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ABSTRACT

Organisms susceptible to disease, from humans to crops, inevitably have spatial geometry that influence disease dynamics. Understanding how spatial structure
emerges through time in ecological systems and how that structure influences disease dynamics is of practical importance for natural and human management
systems. Here we use the perennial crop, coffee, Coffea arabica, along with its pathogen, the coffee leaf rust, Hemileia vastatrix, as a model system to understand how
spatial structure is created in agroecosystems and its subsequent influence on the dynamics of the system. Here, we create a simple null model of the socio-ecological
process of death and stochastic replanting of coffee plants on a plot. We then use spatial networks to quantify the spatial structures and make comparisons of our
stochastic null model to empirically observed spatial distributions of coffee. We then present a simple model of pathogen spread on spatial networks across a range of
spatial geometries emerging from our null model and show how both local and regional management of agroecosystems interact with space and time to alter disease
dynamics. Our results suggest that our null model of evolving spatial structure can capture many critical features of how the spatial arrangement of plants changes
through time in coffee agroecosystems. Additionally, we find small changes in management factors that can influence the scale of pathogen transmission, such as
shade tree removal, and result in a rapid transition to epidemics with lattice-like spatial arrangements but not with irregular planting geometries. The results
presented here may have practical implications for farmers in Latin America who are in the process of replanting and overhauling management of their coffee farms
in response to a coffee leaf rust epidemic in 2013. We suggest that shade reduction in conjunction with more lattice-like planting schemes may result in coffee being

more prone to epidemic-like dynamics of the coffee leaf rust in the future.

1. Introduction

Organisms susceptible to disease, from humans to crops, inevitably
have spatial geometry that influences disease dynamics. While it may be
argued that spatial components of disease-host systems in mixed envi-
ronments are less important (e.g. plankton), it is certainly true that most
plants and animals have non-trivial spatial structure, whether exoge-
nously imposed by abiotic environment (Gratzer et al., 2004) or
emerging endogenously from ecological dynamics (Li et al., 2016). It has
been a standard epidemiological question to ask how disease propagates
through space (Keeling et al., 1999; Park et al., 2002; Balcan et al., 2009;
Craft et al., 2010), but less obvious is how the space is constructed in the
first place and how that space influences subsequent disease dynamics.
At one extreme, a feedback likely exists between host and disease, where
hosts may alter their spatial distribution in response to the presence of
disease, such systems may include humans (Levine & Levine, 1994). On
the other hand, there exist many hosts-pathogen systems where hosts do
not alter their spatial distribution over the course of pathogen dynamics,
such as plants.

The construction of spatial structure becomes complicated when
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considering human managed systems such as agroecosystems. The
spatial arrangement of crops varies across agroecosystems due to a suite
of interacting cultural, social, economic, and ecological factors. Here we
focus our attention on perennial agroecosystems where plant mortality
and replanting can occur iteratively, generating spatial distribution with
a signature of the prior spatial arrangements, continuously inherited
from one harvest to the next. This contrasts with annual systems which
will be effectively fixed during the course of pathogen spread, due to the
seasonal harvest/destruction and replanting of all plants. In perennial
systems, the spatial arrangement is a consequence of farmer decisions
about initial planting combined with continual replanting in spaces
where individual plants had become damaged or die. The initial planting
frequently begins with a lattice-like structure consisting of ordered rows
and semi-constant interplant distances, but evolves over time with the
dynamics of replanting. Replanting can be understood as a response to
thinning, from a variety of causes, including the pathogens themselves.
Consequently, the pattern of disease occurrence in agroecosystems is
conditioned first by the structure of the plant distributions (effectively a
socioecological process) and second by the dynamics of transmission
(mainly an ecological process).
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The coffee agroecosystem and its most notorious pathogen, the cof-
fee leaf rust, Hemileia vastatrix, provides a useful model system to
interrogate the interaction of spatial pattern construction and its sub-
sequent influence on pathogen dynamics. Coffee (both Coffea arabica
and Coffea robusta) is a long-lived plant subject to a variety of man-
agement styles from intensive latticed monocultures to polycultures
beneath the shade of forests (Moguel & Toledo, 1999). Transmission of
the pathogen operates at two distinct spatial scales, locally, from coffee
bush to coffee bush, and regionally, from farm to farm (Vandermeer
et al., 2015; Vandermeer and Rohani, 2014). While regional pathogen
dynamics is clearly important (Avelino et al., 2012), here we focus on
the local dynamics in which the spatial distribution of coffee plants is
evidently important to local transmission (Vandermeer et al., 2018). At
this local scale, transmission likely results from a number of interacting
factors, for example from plants being so densely planted that their
leaves touch, or spore dispersal via air turbulence to neighboring plants,
all of which are, in practice, influenced by management decisions such
as how many and what kind of shade trees are incorporated in the
system.

