
Ecological Complexity 45 (2021) 100872

Available online 8 February 2021
1476-945X/© 2020 Elsevier B.V. All rights reserved.

Emergent spatial structure and pathogen epidemics: the influence of 
management and stochasticity in agroecosystems 
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A B S T R A C T   

Organisms susceptible to disease, from humans to crops, inevitably have spatial geometry that influence disease dynamics. Understanding how spatial structure 
emerges through time in ecological systems and how that structure influences disease dynamics is of practical importance for natural and human management 
systems. Here we use the perennial crop, coffee, Coffea arabica, along with its pathogen, the coffee leaf rust, Hemileia vastatrix, as a model system to understand how 
spatial structure is created in agroecosystems and its subsequent influence on the dynamics of the system. Here, we create a simple null model of the socio-ecological 
process of death and stochastic replanting of coffee plants on a plot. We then use spatial networks to quantify the spatial structures and make comparisons of our 
stochastic null model to empirically observed spatial distributions of coffee. We then present a simple model of pathogen spread on spatial networks across a range of 
spatial geometries emerging from our null model and show how both local and regional management of agroecosystems interact with space and time to alter disease 
dynamics. Our results suggest that our null model of evolving spatial structure can capture many critical features of how the spatial arrangement of plants changes 
through time in coffee agroecosystems. Additionally, we find small changes in management factors that can influence the scale of pathogen transmission, such as 
shade tree removal, and result in a rapid transition to epidemics with lattice-like spatial arrangements but not with irregular planting geometries. The results 
presented here may have practical implications for farmers in Latin America who are in the process of replanting and overhauling management of their coffee farms 
in response to a coffee leaf rust epidemic in 2013. We suggest that shade reduction in conjunction with more lattice-like planting schemes may result in coffee being 
more prone to epidemic-like dynamics of the coffee leaf rust in the future.   

1. Introduction 

Organisms susceptible to disease, from humans to crops, inevitably 
have spatial geometry that influences disease dynamics. While it may be 
argued that spatial components of disease-host systems in mixed envi
ronments are less important (e.g. plankton), it is certainly true that most 
plants and animals have non-trivial spatial structure, whether exoge
nously imposed by abiotic environment (Gratzer et al., 2004) or 
emerging endogenously from ecological dynamics (Li et al., 2016). It has 
been a standard epidemiological question to ask how disease propagates 
through space (Keeling et al., 1999; Park et al., 2002; Balcan et al., 2009; 
Craft et al., 2010), but less obvious is how the space is constructed in the 
first place and how that space influences subsequent disease dynamics. 
At one extreme, a feedback likely exists between host and disease, where 
hosts may alter their spatial distribution in response to the presence of 
disease, such systems may include humans (Levine & Levine, 1994). On 
the other hand, there exist many hosts-pathogen systems where hosts do 
not alter their spatial distribution over the course of pathogen dynamics, 
such as plants. 

The construction of spatial structure becomes complicated when 

considering human managed systems such as agroecosystems. The 
spatial arrangement of crops varies across agroecosystems due to a suite 
of interacting cultural, social, economic, and ecological factors. Here we 
focus our attention on perennial agroecosystems where plant mortality 
and replanting can occur iteratively, generating spatial distribution with 
a signature of the prior spatial arrangements, continuously inherited 
from one harvest to the next. This contrasts with annual systems which 
will be effectively fixed during the course of pathogen spread, due to the 
seasonal harvest/destruction and replanting of all plants. In perennial 
systems, the spatial arrangement is a consequence of farmer decisions 
about initial planting combined with continual replanting in spaces 
where individual plants had become damaged or die. The initial planting 
frequently begins with a lattice-like structure consisting of ordered rows 
and semi-constant interplant distances, but evolves over time with the 
dynamics of replanting. Replanting can be understood as a response to 
thinning, from a variety of causes, including the pathogens themselves. 
Consequently, the pattern of disease occurrence in agroecosystems is 
conditioned first by the structure of the plant distributions (effectively a 
socioecological process) and second by the dynamics of transmission 
(mainly an ecological process). 
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The coffee agroecosystem and its most notorious pathogen, the cof
fee leaf rust, Hemileia vastatrix, provides a useful model system to 
interrogate the interaction of spatial pattern construction and its sub
sequent influence on pathogen dynamics. Coffee (both Coffea arabica 
and Coffea robusta) is a long-lived plant subject to a variety of man
agement styles from intensive latticed monocultures to polycultures 
beneath the shade of forests (Moguel & Toledo, 1999). Transmission of 
the pathogen operates at two distinct spatial scales, locally, from coffee 
bush to coffee bush, and regionally, from farm to farm (Vandermeer 
et al., 2015; Vandermeer and Rohani, 2014). While regional pathogen 
dynamics is clearly important (Avelino et al., 2012), here we focus on 
the local dynamics in which the spatial distribution of coffee plants is 
evidently important to local transmission (Vandermeer et al., 2018). At 
this local scale, transmission likely results from a number of interacting 
factors, for example from plants being so densely planted that their 
leaves touch, or spore dispersal via air turbulence to neighboring plants, 
all of which are, in practice, influenced by management decisions such 
as how many and what kind of shade trees are incorporated in the 
system. 

