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Abstract

This paper develops stability and stabilization for systems of fully coupled jump diffusions. Such systems
frequently arise in numerous applications where each subsystem (component) is operated under the influ-
ence of other subsystems (components). It derives sufficient conditions under which the underlying system
of coupled jump diffusions is stable. The results are then applied to investigate the stability of linearizable
jump diffusions, fast-slow coupled jump diffusions. Moreover, weak stabilization of interacting systems
and consensus of leader-following systems are examined.
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1. Introduction

Networked systems have posed unprecedented opportunities as well as challenges. Such sys-
tems have numerous applications in control engineering, wireless communications, mathematical
biology, financial engineering, and actuarial science. In many stochastic networked systems,
subsystems and/or components are intertwined or highly coupled. This poses great challenges
as one would like to study the system. Moreover, empirical studies reveal that there exist sud-
den rapid moments in the mid quotes of stock prices, i.e., jumps during trading periods [4,29].
Treating competitive Lotka-Volterra populations, as observed in [5], the population may suffer
sudden environmental shocks such as earthquakes, hurricanes, epidemics, etc. The commonly
used diffusion-type stochastic Lotka-Volterra models cannot explain such phenomena. To allow
sudden changes, systems of stochastic differential equations involving Lévy process are often
used to capture fluctuations as well as random jumps [43] (see also related problems due to
random switching [24]).

When a system has been operated for a long time, its long-time behavior and stability be-
come important features. As a result, they have been studied extensively. Given a system with
coupled components/subsystems, can we derive the stability of one specific component based
on the dynamics of the other components? Take for instance, a system involving fast-slow
components, one uses different time scales to portray the fast-slow motions. A question is
almost immediate. How can we determine the stability of the slow subsystem based on the
information of the fast subsystem? In addition, for a coupled system of jump diffusions, can
we design a feedback control so as to obtain the desired stability? This work addresses these
questions.

Previous works on stability of jump-diffusion processes can be found in [41] for multi-
dimensional jump-diffusion processes, [2] for constrained jump-diffusion processes, [18] for
jump diffusions in a Hilbert space, [6,10,11,45,47] for regime-switching jump diffusions, [3]
for jump diffusions with state-dependent densities. In contrast to the existing works in the
literature, this work focuses on stability of fully coupled jump diffusions, where two jump-
diffusion components interact with each other. Such systems have a wide range of appli-
cations to numerous physical, engineering, and biological problems such as chemical reac-
tors [34], power transmission lines [13], flow regulation in deep mines [40], elastic beams
linked to rigid bodies [31], blood flow model [12,17], mitochondrial swelling [16], to men-
tion just a few among others. In such a situation, we are interested in the stability, averag-
ing phenomena under the influence of the interacting processes in the environment. From a
technical point of view, not only do the coupled systems possess many interesting proper-
ties, but also present many challenges; see coupled ordinary differential and partial differential
equations (ODEs-PDEs) [35,25,28,38], coupled diffusion or stochastic differential equations
[19,21,37], and coupled stochastic reaction-diffusion or stochastic partial differential equations
[7,8,22]. The motivations and urgent need in both theory and applications motivate the current
work.

Let R and R® be two Euclidean spaces of dimensions £; > 0 and £, > 0, respectively.
Denote by 0 a zero vector with appropriate dimension (which will be clear from the context). We
assume X (7) and X»(¢) are coupled jump-diffusion processes in R¢!, R¢2, respectively. More
specifically, the pair (X;(z), X,(¢)) is the solution of the system
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dXi (1) :bl(Xl(t),X2(f))dt+01(xl(t)aXZ(I))dWl(I)‘i‘fR’;l N (Xi1(1—), Xa(t—), $)N; (dt, d¢),
dXo (1) = ba(X1 (1), Xo (1))dt +02 (X1 (1), X2 (1)d W2 (1) + [z v2 (X (1—), Xa (1), N2 (dt, dg).
X1(0)=x1, X2(0)=x,

(1.1)
where, for i = 1,2, W;(¢) are standard R% -valued Brownian motions that are mutually in-
dependent; N;(dt,d¢)’s are Poisson random measures independent of Wi(z), W (¢), and
ltl,' (dt,d¢) =N;(dt,d¢)—v;(d$)dt are the compensated Poisson random measures on [0, 00) x
RS with R} :=R" \ {0}; by : RY x R®2 — R and b, : R x R®2 — R® are smooth func-
tions; o :Rf' X Rgz — RO gnd oy :Rf‘ X Rgz — R@x%; RO x R2 x R — R4,
y2 1 RU x R x R}? — R are measurable functions. In this paper, it is assumed that

by(x1,0) =0, 02(x1,0) =0, y2(x1,0,¢)=0.

That is, 0 is an equilibrium point of X;(¢). We wish to derive mild conditions under which the
equilibrium point 0 or the trivial solution of X;(#) is stable.

In what follows, the assumptions for the stability are given in term of Lyapunov functions but
the insight and intuition are derived from a dynamic system point of view combined with the
averaging principle and ergodicity of coupled systems. We demonstrate that the conditions are
easily applicable. The intuition and idea are that if the interacting process X (¢) on the bound-
ary (i.e., when X5 (#) = 0) admits a unique invariant measure and the corresponding decoupled
(averaging) equations (of the process X»(#)) at the stationary distribution of X (¢) satisfy some
appropriate stability conditions then X;(#) is also stable. Taking the idea from a dynamic sys-
tem point of view, the stability conditions are obtained by considering the Lyapunov exponent
of the process X, (#) corresponding to the invariant measure of the interacting process X (¢) on
the boundary. Such conditions coincide with the intuition that when the main process X, () is
close to the equilibrium 0, the interacting process is close to the solution on the boundary. Thus
the stability conditions of the main process only need to be based on the information of the in-
teracting process on the boundary, which however, poses great challenges. We need to reveal the
behavior of the system around the boundary. Since two components are fully coupled, handling
their interactions and analyzing their behavior require a careful analysis. We emphasize that one
of the main challenges in this work is the coupled interaction of X (¢) and X»(#). To overcome
this difficulty, we modify the generalized coupling method in [20,26], in which the coupled pro-
cesses are expected to approach each other rather than meet at a finite time in classical coupling
methods, cf., [9]. The coupling will be done until a specified stopping time is reached. Further
details can be found in Remark 2.3.

With the stability results at our hands, we study systems that commonly arise in applica-
tions. In particular, one of the main questions to answer is: What are the relationships between
nonlinear systems and the associated linearized systems for jump diffusions? We address this
question and provide sufficient conditions for the stability of linearizable jump diffusions. In
various applications, the subsystems and/or components often display different time scales. It is
often necessary to treat fast-slow coupled jump diffusions. We provide sufficient conditions for
stability of the slow component based only on the limit system. Next, we design stabilizing strate-
gies in a coupled system when only the interacting process is available to be controlled. Finally,
leader-following systems are studied and conditions for the consensus of the systems are given.

The rest of paper is arranged as follows. Section 2 presents the main results on stability.
Section 3 deals with linearizable systems and systems with fast and slow components. Section 4
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focuses on stabilization and treats consensus problems. Finally, Section 5 concludes the paper
and issues further remarks.

