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Abstract

This paper develops stability and stabilization for systems of fully coupled jump diffusions. Such systems 
frequently arise in numerous applications where each subsystem (component) is operated under the influ-
ence of other subsystems (components). It derives sufficient conditions under which the underlying system 
of coupled jump diffusions is stable. The results are then applied to investigate the stability of linearizable 
jump diffusions, fast-slow coupled jump diffusions. Moreover, weak stabilization of interacting systems 
and consensus of leader-following systems are examined.
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1. Introduction

Networked systems have posed unprecedented opportunities as well as challenges. Such sys-
tems have numerous applications in control engineering, wireless communications, mathematical 
biology, financial engineering, and actuarial science. In many stochastic networked systems, 
subsystems and/or components are intertwined or highly coupled. This poses great challenges 
as one would like to study the system. Moreover, empirical studies reveal that there exist sud-
den rapid moments in the mid quotes of stock prices, i.e., jumps during trading periods [4,29]. 
Treating competitive Lotka-Volterra populations, as observed in [5], the population may suffer 
sudden environmental shocks such as earthquakes, hurricanes, epidemics, etc. The commonly 
used diffusion-type stochastic Lotka-Volterra models cannot explain such phenomena. To allow 
sudden changes, systems of stochastic differential equations involving Lévy process are often 
used to capture fluctuations as well as random jumps [43] (see also related problems due to 
random switching [24]).

When a system has been operated for a long time, its long-time behavior and stability be-
come important features. As a result, they have been studied extensively. Given a system with 
coupled components/subsystems, can we derive the stability of one specific component based 
on the dynamics of the other components? Take for instance, a system involving fast-slow 
components, one uses different time scales to portray the fast-slow motions. A question is 
almost immediate. How can we determine the stability of the slow subsystem based on the 
information of the fast subsystem? In addition, for a coupled system of jump diffusions, can 
we design a feedback control so as to obtain the desired stability? This work addresses these 
questions.

Previous works on stability of jump-diffusion processes can be found in [41] for multi-
dimensional jump-diffusion processes, [2] for constrained jump-diffusion processes, [18] for 
jump diffusions in a Hilbert space, [6,10,11,45,47] for regime-switching jump diffusions, [3]
for jump diffusions with state-dependent densities. In contrast to the existing works in the 
literature, this work focuses on stability of fully coupled jump diffusions, where two jump-
diffusion components interact with each other. Such systems have a wide range of appli-
cations to numerous physical, engineering, and biological problems such as chemical reac-
tors [34], power transmission lines [13], flow regulation in deep mines [40], elastic beams 
linked to rigid bodies [31], blood flow model [12,17], mitochondrial swelling [16], to men-
tion just a few among others. In such a situation, we are interested in the stability, averag-
ing phenomena under the influence of the interacting processes in the environment. From a 
technical point of view, not only do the coupled systems possess many interesting proper-
ties, but also present many challenges; see coupled ordinary differential and partial differential 
equations (ODEs-PDEs) [35,25,28,38], coupled diffusion or stochastic differential equations 
[19,21,37], and coupled stochastic reaction-diffusion or stochastic partial differential equations 
[7,8,22]. The motivations and urgent need in both theory and applications motivate the current 
work.

Let R�1 and R�2 be two Euclidean spaces of dimensions �1 > 0 and �2 > 0, respectively. 
Denote by 0 a zero vector with appropriate dimension (which will be clear from the context). We 
assume X1(t) and X2(t) are coupled jump-diffusion processes in R�1 , R�2 , respectively. More 
specifically, the pair (X1(t), X2(t)) is the solution of the system
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⎧⎪⎨⎪⎩
dX1(t) = b1(X1(t),X2(t))dt+σ1(X1(t),X2(t))dW1(t)+

∫
R

n1∗ γ1(X1(t−),X2(t−),φ)Ñ1(dt, dφ),

dX2(t) = b2(X1(t),X2(t))dt+σ2(X1(t),X2(t))dW2(t)+
∫
R

n2∗ γ2(X1(t−),X2(t−),φ)Ñ2(dt, dφ),

X1(0) = x1, X2(0) = x2,

(1.1)
where, for i = 1, 2, Wi (t) are standard Rdi -valued Brownian motions that are mutually in-
dependent; Ni (dt, dφ)’s are Poisson random measures independent of W1(t), W2(t), and 
Ñi (dt, dφ) = Ni (dt, dφ) −νi (dφ)dt are the compensated Poisson random measures on [0, ∞) ×
Rni∗ with Rni∗ := Rni \ {0}; b1 : R�1 × R�2 → R�1 and b2 : R�1 × R�2 → R�2 are smooth func-
tions; σ1 : R�1

1 × R�2
2 → R�1×d1 and σ2 : R�1

1 × R�2
2 → R�2×d2 ; γ1 : R�1 × R�2 × Rn1∗ → R�1 , 

γ2 :R�1 ×R�2 ×Rn2∗ →R�2 are measurable functions. In this paper, it is assumed that

b2(x1,0) = 0, σ2(x1,0) = 0, γ2(x1,0,φ) = 0.

That is, 0 is an equilibrium point of X2(t). We wish to derive mild conditions under which the 
equilibrium point 0 or the trivial solution of X2(t) is stable.

In what follows, the assumptions for the stability are given in term of Lyapunov functions but 
the insight and intuition are derived from a dynamic system point of view combined with the 
averaging principle and ergodicity of coupled systems. We demonstrate that the conditions are 
easily applicable. The intuition and idea are that if the interacting process X1(t) on the bound-
ary (i.e., when X2(t) = 0) admits a unique invariant measure and the corresponding decoupled 
(averaging) equations (of the process X2(t)) at the stationary distribution of X1(t) satisfy some
appropriate stability conditions then X2(t) is also stable. Taking the idea from a dynamic sys-
tem point of view, the stability conditions are obtained by considering the Lyapunov exponent 
of the process X2(t) corresponding to the invariant measure of the interacting process X1(t) on 
the boundary. Such conditions coincide with the intuition that when the main process X2(t) is 
close to the equilibrium 0, the interacting process is close to the solution on the boundary. Thus 
the stability conditions of the main process only need to be based on the information of the in-
teracting process on the boundary, which however, poses great challenges. We need to reveal the 
behavior of the system around the boundary. Since two components are fully coupled, handling 
their interactions and analyzing their behavior require a careful analysis. We emphasize that one 
of the main challenges in this work is the coupled interaction of X1(t) and X2(t). To overcome 
this difficulty, we modify the generalized coupling method in [20,26], in which the coupled pro-
cesses are expected to approach each other rather than meet at a finite time in classical coupling 
methods, cf., [9]. The coupling will be done until a specified stopping time is reached. Further 
details can be found in Remark 2.3.

With the stability results at our hands, we study systems that commonly arise in applica-
tions. In particular, one of the main questions to answer is: What are the relationships between 
nonlinear systems and the associated linearized systems for jump diffusions? We address this 
question and provide sufficient conditions for the stability of linearizable jump diffusions. In 
various applications, the subsystems and/or components often display different time scales. It is 
often necessary to treat fast-slow coupled jump diffusions. We provide sufficient conditions for 
stability of the slow component based only on the limit system. Next, we design stabilizing strate-
gies in a coupled system when only the interacting process is available to be controlled. Finally, 
leader-following systems are studied and conditions for the consensus of the systems are given.

The rest of paper is arranged as follows. Section 2 presents the main results on stability. 
Section 3 deals with linearizable systems and systems with fast and slow components. Section 4
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focuses on stabilization and treats consensus problems. Finally, Section 5 concludes the paper 
and issues further remarks.

2. Stability of coupled jump diffusions

In this paper, we use | · | to denote the Euclidean norm for either vectors or matrices, and A�
the transpose of a vector or a matrix A. For two real numbers a and b, a ∨b = max(a, b), and a ∧
b = min(a, b). Denote Z = (X�

1 , X�
2 )�, z = (x�

1 , x�
2 )�, b = (b�

1 , b�
2 )�, σ = (σ�

1 , σ�
2 )�, γ =

(γ �
1 , γ �

2 )�, W = (W�
1 , W�

2 )�, and ̃N= (Ñ�
1 , ̃N�

2 )�. We will use Z and (X1, X2) exchangeably. 
Moreover, a function of (x1, x2) can often be written as a function of z with z = (x�

1 , x�
2 )�, 

which will be clear from the context. Note that the equation (1.1) in vector form becomes

dZ(t) = b(Z(t))dt + σ(Z(t))dW(t) +
∫

R
n1∗ ×R

n2∗

γ (Z(t−),φ)Ñ(dt, dφ), Z(0) = z.

We use Pz and Ez to denote the probability and expectation with initial data z.
Next, define the operator L by

Lg(z) :=[∂zg(z)]�b(z) + 1

2
tr[σ(z)σ�(z)∂2

z g(z)]

+
∫

R
n1∗ ×R

n2∗

[g(z+ γ (z,φ)) − g(z) − (∂zg)�γ (z,φ)]ν(dφ),

for g ∈ DL, where ∂z and ∂2
z denote the gradient and Hessian matrix with respect to z, respec-

tively, and

DL :=
{
g :R�1 ×R�2 → R : g(z) is twice continuously differentiable and∫

R
n1∗ ×R

n2∗

|g(z+ γ (z,φ)) − g(z) − ∂zg · γ (z,φ)|ν(dφ) < ∞
}
.

It is noted that z in Lg(z) represents the variable of Lg rather than the variable of g. Indeed, later 
g can be plugged in by either functions of x1 or functions of x2. For example, if g is a function 
of x1 only, the gradient of g (with respect to z) will be ([∂x1g(x1)]�, 0�)�. However, because 
the coefficients are fully coupled, Lg is a function of z; we still write it as Lg(z).

