Spec (F )
given by ρy, as in Definition 2.6.4. Hence the assertion follows from [7, Prop.
4.34], which shows that M⊗W (k)[[T ]] W (OC♭) gives the “correct” pair (T,Ξ)
(notation as in loc. cit., see also the proof of Proposition 2.5.1 above). (This
pair determines the shtuka by Fargues’ theorem [85, Thm. 14.1.1]).

This handles the case G = GLn. The case of general G then follows by
a standard argument by writing G as the closed subgroup scheme of GLn

given as the stabilizer of a family of tensors; see also the discussion in §4.6.1.
(In particular, this shows that the construction of spBK is independent of
the choice of the uniformizer πF and of π♭

F .)

Proposition 3.5.2. MG,b,µ is the unique normal formal scheme R which
is flat and locally formally of finite type over Spf (OĔ) and is equipped with
identifications

(i) Rrig = MG,b,µ,K ,

(ii) Rperf
red = XG(b, µ−1),

such that the following diagram is commutative:

(3.5.7)

|Rrig|class spR

=

Rred(k)

=

|ShtG,b,µ,K |class spSht
XG(b, µ−1)(k).

Proof. By Lourenço [63], see [85, Thm. 18.4.2], the triple (Rrig, Rperf
red , spR)

characterizes such a formal scheme R.

3.6. Functoriality of integral LSV

Let G ↪→ G′ be a group embedding compatible with local Shimura data
(G, b, µ) ↪→ (G′, b′, µ′). Then there is an inclusion of corresponding reflex
fields, E ⊃ E′. Let G and G′ be parahoric models of G, resp. G′, such that

(3.6.1) G(Z̆p) = G′(Z̆p) ∩ G(Q̆p)
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(intersection in G′(Q̆p)). Then, by [13, Prop. 1.7.6], G ↪→ G′ extends to
G → G′.

Lemma 3.6.1. Under the above assumptions, G → G′ identifies G with the
group smoothening (in the sense of [10]) of the Zariski closure Ḡ of G in G′,

G = Ḡsm → Ḡ ↪→ G′.

Proof. By the universal property of the group smoothening, we have a mor-
phism G → Ḡsm. By (3.6.1) we have G(Z̆p) = G′(Z̆p) ∩ G(Q̆p) = Ḡ(Z̆p).

The group smoothening Ḡsm → Ḡ satisfies Ḡsm(Z̆p) = Ḡ(Z̆p), so the mor-

phism G → Ḡsm induces a bijection G(Z̆p) = Ḡsm(Z̆p). The characterization

of smooth integral models of G by their Z̆p-points given by the extension
property [13, Prop. 1.7.6] now implies G ≃ Ḡsm.

In the above situation, G = Ḡsm → Ḡ is a dilation (see [10]) and we will
call the group scheme morphism G → G′ a dilated immersion.

Consider the corresponding morphism (3.2.3) arising by functoriality,

(3.6.2) ρ : Mint
G,b,µ −→ Mint

G′,b′,µ′ ×Spd (OĔ′ ) Spd (OĔ).

Proposition 3.6.2. Under the assumption (3.6.1), ρ is a closed immersion
in the sense of [85, Def. 17.4.2].

Proof. By [85, Cor. 17.4.8], it is enough to show that the morphism is
quasi-compact, quasi-separated, satisfies the valuative extension criterion
for properness as in loc. cit. and that for any algebraically closed field C of
characteristic p, the induced map

ρ(C, OC) : Mint
G,b,µ(C, OC) −→ Mint

G′,b′,µ′(C, OC)

is injective. First note that using Proposition 2.1.1 and the Tannakian equiv-
alence, Mint

G,b,µ and Mint
G′,b′,µ′ satisfy “partial properness”: Mint

G,b,µ(R, R◦) =

Mint
G,b,µ(R, R+) and Mint

G′,b′,µ′(R, R◦) = Mint
G′,b′,µ′(R, R+), and so the valua-

tion criterion of properness is satisfied for ρ.
Note that if R is a flat Zp-algebra, we have

G(R) ⊂ G′(R).

Arguing as in the proof of [32, Prop. 2.25], we see that the injectivity of
ρ(C, OC) follows from

(3.6.3) G(B[r,∞)
(C,OC)) ∩ G′(W (OC)) = G(W (OC)).
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To see this equality, observe that

G(B[r,∞)
(C,OC)) = G(B[r,∞)

(C,OC)),

since p is a unit in B[r,∞)
(C,OC). For simplicity, we will set

B[r,∞)
C = B[r,∞)

(C,OC) = B[r,∞)
(C,C+).

Since W (OC)[1/p] ⊂ B[r,∞)
C and G ↪→ G′ is a closed immersion,

G(B[r,∞)
C ) ∩ G′(W (OC)) ⊂ G(B[r,∞)

C ) ∩ G′(W (OC)[1/p]) = G(W (OC)[1/p]).

Now by the property of group smoothening, it follows from (3.6.1) that

G(W (C)[1/p]) ∩ G′(W (C)) = G(W (C)).

Hence G(B[r,∞)
C ) ∩ G′(W (OC)) is contained in G(W (C)) ∩ G(W (OC)[1/p]).

Since G is affine and W (C)∩W (OC)[1/p] = W (OC), this last intersection is
G(W (OC)), which proves (3.6.3). The same argument shows that ρ(R, R+) is
injective when (R, R+) is obtained as a product of points (Ci, C

+
i ), cf §2.1.4.

(Quasi-) Separateness now follows by the argument in [32, Prop. 2.25].
It remains to show that ρ is quasi-compact. Note that every element

Φ ∈ G(W (R+)[1/ξR♯ ]) with pole bounded by µ defines a G-shtuka PΦ over
(R, R+) with leg at (R♯, R♯+) by taking the trivial G-torsor with Frobe-
nius given by the element Φ. As in [32, Def. 2.22] we consider the small
v-sheaf LMint

G,b,µ over Spd(OE) which classifies pairs (Φ, ir), where Φ ∈
G(W (R+)[1/ξR♯ ]) is bounded by µ and ir is a trivialization of the restriction
of PΦ to Y[r,∞)(R, R+). The forgetful morphism of v-sheaves

π : LMint
G,b,µ −→ Mint

G,b,µ

is surjective for the v-topology and is a torsor for the v-topology and for
the v-sheaf in groups (R, R+) '→ G(W (R+)), see [32, Prop. 2.23]. It will be
enough to show that the natural morphism

ρ : LMint
G,b,µ −→ LMint

G′,b′,µ′

is quasi-compact.
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The argument is inspired by the proof of [85, Thm. 21.2.1]. Let S =
Spa (A, A+) be affinoid perfectoid and let S → LMint

G′,b′,µ′ , given by (Φ′, i′r).
Consider the fibered product (small) v-sheaf

T := LMint
G,b,µ ×LMint

G′,b′,µ′
S,

which classifies (Φ, ir) such that (ρ(Φ), ρ(ir)) = (Φ′, i′r). It is enough to show
that T is quasi-compact for all such S → LMint

G′,b′,µ′ . Each point t ∈ |T | is in

the image of some Spa (Ct, C
+
t ) → T given by (Φt, it,r). So, for each t ∈ |T |,

we have

Φt ∈ G(W (C+
t )[1/ξt]), it,r ∈ G(B[rt,∞)

Ct
).

We set ξ = (ξt) ∈ W (D+) =
∏

t W (C+
t ).

The composition Spa (Ct, C
+
t ) → T → S gives A → C+

t . Choose a
pseudo-uniformizer ϖA ∈ A+ and denote by ϖt ∈ C+

t its image under
A → C+

t . Now consider the product of points

(D, D+) =

((∏

t

C+
t

)
[1/ϖ],

∏

t

C+
t

)

with ϖ = (ϖt)t, see §2.1.4. We have Spa (D, D+) → S which extends
Spa (Ct, C

+
t ) → S, for each t.

Observe that each Φt has pole bounded by µ, which is the same for all t.
Choose a closed group scheme immersion j : G ↪→ GLm. Then the entries
of the matrices j(Φt), j(Φt)−1 lie in ξ−N

t W (C+
t ) with N bounded above,

uniformily in t. It follows that

(Φt)t ∈
∏

t

G(W (C+
t )[1/ξt]) = G

(∏

t

W (C+
t )[1/ξt]

)

actually lies in G(W (
∏

t C+
t )[1/ξ]) = G(W (D+)[1/ξ]). Set Φ = (Φt)t ∈

G(W (D+)[1/ξ]). Now observe that

(ρ(it,r))t ∈ G′
(∏

t

B[rt,∞)
Ct

)

comes from G′(B[r′,∞)
(A,A+)) via B[r′,∞)

(A,A+) →
∏

t B[rt,∞)
Ct

. Hence, (it,r)t lies in the
intersection

G′(B[r′,∞)
(D,D+)) ∩ G

(∏

t

B[rt,∞)
Ct

)
.
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This intersection is G(B[r′,∞)
(D,D+)) since OG = OG′/I is a quotient and we have

an injection

B[r′,∞)
(D,D+) ↪→

∏

t

B[rt,∞)
Ct

.

Hence, ir′ = (it,rt)t is in G(B[r′,∞)
(D,D+)). We now consider the pair (Φ, ir′) which

gives a point Spa (D, D+) → LMint
G,b,µ. Combined with Spa (D, D+) → S as

above gives Spa (D, D+) → T which is surjective. This shows that T is
quasi-compact, as required.

3.7. Representability of integral LSV

The aim of this subsection is to prove the following confirmation of Conjec-
ture 3.2.2 under some assumptions.

Theorem 3.7.1. Let (G, b, µ) be a local Shimura datum and G a parahoric
group scheme. The following assumptions are imposed.

1) (G, µ) is of local Hodge type, i.e., there exists a closed group embedding
ρ : G ↪→ GLn such that ρ ◦ µ is minuscule.

2) G is the Bruhat-Tits stabilizer group Gx of a point in the extended Bruhat-
Tits building of G(Qp), i.e., G = Gx = G◦

x.

3) Conjecture 3.3.4 on the representability of formal completions Mint
G,b,µ /x

is true for all points x ∈ Mint
G,b,µ(k).

Then Mint
G,b,µ is representable by a normal formal scheme M which is flat

and locally formally of finite type over Spf OĔ.

Remark 3.7.2. Recall from (3.4.5) that to x we can associate bx ∈ G(Q̆p),

well-defined up to σ-conjugacy by G(Z̆p), which is σ-conjugate to b. Then
Mint

G,bx,µ has a natural base point x0 and there is an isomorphism as in (3.4.6)
that induces an isomorphism

Mint
G,b,µ /x ≃ Mint

G,bx,µ /x0
.

Let us assume that the local data (p, G, b, µ,G) come from a global datum
(p, G, X, Kp, G) of Hodge type and that there is a point x ∈ SK(k) in the
reduction of the integral model in §4.5 of the Shimura variety ShK(G, X)
such that bx = bx (up to σ-conjugacy by G(Z̆p)). Here bx is defined as
in (3.4.5), using the extension of the G-shtuka to SK, comp. the passage
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before Remark 4.2.1. Then the hypothesis in 3) can be eliminated. Indeed,
it is automatically satisfied, as follows from Theorem 4.5.2 below.

The assumption can be formulated in the framework of [45] as follows.
Let

C(G, µ−1) =
(
G(Z̆p)Adm(µ−1)G(Z̆p)

)
/G(Z̆p)σ,

and let C(G, µ−1)[b] be the inverse image of [b] under the natural map
C(G, µ−1) → B(G, µ−1). Then bx ∈ C(G, µ−1)[b]. Consider the map from
Remark 4.2.1

(3.7.1) ΥK : SK(k) −→ C(G, µ−1).

It may be conjectured that ΥK is surjective (this follows from the system
of axioms in [45], cf. [45, Cor. 4.2]). If this conjecture holds true, then the
assumption made above is satisfied. In [95] this conjecture is proved in the
Hodge type case if G is tamely ramified and residually split; and the same
proof works when G is unramified by using the results of Nie [68]; see also
[90] for more classes of Shimura varieties.

We note that this approach to Conjecture 3.2.2 is global, as it makes
use of the theory of Shimura varieties. By contrast, in [72] we pursue a
purely local approach, with more general results. Indeed, in [72] we prove
Conjecture 3.2.2 in the case when (G, µ) is of abelian type and p ̸= 2 or
p = 2 and Gad is of type A or C. However, even in this other approach, we
use Theorem 3.7.1 and its proof.

3.7.1. A construction of formal subschemes. By the main theorem
of [59], there is a (non-unique) equivariant embedding of extended buildings

ρ∗ : Be(G, Qp) ↪→ Be(GLn, Qp)

which is associated to the embedding ρ : G ↪→ H := GLn. Set H = Hρ∗(x)

for the stabilizer Bruhat-Tits group scheme given by the point ρ∗(x) ∈
Be(H, Qp). In this case of GLn this group scheme is the stabilizer of a
periodic lattice chain

Λi : · · · ⊂ pΛ0 ⊂ Λr ⊂ Λr−1 ⊂ · · · ⊂ Λ0 ⊂ p−1Λr ⊂ · · ·

in V = Qn
p and is connected, so it is a parahoric group scheme. We have

G(Z̆p) = H(Z̆p) ∩ G(Q̆p).
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In this, we can assume at the cost of adjusting ρ, that H = GL(Λ) is hyper-
special and given by a single lattice. Indeed, we can replace V by V ′ = V ⊕r

and the lattice chain Λ• by the lattice chain given by the multiples p•Λ′ of
the single lattice Λ′ = Λ0 ⊕ · · · ⊕ Λr.

Let G be the flat closure of G in GL(Λ). Here, Gx = Gsm
is the Neron

group smoothening of G, comp. Lemma 3.6.1. Then

(3.7.2) G(Z̆p) = Gx(Z̆p) = G(Z̆p) = H(Z̆p) ∩ G(Q̆p).

The “Grothendieck-Messing” period morphisms fit in a commutative dia-
gram of v-sheaves (in fact, diamonds) over Spd (Ĕ),

ShtG,b,µ
ρ

πGM

ShtH,ρ(b),ρ(µ) ×Spd (Q̆p) Spd (Ĕ)

πGM×1

GrG,Spd (Ĕ),µ

ρ
GrH,Spd (Q̆p),ρ(µ) ×Spd (Q̆p) Spd (Ĕ),

comp. §3.1.1.
The diamonds ShtG,b,µ and ShtH,ρ(b),ρ(µ) are represented by the (smooth)

rigid analytic varieties MG,b,µ and MH,ρ(b),ρ(µ) over Ĕ; the period morphisms
are étale with fibers G(Qp)/G(Zp) and H(Qp)/H(Zp) respectively and the
bottom horizontal morphism is induced by the closed immersion of homo-
geneous spaces FG,µ ↪→ FH,ρ(µ) ⊗Q̆p

Ĕ. Since ρ also gives G(Qp)/G(Zp) ↪→
H(Qp)/H(Zp), it follows that the top horizontal morphism is a closed im-
mersion. (This is in agreement with Proposition 3.6.2 which extends this to
a closed immersion of the corresponding v-sheaf integral models.)

By [85, Cor. 24.3.5], Mint
H,ρ(b),ρ(µ) is represented by a Rapoport-Zink for-

mal scheme MH,ρ(b),ρ(µ). It is normal, separated flat and locally formally of

finite type over Spf(Z̆p).

For simplicity of notation, set Ŏ = OĔ , let π be a uniformizer so that

k = Ŏ/(π).
Our construction of MG,b,µ is based on the following “formal descent”

statement inspired by a similar statement in [17]. Suppose that X is a formal
scheme over Spf(Ŏ) which is separated, locally formally of finite type and
flat over Ŏ. Let Xrig be the rigid analytic generic fiber of X over Ĕ in the
sense of Berthelot, cf. [78, chap. 5]. Let Xred the reduced locus of X which
is a scheme locally of finite type over Spec (k). Let

(3.7.3) sp : |Xrig|class −→ Xred(k)
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be the specialization map.

Proposition 3.7.3. Let the following data be given:

1) A closed rigid analytic subvariety Z ⊂ Xrig,

2) A closed reduced k-subscheme T ⊂ Xred.

3) For each t ∈ T (k), a closed formal subscheme Vt ⊂ X/t, flat over Ŏ.

It is assumed that sp(|Z|class) ⊂ T (k), and that for all t ∈ T (k),

(3.7.4) (X/t)
rig ∩ Z = (Vt)

rig.

Then, there is a unique closed formal subscheme Z ⊂ X such that:

α) Zrig = Z,

β) Zred = T ,

γ) For all t ∈ T (k), Z/t = Vt as closed formal subschemes of X/t.

Proof. This is given by an argument as in the proof of [17, Prop. 7.5.2]. By
considering formal open subschemes Spf(A) ⊂ X we can reduce to the case
that X = Spf(A). Let I be a maximal ideal of definition of A such that
Xred = Spec (A/I). As in loc. cit., 7.1.1, we set

Bn = Â[In/π],

where the hat denotes I-adic completion. The natural map

A[In+1/π] ↪→ A[In/π]

induces a continuous map Bn+1 → Bn. Then the association A '→ (Bn(A))n

is functorial. Set Cn = Bn[1/π] which is an affinoid Ĕ-algebra. Then

Xrig =
⋃

n

Sp(Cn) = lim−→n
Sp(Cn),

where Sp(Cn) ↪→ Sp(Cn+1) is an affinoid subdomain. Let Un = Sp(Cn). The
intersection Un ∩ Z is given by an ideal In ⊂ Bn; by replacing In by its
saturation, we can suppose that Bn/In is Ŏ-flat. (In fact, we can choose
In to be the kernel of Bn → Γ(Un ∩ Z, O).) As in loc. cit. 7.1.13, there is
c = c(A, I) ≥ 0 and compatible surjective Ŏ-algebra homomorphisms

βn : Bn −→ A/In−c
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for all n ≥ c.
For what follows, we will need some information on c. Choose generators

(f1, . . . , fr) of the ideal I ⊂ A and consider the graded homomorphism

ψ : (A/πA)[x1, . . . , xr] −→
⊕

n=0

(In/πIn) = A/πA ⊕ I/πI ⊕ I2/πI2 ⊕ · · ·

sending xi to (0, f̄i, 0, . . .). The kernel of ψ is a homogenous ideal generated
by homogeneous polynomials (P̄1, . . . , P̄s). In the construction of loc. cit.,
we can take

c = c(ψ) := max(deg(P̄i))i=1,...,s.

Hence, in our arguments we can always take c = c(A, I) to be the smallest
such integer c(ψ) among the possible presentations as above.

Now given x ∈ Spec (A/I)(k), let I ⊂ Mx ⊂ A be the corresponding
maximal ideal. For simplicity, write Âx for the completed local ring ÂMx .