Prior work on coffee and the coffee leaf rust has employed a network
approach to understanding spatial dynamics (Vandermeer et al., 2018),
and here we build on that work. By focusing on local transmission dy-
namics, an intuitive approach for modeling pathogen dynamics is
evident. We presume there exists some critical distance (D) for which
the pathogen is able to spread from plant to plant. We conceptualize the
distribution of plants and the implied spread of the pathogen, as a
network where the nodes consist of the plants and the edges are defined
by the D. Fig. 1 illustrates the approach on three 20 x 20m coffee plots
from a coffee farm in southern Mexico and shows the clear interaction of
the scale of transmission (D) and the underlying spatial arrangement
of coffee plants. The sub-networks within a given plot show us the extent
to which the pathogen could theoretically spread if any member of the
sub-network were infected. In one case (Vandermeer et al., 2018) the
emergent spatial sub-networks predict observed pathogen dynamics,
showing that plant to plant pathogen transmission is more likely within
a sub-network than between subnetworks, suggesting a utility in
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employing the subnetwork framework to more generally study pathogen
dynamics.

Our proposed time-dependent process of spatial reorganization of
plants via death and replanting within a plot is in part inspired by ob-
servations from the field with areas under cultivation for different pe-
riods of time. The three plots in Fig. 1 correspond to a one-year-old plot
(Sandino), a four-year-old plot (Che), and a fifteen-year-old plot (Leon).
Note how the youngest plot has a lattice-like spatial pattern and the
distributions become more disorganized as the plots age. Exploring the
mortality/replanting mechanism, we propose a null-model to simulate
the socio-ecological processes of plant death and replanting. Initiating a
perfect lattice arrangement of plants, we simulate stochastic death and
replanting within a fixed radius of the plant’s prior position. The
emergent spatial patterns are then compared to empirical spatial dis-
tributions (Fig. 1), and the range of spatial patterns from the null-model
are used simulate pathogen spread to understand how the scale of
pathogen transmission (D) interacts with the underlying spatial
pattern.

2. Methods
2.1. Model of Spread on Spatial Networks

Given that the intensity of pathogen infection is empirically corre-
lated with the sub-network structure (Vandermeer et al., 2018), we
stipulate D, the maximum distance the pathogen can spread to
neighboring plants (the spatial scale of transmission) and create a
community of sub-networks for which dynamics are simulated (see
Fig. 1, which illustrates how D creates sub-networks). Given the co-
ordinates of each plant, as they emerge from the simulations from the
plot spatial evolution, a spatial scale of pathogen transmission is stipu-
lated via particular values of D which in turn creates a collection of
spatial sub-networks (frequently referred to as “connected compo-
nents™), called C,

C ={C, G, G5...C,i}
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Where m is the number of sub-networks in the system. Note that each
subnetwork in C contains a unique collection of plants corresponding to
a given scale of pathogen transmission D.;. For example, from a
collection of n plants we might obtain,

C = {{Pl-, P2}7 {P3,P47 Ps},-{l’e}7~~~{17a» Pb; Pe; ~~~Pn}}

for a particular D;,. Note that the indices for each plant, p, are unique
across all subsets within C, and come from the set P,

P = {p1,p2,P3..-Pn}

Where n represents the total number of plants in the system.
In the model, we keep track of all the infected plants with the set I,
which is initialized as an empty set.

I={}

For each time step in the model we iterate through all nodes (plants)
in P, and there is a fixed probability, g, that a given plant becomes
infected. If P; (the i"*plant in P) becomes infected via

pid(p)
Where

_ .0, p>U(0,1)
A0=115 < uo.1)

then the whole cluster, C;, which is a subset of C and contains p;, is join in
union with I. This is done for all p’s where () = 1 (i.e. when there is a
successful infection).