The following result is known as the generalized Itô formula (see e.g., [39,45])

g(Z(t)) − g(Z(0)) =
t∫

0

Lg(Z(s−))ds +
t∫

0

∂zg(Z(s−))σ (Z(s−))dW(s)

+
t∫

0

∫
n1 n2

[
g(Z(s−) + γ (Z(s−),φ)) − g(Z(s−))

]
Ñ(ds, dφ).
R∗ ×R∗
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To ensure the existence and uniqueness of the solution, we impose the following assumption.

Assumption 2.1. There are some constants K1, K2 > 0 such that ∀z1, z2 ∈R�1 ×R�2

|b(z1) − b(z2)|2 + |σ(z1) − σ(z2)|2 +
∫

R
n1∗ ×R

n2∗

|γ (z1,φ) − γ (z2,φ)|2ν(dφ) ≤ K1|z1 − z2|2,

(2.1)
and ∫

R
n1∗ ×R

n2∗

|γ (z,φ)|2ν(dφ) ≤ K2(1 + |z|2). (2.2)

Remark 2.1. Assumption 2.1 can be replaced by local Lipschitz conditions together with a suit-
able condition imposed on a Lyapunov function.

To investigate the stability of the coupled jump diffusion system, we need the following as-
sumptions.

Assumption 2.2. The following conditions hold.

(i) There exist positive functions V0, V1 :R�1 �→R+ satisfying

LV0(z) ≤ K3 − K4V1(x1), ∀z = (x1,0), (2.3)

for some constants K3, K4 > 0.
(ii) There exist a function U : R�2 �→ R+ and constants m0, �0 > 0 such that

lim
x2→0

U(x2) = ∞, U(x2)−U(x′
2) ≤ m0

(
ln

|x′
2|

|x2| + 1

)
, ∀x2,x′

2 
= 0, |x1| < �0, |x2| < �0.

(2.4)
Moreover, assume that there are two Lipschitz functions f1 : R�1 → R, and f2 : R�1 → R+, 
constants α0 > 0, and K5 > 0 such that

LU(z) ≥ f1(x1),∀z = (x1,x2), |x2| ≤ �0, (2.5)

and

|Ux2(x2)σ2(z)|2 +
∫

R
n2∗

[
exp
{
α0
(
U(x2 + γ2(z,φ)) − U(x2)

)
+
}]

ν2(dφ)

≤ f2(x1), ∀z = (x1,x2), |x2| ≤ �0,

(2.6)

where Ux2 denotes the gradient of U ; and

|f1(x1)| + f2(x1) < K5V1(x1). (2.7)
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(iii) When x2 = 0 (yielding X2(t) = 0), the corresponding system for X1

dX1(t) = b1(X1(t),0)dt + σ1(X1(t),0)dW1(t) +
∫

R
n1∗

γ1(X1(t−),0,φ)Ñ1(dt, dφ),

admits a unique invariant measure μ∗ and

	1 :=
∫

f1(x1)μ
∗(dx1) > 0.

Assumption 2.3. Suppose that σ1(x1, x2) admits a right inverse σ−1
1 (x1, x2) (that is, 

σ1(x1, x2)σ
−1
1 (x1, x2) = I�1) such that

‖σ−1
1 (x1,x2)‖ ≤ cσ < ∞ for all |x2| ≤ �0,

where �0 is as in Assumption 2.2. Moreover, assume that there is a constant K6 such that ∀z =
(x�

1 , x�
2 )�, z′ = ((x′

1)
�, (x′

2)
�)� ∈R�1 ×R�2

(b1(z) − b1(z′))�(x1 − x′
1) + |σ1(z) − σ1(z′)|2 ≤ K6|z− z′|2.

In addition, γ1 and γ2 are Lipschitz in z (uniformly in φ), i.e., there is some K7 > 0 such that

|γ1(z,φ) − γ1(z′,φ)| + |γ2(z,φ) − γ2(z′,φ)| ≤ K7|z− z′|, ∀z, z′,φ.

Remark 2.2. Assumption 2.2 is the main assumption for stability. This assumption is rather mild 
and not restrictive. The function U in Assumption 2.2(ii) is used to bound the decay rate of 
X2 and f1 is a bound for the growth rate of U(X2(t)). Condition (2.4) means that the function 
U does not tend to infinity faster than a negative logarithm rate, which is natural because in 
practice, we do not often expect the solution tends to 0 at a supergeometric rate. The functions 
U and f1 are used to estimate the decay rate of X2(t); 	1 in Assumption 2.2(iii) is a bound of 
the Lyapunov exponent. A simple but promising candidate of U(·) that satisfies the proposed 
conditions is U(x2) = (− ln |x2|) ∨ 0. Condition (2.6) gives a bound for the quadratic variation 
of the martingale component in the equation of U(X2(t)). Assumption 2.2(i) and (2.7) guarantee 
that the bound 	1 of the Lyapunov exponent is well-defined. Assumption 2.3 collects a form of 
strong non-degenerate condition of the diffusion and some technical conditions. Although the 
second condition in Assumption 2.3 is a consequence of (2.1), we impose this condition in case 
Assumption 2.1 is replaced by local Lipschitz conditions together with a suitable Lyapunov-type 
condition as we commented in Remark 2.1. It can be seen that the conditions are applicable to 
many systems in applications; see Example 2.1 below as well as Section 3.

Now, we state our main results.

Theorem 2.1. Let γ0 ∈ (0, 	1
m0

). For any x1 ∈ R�1 and ε > 0, there exists θx1,ε > 0 such that if 
|x1 − x̃1| + |̃x2| ≤ θx1,ε ,

P̃z

{
lim inf

U(X2(t)) ≥ m0γ0

}
≥ 1 − ε, (2.8)
t→∞ t
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where ̃z= (̃x�
1 , ̃x�

2 )�; and thus,

P̃z

{
lim sup
t→∞

ln |X2(t)|
t

≤ −γ0

}
≥ 1 − ε. (2.9)

Example 2.1. To illustrate our results, let us provide a simple example. Consider a stochastic SIR 
epidemic model with Beddington-DeAngelis incidence rate given by the following SDEs with 
jumps,⎧⎪⎪⎪⎨⎪⎪⎪⎩

dS(t) =
[
c0 − c1S(t) − c3S(t)I (t)

c4+c5S(t)+c6I (t)

]
dt + σ1(S(t), I (t))dW1(t) + ∫Rn1∗ γ1(S(t), I (t),φ)Ñ1(dt, dφ),

dI (t) =
[
− c2I (t) + c3S(t)I (t)

c4+c5S(t)+c6I (t)

]
dt + c7I (t)dW2(t) + I (t)

∫
R

n1∗

γ̂2(φ)Ñ1(dt, dφ).

(2.10)
In the above, σ1, γ1, ̂γ2 are bounded functions such that σ1(s, i), γ1(s, i, φ), γ2(s, i, φ) = iγ̂2(φ)

satisfy the technical conditions in Assumptions 2.1 and 2.3. Now, we check the stability con-
ditions (Assumption 2.2). It is easily verified that Assumption 2.2(i) is satisfied with V0(s) =
V1(s) = s; Assumption 2.2(ii) is satisfied with

U(i) = (− ln i) ∨ 0, f1(s) = c2 + c2
7

2
+
∫

R
n2∗

|γ̂2(φ)|2ν2(dφ) − c3s

c4 + c5s
,

and f2(s) is some large constant. Under certain conditions, when I (t) = 0, the corresponding 
system

dŜ(t) = (c0 − c1Ŝ(t))dt + σ1(Ŝ(t),0)dW1(t) +
∫

R
n1∗

γ1(Ŝ(t),0,φ)Ñ1(dt, dφ)

has a unique invariant measure μ∗. Therefore, if 	1 := ∫ f1(s)μ
∗(ds) > 0, applying Theo-

rem 2.1, I (t) is stable at 0. Without jump, this result is consistent with the longtime charac-
terization in stochastic SIR epidemic models in [14,15]; with jumps, it generalizes the results in 
the aforementioned references.

To prove Theorem 2.1, we begin with some auxiliary lemmas. Lemma 2.1 provides a local 
boundedness (uniform in finite intervals) in probability of the solution and Lemma 2.2 illustrates 
the continuity on initial value (at 0) in probability of supt∈[0,T ] |X2(t)|, for any finite time T .

Lemma 2.1. For any T > 0, ε > 0, R > 0, there exists an H1,T ,ε,R > 0 such that

Pz

{
sup

t∈[0,T ]
|Z(t)| ≤ H1,T ,ε,R

}
> 1 − ε, for all |z| ≤ R.

Proof. Under Assumption 2.1, using a standard argument (see e.g., [32, Lemma 6.9]), we obtain 
the following local boundedness
181



D.H. Nguyen, D. Nguyen, N.N. Nguyen et al. Journal of Differential Equations 379 (2024) 175–206
Ez sup
t∈[0,T ]

|Z(t)| < CT (z),

where CT (z) is some finite constant depending on T and z that is locally bounded in z. As a 
result, the Markov inequality implies that for any H > 0,

Pz

{
sup

t∈[0,T ]
|Z(t)| > H

}
≤

Ez sup
t∈[0,T ]

|Z(t)|
H

<
CT (z)

H
,

which yields that for any T > 0, ε > 0, and R > 0, there is an H1,T ,ε,R > 0 such that

Pz

{
sup

t∈[0,T ]
|Z(t)| ≤ H1,T ,ε,R

}
> 1 − ε, for all |z| ≤ R.

The proof is complete. �
Lemma 2.2. For any T > 0, ε > 0, R > 0, and δ1 > 0, there exists δ2 = δ2(T , ε, R, δ1) > 0 such 
that

Pz

{
sup

t∈[0,T ]
|X2(t)| ≤ δ1

}
> 1 − ε, for all |x1| ≤ R, |x2| ≤ δ2.