Prior work on coffee and the coffee leaf rust has employed a network 
approach to understanding spatial dynamics (Vandermeer et al., 2018), 
and here we build on that work. By focusing on local transmission dy
namics, an intuitive approach for modeling pathogen dynamics is 
evident. We presume there exists some critical distance (Dcrit) for which 
the pathogen is able to spread from plant to plant. We conceptualize the 
distribution of plants and the implied spread of the pathogen, as a 
network where the nodes consist of the plants and the edges are defined 
by the Dcrit. Fig. 1 illustrates the approach on three 20 × 20m coffee plots 
from a coffee farm in southern Mexico and shows the clear interaction of 
the scale of transmission (Dcrit) and the underlying spatial arrangement 
of coffee plants. The sub-networks within a given plot show us the extent 
to which the pathogen could theoretically spread if any member of the 
sub-network were infected. In one case (Vandermeer et al., 2018) the 
emergent spatial sub-networks predict observed pathogen dynamics, 
showing that plant to plant pathogen transmission is more likely within 
a sub-network than between subnetworks, suggesting a utility in 

employing the subnetwork framework to more generally study pathogen 
dynamics. 

Our proposed time-dependent process of spatial reorganization of 
plants via death and replanting within a plot is in part inspired by ob
servations from the field with areas under cultivation for different pe
riods of time. The three plots in Fig. 1 correspond to a one-year-old plot 
(Sandino), a four-year-old plot (Che), and a fifteen-year-old plot (Leon). 
Note how the youngest plot has a lattice-like spatial pattern and the 
distributions become more disorganized as the plots age. Exploring the 
mortality/replanting mechanism, we propose a null-model to simulate 
the socio-ecological processes of plant death and replanting. Initiating a 
perfect lattice arrangement of plants, we simulate stochastic death and 
replanting within a fixed radius of the plant’s prior position. The 
emergent spatial patterns are then compared to empirical spatial dis
tributions (Fig. 1), and the range of spatial patterns from the null-model 
are used simulate pathogen spread to understand how the scale of 
pathogen transmission (Dcrit) interacts with the underlying spatial 
pattern. 

2. Methods 

2.1. Model of Spread on Spatial Networks 

Given that the intensity of pathogen infection is empirically corre
lated with the sub-network structure (Vandermeer et al., 2018), we 
stipulate Dcrit, the maximum distance the pathogen can spread to 
neighboring plants (the spatial scale of transmission) and create a 
community of sub-networks for which dynamics are simulated (see 
Fig. 1, which illustrates how Dcrit creates sub-networks). Given the co
ordinates of each plant, as they emerge from the simulations from the 
plot spatial evolution, a spatial scale of pathogen transmission is stipu
lated via particular values of Dcrit which in turn creates a collection of 
spatial sub-networks (frequently referred to as “connected compo
nents”), called C, 

C = {C1, C2, C3…Cm}

Fig. 1. The spatial distribution of coffee plants on three 20 × 20m 
plots in southern Mexico and the subsequent spatial networks that 
emerge from different spatial scales of pathogen transmission (Dcrit), 
illustrating how the underlying spatial distribution of plots changes 
through time where Sandino is a one-year-old plot, Che is a four- 
year-old plot, and Leon is a 15 year-old plot. The spatial pattern 
moves from highly organzed lattice-like (1 year old plot - Sandino) 
to disorganized spatial structure (15 year old plot - Leon). We 
suggest that this gradient of organization emerges from the sto
chastic mortality/replanting phenomenon.   
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Where m is the number of sub-networks in the system. Note that each 
subnetwork in C contains a unique collection of plants corresponding to 
a given scale of pathogen transmission Dcrit . For example, from a 
collection of n plants we might obtain, 

C =
{

{p1, p2},
{

p3,p4, p5
}

, {p6}, …{pa, pb, pc, …pn}
}

for a particular Dcrit. Note that the indices for each plant, p, are unique 
across all subsets within C, and come from the set P, 

P = {p1, p2, p3…pn}

Where n represents the total number of plants in the system. 
In the model, we keep track of all the infected plants with the set I, 

which is initialized as an empty set. 