2. Stability of coupled jump diffusions

In this paper, we use | - | to denote the Euclidean norm for either vectors or matrices, and A"
the transpose of a vector or a matrix A. For two real numbers a and b, a Vb = max(a, b), and a A
b = min(a, b). Denote Z = (X, XDT* 2=}, %), b=0,b)) ,0=(,0)",y=
)T, W= W], W)T, and N=(N],NJ)T. We will use Z and (X1, X,) exchangeably.
Moreover, a function of (x1,X) can often be written as a function of z with z = (x| ,x;) ",
which will be clear from the context. Note that the equation (1.1) in vector form becomes

dZ(t) =b(Z(t))dt + o (Z(t))dW(t) + / y(Z(t—),d))ﬁ(dt,dq)), Z(0)=1z.
R} xR}2

We use P, and E, to denote the probability and expectation with initial data z.
Next, define the operator £ by

1
Lg(z) :=[8,8(2)] b(z) + Etr[a(z)aT(z)afg(z)]

+ / gz +y (2 $) — 8@ — (9,8) v(z, $)Iv(de),
R} xR}?

for g € D, where 9, and 812 denote the gradient and Hessian matrix with respect to z, respec-
tively, and

Dr = {g ‘R xR2 > R: g(z) is twice continuously differentiable and

18z +y(z,¢) —8(2) — 0,8 - y(z. $)|v(do) < OO}~
R;! xR}
It is noted that z in L£g(z) represents the variable of Lg rather than the variable of g. Indeed, later
g can be plugged in by either functions of x; or functions of x,. For example, if g is a function
of x; only, the gradient of g (with respect to z) will be ([dx, g(xl)]T, OT)T. However, because

the coefficients are fully coupled, Lg is a function of z; we still write it as £g(z).
The following result is known as the generalized Itd formula (see e.g., [39,45])

t

t
g(Z(1)) —g(Z(O))=/£g(Z(S—))ds+/3zg(Z(s—))0(Z(s—))dW(S)
0 0
1

+ / / [¢(Z(s—) + v (Z(s—).$)) — g(Z(s—))|N(ds, d$).
0 Rzl XRZz

178



D.H. Nguyen, D. Nguyen, N.N. Nguyen et al. Journal of Differential Equations 379 (2024) 175-206

To ensure the existence and uniqueness of the solution, we impose the following assumption.
Assumption 2.1. There are some constants K1, K> > 0 such that Vz;,z, € Ré x RE
|b(z1) — b(2)|* + |0 (21) — 0 (22)* + / ¥ (21, 9) — ¥ (22, $)Pv(d9) < Kilz1 — z2,
R} xR}2

2.1
and

Iy (z, $)1*v(d$) < K2(1 + |z]*). 2.2)
R xR}?

Remark 2.1. Assumption 2.1 can be replaced by local Lipschitz conditions together with a suit-
able condition imposed on a Lyapunov function.

To investigate the stability of the coupled jump diffusion system, we need the following as-
sumptions.

Assumption 2.2. The following conditions hold.
(i) There exist positive functions Vo, V; : R > R satisfying
LVo(z) < K3 — K4Vi(x1), V2= (x1,0), (2.3)

for some constants K3, K4 > 0.
(i) There exist a function U : R®2 > R and constants mg, Ag > 0 such that

X/
limOU(xz) =00, Ux)—U(x5) <mo <lnM + 1) , VX2, x5 # 0, [x1] < Ao, [X2] < Ao.
X2—>

x|
24
Moreover, assume that there are two Lipschitz functions f; : R — R, and f>:RY — R,
constants g > 0, and K5 > 0 such that

LU (z) > f1(x1), Yz = (x1,X2), [X2| < Ao, (2.5)

and

U@ + [ [exp [an (U + 2 ) - U, | patad)
R (2.6)

< f2(x1), Vz = (x1,X2), [X2] < Ao,
where Uy, denotes the gradient of U; and
[fixD| + f2(x1) < K5Vi(x1). 2.7
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(iii) When x; = 0 (yielding X, () = 0), the corresponding system for X

dXi(t) =b1 (X1 (1), 0)dt + o1 (X1 (1), 0)dW(2) + / nXi(t—),0, )N (dr, d¢),
R!

admits a unique invariant measure ©* and
A= / fix)p*(dxy) > 0.

Assumption 2.3. Suppose that o1(x;,x2) admits a right inverse o 1(xl,xz) (that is,
o1(xq, Xz)dfl (x1,x3) = I¢,) such that

oy (x1, %) || < ¢ < 00 for all [x2] < Ao,

where Ay is as in Assumption 2.2. Moreover, assume that there is a constant K¢ such that Vz =
& xD T, 7 =((x)T, &) HT eRE x RE

(b1(z) —b1(2)) T (x1 — X)) +|01(2) — 01(Z)* < Kelz — 7|

In addition, y; and y» are Lipschitz in z (uniformly in ¢), i.e., there is some K7 > O such that

Y1z ¢) =@ )+ 112z ¢) — 122, §)| < K71z — 2|, V2.7, §.

Remark 2.2. Assumption 2.2 is the main assumption for stability. This assumption is rather mild
and not restrictive. The function U in Assumption 2.2(ii) is used to bound the decay rate of
X5 and fi is a bound for the growth rate of U (X3(¢)). Condition (2.4) means that the function
U does not tend to infinity faster than a negative logarithm rate, which is natural because in
practice, we do not often expect the solution tends to 0 at a supergeometric rate. The functions
U and f] are used to estimate the decay rate of X»(¢); A in Assumption 2.2(iii) is a bound of
the Lyapunov exponent. A simple but promising candidate of U (-) that satisfies the proposed
conditions is U (xp) = (—In|x3]) Vv 0. Condition (2.6) gives a bound for the quadratic variation
of the martingale component in the equation of U (X»(¢)). Assumption 2.2(i) and (2.7) guarantee
that the bound A of the Lyapunov exponent is well-defined. Assumption 2.3 collects a form of
strong non-degenerate condition of the diffusion and some technical conditions. Although the
second condition in Assumption 2.3 is a consequence of (2.1), we impose this condition in case
Assumption 2.1 is replaced by local Lipschitz conditions together with a suitable Lyapunov-type
condition as we commented in Remark 2.1. It can be seen that the conditions are applicable to
many systems in applications; see Example 2.1 below as well as Section 3.

Now, we state our main results.

Theorem 2.1. Let yy € (0, 2—(‘)). For any x| € R and & > 0, there exists Ox,,e > 0 such that if
[x; —Xi| + [X2| < bx, e,

IP;[ limin

—00

f@ > moy) = 1. 238)
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whereZ = X, 'izT)T; and thus,

IP’z[ Jim su

In | X5 (¢
e 2.9)
t—00 t

Example 2.1. To illustrate our results, let us provide a simple example. Consider a stochastic SIR
epidemic model with Beddington-DeAngelis incidence rate given by the following SDEs with
jumps,

ds(t) = [CO —c1S(1) — #ﬁgm]m +01(S@), [O)AW1 (1) + [grn (SO), 1), $IN (d1, dg),
1) = | =2l O+ 72505 a4+ e L aWa ) + 1) / R(@Ni(d1,d¢).
R}
(2.10)

In the above, o7, y1, 72 are bounded functions such that o (s, i), y1 (s, i, @), y2(s, i, ) = i1 (P)
satisfy the technical conditions in Assumptions 2.1 and 2.3. Now, we check the stability con-
ditions (Assumption 2.2). It is easily verified that Assumption 2.2(i) is satisfied with Vy(s) =
Vi(s) = s; Assumption 2.2(ii) is satisfied with

c3s

2
U@i)=(=Ini) v O, f1(S)=02+%7+/|?2(¢)IZV2(d¢)—
R}2

C4+css’

and f>(s) is some large constant. Under certain conditions, when I (¢) = 0, the corresponding
system

dS() = (co — 15t +01(S®), AW (1) + / 1 S),0.)Nidt,d¢)
R}!
has a unique invariant measure p*. Therefore, if Ay := [ fi(s)u*(ds) > 0, applying Theo-
rem 2.1, I(¢) is stable at 0. Without jump, this result is consistent with the longtime charac-

terization in stochastic SIR epidemic models in [14,15]; with jumps, it generalizes the results in
the aforementioned references.