Proof. Because of (2.4), there is an L = L(δ1) such that whenever U(x2) > L(δ1), |x2| < δ1. By 
the generalized Itô formula, we have

U(X2(t)) =U(x2) +
t∫

0

LU(Z(u))du +
t∫

0

Ux2(X2(u))σ2(Z(u−))dW2(u)

+
t∫

0

∫
R

n2∗

[U(X2(u−) + γ2(Z(u−),φ)) − U(X2(u−))]Ñ2(du, dφ).

(2.11)

Let H(z, φ) = U(x2 + γ2(z, φ)) − U(x2), z = (x�
1 , x�

2 )�, and α be such that 0 < α <
α0
2 , 

where α0 is in Assumption 2.2. From the exponential martingale inequality (see e.g., [1, The-
orem 5.2.9]), we have that with probability greater 1 − ε the following inequality holds for all 
t ∈ [0, T ],
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−
t∫

0

Ux2(X2(u))σ2(Z(u))dW2(u) −
t∫

0

∫
R

n2∗

H(Z(u),φ)Ñ2(du, dφ)

≤α
2

∫ t
0 |Ux2(X2(u))σ2(Z(u))|2du + 1

α

∫ t
0

∫
R

n2∗

(
eαH(Z(u),φ) − 1 − αH(Z(u),φ)

)
ν2(dφ)du − ln ε

α

≤α

2

t∫
0

|Ux2(X2(u))σ2(Z(u))|2du + α

2

t∫
0

∫
R

n2∗

H 2(Z(u),φ)e
α0
2 |H(Z(u),φ)|ν2(dφ)du − ln ε

α

≤α

2

t∫
0

|Ux2(X2(u))σ2(Z(u))|2du + Cα0α

2

t∫
0

∫
R

n2∗

eα0|H(Z(u),φ)|ν2(dφ)du − ln ε

α
,

where Cα0 is some finite constant such that t2e
α0t

2 ≤ Cα0e
α0t , ∀t ≥ 0. As a result, we have

P

{ t∫
0

Ux2(X2(u))σ2(Z(u))dW2(u) +
t∫

0

∫
R

n2∗

H(Z(u),φ)Ñ2(du, dφ)

≥ −α

2

t∫
0

|Ux2(X2(u))σ2(Z(u))|2du − Cα0α

2

t∫
0

∫
R

n2∗

eα0|H(Z(u),φ)|ν2(dφ)du + ln ε

α
, ∀t ∈ [0, T ]

}

≥ 1 − ε.
(2.12)

We obtain from Assumption 2.2 (ii) that

−
t∫

0

[LU ](Z(u))du + α

2

t∫
0

|Ux2(X2(u))σ2(Z(u))|2du + Cα0α

2

t∫
0

∫
R

n2∗

eα0|H(Z(u),φ)|ν2(dφ)du

≤ Cα,α0

t∫
0

V1(X1(u),0)du.

In addition, by Lemma 2.1, with probability greater than 1 − ε, |Z(t)| ≤ H1,T ,ε,R, ∀t ∈ [0, T ]. 
As a result, with probability greater 1 − 2ε, we have

−
t∫

0

[LU ](Z(u))du + α

2

t∫
0

|Ux2(X2(u))σ2(Z(u))|2du + Cα0α

2

t∫
0

∫
R

n2∗

eα0|H(Z(u),φ)|ν2(dφ)du

≤ CT,R,ε,α,α0 ,

(2.13)
for some finite constant CT,R,ε,α,α0 . The combination of (2.11), (2.12), and (2.13) yields that 
with probability greater 1 − 2ε,
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U(X2(t)) ≥ U(x2) − CT,R,ε,α,α0 + ln ε

α
, ∀t ∈ [0, T ].

Because of (2.4), there exists a δ2 > 0 such that for all |x2| < δ2,

U(x2) − CT,R,ε,α,α0 + ln ε

α
> L(δ1).

Therefore, with probability greater 1 − 2ε, supt∈[0,T ] U(X2(t)) ≥ L(δ1), for all |x1| < R, |x2| <
δ2, and thus, for all |x1| < R, |x2| < δ2, supt∈[0,T ] |X2(t)| ≤ δ1, ∀t ∈ [0, T ]. �

Let λ > 0 such that λ > 20(1 + K1) with K1 being the Lipschitz constant in Assumption 2.1. 
Consider the following coupled equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dX1(t) = b1(X1(t),0)dt + σ1(X1(t),0)dW1(t) + ∫Rn1∗ γ1(X1(t),0,φ)Ñ1(dt, dφ),

dX̃1(t) = b1(Z̃(t))dt + λ(X1(t) − X̃1(t))dt + σ1(Z̃(t))dW1(t) + ∫Rn1∗ γ1(Z̃(t−),φ)Ñ1(dt, dφ),

dX̃2(t) = b2(Z̃(t))dt + σ2(Z̃(t))dW2(t) + ∫Rn2∗ γ2(Z̃(t−),φ)Ñ2(dt, dφ),

X1(0) = x1, X̃1(0) = x̃1, X̃2(0) = x̃2,

(2.14)
where Z̃(t) = ([X̃1(t)]�, [X̃2(t)]�)�, ̃z = (̃x�

1 , ̃x�
2 )�. We will use Px1 ,̃z to indicate the initial 

conditions of the coupled equations (2.14).
Denote 	2 := ∫ f2(x1)μ

∗(dx1), where μ∗ is the unique invariant measure of X1(t) when 
X2(t) = 0 as in Assumption 2.2 (iii). Since f2(·) satisfies condition (2.6), it is a positive function, 
and as a result, 	2 > 0. Let Cα0 > 1 be a constant as in Lemma 2.2, i.e., a constant satisfying 

t2e
α0 t

2 ≤ Cα0e
α0t , ∀t ≥ 0. In the remainder of this section, let

γ0 ∈ (0,
	1

m0
), ς0 = 	1 − m0γ0

3
> 0, α = ς0

2Cα0	2
, λ0 ∈ (0,

γ0

4
),

and for each δ > 0,

τ̃δ := inf{t > 0 : |X̃2(t)| ≥ δe−γ0t }.

To proceed, we present the following lemmas. Lemma 2.3 provides estimates of the coupling 
time of the coupled processes, while Lemma 2.4 handles the diffusion and jump parts.

Remark 2.3. As was mentioned, one of the main challenges in this work is the coupled interac-
tion of X1(t) and X2(t).

To overcome this difficulty, we modify the generalized coupling method in [20,26]. The cou-
pling will be done until a stopping time τ̃δ := inf{t > 0 : |X̃2(t)| ≥ δe−γ0t }, which is defined as 
above. In contrast to existing literature, we do not couple until |X̃2(t)| exceeds a certain constant, 
which is not useful for our purpose. So we couple until a time |X̃2(t)| exceeds an exponential 
decay and then prove that time is infinite with a large probability. However, it is much harder to 
prove that ̃τδ = ∞ with a large probability that inf{t > 0 : |X̃2(t)| ≥ δ} = ∞ with a large proba-
bility. We will need to carefully look at the interaction of two components in the coupled system 
to show that ̃τδ = ∞ with a large probability.
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Lemma 2.3. There is a universal constant C̃ > 1 such that

E
(

sup
t≤τ̃δ

eλ0t |X1(t) − X̃1(t)|2
)

≤ C̃(|x1 − x̃1| + δ)2. (2.15)

As a result, for any ε > 0 one has

P

{ t∧τ̃δ∫
0

|v(s)|2ds ≥ (|x1 − x̃1| + δ)2

ε
for some t ≥ 0

}
≤ C̃λcσ ε

λ0
, (2.16)

where cσ is in Assumption 2.2 and

v(t) := λσ−1
1 (X̃1(t), X̃2(t))(X1(t) − X̃1(t)). (2.17)

Proof. Use C to denote a finite constant, whose values may change at difference appearances. 
By the generalized Itô formula for jump diffusions, we have that

eλ0t
∣∣X1(t) − X̃1(t)

∣∣2
= |x1 − x̃1|2 +

t∫
0

eλ0s(λ0 − λ)
∣∣X1(s) − X̃1(s)

∣∣2ds

+ 2

t∫
0

eλ0s
(
X1(s) − X̃1(s)

)�(
b1(X1(s),0) − b1(X̃1(s), X̃2(s))

)
ds

+
t∫

0

eλ0s tr
[(

σ1(X1(s),0) − σ1(X̃1(s), X̃2(s))
)(

σ1(X1(s),0) − σ1(X̃1(s), X̃2(s))
)�]

ds

+
t∫

0

eλ0s

∫
R

n1∗

[∣∣X1(s) − X̃1(s) + γ1(X1(s−),0,φ) − γ1(X̃1(s), X̃2(s),φ)
∣∣2−∣∣X1(s) − X̃1(s)

∣∣2
− 2
(
X1(s) − X̃1(s)

)�(
γ1(X1(s),0,φ) − γ1(X̃1(s), X̃2(s),φ)

)]
ν1(dφ)ds

+ 2

t∫
0

eλ0s
(
X1(s−) − X̃1(s−)

)�(
σ1(X1(s−),0) − σ1(X̃1(s−), X̃2(s−))

)
dW1(s)

+
t∫

0

eλ0s

∫
R

n1∗

[∣∣X1(s−) − X̃1(s−) + γ1(X1(s−),0,φ) − γ1(X̃1(s−), X̃2(s−),φ)
∣∣2

− ∣∣X1(s−) − X̃1(s−)
∣∣2]Ñ1(ds, dφ).