It+1)=1(r)UC;

Conceptually, each sub-network represents the extent to which the
pathogen instantaneously spreads from a single infected plant to all
plants in that sub-network. We use the inevitability of the spread within
a sub-network as a simplifying assumption and assume that all plants
that fall within the sub-network denoted by the scale of the spread, D,
become infected instantaneously. This abstraction simplifies the system
and allows for us to focus on the interplay of pathogen dynamics and the
spatial geometry. With the assumption of instantaneous spread within a
sub-network, our model only has one parameter associated with the
epidemic process, the probability of a random plant in the plot being
infected f, which can be thought of as being a measure of the regional
pathogen propagule density.

When simulating pathogen spread, we allowed simulations to pro-
ceed until 90% of the plants became infected to quantify the time to
epidemic of the pathogen on the spatial geometries arising from the null
model. To account for the inherent stochasticity of the null model and
the spreading process we replicated time step snapshots from the null
model five times with subsequent ten replicate simulations of the
spreading process for the D ranging from O to 3. We then used the
mean time until 90% infected hosts.

2.2. Null model of evolving plant spatial geometry

Despite the fact that coffee bushes are often planted with the inten-
tion of a strict lattice structure (planted in rows), the real distribution of
coffee plants on a farm rarely reflects perfectly that initial intent. As time
goes by, some coffee bushes die and usually are replanted, but rarely in
precisely the same location, leading eventually to a loss of the initial
planting pattern. To the farmer these small deviations may not seem
consequential for the dynamics of pathogens and pests, yet they can
accumulate significantly to change the basic spatial pattern (e.g., Fig. 1).
Although a host of complicated local factors are involved in planting
decisions, we initially approach the problem with a null model of
planting spatial evolution.

We begin with plants arranged in a lattice bound within a x and y
coordinate range and modify the structure over time. The simple model
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simulates stochastic death and replanting within an area of relatively
proximity of the prior plant position. The coordinates change over time
according to,

x(t+1) = x(1) + &(¢)D(a)

yi(t+1) = yi(t) + &(¢)D(a)
Where

and x;(t) and y;(t) represent the two coordinates corresponding the po-
sition of plant i at time t. £(¢) is the death/replanting rate and ¢ is the
mortality probability for plant i. U(a, b) is a uniformly distributed
random variable with range (0,1) and D(a) is a random variable drawn
from a uniform distribution with mean «, that stipulates the “replanting
radius” of the new plant. For all simulations, ¢ = 0.05 and @ = 0.25. The
simulations were run iteratively for each plant in the plot 100 times.

To understand how our null model approximates the planting ar-
rangements of real agroecosystems, we use an empirical data set of three
20 x 20 m plots on an organic coffee farm in the Soconusco region of
Chiapas, Mexico. Each of the three plots have different ages (time since
the area had all plants removed and replanted) corresponding to
approximately one year, four years and fifteen years (Fig. 1). They
represent what we propose to be the progression of spatial structure
across the lifecycle of an area in cultivation. Given these three 20 x 20m
plots with differing numbers of plants, for each comparison, the simu-
lated evolution of spatial structure was done with the same planting
density as the real plot it was intended to simulate. Our empirical plots
have 177, 147 and 140 plants. To approximate the lattice-like initial
conditions of each of these plots we used 12 x 15, 15 x 10, and 14 x 10
planting arrangements for the simulated plots. By controlling for the
planting density, our null model of plot spatial evolution allows us to
make comparisons with our empirical 20 x 20m plots and understand to
what extent our null model approximates the empirical spatial geometry
across the ontogeny of the plots through time.

2.3. Quantification of spatial structure

Similar to modeling the spread of the pathogen in space as described
in the previous section, to quantify the spatial pattern of a plot we focus
again on the sub-networks that emerge from imposing D.;;. By looking at
arange of D for a given spatial pattern we quantify how the number of
sub-networks changes across spatial scales and can subsequently make
comparisons to our empirical spatial patterns. Fig. 1 illustrates how
different spatial patterns give rise to varying numbers of sub-networks
for a single Dyy. The variability in the number of sub-networks re-
flects the clustering and over-dispersion and various spatial scales
within a particular plot. The number of sub-networks not only uses the
same tools for modeling pathogen spread, but also provides biologically
relevant information for the dynamics of the pathogen that the use of a
traditional dispersal kernel does not. For example, a given distribution
of sub-networks for a D gives us the minimum number of outside in-
fections needed to infect a total area in cultivation.