I = {}

For each time step in the model we iterate through all nodes (plants) 
in P, and there is a fixed probability, β, that a given plant becomes 
infected. If Pi (the ithplant in P) becomes infected via 

piλ(β)

Where 

λ(β)= {
0, β ≥ U(0, 1)

1, β < U(0, 1)

then the whole cluster, Cj, which is a subset of C and contains pi, is join in 
union with I. This is done for all p’s where λ(β) = 1 (i.e. when there is a 
successful infection). 

I(t + 1) = I(t) ∪ Cj 

Conceptually, each sub-network represents the extent to which the 
pathogen instantaneously spreads from a single infected plant to all 
plants in that sub-network. We use the inevitability of the spread within 
a sub-network as a simplifying assumption and assume that all plants 
that fall within the sub-network denoted by the scale of the spread, Dcrit , 
become infected instantaneously. This abstraction simplifies the system 
and allows for us to focus on the interplay of pathogen dynamics and the 
spatial geometry. With the assumption of instantaneous spread within a 
sub-network, our model only has one parameter associated with the 
epidemic process, the probability of a random plant in the plot being 
infected β, which can be thought of as being a measure of the regional 
pathogen propagule density. 

When simulating pathogen spread, we allowed simulations to pro
ceed until 90% of the plants became infected to quantify the time to 
epidemic of the pathogen on the spatial geometries arising from the null 
model. To account for the inherent stochasticity of the null model and 
the spreading process we replicated time step snapshots from the null 
model five times with subsequent ten replicate simulations of the 
spreading process for the Dcrit ranging from 0 to 3. We then used the 
mean time until 90% infected hosts. 

2.2. Null model of evolving plant spatial geometry 

Despite the fact that coffee bushes are often planted with the inten
tion of a strict lattice structure (planted in rows), the real distribution of 
coffee plants on a farm rarely reflects perfectly that initial intent. As time 
goes by, some coffee bushes die and usually are replanted, but rarely in 
precisely the same location, leading eventually to a loss of the initial 
planting pattern. To the farmer these small deviations may not seem 
consequential for the dynamics of pathogens and pests, yet they can 
accumulate significantly to change the basic spatial pattern (e.g., Fig. 1). 
Although a host of complicated local factors are involved in planting 
decisions, we initially approach the problem with a null model of 
planting spatial evolution. 

We begin with plants arranged in a lattice bound within a x and y 
coordinate range and modify the structure over time. The simple model 

simulates stochastic death and replanting within an area of relatively 
proximity of the prior plant position. The coordinates change over time 
according to, 

xi(t + 1) = xi(t) + ξ(ϕ)𝒟(α)

yi(t + 1) = yi(t) + ξ(ϕ)𝒟(α)

Where 

ξ(ϕ)= {
0, ϕ ≥ U(0, 1)

1, ϕ < U(0, 1)

and xi(t) and yi(t) represent the two coordinates corresponding the po
sition of plant i at time t. ξ(ϕ) is the death/replanting rate and ϕ is the 
mortality probability for plant i. 𝒰(a, b) is a uniformly distributed 
random variable with range (0,1) and D(α) is a random variable drawn 
from a uniform distribution with mean α, that stipulates the “replanting 
radius” of the new plant. For all simulations, ϕ = 0.05 and α = 0.25. The 
simulations were run iteratively for each plant in the plot 100 times. 

To understand how our null model approximates the planting ar
rangements of real agroecosystems, we use an empirical data set of three 
20 × 20 m plots on an organic coffee farm in the Soconusco region of 
Chiapas, Mexico. Each of the three plots have different ages (time since 
the area had all plants removed and replanted) corresponding to 
approximately one year, four years and fifteen years (Fig. 1). They 
represent what we propose to be the progression of spatial structure 
across the lifecycle of an area in cultivation. Given these three 20 × 20m 
plots with differing numbers of plants, for each comparison, the simu
lated evolution of spatial structure was done with the same planting 
density as the real plot it was intended to simulate. Our empirical plots 
have 177, 147 and 140 plants. To approximate the lattice-like initial 
conditions of each of these plots we used 12 × 15, 15 × 10, and 14 × 10 
planting arrangements for the simulated plots. By controlling for the 
planting density, our null model of plot spatial evolution allows us to 
make comparisons with our empirical 20 × 20m plots and understand to 
what extent our null model approximates the empirical spatial geometry 
across the ontogeny of the plots through time. 