(2.18)
185



D.H. Nguyen, D. Nguyen, N.N. Nguyen et al. Journal of Differential Equations 379 (2024) 175–206
By virtue of Kunita’s first inequality [1, Theorem 4.4.23, p. 265], for all T ≥ 0,

E sup
t∈[0,T ]

∣∣∣ t∧τ̃δ∫
0

∫
R

n1∗

eλ0s
[∣∣X1(s−) − X̃1(s−) + γ1(X1(s−),0,φ) − γ1(X̃1(s−), X̃2(s−),φ)

∣∣2
− ∣∣X1(s−) − X̃1(s−)

∣∣2]Ñ1(ds, dφ)

∣∣∣2
≤ CE

T ∧τ̃δ∫
0

∫
R

n1∗

e2λ0s
[∣∣X1(s−) − X̃1(s−) + γ1(X1(s−),0,φ) − γ1(X̃1(s−), X̃2(s−),φ)

∣∣2
− ∣∣X1(s−) − X̃1(s−)

∣∣2]2ν1(dφ)ds

≤ CE
( T ∧τ̃δ∫

0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds + δ4

T ∧τ̃δ∫
0

e(−4γ0+2λ0)sds
)

≤ C
(
δ4 +E

T ∧τ̃δ∫
0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds
)
.

(2.19)
On the other hand, the Burkholder-Davis-Gundy inequality [33, Theorem 2.13, p. 70] leads to

E sup
t∈[0,T ]

∣∣∣ t∧τ̃δ∫
0

eλ0s
(
X1(s−) − X̃1(s−)

)�(
σ1(X1(s−),0) − σ1(X̃1(s−), X̃2(s−))

)
dW1(s)

∣∣∣2

≤ CE
( T ∧τ̃δ∫

0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds + δ4

T ∧τ̃δ∫
0

e(−4γ0+2λ0)sds
)

≤ C
(
δ4 +E

T ∧τ̃δ∫
0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds
)
.

(2.20)
Now, applying (2.19) and (2.20) to (2.18), and using the Lipschitz continuity of b1(·, ·), σ1(·, ·), 
and γ1(·, ·, ·), we obtain that

E sup
t≤T ∧τ̃δ

eλ0t
∣∣X1(t) − X̃1(t)

∣∣2
≤ |x1 − x̃1|2 + C

(
δ2 +

T∫
0

e(2λ0−γ0)sds +
[
E

T ∧τ̃δ∫
0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds
] 1

2
)
.

(2.21)
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To proceed, we estimate E 
∫ t∧τ̃δ

0 e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds. Using the generalized Itô formula 
again, we have

e2λ0t
∣∣X1(t) − X̃1(t)

∣∣4
= |x1 − x̃1|4 +

t∫
0

e2λ0s(2λ0 − λ)
∣∣X1(s) − X̃1(s)

∣∣4ds

+
t∫

0

4e2λ0s
∣∣X1(s) − X̃1(s)

∣∣2(X(s) − X̃1(s)
)�(

b1(X1(s),0) − b1(X̃1(s), X̃2(s))
)
ds

+ 3

t∫
0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣2
× tr
[(

σ1(X1(s),0,φ) − σ1(X̃1(s), X̃2(s),φ)
)(

σ1(X1(s),0,φ) − σ1(X̃1(s), X̃2(s),φ)
)�]

ds

+
t∫

0

∫
R

n1∗

e2λ0s
[∣∣X1(s) − X̃1(s) + γ1(X1(s−),0,φ) − γ1(X̃1(s), X̃2(s),φ)

∣∣4 − ∣∣X1(s) − X̃1(s)
∣∣4

− 4
∣∣X1(s) − X̃1(s)

∣∣2(X1(s) − X̃1(s)
)�(

γ1(X1(s),0,φ) − γ1(X̃1(s), X̃2(s),φ)
)]

ν1(dφ)ds

+ 4

t∫
0

e2λ0s
∣∣X1(s−) − X̃1(s−)

∣∣2
× (X1(s−) − X̃1(s−)

)�(
σ1(X1(s−),0) − σ1(X̃1(s−), X̃2(s−))

)
dW1(s)

+
t∫

0

∫
R

n1∗

e2λ0s
[∣∣X1(s−) − X̃1(s−) + γ1(X1(s−),0,φ) − γ1(X̃1(s−), X̃2(s−),φ)

∣∣4
− ∣∣X1(s−) − X̃1(s−)

∣∣4]Ñ1(ds, dφ).

(2.22)
Taking expectation on both sides of (2.22), using the Lipschitz continuity of b1(·, ·), σ1(·, ·), 
γ1(·, ·, ·), and noting λ being chosen to be sufficiently large, we obtain

d
[
Ee2λ0(t∧τ̃δ )

∣∣X1(t ∧ τ̃δ) − X̃1(t ∧ τ̃δ)
∣∣4]

≤ E
[
− D1e

2λ0(t∧τ̃δ )
∣∣X1(t) − X̃1(t)

∣∣4 + D2δ
4e(−4δ0+2λ0)(t∧τ̃δ )

]
dt,

(2.23)

for some finite positive constants D1 and D2. Integrating Eq. (2.23) implies that
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Ee2λ0(t∧τ̃δ )
∣∣X1(t ∧ τ̃δ) − X̃1(t ∧ τ̃δ)

∣∣4 − |x1 − x̃1|4

≤ −D1E

t∧τ̃δ∫
0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds + D2δ
4

t∫
0

e−2λ0sds

or

E

t∧τ̃δ∫
0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds ≤ C
(
|x1 − x̃1|4 + δ4

)
for all t ≥ 0,

and thus,

[
E

t∧τ̃δ∫
0

e2λ0s
∣∣X1(s) − X̃1(s)

∣∣4ds
] 1

2 ≤ C
(
|x1 − x̃1|2 + δ2

)
for all t ≥ 0. (2.24)

Combining (2.24) and (2.21), we get that

E sup
t≤T ∧τ̃δ

eλ0t
∣∣X1(t) − X̃1(t)

∣∣2 ≤ C
(|x1 − x̃1|2 + δ2) for all T ≥ 0. (2.25)

Therefore, (2.15) is proved.
Now, we consider the second part.
By virtue of the definition of v(t) in (2.17) and Assumption 2.2 (iv),

P

{ t∧τ̃δ∫
0

|v(s)|2ds ≥ (|x1 − x̃1| + δ)2

ε
for some t ≥ 0

}

≤ P

{ τ̃δ∫
0

∣∣λσ−1
1 (X1(s), X̃2(s))(X1(s) − X̃1(s))

∣∣2ds ≥ (|x1 − x̃1| + δ)2

ε

}

≤ P

{ τ̃δ∫
0

|X1(s) − X̃1(s)|2ds ≥ (|x1 − x̃1| + δ)2

λcσ ε

}
.

(2.26)

A standard calculation shows that for the integrable function h(s),

t∫
0

h(s)ds =
t∫

0

eλ0sh(s)

eλ0s
ds ≤ sup

s∈[0,t]
eλ0sh(s)

t∫
0

e−λ0sds ≤ 1

λ0
sup

s∈[0,t]
eλ0sh(s).

Therefore, it follows from (2.26) that
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P

{ t∧τ̃δ∫
0

|v(s)|2ds ≥ (|x1 − x̃1| + δ)2

ε
for some t ≥ 0

}

≤ P

{
sup
t≤τ̃δ

eλ0t |X1(t) − X̃1(t)|2 ≥ λ0 (|x1 − x̃1| + δ)2

λcσ ε

}
≤ λcσ ε

λ0(|x1 − x̃1| + δ)2E sup
t≤τ̃δ

eλ0t |X1(t) − X̃1(t)|2

≤ C̃λcσ ε

λ0
(due to (2.15)).

(2.27)

As a result, the proof is complete. �
Lemma 2.4. Let C̃ be as in Lemma 2.3 and L be a Lipschiz constant of f1(·) and f2(·). Suppose 
|x1 − x̃1| + δ < 1. Then we have

Px1 ,̃z

{ t∫
0

Ux2(X̃2(u))σ2(Z̃(u))dW2(u) +
t∫

0

∫
R

n2∗

H(Z̃(u),φ)Ñ2(du, dφ)

≥ −Cα0α

t∫
0

f2(X1(u))du + ln ε

α
− 2L

√
C̃√

ελ0
, ∀0 ≤ t ≤ τ̃δ

}
≥ 1 − 2ε.

Proof. Let H(z, φ) = U(x2 + γ2(z, φ)) − U(x2). From the exponential martingale inequality 
(see e.g., [1, Theorem 5.2.9]), we have with probability greater than 1 − ε,

−
t∫

0

Ux2(X̃2(u))σ2(Z̃(u))dW2(u) −
t∫

0

∫
R

n2∗

H(Z̃(u),φ)Ñ2(du, dφ)

≤α
2

∫ t
0 |Ux2(X̃2(u))σ2(Z̃(u))|2du + 1

α

∫ t
0

∫
R

n2∗

(
eαH(Z̃(u),φ) − 1 − αH(Z̃(u),φ)

)
ν2(dφ)du − ln ε

α

≤α

2

t∫
0

|Ux2(X̃2(u))σ2(Z̃(u))|2du + α

2

t∫
0

∫
R

n2∗

H 2(Z̃(u),φ)e
α0
2 |H(Z̃(u),φ)|ν2(dφ)du − ln ε

α

≤α

2

t∫
0

|Ux2(X̃2(u))σ2(Z̃(u))|2du + Cα0α

2

t∫
0

∫
R

n2∗

eα0|H(Z̃(u),φ)|ν2(dφ)du − ln ε

α
.

As a result, P (�1) ≥ 1 − ε, where
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�1 :=
{

−
t∫

0

Ux2(X̃2(u))σ2(Z̃(u))dW2(u) −
t∫

0

∫
R

n2∗

H(Z̃(u),φ)Ñ2(du, dφ)

≤ α

2

t∫
0

|Ux2(X̃2(u))σ2(Z̃(u))|2du + Cα0α

2

t∫
0

∫
R

n2∗

eα0|H(Z̃(u),φ)|ν2(dφ)du − ln ε

α

}
.