To understand the extent to which the simulations approximate the
empirical patterns, we use A, or the difference in the number of sub-
networks in the empirical spatial patterns minus the number of sub-
networks in the simulated spatial patterns. For a perfect spatial
approximation in terms of number of subgraphs we expect a A;=0.
Importantly, we are interested in Ag across a relatively wide range of D
to quantify the spatial pattern, although we are constrained at the low
end where no plants are connected and the high end where the whole
plot is connected. For each simulation, we extracted the pattern at the
first step and subsequently every 10 steps through 100 rounds of
replanting. For our analyses, we used D that ranges from 0 to 3m to
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quantify the spatial structure.

3. Results

3.1. Plot evolution and approximations of empirical structure

Considering the pattern of sub-network emergence as a function of
D, we expect that as time advances (iterations in the model), early
iterations will approximate the younger empirical plots and later in-
teractions of the model will approximate the older empirical plots (as is
evident in Fig. 2). Data for the three empirical plots are roughly
approximated by the null model for various spatial scales (values of
D), and the range of colors in Fig. 3 show the variation in plot evo-
lution, where light grey is the lattice and dark red is after 100 rounds of
replanting. It is apparent that simulations start far from the empirical
distributions and move towards them (i.e., A;,=0) with continued plant
death and replanting.

The largest deviations (Ag) are typically found at the distance that
separates rows of the lattice, which ranges from 1.3-1.6m. This suggests
that the empirical planting geometries are more clustered and over
dispersed at scales that the model cannot approximate. For example, the
empirical plot in Fig. 3a shows the model consistently unable to
approximate at D from 1.3-2m, and we see in the empirical data that
this likely emerges from irregularities within row structure. It is evident
from Fig. 3a that the deviation from the lattice emerges from missing
plants and clustered plants but within the row structure itself. While
simulations move plants away from the lattice structure randomly, the
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Fig. 2. Three 20 x 20M plots illustrating the position of all coffee plants. a. a
one-year old plot, b. a 4 year old plot, c. approximately a 15 year old plot, d.
simulated plot after 25 time units, e. simulated plot after 50 time units, f.
simulated plot after 100 time units.
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empirical data suggest that attempts to maintain semblance of row
structure results in plants being replanting within the row but in an over
dispersed or clustered fashion. Similar deviations are found between the
empirical plots and simulations in Fig. 3b and ¢ and are consistent prior
to the scale that join rows of the lattice, as denoted by the lite grey line
from the simulations. These deviations occur because the simulated
plots are more clustered at these smaller distances as shown by the ap-
proximations being below the zero line.

3.2. Modeling pathogen spread on spatial networks

Using time to reach 90% infection as a state variable, we illustrate its
response to the two variables of interest, “plot evolution time” which is
to say the time the null model is permitted to run, and the
D,y parameter which stipulates the threshold scale of transmission be-
tween plants. In Fig. 4, we summarize the general dynamics of the sys-
tem from a two-dimensional parameter sweep of, 1) the scale of the
pathogen transmission (D), 2) the time steps involved in the plot
evolution simulation, and 3) the state variable, time to epidemic (time to
reach 90% of the trees infected). A pathogen spreading across the
different plot geometries (represented by plot evolution time) reaches
epidemic status regardless of spatial geometries due to the fixed prob-
ability of outside infection of plants . At low transmission levels, it is
apparent that plants become more clustered as the plot geometry
evolves away from a lattice-like structure resulting in a small but
detectable difference in the time to epidemic. At large scales there are
few differences in the dynamics pathogen transmission due to almost the
entire plot being connected resulting instantaneously infection once a
colonizing infection reaches the plot.

It is intuitive that at very large transmission values, the pathogen will
move quickly to infect the whole plot and at smaller scales it will move
slowly, with little effect of the planting geometry. It is at intermediate
transmission levels that we find non-obvious interactions with the ge-
ometry of plants. For these intermediate scales of transmission we find
that lattice-like geometries are sensitive to small increases in trans-
mission and generate a drastic jump in pathogen dynamics where the
time to epidemic shows a pattern similar to that of a critical transition
(Fig. 4). As the plot becomes less lattice-like through stochastic plant
death and replanting this critical transition-like dynamic becomes less
pronounced. At the two extremes of plant geometries, we see critical
transition-like behavior for highly organized lattice-like arrangements
and a gradual change in time to epidemic for more unorganized pseu-
dorandom arrangements as the scale of pathogen transmission changes.
These results suggest that a more random-like pattern of the plants
buffers drastic changes in the overall dynamics of the pathogen.