Lemma 3.7.4. Under our assumption on (A, I), there is C such that

c(Âx, M̂x) ≤ C

for all x ∈ Spec (A/I)(k).

Proof. This follows by an application of the theory of normal flatness ([49],
see [5, (2.2)]). Set R = A/πA, S = Spec (A/I). We can find a sequence
of reduced closed subschemes Sred = S0 ⊃ S1 ⊃ · · · ⊃ Sn = ∅, such that
Ui = Si \ Si−1 is regular and which has the following property: Let Ji be
the ideal of (A/πA) ⊗k OUi

that corresponds to the diagonal section Ui ↪→
Spec (A/πA) ×Spec (k) Ui → Ui. Then, for all i,

GrJi
((A/πA) ⊗k OUi

) = ⊕m≥0J
m
i /Jm+1

i

is flat over OUi
. Hence, we can calculate the blow-up ProjOUi

(⊕m≥0Jm
i ) of

Spec (A/πA)×kUi along Ui ↪→ Spec (A/πA)×Spec (k)Ui by an exact sequence

0 −→ Ki −→ ((A/πA) ⊗k OUi
)[x1, . . . , xr]

ψ
−→ ⊕m≥0J

m
i −→ 0,

in which all terms are flat over OUi
. Write Ki = (P̄i1, . . . , P̄is), where P̄ij are

homogeneous polynomials in x1, . . . , xr. Take x ∈ Ui(k) given by OUi
→ k.

By flatness, the base change of the above exact sequence by OUi
→ k gives

a presentation of the Rees algebra for the blow-up of A/πA at x. Hence,
the specialization of the polynomials P̄ij at all x ∈ Ui(k) can be used to
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calculate the blow-up of Ax/πAx at Mx, but also the blow-up of Âx/πÂx

at M̂x. Therefore,

Ci = max(deg(P̄ij))j=1,...,s ≥ c(Ax,Mx) ≥ c(Âx, M̂x)

for all x ∈ Ui(k). We can now take C = max(Ci)i=1,...,n.

Recall that for t ∈ T (k) ⊂ Spec (A/I)(k) we are given Vt ⊂ X̂/t =

Spf(Ât), which is given by an ideal

Jt ⊂ Ât.

We also take Jx = (1), for x ∈ Spec (A/I)(k) \ T (k).
By [17], identity (1) on p. 93, for all t ∈ T (k), there is c(t) such that for

every n ≥ c(t), we have

(3.7.5) βn(In) Ât/(IÂt)
n−c(t) = Jt mod (IÂt)

n−c(t).

In fact, by the proof of identity (1) of loc. cit., we see that we can take

c(t) = max(c(A, I), c(Ât, M̂t)).

Therefore, the arguments below work for n ≥ c = max(c(A, I), C), where C
is as in the lemma above.

Also, since sp(|Z|class) ⊂ T (k), we have for x ̸∈ T (k),

βn(In) Âx/(IÂx)n−c = Âx/(IÂx)n−c.

Now note that the natural homomorphism A →
∏

x Âx is faithfully flat and
so is

A/In−c −→
∏

x

Âx/(IÂx)n−c.

Using this, descent and (3.7.5), we see that, for all n ≥ c,

βn+1(In+1) mod In−c = βn(In),

(an equality of ideals in A/In−c.) This implies that

J := lim←−n
βn(In)

gives an ideal in lim←−n
A/In−c = A. We set

Z = Spf(A/J)

which satisfies the desired (α), (β), (γ).
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3.7.2. Application to integral LSV. For simplicity, in the rest of the
paragraph, we will omit b and µ from the notation, and write Mint

G , XG , etc.
instead of Mint

G,b,µ, XG(b, µ−1), etc. and also Mint
H instead of Mint

H,ρ(b),ρ(µ),
etc.

Note that the perfection (MH⊗̂Z̆p
Ŏ)perf

red of (MH⊗̂Z̆p
Ŏ)red is identified

(see Theorem 3.3.3 (a)) with XH. The closed immersion of v-sheaves of
Proposition 3.6.2

ρ : Mint
G ↪→ Mint

H

gives, after applying the functor ( )red and the identification of Theorem 3.3.3
(a), a morphism of perfect k-schemes

ρ : XG → XH = (MH⊗̂Z̆p
Ŏ)perf

red .

Note that XG ⊂ GrW
G , XH ⊂ GrW

H , are closed and that ρ : XG → XH is
given by restricting the obvious ρ : GrW

G → GrW
H which is a morphism of

(ind-) perfectly proper schemes over k such that ρ(k) is injective.

We now apply Proposition 3.7.3 to:

• X = MH⊗̂Z̆p
Ŏ,

• Z = MG ⊂ MH⊗̂Q̆p
Ĕ,

• T = scheme theoretic image of the composition

ρ : XG → XH = (MH⊗̂Z̆p
Ŏ)perf

red −→ (MH⊗̂Z̆p
Ŏ)red

where the last arrow is the natural morphism. We have ρ : XG → T perf

which gives T (k) = ρ(XG(k)) ⊂ XH(k). In fact, this is a universal home-
omorphism and so, by [8, Lem. 3.8], ρ : XG

∼−→ T perf is an isomorphism.

• Let t ∈ T (k) = ρ(XG(k)) ≃ XG(k). By the local model diagram for the
RZ formal scheme MH,ρ(b),ρ(µ), there exists an isomorphism MH,Ŏ /ρ(t) ≃
MH,Ŏ /ρ(t)′ , where the target is the formal completion of the base-change

MH,Ŏ = MH ⊗Z̆p
Ŏ of the local model MH at a suitable point ρ(t)′.

Since we are assuming Conjecture 3.3.4 for t, we have a normal complete
Noetherian local ring Rt such that Mint

G /t ≃ Spd (Rt) and

(3.7.6) Spd (Rt) −→ Mint
H,Ŏ /ρ(t)

.
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By the full faithfulness of the ♦-functor, we obtain a morphism of affine
formal schemes

(3.7.7) ρ̃ : Spf (Rt) → MH,Ŏ /ρ(t),

which corresponds to a homomorphism of local rings ρ̃∗ : ÔMH,Ŏ,ρ(t) → Rt.
The injectivity of (3.7.6) implies that the fiber of ρ̃∗ over the closed point
is given by an Artin local ring; hence ρ̃∗ is finite. We define

Vt ↪→ MH,Ŏ /ρ(t)

to be the formal closed subscheme of MH,Ŏ /ρ(t) which corresponds to the
scheme-theoretic image of the corresponding morphism of affine schemes
induced by (3.7.7), i.e. defined by the kernel of ρ̃∗. Note that, by con-
struction, the morphism ρ̃ factors through a morphism

Spf (Rt) −→ Vt.

Since Rt is assumed to be normal, this identifies Rt with the normalization
of ÔVt

:= ÔMH,Ŏ,ρ(t)/ ker(ρ̃∗). The corresponding morphism of v-sheaves

Spf (Rt)♦ → V ♦
t is then surjective, but, since (3.7.6) is injective, it is also

injective. Hence,

Spf (Rt)
♦ = Mint

G,b,µ /t
∼−−→ V ♦

t

is an isomorphism of v-sheaves.

We now verify that these choices satisfy Sp(|Z|class) ⊂ T (k) and (3.7.4).
We will again use the ♦-functor ( ) '→ ( )♦ into v-sheaves over Spd (Ŏ), or
over Spd (Ĕ), and the fact that it is fully faithful when the source category
is either the category of flat normal formal schemes locally of finite type
over Ŏ, or the category of smooth rigid-analytic spaces over Ĕ.

Note that classical points of Z = MG over a finite extension F/Ĕ are
uniquely given by morphisms Spa (F, OF )♦ → Z♦. Such a point specializes
to a point in T (k) = XG(k), by Theorem 3.3.3 and the compatibility of
Gleason’s specialization map with the “classical” specialization map. It re-
mains to show that (3.7.4) holds. Again, it is enough to show this for the
associated v-sheaves. The ♦-functor commutes with formal completions ([31,
Prop. 4.19]). It also commutes with taking generic fibers: This follows from
the fact that, under the functor from rigid spaces over Ĕ to adic spaces
over Spa (Ĕ, OĔ), Berthelot’s generic fiber Spf(A)rig of a formal scheme
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Spf(A) corresponds to the generic fiber of the corresponding adic space,
i.e. to Spa (A, A) ×Spa (OĔ ,OĔ) Spa (Ĕ, OĔ). Hence we have

((X/ρ(t))
rig)♦ = ((X/ρ(t))

♦)η = ((X♦)/ρ(t))η = (Mint
H,Ŏ /ρ(t)

)η.

Since Z♦ = M♦
G = ShtG and ρ : Mint

G → Mint
H is a closed immersion (and

hence injective)

((X/ρ(t))
rig)♦ ×Mint

H
Z♦ = (Mint

H /ρ(t))η ×Mint
H

M♦
G = (Mint

G /t)η.

In this, the RHS is the v-sheaf given as the generic fiber of the formal
completion Mint

G /t. This is equal to the v-sheaf (V rig
t )♦ associated to V rig

t , by
our choice of Vt.

Applying Proposition 3.7.3 gives a formal scheme M−
G,b,µ. Denote by

MG,b,µ its normalization. Then MG,b,µ is as in the statement of Conjec-
ture 3.2.2 and, hence, this proves Theorem 3.7.1. !

4. Global Shimura varieties and their universal G-shtukas

4.1. Shimura varieties

Let (G, X) be a Shimura datum. Let {µ} be the G(Q̄)-conjugacy class of
the corresponding minuscule cocharacter µ = µX . We make the following
blanket assumption on the split ranks of the connected center of G:

(4.1.1) rankQ(Zo) = rankR(Zo).

Remark 4.1.1. Assumption (4.1.1) is equivalent to the condition that there
is no non-trivial subtorus of Zo which is anisotropic over Q but splits over R.
Imposing this condition allows the construction of the natural pro-étale tor-
sor on the Shimura variety ShK(G, X) used below. The main point is to
ensure that an arithmetic subgroup of Zo(Q) is finite, and this holds true
if and only if Assumption (4.1.1) is satisfied, cf. [88, Prop., Ch. II, A. 2].
When Zo splits over a CM-extension (Milne adds this to the axioms of a
Shimura variety, cf. [66, II. equ. (2.1.4)]), then this assumption holds if G is
replaced by its quotient by the maximal anisotropic subtorus of Zo which
splits over R.

Let E = E(G, X) ⊂ Q̄ ⊂ C be the reflex field. For an open compact
subgroup K ⊂ G(Af ) of the finite adelic points of G, the Shimura variety

(4.1.2) ShK(G, X) = G(Q)\(X × G(Af )/K)
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has a canonical model ShK(G, X)E over E.
Now fix a prime p. Suppose that K = KpKp with K := Kp ⊂ G(Qp) and

Kp ⊂ G(Ap
f ) compact open. We always assume that Kp is sufficiently small.

Fix a parahoric group scheme G over Zp with G(Zp) = K = Kp.
Choose a place v of E over (p) given by E ⊂ Q̄p. Let E = Ev be the

completion of E at v and consider µ as also giving a conjugacy class of
cocharacters of G = G ⊗Q Qp. We also denote this conjugacy class by {µ};
then E is the local reflex field of {µ}. Recall that k denotes the algebraic
closure of the residue field; we also sometimes write kv for k.

Consider ShK(G, X)E := ShK(G, X)E ⊗E E and its pro-étale G(Zp)-cover
PK obtained by the system of covers

(4.1.3) ShK′(G, X)E −→ ShK(G, X)E ,

where K′ = K′
pK

p ⊂ K = KpKp, with K′
p running over all compact open

subgroups of Kp = G(Zp). (See [66, III], [62, §4].) Note that

G(Zp) = lim←−K′
p

Kp/K′
p.

By our condition on the smallness of Kp, (4.1.3) gives a tower of smooth
varieties, with étale transition maps.

Proposition 4.1.2. Assume that (G, X) satisfies (4.1.1). There exists a
G-shtuka PK,E over ShK(G, X)♦E → Spd(E) with one leg bounded by µ
which is associated to the pro-étale G(Zp)-cover PK, in the sense of Sec-
tion 2.6. Furthermore, PK,E are supporting prime-to-p Hecke correspon-
dences, i.e., for g ∈ G(Ap

f ) and K′ p with gK′ pg−1 ⊂ Kp, there are compat-
ible isomorphisms [g]∗(PK,E) ≃ PK′,E which cover the natural morphisms
[g] : ShKpK′ p(G, X)E → ShKpKp(G, X)E.

Proof. This follows by combining the results in section 2.6 with the ridigity
theorems of Liu-Zhu [62]. By [62, Thm. 1.2] combined with [62, Thm. 3.9
(iv)], the pro-étale G(Zp)-torsors PK over ShK,E is de Rham in the sense of
Definition 2.6.5. The desired shtuka is the one associated to the de Rham
pro-étale G(Zp)-torsor PK as in Definition 2.6.6.

4.2. Integral models

We continue to assume Condition (4.1.1) on (G, X). Suppose that Kp is
parahoric and let G be the corresponding Bruhat-Tits group scheme over
Zp. Then we conjecture the existence of a system of normal integral models
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SK of ShK,E that support a “universal” G-shtuka PK over SK with one
leg bounded by µ that extends PK,E . The v-sheaves S ♦

K corresponding to
these models should formally locally coincide with Scholze’s integral local
Shimura varieties Mint

G,b,µ, for varying b. More precisely, let x ∈ SK(k).
The pull-back x∗(PK) is a G-shtuka over Spec (k), i.e., yields by Exam-

ple 2.4.9 a G-torsor Px over Spec (W (k)) with an isomorphism

φPx
: φ∗(Px)[1/p]

∼−→ Px[1/p].

The choice of a trivialization of the G-torsor Px defines an element bx ∈
G(Q̆p). This element is independent up to σ-conjugacy by an element of

G(Z̆p) of the choice of the trivialization and only depends on the point of
SK underlying x. Since the shtuka PK is bounded by µ, the σ-conjugacy
class [bx] under G(Q̆p) lies in the subset B(G, µ−1) of B(G).

Remark 4.2.1. We obtain maps

ΥK : SK(k) −→ G(Q̆p)/G(Z̆p)σ, resp.

δK : SK(k) −→ B(G) = G(Q̆p)/G(Q̆p)σ .

The fibers of these maps define the central leaves, resp. the Newton stratifi-
cation of SK ⊗OE

κ, cf. [45, Rem. 3.4, (3)]. We recall from [45] the map

ℓK : G(Q̆p)/G(Z̆p)σ −→ G(Z̆p)\G(Q̆p)/G(Z̆p) = WK\W̃/WK,

where W̃ denotes the Iwahori-Weyl group of G(Q̆p) and WK the parabolic

subgroup corresponding to G(Z̆p). Let λK = ℓK ◦ΥK,

λK : SK(k) −→ WK\W̃/WK.

The fibers of this map define the Kottwitz-Rapoport (KR-) stratification of
SK ⊗OE

κ, cf. [45, eq. (3.4)]. The map ΥK also allows to define the EKOR-
stratification, cf. [45, §6].

The v-sheaf Mint
G,bx,µ comes with a base point

(4.2.1) x0 ∈ Mint
G,bx,µ(k).

This base point associates to S ∈ Perfdk the tuple (S♯, P0,φP0
, ir), where

S♯ = S, and (P0,φP0
, ir) = (GY[0,∞)(S),φbx

, id). Indeed, the pair (P0, id)

lies in XG(bx, µ−1) ≃ (Mint
G,bx,µ)red, cf. Theorem 3.3.3, a). This follows since

the shtuka (Px,φPx
) has leg bounded by µ.

We have the following conjecture.
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Conjecture 4.2.2. Let Kp be parahoric, with corresponding parahoric model
G over Zp.

There exist normal flat models SK of ShK(G, X)E over OE, for K =
KpKp with variable sufficiently small Kp, with the following properties.

a) For every dvr R of characteristic (0, p) over OE,

(4.2.2) (lim←−Kp
ShK(G, X)E)(R[1/p]) = (lim←−Kp

SK)(R).

If ShK(G, X)E is proper over Spec (E), then SK is proper over Spec (OE).
In addition, the system SK supports prime-to-p Hecke correspondences,
i.e., for g ∈ G(Ap

f ) and K′ p with gK′ pg−1 ⊂ Kp, there are finite étale
morphisms [g] : SK′ → SK which extend the natural Hecke morphisms
[g] : ShKpK′ p(G, X)E → ShKpKp(G, X)E.

b) The G-shtuka PK,E extends to a G-shtuka PK on SK.

c) For x ∈ SK(k), let bx ∈ G(Q̆p) be defined by PK, as explained above.
There is an isomorphism of completions

Θx : Mint
G,bx,µ /x0

∼−→ (SK /x)♦,

under which the pullback shtuka Θ∗
x(PK) coincides with the tautological

shtuka on Mint
G,bx,µ that arises from the definition of Mint

G,bx,µ as a moduli

space of shtukas. Here x0 denotes the base point of Mint
G,bx,µ, cf. (4.2.1).

We note that by Corollary 2.7.10, the extension PK of PK,E is uniquely
determined. In addition, the prime-to-p Hecke morphisms [g] : SK′ → SK

for g ∈ G(Ap
f ) and K′ p with gK′ pg−1 ⊂ Kp in (a) induce by uniqueness

compatible isomorphisms [g]∗(PK) ≃ PK′ .

Replacing bx by b′x = gbxσ−1(g), where g ∈ G(Z̆p), defines an isomor-
phism Mint

G,bx,µ ≃ Mint
G,b′x,µ which preserves the base points. Hence Condition

c) is independent of the choice of bx. Also, note that Condition c) implies
the representability of Mint

G,bx,µ /x0
, i.e., Conjecture 3.3.4 for Mint

G,bx,µ at x0.

Remark 4.2.3. An element b ∈ G(Q̆p) is called µ-admissible, if the homo-
morphism

φb : Frob∗(G × Spec (W (k)[1/p]) −→ GSpec (W (k)[1/p])
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has pole bounded by µ, in the sense of Remark 3.3.2. By (2.4.5), this con-
dition is equivalent to asking that

(4.2.3) b ∈
⋃

w∈Adm(µ−1)G

G(Z̆p)wG(Z̆p).

If [b] ∈ B(G, µ−1), then [b] contains an element b ∈ G(Q̆p) satisfying this
last condition (He’s theorem [43]). If b is µ-admissible, then MG,b,µ has a
canonical base point x0, defined as above in (4.2.1) (with bx replaced by b).

If b = bx is attached to a point x ∈ SK(k) (and a G-shtuka PK) as
above, then bx is µ-admissible.

