

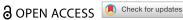
Mitochondrial DNA Part B

Resources

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tmdn20

The complete mitochondrial genome of a species of *Cirrhipathes* de Blainville, 1830 from Kaua'i, Hawai'i (Hexacorallia: Antipatharia)

Leah E. K. Shizuru, Anthony D. Montgomery, Daniel Wagner, Evan B. Freel & Robert J. Toonen


To cite this article: Leah E. K. Shizuru, Anthony D. Montgomery, Daniel Wagner, Evan B. Freel & Robert J. Toonen (2024) The complete mitochondrial genome of a species of *Cirrhipathes* de Blainville, 1830 from Kaua'i, Hawai'i (Hexacorallia: Antipatharia), Mitochondrial DNA Part B, 9:2, 223-226, DOI: 10.1080/23802359.2024.2310130

To link to this article: https://doi.org/10.1080/23802359.2024.2310130

© 2024 The Author(s). Published by Infor UK Limited, trading as Taylor & Francis Group.	ma View supplementary material 🗹
Published online: 01 Feb 2024.	Submit your article to this journal 🗷
Article views: 831	View related articles 🗹
View Crossmark data 🗗	Citing articles: 1 View citing articles

MITOGENOME REPORT

The complete mitochondrial genome of a species of Cirrhipathes de Blainville, 1830 from Kaua'i, Hawai'i (Hexacorallia: Antipatharia)

Leah E. K. Shizuru^a , Anthony D. Montgomery^b , Daniel Wagner^c , Evan B. Freel^a and Robert J. Toonen^a (D)

^aHawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA; ^bUS Fish and Wildlife Service, Pacific Fish and Wildlife Office, Honolulu, HI, USA; COcean Exploration Trust, Honolulu, HI, USA

ABSTRACT

This study reports the first mitogenome from the antipatharian (black coral) genus Cirrhipathes (GenBank accession number ON653414). The 20,452 bp mitochondrial genome of Cirrhipathes cf. anguina LS-2022 consists of 13 protein-coding genes, two rRNA genes, and two tRNA genes (trnM and trnW). The mitogenome is typical of other antipatharian families, including an A + T biased (64.1%) base composition and cytochrome c oxidase subunit I (COX1) intron with embedded homing endonuclease gene (HEG). A phylogenetic tree based on complete mitogenome sequences of currently available antipatharians indicates Cirrhipathes cf. anguina LS-2022 is sister and closely related to Stichopathes sp. SCBUCN-8849. However, it seems unlikely that intergeneric taxa share 99.97% similarity across their complete mitogenomes, raising questions about the current taxonomy of this group. This study highlights the need for additional vouchered antipatharian species to be sequenced so phylogenetic relationships can be compared with accepted taxonomy.

ARTICLE HISTORY

Received 23 January 2023 Accepted 20 January 2024

KEYWORDS

Black coral; Hawaii; mesophotic coral ecosystem; Stichopathes; **Antipathes**

Introduction

Antipatharians, commonly known as black corals, are globally distributed, slow-growing hexacorals (Cnidaria, Anthozoa) that occupy a broad bathymetric range (Wagner et al. 2012; Barrett et al. 2020). This morphologically variable order consists of seven families, 49 genera, and 301 species (Molodtsova and Opresko 2023). Though black corals are found as shallow as 2 m to over 8600 m, more than 75% of species occur below 50 m (Barrett et al. 2020). This predominance presents a logistic challenge to studying this order because most species are located at depths below the limit of conventional Self-Contained Underwater Breathing Apparatus (SCUBA) diving (Wagner 2015). Limited ability to observe living specimens and access to samples leaves these organisms' basic biology and ecology largely unknown. Although they are less common on shallow-water reefs, antipatharians are essential ecosystem engineers who create habitat for many species of vertebrates and invertebrates in deeper waters (Wagner et al. 2012). In Hawai'i, black corals are ecologically, culturally, and commercially important, and there has been an active commercial fishery for these corals since 1958 (Grigg 2001) for use in the manufacture of precious coral jewelry. There are three species in the fishery, but current estimates of species composition at harvest depths in the 'Au'au Channel (where most harvest occurs) are roughly

93% Antipathes griggi and 7% Antipathes grandis (Wagner et al. 2017). Black corals are the official gemstone of Hawai'i and support a \$30 million statewide precious coral industry (Grigg 2004), which makes them the focus of considerable management interest for continued sustainable harvest. This mitogenome is the first for this genus and any Cirrhipathes cf. anguina LS-2022, thus establishing an essential foundation for future studies.