To prove Theorem 2.1, we begin with some auxiliary lemmas. Lemma 2.1 provides a local
boundedness (uniform in finite intervals) in probability of the solution and Lemma 2.2 illustrates
the continuity on initial value (at 0) in probability of sup, o 7 |X2(?)], for any finite time 7.

Lemma 2.1. Forany T > 0, ¢ > 0, R > 0, there exists an Hy ¢ r > 0 such that

IP’Z[ sup |Z(0)| 5H1,T,8,R] ~1—¢, forall |z <R.
t€l0,T]

Proof. Under Assumption 2.1, using a standard argument (see e.g., [32, Lemma 6.9]), we obtain
the following local boundedness

181



D.H. Nguyen, D. Nguyen, N.N. Nguyen et al. Journal of Differential Equations 379 (2024) 175-206

E, sup |Z(t)| < Cr(z),
1€[0,T]

where Cr(z) is some finite constant depending on 7 and z that is locally bounded in z. As a
result, the Markov inequality implies that for any H > 0,

E; sup |Z(1)] Cr@
0 Z

IP’z[ sup |Z(t)|>H]§ (011 hets
t€[0,T] H H

which yields that for any 7 > 0, ¢ > 0, and R > 0, there is an H; 1 g > O such that

P, { sup |Z(1)| < Hi, TSR} >1—¢, forall |z| <R.
t€[0,T]

The proof is complete. 0O

Lemma 2.2. Forany T >0, ¢ >0, R > 0, and 81 > 0, there exists 5 = 5>(T, &, R, 51) > 0 such
that

P sup 0|81} > 1—e, forall x| < R, x| <82,
t€l0,T]

Proof. Because of (2.4), there is an L = L(81) such that whenever U (x3) > L(81), |X2| < §;1. By
the generalized It6 formula, we have

t

U(Xz(t))=U(X2)+//JU(Z(M))du+fsz(Xz(u))Uz(Z(u—))dwz(u)

0
@2.11)

1
+/ /[U(Xz(u—)+V2(Z(M—),¢))—U(Xz(u—))]ﬁz(du,dfb).

0 RZZ

Let H(z,¢) = U(x2 + 12(z,¢)) — U(x2), z= (x{ ,x5) ', and & be such that 0 < & < %,
where «q is in Assumption 2.2. From the exponential martingale inequality (see e.g., [1, The-
orem 5.2.9]), we have that with probability greater 1 — ¢ the following inequality holds for all

tel0,T],
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t t
—/UX2(Xz(u))az(Z(u))dwz(u)—/ / H(Z(u), $)Na(du, de)
0 0 r}2
<5 Jo 1o (o @)or (2w P+ 5, i fgrz (1409 1 —aH 2w, ) )2 — 1t
t t
L R R B R
o
0 0 Rj;?

t t
o Cy Ine
<3 / Vo (o)) (20 et + <% / / N
0 0 R:2

. . o!
where Cy, is some finite constant such that 22 < Caoe“‘)’ ,Vt > 0. As a result, we have

t t
P{ f U (X (1))02 (Z(u))d W () + f / H(Z(w). $)Na(du. d)
0 0 g™
t t
>-2 / L S T f / PO Dl dgydu + 10 Vi € 0, T]}
0 0 R

>1—e.
(2.12)
We obtain from Assumption 2.2 (ii) that

t t t
—~ / [LUN(Z(u))du + % / |Uxy (X2())02(Z(w))|*du + % / / e HEW-Dly) (dg)du
0 0 0 R™
t
< Caan / V(X (). 0)du.
0

In addition, by Lemma 2.1, with probability greater than 1 — ¢, |Z(¢)| < Hy 7 ¢.r, Yt € [0, T].
As a result, with probability greater 1 — 2¢, we have

t t t
o Cyo o "
- / [LUNZ@)du + 5 / |Ux, (X2 (u)) 02 (Z(u))|*du + = / f e HEZW- Dy, (dd)du
0 0 0 R:Z
< CT,R,&,a,oco’
(2.13)

for some finite constant C7 R ¢ «,o0- The combination of (2.11), (2.12), and (2.13) yields that
with probability greater 1 — 2¢,
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Ing
UX2(1) 2U(x2) — CT,R e,0,00 + o viel0,T].

Because of (2.4), there exists a §» > 0 such that for all x| < &,

Ine
Uxy) — CTRsota0+ o > L(51).

Therefore, with probability greater 1 — 2¢, sup, (9. 71 U (X2(2)) > L(81), for all [x;| < R, [X2| <
82, and thus, for all [x;| < R, [X2| < 82, sup,¢jo 71 [ X2(®)| <61, V1 €[0,T]. O

Let A > 0 such that A > 20(1 + K1) with K| being the Lipschitz constant in Assumption 2.1.
Consider the following coupled equations

dXi (1) = by (X1 (1), 0)dt + 01 (X1 (1), 0)dW1 (1) + [gm y1 (X1 (1), 0, $)Ni(d1,de),

dX () = b1 (Z())dt + 1(X1 () — X1 (1)dt + 01 (Z(1))dW1 (1) + ngl Y1(Z(t—), §)N1(dt, d¢),
dXo(t) = ba(Z(t))dt + 02(Z(1))dW2 (1) + fRZZ Y2(Z(t—), $)Na(dt, d @),

X1(0) =x1, X1 (0) =X, X2(0) =X,

(2.14)
where Z(t) = ([Xl(t)]T [Xz(t)]T)T 7= (x1 ,x2 T, We will use Py, 7 to indicate the initial
conditions of the coupled equations (2.14).

Denote Aj = ffz(xl)u*(dxl), where u* is the unique invariant measure of X;(z) when
X (t) =0 as in Assumption 2.2 (iii). Since f>(-) satisfies condition (2.6), it is a positive function,
and as a result, Ay > 0. Let Cy, > 1 be a constant as in Lemma 2.2, i.e., a constant satisfying

Otor . . .
2e7 < Cyoe®,Vt > 0. In the remainder of this section, let
A1 —moyo

c Ay himmon o, S0
VO ’mo E) g()_ 3 L) ZCQOAZ

Ao € (0, )

and for each § > 0,
%5 =inf{r > 0: |Xa(t)| > 8¢},

To proceed, we present the following lemmas. Lemma 2.3 provides estimates of the coupling
time of the coupled processes, while Lemma 2.4 handles the diffusion and jump parts.

Remark 2.3. As was mentioned, one of the main challenges in this work is the coupled interac-
tion of X (¢) and X5 (¢).

To overcome this difficulty, we modify the generalized coupling method in [20,26]. The cou-
pling will be done until a stopping time T5 := inf{t > 0 : |}~(2 (t)| > 8¢~ 7"}, which is defined as
above. In contrast to existing literature, we do not couple until |§2 (1)| exceeds a certain constant,
which is not useful for our purpose. So we couple until a time IX,(7)| exceeds an exponential
decay and then prove that time is infinite with a large probability. However, it is much harder to
prove that Ts = oo with a large probability that inf{r > 0 : IX,(1)| > 8} = oo with a large proba-
bility. We will need to carefully look at the interaction of two components in the coupled system
to show that Ty = oo with a large probability.
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Lemma 2.3. There is a universal constant C > 1 such that

E( sup ™' X (1) — X (t)|2> <C(x; =%+ 9> (2.15)

1<Ts
As a result, for any ¢ > 0 one has

tATs

—X|+6)2 C
IP{ / |U(s)|2dszw forsometzO} < CUS, (2.16)
€ )
0
where cq is in Assumption 2.2 and
v(t) = xo " Xi(1), Ko (1) (X (1) — X, (1)). (2.17)

Proof. Use C to denote a finite constant, whose values may change at difference appearances.
By the generalized Itd formula for jump diffusions, we have that

X () - X ()
t
— i =2+ / &9 (o — WX () — Xy (5) s
0

t
+2 f &5 (X1 (s) — X1 () T (b1(X1(), 0) — b1 X1 (5), Xa(5)))dss
0
t
+ / el (o1(X1 ), 0) = 1 K1 ), Ka9) (01 (X1 5), 0) = 1 K (), Ko s) [
0

t
- /ew / (X1 =K1 6) + 1 X152, 0.8) = K1), Ko(6). ) = X1 (5) = K )
0 R}!