Theorem 4.2.4. There is at most one system of normal flat models SK

of ShK(G, X)E over OE, for K = KpKp, with variable sufficiently small Kp,
with the properties enumerated in Conjecture 4.2.2. More precisely, if SK

and S ′
K are two OE-models which satisfy the above properties, then there

are isomorphisms SK ≃ S ′
K which induce the identity on the generic fibers

and are compatible with changes in Kp.

Proof. We imitate the proof of [70, Thm. 6.1.5]. It suffices to construct these
isomorphisms after base change OE → OĔ . Let S ′′

K be the normalization
of the closure of the generic fiber in SK ×Spec (OE) S ′

K. Then S ′′
K is again a

tower with finite étale transition morphisms, for varying Kp. The argument
of the proof of [70, Prop. 6.1.7] shows that the morphisms

πK : S ′′
K −→ SK, π′

K : S ′′
K −→ S ′

K

are proper and isomorphisms in the generic fibers. By uniqueness, we obtain
identifications of G-shtukas on S ′′

K ,

(πK)∗(PK) = (π′
K)∗(P ′

K) = P ′′
K.

It suffices to show that πK and π′
K induce isomorphisms on the strict com-

pletions at geometric points of the special fibers. More precisely, let x̂ ∈
ShKp

(G, X)(F ), where F/Ĕ is a finite extension. By property a), x̂ extends
to points x̃ of SK(OF ) and x̃′ of S ′

K(OF ) and a point x̃′′ of S ′′
K (OF ) mapping

to x̃, resp. x̃′. By reduction, we obtain the points x ∈ SK(k) and x′ ∈ S ′
K(k)

and the point x′′ ∈ S ′′
K (k) mapping to x, resp. x′. By uniqueness, the pull-

back G-shtukas x̃∗(PK) and x̃′∗(P ′
K) and x̃′′∗(P ′′

K) on Spec (OF ) all coincide.

Hence the σ-conjugacy classes [bx] and [bx′ ] and [bx′′ ] coincide. Let b ∈ G(Q̆p)
be a representative of this class which is µ-admissible, see Remark 4.2.3.
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Define, for r ≫ 0, the v-sheaf S̃/x over (S/x)♦ by adding to a point y
of (S/x)♦ with values in S = Spa (R, R+) ∈ Perfdk a trivialization of the
G-shtuka

ir : GY[r,∞)(S)
∼−→ y∗(PK)|Y[r,∞)(S),

such that φy∗(PK) = φb = b × Frob. Then the map S̃/x → (S/x)♦ is repre-
sentable in locally spatial diamonds. It is a torsor under the diamond group

(4.2.4) G̃b = Aut(Eb),

given as the automorphism v-sheaf of the G-bundle Eb over the Fargues-
Fontaine curve, see [26, ch. III 5.1]. Then G̃b is also the v-sheaf given by
S '→ AutY[r,∞)(S)(G × Y[r,∞)(S), b × Frob), automorphisms in the category
of G-torsors over Y[r,∞)(S) equipped with a Frobenius isomorphism. This
diamond group is an extension of Gb(Qp) by a smooth unipotent group v-

sheaf, see loc. cit.. Here, to conform to the notation of [26], we denote by
Gb what was denoted Jb before, i.e. for a Qp-algebra A

Gb(A) = {g ∈ G(A ⊗Qp Q̆p) | bσ(g) = gb}.

This is represented by a reductive group over Qp and Gb(Qp) is the locally

profinite v-sheaf given by the Qp-points Gb(Qp). We also define S̃ ′
/x′ and

S̃ ′′
/x′′ in an analogous way.

Recall the integral model Mint
G,b,µ of the local Shimura variety correspond-

ing to the fixed element b, with its tautological G-shtuka (Puniv,φPuniv
) and

its trivialization ιr for r ≫ 0. By universality, we obtain natural morphisms
fitting in a commutative diagram,

(4.2.5)

S̃ ′′
/x′′

πK
nat′′

π′
K

S̃/x
nat Mint

G,b,µ S̃ ′
/x′ .nat′

On the other hand, since SK satisfies property c) of Conjecture 4.2.2, we
obtain a commutative diagram for a suitable section g ∈ G̃b(S/x),

S̃/x

nat◦g

S/x

≃

Mint
G,b,µ Mint

G,b,µ /x0
,
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in which the right vertical arrow is the inverse Ψx of the isomorphism Θx.
Furthermore, by the nature of the morphism S̃/x → S/x, this isomorphism
is uniquely determined by the rest of the diagram. Something analogous
holds for S ′

K and a global section g′ ∈ G̃b(S ′
/x′).

Proposition 4.2.5. The natural projection G̃b → Gb(Qp) induces an iso-
morphism on global sections,

G̃b(S/x)
∼−→ Gb(Qp).

Proof. Let G̃>0
b be the kernel of the natural projection. Then G̃>0

b is a suc-
cessive extension of positive (absolute) Banach-Colmez spaces, cf. [26, Prop.
III.5.1]. More precisely, there is a filtration G̃≥λ

b such that for every λ > 0,
there is a natural isomorphism

G̃≥λ
b /G̃>λ

b
∼−→ B((adEb)

≥λ/(adEb)
>λ),

with target the Banach-Colmez space associated to the −λ isoclinic part of
the Frobenius isocrystal (Lie(G) ⊗Qp Q̆p, Ad(b)σ).

We first prove the following lemma. A formal group version of this lemma
occurs in [14, Prop. 4.2.11].

Lemma 4.2.6. Let [b] ∈ B(G, µ), where µ is minuscule. Then G̃>0
b is a

successive extension of positive (absolute) Banach-Colmez spaces of slopes
≤ 1.

Proof. We need to prove that ⟨νb,α⟩ ≤ 1 for any positive root α. Equiv-
alently, we need to see that ⟨νb, α̃⟩ ≤ 1 for the highest root α̃. But since
[b] ∈ B(G, µ), we have µ−νb ∈ C∨, where C∨ denotes the obtuse Weyl cham-
ber (spanned by the positive coroots). Since ⟨C∨, α̃⟩ ≥ 0 (cf. [11, Ch. VI,
§1.8, Prop. 25]), we get ⟨νb, α̃⟩ ≤ ⟨µ, α̃⟩ ≤ 1, since µ is minuscule.

We write B(λ) = BC(O(λ)) and we let B(λ)(S/x) to be the group

Hom(Spa (ÔS ,x)♦,B(λ)) of maps of v-sheaves over Spd (k). By Lemma 4.2.6,
it suffices to show

Lemma 4.2.7. For 0 < λ ≤ 1, we have B(λ)(S/x) = (0).

Proof. Write λ = r/s with coprime integers r, s > 0. Let X = Xλ be the
simple p-divisible group of slope λ over k and denote by the same symbol a
lift of X over W (k). Let

X̃ = lim←−
×p

X
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be the universal covering of X, cf. [84]. For any p-adically complete W (k)-
algebra A, we have

B(λ)(A) = X̃(A) = X̃(A/p),

comp. [60, §2.3], also [26, Prop. II.2.5]. Now

X̃ ≃ Spf (W (k)[[T 1/p∞

1 , . . . , T 1/p∞

r ]]),

We therefore obtain

B(λ)(A) =
(

lim←−
x )−→xp

A◦◦
)r

.

After identifying the ideal of topologically nilpotent elements in ÔS ,x with
the maximal ideal m̂S ,x, we have

X̃(ÔS ,x) =
(

lim←−
x )−→xp

m̂S ,x

)r
.

Since ∩nm̂pn

S ,x = (0), we see that B(λ)(S/x) = (0).

The proof of Proposition 4.2.5 follows.

Remark 4.2.8. In fact, for every positive Banach-Colmez space E , the
group of global sections E(A) is zero, for any noetherian p-adically complete
W (k)-flat algebra A. Here is a sketch of the proof of this statement, which
was suggested to the authors by Scholze. Observe first that it is enough
to show this for A a discrete valuation ring with perfect residue field and
E = B(λ), with λ = r/s > 0. Let K, resp. k, be the fraction field, resp. the

residue field of A. Set C = K̂ and, as usual, let OC be the integral closure of
A in C. By v-descent, a section s ∈ B(λ)(A) is given by a GK = Gal(K̄/K)-
invariant element of B(λ)(OC) = (B+

crys)
φs=pr ⊂ B+

crys. By a theorem of

Fontaine (see [27, Thm. 4.12] or [28, Thm. 6.14]) (B+
crys)

GK = W (k)[1/p],
and we can see that the only such Galois invariant element is 0.

Hence g, g′ ∈ Gb(Qp) and, after correcting Ψx, resp. Ψx′ by the automor-
phism of Mint

G,b,µ corresponding to g, resp. g′, we deduce from (4.2.5) a unique
left vertical isomorphism making the following diagram commutative,

S ′′
/x′′

(πK,π′
K)

≃

S/x × S ′
/x′

(Ψx,Ψx′ )

Mint
G,b,µ /x0

∆ Mint
G,b,µ /x0

× Mint
G,b,µ /x0

.
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This implies that πK and π′
K induce isomorphisms

S ′′
/x′′

∼−→ S/x, resp. S ′′
/x′′

∼−→ S ′
/x′ .

Since the point x̂ was arbitrary, the assertion follows.

4.3. Some functorialities of integral models

The uniqueness statement in Theorem 4.2.4 leads to some interesting func-
toriality properties.

Let (G, X) ↪→ (G′, X ′) be an embedding of Shimura data induced by a
group embedding ι : G ↪→ G′. Assume that Kp, K′

p are parahoric subgroups
of G(Qp) and G′(Qp) respectively, with corresponding Bruhat-Tits group
schemes G and G′ over Zp, such that

(4.3.1) K̆p = ι−1(K̆′
p) ∩ G(Q̆p).

(Note that given a parahoric Kp of G(Qp) which is also a stabilizer, we can
always find a parahoric K′

p of G′(Qp) which satisfies (4.3.1). This uses Land-
vogt’s embedding of extended buildings Be(G, Qp) ↪→ Be(G′, Qp), [59].)
Then, ι : G → G′ extends uniquely to a group scheme homomorphism
ι : G → G′ which is a dilated immersion, i.e. identifies G with the Neron
smoothening Ḡsm of the Zariski closure Ḡ of the image of G in G′ = G′

Qp
,

G ∼= Ḡsm → Ḡ ↪→ G′.

Let Kp ⊂ G(Ap
f ) and K′ p ⊂ G′(Ap

f ) be compact open subgroups such that
the natural map induced by ι : (G, X) → (G′, X ′) gives an immersion

ι : ShK(G, X)E ↪→ ShK′(G′, X ′) ⊗E′ E.

Here, as usual, K = KpKp, resp. K′ = K′
pK

′ p. Note that, given a compact
open Kp ⊂ G(Ap

f ), there is always a compact open K′ p ⊂ G′(Ap
f ) for which

we have such an immersion, cf. [54, Lem. 2.1.2]. If Kp is sufficiently small, as
we are always assuming, then we can also take K′ p to be sufficiently small.

Theorem 4.3.1. Let SK, resp. S ′
K′, be integral models of ShK(G, X)E, resp.

ShK′(G′, X)E′ over OE, resp. OE′ , with the properties enumerated in Con-
jecture 4.2.2 and which are characterized by Theorem 4.2.4. Then, under
the above assumptions which include (4.3.1), the immersion of E-schemes
ι : ShK(G, X)E → ShK′(G′, X ′)E′⊗E′E above extends uniquely to a morphism
over OE,

ι : SK −→ S ′
K′ ⊗OE′ OE .
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Before we discuss the proof, we give a consequence:

Corollary 4.3.2. Let Kp and K′
p be parahoric subgroups of G(Qp), with cor-

responding parahoric group schemes G and G′ over Zp. Assume that Kp ⊂ K′
p.

For K = KpKp, resp. K′ = K′
pK

p, let SK, resp. SK′, be integral models of
ShK(G, X)E, resp. ShK′(G, X)E, over OE with the properties listed in Con-
jecture 4.2.2 and characterized by Theorem 4.2.4. Then the morphism of E-
schemes ShK(G, X)E → ShK′(G, X)E extends uniquely to πK,K′ : SK → SK′

over OE.

Proof. We will apply Theorem 4.3.1 to (G′, X ′) = (G × G, X × X) and
ι : G → G′ the diagonal embedding. Also, we take the parahoric of the
target group G(Qp)×G(Qp) to be Kp ×K′

p. The intersection of K̆p × K̆′
p with

the diagonal is K̆p ⊂ G(Q̆p), so (4.3.1) holds. We can see that SK × SK′ is
the (unique by Theorem 4.2.4) integral model for ShtK×K′(G × G, X × X)
with the properties enumerated in Conjecture 4.2.2. By Theorem 4.3.1 the
diagonal morphism extends to

SK −→ SK × SK′ .

This, composed with the projection, induces the desired map πK,K′ : SK →
SK′ .

We now give an outline of the proof of Theorem 4.3.1. This proof will
be completed in §4.8 after we first give the argument in the special case
(G′, X ′) = (GSp(V ), S±).

Let S †
K be the normalization of the closure of the image of ShK(G, X)E

in S ′
K′ ⊗OE′ OE . This is an integral model of ShtK(G, X)E and comes with

a morphism

ι : S †
K −→ S ′

K′ ⊗OE′ OE

which extends the natural morphism on the generic fibers. It will be enough
to show that S †

K satisfies the properties listed in Conjecture 4.2.2. Indeed,

then by Theorem 4.2.4, S †
K = SK. Note that in the case when (G′, X ′) =

(GSp(V ), S±) is a Siegel Shimura datum, (G, X) ↪→ (GSp(V ), S±) is a

Hodge embedding. Then proving these properties for the normalization S †
K

gives the construction of an integral model as in Conjecture 4.2.2 in the
Hodge type case, i.e. gives the proof of Theorem 4.5.2, as in §4.6, §4.7, be-
low. In what follows, we omit subscripts and write S := SK, S ′ := SK′ ,
P := PK, etc.

Step A. We will first show that the G-shtuka PE over ShtK(G, X)E

extends to a G-shtuka P† over S †, compatibly with the pull-back ι∗(P ′) of
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the G′-shtuka over S . “Compatibly” here is meant in the sense that there
is an isomorphism of G′-shtuka over S †,

G′ ×G P† ≃ ι∗(P ′),

i.e. also respecting the Frobenius structures. Equivalently, we can think of
P† as a shtuka obtained from ι∗(P ′) by reducing the structure group from
G′ to G via G → G′. The proof of the existence of this extension of PE to
P† will be explained in §4.8.1.

Step B. We will next show that the restriction of the G-shtuka P† to the
formal completion of any point x of S †(k) admits a framing; this provides
a morphism of v-sheaves,

S †
/x −→ Mint

G,bx,µ /x0
.

This will provide the inverse of the desired isomorphism Θx in Conjec-
ture 4.2.2. This will be explained in §4.8.2.

The rest of the proof then closely follows the proof of Theorem 4.5.2,
which corresponds to the special case (G′, X ′) = (GSp(V ), S±), see §4.8.

4.4. A conjectural prismatic refinement

We conjecture that the integral models SK also support an object of pris-
matic nature which suitably refines the universal G-shtuka PK. We will now
try to make this more precise. To ease the notation, we omit the subscript K.

Recall that according to Bhatt and Scholze ([9]), a “prism” is a pair
(A, I) where A is a δ-ring and I ⊂ A is an ideal defining a Cartier divisor
in Spec (A), such that

(1) The ring A is derived (p, I)-adically complete.

(2) The ideal I + φA(I)A contains p, where φA(x) = xp + pδA(x) is the
Frobenius lift φA : A → A induced by the δ-structure of A.

A map (A, I) → (B, J) of prisms is a map of δ-rings A → B taking I to J .
Then, by [9, Prop. 1.5], one has J = IB.

Consider the big prismatic site (Ŝ )∆ of the p-adic formal scheme Ŝ
given by the p-adic completion of S . This is the opposite of the category
of pairs ((A, I), x) of prisms (A, I) together with a map x : Spf (A/I) → Ŝ ,
endowed with faithfully flat covers, as defined in [9]. We have the structure

sheaf of rings O∆ on (Ŝ )∆ taking a pair ((A, I), x) to A. This admits a



p-adic shtukas and Shimura varieties 117

Frobenius φ∆ : O∆ → O∆ given by the Frobenius lifts φA : A → A. There is
also a sheaf of ideals I∆ ⊂ O∆ taking ((A, I), x) to I.

Our object, which one might call a prismatic Frobenius crystal with G-
structure over Ŝ , should be a pair (P∆,φP∆

) of

a) a G ⊗Zp O∆-torsor P∆ over (Ŝ )∆,

b) an isomorphism

φP∆
: (φ∗

∆P∆)| Spec (O∆)\V (I∆)
∼−→ P∆| Spec (O∆)\V (I∆).

More concretely, it should assign to each x̃ = ((A, I), x : Spf (A/I) →
Ŝ ) a pair (Px̃,φPx̃

), where Px̃ is a G-torsor over Spec (A) and where

φPx
: (φ∗

A(Px))| Spec (A)\V (I)
∼−→ (Px)| Spec (A)\V (I)

is a G-isomorphism, together with compatible functorial base change iso-
morphisms for maps of prisms (A, I) → (B, J) with commutative diagrams

Spf (B/J)

y

Spf (A/I)

x

Ŝ .

Let R♯+ be an integral perfectoid OE-algebra and suppose there is a map
x+ : Spf (R♯+) → Ŝ . Denoting by R+ the tilt of R♯+, then

(W (R+), ker(W (R+) → R♯+))

is a (perfect) prism. We can then evaluate (P∆,φP∆
) at the point x̃+ given

by this prism together with x+. Suppose now that R♯+ is part of an affinoid
perfectoid pair (R♯, R♯+). Then x+ gives

x : Spa (R♯, R♯+) −→ Ŝ ad,

hence a Spa (R, R+)-point x of the v-sheaf S "/ Spd (OE).
We ask that (P∆,φP∆

) refines the G-shtuka (P,φP) in the following

sense: for all such choices of (R♯, R♯+) and x+, there is an isomorphism
between the pull-back of (Px̃+ ,φPx̃+ ) along

Y[0,∞)(R, R+) −→ Spec (W (R+))
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and the value of the shtuka (P,φP) at x. Furthermore, these isomorphisms
are supposed to be compatible with the base change isomorphisms.

In the case of PEL Shimura varieties, one should be able to obtain
(P∆,φP∆

) from the prismatic cohomology of the universal abelian scheme

A → S : the value at

x̃ = ((A, I), x : Spf (A/I) −→ Ŝ )

should be the pair (Px̃,φPx̃
) where Px̃ is given by appropriate frames of

H1
∆(Â ×Ŝ ,x

Spf (A/I)/A) := H1
∆((Â ×Ŝ ,x

Spf (A/I)/A)∆, O∆),

and φPx̃
is induced by the φA-linearization of its Frobenius map.