Materials

The antipatharian sample used in this study (Figure 1) was collected by hand during a rebreather dive at Amber's Arches (21.887, -159.602) at 22.86 m off of the island of Kaua'i and immediately preserved in 95% ethanol. This specimen was deposited at the Bernice Pauahi Bishop Museum (Holly Bollick, holly@bishopmuseum.org, catalogue number: D2772, accession number: 2022.074).

Methods

We sequenced the complete mitochondrial genome of Cirrhipathes cf. anguina LS-2022 (ON653414) using a restriction-site associated DNA sequencing method (ezRAD, Toonen et al. 2013) on the Illumina platform, an approach

CONTACT Leah E. K. Shizuru 🔯 Ishizuru@hawaii.edu 🖻 Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA Supplemental data for this article can be accessed online at https://doi.org/10.1080/23802359.2024.2310130.

Figure 1. Reference image of Cirrhipathes cf. anguina LS-2022 taken by Daniel Wagner. Colonies of this wire coral are unbranched and can grow to 2 m or

documented to recover complete mitogenomes for a variety of coral species (Forsman et al. 2017). Sample identification was based on the original species description (Dana 1846) and identification following Wagner et al. (2010) and Wagner (2015) using gross colony morphology, colony branching pattern, polyp structure, skeletal spine morphology, and scanning electron microscopy of skeletal features. Genomic DNA was extracted using the E-Z 96 Tissue DNA Kit (Omega Bio-Tek, Norcross, GA) with elution in high-performance liquid chromatography (HPLC) grade water. Extracted gDNA was quantified using the Biotium AccuClear Ultra High Sensitivity dsDNA kit. ezRAD libraries were created following the protocol of Knapp et al. (2016). We used the restriction enzyme DpnII (New England Biolabs, Ipswich, MA), and gDNA was size-selected using PCRClean DX (Aline Biosciences, Woburn, MA) beads. As per manufacturer recommendations, DNA fragments of 300-600 bp were prepared for sequencing using the Illumina TruSeq[®] Nano DNA Library Preparation kit. After passing quality control checks, libraries were sequenced on an Illumina[®] MiSeq (V3 2 \times 300 bp PE). Trim Galore! (Krueger 2015) was used to apply quality filters and trim Illumina adapters from sequence reads. Low-quality base calls (Phred score of <20) were trimmed from the ends before the removal of the first 13 bp of the standard Illumina paired-end adapters ('AGATCGGAAGAGC'). The SPAdes (Bankevich et al. 2012) genome assembler generated a 20,518 bp contig. The contig was circularized, and overlapping ends were trimmed in Geneious Prime 2022.1.1 (https://www.geneioius.com). Protein coding regions were identified via the live annotate feature in Geneious Prime 2022.1.1 (Figure 2) based on published antipatharian mitogenomes from Stichopathes sp. SCBUCN-8849 (Asorey et al. 2021), Stichopathes sp. SCBUCN-8850 (Asorey et al. 2021), and an updated Stichopathes luetkeni JX023266, misidentified initially as Cirrhipathes lutkeni (Kayal et al. 2013). Gene annotations were performed using MITOS2 (Bernt et al. 2013). This new mitogenome was then compared to complete antipatharian mitochondrial genomes that were >87% identical to C. cf. anguina LS-2022 (ON653414) to determine the phylogenetic relationships with closely related taxa except Zoanthus sansibaricus (Chi and Johansen 2017) that was chosen as a known outgroup to

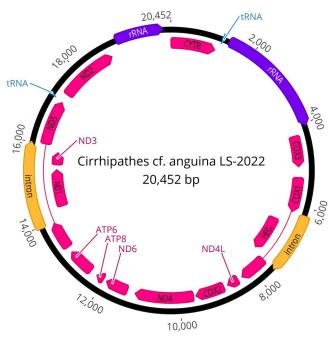


Figure 2. Map of the complete mitochondrial genome of Cirrhipathes cf. anguina LS-2022, drawn by Geneious Prime version 2022.2.2 (https://www.geneious.com).