On the other hand, by (2.15), one has P (�2) ≥ 1 − ε, where

�2 :=
{

sup
t≤τ̃δ

eλ0t |X1(t) − X̃1(t)|2≤ C̃

ε

}
.

For t ≤ τ̃δ and ω ∈ �1 ∩ �2, we have

−
t∫

0

Ux2(X̃2(u))σ2(Z̃(u))dW2(u) −
t∫

0

∫
R

n2∗

H(Z̃(u),φ)Ñ2(du, dφ)

≤ α

2

t∫
0

|Ux2(X̃2(u))σ2(Z̃(u))|2du + Cα0α

2

t∫
0

∫
R

n2∗

eα0|H(Z̃(u),φ)|ν2(dφ)du − ln ε

α

≤ Cα0α

t∫
0

f2(X̃1(u))du − ln ε

α

≤ Cα0α

t∫
0

f2(X1(u))du − ln ε

α
+ L

t∫
0

|X1(u) − X̃1(u)|du

≤ Cα0α

t∫
0

f2(X1(u))du − ln ε

α
+ L

√
C̃√
ε

t∫
0

e− λ0u

2 du

≤ Cα0α

t∫
0

f2(X1(u))du − ln ε

α
+ 2L

√
C̃√

ελ0
.

(2.28)

Therefore, the proof is complete. �
Proof of Theorem 2.1. We can assume that ε ∈ (0, 12 ) and e−3ε ≥ 1 − 4ε. Let

δ = �0 ∧
(

1

2e

(
ε3

− ln ε
∧ ε2

2
∧ λ0

2C̃λcσ

))
, (2.29)

where C̃ is in Lemma 2.3. We have from the definitions of 	1, 	2 that
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Px1,0

⎧⎨⎩ lim
t→∞

1

t

t∫
0

f1(X1(u))du = 	1

⎫⎬⎭= Px1,0

⎧⎨⎩ lim
t→∞

1

t

t∫
0

f2(X1(u))du = 	2

⎫⎬⎭= 1.

It is noted that m0γ0 + 2ς0 < 	1 so that there exists Tx1,ε ≥ 1
ς0

(− ln ε
α

+ 4L
√

C̃√
ελ0

)
such that 

Px1,0(�3) ≥ 1 − ε, where

�3 :=
⎧⎨⎩1

t

t∫
0

f1(X1(u))du ≥ m0γ0 + 2ς0 and
1

t

t∫
0

f2(X1(u))du ≤ 	2, t ≥ Tx1,ε

⎫⎬⎭ .

Let Mx1,ε > 0 be sufficient large such that Px1,0(�4) ≥ 1 − ε, where

�4 :=
⎧⎨⎩1

t

t∫
0

f1(X1(u))du − Cα0α

t

t∫
0

f2(X1(u))du + ln ε

α
− 4L

√
C̃√

ελ0
≥ −Mx1,ε, t ≤ Tx1,ε

⎫⎬⎭ ,

and �1, �2 be as in Lemma 2.4. By the generalized Itô formula, we have

U(X̃2(t)) =U(̃x2) +
t∫

0

LU(Z̃(u))du +
t∫

0

Ux2σ2(Z̃(u−))dW2(u)

+
t∫

0

∫
R

n2∗

[U(X̃2(u−) + γ2(Z̃(u−),φ)) − U(X̃2(u−))]Ñ2(du, dφ).

(2.30)

Definitions of �1, �2, and �4 lead to

t∫
0

LU(Z̃(u))du ≥
t∫

0

LU(X̃1(u))du ≥
t∫

0

LU(X1(u))du + L

t∫
0

|X1(u) − X̃1(u)|du

≥
t∫

0

LU(X1(u))du + L
√

C̃√
ε

t∫
0

e− λ0u

2 du

≥
t∫

0

LU(X1(u))du + 2L
√

C̃√
ελ0

, t ≤ τ̃δ.

(2.31)

We deduce from (2.28), (2.31), (2.30) and the definition of �4 that

U(X̃2(t)) ≥U(̃x2) + 1

t

t∫
0

f1(X1(u))du − Cα0α

t

t∫
0

f2(X1(u))du + ln ε

α
− 4L

√
C̃√

ελ0

≥U(̃x ) − M , for all t ≤ T ∧ τ̃ , ω ∈ � ∩ � ∩ � .

(2.32)
2 x1,ε x1,ε δ 1 2 4
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Let θx1,ε ∈ (0, δ2 ) such that U(x2) − U(x′
2) > Mx1,ε if |x2| ≤ θx1,ε, |x′

2| ≥ δe−Tx1,ε . Such a θx1,ε

exists owing to (2.4). For |̃x2| < θx1,ε and ω ∈ �2 ∩ �3, we must have τ̃δ > Tx1,ε . Otherwise, 
if ̃τδ ≤ Tx1,ε , we have U(X̃2(̃τδ)) ≥ U(̃x2) − Mx1,ε , which implies that |X̃2(̃τδ)| < δe−Tx1,ε , and 
again contradicts to the definition of ̃τδ.

For ω ∈ ∩4
i=1�i , we have ̃τδ > Tx1,ε . From (2.30), Assumption 2.2, and Lemma 2.4, one has

U(X̃2(t)) ≥ U(̃x2) +
t∫

0

f1(X̃1(u))du − Cα0α

t∫
0

f2(X1(u))du + ln ε

α
− 2L

√
C̃√

ελ0

≥ U(̃x2) +
t∫

0

f1(X1(u))du − L

t∫
0

|X1(u) − X̃1(u)|du

− Cα0α

t∫
0

f2(X1(u))du + ln ε

α
− 2L

√
C̃√

ελ0

≥ U(̃x2) + (m0γ0 + 2ς0)t − L
√

C̃√
ε

t∫
0

e− λ0u

2 du − Cα0α	2t + ln ε

α
− 2L

√
C̃√

ελ0

≥ U(̃x2) + m0γ0t + ς0Tx1,ε + ln ε

α
− 4L

√
C̃√

ελ0

≥ U(̃x2) + m0γ0t, for all ω ∈ ∩4
i=1�i, t ∈ [Tx1,ε, τ̃δ).

(2.33)

The combination of (2.33) and (2.4) implies that ln |X̃2(t)| ≤ ln |̃x2| − γ0t + 1, ∀t ∈ [Tx1,ε, ̃τδ), 
so that |X̃2(t)| < δ

2e−γ0t , t ∈ [Tx1,ε, ̃τδ). As a result, if ̃x2 < θx1,ε , ̃τδ = ∞ for all ω ∈ ∩4
i=1�i . It 

yields that for all ω ∈ ∩4
i=1�i ,

lim inf
t→∞

U(X̃2(t))

t
≥ m0γ0 and lim sup

t→∞
ln |X̃2(t)|

t
≤ −γ0.

An application of Lemma 2.3 leads to Px1 ,̃z(�5) ≥ 1 − ε, where

�5 :=
{ t∧τ̃δ∫

0

|v(s)|2ds ≤ C̃λcσ (|x1 − x̃1| + δ)2

λ0ε
∀t ≥ 0

}
.

If |x1 − x̃1| ≤ δ, we have from (2.29) that for all ω ∈ �5

t∧τ̃δ∫
0

|v(s)|2ds ≤ 4C̃λcσ δ2

λ0ε
≤ 2δ

ε
< ε ∀t ≥ 0.

By the exponential martingale inequality [32, Theorem 7.4, page 44], we have Px1 ,̃z(�6) ≥ 1 −
e

ε3
δ ≥ 1 − ε because δ ≤ ε3

, where
− ln ε
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�6 :=
⎧⎨⎩

t∫
0

v(s)dW1(s) ≤ ε2

2δ

t∫
0

|v(s)|2ds + ε, t ≤ τ̃δ

⎫⎬⎭ .

Define

ξ := inf{t ≥ 0 :
t∫

0

|v(s)|2ds ≥ ε}

Let ̂Z(t) = ([X̂1(t)]�, [X̂2(t)]�)� be solution of following coupled system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t) = b1(X1(t),0)dt + σ1(X1(t),0)dW1(t) +
∫

R
n1∗

γ1(X1(t),0,φ)Ñ1(dt, dφ),

dX̂1(t) = b1(Ẑ(t))dt+1{t≤ξ∧τ̃δ}λ(X1(t)−X̂1(t))dt + σ1(Ẑ(t))dW1(t)+
∫
R

n1∗ γ1(Ẑ(t−),φ)Ñ1(dt, dφ),

dX̂2(t) = b2(Ẑ(t))dt + σ2(Ẑ(t))dW2(t) +
∫

R
n2∗

γ2(Ẑ(t−),φ)Ñ2(dt, dφ),

X1(0) = x1, X̂1(0) = x̃1, X̃2(0) = x̃2.

(2.34)
Since 
∫ ξ∧τ̃δ

0 v2(s)ds ≤ ε, we can apply the Cameron-Martin-Girsanov theorem to imply that 

under Qx1 ,̃z, defining by 
dQx1 ,̃z

dPx1 ,̃z
= exp

{
− ∫ ξ∧τ̃δ

0 v(s)dW1(s) − 1

2

∫ ξ∧τ̃δ

0 |v(s)|2ds

}
, we have 

W1(t) +
∫ t∧ξ∧τ̃δ

0 v(s)ds to be a Wiener process so that Ẑ(t) = ([X̂1(t)]�, [X̂2(t)]�)� under 
Qx1 ,̃z is the solution to (1.1) with initial value z̃. Here, we use the fact that Ẑ(t) = Z̃(t) for 
all t ≤ ξ ∧ τ̃δ , which implies

W1(t) +
t∧ξ∧τ̃δ∫

0

λσ−1
1 (X̂1(s), X̂2(s))(X1(s) − X̂1(s))ds =W1(t) +

t∧ξ∧τ̃δ∫
0

v(s)ds.