4.5. Shimura varieties of Hodge type

In this subsection, we explain the class of Shimura varieties for which we
can prove Conjecture 4.2.2.

4.5.1. Shimura data of Hodge type. Fix a Q-vector space V with a
perfect alternating pairing ψ. For any Q-algebra R, we write VR = V ⊗Q R.
Let GSp = GSp(V,ψ) be the corresponding group of symplectic similitudes,
and let S± be the Siegel double space, defined as the set of maps h : S →
GSpR such that

1. The C×-action on VR gives rise to a Hodge structure

(4.5.1) VC ≃ V −1,0 ⊕ V 0,−1

of type (−1, 0), (0,−1).

2. (x, y) '→ ψ(x, h(i)y) is (positive or negative) definite on VR.

The Shimura datum (G, X) is of Hodge type if there is a symplectic faithful
representation ρ : G ↪→ GSp(V,ψ) inducing an embedding of Shimura data

(4.5.2) i : (G, X) ↪→ (GSp(V,ψ), S±).

Definition 4.5.1. Let p be a prime number. The tuple (p, G, X, K), with the
open compact subgroup K = KpKp, is of global Hodge type if the following
conditions are satisfied.

1) (G, X) is a Shimura datum of Hodge type.
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2) Kp = G(Zp), where G is the Bruhat-Tits stabilizer group scheme Gx of
a point x in the extended Bruhat-Tits building of G(Qp) and G is con-
nected, i.e., we have G = Gx = G◦

x.

4.5.2. Integral models in the Hodge type case. We now show how
to construct integral models SK as in Conjecture 4.2.2, when (p, G, X, K) is
of global Hodge type. We start with a Hodge embedding i : G ↪→ GSp(V,ψ).
We can then find a parahoric group scheme H for the symplectic similitude
group H = GSp(VQp ,ψQp) such that there is a homomorphism of group
schemes over Zp

(4.5.3) ι : G δ−→ Ḡ ↪→ H,

which is a dilated immersion and extends the closed embedding in the generic
fiber,

GQp ↪→ GSp(VQp ,ψQp) ⊂ GL

(∏

i

(VQp ⊕ VQp)

)
,

see [57, 4.1.5] and Lemma 3.6.1, comp. §3.7.1. Here, H is the parahoric group
scheme GSp(Λ•) given by the stabilizer of some periodic self-dual Zp-lattice
chain

Λ• : · · · ⊂ pΛ0 ⊂ Λr ⊂ · · · ⊂ Λ0 ⊂ Λ∨
0 ⊂ · · · ⊂ Λ∨

r ⊂ p−1Λ0 ⊂ p−1Λ∨
0 ⊂ · · ·

Then

GSp(Λ•) ↪→
r∏

i=0

(GL(Λi) × GL(Λ∨
i )),

is a closed group immersion.
For Λi in the lattice chain Λ•, let Vi,Z(p) = Λi ∩ V , and fix a Z-lattice

Vi,Z ⊂ V such that Vi,Z ⊗Z Z(p) = Vi,Z(p) . Set Vsum =
∏r

i=0(V ⊕ V ) and

Vsum,Z(p) =
r∏

i=0

Vi,Z(p) ⊕ V ∨
i,Z(p)

⊂ Vsum.

Consider the Zariski closure GZ(p) of G in GL(Vsum,Z(p)); then GZ(p) ⊗Z(p)

Zp
∼= Ḡ. Fix a collection of tensors (sa) ⊂ V ⊗

sum,Z(p)
whose stabilizer is GZ(p) .

This is possible by the improved9 version of [54, Prop. 1.3.2] given in [20].

9in the sense that one does not need the symmetric and alternating tensors used
in [54, Prop. 1.3.2].



120 Georgios Pappas and Michael Rapoport

Finally, set

(4.5.4) Λ := Vsum,Z ⊗Z(p) Zp =
r∏

i=0

Λi ⊕ Λ∨
i .

We then have Kp = G(Zp). We define K♭
p = H(Zp) = GSp(Λ•)(Zp) =

GSp(VQp) ∩ GL(Λ). By [54, Lem. 2.1.2], for any compact open subgroup

Kp ⊂ G(Ap
f ) there exists K♭p ⊂ GSp(Ap

f ) such that i induces an embedding
over E

(4.5.5) i : ShK(G, X)E ↪→ ShK♭(GSp(V,ψ), S±)Q ⊗Q E,

where K♭ = K♭
pK

♭p.
The choice of lattices Vi,Z gives rise to an interpretation of the Siegel

Shimura variety ShK♭(GSp, S±)Q as a moduli scheme of chains of p-isogenies
between polarized abelian varieties Ai with K♭p-level structure; this extends
to AK♭ over Z(p) (see [54, 57]). Denote by LK the local system given by
the Tate module of the p-divisible group of the product A =

∏r
i=0 Ai × A∨

i
of the universal abelian schemes over ShK♭(GSp, S±)Q ⊗Q E restricted to
ShK(G, X)E.

Recall ShK(G, X)E = ShK(G, X)E ⊗E E. The tensors sa ∈ Λ⊗ define,
using the compatibility between Betti cohomology and étale cohomology,
corresponding global sections ta,ét of LK over ShK(G, X)E , comp. [54, §2.2]
or [95, §6.5]. The pro-étale torsor PK under Kp = G(Zp) is given by

Isom(ta,ét),(sa)(LK,ΛShK(G,X)),

i.e., PK is the torsor of trivializations of LK that respect the tensors.
We denote by S −

K (G, X) the (reduced) closure of ShK(G, X)E in the
OE-scheme AK♭ ⊗Z(p) OE . Then the integral model SK(G, X) is defined to
be the normalization of SK(G, X)−, comp. [57]. For simplicity of notation,
we set

SK := SK(G, X).

The morphism (4.5.5) extends to a finite morphism

(4.5.6) i : SK −→ AK♭ ⊗Z(p) OE .

We also set

SKp
:= SKp

(G, X) = lim←−Kp
SKpKp

(G, X).

Again, we can see that the transition maps are finite étale and so the limit
exists.
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Theorem 4.5.2. Let (p, G, X, K) be of global Hodge type. Then the sys-
tem of integral models SK constructed above satisfies the properties a)–c) of
Conjecture 4.2.2. In particular (by uniqueness, Theorem 4.2.4), the system
SK is independent of the Hodge embedding used in its construction. Fur-
thermore, for any x ∈ SK(k), the integral local Shimura variety Mint

G,bx,µ

satisfies Conjecture 3.3.4 at the base point x0 ∈ Mint
G,bx,µ(k), i.e., Mint

G,bx,µ /x0

is representable.

We note that property a) (the extension property (4.2.2)) is very simple:
for the Siegel model AK♭ it holds by the Néron-Tate-Shafarevich criterion of
good reduction, and this implies the extension property for SK by its defini-
tion as the normalization of the closure of the generic fiber in AK♭ ⊗Z(p) OE .
Property b) is proved in Subsection 4.6. Property c) is proved in Subsec-
tion 4.7, which also contains the representability of Mint

G,bx,µ /x0
.

4.6. Extension of shtukas

In this subsection we give the construction of the extension of the G-shtuka
PK,E in part b) of Conjecture 4.2.2 for the integral models SK of the last

subsection. For simplicity of notation, we write S = SKp
. Denote by Ŝ =

ŜKp
the formal scheme given by the p-adic completion of SKp

.

4.6.1. Torsors and tensors. We refer to [85, App. to §19] for a discussion
of the various notions of a “G-torsor”. Recall from Section 4.5 that we have

G δ−→ Ḡ ↪→ GL(Λ).

In this, δ is the group smoothening (a dilation) which is the identity on
generic fibers and ι : Ḡ ↪→ GL(Λ) is a closed immersion which realizes Ḡ as
the stabilizer of a finite family of tensors (sa) ⊂ Λ⊗, a ∈ I, i.e.

Ḡ(A) = {g ∈ GL(Λ⊗Zp A) | g · sa = sa, ∀a ∈ I}

for every Zp-algebra A. Note that it follows immediately from the construc-

tion of the group smoothening that δ gives a bijection G(W (κ))
∼−→ Ḡ(W (κ)),

for every perfect field κ, cf. [10, 3.1., Def. 1]. In fact, we have:

Lemma 4.6.1. The dilation δ : G → Ḡ gives a bijection

(4.6.1) δ(W (R)) : G(W (R))
∼−→ Ḡ(W (R)),

for every perfect Fp-algebra R.
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Proof. Both G and Ḡ are affine group schemes of finite type over Zp. Write
A = Γ(G, OG), Ā = Γ(Ḡ, OḠ) for the corresponding affine coordinate rings.
The dilation δ induces an injection Ā ⊂ A with A[1/p] = Ā[1/p] and we can
write A = Ā[f1, . . . , fr], for some f1, . . . , fr ∈ A. There are ni ≥ 1 such that
pni · fi ∈ Ā. Since p is not a zero divisor in W (R) we quickly obtain that
δ(W (R)) is injective and it remains to show surjectivity: A W (R)-point of
Ḡ is given by h̄ : Ā → W (R) and we want to show that h̄ extends to h : A =
Ā[f1, . . . , fr] → W (R). We have h̄ : A → W (R)[1/p] and pni h̄(fi) ∈ W (R).
The existence of h follows if, for all i, the element h̄(pnifi) lies in pniW (R);
then h̄ : A → W (R)[1/p] takes values in the subring W (R) ⊂ W (R)[1/p]
and gives the desired extension h. Since R is perfect, pnW (R) = V nW (R) =
{(0, . . . , 0, rn+1, rn+2, . . .) | ri ∈ R}. This implies that an element of W (R)
belongs to pnW (R) if and only if this happens after base change to all
(perfect) residue fields α : R → κ. Since by the above, δ(W (κ)) is a bijection
for all perfect fields κ, α(h̄(pnifi)) ∈ pniW (κ) for all such α and the result
follows.

Let S be a scheme, or an adic space over Zp. Let P be a G-torsor over S.
Then by the Tannakian formalism, the representation G → GL(Λ) induces a
vector bundle V over S. The tensors sa ∈ Λ⊗ induce corresponding tensors
ta ∈ V ⊗(S). We can consider the sheaf of tensor-compatible trivializations
of V ,

T̄ (V , (ta)) = Isom(ta),(sa⊗1)(V ,Λ⊗Zp OS).

This has a natural action of Ḡ and can be identified with the Ḡ-torsor P̄
given as the push-out P̄ = Ḡ ×G P of P by δ : G → Ḡ. Note that, since
δ[1/p] = id, we have

P̄[1/p] = P[1/p].

Conversely, suppose that we are given a vector bundle V over S and a
collection of tensors ta ∈ V ⊗(S), a ∈ I, where ta has the same homogeneity
as sa. Then, we can consider the (fppf or étale) sheaf

T̄ (V , (ta)) := Isom(ta),(sa⊗1)(V ,Λ⊗Zp OS)

whose T -valued points for T → S are given by isomorphisms

f : VT
∼−→ Λ⊗Zp OT

such that f⊗(ta) = sa ⊗ 1, for all a ∈ I. There is an obvious left action
of Ḡ on T̄ (V , (ta)). If T̄ (V , (ta))(T ) is not empty, then the action of Ḡ(T )
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on the set T̄ (V , (ta))(T ) is free and transitive, i.e. T̄ (V , (ta))(T ) ≃ Ḡ(T ).
Under certain conditions on T , we will have G(T ) = Ḡ(T ), as for example in
(4.6.1) above. Then T̄ (V , (ta))(T ) also acquires a free and transitive action
of G(T ).

4.6.2. Variant for Witt vectors. We will apply the previous remarks
not to G-torsors on S but rather to G-torsors over S

.
× Zp or, more generally,

over YI(S). Let S = Spa (R, R+) ∈ Perfdk. If P is a G-torsor over YI(S)
(given for a example by a G-shtuka over S), we obtain a vector bundle V
over YI(S), together with tensors (ta). We can consider the sheaf of tensor-
compatible trivializations of V ,

T̄ (V , (ta)) = Isom(ta),(sa⊗1)(V ,Λ⊗Zp OYI(S)).

This has a natural action of Ḡ and can be identified with the Ḡ-torsor P̄
given as the push-out P̄ = Ḡ ×G P of P by δ : G → Ḡ.

We will also use the following:

Proposition 4.6.2. Let R be a perfect k-algebra. Then G-torsors over W (R)
form a stack for the v-topology on Spec (R).

Proof. By [8] vector bundles of fixed rank over W (R) form a stack for the
v-topology on Spec (R). By the Tannakian equivalence, G-torsors over W (R)
are given by exact tensor functors Rep(G) → fin. proj. W (R)-modules ([85,
Thm. 19.5.1]). Using these facts we observe that it remains to show that if
R → R′ is v-surjective, a complex

M• : 0 −→ M1 −→ M2 −→ M3 −→ 0

of finite projective W (R)-modules is exact if and only if the base change
M• ⊗W (R) W (R′) is exact. Observe that under our assumption, all maximal
ideals of Spec (W (R)) are in the image of Spec (W (R′)) → Spec (W (R)).
Also R → R′ is dominant, hence injective (since perfect algebras are reduced)
and so W (R) → W (R′) is also injective. The result now follows by applying
Lemma 2.3.9.

Lemma 4.6.3. Let R be a perfect k-algebra and let P, P ′ be two G-torsors
over W (R), inducing (V , (ta)), resp. (V ′, (t′a)). Let φ : V

∼−→ V ′ be an
isomorphism which preserves the corresponding tensors, i.e. φ⊗(ta) = t′a,
∀a ∈ I. Then φ is obtained from an isomorphism of G-torsors φ̃ : P

∼−→ P ′

which is unique.
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Proof. By Proposition 4.6.2, it is enough to produce the isomorphism v-
locally on R. Consider the natural map

IsomG(P, P ′) −→ IsomḠ(P̄, P̄ ′).

The claim is that this is bijective. The source, resp. target, are the global
sections of IsomG(P, P ′), resp. IsomḠ(P̄, P̄ ′), which are AutG(P)-, resp.
AutḠ(P̄)-torsors. These group schemes are “pure” inner forms of G, resp.
Ḡ (see [26, Prop. III 4.1]). They split v-locally on R because the torsors P,
P ′ do. Since G(W (R)) = Ḡ(W (R)) by (4.6.1), we deduce that AutG(P) =
AutḠ(P̄). We can now see IsomG(P, P ′) = IsomḠ(P̄, P̄ ′) since they are
torsors for the same group and the result follows.

Remark 4.6.4. By [85, Prop. 19.5.3], for S ∈ Perfdk, G-torsors on S
.
× Zp

form a v-stack over S. Hence there is a variant of Lemma 4.6.3 for G-torsors
P, P ′ over S

.
× Zp instead of W (R). Indeed, it is enough to produce φ̃ v-

locally, and so we can see it is enough to show the result for S = Spa (C, C+),
where C is an algebraically closed perfectoid field. Then, we can construct
φ̃ by Beauville-Laszlo glueing along p = 0: We see that φ defines φ̃[1/p] :
P[1/p]

∼−→ P ′[1/p] while the completion ÔY[0,∞)(C,C+),p=0 is W (C) and we
have G(W (C)) = Ḡ(W (C)).

4.6.3. Extension of PE. Recall the G-shtuka PE over the generic fiber
Sh♦

E = ShK(G, X)♦E . By the Tannakian formalism as above, ι : G → GL(Λ)
and PE give a vector bundle shtuka (VE ,φVE

) over the generic fiber Sh♦
E .

This is the vector space shtuka that corresponds to the de Rham local system
given by the Tate module of the pull-back of the universal abelian scheme
via the Hodge embedding, cf. §2.6. Again as above, (VE ,φVE

) is endowed
with a finite family of tensors ta,E ∈ (VE ,φVE

)⊗. We can view each such
tensor as a shtuka homomorphism over Sh♦

E ,

(4.6.2) ta,E : (⊕iV
⊗mi

E ,φ⊕iV
mi

E
) −→ (⊕iV

⊗ni

E ,φ⊕iV
⊗ni

E
),

for suitable mi, ni ≥ 1. By the discussion in Section 4.6.2, we have

(4.6.3) P̄E = T̄ (VE , (ta,E)).

Recall from (4.5.6) the finite morphism

i : SK −→ AK♭ ⊗Z(p) OE ,

which extends the Hodge embedding in the generic fibers.
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We first extend VE to a vector shtuka (V ,φV ) over S as follows. First

observe that it is enough to extend compatibly over the p-adic completion Ŝ .
Now consider S = Spa (R, R+) ∈ Perfdk and a map S → (Ŝ )♦ given by

Spa (R♯, R♯+) → Ŝ ad. Let Minf(R♯+) be the BKF-module (with leg along
φ(ξ) = 0) of the pull-back to Spec (R♯+) of the p-divisible group A[p∞] of
the universal abelian scheme over AK♭ ⊗Z(p) OE , cf. Example 2.3.4. This is a
finite locally free module over Ainf(R♯+) = W (R+). We denote by (VS ,φVS

)
the corresponding minuscule shtuka of height 2g and dimension g over S
with leg at S♯, given by the restriction of

(4.6.4) M(W (R+)) = (φ−1)∗Minf(R
♯+)

to Spa (W (R+)) \ {[ϖ] = 0} (as in Example 2.3.4).
Using (4.6.2), we see that Theorem 2.7.7 implies that the tensors ta,E

extend (uniquely) to tensors ta ∈ V ⊗. We now define the v-sheaf over S
.
× Zp

with action of G,

(4.6.5) P̄S = T̄ (V , (ta)) = Isom(ta),(sa⊗1)(VS ,Λ⊗Zp O
S

.
×Zp

).

We will show that P̄S is induced by a G-torsor PS over S
.
× Zp, which is

then uniquely determined. We do this in three steps.
Step 1. Let R be a perfect k-algebra and let Z = Spec (R) → S which

induces Spd (R) → (Ŝ )♦. Note that the pull-backs of the tensor powers
V ⊗m to shtukas over Spd (R) are given as in Theorem 2.3.8 by meromorphic
F -crystals, namely the tensors powers M(W (R))⊗m of M(W (R)). Note that,
as in (2.3.3), M(W (R)) can be identified with

D♮(W (R)) = (φ−1)(D(W (R))∗),

where D(W (R))∗ is the linear dual of the contravariant Dieudonné module of
the pullback of the universal p-divisible group A[p∞] to Spec (R). By pulling
back ta along this map and using the full-faithfulness

meromorphic F -crystals over R −→ shtukas over Spd (R)

given by Theorem 2.3.8, we obtain tensors ta,crys ∈ D♮(W (R))⊗. We can now
consider the affine scheme with G-action over W (R),

Tcrys(R) := Isom(ta,crys),(sa⊗1)(D♮(W (R)),Λ⊗Zp W (R)).
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We also consider the affine scheme with G-action over W (R)[1/p],

Tcrys(R) := Isom(ta,crys),(sa⊗1)(D♮(W (R))[1/p],Λ⊗Zp W (R)[1/p]),

which has a natural Frobenius action lifting the Frobenius on W (R).