Given the basic biology of most pathogens, it makes sense to think
about not only the dynamics within a plot but also how the regional
dynamics impact the system. Our model results suggest that the dy-
namics of the spatial host-pathogen system changes as the probability of
plants being infected from outside of the plot increases (Fig. 5). As the
regional infection probability increases, the interaction between the
spatial geometries of the plants and scale of pathogen transmission be-
comes less pronounced. The critical transition-like behavior observed
for relatively low regional infection probabilities is buffered as the
regional infection probability increases, suggesting that under
epidemic levels of a pathogen in the environment, the spatial
arrangement of plants on a given farm becomes less important for the
overall dynamics of the system.

4. Discussion

The management practices that create the spatial geometries of
plants in agroecosystems emerge from socioecological processes struc-
tured by a number of influences, from cultural practices to the economic
position of the farmer among other factors. Our approach here has been
to try and recreate the range of observed spatial planting geometries by



Z. Hajian-Forooshani and J. Vandermeer

Ecological Complexity 45 (2021) 100872

a.) b.)
20| o0 o0 o0 ®®0 0 o 20
P ) 00000..
ooooo.....oo..
15 e oeoe0 'oo..oo. 15
00 000 0 0g500 0 ©
5107............ ° 510
> © 008 44 o000 : >
© 00 000 00 g0 o °
50 000 00 068 ¢ o 00 ° 5
eemeo 00 00 s00 0o
Oiooooooooooo. [ L] 0
T T T T T
0 5 10 15 20
X(m)
60 —
40 0
20
As | As 50
-20 ’ 40
-100 —
40 — -60 —
'607\\\\\\\\\\\\\\\ T 11 T T 1T T 1T T 171 -80 —

TR TmOUNOTOLNS
CoooOovrrrreraaNNaNN

Dcrit

TR QN OBNe
CoooOo~r+rrrraaNNaN

N I N O O IO
TN ORNOT O~
OO0 O0OOT v ANNNNN

Deri Derit

Fig. 3. (a-c) The bottom rows shows A as a function of the critical distance at various stages in the evolution of plot structure using the null model. Shading goes
from light (the first stage in the simulation) to dark red (final step of simulation). Note that the dashed horizontal line corresponds to a 1:1 approximation of the
model to the empirical plots. Note that the y-axes differ for each of the sub-network comparison plots. The top row shows the empirical spatial distribution of of

plants that are compared to the simluations.

using a simple null model that strips away most of these real-world
complexities. We show that a simple process of stochastic plant death
and replanting within a small radius surrounding the dead plant can
recreate many of the features observed in the real distribution of

olwepid3 0] 8wl

Fig. 4. Shows the time until 90% infection across a range of scales of pathogen
transmission (D) as well as planting geometries generated by the plot evo-
lution model. Plots along the two axes are to illustrate the changing spatial
network structure along scale of spread and the changing panting geometry in
the plot evolution model. The regional infection probability is § = 0.1.

planting geometry. Furthermore, we suggest that the observed spatial
geometries in agroecosystem can be the result of different snapshots in
time of this dynamic process (Fig. 2). The comparisons between our
model and empirical data (Fig. 3) provides support for the idea that at
least for the sampled plots, the distributions of plants fall along different
times of this stochastic death and replanting process. For the most
lattice-like geometry of our empirical plot (Fig. 3a) the model passes
through the 1:1 approximation of our empirical data for a wide range of
spatial scales, suggesting that early stages in the simulations that move
away from the lattice approximate it better than later more unorganized
steps in the model. Furthermore, our simulations pass that same 1:1
approximation but at a much later time in the simulations for our plot of
intermediate lattice structure (Fig. 3b), while our plot farthest from the
lattice structure (Fig. 3c) is never well approximated by our model
across the full range of Dgy;.