2.3. Quantification of spatial structure 

Similar to modeling the spread of the pathogen in space as described 
in the previous section, to quantify the spatial pattern of a plot we focus 
again on the sub-networks that emerge from imposing Dcrit. By looking at 
a range of Dcrit for a given spatial pattern we quantify how the number of 
sub-networks changes across spatial scales and can subsequently make 
comparisons to our empirical spatial patterns. Fig. 1 illustrates how 
different spatial patterns give rise to varying numbers of sub-networks 
for a single Dcrit. The variability in the number of sub-networks re
flects the clustering and over-dispersion and various spatial scales 
within a particular plot. The number of sub-networks not only uses the 
same tools for modeling pathogen spread, but also provides biologically 
relevant information for the dynamics of the pathogen that the use of a 
traditional dispersal kernel does not. For example, a given distribution 
of sub-networks for a Dcrit gives us the minimum number of outside in
fections needed to infect a total area in cultivation. 

To understand the extent to which the simulations approximate the 
empirical patterns, we use Δs, or the difference in the number of sub- 
networks in the empirical spatial patterns minus the number of sub- 
networks in the simulated spatial patterns. For a perfect spatial 
approximation in terms of number of subgraphs we expect a Δs = 0. 
Importantly, we are interested in Δs across a relatively wide range of Dcrit 
to quantify the spatial pattern, although we are constrained at the low 
end where no plants are connected and the high end where the whole 
plot is connected. For each simulation, we extracted the pattern at the 
first step and subsequently every 10 steps through 100 rounds of 
replanting. For our analyses, we used Dcrit that ranges from 0 to 3m to 
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quantify the spatial structure. 

3. Results 

3.1. Plot evolution and approximations of empirical structure 

Considering the pattern of sub-network emergence as a function of 
Dcrit, we expect that as time advances (iterations in the model), early 
iterations will approximate the younger empirical plots and later in
teractions of the model will approximate the older empirical plots (as is 
evident in Fig. 2). Data for the three empirical plots are roughly 
approximated by the null model for various spatial scales (values of 
Dcrit), and the range of colors in Fig. 3 show the variation in plot evo
lution, where light grey is the lattice and dark red is after 100 rounds of 
replanting. It is apparent that simulations start far from the empirical 
distributions and move towards them (i.e., Δs,=0) with continued plant 
death and replanting. 

The largest deviations (Δs) are typically found at the distance that 
separates rows of the lattice, which ranges from 1.3-1.6m. This suggests 
that the empirical planting geometries are more clustered and over 
dispersed at scales that the model cannot approximate. For example, the 
empirical plot in Fig. 3a shows the model consistently unable to 
approximate at Dcrit from 1.3-2m, and we see in the empirical data that 
this likely emerges from irregularities within row structure. It is evident 
from Fig. 3a that the deviation from the lattice emerges from missing 
plants and clustered plants but within the row structure itself. While 
simulations move plants away from the lattice structure randomly, the 

empirical data suggest that attempts to maintain semblance of row 
structure results in plants being replanting within the row but in an over 
dispersed or clustered fashion. Similar deviations are found between the 
empirical plots and simulations in Fig. 3b and c and are consistent prior 
to the scale that join rows of the lattice, as denoted by the lite grey line 
from the simulations. These deviations occur because the simulated 
plots are more clustered at these smaller distances as shown by the ap
proximations being below the zero line. 

3.2. Modeling pathogen spread on spatial networks 

Using time to reach 90% infection as a state variable, we illustrate its 
response to the two variables of interest, “plot evolution time” which is 
to say the time the null model is permitted to run, and the 
Dcrit parameter which stipulates the threshold scale of transmission be
tween plants. In Fig. 4, we summarize the general dynamics of the sys
tem from a two-dimensional parameter sweep of, 1) the scale of the 
pathogen transmission (Dcrit), 2) the time steps involved in the plot 
evolution simulation, and 3) the state variable, time to epidemic (time to 
reach 90% of the trees infected). A pathogen spreading across the 
different plot geometries (represented by plot evolution time) reaches 
epidemic status regardless of spatial geometries due to the fixed prob
ability of outside infection of plants β. At low transmission levels, it is 
apparent that plants become more clustered as the plot geometry 
evolves away from a lattice-like structure resulting in a small but 
detectable difference in the time to epidemic. At large scales there are 
few differences in the dynamics pathogen transmission due to almost the 
entire plot being connected resulting instantaneously infection once a 
colonizing infection reaches the plot. 