Moreover, since ξ ∧ τ̃δ = ∞ in ∩5
i=1�i if |x1 − x̃1| + |̃x2| ≤ θx1,ε , we have

lim inf
t→∞

U(X̂2(t))

t
= lim inf

t→∞
U(X̃2(t))

t
≥ m0γ0 > 0, if ω ∈ ∩5

i=1�i, |x1 − x̃1| + |̃x2| ≤ θx1,ε.

On the other hand, if |x1 − x̃1| + |̃x2| ≤ θx1,ε , for ω ∈ �5 ∩ �6, we have

dQx1 ,̃z

dPx1 ,̃z
= exp

⎧⎪⎨⎪⎩−
ξ∧τ̃δ∫
0

v(s)dW1(s) − 1

2

ξ∧τ̃δ∫
0

|v(s)|2ds

⎫⎪⎬⎪⎭
= exp

⎧⎨⎩−
τ̃δ∫

0

v(s)dW1(s) − 1

2

τ̃δ∫
0

|v(s)|2ds

⎫⎬⎭≥ e−ε−ε−ε ≥ 1 − 4ε.
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Since

Px1 ,̃z(∩6
i=1�i) ≥ 1 − 6ε,

we have

Qx1 ,̃z(∩6
i=1�i) ≥ (1 − 6ε)(1 − 4ε) ≥ 1 − 10ε,

which implies

Qx1 ,̃z

{
lim inf
t→∞

U(X̂2(t))

t
≥ m0γ0

}
≥ 1 − 10ε.

Therefore, we obtain that if |x1 − x̃1| + |̃x2| ≤ θx1,ε then

Px1 ,̃z

{
lim inf
t→∞

U(X2(t))

t
≥ m0γ0

}
≥ 1 − 10ε.

Hence, scaling ε by ε
10 , we obtain (2.8), which together with (2.4) implies (2.9). The proof is 

complete. �
3. Stability of linearizable systems and fast-slow systems

In this section, we consider the system of equations with notations as in Section 1.{
dY1(t)=b1(Y1(t),Y2(t))dt + σ1(Y1(t),Y2(t))dW1(t)+

∫
R

n1∗ γ1(Y1(t−),Y2(t−),φ)Ñ1(dt, dφ),

dY2(t)=b2(Y1(t),Y2(t))dt + σ2(Y1(t),Y2(t))dW2(t)+
∫
R

n1∗ γ2(Y1(t−),Y2(t−),φ)Ñ2(dt, dφ).

(3.1)
Under the condition that the second equation can be linearized (see Assumption 3.1 below), 
we examine the stability of Y2(·). Then we consider the case when the two components have 
different time scales.

3.1. Stability of linearizable systems

Assumption 3.1. Assume that the assumptions in Theorem 2.1 for b1, σ1, γ1 still hold and that 
b2, σ2, γ2 are linearizable in y2. That is, there exist matrices B2(y1), �21(y1), . . . , �2d2(y1),

�2(y1) bounded in y1 such that �2i (y1) has bounded right inverse and

‖b2(z) − B2(y1)y2‖ ≤ o(y2)V (y1),

‖σ2(z) − [�21(y1)y2, . . . ,�2d2(y1)y2]‖ ≤ o(y2)
√

V (y1),

γ2(z,φ) = �2(y1,φ)y2 + o(y2)V (y1),

‖b2(z)‖ + ‖σ2(z)σ�
2 (z)‖ ≤ KV (y1),

where o(y2) is a matrix or vector depending on z satisfying limy →0
sup

y1∈R�1 {|o(y2)|} = 0.
2 |y2|
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Let �(t) = Y2(t)|Y2(t)| , R(t) = |Y2(t)|2, by the generalized Itô formula for jump diffusions we 
have the following equations for Y1(t), �(t), R(t)

⎧⎪⎨⎪⎩
dY1(t) = b1(Z(t))dt + σ1(Z(t))dW1(t) + ∫Rn1∗ γ1(Z(t−),φ)Ñ1(dt, dφ),

d�(t)=g1(Y1(t),�(t),R(t))dt + g2(Y1(t),�(t),R(t))dW2(t)+∫Rn2∗ g3(Y1(t),�(t),R(t),φ)Ñ2(dt, dφ),

dR(t)=h1(Y1(t),�(t),R(t))dt + h2(Y1(t),�(t),R(t))dW2(t)+∫Rn2∗ h3(Y1(t),�(t),R(t),φ)Ñ2(dt, dφ),

(3.2)
where Z(t) = ([Y1(t)]�, [Y2(t)]�)� = ([Y1(t)]�, 

√
R(t)[�(t)]�)�. In (3.2), gi and hi with i =

1, 2, 3 are given as follows. If we denote z = (y�
1 , y�

2 )� = (y�
1 , 

√
rθ�)� then

g1(y1, θ, r) = b2(z)|y2| − σ2(z)σ�
2 (z)y2

|y2|3 +
(

− y�
2 b2(z) − 1

2 tr(σ�
2 (z)σ2(z)) + 3|y�

2 σ2(z)|2
2|y2|2

])
y2

|y2|3

+
∫

R
n2∗

(
y2 + γ2(z,φ)

|y2 + γ2(z,φ)| − y2

|y2| − |y2|2γ2(z,φ) − (y�
2 γ2(z,φ))y2

|y2|3
)

ν2(dφ),

= B2(y1)θ −
d2∑
l=1

[
θ��2l (y1)θ

] [
�2l(y1)θ

]
+
(

− θ�B2(y1)θ + 1

2

d2∑
l=1

[− |�2l (y1)θ |2 + 3|θ��2l (y1)θ |2])θ
+
∫

R
n2∗

( θ + �2(y1,φ)θ

|θ + �2(y1,φ)θ | − θ − |θ |2�2(y1,φ) + (θ��2(y1,φ))θ
)
ν2(dφ)

+o(1)
√

V (y1),

(3.3)

g2(y1, θ, r)= σ2(z)|y2| − y2y�
2 σ2(z)
|y2|3 = (�21(y1)θ, . . . ,�2d2(y1)θ) − θθ�(�21(y1)θ, . . . ,�2d2(y1)θ),

g3(y1, θ, r,φ) = y2+γ2(z,φ)
|y2+γ2(z,φ)| − y2

|y2| = θ+�2(y1,φ)θ
|θ+�2(y1,φ)θ | − θ,

(3.4)

h1(y1, θ, r)= 2y2b2(z) + tr(σ�
2 (z)σ2(z)) +

∫
R

n2∗

|γ2(z,φ)|2ν2(dφ)

= r
(

2θ�B2(y1)θ +
d2∑
l=1

|�2l (y1)θ |2 +
∫

R
n2∗

|�2(y1,φ)θ |2ν2(dφ)
)

+ ro(r)V1(y1),

h2(y1, θ, r)= 2y�
2 σ2(z) = 2r

d2∑
l=1

θ��2l (y1)θ + ro(r)
√

V1(y1),

h3(y1, θ, r,φ)= |y2 + γ2(z,φ)|2 − |y2|2 = r(|θ + �2(y1,φ)θ |2 − 1).

(3.5)
Let X1(t) = ([Y1(t)]�, [�(t)]�)� ∈ R�1 × Sd and X2(t) = R(t) ∈ R+. We have that
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lnR(t) =h4(Y1(t),�(t),R(t))dt + h5(Y1(t),�(t),R(t))dW2(t)

+
∫

R
n2∗

h6(Y1(t),�(t),R(t),φ)Ñ2(dt, dφ),

where

h4(y1, θ, r) =2θ�B2(y1)θ +
d2∑
l=1

|�2l (y1)θ |2 − 2|θ��2l (y1)θ |2

+
∫

R
n2∗

(
ln |θ + �2(y1,φ)θ |2 − |θ + �2(y1,φ)θ |2 + 1

)
ν2(dφ) + o(1)V (y1),

h5(y1, θ, r) =2y�
2 σ2(z)

|y2|2 = 2
d2∑
l=1

θ��2l (y1)θ + o(1)
√

V (y1),

h6(y1, θ, r,φ) = ln
|y2 + γ2(z,φ)|2

|y2|2 = ln |θ + �2(y1,φ)θ |2 + o(1)
√

V (y1).

When r = 0, the equation for X1(t) := ([Y1(t)]�, [�(t)]�)� is

⎧⎪⎪⎨⎪⎪⎩
dY1(t) = b1(Y1(t),0)dt + σ1(Y1(t),0)dW1(t) +

∫
R

n1∗

γ1(Y1(t−),0,φ)Ñ1(dt, dφ),

d�(t) = g1(Y1(t),�(t),0)dt + g2(Y1(t),�(t),0)dW2(t)+
∫
R

n2∗ g3(Y1(t),�(t),0,φ)Ñ2(dt, dφ).

(3.6)
Assume that ν1 and ν2 are finite measures. Then the system has a unique invariant measure on 
R�1 × Sd denoted by �, due to the non-degeneracy of the diffusion, which follows from the 
explicit formula for gi given above, and the boundedness of �(t) and the Assumption 2.2(iv). 
(Although g2 = 0 if Y2(t) is one-dimensional, it is noted that 0 is a stationary point for Y2(t) so 
that it does not change sign. As a result, when we convert to polar coordinate, �(t) is a constant 
1 or −1. Therefore, in this case, we are considering the invariant measure of Y1(t) and it is a 
non-degenerate diffusion).

We have the following theorem.