Lemma 4.6.5. The G-scheme Tcrys(R) is a G-torsor over Spec(W (R)[1/p]).

Using the Tannakian equivalence we see that the lemma implies that
Tcrys(R) gives a Frobenius G-isocrystal over the perfect scheme Z = Spec(R).
Recall that a Frobenius G-isocrystal over Z is a exact faithful tensor functor

RepQp
(G) −→ F -Isoc(Z),

where F -Isoc(Z) is the tensor category of Frobenius isocrystals. However,
our argument proceeds in the opposite way.

Proof. We paraphrase the argument of [56, Cor. 1.3.12]. Suppose that x0 is
a geometric point of Z = Spec (R). Let K = κ(x0). After replacing Z by
Z⊗k K, we may assume that Z is defined over K and that x0 is a K-rational
point. There is a specialization functor

(4.6.6) specx0
: F -Isoc(Z) −→ F -Isoc(x0)

between the categories of Frobenius isocrystals obtained by restricting to the
point x0. We may assume that Z is connected. Then this functor is faithful
and exact, and is in fact a fiber functor over L = W (K)[1/p], after forgetting
the Frobenius. The W (R)[1/p]-scheme Tcrys(R) specializes to Tcrys(x0) which
is an affine L-scheme with G-action. Lift x0 to a point x̃0 of S with values
in a complete discrete valuation ring OK . Using the étale-crystalline com-
parison isomorphism applied to the crystalline representation of Gal(K̄/K)
given by the tensor powers of the Tate module Tp(A[p∞]) ⊗Zp Qp, we see
that Tcrys(x0) is a G-torsor and so it gives a Frobenius G-isocrystal over x0,
i.e. the exact tensor functor

ωT0
: RepQp

(G) −→ F -Isoc(x0), W '−→ W ×G Tcrys(x0).

We claim that ωT0
factors as a composition of tensor functors

ωT0
= specx0

◦ ω,

where the tensor functor ω : RepQp
(G) → F -Isoc(Z) takes the representation

ΛQ of G to D♮(W (R))[1/p]. This last condition forces on us the definition
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of ω(Vm,n), where Vm,n = Λ⊗n
Q ⊗ Λ∗⊗m

Q . But any object of RepQp
(G) is

the kernel of a G-invariant map e : W → W , where W is a direct sum of
objects of the form Vm,n; we can even assume that e is an idempotent. By
considering e as a tensor to which we apply the previous construction, we
define a homomorphism ω(e) : ω(W ) → ω(W ) of F -isocrystals over Z and set
ω(Ker e) = Ker(ω(e)). It is easy to see that this definition is independent
of the presentation and defines an exact faithful tensor functor into the
category F -Isoc(Z). We claim that the G-space Tcrys(Z) is isomorphic to the
G-torsor which corresponds to ω. It suffices to prove that the corresponding
pushout functors coincide,

RepQp
(G) −→ W (R)[1/p]-modules

W '−→ W ×G Tcrys(Z), W '−→ ω(W ).

However, by construction, both functors send ΛQ to D(W (R))[1/p] and the
morphisms sa : ⊕i Λ

⊗mi

Q → ⊕i Λ
⊗ni

Q to ta,crys : ⊕i D♮(W (R))[1/p]⊗mi →
⊕i D♮(W (R))[1/p]⊗ni . Since the tensor algebra of ΛQ and the tensors sa

allow us to recover the group algebra of G, it follows that both functors
coincide.

Step 2. Now consider Spa (C, C+) with C a complete non-archimedean
algebraically closed field of characteristic 0 and with tilt Spa (C♭, C♭+) ∈
Perfdk. Let

x : Spa (C, C+) −→ S♯ = Spa (R♯, R♯+) −→ Ŝ ad

be a morphism giving the point Spa (C♭, C♭+) → S → (Ŝ )♦/ Spd (OE).

Since C+ ⊂ OC , this also gives Spa (C, OC) → Spa (C, C+) → Ŝ ad, which
we still denote by x. We set

C̄+ = C+/mC ⊂ k(C) = k(C♭)

which is a valuation ring of k(C) = OC/mC .
As in Example 2.3.4, we have the Breuil-Kisin-Fargues module M over

Ainf(C+) of the pull-back x∗(A[p∞]) of the universal p-divisible group. By
the existence of the G-shtuka over the generic fiber SE , we have a G-torsor

(4.6.7) T[0,∞) = T[0,∞)(C, C+)

over Y[0,∞)(C
♭, C♭+). This induces a vector bundle V[0,∞) given by the pull-

back of M to Y[0,∞)(C
♭, C♭+) and Frobenius invariant tensors x∗(ta) ∈
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V ⊗
[0,∞). By our construction of ta (see the proof of Proposition 2.7.6) the

tensors x∗(ta) extend to tensors over the pullback of M⊗ to

Y[0,∞](C
♭, C♭+) = Spa (Ainf(C

+)) \ {[ϖ] = 0, p = 0}.

Furthermore, by full-faithfulness, these extend to tensors ta,x ∈ M⊗ over
Ainf(C+).

Lemma 4.6.6. The G-torsor T[0,∞)(C, C+) from (4.6.7) extends to a scheme
theoretic G-torsor T (C+) over Ainf(C+) with the property that the construc-
tion of §4.6.2 applied to T (C+) gives M with the tensors ta,x ∈ M⊗. This
extension is canonical, i.e unique, up to a unique isomorphism. The G-torsor
T (C+) is trivial, since W (C+) is strictly henselian.

Proof. i) By Lemma 4.6.5, applied to R = C̄+, the tensors ta,crys give a
G-torsor

T∞ = Tcrys(C̄
+)

over W (C̄+)[1/p] which underlies a Frobenius G-isocrystal over C̄+.
ii) By Proposition 2.2.7 and the main result of [1], the G-torsor T[0,∞)

extends to a (trivial) G-torsor T (OC) over Ainf(OC) = W (OC♭). Using the
faithfulness of the pullback along

Y[0,∞)(C
♭, O♭

C) −→ Y[0,∞](C
♭, O♭

C) −→ Spec (Ainf(OC)),

on vector bundles and their homomorphisms, we see that this G-torsor gives,
by the construction of §4.6.2, the BKF-module M ⊗Ainf(C+) Ainf(OC) of
x∗(A[p∞]) with the tensors ta,x ∈ M⊗ ⊗Ainf(C+) Ainf(OC).

The idea now is that T∞, T[0,∞), and T (OC) combine to give the G-
torsor T (C+), by considering the fibered product

C+ = C̄+ ×k(C) OC ,

which gives

Ainf(C
+)[1/p] = W (C̄+)[1/p] ×W (k(C))[1/p] Ainf(OC)[1/p].

Set

A = Ainf(C
+)[1/p],

A1 = W (C̄+)[1/p], A2 = Ainf(OC)[1/p], A0 = W (k(C))[1/p]
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so that we have

A = A1 ×A0
A2 .

Set

T [1/p] = T (C+)[1/p] = Isom(ta,x),(sa⊗1)(M [1/p],Λ⊗Zp A),

Ti[1/p] = T [1/p] ⊗A Ai = Isom(ta,x,i),(sa⊗1)(Mi[1/p],Λ⊗Zp Ai).

For each i = 0, 1, 2, we know by the above that Ti[1/p] is a G-torsor. We
now use [1, Lem. 11.3], according to which the functor that associates to a
perfect valuation ring R over k the groupoid of G-torsors over W (R)[1/p] is
a stack for the arc topology. This implies that Ti[1/p], i = 0, 1, 2, “glue” to
give a G-torsor T ′ over A. The G-torsor T ′ can also be described by a finite
projective A-module M ′ with tensors t′a,x ∈ M ′ ⊗. By its construction and
the fact that M and ta ∈ M⊗ also satisfy the required compatibilities with
Mi and ta,x,i ∈ M⊗

i , we see that there is an isomorphism M ≃ M ′ taking
ta,x to t′a,x. Therefore, T [1/p] ≃ T ′ and T [1/p] is also a G-torsor. Now

the G-torsor T [1/p] glues with the G-torsor T[0,∞) over Y[0,∞)(C
♭, C♭+) to

produce a G-torsor over Y[0,∞](C
♭, C♭+) = Spa (Ainf(C+))\{[ϖ] = 0, p = 0}.

This, using GAGA and [1, Cor. 11.6], extends to a G-torsor T (C+) over
Spec (Ainf(C+)) which is trivial. By the full-faithfulness of the restriction to
Y[0,∞](C

♭, C♭+) and the construction, we see that the Ainf(C+)-module, resp.
the tensors, obtained from the G-torsor T (C+) by the Tannakian formalism
is M , resp. ta,x ∈ M⊗. The rest of the properties of T (C+) in the statement
also follow from the above full-faithfulness.

Step 3. We now show that we obtain a corresponding G-torsor in charac-
teristic p also. Take Spa (D, D+) ∈ Perfdk given by an algebraically closed
affinoid field D, equal to its untilt, and a point

Spa (D, D+) −→ Ŝ .

We can lift this to a point of Ŝ with values in Spa (C, C+) with C as above
(of characteristic 0), and with C̄+ = D+. Then, by Step 2, we obtain a
G-torsor over Ainf(C+) = W (C+♭) which, via C+♭/p → D+, reduces to a
G-torsor over W (D+). By its construction, this (trivial) G-torsor T (D+) un-
derlies the Dieudonné crystal D♮ of the pull-back of the universal p-divisible
group and the tensors (ta,crys). The induced Ḡ-torsor T̄ (D+) is uniquely de-
termined (does not depend on the lifting) as we can see by using the tensors
(ta,crys), and so is the G-torsor T (D+)[1/p] = T̄ (D+)[1/p] which in fact is
trivial. Since G(W (D+)) = Ḡ(W (D+)), it follows that the G-torsor T (D+)
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is also uniquely determined and does not depend on the choice of lifting
above, cf. Lemma 4.6.3.

Consider now

y : T = Spa (B,B+) −→ S −→ (Ŝ )♦/ Spd (OE),

a corresponding product of points as in Steps 2 and 3 above with B+ =∏
j C+

j such that T → S is a v-cover. We first give a G-torsor PT over

T
.
× Zp. By the work above, we have (trivial) G-torsors Pj = T (C+

j )

over Ainf(C
+
j ) = W (C+♭

j ), for all j. By using the Tannakian formalism and

the fact that families (Mj) of finite free W (C+♭
j )-modules of constant rank

correspond to finite free modules over
∏

j W (C+♭
j ) = W (B+), we obtain a

G-torsor over W (B+) whose restriction along the j-th component gives Pj .

By restriction from W (B+) to T
.
× Zp, this gives the G-torsor PT over

T
.
× Zp.

By [85, Prop. 19.5.3], G-torsors on S
.
× Zp form a v-stack over S and so

there is an equivalence of categories between G-torsors on S
.
× Zp and G-

torsors on T
.
× Zp with suitable descent data. Here, we can obtain a descent

datum on PT by using Lemma 4.6.3 and that both the underlying vector
bundle VT and the tensors ta ∈ V ⊗

T have such descent data, since they are

obtained by base-change from S
.
× Zp. This then gives a G-torsor PS over

S
.
× Zp which, in turn, gives VS and (ta) ∈ V ⊗

S . The G-torsor PS supports
a Frobenius structure φPS

obtained from the Frobenius structure of VS ,
and (PS ,φPS

) is a G-shtuka over S. Also, (PS ,φPS
) has leg bounded by

µ. Indeed, this is true in the generic fiber by construction. In general, it
follows by reducing to (C, OC)-valued points and using §3.3.7. (Note that
VS has dimension g and height 2g = rankZp(Λ), and that (Mloc

G,µ)♦(C, OC) ⊂
Gr(g,Λ)♦OE

(C, OC).) The association S '→ (PS ,φPS
) gives the desired G-

shtuka over (Ŝ )♦. This concludes the proof of the existence of the extension
P of the G-shtuka PE of S . !

4.7. Local completions

Recall the G-shtuka PK,E over ShK(G, X)E . By our work above, this extends
to a G-shtuka PK over SK. For simplicity of notation, we omit the subscript
K of SK in what follows.
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4.7.1. Completed local rings. Take x ∈ S (k) and consider the strict
completion of the local ring R̂x = ÔS ,x at the corresponding point of S .

Then R̂x is a Noetherian normal integral local domain. The induced mor-
phism

Spec (R̂x) −→ Spec (ÔAK♭⊗Z(p)
OE ,i(x))

is finite. Set Âx = ÔAK♭⊗Z(p)
OE ,i(x) for simplicity. Also set b = bx.

Proposition 4.7.1. There is a Spd (R̂x)-valued point of Mint
G,b,µ such that

the corresponding G-shtuka over Spd (R̂x) is equal to the pull-back of the

G-shtuka PK via the morphism Spd (R̂x) → Ŝ ♦/ Spd (OE), and which lifts
the base point x0 : Spd (k) → Mint

G,b,µ.

Here we recall that Spd (R̂x) denotes the v-sheaf Spa (R̂x, R̂x)♦. Note
that Spd (R̂x) is quasi-compact and can be covered in the v-topology by
a finite union of representable affinoid perfectoids S. Then the statement
above essentially amounts to showing that there is r ≫ 0 such that the pull-
back of the G-shtuka PK under morphisms S → Spd (R̂x) → Ŝ ♦/ Spd (OE)
admits a compatible (equivalence class of) trivialization(s) ir over the sectors
Y[r,∞)(S) which lift the trivializations induced by the base point.

Assuming this for the moment, we can show part (c) of Conjecture 4.2.2
for the models SK as defined above. Indeed, by Proposition 4.7.1 we obtain
using the definition of Mint

G,b,µ as a moduli functor, a morphism of v-sheaves

ΨG : Spd (R̂x) −→ Mint
G,b,µ,

where b = bx. This fits into a commutative diagram

(4.7.1)

(S/x)♦ = Spd (R̂x)
ΨG,x

ix

Mint
G,b,µ /x0

i/x0

Spd (Âx)
ΨH,x Mint

H,i(b),i(µ) /x0
×Spd (Z̆p) Spd (OĔ).

In this diagram of v-sheaves over Spd (OĔ), the map ΨH,x is an iso-
morphism, and the two vertical maps ix and i/x0

are closed immersions.
The generic fibers of all four v-sheaves in the diagram are representable
by smooth rigid analytic spaces over Ĕ. Both generic fibers Spd (R̂x)η and
(Mint

G,b,µ /x0
)η are smooth of the same dimension and by the above, are closed
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in Spd (Âx)η. By Proposition 3.4.2 (3), (Mint
G,b,µ /x0

)η is connected, hence

Spd (R̂x)η = (Mint
G,b,µ /x0

)η. It then follows by Proposition 3.4.2 (2) (topo-

logical flatness) that | Spd (R̂x)| and |Mint
G,b,µ /x0

| agree as closed subsets of

| Spd (Âx)|; then ΨG,x is an isomorphism by [85, Lem. 17.4.1] (or [82, Prop.
12.15 (iii)]).

This shows part (c) of Conjecture 4.2.2 for the integral model SK, by
taking Θx = Ψ−1

G,x. In fact, this also shows that Spd (R̂x) is isomorphic to

the formal completion Mint
G,bx,µ /x0

, which is therefore representable.

4.7.2. Proof of Proposition 4.7.1. We need some preliminaries in which
we use set-up and notations from [26].

Let S = Spa (R, R+) ∈ Perfdk. In the following, we also need to use

the “schematic” (or “algebraic”) Fargues-Fontaine curve Xalg
S defined, for

example, in [26, II.2.3] (see also [52]). Recall that by the GAGA type theorem
[52, Thm. 6.3.9] (also [26, Prop. II. 2.7]), there is an exact tensor equivalence

of categories between vector bundles on Xalg
S and on XS . Hence, by the

Tannakian formalism, we have a similar equivalence between categories of
G-torsors. In addition, vector bundles that correspond under the equivalence
have isomorphic cohomology groups. We now consider the automorphism
group schemes

Gb := AutG(Eb), Hb := AutH(Eb)

over Xalg
S . These are forms of G, resp. H, over Xalg

S . We can also consider

G≥0
b = AutG,filt(Eb), H ≥0

b = AutH,filt(Eb)

which are parabolic subgroup schemes of Gb, resp. Hb. These group schemes
support “HN filtrations” G≥λ

b , H ≥λ
b , for λ ≥ 0, defined as in [26, §III.5].

Their global sections (see the proof of Prop. III.5.1) are, for S ∈ Perfdk,

G≥λ
b (Xalg

S ) = G̃≥λ
b (S),

with G̃≥λ
b as in [26, Prop. III.5.1]. The group v-sheaves G̃≥λ

b satisfy

G̃b = G̃≥0
b = G̃>0

b % Gb(Qp),

and for every λ > 0, there is a natural isomorphism

G̃≥λ
b /G̃>λ

b
∼−→ B((adEb)

≥λ/(adEb)
>λ),
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with target the Banach-Colmez space associated to the −λ isoclinic part of
the Frobenius isocrystal (Lie(G) ⊗Qp Q̆p, Ad(b)σ). We can also consider the
fpqc quotient

Q≥0
b := H ≥0

b /G≥0
b

over Xalg
S . To describe Q≥0

b , we need two lemmas. The proof of the first is
left to the reader.

Lemma 4.7.2. i) The quotient TH/G = Lie(H)/Lie(G) is naturally identi-
fied with the tangent space of the quotient affine scheme H/G at the identity
coset. Then (TH/G ⊗Qp Q̆p, Ad(b) · σ) is a Frobenius isocrystal.

ii) The quotient Hb/Gb is represented (as a quotient of a reductive group
by a closed reductive subgroup) by an affine Qp-scheme. The tangent space
THb/Gb

at the identity coset can be identified with the slope zero part of

(TH/G ⊗Qp Q̆p, Ad(b) · σ). !

The points (Hb/Gb)(Qp) give a locally profinite set with a continuous
action of the group Hb(Qp). We will consider the corresponding v-sheaf
(Hb/Gb)(Qp).

Lemma 4.7.3. Let S ∈ Perfdk. The quotient Q≥0
b is represented by a rela-

tively affine scheme over Xalg
S . There is a decreasing exhausting filtration

Q≥λ
b ⊂ Q≥0

b

by closed subschemes Q≥λ
b over Xalg

S , for λ ≥ 0, such that

1) We have Q≥0
b ≃ ((Hb/Gb) ×Qp Xalg

S ) ×Xalg
S

Q>0
b .