~2(Xi() = X1) " (1 X16),0.) = K1), Ko (6. ) |1 (@) ds

t
+2 / 0 (X (s—) — X1 (52)) T (01 (X1 (5=), 0) — 01X (s—), Xa(s—))) AW (s)
0

1
+/e*°s f [1X165-) = K52 + 71 X1 5-), 0.) - n K1 5-), Kos-), )
0 R}!
~[Xi6-) = Ki6s-) [ [Ni(@s, do).
(2.18)
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By virtue of Kunita’s first inequality [1, Theorem 4.4.23, p. 265], for all T > 0,

t/\?a
E sup 1/ fem[!x](s—)—fms—)+y1<X1(s—),0,¢)—yl(i1<s—),iz<s—),¢>|2
te[0,T] b g
= X165 = Kits-) [ [Ni s, aop)|
T ATs
sce [ [ @o[xi6m) =Kt + nie.0.0) - n&iso). Kat). 9
0 Rﬁl
- )12
~[Xi6-) = Ki (=) [*] w1 @y
T AT T AT
= ci( / 205X, (s) — Xy ()| ds + 8* f e+ gg)
0 0
T AT
=C(s*+E / 200Xy 5) = X1 (9)]ds ).
0

(2.19)
On the other hand, the Burkholder-Davis-Gundy inequality [33, Theorem 2.13, p. 70] leads to

tATs
- - - 2
E sup ‘f€AOS(X1(S—)—Xl(S—))T(Gl(Xl(S—)»O)—Ul(Xl(S—),Xz(S—)))dwl(S)‘
t€[0,T] 0
T AT T AT
SCIE( f e2AOS|X1(s)—)~(1(s)|4ds+84 f e(_4V0+2’\°)Sds>
0 0
T ATy
4 2108 Y 4
=C(s*+E f ¥ [X, (5) = X1 (9)]'ds ).
0

(2.20)
Now, applying (2.19) and (2.20) to (2.18), and using the Lipschitz continuity of by (-, -), o1 (-, -),
and y(-, -, ), we obtain that

E sup ' |X(1) - X (0)|

t<T AT
T T AT .
<Ixi = %2+ C(s2+ / P01 s + [ f 20Xy () = Ky s)[*as ).
0 0

221
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To proceed, we estimate £ f(;A?‘S e2hos |X1 (s) — )?1 (s) |4ds. Using the generalized Itd formula
again, we have

X (1) - X ()|
t
=Ix —§1|4+/e“03(2)\0—,\)|X1(s) —il(s)|4ds
0
t

n / 479X, (5) = X1 () (X(5) = X1.(9)) T (b1 (X1 (5), 0) — b1 X1 (5), Xa(5)))ds

0
t

3 [ x5 - K1)
0

x tr] (01X1 (), 0.8) = 1 K1 5), Ka(9), ) (1 (X1 (), 0, ) = 1 K1 (9), Ka(s), )]s

t
+/ / 20 [[X15) = Ki(9) + 71 (K1 5.0, 8) ~ 1 K1 91, Ko, )| ~ [X1 ) - Ky )]
0 RZI
—4X; () = X1 [*(Xi(0) = X1 9) T (11 X (9),0,8) — 1 K1 (5), Ko (), ¢>)]v1 (d)ds
t
+4fe2*°S|X1(s—) ~Kio)f
0

x (X1 (s—) — X1 (s—)) " (01X (5=), 0) — 01 K1 (s—), Xa(s—)))d W (s)

t
+/ / 0 X1 5-) = K1 5-) + 1 X (5-),0,8) = 11 Ki 5-), Ka(5-), 9)*
0 RrI!
~[X16=) = Xis-)[*[Ni@s. o).

(2.22)
Taking expectation on both sides of (2.22), using the Lipschitz continuity of by(,-), o1(:, -),
y1(-, -, -), and noting A being chosen to be sufficiently large, we obtain

d[]EeMo(M??s) X1 A %) — X1 A T) |4]
(2.23)
< IE[ — DX (1) — X (0]t + D284e(_45°+2’\0)(mﬁ”]dt,

for some finite positive constants Dy and D,. Integrating Eq. (2.23) implies that
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Ee0 D X, A T) =X A T)|F = Ixi =%l

IATs t
<-D|E / 205X (s) — X4 (s)|4ds + Dys* f e~ 05 g
0 0
or
tATs
E / 205X (s) — X (s)|4ds <C (|x1 %t + 54) for all r > 0,
0
and thus,
tATs .
[E / 205X (5) — il(s)|4ds] o (|x1 —P+ 52) forall1>0.  (2.24)
0

Combining (2.24) and (2.21), we get that

E sup ™' |X;(t) — Sil(t)f < C(jx1 —%i|* +8%) forall T > 0. (2.25)

t<T AT

Therefore, (2.15) is proved.
Now, we consider the second part.
By virtue of the definition of v(¢) in (2.17) and Assumption 2.2 (iv),

tATs

% §)2
]P){ / |U(S)|2dSZM forsometZO}
&

0

75

< P{ f o7 (X1 (5), X (5)) (X1 (5) — Xy (5))|*ds >
0

s 2
(Ix1 —X1]+6) } (2.26)
£

(Ix) — X1 +6)2}

T5
< P{ / X1 (s) — Ko () 2ds =
ACo€
0

A standard calculation shows that for the integrable function A (s),

t t

t
Aosh 1
/h(s)ds:/e (S)dsg sup e)‘osh(s)/e_)‘osds < — sup e"h(s).
; J etos s€[0,1] J A0 sef0.1]

Therefore, it follows from (2.26) that
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I/\‘L’5

S 2
{/ |v(s)|2ds>M forsomet>0}
&

~ A - 8)?2
sp{Supe*°f|xl(t)—xl(r>lzz B }

t<Ts )\.ng

(2.27)

)\.CJE Aot ~ 2
< o E sup ' X, (1) — X1 (1)|
P A

- Chcg e

As aresult, the proof is complete. O

Lemma 2.4. Let C be as in Lemma 2.3 and L be a Lipschiz constant of f1(-) and f>(-). Suppose
|x; —X1| + 8 < 1. Then we have

t

t
P{ / Us, R ()02 ) dWa (1) + / / HE W), $)Ra(du, dd)

0 0 RZZ

Ine 2Lfc°
> Caoa/f2(xl(u))du+ "

,VO<t<Tst >1—2e.
LT i)

Proof. Let H(z, ¢) = U(x2 + y2(z, ¢)) — U (x2). From the exponential martingale inequality
(see e.g., [1, Theorem 5.2.9]), we have with probability greater than 1 — ¢,

t t
- / Uy, Xa ()02 (Z(u))d W5 (u) — / / H(Z(u), $)No(du, d¢)
0 ORZZ
<4 Ji Ux, Ko @)or Z()) Pdu + L 5 [ (aH@wm | —aH(Zu), ¢)>V2(d¢)du lne
Ineg

f Usy Ko () Z ) Pt + & / / H2 @), ¢)e POy dg)du — =

0 an

t
<5 [ 1 Ratwon Z P+ <2 / [ ey aghan — =
0

0 R”Z

As aresult, P(21) > 1 — &, where
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t t
2 :={— [ veawnnZanaWaw - [ [ 1w, Rt dg)
0 0 RZZ
t t