Theorem 3.1. Let (Y1, Y2) be the solution to (3.1). Suppose Assumption 3.1 holds. If

λ =
∫

R�1×Sd

(
2θ�B2(y1)θ +

d∑
l=1

(|�2l (y1)θ |2 − 2|θ��2l (y1)θ |2)
+ ln |θ + �2(y1,φ)θ |2 − |θ + �2(y1,φ)θ |2 + 1

)
�(dy1, dθ) < 0,

then for any ε > 0, ̃λ ∈ (λ, 0), y1 ∈ R�1 , there exists δ = δ(ε, y1, ̃λ) such that
1
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Pỹ1 ,̃y2

{
lim sup
t→∞

ln |Y2(t)|2
t

< λ̃

}
≥ 1 − ε.

Proof. Let U(r) = (− ln |r|) ∨ 0. Then we can straightforwardly apply Theorem 2.1 to show 
that R(t) converges to 0 exponentially fast in probability under the hypothesis of the theorem. 
Note that the component � lives in a compact manifold Sd but Theorem 2.1 can be applied here 
because the coupling method in Lemma 2.3 and Theorem 2.1 can be done through the (d − 1)-
dimensional Euclidean coordinates of Sd and the right inverse of the diffusion coefficient for 
(Y1(t), �(t)) is bounded. �
3.2. Stability of the slow component in a fast-slow system

We study the fast-slow coupled jump diffusions as follows⎧⎪⎨⎪⎩
dYε

1(t) = 1
ε b1(Yε

1(t),Yε
2(t))dt + 1√

ε
σ1(Yε

1(t),Yε
2(t))dW1(t) + ∫Rn1∗ γ1(Yε

1(t−),Yε
2(t−),φ)Ñε

1(dt, dφ),

dYε
2(t) = b2(Yε

1(t),Yε
2(t))dt + σ2(Yε

2(t))dW2(t) +
∫

R
n2∗

γ2(Yε
2(t−),φ)Ñ2(dt, dφ),

(3.7)
where Ñε

1(dt, dφ) =N1(dt, dφ) − 1
ε
ν1(dφ)dt , and σ2 and γ2 are assumed to be functions of Yε

2
only. We will study the stability of the slow component for small ε based on the stability of the 
limit system. This problem is very important in applications. Typically, the limit system is often 
much easier to analyze and compute.

We assume that Assumption 3.1 holds with �21, . . . , �2d2 and �2(φ) now being independent 
of y1. Let gi, hi be functions defined as in Section 3. Using the change of variable as in Section 3, 
by the generalized Itô formula for jump diffusions, we have the following equations for Y1(t), 

�ε(t) = Yε
2(t)|Yε
2(t)| , R

ε(t) = |Yε
2(t)|2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dYε
1(t) = 1

ε
b1(Zε(t))dt + 1√

ε
σ1(Zε(t))dW1(t) +

∫
R

n1∗

γ1(Zε(t−),φ)Ñε
1(dt, dφ),

d�ε(t) = g1(Yε
1(t),�ε(t),Rε(t))dt + g2(�ε(t),Rε(t))dW2(t)+

∫
R

n2∗

g3(�ε(t),Rε(t),φ)Ñ2(dt, dφ),

dRε(t) = h1(Yε
1(t),�ε(t),Rε(t))dt + h2(�ε(t),Rε(t))dW2(t)+

∫
R

n2∗

h3(�ε(t),Rε(t),φ)Ñ2(dt, dφ),

(3.8)
where Zε(t) = ([Yε

1(t)]�, [Yε
2(t)]�)� = ([Yε

1(t)]�, 
√

Rε(t)[�ε(t)]�)�.
Let �ε be the family of invariant measures of the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dYε

1(t) = 1

ε
b1(Yε

1,0)dt + 1√
ε
σ1(Yε

1(t),0)dW1(t) +
∫

R
n1∗

γ1(Yε
1(t),0,φ)Ñε

1(dt, dφ),

d�ε(t) = g1(Yε
1(t),�

ε(t),0)dt + g2(�
ε(t),0)dW2(t) +

∫
R

n2∗

g3(�
ε(t),0,φ)Ñ2(dt, dφ).

(3.9)
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By a standard averaging principle (see e.g., [44]), we can show that �ε converges weakly to 
�1 × �2, where �1 is the invariant measure of the system (due to the fast component of (3.9) is 
decoupled from the slow component),

dY1(t) = b1(Y1,0)dt + σ1(Y1,0)dW1(t) +
∫

R
n1∗

γ1(Y1(t),0,φ)Ñ1(dt, dφ),

and �2 is the invariant measure of the averaged system

d�(t) = g1(�(t))dt + g2(�(t),0)dW2(t) +
∫

R
n2∗

g3(�(t),0,φ)Ñ2(dt, dφ),

with

g1(θ) =
∫

R�1

g1(y1, θ,0)�1(dy1)

=
(

− θ�B2θ + 1

2

d∑
l=1

[− |�2lθ |2 + 3|θ��2lθ |2])θ
+
∫

R
n2∗

( θ + �2(φ)θ

|θ + �2(φ)θ | − θ − |θ |2�2(φ) + (θ��2(φ))θ
)
ν2(dφ),

where

B2 =
∫

R�1

B2(y1)�1(dy1).

In view of Theorem 3.1, the condition for the stability of Yε
2 is

λε :=
∫

R�1×Sd

(
2θ�B2(y1)θ +

d∑
l=1

(|�2lθ |2 − 2|θ��2lθ |2)
+ ln |θ + �2(φ)θ |2 − |θ + �2(φ)θ |2 + 1

)
�ε(dy1, dθ) < 0.

Since �ε(dy1, dθ) converges weakly to �1 × �2 as ε → ∞, we have

lim
ε→0

λε = λ∗ :=
∫

R�1 ×Sd

(
2θ�B2(y1)θ +

d∑
l=1

(|�2lθ |2 − 2|θ��2lθ |2)
+ ln |θ + �2(φ)θ |2 − |θ + �2(φ)θ |2 + 1

)
(�1 × �2)(dy1, dθ).

(3.10)
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Theorem 3.2. Let Assumption 3.1 holds with �21, . . . , �2d2 and �2(φ) now being independent 
of y1. Then, for sufficiently small ε > 0, the solution (Yε

1, Y
ε
2) satisfies

lim
y2→0

Py1,y2

{
lim

t→∞
ln |Yε

2(t)|
t

<
λ∗
2

< 0

}
= 1.

Proof. Because of (3.10), when ε is sufficiently small, we have λε < −λ∗
2 < 0. For that ε, ap-

plying Theorem 3.1 for (3.7) (λε plays the same role for (3.7) as λ does for (3.1)), we have for 
any ̃ε > 0, there exists δ > 0 such that

Py1,y2

{
lim sup
t→∞

ln |Yε
2(t)|
t

<
λ∗
2

< 0

}
> 1 − ε̃.

Letting ̃ε → ∞, we have

lim
y2→0

Py1,y2

{
lim

t→∞
ln |Yε

2(t)|
t

<
λ∗
2

< 0

}
= 1. �

In view of [30], it is easy to check that λ∗ < 0 is the necessary and sufficient condition for the 
following linear system to be exponentially stable

dY2(t) = B2Y2(t)dt +
d∑

l=1

�2dY2(t)dW2l (t) +
∫

R
n1∗

�2(φ)Y2(t)Ñ2(dt, dφ). (3.11)

Thus, we see from Theorem 3.2 that, when the averaged system is stable, so is the fast-slow 
system if ε is sufficiently small.

Remark 3.1. Treating two time-scale systems, one often uses the so-called freezing component 
argument; see [23] and [27, pp.88-90]. Here we use a somewhat different argument. Using polar 
decomposition (3.9), whether Rε converges to 0 depends on the invariant probability measure �ε

of (Y ε
1 , �ε) for each ε. Then the Lyapunov exponent that determines stability and that is given 

by λε , is computed based on �ε. Finally, we show λε converges to λ∗, which is obtained based 
on the limit system.

4. Stabilization and consensus problems

4.1. Stabilization

In this section, we consider the controlled jump-diffusion system given by the following equa-
tions,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX1(t) = b1(X1(t),X2(t))dt + σ1(X1(t),X2(t))dW1(t) +
∫

R
n1∗

γ1(X1(t−),X2(t−),φ)Ñ1(dt, dφ),

+u(t)dt

dX2(t) = b2(X1(t),X2(t))dt + σ2(X1(t),X2(t))dW2(t) +
∫

R
n2∗

γ2(X1(t−),X2(t−),φ)Ñ2(dt, dφ),

X1(0) = x1, X2(0) = x2,

(4.1)
where u(t) is a control. We want to construct a control so as to stabilize the process X2. However, 
we cannot act directly to X2 but only the interacting process X1 can be controlled. We will apply 
our result to show that under certain conditions, we can control the interacting process X1 to have 
the stability of the process X2. A system may or may not have an invariant probability measure. 
The weak stabilization essentially means that we construct a control so that the resulting system 
is weakly stable. That is, the resulting system has an invariant measure. The term weak stability 
was originated from the work of Wonham [42].

Assumption 4.1. There exists a function U : R�2 �→ [0, ∞) such that

lim
x2→0

U(x2) = ∞, sup
|x2|≥θx1,ε

U(x2) < ∞, U(x2) − U(x1) ≤ c0 ln
|x1|
|x2| ;

and there are a constant �0 and functions f1, f2 : R�1 → R so that

[LU ](z) ≤ f1(x1),
(
Ux2σ2(z)

)2 ≤ f2(x1), ∀|x2| ≤ �0.

Moreover, we suppose that f1 and f2 are bounded above by K(1 + |x1|2) and f1(0) < 0 and 
limx1→∞ f1(x1) > 0. Finally, suppose that there is a matrix Q such that

b�
1 (z)Q + trσ�

1 (z)Qσ1(z) +
∫

R
n1∗

γ �
1 (z,φ)Qγ1(z,φ)ν1(dφ) ≤ c1 + c2|x1|2, if |x2| ≤ �0.