2) For each λ > 0, there is a surjective morphism

fλ : Q≥λ
b −→ VH/G,b,λ,

with

f−1
λ (0) = Q>λ

b .

Here, VH/G,b,λ is the vector bundle over Xalg
S which is associated to the

−λ isoclinic part of the Frobenius isocrystal (TH/G ⊗Qp Q̆p, Ad(b)σ).

Proof. We set

Q≥λ
b := H ≥λ

b /G≥λ
b .
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We first show that the natural map

H ≥λ
b /G≥λ

b −→ Q≥0
b = H ≥0

b /G≥0
b

is injective, i.e. that

H ≥λ
b ∩ G≥0

b = G≥λ
b .

It suffices to check this on Lie algebras. Then it follows from the fact that
i : G ↪→ H is faithful. The rest is similar to the proof of [26, Prop. III 5.1]:
We first show the analogue of [26, Prop. III 5.2] for the quotient H/G. For
that we can reduce to the case that the G-bundle is trivial. The result then
follows as in loc. cit. by eventually reducing to considering the Lie algebras
and using Lemma 4.7.2.

We can now prove Proposition 4.7.1. Consider the formal scheme Spf (R),
where R = R̂x. Since Spf (R) maps to the Rapoport-Zink formal scheme for
the symplectic group, we have for every R-algebra B ∈ NilpW a universal
quasi-isogeny

q : X0 ⊗k B/pB ##$ X ⊗B B/pB

with X = A[p∞]. We can take the base point here to be X0 = X ⊗R k and q
the identity modulo mR. Also, the Dieudonné crystal D(X0)(W (k)) supports
the Frobenius invariant tensors ta,crys ∈ D(X0)(W (k))⊗.

By [85, Thm. 25.1.2, Cor. 25.1.3], the v-sheaf of the RZ formal scheme for
the symplectic group coincides with Mint

H,i(b),i(µ). Therefore, we can obtain an

equivalence class of a framing of the corresponding H-shtuka over Spd (R).
By following the proof of [85, Thm. 25.1.2], we see that this is given as
follows:

Let Spa (B,B+) be affinoid perfectoid over k and let Spa (B,B+) →
Spd (R) be given by a map from Spa (B♯, B♯+) to Spa (R, R), so we have
a continuous map R → B♯+. For a pseudo-uniformizer πB♯ of B♯, we have
R/mN → B♯+/(πB♯) = B+/(πB) for some N . By evaluating the quasi-
isogeny on the Dieudonné crystal associated to the p-divisible group X =
A[p∞], we obtain a trivialization over B+

crys(B
+/πB) and so a trivialization

of the H-shtuka over Y[r,∞)(B,B+), for r ≫ 0. This trivialization is com-
patible among all points Spa (B,B+) → Spd (R), so it gives a framing of
the corresponding H-shtuka over Spd (R) = Spa (R, R)♦. Note that Spd (R)
accepts a surjective v-cover from a finite union of affinoid perfectoids, so we
can pick a single r ≫ 0 such that the trivialization is defined over Y[r,∞).
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We now want to show that this descends to a framing of the G-shtuka P
over Spd (R), i.e. that the trivialization giving the framing respects the G-
structure. Denote by E = PFF the G-torsor over10 the “relative FF curve”
XR := XSpd (R) obtained in the usual way by first restricting the shtuka
P to a sector (r,∞) and then descending to the quotient by Frobenius. It
is enough to show that the quasi-isogeny gives a trivialization of E , i.e. a
G-torsor isomorphism Eb ≃ E over XR.

First we show that the Harder-Narasimhan (HN) filtration on E is con-
stant over points over Spd (R), i.e., for any representation ρ of G, the HN
polygon of the vector bundle ρ∗(E) is constant, i.e. the same on all geomet-
ric points Spa (C, OC) → Spd (R, R)♦. Such points are given by R → OC♯ ,

for which k = R/m ↪→ OC/π1/N
C and the constancy follows from a theorem

of Fargues-Fontaine, according to which Frobenius isocrystals over OC/πC

are isotrivial, i.e. obtained from k via base change by k → OC/πC (see [25,
§11.1], especially Cor. 11.1.14). It now follows from [26, Thm. II. 2.18] (as in
the proof of [26, Prop. III. 5.3]) that the G-torsor E admits a HN filtration
over Spd (R). This allows us to consider trivializations of E over XSpd (R)

which respect this filtered structure.
For any a : S → Spd (R) with S ∈ Perfdk, consider now

TG,S = IsomG,filt(Eb, a
∗(E)), TH,S = IsomH,filt(Eb, a

∗(E))

which is a G≥0
b -torsor, resp. a H ≥0

b -torsor, over Xalg
S . By a G≥0

b -torsor TG

over XR := XSpd (R), resp. a H ≥0
b -torsor TH over XR, we mean a collection

of TG,S , resp. TH,S , over varying a : S → Spd (R), together with appropriate

glueing data. In our situation, the H ≥0
b -torsor TH over XR is trivial with

a section provided by the universal quasi-isogeny as explained above. By
its definition, TG is a reduction of TH in the sense that it comes with an
isomorphism

TH ≃ H ≥0
b ×G ≥0

b TG.

The set of such reductions of TH ≃ H ≥0
b to a G≥0

b -torsor over XR are

in bijection with the set H0(XR, Q≥0
b ) of global sections of the quotient

Q≥0
b = H ≥0

b /G≥0
b . Set

Q̃≥λ
b (R) = H0(XR, Q≥λ

b ).

10Note again that we do not really define a relative FF curve XSpd (R), but just
consider a category whose objects we think of as the “G-torsors over XSpd (R)”.
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We have

H0(XR, Q≥0
b ) = Q̃≥0

b (R) = Q̃>0
b (R) × (Hb/Gb)(Qp)(Spd (R)).

Recall that the global sections of the vector bundle VH/G,b,λ associated to

the Frobenius isocrystal (TH/G ⊗Qp Q̆p, Ad(b)σ)−λ are given by an absolute
Banach-Colmez space

B(λ)⊕m = BC(O(λ))⊕m.

By Lemma 4.2.6, all the slopes λ that appear here satisfy 0 < λ ≤ 1. By
Lemma 4.7.3, induction, and Lemma 4.2.7, we obtain

Q̃>0
b (Spd (R)) = 0.

So, we have

H0(XSpd (R), Q
≥0
b ) = (Hb/Gb)(Qp)(Spd (R)).

Similarly Q̃>0
b (Spd (k)) = 0 and

(Hb/Gb)(Qp)(Spd (R)) = (Hb/Gb)(Qp)(Spd (k))

by specialization. Hence, we obtain that specialization identifies

H0(XSpd (R), Q
≥0
b ) = H0(XSpd (k), Q

≥0
b ).

Similarly, we have

H0(XSpd (R), H
≥0

b ) = H0(XSpd (k), H
≥0

b ),

H0(XSpd (R), G
≥0
b ) = H0(XSpd (k), G

≥0
b ).

Hence, the reductions of the trivial torsor TH to a G≥0
b -torsor are uniquely

determined by their specialization over XSpd (k). The torsor TG is such a
reduction and its specialization over XSpd (k) is trivial with a section given
by the quasi-isogeny (which respects the G-structure over the point x0).
Therefore, TG is trivial over XR: in fact, the section of TH given by the
quasi-isogeny gives a section of TG because this is true after specialization
to Spd (k). This section of TG provides the desired framing of the G-shtuka
over Spd (R). This concludes the proof of Proposition 4.7.1. !
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4.8. Completion of the proof of Theorem 4.3.1

In order to harmonize the notation with that used in the Hodge type case
above, we denote the group G′ by H and the parahoric group schemes by G
and H so that, by assumption, we have a dilated immersion

G = Ḡsm → Ḡ ↪→ H.

By [54, 20, Prop. 1.3.2], there is a closed group immersion H ↪→ GL(Λ), for
some finite free Zp-module Λ and finite collections of tensors sa, sb ∈ Λ⊗,
with a ∈ I, b ∈ J , such that

H = {g ∈ GL(Λ) | g · sb = sb, ∀b ∈ J},

Ḡ = {g ∈ GL(Λ) | g · sa = sa, g · sb = sb, ∀a ∈ I, b ∈ J}.

Recall that S † denotes the normalization of the closure of the image of
ShK(G, X)E in S ′ ⊗OE′ OE . Hence, by construction, S † is normal and flat
over OE . We denote the natural morphism by

ι : S † −→ S ′ ⊗OE′ OE .

As explained in §4.3, it is enough to show that the integral model S † sat-
isfies the conditions in Conjecture 4.2.2. Condition a) in Conjecture 4.2.2
follows from the corresponding condition for S ′ and the construction of
S † as a normalization. It remains to show that conditions b) and c) in
Conjecture 4.2.2 are satisfied for S †.

4.8.1. Condition b). We show that we can extend the G-shtuka PE

over ShK(G, X)E to a G-shtuka P† over the integral model S † such that
H ×G P† is isomorphic to the pull-back via ι of the “universal” H-shtuka
P ′ over S ′ ⊗OE′ OE . This is done by following the arguments of §4.6, see
especially §4.6.3; below we point out the additions and adjustments needed
for the argument.

Applying H ↪→ GL(Λ) to P ′ gives, by the Tannakian formalism, a vector
space shtuka V over S ′. We restrict this via ι above to obtain a vector space
shtuka V † over S †. The main idea now is to give tensors ta ∈ (V †)⊗, a ∈ I,
corresponding to sa ∈ Λ⊗ that extend the tensors ta,E given by the G-torsor
PE on the generic fiber. (Note that we already have tensors tb ∈ (V †)⊗,
b ∈ J , that correspond to sb ∈ Λ⊗, which are given using P ′). Then we
use the collection of ta, together with tb, to give the G-torsor underlying
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the desired shtuka P† as in §4.6.3. We need to be careful in the following
two points where the argument somewhat deviates from §4.6.3: First, we
do not have a universal p-divisible group, or a corresponding “global” BKF
module that underlies the vector space shtuka V , hence we need to find
an alternative argument to obtain the meromorphic Frobenius crystal over
the special fiber of S † used in Step 1 of §4.6.3. Instead of this explicit
construction, we use at this point Theorem 2.3.8. Second, to obtain the
Ainf(C+)-module M that appears in Step 2, we use Proposition 2.3.11 in the
easier case of an algebraically closed perfectoid field. Given these ingredients,
the argument proceeds as in §4.6.3.

4.8.2. Condition c). We now show that S †, together with the G-shtuka
P† given as in §4.8.1 above satisfies condition c) of Conjecture 4.2.2. The
proof follows the arguments in §4.7 with SK and PK now replaced by S †

and P†. Indeed, Proposition 4.7.1 extends to this situation with the same
proof and the rest of the result quickly follows. Note that in this, the fact
that ΨH,x of (4.7.1) is an isomorphism, is provided by our assumption that
the model S ′ for H satisfies condition c) of Conjecture 4.2.2.

4.9. The local model diagram

Let SK be the integral model of ShK(G, X)E over OE , satisfying Conjec-
ture 4.2.2. In the classical theory, the local model diagram gives a global
way to relate the singularities of the integral model SK to the singularities
of the local model. We now interpret this construction in our set-up.

4.9.1. The global v-sheaf local model diagram. Recall that the v-
sheaf group G♦ has S-valued points G♦(S), for S = Spa (R, R+) ∈ Perfd,
given by pairs of an untilt S♯ = Spa (R♯, R♯+) of S and an element of G(R♯).

We define as follows a v-sheaf G♦-torsor over S ♦/
K → Spd (OE). For sim-

plicity, we will often omit the subscript K.
For S ∈ PerfdκE and x : S = Spa (R, R+) → S ♦/ with corresponding

untilt S♯ = Spa (R♯, R♯+), we consider the pull-back (restriction) Pφ(S♯) =
φ∗(P)|S♯ of the G-torsor φ∗(P) along

S♯ ↪→ Y[0,∞)(S) = S
.
× Zp.

This pull back gives a G-torsor over S♯ which, by [85, Thm. 19.5.3], corre-
sponds to a unique G-torsor over Spec (R♯). For S = Spa (R, R+) ∈ PerfdκE ,
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we now define S̃ v
K(S) to be the set of pairs (x,α), where x is a point of S ♦/

given by x : S = Spa (R, R+) → S ♦/, and

α : G × S♯ ∼−→ Pφ(S♯)

is a G-isomorphism (i.e. a section), for S♯ = Spa (R♯, R♯+) the untilt given
by x. This defines a v-sheaf with a natural morphism of v-sheaves

(4.9.1) πv : S̃ v −→ S ♦/

which is a v-sheaf G♦-torsor.
Given a section α of the G-torsor Pφ(S♯) over S♯ (which amounts to a

section of the scheme theoretic G-torsor over Spec (R♯)) we can extend it,
using the smoothness of G, to a section

(4.9.2) α̂ : G × Ŝ♯ ∼−→ (φ∗(P))
Ŝ♯

of the pull-back of φ∗(P) over the formal completion Ŝ♯ := Spec (Ô
S

.
×Zp,S♯)

of S
.
× Zp along S♯. Then by using Beauville-Laszlo glueing, we see that the

pair

(P, φP ◦ α̂ : G × (Ŝ♯ \ S♯)
∼−→ PŜ♯\S♯)

gives an S-valued point in the affine BdR-Grassmannian GrG,Spd (OE) over
Spd (OE) (see [85, Prop. 19.1.2, Prop. 20.3.2]). Since the G-shtuka P has
leg bounded by µ, this point is, by definition, a point of the v-sheaf local
model Mv

G,µ ⊂ GrG,Spd (OE) (see the text after Definition 2.4.3). This defines

a morphism of v-sheaves over Spd (OE) which is G♦-equivariant,

(4.9.3) qv : S̃ v −→ Mv
G,µ.

Indeed, let L+G be the positive v-sheaf loop group over Spd (OE) with values
in S = Spa (R, R+) given by the untilt S♯ and

L+G(S) = G(B+
dR(R♯)).

Then B+
dR(R♯) → R♯ induces a homomorphism L+G → G♦ × Spd (OE).

Letting L1G denote the kernel of this homomorphism, any two choices of
extensions α̂ as in (4.9.2) differ by a section of L1G. Since µ is minuscule,
the action of L+G on Mv

G,µ factors through G♦ × Spd (OE) (for details, see
[3]), and so, in the definition of the morphism (4.9.3), the image is indeed
independent of the choice of α̂.
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Altogether we obtain a diagram of morphisms of v-sheaves

(4.9.4)

S̃ v
K

πv
K qv

K

S ♦/
K Mv

G,µ ,

which we call the v-sheaf theoretic local model diagram for SK. Here πv is a
v-sheaf G♦-torsor and qv is G♦-equivariant. Note that the existence of this
diagram is a formal consequence of the existence of the G-shtuka over SK,
which is bounded by µ.

4.9.2. The scheme-theoretic local model diagram. We consider a
diagram of OE-schemes

(4.9.5)

S̃K

π q

SK MG,µ ,

where π is a G-torsor and q a G-equivariant morphism which is smooth. Here
MG,µ = Mloc

G,µ denotes the scheme local model as in Theorem 2.4.1.
The generic fiber of such a diagram can be given by the classical Borel

embedding construction: It is the canonical model over E of the natural dia-
gram obtained from the Borel embedding of the domain X, cf. [66, III, 4]. In
the Hodge type case, it can also be constructed using the de Rham cohomol-
ogy of the universal abelian scheme (see [14, 2.3]). Since the G-shtuka PK

extends PK,E , we can see that the corresponding v-sheaf diagram agrees
with the base change of (4.9.4) to Spd (E).

Applying the ♦/-functor, cf. Definition 2.1.9, from schemes over OE to
v-sheaves over Spd (OE) to (4.9.5) gives

(4.9.6)

S̃ ♦/
K

π♦/ q♦/

S ♦/
K M♦

G,µ ,

where π♦/ is a G♦/-torsor, and q♦/ is G♦/-equivariant. Here, note that since

MG,µ is proper over OE , we have M♦
G,µ = M♦/

G,µ and the group v-sheaf G♦

acts on M♦
G,µ.
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The following definition attempts to give a v-sheaf interpretation of the
scheme local model diagram, analogous to Scholze’s v-sheaf definition of
scheme local models, cf. Theorem 2.4.1.

Definition 4.9.1. A scheme-theoretic local model diagram for SK is a di-
agram (4.9.5) (where π is a G-torsor and q is a G-equivariant smooth map)
such that the generic fiber is given by the Borel embedding construction and
which gives the v-sheaf local model diagram (4.9.4) after pushing out the
G♦/-torsor π♦/ of (4.9.6) by G♦/ → G♦.

Conjecture 4.9.2. A scheme-theoretic local model diagram for SK exists.

Let us remark that it is not clear that a scheme-theoretic local model
diagram for SK is uniquely determined if it exists. Indeed, note that we can-
not apply Corollary 2.1.8 since the morphism πv, which is obtained from the
universal shtuka as above, is a G♦-torsor but does not obviously come from
a G♦/-torsor. A canonical G♦/-torsor inducing πv by push out by G♦/ → G♦

might be obtained by assuming the existence of a “stronger” structure un-
derlying the universal shtuka, for example by assuming that the conjectural
prismatic refinement described in §4.4 exists.

This conjecture follows when (p, G, X, G) is of global Hodge type from
the main result of [57] under some additional tameness hypotheses: p ̸= 2, G
splits over a tamely ramified extension of Qp, and p " |π1(Gder)|. Here we are
using implicitly the uniqueness of the integral model (Theorem 4.2.4), which
allows us to replace the original Hodge embedding by the Hodge embedding
that is used in [57]. The tameness conditions are relaxed in [58], where the
result is extended to most reductive groups whose corresponding adjoint
groups are essentially tamely ramified in the sense of Remark A.3.1, i.e.,
Weil restrictions of scalars of tame groups from wildly ramified extensions.

4.9.3. The local v-sheaf local model diagram. The exact same ar-
gument as in §4.9.1 also gives the v-sheaf theoretic local model diagram for
Mint

G,b,µ, i.e. a diagram of morphisms of v-sheaves,

(4.9.7)

M̃int
G,b,µ

πv qv

Mint
G,b,µ Mv

G,µ ,

where πv is a G♦-torsor, and qv is G♦-equivariant. Again, there is a repre-
sentability conjecture.
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Conjecture 4.9.3. There is a diagram of morphisms of normal formal
schemes flat and locally formally of finite type

(4.9.8)

M̃G,b,µ

π q

MG,b,µ M̂G,µ ,

where π is a Ĝ-torsor and q is formally smooth and Ĝ-equivariant. In addi-
tion, the diagram (4.9.7) is obtained from (4.9.8) by applying the ♦-functor
on formal schemes, followed by push out by G" = (Ĝ)♦ → G♦. Here M̂G,µ,

resp. Ĝ, denotes the completion of MG,µ, resp. G, along its special fiber.