these species (79.53% similar) (Figure 3). Annotated regions were first extracted from each mitogenome, aligned separately using default settings in the MAFT v7 plugin (Katoh and Standley 2013) for Geneious Prime, and then each annotated region was concatenated into a contiguous sequence following Barrett et al. (2020). The relationship among antipatharians was inferred via maximum likelihood, using IQTREE v. 2.0.3 (Nguyen et al. 2015) under the best-fit substitution model, determined by ModelFinder (Kalyaanamoorthy et al. 2017) for 1000 ultrafast bootstraps (Hoang et al. 2018), as well as the Shimodaira-Hasegawa-like approximate likelihood ratio test (Guindon et al. 2010).

Results

The mitogenome of Cirrhipathes cf. anguina LS-2022 is 20,452 bp with a base composition of A (29.0%), T (35.9%), C (15.2%), and G (19.95%). Like other Hexacorallia, there are 13 protein-coding genes, two rRNA genes (rnl and rns), and two tRNA genes (trnM and trnW) plus a cytochrome c oxidase subunit I (COX1) intron with embedded homing endonuclease gene (HEG), as found in other antipatharian families (Barrett et al. 2020, Figure 2). Read depth ranged from 3 to 46, averaging 22 across the mitogenome (Supp. Mat.). The resulting phylogenetic tree places Cirrhipathes cf. anguina LS-2022 as sister to the closest BLAST hit Stichopathes sp. SCBUCN-8849 (Barrett et al. 2020) in our analysis (Figure 3).

Discussion

Cirrhipathes cf. anguina occurs throughout the Indo-West Pacific, including the Main and Northwestern Hawaiian Islands at depths of 9-150 m (Wagner 2015). However, initial descriptions are vague, and the type specimen of C. angina is

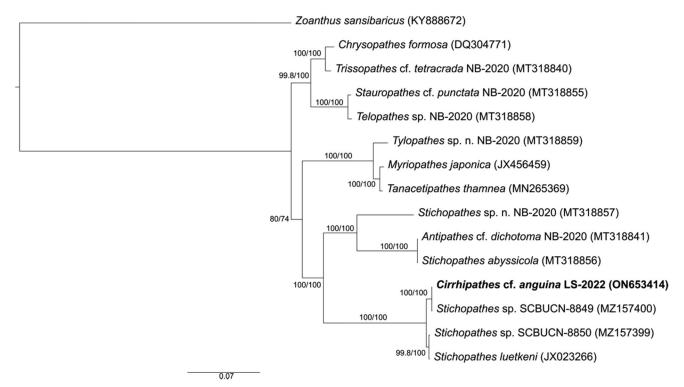


Figure 3. Phylogenetic reconstruction of 13 most closely related antipatharian taxa for which complete mitogenomes are currently available (>87% identical to Cirrhipathes cf. anguina LS-2022). Branch lengths are relative to genetic divergence, and values on each node represent SH-aLRT/ultrafast bootstrap values. Species used include the following: Stichopathes sp. SCBUCN-8849 (Asorey et al. 2021), Stichopathes sp. SCBUCN-8850 (Asorey et al. 2021), Trissopathes cf. tetracrada NB-2020 (Barrett et al. 2020), Stichopathes sp. n. NB-2020 (Barrett et al. 2020), Tylopathes sp. n. NB-2020 (Barrett et al. 2020), Antipathes cf. dichotoma NB-2020 (Barrett et al. 2020), Stichopathes abyssicola (Barrett et al. 2020), Telopathes sp. NB-2020 (Barrett et al. 2020), Stauropathes cf. punctata NB-2020 (Barrett et al. 2020), Chrysopathes formosa (Brugler and France 2007), Tanacetipathes thamnea (Figueroa et al. 2019), Stichopathes luetkeni (Kayal et al. 2013), and Myriopathes japonica.