From the assumption on f1, we can write f1(x1) as f1(x1) ≤ −K1 + K2|x1|2 for some con-
stants K1, K2. Consider the control u(t) = AX1(t), where A is a matrix satisfying

−λA := max
x1∈R�1

x�
1 QAx1

|x1|2 < −K2c1 + K1c2

K1
.

Now, when X2 = 0 the corresponding system for X1 is

dX1(t) =
(
b1(X1(t),0) + u(t)

)
dt + σ1(X1(t),0)dW1(t) +

∫
R

n1∗

γ1(X1(t),0,φ)Ñ1(dt, dφ).

We have for V (x1) := x�Qx1 that
1
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LV (x1) = b�
1 (x,0)Q + trσ�

1 (x1,0)Qσ1(x1,0)

+
∫

R
n1∗

γ �
1 (x1,0,φ)Qγ1(x1,0,φ)ν1(dφ) + x�

1 QAx1

≤ c1 − (λA − c2)|x1|2.
As a result, when x2 = 0, there exists a unique invariant measure �1 for X1(t) and

c1 − (λA − c2)

∫
R�1

|x1|2�1(dx1) ≥ 0.

That yields ∫
R�1

f1(x1)�1(dx1) ≤ −K1 + K2
c1

λA − c2
< 0,

which implies the stability of the controlled system by an application of our main result (Theo-
rem 2.1).

4.2. Leader-following consensus problems

In this section, we apply our results to the leader-following consensus problems. We consider 
a network with a leader and N identical followers. The dynamics of the leader is described by

dx0(t) = f (x0(t))dt + dW(t), (4.2)

and the dynamics of the ith follower are described by

dxi (t) = f (xi (t))dt + Bui (t)dt + dW(t), i = 1, . . . ,N, (4.3)

where xi (t) ∈ Rn, i = 0, . . . , N , f : Rn → Rn, W(t) is an n-dimensional Brownian motion, 
u = [u�

1 , . . . , u�
N ]� (ui ∈Rn, i = 1, . . . , N ) is the control to be designed, B ∈ Rn×n.

Now, we model the information flow structure among different agents and the leader as fol-
lows. Let G = {V, E, A} be a connected graph, where:

• V = {0, . . . , N} denotes the set of nodes with 0 representing the leader, and k ∈ {1, . . . , N}
representing the kth agent;

• E is the set of edges, A = [akl] ∈ R(N+1)×(N+1) is the adjacency matrix of G. To be more 
detailed, for k, l ∈ {1, . . . , N}, akl = 1 or 0 indicating whether or not there is a directed in-
formation flow between agents l and k if k 
= l, and akl = 0 if k = l. The connection between 
followers is undirected, i.e., akl = alk . The edge between vertex i (representing follower) and 
vertex 0 (representing the leader) is unidirectional, that is, follower i can receive informa-
tion from the leader while the leader needs no information from any follower. Particularly, 
for i = {1, . . . , n}, a0i = 1 if and only if i-th follower can receive information from the leader, 
and ai0 = 0.
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Then we obtain the Laplacian matrix H̃ of G as follows

H =
[

0 a0

0�
N H

]
,

where a0 = (−a01, . . . , −a0N)�, 0N := (0, . . . , 0)� ∈RN and

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
j=0,j 
=1

a1j −a12 . . . −a1N

−a21

N∑
j=0,j 
=2

a2j . . . −a2N

...
...

...
...

−aN1 −aN2 · · ·
N∑

j=0,j 
=N

aNj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the i-th follower, we consider the following leader-following consensus protocol

ui (t) = K

N∑
j=0,j∈Ni

zji(t), i = 1, . . . ,N, (4.4)

where the symmetric matrix K ∈ Rn×n is the control gain to be designed, and

zji(t) = xj (t) − xi (t) + (xi (t) − xj (t))ξji(t),

is the measurement of the agent j from its neighbor agent i, and ξji’s are some random noises. 
Denoted by

U = {u(t) = ([u1(t)]�, . . . , [uN(t)]�)�|ui (t) is given by (4.4), t ≥ 0, and i = 1, . . . ,N},

the collection of all admissible distributed protocols. We refer the reader to [36,46] and references 
therein for motivation of the above system.

Assumption 4.2. We assume the following:

(i) f (y) satisfies |f (y)| ≤ c|y|, for all y ∈Rn for some constant c > 0.
(ii) The noise ξji(t) satisfies that

t∫
0

(xj (s) − xi (s))ξji(s)ds =
t∫

0

(xj (s) − xi (s))

⎛⎜⎝σjidwij (s) +
∫
n1

γji(φ)Ñji(ds, dφ)

⎞⎟⎠ ,
R∗
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where wji(s) are independent standard Brownian motions, Ñji(s, φ) are jump processes. 
This formulation indicates that the systems can be perturbed by both noise and jump pro-
cesses.

Definition 4.1. System (4.2) and (4.3) is said to be exponentially consentable in probability with 
respect to U if there exists a protocol u ∈ U so that for any ε > 0, there exists δ > 0 such that for 
all i = 1, . . . , N

P {|xi (t) − x0(t)| converges exponentially fast to 0} ≥ 1 − ε,

whenever the initial values (y0, . . . , yn) ∈ RnN of (4.2) and (4.3) satisfying that

N∑
i=1

|yi − y0|2 < δ.

To proceed, let Xi (t) = xi (t) − x0(t), i = 1, . . . , N , x(t) := [x�
1 (t), . . . ,x�

N(t)
]�

,
Fi(x0(t), xi (t)) := f (xi (t)) − f (x0(t)), and F(x0(t), . . . , xN(t)) := [F�

1 (x0(t),x1(t)), . . . ,

F�
N (x0(t),xN(t))

]�
, X(t) := [X�

1 (t), . . . ,X�
N(t)
]�

. For simplicity of notation, we will write 
F(x0(t), . . . , xN(t)) as F(x0(t), X(t)) by the identity F(x0(t), X(t)) = F(x0(t), x0(t) + X1(t),

. . . , x0(t) +XN(t)). Then, one can obtain{
dx0(t) = f (x0(t))dt + dW(t),

dX(t) = (F(x0(t),X(t)) − [H̃⊗ BK]X(t)
)
dt + dM1(t) + dM0(t) + dMN

0 (t) + dMN
1 (t),

(4.5)
where A ⊗B denotes the Kronecker product of A and B, and

M1(t) =
N∑

i,j=1

t∫
0

σji

[
Sij ⊗ BK

]
X(s)dwji(s),

M0(t) = −
N∑

i=1

t∫
0

σ0i

[
Si ⊗ BK

]
X(s)dw0i (s),

MN
1 (t) =

N∑
i,j=1

t∫
0

∫
R

n1∗

[
Sij ⊗ BK

]
X(s)γji(φ)Ñji(ds, dφ),

MN
0 (t) = −

N∑
i=1

t∫
0

∫
R

n1∗

[
Si ⊗ BK

]
X(s)γji(φ)Ñji(ds, dφ),

where Sij = [skl]N×N is an N × N matrix with sii = −aij and sij = aij and all other elements 
being 0, for i, j = 1, . . . , N , and Si = [skl]N×N is an N × N matrix with sii = a0i and all other 
entries being 0. It is easily seen that the consensus problem of (4.2) and (4.3) is equivalent to the 
stability of (4.5).
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Assumption 4.3. There exists a matrix K ∈ Rn×n such that there exists a function U : RnN �→
[0, ∞) satisfying the following conditions,

lim
X→0

U(X) = ∞, U(X) − U(X′) ≤ c0 ln
|X′|
|X| ,

and there is �0 such that

[LU ](X) ≤ c1(x0), |X| ≤ �0,

N∑
i,j=1

(
U�
X (σji

[
Sij ⊗ BK

]
X)
)2 +

N∑
i=1

(
U�
X (σ0i

[
Si ⊗ BK

]
X)
)2 ≤ c2(x0), |X| ≤ �0,

∫
R

n2∗

[
exp
{

− α0
(
U(X2 + γ2(X,φ)) − U(X)

)
+
}]

ν2(φ) ≤ c3(x0), |X| ≤ �0,

and ∫
(c1(x0) + c2(x0) + c3(x0))μ∗(dx0) > 0.

In the above, μ∗(·) is the invariant measure of (4.2). Such a μ∗(·) always exists because of 
Assumption 4.2.

Theorem 4.1. Under Assumptions 4.2 and 4.3, system (4.5) is exponentially stable in probability. 
As a consequence, the leader-following system (4.2) and (4.3) is exponentially consentable in 
probability.

In fact, our results above are verifiable. To illustrate that, we provide the following explicitly 
computational example.

Example 4.1. In this example, assume that f (x) = Ax where A ∈ Rn×n. Assume that B is 
invertible. Let U(X) = − ln |X|, by directed calculations, we have

LU(X) = −X
(
A ⊗ IN − H̃⊗ BK

)
X�

|X|2 .

Then, it is easy to check the remaining conditions.

5. Conclusion

We studied stability and stabilization of a fully coupled system of jump diffusions. Sufficient 
conditions for stability are derived. We then investigate the stability of linearizable jump diffu-
sions and fast-slow coupled jump diffusions. Next, we develop strategies for weak stabilization 
of a coupled system in which only one component can be controlled. Also considered are con-
sensus problem of leader-following systems. This paper can be readily extended to systems with 
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more than two components. There are many interesting important problems remain to be inves-
tigated. Future research could be extended for regime-switching with state-dependent diffusions 
or hidden Markov systems. Efforts can also be directed to studying systems with mean-fields 
interactions. These and other topics deserve to be carefully examined.

Data availability

No data was used for the research described in the article.
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