4.10. Uniformization by LSV

We continue with the same assumptions and notations as in §4.5.2. In par-
ticular, (p, G, X, K) is of global Hodge type and we choose an appropriate
Hodge embedding which produces as in (4.5.6) a morphism

i : SK −→ AK♭ ⊗Z(p) OE ,

which factors through the closed embedding S −
K ↪→ AK♭ ⊗Z(p) OE . We also

choose a point x0 ∈ SK(k).

4.10.1. Construction of RZ spaces. Following [38, 47], we construct a
“Rapoport-Zink (RZ) formal scheme” RZG,µ,x0

over Spf (OĔ).

Let RZH,i(x0) be the RZ formal scheme over Spf (Z̆p) for (H, ι(µ)) with
framing object given by the p-divisible group of the product of the abelian
varieties in the chain of isogenies that corresponds by the moduli interpre-
tation of AK♭ to the point i(x0). We will denote this “framing” p-divisible
group by X0.

The uniformization map for the Siegel moduli scheme is a morphism of
formal schemes

(4.10.1) ΘRZ
H,i(x0) : RZH,i(x0) −→ ÂK♭ .

Now consider the p-adic completion ŜK of SK and the fiber product
induced by the morphism (4.5.6),

(4.10.2) RZ′
G,µ,x0

:= ŜK ×ÂK♭⊗ZpOE
(RZH,i(x0) ⊗Z̆p

OĔ).
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The fiber product RZ′
G,µ,x0

is a formal scheme which is locally of formally

finite type over Spf (OĔ). Recall that Ŝ ♦
K supports the G-shtuka PK. By

its construction, it corresponds to a vector shtuka V over Ŝ ♦
K (obtained

from the BKF-module of the universal p-divisible group) and Frobenius
invariant tensors ta ∈ V ⊗, a ∈ I. The tensors ta give corresponding Frobe-
nius invariant tensors ta,crys on the Dieudonné isocrystal of the universal
p-divisible group over the perfection (SK ⊗OE

k)perf . On the other hand,

over (RZH,i(x0) ⊗Z̆p
OĔ)perf

red , there is a universal quasi-isogeny q between
the universal p-divisible group and the p-divisible group X0. Hence, over
(RZ′

G,µ,x0
)perf
red , we have Frobenius invariant tensors ta,crys and q∗(ta,crys,0)

both on the Dieudonné isocrystal of the universal p-divisible group. By defi-
nition, the specialization of ta,crys at the base point x0 is equal to q∗(ta,crys,0).
Now, by [38, Lem. 4.3.3], the locus where

ta,crys = q∗(ta,crys,0), ∀a ∈ I,

is an open and closed subscheme of (RZ′
G,µ,x0

)perf
red , hence a union of connected

components of (RZ′
G,µ,x0

)perf
red . We let RZG,µ,x0

be the unique open and closed
formal subscheme of RZ′

G,µ,x0
whose perfect reduced locus is this union. By

construction, we have a morphism of formal schemes

(4.10.3) ΘRZ
G,x0

: RZG,µ,x0
−→ ŜK,

which fits in a commutative diagram of formal schemes

(4.10.4)

RZG,µ,x0

ΘRZ
G,x0

RZH,i(µ),i(x0) ⊗Z̆p
OĔ

ΘRZ
H,i(x0)⊗ZpOE

ŜK ÂK♭ ⊗Zp OĔ .

Lemma 4.10.1. The formal schemes RZ′
G,µ,x0

and RZG,µ,x0
are normal

and flat over Spf (OĔ). Furthermore, for each x ∈ RZG,µ,x0
(k), the mor-

phism (4.10.3) induces an isomorphism of formal completions

RZG,µ,x0 /x
∼−−→ SK /x.

Here on the RHS we have written x for ΘRZ
G,x0

(x).

Proof. The standard deformation theory of p-divisible groups (as for exam-
ple in [78]) implies that the morphism ΘRZ

H,i(x0)
induces an isomorphism of
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formal completions

RZH,µ,i(x0) /i(x)
∼−−→ AK♭ /i(x).

It follows from the construction of RZ′
G,µ,x0

as fiber product and then of
RZG,µ,x0

as an open and closed formal subscheme, that (4.10.3) gives an
isomorphism of formal completions

RZ′
G,µ,x0 /x ≃ RZG,µ,x0 /x

∼−−→ SK /x.

The result now follows since SK is normal and excellent.

By [85, Cor. 25.1.3], there is an isomorphism of v-sheaves

RZ♦
H,i(µ),i(x0)

∼−→ Mint
H,b,i(µ).

The top horizontal arrow in the diagram (4.10.4) becomes under this iden-
tification

(4.10.5) iRZ : RZ♦
G,µ,x0

−→ Mint
H,b,i(µ) ×Spd (Z̆p) Spd (OĔ).

Lemma 4.10.2. a) The morphism (4.10.5) factors as

iRZ : RZ♦
G,µ,x0

c−→ Mint
G,b,µ

i−−→ Mint
H,b,i(µ) ×Spd (Z̆p) Spd (OĔ),

where i is the natural morphism.
b) For each x ∈ RZG,µ,x0

(k), the morphism c induces an isomorphism
on formal completions

RZG,µ,x0 /x
∼−−→ Mint

G,b,µ /c(x).

In particular, Mint
G,b,µ /c(x) is representable by the formal spectrum of a com-

plete local ring.

Proof. Consider the pullback under (4.10.3) of the G-shtuka PK on ŜK. The
corresponding H-shtuka H×G PK is equipped with a framing from the mor-
phism (4.10.5). By its construction, this framing respects the tensors ta,crys,
hence comes from a framing of the G-shtuka. This defines the factorization
in a).

By Lemma 4.10.1, RZG,µ,x0 /x ≃ SK /x. On the other hand, by the proof
of Proposition 4.7.1 the morphism

SK /x −→ Mint
G,b,µ /x,

given by Ψ∗
G,x there, is in fact an isomorphism. This shows b).
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The following statement is to be compared to [95, Cor. 6.3].

Proposition 4.10.3. The morphism c : RZ♦
G,µ,x0

−→ Mint
G,b,µ is a closed

immersion.

Proof. Recall that the map Mint
G,b,µ → Mint

H,i(b),i(µ) ×Spd (Z̆p) Spd (OĔ) is a
closed immersion, cf. Proposition 3.6.2. Consider the morphism of formal
schemes in the top of diagram (4.10.4),

d : RZG,µ,x0
−→ MH,b,i(µ) ⊗Z̆p

OĔ = RZH,i(µ),i(x0) ⊗Z̆p
OĔ .

By its construction, the source RZG,µ,x0
of this morphism is a union of con-

nected components of RZ′
G,µ,x0

which then maps to the target by a finite
morphism. Hence, the morphism d is quasi-compact and quasi-separated
and the induced map on topological spaces has Zariski closed image. The
formal scheme-theoretic image of d is defined and it is a formal closed sub-
scheme M ′

G,b,µ of the formal scheme MH,b,i(µ) ⊗Z̆p
OĔ . The corresponding

v-sheaf (M ′
G,b,µ)♦ is, by Lemma 4.10.2 (a), a closed v-subsheaf of Mint

G,b,µ.
It suffices to prove that the resulting map c : RZG,µ,x0

→ M ′
G,b,µ is an iso-

morphism of formal schemes. By Lemma 4.10.1 and Lemma 4.10.2, the map
c induces isomorphisms on formal completions at each k-point. Hence it
suffices to prove that the induced map on k-points

c : RZ♦
G,µ,x0

(k) −→ Mint
G,b,µ(k)

is injective.
Recall that we have an inclusion of (b, µ)-admissible sets,

Mint
G,b,µ(k) = XG(b, µ−1)(k) ⊂ XH(i(b), i(µ)−1)(k) = Mint

H,i(b),i(µ)(k).

Suppose we have x ̸= x′ ∈ RZ♦
G,µ,x0

(k) with c(x) = c(x′). Then x, x′

map to the same point y = i(x) = i(x′) in RZ♦
H,i(µ),i(x0)

(k). The points

x, x′ also give k-points of SK which we still denote by x, x′ and we have
y = i(x) = i(x′) in AK♭(k). Consider the G-shtukas Px, Px′ over Spd (k)
obtained by specializing the G-shtuka PK over S ♦

K to the two points x
and x′. Here, these are given together with quasi-isogeny trivializations that
respect the G-structure and provide elements [(Px, ir,x)] and [(Px′ , ir,x′)]
of Mint

G,b,µ(k) = XG(b, µ−1)(k). Under our assumption c(x) = c(x′) we have

s0 := [(Px, ir,x)] = [(Px′ , ir,x′)] in Mint
G,b,µ(k) with image t0 ∈ Mint

H,i(b),i(µ)(k).
Consider the map

SK /x ⊔ SK /x′ −→ S −
K /y ⊂ (AK♭ ⊗Z̆p

OĔ)/y.
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Set Ux = SK /x and Ux′ = SK /x′ and U−
y = S −

K /y and Vy = (AK♭ ⊗Z̆p
OĔ)/y.

By Proposition 4.7.1 and (4.7.1), we obtain commutative diagrams

Ux
ΨG,x

ix

Mint
G,b,µ /s0

is0

Vy
ΨH,y

(Mint
H,i(b),i(µ) ⊗Zp OĔ)/t0 ,

Ux′
ΨG,x′

ix′

Mint
G,b,µ /s0

is0

Vy
ΨH,y

(Mint
H,i(b),i(µ) ⊗Zp OĔ)/t0 .

Note that these two diagrams share three vertices and the arrows between
them. All horizontal arrows are isomorphisms (by the proof of 4.2.2 (c) for
ΨH,y, see the text under (4.7.1)). It follows that the scheme-theoretic images
of Ux → Vy and Ux′ → Vy are equal. Since Ux and Ux′ are both irreducible
components of the normalization of the image U−

y = S −
K /y in Vy, it follows

that Ux = Ux′ and so x = x′ in SK(k), and x = x′ in RZG,µ,x0
(k). This

contradiction shows the asserted injectivity.

4.10.2. Condition U. We conjecture that c : RZ♦
G,µ,x0

−→ Mint
G,b,µ is an

isomorphism. By the above, this is equivalent to asking that c : RZ♦
G,µ,x0

(k)→
Mint

G,b,µ(k) = XG(b, µ−1)(k) is bijective, or also that it is surjective. In turn,
this is equivalent to the following condition.

(Ux0): Let x0 ∈ SK(k), b = bx0 . There is a morphism

ΘG,x0
: XG(b, µ−1) −→ SK

which sends the base point to x0 and is such that the diagram

XG(b, µ−1)(k)

ΘG,x0 (k)

XH(i(b), i(µ−1))(k)

ΘH,i(x0)(k)

SK(k) AK♭(k)

commutes.

Indeed, assuming (Ux0) we obtain a morphism XG(b, µ−1) → RZ′
G,µ,x0

whose image lands in RZG,µ,x0
. This morphism gives on k-points a map

XG(b, µ−1)(k) → RZG,µ,x0
(k) which is easily seen to be an inverse of c :

RZG,µ,x0
(k) → XG(b, µ−1)(k). In particular, there is at most one such map

ΘG,x0
.
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Assuming (Ux0) we can identify RZ♦
G,µ,x0

≃ Mint
G,b,µ. In particular, Mint

G,b,µ
is representable by a formal scheme MG,b,µ and we obtain a “uniformization”
morphism

(4.10.6) ΘRZ
G,x0

: MG,b,µ −→ ŜK.

which maps the base point to x0 ∈ SK(k).

Remark 4.10.4. Suppose that p is odd, G = G⊗Q Qp splits over a tamely
ramified extension of Qp and p " |π1(Gder)|. In this case condition (Ux)
is identical with Axiom A in [38, §4.3]; Hamacher and Kim also conjecture
that, under these hypotheses, it is always satisfied. By work of Zhou [95, 92],
condition (Ux) is known to hold under these hypotheses if in addition x is
basic, or G is residually split or G is absolutely special. By Nie [68], it
is known if G is unramified. As mentioned in the Introduction, condition
(Ux) is now known to hold in general, due to work of Gleason-Lim-Xu [34,
Cor. 1.10].

4.10.3. Uniformization. Let x0 ∈ SK(k). We assume that Condition
(Ux0) from §4.10.2 is satisfied. Using the action of G(Ap

f ) on SKp
as a group

of Hecke correspondences, the morphism ΘRZ
G,x0

from (4.10.6) induces a mor-
phism

(4.10.7) MG,bx0 ,µ × G(Ap
f ) −→ SKp

⊗OE
OĔ .

The image I(x0) on k-points is called the isogeny class of x0. A point
x′ ∈ SKp

(k) lies in I(x0) if and only if the corresponding polarized abelian
varieties Ax0 and Ax′ are related by a quasi-isogeny respecting weakly the
polarizations and such that under the induced maps on rational Dieudonné
modules, resp. on rational Tate modules for ℓ ̸= p, the tensors sa,crys,x0

and sa,crys,x′ , resp. sa,ℓ,x0
and sa,ℓ,x′ , are mapped to one another, comp. [55,

Prop. 1.4.15].

Remark 4.10.5. If x0 is basic, i.e., the class [bx0 ] ∈ B(G, µ−1) is basic,
then I(x0) is the set of k-points of a closed subscheme of SKp

⊗OE
k which

is a proper k-scheme. In fact, one expects the following concrete description
of I(x0) in this case. Consider the basic locus SKp,basic, a closed subscheme
of SKp

⊗OE
k, cf. [56, Thm. 1.3.13], with set of points SKp,basic(k) equal to

(4.10.8) {x′ ∈ SKp
(k) | [bx′ ] ∈ B(G, µ−1) the unique basic element}.
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Then SKp,basic(k) should always coincide with I(x0), for any basic x0. This is
known to be true at least if p is odd and G is unramified and Kp hyperspecial,
cf. [94, Cor. 7.2.16]. It also holds if p is odd, G is quasisplit and splits over a
tame extension, and p " |π1(Gder)| and Kp is special, cf. [46]. The statement is
also compatible with the Langlands-Rapoport conjecture which enumerates
isogeny classes by equivalence classes of admissible homomorphisms φ : Q →
GG from the quasi-motivic gerb Q to the neutral gerb GG. Indeed, up to
equivalence, there is a unique such φ whose p-component φp is basic, cf. [46].

The morphism (4.10.7) induces a morphism

(4.10.9) MG,bx0 ,µ × G(Ap
f )/Kp −→ SK ⊗OE

OĔ .

Let Ix0(Q) be the group of self-isogenies of Ax0 which respect the tensors
sa,crys,x0 , resp. sa,ℓ,x0

. Then we have an action of Ix0(Q) on RZG,µ,x0
≃ MG,b,µ

(through its action on the Dieudonné module respecting sa,crys,x0), and an
action of Ix0(Q) on G(Ap

f )/Kp, after fixing a level Kp-structure on the rational
Tate modules of Ax0 respecting sa,ℓ,x0

. These two actions combine to an
action of Ix0(Q) on the LHS of (4.10.9).

Theorem 4.10.6. Let (p, G, X, K) be of global Hodge type. Let x0 ∈ SK(k)
and assume that Condition (Ux0) in §4.10.2 holds. Then Mint

G,bx0 ,µ is rep-
resentable by a formal scheme MG,bx0 ,µ and there is non-archimedean uni-
formization along the isogeny class I(x0) in SK⊗OE

k, i.e., an isomorphism
of formal schemes over OĔ,

Ix0(Q)\(MG,bx0 ,µ × G(Ap
f )/Kp)

∼−→ (SK ⊗OE
OĔ)

/I(x0)
.

This isomorphism is to be interpreted (especially when x0 is non-basic) as
for its PEL counterpart in [78, Thm. 6.23].

Proof. As noted in (4.10.6), the v-sheaf Mint
G,bx0 ,µ is representable by RZG,µ,x0

.
We give the argument for the uniformization statement only in the basic
case, when I(x0) is a closed subset of SK ⊗OE

k. In the non-basic case, even
the interpretation of the statement of the theorem is more involved since
I(x0) is then a countable union of locally closed subsets of SKp

⊗OE
k, cf.

the explanation in the PEL case in [78, Thm. 6.23]. In the basic case, one
checks:

(i) The formal scheme on the LHS is locally formally of finite type. Indeed,
in the basic case, Ix0 is an inner form of G which is anisotropic at the
archimedean place, cf. [55, Cor. 2.1.7]. Hence the LHS is a finite disjoint
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sum of formal schemes of the form Γ\MG,bx0 ,µ, where Γ ⊂ J(Qp) is a dis-
crete cocompact subgroup, comp. [78, proof of Thm. 6.23]. Furthermore, by
replacing Kp by a subgroup of finite index, we may assume that the action
of Γ is free (see loc. cit.). Since MG,bx0 ,µ is locally formally of finite type, the
assertion follows.

(ii) The morphism induced on the underlying reduced schemes is proper.
Indeed, in the diagram (4.10.4) the upper arrow induces a finite morphism on
the underlying reduced schemes, with target a union of projective schemes,
cf. [78, Prop. 2.32]. From (i) it follows that the underlying reduced scheme
of the LHS is proper over k.

(iii) The map induced on k-points

Ix(Q)\(XG(bx0 , µ
−1)(k) × G(Ap

f )/Kp) −→ I(x)

is a bijection. This follows from [95, Prop. 9.1] (which is based on [55, Prop.
2.1.3]). Indeed, the assumption [95, Assumpt. 6.1.7] is satisfied, thanks to
hypothesis (Ux0).

(iv) For each point of Ix0(Q)\XG(bx0 , µ
−1)(k)×G(Ap

f )/Kp, represented by a

pair (x̃′, g) ∈ XG(bx0 , µ
−1)(k)×G(Ap

f ), with corresponding point x′ ∈ I(x0),
the induced map on completed local rings

ÔS ,x′ −→ ÔM ,x̃′

is an isomorphism. Indeed, this follows from Lemma 4.10.1 after identifying
MG,bx0 ,µ with RZG,µ,x0

.

The assertion follows, since any morphism of finite type between locally
noetherian formal schemes that is formally étale, proper and radicial is an
isomorphism, comp. [78, proof of Thm. 6.23].