lost; therefore, comparisons between C. anguina and C. cf. anguina cannot be made until a neotype is created (Wagner 2015). This species is the first from the genus Cirrhipathes to be sequenced to date, but the mitogenome is highly similar (99.97%) to that previously reported for Stichopathes sp. (MZ157400, Barrett et al. 2020). Interspecific Stichopathes mitogenomes sequenced to date differ by 0.9-2.2%, which is roughly the same magnitude of difference by which these species differ from the mitogenomes of species of Antipathes (Asorey et al. 2021). The Stichopathes sequenced by Asorey et al. (2021) and our Cirrhipathes sample were collected nearly 8000 km apart (Rapa Nui and Hawai'i) and identified morphologically as belonging to different genera. Cirrhipathes anguina is a valid name recognized in the World Register of Marine Species, but intergeneric taxa are unlikely to share similar mitogenomes. Interestingly, reconstructions based on the internal transcribed spacer 1 (ITS1) gene place Stichopathes sp. SCBUCN-8849 within a clade comprises species within the genus Cirrhipathes (Asorey et al. 2021).

This new mitogenome adds to previous phylogenetic work and amplifies the call for additional taxa to be sequenced and for taxonomic revision of the Antipathidae (Bo et al. 2012; Asorey et al. 2021). Phylogenetic reconstructions based on complete mitogenomes are critical to understanding this group's evolutionary history and taxonomy, which have considerable ecological, cultural, and economic value (Wagner et al. 2012). Additional samples from taxonomically validated Cirrhipathes spp. are needed to confirm this sample's taxonomic affinity relative to congeners and to

existing Stichopathes samples sequenced across the broad geographic range of the group. Regardless of the taxonomic outcome, this study will provide a basis to evaluate the nominal taxonomy of antipatharians, their geographic distribution, and the relationships among this understudied taxonomic group.

Acknowledgements

We are grateful to the Institute for Integrative Genome Biology, Genomics Core, at the University of California, Riverside for performing the sequencing for this project.

Author contributions

LS: laboratory bench work, data analysis, and interpretation, writing the initial manuscript draft. AM: conception and funding of the work. DW: conception and funding of the work, collection of the specimen. EBF: data analysis and interpretation. RT: conception and funding of the work, data analysis and interpretation, and writing the initial manuscript draft. All authors contributed to revisions of the final manuscript and approved submission.

Ethics statement

All material was collected under the appropriate collection permits issued by the State of Hawai'i Department of Land and Natural Resources, Division of Aquatic Resources as Special Activities Permits (SAP-2008-04 and SAP-2009-13).

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding

This work was supported by the NOAA Office of Habitat Conservation, Pacific Islands Fisheries Science Center Deep-sea Coral Habitat Program through the Joint Institute for Marine and Atmospheric Research under cooperative agreements [NA16NMF4320058], [NA17NMF4320250], [NA17NMF4320293], and [NA17NMF4320294]; The National Science Foundation under Grant Numbers [OA#1416889] and [OCE#2048457].

ORCID

Leah E. K. Shizuru (i) http://orcid.org/0009-0000-8280-7198 Anthony D. Montgomery http://orcid.org/0000-0002-3430-3451 Daniel Wagner (i) http://orcid.org/0000-0002-0456-4343 Evan B. Freel (b) http://orcid.org/0000-0001-6748-1388 Robert J. Toonen (b) http://orcid.org/0000-0001-6339-4340

Data availability statement

The mitochondrial genome sequence data supporting this study's findings are openly available in GenBank of NCBI at https://www.ncbi.nlm. nih.gov under the accession no. ON653414. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA868396, SRR21011526, and SAMN29758596, respectively.

References

- Asorey CM, Sellanes J, Wagner D, Easton EE. 2021. Complete mitochondrial genomes of two species of Stichopathes Brook, 1889 (Hexacorallia: Antipatharia: Antipathidae) from Rapa Nui (Easter Island). Mitochondrial DNA B Resour. 6(11):3226-3228. doi:10.1080/ 23802359.2021.1990150.
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455-477. doi:10.1089/cmb.2012.0021.
- Barrett NJ, Hogan RI, Allcock AL, Molodtsova T, Hopkins K, Wheeler AJ, Yesson C. 2020. Phylogenetics and mitogenome organization in black corals (Anthozoa: Hexacorallia: Antipatharia): an order-wide survey inferred from complete mitochondrial genomes. Front Mar Sci. 7:440. doi:10.3389/fmars.2020.00440.
- Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2):313-319. doi:10.1016/j.ympev.2012.08.023.
- Bo M, Bavestrello G, Barucca M, Makapedua DM, Poliseno A, Forconi M, Ettore O, Canapa A. 2012. Morphological and molecular characterization of the problematic whip black coral genus Stichopathes (Hexacorallia: Antipatharia) from Indonesia (North Sulawesi, Celebes Sea). Zool J Linn Soc. 166(1):1-13. doi:10.1111/j.1096-3642.2012.00834.
- Brugler MR, France SC. 2007. The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Mol Phylogenet Evol. 42(3):776-788. doi:10.1016/j.ympev. 2006.08.016.

