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Abstract. This work is devoted to studying a class of biological control prob-

lems in a stochastic environment. Specifically, it focuses on stochastic Lotka-
Voltera systems. Our effort is on treating average cost per unit time controlled

diffusions. It is natural to use a vanishing discount argument. However, in

contrast to the existing literature, neither the “near-monotone” nor the “sta-
ble” condition is satisfied in the current set up. In reference to one of our

recent works, we divide the domain into two parts. In one sub-domain, the
“near-monotone” condition is satisfied, whereas in the other sub-domain, the

“stable” condition is satisfied. We then carefully work out the analysis in the

two domains so as to obtain the desired optimal control.

1. Controlled stochastic Predator-Prey model. Stochastic Lotka-Volterra sys-
tems have been widely used in a wide variety of applications. Not only are they
used in biological systems and ecological systems, but also they are applicable to
the study of particle systems (see [5]). In addition, more recently, such systems have
been used in social network modeling and related applications. This paper stems
from mathematical models using Lotka-Volterra equations, but mainly concentrates
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on the study of optimal controls of such systems. In fact, we focus on a class of such
systems and our primary concern is the optimal controls under a longrun average
cost criterion.

In particular, our study is motivated by a class of biological control problems from
the angle of biodiversity. Biodiversity or biological diversity is a term that refers to
the variety of life on Earth, in all its forms and all its interactions, including genes,
traits, species, and ecosystems. The popular abbreviation biodiversity came about
in the mid-1980s by a symposium in 1986.

We value biodiversity both for what it provides to humans, and for the value
it has in its own right. In short, biodiversity is the volume of life on Earth as
well as how different species interact with each other and with the physical world
around them. Specifically, in this paper, we are interested in the following aspects.
It is well known that chemicals have been used widely for pest controls. However,
they have many deleterious effects to the environment, human, and biodiversity; see
[11, 14, 18, 19]. Resistance to pesticides also erodes their effectiveness and makes
chemical control not cost-effective in the longrun; see [15, 7, 10]. Biological control is
any alternative to chemical control where natural enemies are used to control insects,
weed, and disease. Biological control has many benefits that chemical control does
not offer. It is more environment-friendly, non-toxic, and it can even be more cost
effective in a long run; see [3, 4, 9]. In this paper, we consider a control problem in
a stochastic environment. Suppose we wish to control the population of a species X
using its predator Y . The interaction of X and Y is assumed to follow a stochastic
Lotka-Voltera system of the form{

dX(t) = X(t) [(a1 − b11X(t)− b12Y (t))dt+ σ1dW1(t)]

dY (t) = Y (t) [(−a2 + b21X(t))dt+ σ2dW2(t)] .
(1.1)

However, we will control the density of Y (t) by adding u(t)×∆ to its density in
a small interval [t, t+∆). Then, we have the following controlled system{

dX(t) = X(t) [(a1 − b11X(t)− b12Y (t))dt+ σ1dW1(t)]

dY (t) = u(t)dt+ Y (t) [(−a2 + b21X(t))dt+ σ2dW2(t)] .
(1.2)

Denote by Ft the σ-algebra generated by {X(s), Y (s) : 0 ≤ s ≤ t}. We use the
predator Y as a natural control of the prey population, and assume the control
u(t) takes values in a compact interval [0,M ] for some M > 0. Our objective is to
minimize

lim sup
T→∞

1

T
Eu
x,y

∫ T

0

X(t)dt,

where Eu
x,y denotes the expectation with initial data X(0) = x, Y (0) = y, and

control u used over the class of admissible controls u(t), where u(t) is Ft-adapted.
That is, we aim to minimize the amount of substrate over the infinite horizon. The
cost criterion is in the sense of an average cost per unit time (or longrun average
cost). Note that we consider the case where the cost function does not depend on u.
The main reason is for the bio-control problem that we are considering, our priority
is on controlling X(t). Moreover, our problem is constrained. The constraint on
the economic aspect is imposed by limiting the input u(t) so that u(t) ≤ M .

We will assume throughout the paper that

a1 −
σ2
1

2
> 0 and a1 − b12

a2
M

− σ2
1

2
> 0 (1.3)
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to exclude trivial cases. If a1 − σ2
1

2 ≤ 0, it is easily seen that

lim sup
T→∞

1

T
Eu
x,y

∫ T

0

X(t)dt = 0 w.p.1 for any control.

Moreover, if a1 − b12
a2

M − σ2
1

2 < 0 with control u(t) ≡ M , X(t) satisfies that
limt→∞ X(t) = 0 then the optimal control problem is trivial.