~ ~ C 7 Ine
<% [ WG Pau+ S [ [ et @0l agan - 25,
0 Rr}2

On the other hand, by (2.15), one has P(€2;) > 1 — ¢, where
Aot e 2 5
Qo= sup ™ [X; (1) — X1 ()|"=<—.
1<Ts €
For t <T5 and w € Q1 N 7, we have

t 1

- / Us, X2 ()02 (Z(u)dW» (u) — / f H(Zu), $)Na(du, d$)

0 0 R
t t
< % f |Uxy Xo ()02 (Z(u)) Pdu + % f / A HEW Dy, () du — %‘9
0 0 R

Ine

t
< Cyt / X (u))du — -
0 (2.28)

t t
< Cyp / fo(Xi (u))du — 1%8 +L f X () — X (u)|du
0 0

t

Ing L«/Z"/ _hgu
e

t
SCt?lo‘)‘/fz(Xl(u))du——_|__ % du
0 « P
=C /f(X())d lne  2LVC
= Cop 5 (X (w))du — — + ———.
A
0 o «/EO

Therefore, the proof is complete. O

Proof of Theorem 2.1. We can assume that ¢ € (0, %) and e 3¢ > 1 — 4e¢. Let

1 &3 g2 Ao
S=ANoA|—|— A=A ———], (2.29)
2¢ \—lne 2 2Chics

where C is in Lemma 2.3. We have from the definitions of A1, Ay that
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t t
.1 1
Py 0 ¢ lim —/fl(Xl(u))du=A1 =Py, 01 lim —/fz(Xl(u))du=A2 =1
I—o0o t t—0o0 t
0 0

It is noted that moyy + 250 < Aq so that there exists Ty, o > % < # + 455{?) such that
Px;,0(€3) = 1 — ¢, where

t t
1 1
Q3= ; f f] Xi(u))du > moyo + 25‘0 and ? / fz(X](u))du <Ay, t> Txl,g
0 0

Let M, . > 0 be sufficient large such that Py, ¢(£24) > 1 — ¢, where

t t
1 Cy ne 4L\/’5
=1 / A @)du — < f F X0 ) du + 2 > My, o0t < Ty b
0 0

|
o« Jero T
and 1, 2, be as in Lemma 2.4. By the generalized 1t6 formula, we have

t t
UXy (1)) =U ) + f LU (Z(u))du + / U, 02(Z(u—))dWa (1)
0 0

: (2.30)
T / f (0 &) + 12 E ). $) — UK (u—)Na (du. d).
0 RZZ
Definitions of 21, £2,, and Q4 lead to
t t t t
/ﬂU(Z(u))du z/[,U()?l(u))du > /EU(Xl(u))du—i—Lf 1X1 () — X1 (u)|du
0 0 0 0
t \/W t .
z/CU(Xl(u))du—i— £/e—%"du 2.31)
NG
0 0
t
2LV C
Z/ﬁU(Xl(u))du + NGY <75
0
We deduce from (2.28), (2.31), (2.30) and the definition of 24 that
t t
< 1 Capt Ine  4LVC
UXa(®) 2U(X2) + A 0/ S1Xy()du — - 0/ H2 Xy ()du + o Vo 232)

>U(Xp) — My, ¢, forallt <Tx, ¢ ATy, 0w € Q1NN QY.
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Let b, ¢ € (0, 2) such that U (x) — U(xz) > My, ¢ if [X2| < 0x, ¢, |X2| > §e ¢, Such a Ox,.¢
exists owing to (2.4). For |xz| < Oy, and o € Q7 N Q3, we must have T T > Tx, s Otherw1se
if T5 < Tx, ¢, we have U(Xz(t,;)) > U(X2) — My, ¢, which implies that |X2(r,3)| < 8e e and
again contradicts to the definition of T5.

For w € ﬂle Q;, we have T5 > Ty, .. From (2.30), Assumption 2.2, and Lemma 2.4, one has

1 2L\/’5
U &) = UG + / A @)du — Cager / FKi )+ ey
zU(§2)+/f1(X1(u))du—L/IXl(u)—il(u)ldu
0 0
t
Ine 2LVC
Caoa/ﬁ(Xl(u))du—}—T = oo (2.33)
t
LT Aqu ] 2LVC
> UX2) + (moyo + 250)t — 7/ e du— Copa Aot + % — T
0
Ine 4L\/E

>U(X t T; _— =
= (~2)+’”’10V0 + colx,,e + o \/E)\.()

> UX) +moyot, forallw e N!_ Qi1 € [Ty, ¢, T5).-

The cor@ination of (2.33) and (2.4) implies that In |f(2(t)| <In[X| — yot + 1,Vt € [Ty, ¢, T5),
so that [X,(?)| < %e‘VO’,t € [Tx,.¢, T5)- As aresult, if Xy < Oy, ¢, Ts = 0o forall w € ﬂ;‘:lQi. It
yields that for all w € N_, Q;,

liminf —————— > mqyp and lim sup
t—)OO

[UX 2< ) o K@)
t

—>00

An application of Lemma 2.3 leads to Py, 7(25) > 1 — ¢, where

t/\r(s

Ch — 8)?
Qs {/Iv(s)lzds< Co (X1 %11 +9) Vt>0}
Ao

If |x; —Xi| <6, we have from (2.29) that for all w € Q5
tA'L};

4Chcy 82 28
/ lw(s)Pds < —20% - 2% oy >0,
A0E €

By the exponential martingale inequality [32, Theorem 7.4, page 44], we have Py, 7(Q6) > 1 —

3
es > 1 — & because § < 1 , where
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t

t

2

Qg = /v(s)dWl(s)§ %/|v(s)|2ds+8,t§?5
0 0

Define
t
£:=inf{r >0: / lu(s)|?ds > &)
0

Let 2(t) = ([il 17, [iz(t)]—r)—r be solution of following coupled system

dX1(t) =b1 (X1 (1), 0)dt + 01(X1 (1), 0)dW1(2) + / 1 (X1(1),0, )N, (d1, d¢),
R}!
X (1) = by ZD)dt+1;, g 3 A X1 () =X ()1 + 01 Z()AW1 (1) + [ i Z(t—), $INi (dt, dgp),
dXo (1) = by(Z(1))dt + 02(Z(1))dWa (1) + / n(Z(—), $)Na(dt, d¢),
R}?

X1(0) =x1,X1(0) =%1, X,(0) =%,
~ (2.34)
Since fog "% p2(s)ds < e, we can apply the Cameron-Martin-Girsanov theorem to imply that

dQx, 7 En I ens
Qx, 7 — exp {_ OE/\r(s v(s)dW (s) — 5 fOS/\Ta |v(s)|2ds}, we have

under Qy, 7, defining by Py, 5 =
Wi@) + féAéA?‘s v(s)ds to be a Wiener process so that Z(t) = ([il(t)]—r, [iz(t)]T)I under
Qx, 7 is the solution to (1.1) with initial value Z. Here, we use the fact that Z(¢) = Z(t) for
all t <& A Ts, which implies

tAEATs tAEATs
Wi+ f 2oV R1(5), Ko () (X1 (5) — Ky ())ds = Wy (1) + / o(s)ds.
0 0

Moreover, since &€ A Ts = 00 in ﬂiszlﬂi if |x] —X1| + [X2| < O, ¢, We have

timint L X2 _ i Y X2 ) (XIZ(I))

> moyo > 0, if 0 € M_ i, [x1 — X1 |+ [Ra] < by, -
t—00 t —>00

On the other hand, if |x; — X;| 4+ [X2| < 6k, ¢, for w € Q25 N Q6, we have

40 ENT; ENT;
7 1
X|,Z 2
= — dW - = d
Py, exp Of v(s)dW(s) 5 O/ [v(s)|“ds
T T
1 2 —e—g—¢
=exp{— | v(s)dWi(s) — 2 lv(s)|“ds ¢ > e >1—4e.
0 0
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Since
Py, 7(N_ Q) > 1 — 68,
we have