It is intuitive that at very large transmission values, the pathogen will 
move quickly to infect the whole plot and at smaller scales it will move 
slowly, with little effect of the planting geometry. It is at intermediate 
transmission levels that we find non-obvious interactions with the ge
ometry of plants. For these intermediate scales of transmission we find 
that lattice-like geometries are sensitive to small increases in trans
mission and generate a drastic jump in pathogen dynamics where the 
time to epidemic shows a pattern similar to that of a critical transition 
(Fig. 4). As the plot becomes less lattice-like through stochastic plant 
death and replanting this critical transition-like dynamic becomes less 
pronounced. At the two extremes of plant geometries, we see critical 
transition-like behavior for highly organized lattice-like arrangements 
and a gradual change in time to epidemic for more unorganized pseu
dorandom arrangements as the scale of pathogen transmission changes. 
These results suggest that a more random-like pattern of the plants 
buffers drastic changes in the overall dynamics of the pathogen. 

Given the basic biology of most pathogens, it makes sense to think 
about not only the dynamics within a plot but also how the regional 
dynamics impact the system. Our model results suggest that the dy
namics of the spatial host-pathogen system changes as the probability of 
plants being infected from outside of the plot increases (Fig. 5). As the 
regional infection probability increases, the interaction between the 
spatial geometries of the plants and scale of pathogen transmission be
comes less pronounced. The critical transition-like behavior observed 
for relatively low regional infection probabilities is buffered as the 
regional infection probability increases, suggesting that under 
epidemic levels of a pathogen in the environment, the spatial 
arrangement of plants on a given farm becomes less important for the 
overall dynamics of the system. 

4. Discussion 

The management practices that create the spatial geometries of 
plants in agroecosystems emerge from socioecological processes struc
tured by a number of influences, from cultural practices to the economic 
position of the farmer among other factors. Our approach here has been 
to try and recreate the range of observed spatial planting geometries by 

Fig. 2. Three 20 × 20M plots illustrating the position of all coffee plants. a. a 
one-year old plot, b. a 4 year old plot, c. approximately a 15 year old plot, d. 
simulated plot after 25 time units, e. simulated plot after 50 time units, f. 
simulated plot after 100 time units. 
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using a simple null model that strips away most of these real-world 
complexities. We show that a simple process of stochastic plant death 
and replanting within a small radius surrounding the dead plant can 
recreate many of the features observed in the real distribution of 

planting geometry. Furthermore, we suggest that the observed spatial 
geometries in agroecosystem can be the result of different snapshots in 
time of this dynamic process (Fig. 2). The comparisons between our 
model and empirical data (Fig. 3) provides support for the idea that at 
least for the sampled plots, the distributions of plants fall along different 
times of this stochastic death and replanting process. For the most 
lattice-like geometry of our empirical plot (Fig. 3a) the model passes 
through the 1:1 approximation of our empirical data for a wide range of 
spatial scales, suggesting that early stages in the simulations that move 
away from the lattice approximate it better than later more unorganized 
steps in the model. Furthermore, our simulations pass that same 1:1 
approximation but at a much later time in the simulations for our plot of 
intermediate lattice structure (Fig. 3b), while our plot farthest from the 
lattice structure (Fig. 3c) is never well approximated by our model 
across the full range of Dcrit. 

The interaction of spatial structure and spatial transmission of the 
pathogen suggests that they interact in a non-linear way. We observe 
that there is a critical transition-like behavior that emerges from the 
interaction of both the scale of pathogen transmission and the 
underlying spatial pattern of the hosts. Relatively small changes in 
pathogen transmission (Dcrit) with lattice-like spatial geometry can 
lead to a dramatic jump in dynamics of the pathogen (Fig. 4). Thus, 
with lattice-like planting, the pathogen may be held at relatively low 
densities, but a small change in management that may influence of scale 
of pathogen spread (discussed below) can result in a devastating shift in 
dynamics. The uniform nature of the lattice creates conditions such that, 
once the threshold that connects rows is met, the whole plot becomes a 
connected network on which the pathogen can spread across. As the 
death and replanting process moves the spatial pattern away from a 
lattice planting geometry, it disrupts row structures and subsequently 
buffers the critical transition-like jump in pathogen dynamics. Thus it 
might be expected that uniform lattice-like planting geometries are far 
more sensitive to small changes in the scale of transmission of the 