The interaction of spatial structure and spatial transmission of the
pathogen suggests that they interact in a non-linear way. We observe
that there is a critical transition-like behavior that emerges from the
interaction of both the scale of pathogen transmission and the
underlying spatial pattern of the hosts. Relatively small changes in
pathogen transmission (Dgy) with lattice-like spatial geometry can
lead to a dramatic jump in dynamics of the pathogen (Fig. 4). Thus,
with lattice-like planting, the pathogen may be held at relatively low
densities, but a small change in management that may influence of scale
of pathogen spread (discussed below) can result in a devastating shift in
dynamics. The uniform nature of the lattice creates conditions such that,
once the threshold that connects rows is met, the whole plot becomes a
connected network on which the pathogen can spread across. As the
death and replanting process moves the spatial pattern away from a
lattice planting geometry, it disrupts row structures and subsequently
buffers the critical transition-like jump in pathogen dynamics. Thus it
might be expected that uniform lattice-like planting geometries are far
more sensitive to small changes in the scale of transmission of the
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Fig. 5. Shows how the pathogen dynamics change as the regional infection probability increases. The first figure is # = 0.1, then = 0.2 then f=0.5.

pathogen and even a relatively small amount of disruption from the
highly organized state can buffer against variability in pathogen spread.
As we move away from the lattice-like geometry, there may be higher
pathogen infection at low transmission due to some clusters of plants,
but that same geometry ultimately prevents the pathogen from
spreading through the whole area. Furthermore, as the regional infec-
tion probability increases the qualitative results of the model stay the
same however they are damped, and the critical transition-like behavior
is almost non-existent for high regional infection probabilities.

The results presented here have practical significance for the man-
agement of pathogens in agricultural systems, and in particular for the
system which inspired the study, the coffee leaf rust (CLR). The CLR
propagates both as a random propagule rain, spores arriving from the
regional pool of spores in the environment, and from plant to plant on a
local level through local wind current instabilities, branch-branch-
contact, and splashing (Vandermeer et al., 2018; Avelino et al., 2004).
Our model simulations mainly focused on the local level transmission
and how that interacts with the planting geometry of the agroecosystem.
There are a number of management factors within coffee agro-
ecosystems that have the potential to influence parameters associated
with the scale of the CLR transmission (Avelino et al., 2004). Shade is
one of the most commonly managed aspects of coffee agroecosystems
and its impact on the dynamics of the CLR has been contentious with
some reporting beneficial impacts of shade reducing CLR (Soto-Pinto et
al, 2002), and others reporting the opposite (Lopez-Bravo et al., 2012).
The classic recommendation has been to reduce shade to manage the
CLR, as the microclimatic implications of shade such as increasing hu-
midity could potentially be beneficial to the germination of spores
(Staver et al., 2001), but it is important to understand that the trans-
mission of spores and the viability of spores are two different forces that
need to be simultaneously managed. Bourot et al. (2016) provided evi-
dence that shade within coffee agroecosystems reduces the spread of
spores, thus providing support for the idea that shade trees within a
coffee plantation act as a wind breaks and prevent local dispersal. In
Avelino et al. (2012) the surrounding landscape of pasture land was
correlated with the CLR on individual farms. Shade is a single man-
agement factor that has the potential to influence the local scale of
pathogen transmission and probability of the pathogen establishing
infection. In the context of the analysis presented here, we suggest that
the amount of shade locally will modify D by creating wind breaks
which reduce the plant to plant (local) transmission.

While the question of what initially caused the outbreak of the CLR in
2013 in Latin America is still unclear, it set up the necessary conditions
to overhaul many coffee agroecosystems throughout the region. Due to
the prevalence of plant death from the epidemic itself, in conjunction

with the promotion of resistant varieties, most farmers throughout Latin
America are likely replanting whole farms now. This is particularly
important moment in the dynamics of the CLR in Latin America, as
following classical agronomical recommendations for combating the
CLR would mean a reduction in shade, thus potenitally increasing the
scale of CLR transmission locally, as well as replanting with resistant
varieties, will likely lead to planting geometries that are more lattice-
like when the whole system is replanted. Studies have found that this
process is already underway in parts of Central America (Valencia et al.,
2018), and as this study shows, the combination of shade reduction and
moving towards a uniform planting structure, increases the likelihood of
the critical transition-like epidemic dynamics observed in our model.
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