Quy 7(NP_ 1 R0) = (1 — 68)(1 —4¢) = 1 — 10,
which implies

. UXa(0)
inf ————

Qx, 7 1lim >moyo ¢ >1—10e.
15 )q
—>00 t

Therefore, we obtain that if |x; — X | + [X2| < 6x,  then

UXo(t
]P’Xl,;{ litminf# > moyo} >1—10e.
—00

Hence, scaling ¢ by 18_07 we obtain (2.8), which together with (2.4) implies (2.9). The proof is
complete. O

3. Stability of linearizable systems and fast-slow systems

In this section, we consider the system of equations with notations as in Section 1.

dY1(®)=b1(Y1(t), Y2(1))dt + 0 (Yl(l),Yz(l))dwl(f)-FfR:n 71(Y1(t=), Y2(t—), §)Ni (d1, d¢),

dY2(1)=b2(Y1(2), Y2(2))dt +02(Y1(l),Yz(l))dwz(f)-FfRzn 72(Y1(1-), Y2 (t—), §)No(dt, de).

(3.1)

Under the condition that the second equation can be linearized (see Assumption 3.1 below),

we examine the stability of Y»(-). Then we consider the case when the two components have
different time scales.

3.1. Stability of linearizable systems

Assumption 3.1. Assume that the assumptions in Theorem 2.1 for by, o1, y; still hold and that
by, 02, 2 are linearizable in y;. That is, there exist matrices B2(y1), 221(¥1), ..., 224, (Y1),
I'>(y1) bounded in y; such that ¥,;(y;) has bounded right inverse and

1b2(2) — B2(y1)y2ll < o(y2)V(y1),

loa(z) — (221 (YDY2, - - - Boa, FDY21 < 0(72)VV (¥1),
Y2z, @) =Ta(y1, @)y2 + o(y2) V(y1),

Ib2@) | + o2 (@) @) < KV (y1),

SUPy (Rl {lo(y2)1}
ly2l

where o(y2) is a matrix or vector depending on z satisfying limy, ¢
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Let ®() = %, R() = |Y2(t)|2, by the generalized 1t6 formula for jump diffusions we
have the following equations for Y (¢), ®(¢), R(¢)

dY(t) = b1 (Z(1))dt + o1 (Z(1)dW (1) + ngl y1(Z(t=), $)N (dt, dg).
dO)=g1(Y1(1), ©@), R(@))dt + g2(Y1 (1), O@), R(f))dWZ(I)JFfR:z 83(Y1(1), ©(1), R(1), $)No(dt, d¢).
dR()=h1(Y1(®), ©@), R@®)dt + ha(Y1(2), ©(1), R(t))dwz(t)+fR:z h3(Y1(1), ©(1), R(1), $)No(dt, d@).
(3.2)
where Z(1) = (Y1 ()]", [Y20)ID) T = (Y1()]", VROIO®)]T)T.In (3.2), g; and h; with i =
1,2, 3 are given as follows. If we denote z = (yir, y;r)—r = (le, V)T then

T T 5
131, 0.r) =B2 - ZOBI 4 (_yTh@) — L] @o@) + 2520 ]) 2

[y2] ly2 13 2ly2 ly2l?
/ t+rnzé) v Vlreé) -G nee)y vs(dd)
2+ 12z, )| Iy2l lya|® ’
R}?
dy
=By(yn)f — Y_ [0 Zu(y)6] [Zu(y1)6]
=1
dy

1
+(=0TBv00 + 5 Y[~ IZa 6P + 3107 Euv)o] )6

=1
0 +Ta(y1, $)0 ) -
———— — 60— |0|°T , 0'T" , 0 d
+/2 (G g~ BT 9 + @ T2 6)0)va(d9)
Rn

+o(H)vV{yD,

(3.3)

.
82091.60.1)= TR — ZREE = (S (3)f...... Doy (1)) — 007 (S (¥, ... T2y (Y1)6).
23(y1,0,r,¢) = N+ ¥ 0+T2(y1,8)0 .

T Fn@dl T Iyl T 0+aG.90

(3.4)
hi(y1, 60, r)=2y2b2(2) + tr(o, (2)02(2)) + / 1y2(z, $)1*v2(d )
R?
)
=r (267 BayO + Y I v00 + / P21, 99 2(d9) ) +ro(r)Vi(y),
=1 R™
dy
ha(y1.0.r)=2y, 02(2) =2r Y _ 60 Zo1(y1)0 + ro(r)y/Vi(y1).
=1
h3(y1, 0,7, ¢)=ly2 + y2(z, §)|* — ly21* = r (16 + Ta(y1, $)0|* — 1).
3.5)

Let X; () = (Y1), [®0]1)T e RY x Sy and Xo(r) = R(r) € Ry. We have that
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InR(1) =h4(Y1 (1), ©), R(1))dt + h5(Y1(1), ©(), R())dW2 (1)

+ / he(Y1(1). ©(1), R(1), $)Na(dr. db),

n
R
where

1)

ha(yr,0,7) =20 Ba(y)0 + Y _ |Za(yn)0I* — 210 T S (y1)01
=1

+ / (1016 + 201, 91612 = 10+ T2v1, 96 + 1)v2(d) + oDV ),
R}2

2y 0@ &
hs(y1.0.7) =|ZYT =207 Zu(yn0 +o()yV(y),
=1

ly2 + 12(z, 9)I°

he(y1.0.r.$) =In === "7 =1n|0 + Ta(y1. )01 + o(1)\/V (y1).

When r = 0, the equation for X;(¢) := ([Y{ ()], [©()] ") is

dY (1) =b1(Y1(1),0)dt +o1(Y1(2), 0)dW (1) + / y1(Y1(t—),0,¢)Ni(dt,d¢),
R}!
de(t) = g1(Y1(1), ©(1),0)dt + g2 (Y1 (1), ©(1), 0)dW2 (1) + [ 83(Y1(1), ©(1), 0, $)N2(dt, d¢p).
(3.6)
Assume that v and v, are finite measures. Then the system has a unique invariant measure on
RY x Sy denoted by IT, due to the non-degeneracy of the diffusion, which follows from the
explicit formula for g; given above, and the boundedness of ®(¢) and the Assumption 2.2(iv).
(Although g» = 0 if Y, (7) is one-dimensional, it is noted that O is a stationary point for Y2 (#) so
that it does not change sign. As a result, when we convert to polar coordinate, ®(¢) is a constant
1 or —1. Therefore, in this case, we are considering the invariant measure of Y;(¢) and it is a
non-degenerate diffusion).
We have the following theorem.

Theorem 3.1. Let (Y1, Y2) be the solution to (3.1). Suppose Assumption 3.1 holds. If

d
= [ (207 B0+ Y (0P ~ 207 Za 0P
¢ =1
R xSy

+ 016+ Ta(y1, 901 — 10+ T2(v1, 901 + 1) 1@y, d0) <O,

then for any ¢ > 0, re *,0),y1 € Rf‘, there exists § = 6 (e, yl,x) such that
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n|Y2(0)>  ~
Py, 5 {limsupw<k}zl—e.

t—>0o0

Proof. Let U(r) = (—In|r|) v 0. Then we can straightforwardly apply Theorem 2.1 to show
that R(¢) converges to 0 exponentially fast in probability under the hypothesis of the theorem.
Note that the component ® lives in a compact manifold S; but Theorem 2.1 can be applied here
because the coupling method in Lemma 2.3 and Theorem 2.1 can be done through the (d — 1)-
dimensional Euclidean coordinates of S; and the right inverse of the diffusion coefficient for
(Y1(2),®(¢)) isbounded. 0O

3.2. Stability of the slow component in a fast-slow system

We study the fast-slow coupled jump diffusions as follows

dY5 (1) = Loy (Y5 (0, Y5(0)dt + 201 (V5. Y5 0)AW1(0) + fm 1 (Y5 (=), Y5 =), )N (dr. d),

dY5 (1) = by (Y{(1), Y5(1))dt + 02 (Y5(1)dWa (1) + / v (Y5(t-), $N(dt, d¢),
R}?