Fig. 3. (a-c) The bottom rows shows Δs as a function of the critical distance at various stages in the evolution of plot structure using the null model. Shading goes 
from light (the first stage in the simulation) to dark red (final step of simulation). Note that the dashed horizontal line corresponds to a 1:1 approximation of the 
model to the empirical plots. Note that the y-axes differ for each of the sub-network comparison plots. The top row shows the empirical spatial distribution of of 
plants that are compared to the simluations. 

Fig. 4. Shows the time until 90% infection across a range of scales of pathogen 
transmission (Dcrit) as well as planting geometries generated by the plot evo
lution model. Plots along the two axes are to illustrate the changing spatial 
network structure along scale of spread and the changing panting geometry in 
the plot evolution model. The regional infection probability is β = 0.1. 
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pathogen and even a relatively small amount of disruption from the 
highly organized state can buffer against variability in pathogen spread. 
As we move away from the lattice-like geometry, there may be higher 
pathogen infection at low transmission due to some clusters of plants, 
but that same geometry ultimately prevents the pathogen from 
spreading through the whole area. Furthermore, as the regional infec
tion probability increases the qualitative results of the model stay the 
same however they are damped, and the critical transition-like behavior 
is almost non-existent for high regional infection probabilities. 

The results presented here have practical significance for the man
agement of pathogens in agricultural systems, and in particular for the 
system which inspired the study, the coffee leaf rust (CLR). The CLR 
propagates both as a random propagule rain, spores arriving from the 
regional pool of spores in the environment, and from plant to plant on a 
local level through local wind current instabilities, branch-branch- 
contact, and splashing (Vandermeer et al., 2018; Avelino et al., 2004). 
Our model simulations mainly focused on the local level transmission 
and how that interacts with the planting geometry of the agroecosystem. 
There are a number of management factors within coffee agro
ecosystems that have the potential to influence parameters associated 
with the scale of the CLR transmission (Avelino et al., 2004). Shade is 
one of the most commonly managed aspects of coffee agroecosystems 
and its impact on the dynamics of the CLR has been contentious with 
some reporting beneficial impacts of shade reducing CLR (Soto-Pinto et 
al, 2002), and others reporting the opposite (Lopez-Bravo et al., 2012). 
The classic recommendation has been to reduce shade to manage the 
CLR, as the microclimatic implications of shade such as increasing hu
midity could potentially be beneficial to the germination of spores 
(Staver et al., 2001), but it is important to understand that the trans
mission of spores and the viability of spores are two different forces that 
need to be simultaneously managed. Bourot et al. (2016) provided evi
dence that shade within coffee agroecosystems reduces the spread of 
spores, thus providing support for the idea that shade trees within a 
coffee plantation act as a wind breaks and prevent local dispersal. In 
Avelino et al. (2012) the surrounding landscape of pasture land was 
correlated with the CLR on individual farms. Shade is a single man
agement factor that has the potential to influence the local scale of 
pathogen transmission and probability of the pathogen establishing 
infection. In the context of the analysis presented here, we suggest that 
the amount of shade locally will modify Dcrit by creating wind breaks 
which reduce the plant to plant (local) transmission. 

While the question of what initially caused the outbreak of the CLR in 
2013 in Latin America is still unclear, it set up the necessary conditions 
to overhaul many coffee agroecosystems throughout the region. Due to 
the prevalence of plant death from the epidemic itself, in conjunction 

with the promotion of resistant varieties, most farmers throughout Latin 
America are likely replanting whole farms now. This is particularly 
important moment in the dynamics of the CLR in Latin America, as 
following classical agronomical recommendations for combating the 
CLR would mean a reduction in shade, thus potenitally increasing the 
scale of CLR transmission locally, as well as replanting with resistant 
varieties, will likely lead to planting geometries that are more lattice- 
like when the whole system is replanted. Studies have found that this 
process is already underway in parts of Central America (Valencia et al., 
2018), and as this study shows, the combination of shade reduction and 
moving towards a uniform planting structure, increases the likelihood of 
the critical transition-like epidemic dynamics observed in our model. 
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