Appendix A. Parahoric extension

This appendix is a remnant of an earlier version of the paper. We summarize
here some facts on extending torsors under parahoric group schemes over the
punctured spectrum of Ainf . Most of these results are due to Anschütz [1],
which is our main reference. At the time when we wrote the earlier version,
the main conjecture was proved by Anschütz in many cases, but not all. In
the meantime, he has proved the conjecture in its entirety. We give here a
proof of the conjecture in the tame case or when p ≥ 5. (In fact, our result is
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somewhat more general, see Theorem A.3.2.) The reason for leaving in this
appendix is that our proof under these restrictive conditions is simpler and
more direct. We also give a simple proof of the extension lemma of Kisin
and the first author [57, Prop. 1.4.3]. In particular, we do not use results
on “Serre II” [30] which are used by Anschütz and in [57], which ultimately
proceed on a case-by-case basis.

A.1. Statement of the conjecture

Let E be a p-adic field with perfect residue field k of characteristic p and
uniformizer π (Anschütz considers also local fields of characteristic p). Let C
be a perfect non-archimedean field of characteristic p which is a k-algebra,
and let C+ be an open and bounded valuation subring. We consider the
local ring AE = WE(C+) = W (C+)⊗̂W (k)OE , and

(A.1.1) X = Spec (AE), U = X \ S, V = Spec (AE ⊗OE
E).

Here S = V (π, [ϖ]), where ϖ is a pseudouniformizer of C+. If C+ = OC ,
then S = {s} with s the unique closed point of X. When we want to stress
the dependence on (C, C+) or also on E, we also write X(C,C+) and U(C,C+)

and V(C,C+), or X(E;C,C+) and U(E;C,C+) and V(E;C,C+). We consider the
following functors on the categories of coherent sheaves of modules,

Coh(X)−→Coh(U), M '→ M|U ; Coh(U)−→Coh(X), M '→ H0(U, M)
′
.

Here we use that H0(U, M) is a finitely generated AE-module, and denote
by H0(U, M)

′
the associated coherent sheaf of modules on X.

Theorem A.1.1. The above functors induce mutually inverse tensor equiv-
alences between Bun(X) and Bun(U). In particular, all vector bundles on U
are trivial, i.e., free.

Proof. This follows from a theorem of Kedlaya [51], cf. [85, Prop. 14.2.6].

Now let G be a reductive group over E.

Conjecture A.1.2 (Extension conjecture). Let G be a parahoric model of
G over OE. Then any G-torsor over U extends to a G-torsor over X.

Note that if such an extension exists, then it is unique. As pointed out
above, Anschütz has proved this conjecture (see [1, Thm. 1, Cor. 11.6]).
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Proposition A.1.3. Let C and the residue field k of E be algebraically
closed. Let G be a parahoric model of G. Then a G-torsor P on U extends
to X if and only if the G-torsor P|V is trivial. Moreover, this holds for all
G-torsors P on U if and only if H1(V, G) = {1}.

In particular, if the Extension Conjecture A.1.2 is true for one parahoric
model G of G, then it is true for any parahoric model G of G.

Proof. We show that the proof of [1, Cor. 9.3] (in which C+ = OC) carries
over. Since C is algebraically closed, C+ is strictly henselian. Since OE is
strictly henselian, so is WE(C+) = W (C+)⊗̂W (k)OE , and therefore G-torsors
over WE(C+) are trivial. Hence a G-torsor on U extends to X if and only if
it is trivial. Let ϖ ∈ C+ be a pseudo-uniformizer. The π-adic completion of
WE(C+)[1/[ϖ]] is WE(C) = W (C)⊗̂W (k)OE , which is a complete dvr with
algebraically closed residue field C, so is also strictly henselian. Set OE :=
WE(C) and let E be its fraction field. Then any G-torsor on OE is trivial
and, by Steinberg’s theorem, any G-torsor on E is trivial. By Beauville-
Laszlo glueing, there is a bijection between the set of isomorphism classes
of G-torsors on U which are trivial on V = Spec (WE(C+)[1/π]) and on
Spec (OE) and the double coset space

G(OE)\G(E)/G(WE(C+)[1/π]).

Hence for the first assertion of the proposition, since the triviality on OE is
automatic, it suffices to show that this double coset space consists of only one
element. This follows as in the proof of [1, Prop. 9.2] from the ind-properness
of the Witt vector Grassmannian GrG , which implies identifications

G(WE(C)[1/π])/G(WE(C)) = GrG(WE(C)))

= GrG(WE(C+))

= G(WE(C+)[1/π])/G(WE(C+)).

In the second assertion of the proposition, if H1(V, G) = {1}, then any G-
torsor on V is trivial. Hence, again by the triviality of the double coset
space, any G-torsor on U is trivial and therefore extends to X. Conversely,
let P be a G-torsor on V . By Steinberg’s theorem, the pullback PE of P
to E is trivial. Hence, by Beauville-Laszlo glueing, we can glue P and the
trivial G-bundle on OE to obtain a G-bundle P on U . But by assumption, P
extends to X and hence is trivial. But then P is trivial, as claimed.

We can reduce Conjecture A.1.2 to the case considered in the previous
proposition by the following descent lemma.
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Lemma A.1.4. a) Let C ′+ be a faithful flat extension of C+. If Conjec-
ture A.1.2 holds for G-torsors over U(C′,C′ +), then it does for G-torsors over
U(C,C+).

b) Let E′/E be an unramified extension. If Conjecture A.1.2 holds for
parahoric OE′-models of G′ = G ⊗E E′, then it holds for parahoric models
of G.

Proof. For a), the argument of [1, Lem. 9.1] applies: any tensor functor
ω : Rep(G) → Bun(X(C,C+)) which is exact after composition with the re-
striction functor Bun(X(C,C+)) → Bun(U(C,C+)) and with the base extension
functor Bun(X(C,C+)) → Bun(X(C′,C′ +)) is itself exact. For b), one uses that
the base change under OE → OE′ of a parahoric model is again a parahoric
model, cf. [1, p. 25].

Proposition A.1.5. Assume that G is unramified. Then G satisfies Con-
jecture A.1.2.

Proof. Let G be the reductive model of G over OE . Then the proof of [1,
Prop. 8.5] applies since there exists an embedding G ↪→ GLn such that the
quotient GLn/G is affine.

Proposition A.1.6. (i) G satisfies the Extension Conjecture if and only if
Gad does.

(ii) The class of groups satisfying the Extension Conjecture is closed under
direct products.

(iii) Let E′/E be a finite extension. If G′ over E′ satisfies the Extension
Conjecture, then so does ResE′/E(G′). Let G be over E and let G′ = G⊗EE′.
If G′ satisfies the Extension Conjecture, then so does G, provided that E′/E
is an unramified extension.

Proof. Statement (i) is [1, Prop. 9.6 and Lem. 9.8]. Statement (ii) is triv-
ial. The first statement of (iii) follows, using Lemma A.1.4, from Propo-
sition A.1.3 by Shapiro’s lemma. For the last statement in (iii), we note
that the base change G ⊗OE

OE′ is again a parahoric model. Since OE′ =
W (k′)⊗W (k)OE , we have W (C+)⊗W (k′)OE′ = W (C+)⊗W (k′) (W (k′)⊗W (k)

OE) = W (C+) ⊗W (k) OE . Hence the argument in the proof of [1, Lem. 9.1]
applies.

A.2. Descent under a tamely ramified extension

Let E′/E be a tamely ramified finite extension, which is Galois with Ga-
lois group Γ. For simplicity of notation, set O′ = OE′ and O = OE and
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denote by Ŏ′ and Ŏ the completions of the corresponding maximal unrami-
fied extensions. Let G be a reductive group over E and let G be a parahoric
model. By definition, G = G◦

x where x ∈ B(G, E) is a point in the (extended)
Bruhat-Tits building, and Gx is the Bruhat-Tits smooth group scheme over
O with Ŏ-points given the stabilizer

Gx(Ŏ) = {g ∈ G(Ĕ) | g · x = x},

and G◦
x is the neutral component. Set G′ = G⊗E E′. Recall that by work of

Prasad-Yu [74], since E′/E is tame, we have an equivariant identification

B(G, E) = B(G′, E′)Γ.

The point x can be considered also as a point of B(G′, E′) which is fixed
by Γ.

By functoriality, the corresponding Bruhat-Tits group scheme G′
x over

O′ supports a semilinear action of Γ and so does its neutral component
G′ = (G′

x)◦. Hence, the Weil restrictions of scalars

ResO′/O(G′
x), ResO′/O(G′),

are smooth affine group schemes over O with an action of Γ. Note that the
second group scheme is also connected. By [57, Prop. 1.3.9], we have

(A.2.1) Gx
∼= ResO′/O(G′

x)Γ.

Let us recall here the argument for the proof of this isomorphism: The fixed
point loci

ResO′/O(G′
x)Γ, ResO′/O(G′)Γ,

are smooth (using tameness and [21, Prop. 3.4]). We have

Gx(Ŏ) = {g ∈ G(Ĕ) | g · x = x} = {g′ ∈ G(Ĕ′)Γ | g′ · x = x} = G′
x(Ŏ′)Γ.

Now (A.2.1) follows from the characterization of the Bruhat-Tits group
schemes as the unique smooth group schemes with group of Ŏ-points given
by the stabilizer.

Note that this gives a closed group scheme immersion Gx ↪→ ResO′/O(G′
x)

which, by adjunction, induces a group scheme homomorphism Gx⊗OO′ → G′
x.

Set X ′ = Spec (AE′), X = Spec (AE) and denote by U ′, resp. U , the
complement of the closed point. Then X ′ = X⊗O O′ and U ′ = U ⊗O O′. The
following proposition extends the second statement of Proposition A.1.6,
(iii), which concerned unramified extensions.
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Proposition A.2.1. Let E′/E be a finite tamely ramified Galois extension,
with Galois group Γ. Let G be a reductive group over E and let G′ = G⊗EE′.
If G′ satisfies the Extension Conjecture A.1.2, then so does G.

Proof. By Proposition A.1.3 and the argument in the proof of [1, Thm. 11.4],
we see that it is enough to assume C+ = OC throughout. By Proposi-
tion A.1.6 (i) and (ii), we may assume first that Gad is simple and, passing
through Gad, that G is also simply connected. It is enough to consider para-
horic group schemes G and G′ as above and, assuming that every G′-torsor
over U ′ extends to X ′, to show that every G-torsor over U extends to X.
Since G is simply connected, G′ = G′

x and G = Gx = ResO′/O(G′)Γ.
Using Lemma A.1.4 a), we can reduce to the case that C is algebraically

closed, and by Lemma A.1.4 b) that k is also algebraically closed and that
X and X ′ are strictly local. Hence, every G-, resp. G′-torsor, over X, resp.
X ′, is trivial.

Note that G′ over O′ is a smooth affine Γ-group scheme, i.e. it affords
a (O′-semilinear) Γ-action which is compatible with the Hopf O′-algebra
structure on O(G′). We can make sense of the notion of a (Γ, G′)-torsor over
X ′ or U ′ as in Balaji-Seshadri [4, §4].

Let P be a G-torsor over U . The base change of P by U ′ → U followed
by the push-out by G⊗O O′ → G′ gives naturally a (Γ, G′)-torsor P ′ over U ′.
Recall that we assume that all G′-torsors over U ′ extend to X ′. Consider the
G′-torsor P ′ over U ′ obtained by forgetting the Γ-structure. This extends to
a G′-torsor P̃ ′ over X ′; by faithfully flat descent, this is affine and given by a
flat AE′-algebra O(P̃ ′). Now observe that the restriction from X ′ to U ′ gives
a fully faithful functor from affine flat schemes over X ′ to affine flat schemes
over U ′ (see [1, Prop. 8.2]; this uses Lazard’s theorem to write a general flat
algebra such as O(P̃ ′) as a direct limit of finite free modules. Alternatively,
using the Tannakian equivalence to reduce to vector bundles, we see that
the restriction of G′-torsors over X ′ to G′-torsors over U ′ is fully faithful, cf.
[1, Lem. 8.4]). By applying this full faithfulness to the isomorphisms given
by the elements of the Galois group, we obtain that the Γ-action on P ′

extends to a Γ-action on P̃ ′. Hence, we obtain a (Γ, G′)-torsor over X ′ which
enhances P̃ ′.

Claim. ResX′/X(P̃ ′)Γ is a G-torsor over X which extends the G-torsor P
over U .

The proof that follows is due to Scholze. What has to be shown is that the
fiber of ResX′/X(P̃ ′)Γ over the special point s ∈ X is non-empty. Indeed, if

this fiber is non-empty, a section can be lifted to a section of ResX′/X(P̃ ′)Γ



p-adic shtukas and Shimura varieties 155

over X (use the smoothness of ResX′/X(P̃ ′)Γ), hence ResX′/X(P̃ ′)Γ is a
(trivial) G-torsor over X.

Assume, by way of contradiction, that the fiber of ResX′/X(P̃ ′)Γ over

s is empty. Then P = ResU ′/U (P ′)Γ = ResX′/X(P̃ ′)Γ is an affine scheme.
Hence, P ×U U ′ = P ⊗O O′ is also affine. Consider the push-out morphism

π : P ×U U ′ −→ P ′.

It induces a map on cohomology,

(A.2.2) H1(P ′, O) −→ H1(P ×U U ′, O).

The map (A.2.2) is an isomorphism up to bounded p-torsion. Indeed, since
π is an affine morphism, the map (A.2.2) is induced by the map of sheaves
on P ′ given by

OP ′ −→ π∗(OP×UU ′),

and this map is injective, with cokernel a skyscraper sheaf on U ′⊗O′ k. Now
H1(P ×U U ′, O) = 0 since P ×U U ′ is affine. Since P ′ is a trivial G′-torsor
over U ′, the source of this map can be identified with H1(U ′, O)⊗H0(G′, O).
Since H1(U ′, O) = H2

m(WE′(OC)) is not of bounded p-torsion (it contains
the images of 1

πa[ϖ]b ∈ WE′(OC)π[ϖ] for any a > 0, b > 0), this is the desired
contradiction.

Corollary A.2.2. If there exists a tamely ramified extension E′ of E such
that G′ = G ⊗E E′ is of the form G′ ≃ ResẼ′/E(G̃), where Ẽ′ is a finite

extension of E′ and G̃ is an unramified group over Ẽ′, then G satisfies the
Extension Conjecture A.1.2.

Proof. This follows from Proposition A.2.1, Proposition A.1.6, (iii) and
Corollary A.1.5.

A.3. Summary

Now combining everything above, we obtain the following result on the Ex-
tension Conjecture. We introduce the following terminology. We call a reduc-
tive group G over E essentially tamely ramified if Gad ≃

∏
i ResEi/E(Hi),

where, for all i, Hi splits over a tamely ramified extension of Ei.

Remark A.3.1. A reductive group G is essentially tamely ramified under
either of the following hypotheses:
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a) If p ≥ 5.

b) If p = 3 and Gad⊗E Ĕ has no simple factors of type D(3)
4 or D(6)

4 (ramified
triality).

Indeed, it is enough to show the following: If G is an adjoint simple group G
over E and, either p ≥ 5, or p = 3 and the condition in (b) above is satisfied,
then G ≃ ResE′/E(G′), where G′ splits over a tamely ramified extension of
E′. We can always write G ≃ ResE′/E(G′) and by Steinberg’s theorem,

G′ ⊗E′ Ĕ′ is quasi-split. Hence, G′ ⊗E′ Ĕ′ is isomorphic to the quasi-split
outer form of its split form H ′ and can be written

G′ ⊗E′ Ĕ′ = ResE′′/Ĕ′(H
′ ⊗Qp Ĕ′)Γ,

where E′′/Ĕ′ is Galois with (inertial) group Γ which acts via diagram au-
tomorphisms. By examining the possible local Dynkin diagrams (comp. [71,
§7a]), we see that e = [E′′ : Ĕ′] can only take the values 1, 2 and 3. Hence,
if p ≥ 5, G′ splits over a tamely ramified extension. We have e = 3 only in
one case, when the local Dynkin diagram is of type GI

2 which corresponds

to the ramified triality D(3)
4 or D(6)

4 ; this shows the result in case (b).

Theorem A.3.2. Let G be a reductive group over E which is essentially
tamely ramified. Then G satisfies the Extension Conjecture A.1.2.

Proof. By Proposition A.1.6 (i), (ii), we can assume that G is adjoint and
simple. Then G = ResE′/E(G′), and G′ splits over a tamely ramified exten-
sion. By Proposition A.1.6 (iii), we reduce to the case that G splits over
a tamely ramified extension. Finally, by Proposition A.2.1, we reduce to
the case that G is, in fact, split. Then the result follows from Proposi-
tion A.1.5.

Corollary A.3.3. a) If p ≥ 5, then G satisfies the Extension Conjec-
ture A.1.2.

b) If p = 3 and Gad ⊗E Ĕ has no simple factors of type D(3)
4 or D(6)

4
(ramified triality), then G satisfies the Extension Conjecture A.1.2.

Proof. This follows from Theorem A.3.2 and Remark A.3.1.

Remark A.3.4. In the proof in Remark A.3.1 above, we have e = #Γ = 2,
when the local Dynkin diagram is of types B-Cn (n ≥ 3), C-Bn (n ≥ 2),
C-BCn (n ≥ 1), or F I

4 . The types B-Cn, C-BCn, correspond to ramified
unitary groups and C-Bn to (ramified) even orthogonal groups. The cases
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of wildly ramified unitary groups (for p = 2) can be handled by using un-
published work of Kirch, as shown in the first version of [1, §9]. Anschütz’s
result covers this case, as well as the wildly ramified triality group (for p = 3),
wildly ramified even orthogonal groups (for p = 2), and the wildly ramified
outer form of E6 (for p = 2).

A.4. On the extension theorem of [57]

As before, let G be a reductive group over E and G a parahoric model
over OE . In [57], it is assumed that OE = W (k), where k is a finite field or
algebraically closed. The following generalizes [57, Prop. 1.4.3].

Proposition A.4.1. Assume that G is essentially tamely ramified. Then
any G-torsor over Spec (OE [[u]]) \ {m} extends to Spec (OE [[u]]). (Here m
denotes the maximal ideal of the local ring OE [[u]].)

Proof. Let C be a perfect non-archimedean field which is a k-algebra, and
let

f : OE [[u]] −→ WE(OC)

be the homomorphism defined by sending u to [ϖ], for a fixed pseudouni-
formizer ϖ ∈ mC . Then f is faithfully flat, cf. [1, Lem. 10.2]. Hence Propo-
sition A.4.1 follows from Theorem A.3.2 by using descent [1, Prop. 8.2,
Lem. 8.3], comp. the argument in the proof of Proposition A.2.1.

Remark A.4.2. Again, Anschütz proves this in complete generality, i.e.,
without any tameness hypothesis, as a consequence of his proof of the Ex-
tension Conjecture A.1.2, cf. [1, Prop. 10.3].
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(1970/71), Exp. No. 389, Lecture Notes in Math. 244. Springer-Verlag,
Berlin, 1971, pp. 123–165.

[19] P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques
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