~ 3.7

where Ni (dt,d¢) =Ni(dt,dp) — %vl (d¢)dt, and 07 and y, are assumed to be functions of Y;

only. We will study the stability of the slow component for small € based on the stability of the

limit system. This problem is very important in applications. Typically, the limit system is often
much easier to analyze and compute.

We assume that Assumption 3.1 holds with X51, ..., ¥4, and I'2(¢) now being independent

of y1. Let g;, h; be functions defined as in Section 3. Using the change of variable as in Section 3,

by the generalized It6 formula for jump diffusions, we have the following equations for Y (),

0% (1) = iy R0 = Y302
1 1 ~
Y5 () = gbl(Zs(f))df'i‘ ﬁal(zs(f))dwl(t)‘i‘ / Y1(Zf (1—), $)Nj (d1, d),
R!
dO (1) = g (Y§(1), ®° (1), R (1))dt + g2(O° (1), RE(1))dWo (1) + f g3(OF (1), R (1), )No(d1, d¢).
R.?
dR®(t) = hy (Y1), ©° (1), RE(0))d1 + hp(OF (1), R®(1)dWo (1) + / h3(©° (1), R* (1), $)N> (dt, d¢p).
R};2
(3.8)
where Z (1) = ([Y5()] T, [Y5()1) T = (Y5017, VREDO[O* ()] 7).
Let IT¢ be the family of invariant measures of the system
1 1 ~
dY:(t) = gbl(Y@,())dtJr ﬁol(Yf(t),O)dWI(t)+ f Y1 (Y5(),0, )N’ (dt,d¢),
R}!
dOF (1) = g1 (Y5 (1), ©° (1), 0)dt + g2(O° (t), 0)d W (1) + / 83(0°(1), 0, p)N2(dt, d¢p).
R;2
(3.9)
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By a standard averaging principle (see e.g., [44]), we can show that [1° converges weakly to
IT; x IT,, where I1; is the invariant measure of the system (due to the fast component of (3.9) is
decoupled from the slow component),

Y1 () = b1 (Y1, 0)dt + 01 (Y1, 00dW, (1) + f WY1 (0), 0, 9N, (dr. db),
R}!

and I1, is the invariant measure of the averaged system

dO(r) =g(O@))dt + g2(0(),0)dW2(t) + / 23(0(1), 0, $)Na(dt, dg),

R}?
with
?1(9)=/g1(yl,9,0)1'11(d3’1)
RY
1 d
:(_9T§29+§Z[—|2219|2+3|9T2219|2])9
=1
0+ T2 ()0 ) .
T g el r
+ [ (g =0~ 0P+ @266 )wa(ad)
R
where

By = / Ba(yn) I (dyy).
R4

In view of Theorem 3.1, the condition for the stability of Y5 is

d
reim [ (207 Bav0 + Y (1220 2007 Za0P)

R xS, =1

+1In |0 + F2(¢)9|2 — |6+ F2(¢)9|2 + l)l_lg(dyl, do) < 0.
Since I1°(dy;, df) converges weakly to 1] x I, as ¢ — 0o, we have

d
ik =roi= [ (26720 + Y (1220 - 207 520P)
Rllxsd =1 (310)

1016+ T2@)0 — 16+ T2$)02 +1) (T x Mo)(dy1, d6).
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Theorem 3.2. Let Assumption 3.1 holds with X1, ..., Y24, and I'2(¢) now being independent
of y1. Then, for sufficiently small & > 0, the solution (Y{, Y5) satisfies

. . In|Y5()] )»*
ylzlglo Py, .y {[1_1{20 ; <5 < 0
Proof. Because of (3.10), when ¢ is sufficiently small, we have A, < —)‘7* < 0. For that ¢, ap-
plying Theorem 3.1 for (3.7) (1. plays the same role for (3.7) as A does for (3.1)), we have for
any z > 0, there exists § > 0 such that

. In|Y5() A ~
Py, .y, {limsup ———— p 7<0 >1—¢.

—>00

Letting € — 0o, we have

lim Py, y,

y2—0 t—00 t

In|Y§(z A
{lim Y20 7*<O}:1. O

In view of [30], it is easy to check that A, < 0 is the necessary and sufficient condition for the
following linear system to be exponentially stable

d
dY»(t) = B2Ya(1)dt + Z T2a Y2 (1)dWa (1) + / 2($)Y2()Ny(dt, dgp). (3.11)

=1 [
R}!

Thus, we see from Theorem 3.2 that, when the averaged system is stable, so is the fast-slow
system if ¢ is sufficiently small.

Remark 3.1. Treating two time-scale systems, one often uses the so-called freezing component
argument; see [23] and [27, pp.88-90]. Here we use a somewhat different argument. Using polar
decomposition (3.9), whether R® converges to O depends on the invariant probability measure IT°
of (Y7, ®®) for each ¢. Then the Lyapunov exponent that determines stability and that is given
by A%, is computed based on IT¢. Finally, we show A? converges to A*, which is obtained based
on the limit system.

4. Stabilization and consensus problems
4.1. Stabilization

In this section, we consider the controlled jump-diffusion system given by the following equa-
tions,
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dXi ()= b1(X1(), X2(0)dr + 01Xy (1), X2(1)dW; (1) + / y1(X1(t=), Xo(t-), $)N| (d1, d¢),

R}
Ju(t)dt
dXo(t) = by(X1 (1), Xo())dt + 02(X1 (1), Xo(1))dW7 (2) + / X1 (—), Xa(t—), $)Na(d1, d¢),
R}2

X10= x1, X2(0)=xy,

4.1)
where u(t) is a control. We want to construct a control so as to stabilize the process X,. However,
we cannot act directly to X, but only the interacting process X can be controlled. We will apply
our result to show that under certain conditions, we can control the interacting process X to have
the stability of the process X,. A system may or may not have an invariant probability measure.
The weak stabilization essentially means that we construct a control so that the resulting system
is weakly stable. That is, the resulting system has an invariant measure. The term weak stability
was originated from the work of Wonham [42].

Assumption 4.1. There exists a function U : R > [0, 00) such that

X
lim U (x) = o0, sup U(xp) <oo, Ux)—U(x])<coln u;
x>0 %2 =6y, e X2

and there are a constant Ag and functions fi, f> : R% — R so that

[LUI@) < fix),  (Uy02®) < fa(x1),  VIxa| < Ag.

Moreover, we suppose that f1 and f, are bounded above by K (1 + |x; 12) and £1(0) < 0 and
limy, o0 f1(x1) > 0. Finally, suppose that there is a matrix Q such that

bl (2)Q +tro| (z) Qo (z) + / V' (z,9)0y1(z, d)v1(dd) < c1 + calxi|?, if [xa| < Ao.
R}!