- Chi SI, Johansen SD. 2017. Zoantharian mitochondrial genomes contain unique complex group I introns and highly conserved intergenic regions. Gene. 628:24-31. doi:10.1016/j.gene.2017.07.023.
- Figueroa DF, Hicks D, Figueroa NJ. 2019. The complete mitochondrial genome of Tanacetipathes thamnea Warner, 1981 (Antipatharia: Myriopathidae). Mitochondrial DNA B Resour. 4(2):4109-4110. doi:10. 1080/23802359.2019.1692701.
- Forsman ZH, Knapp ISS, Tisthammer K, Eaton DAR, Belcaid M, Toonen RJ. 2017. Coral hybridization or phenotypic variation? Genomic data reveal gene flow between Porites lobata and P. compressa. Mol Phylogenet Evol. 111:132-148. doi:10.1016/j.ympev.2017.03.023.
- Grigg RW. 2001. Status of the black coral fishery in Hawaii, 1998. Pac Sci. 55(3):291-299. doi:10.1353/psc.2001.0022.
- Grigg RW. 2004. Harvesting impacts and invasion by an alien species decrease estimates of black coral yield off Maui, Hawai'i. Pac Sci. 58(1):1-6. doi:10.1353/psc.2004.0006.
- Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3): 307-321. doi:10.1093/sysbio/syq010.
- Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 35(2):518-522. doi:10.1093/molbev/msx281.
- Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14(6):587-589. doi:10.1038/nmeth.4285.
- Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772-780. doi:10.1093/molbev/mst010.
- Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV. 2013. Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol. 13(1):5. doi:10.1186/1471-2148-13-5.
- Knapp I, Puritz J, Bird C, Whitney J, Sudek M, Forsman Z, Toonen RJ. 2016. ezRAD—an accessible next-generation RAD sequencing protocol suitable for non-model organisms_v3.2. Protocols.io Life Sciences Protocol Repository.
- Krueger F. 2015. Trim Galore! A wrapper around Cutadapt and FastQC to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data. Cambridge, UK: Babraham Institute.
- Molodtsova T, Opresko D. 2023. World List of Antipatharia. In: Bánki O, editor. Catalogue of life checklist (ver. 09/2023); [accessed 2023 Sep
- Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268-274. doi:10.1093/molbev/ msu300.
- Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I, Andrews KR, Bird CE. 2013. ezRAD: a simplified method for genomic genotyping in non-model organisms. PeerJ. 1:e203. doi:10.7717/peerj.
- Wagner D, Brugler MR, Opresko DM, France SC, Montgomery AD, Toonen RJ. 2010. Using morphometrics, in situ observations and genetic characters to distinguish among commercially valuable Hawaiian black coral species; a redescription of Antipathes grandis Verrill, 1928 (Antipatharia: Antipathidae). Invert Syst. 24(3):271–290. doi:10.1071/
- Wagner D, Luck DG, Toonen RJ. 2012. The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Adv Mar Biol.
- Wagner D, Opresko DM, Montgomery AD, Parrish FA. 2017. An update on recent research and management of Hawaiian black corals. In: Hourigan TF, Etnoyer PJ, Cairns SD, editors. The state of deep-sea coral and sponge ecosystems of the United States. Silver Spring (MD): NOAA Technical Memorandum NMFS-OHC-4; p. 157-170.
- Wagner D. 2015. The spatial distribution of shallow-water (<150 m) black corals (Cnidaria: Antipatharia) in the Hawaiian Archipelago. Mar Biodivers Rec. 8:e54. doi:10.1017/S1755267215000202.