From the assumption on f7, we can write fj(x1) as fi(x;) < —K; + K2|x1|2 for some con-
stants K, K. Consider the control u(z) = AX;(¢), where A is a matrix satisfying

XTQAXl Kre1 + Kiep
—A4 i= max 7— <— .
x;eR4 Ix1] K

Now, when X; = 0 the corresponding system for X is
dXi(0) = (b1 (X1(1), 0) + () di +01 (X1 (1), O Wi (1) + f 71(X1(1), 0. )N (d1,dg).
R;!
We have for V(x) := x]— 0x that
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T T
LV(x1) =b; (x,0)Q +tro; (x1,0)Q0o1(x1, 0)

+ / v (x1.0,0)Qy1(x1.0,$)v1(dd) + x| QA
R}!
<cp—(a— x|
As a result, when x, = 0, there exists a unique invariant measure I1; for X;(¢) and
c1 = (ha—c2) f Ix1 [>T (dx) > 0.
R
That yields

C1

f fl(Xl)Hl(dxl)S—Kl‘FKz)L <0,

R4

A—C2

which implies the stability of the controlled system by an application of our main result (Theo-
rem 2.1).

4.2. Leader-following consensus problems

In this section, we apply our results to the leader-following consensus problems. We consider
a network with a leader and N identical followers. The dynamics of the leader is described by

dxo(r) = f(xo(1))dt +dW(1), 4.2)

and the dynamics of the ith follower are described by

dx;(t) = f(x;(¢))dt + Bu;(t)dt +dW(¢), i=1,...,N, 4.3)
where x; (1) e R", i =0,...,N, f:R" > R", W(¢) is an n-dimensional Brownian motion,
u= [u;r, e u;]—r (w; e R",i =1,..., N)is the control to be designed, B € R"*",

Now, we model the information flow structure among different agents and the leader as fol-
lows. Let G = {V, &, A} be a connected graph, where:

e V={0,..., N} denotes the set of nodes with O representing the leader, and k € {1, ..., N}
representing the k' agent;

e & is the set of edges, A = [ay] € RNVTD*N+D g the adjacency matrix of G. To be more
detailed, for k,/ € {1,..., N}, ar; = 1 or O indicating whether or not there is a directed in-
formation flow between agents [ and k if k [, and ay; = 0 if k = [. The connection between
followers is undirected, i.e., ax; = ajr. The edge between vertex i (representing follower) and
vertex O (representing the leader) is unidirectional, that is, follower i can receive informa-
tion from the leader while the leader needs no information from any follower. Particularly,
fori ={1,...,n}, ap; = 1 if and only if i-th follower can receive information from the leader,
and a;o =0.
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Then we obtain the Laplacian matrix 7?2 of G as follows

. 0 aQ
“"—[o; H]

where ag = (—ag, ..., —aon) ', Oy :=(0,...,0)" e RN and

-y -

Z ayj —dajn —Aa|N

Jj=0,j#1
N
—dan| Z azj ... —dsN
H= J=0.j#2
.

—ani —an?2 Z an;

L J=0,j#N

For the i-th follower, we consider the following leader-following consensus protocol
N
w@)=K Y zj@®.i=1....N, (4.4)
j=0,jeN;
where the symmetric matrix K € R”*" is the control gain to be designed, and
z;;i (1) =x;() —x; (1) + (x; (1) — x;(2))&; (1),

is the measurement of the agent j from its neighbor agent i, and &;;’s are some random noises.
Denoted by

U={u@)=(u @], ..., [axy@®]") () is given by (4.4), >0, andi =1, ..., N},

the collection of all admissible distributed protocols. We refer the reader to [36,46] and references
therein for motivation of the above system.

Assumption 4.2. We assume the following:

(1) f(y) satisfies | f(y)| <c]|yl|, for all y € R” for some constant ¢ > 0.
(ii) The noise &;;(¢) satisfies that

t t
f (% () — i ()i ()ds = / ) () = xi(5)) | 0w ) + / v N ds. de) | .
0 0 R:l
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where wj;(s) are independent standard Brownian motions, N ji(s, ¢) are jump processes.
This formulation indicates that the systems can be perturbed by both noise and jump pro-
cesses.

Definition 4.1. System (4.2) and (4.3) is said to be exponentially consentable in probability with

respect to U if there exists a protocol u € U so that for any ¢ > 0, there exists § > 0 such that for
alli=1,...,N

P {|x; (t) — xo(¢)| converges exponentially fast to 0} > 1 — &,

whenever the initial values (yo, ..., y,) € R"V of (4.2) and (4.3) satisfying that
N
D lyi—vol* <.
i=1

To proceed, let X;(t) = x;(t) — Xo(t),i = 1,...,N, x(1) := [xf(r),...,x},(t)]T,
Fi(xo(),x;i(1)) := f(xi(t)) — f(Xo(1)), and F(xo(t),...,xn (1)) = [F] Xo(1),x1(1)), ...,
Fy (Xo(1), XN(Z‘))]T, X = [X]®),..., X;(t)]T. For simplicity of notation, we will write

F(xo(t),...,xn (1)) as F(xo(), X(¢)) by the identity F (xo(), X(¢)) = F(xo(t), Xo(¢) + X1 (2),
..., X0(t) + Xy (2)). Then, one can obtain

dxo(t) = f(xo(®))dt +dW(1),
dX(1) = (F(x0(1), X(1)) — [H ® BKIX(1)) dt +dM (1) +dMo(t) +d MY @) +d M (1),

where A ® B denotes the Kronecker product of A and B, and @
N t
M) = Z /Uji [Si; @ BK]X(s)dwji(s),
ij=1}
N t
Mot)=~Y / o0 [Si ® BK]X(s)dwo; (s),
=1y
N t
m¥o =3 [ [ sy BKIX0); @i ds. a9,
Lj=lg R"!
N t
Miw==-3 [ [ 50 BKIXG1 @ N;ias.ap.
i=ly R
where S;; = [sy]yxy is an N x N matrix with s;; = —a;; and s;; = a;; and all other elements

being 0, fori, j =1,..., N, and S = [Skilyxn is an N x N matrix with 5;; = ag; and all other
entries being 0. It is easily seen that the consensus problem of (4.2) and (4.3) is equivalent to the
stability of (4.5).
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Assumption 4.3. There exists a matrix K € R”*" such that there exists a function U : R"Y -
[0, oo) satisfying the following conditions,

lim UX) =00, UX) — UK <coln o
X—0 1X]
and there is Ag such that
[LU](X) < c1(x0), [X]| < Ao,
N 2 N _ 2
Z (U;(Uji [Si; ® BK]X)> + Z (U;(U()i [Si ® BK] X)) < c2(x0), IX| < Ao,
i,j=1 i=1
[ [exp] = ao(U e + X8~ U0, 28 = a0 X1 < 0
R;2

and
/ (c1(%0) + ca(x0) + ¢3(%0)) 1* (dxo) > 0.

In the above, p*(-) is the invariant measure of (4.2). Such a pu*(-) always exists because of
Assumption 4.2.

Theorem 4.1. Under Assumptions 4.2 and 4.3, system (4.5) is exponentially stable in probability.
As a consequence, the leader-following system (4.2) and (4.3) is exponentially consentable in
probability.

In fact, our results above are verifiable. To illustrate that, we provide the following explicitly
computational example.

Example 4.1. In this example, assume that f(x) = Ax where A € R"*", Assume that B is
invertible. Let U (X) = — In |X|, by directed calculations, we have

X(A®Iy—H®BK)X"
X2 '

LUX) =—

Then, it is easy to check the remaining conditions.
5. Conclusion

We studied stability and stabilization of a fully coupled system of jump diffusions. Sufficient
conditions for stability are derived. We then investigate the stability of linearizable jump diffu-
sions and fast-slow coupled jump diffusions. Next, we develop strategies for weak stabilization
of a coupled system in which only one component can be controlled. Also considered are con-
sensus problem of leader-following systems. This paper can be readily extended to systems with
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more than two components. There are many interesting important problems remain to be inves-
tigated. Future research could be extended for regime-switching with state-dependent diffusions
or hidden Markov systems. Efforts can also be directed to studying systems with mean-fields
interactions. These and other topics deserve to be carefully examined.

Data availability
No data was used for the research described in the article.
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