We proceed to obtain the Hamilton-Jacobi-Bellman (HJB) equation for the op-
timal control and prove the existence and uniqueness of the solution to the HJB
equation. We follow a “vanishing discount” argument using some ideas from the
work [1], in which the HJB equation was obtained under either “near-monotone”
or “stable” conditions. Nevertheless, we note that in our current setup, our system
satisfies neither of these conditions. Thus, we need some new method to carry out
the technical analysis of the limit of the value functions for discount control prob-
lems. In particular, for our models, we can divide the underlying region into two
domains so that in one of the domains, the “near-monotone” condition is satisfied
while the “stable” condition holds for the other domain. Difficulty arises when we
examine how solutions switch back and forth between the two domains and how
the movement causes changes in the value function. Although the idea is similar to
that of [16], the model under consideration in this paper is more complicated. New
techniques are needed to treat the problem and overcome the difficulty.

The rest of the paper is organized as follows. In Section 2, we recall the notion
of stochastic ergodic control. It will be demonstrated that we can find an optimal
control in the class of Markov controls. Then we state the main theorem on the
existence and uniqueness of solution to the HJB equation, which characterizes the
optimal control. Section 3 is devoted to the proof of the main theorem using some
novel technical analysis.

2. Main results. Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space
with the filtration {Ft}t≥0 satisfying the usual condition, i.e., it is increasing and
right continuous while F0 contains all P-null sets, and (W1(t),W2(t)) is a standard
Ft-adapted two-dimensional Brownian motion such that (W1(t) − W1(s),W2(t) −
W2(s)) and Fs are independent for all t > s ≥ 0. Denote by R2,◦

+ ,R2
+ the sets

(0,∞)2 and [0,∞)2, respectively. To proceed, we recall some definitions introduced
in [1, 12]. Denote by M(∞) the family of measures {m(·)} on the Borel subsets of
[0,∞)× [0,M ] satisfying m([0, t]× [0,M ]) = t for all t ≥ 0. We say mn(·) converges
weakly to m(·) in M(∞), if

lim
n→∞

∫
f(s, α)mn(ds× dα) =

∫
f(s, α)m(ds× dα)

for any continuous function f(·) : [0,∞) × [0,M ] 7→ R with compact support. An
M(∞)-valued random measure m(·) is an admissible relaxed control for (1.2) if∫M

0

∫ t

0
f(s, u)m(ds × du) is independent of {Wi(t + s) − Wi(t), s > 0, i = 1, 2} for

each bounded and continuous function f(·). With a relaxed control m(·), (1.2)
become {

dX(t) = X(t) [(a1 − b11X(t)− b12Y (t))dt+ σ1dW1(t)]

dY (t) = mt + Y (t) [(−a2 + b21X(t))dt+ σ2dW2(t)] ,
(2.1)
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where mt =
∫M

0
umt(du) and the “derivative” mt is defined as the measure-valued

function of (ω, t) such that for any smooth and bounded function f , we have∫∫
f(s, u)m(ds× du) =

∫
ds

∫
f(s, u)ms(du).

The (t-dependent) operator associated with the controlled diffusion process (2.1),
is given by

Lmϕ(x, y) =
∂ϕ(x, y)

∂x
[x(a1 − b11x− b12y)] +

∂ϕ(x, y)

∂y
[mt + y(−a2 + b21x)]

+
1

2

(
σ2
1

∂2ϕ(x, y)

∂x2
x2 + σ2

2

∂2ϕ(x, y)

∂y2
y2
)
.

Definition 2.1. We have the following definitions and notation.

• Denote by P(M(∞)) the space of probability measures on M(∞). A relaxed
control m(·) for (2.1) is said to be Markov if there exists a measurable function
v : R2

+ 7→ P(M(∞)) such that mt = v(X(t), Y (t)), t ≥ 0. Under a relaxed
Markov control v(X(t), Y (t)), (2.1) generates a Markov process (X(t), Y (t))
with generator

Lvϕ(x, y) =
∂ϕ(x, y)

∂x
[x(a1 − b11x− b12y)]

+
∂ϕ(x, y)

∂y
[v(x, y) + y(−a2 + b21x)]

+
1

2

(
σ2
1

∂2ϕ(x, y)

∂x2
x2 + σ2

2

∂2ϕ(x, y)

∂y2
y2
)
.

where v(x, y) =
∫M

0
u[v(x, y)](du), the expectation of a random variable with

distribution v(x, y).
• A Markov control v is a relaxed control satisfying that v(z) is a Dirac measure

on [0,M ] for each z ∈ R2
+.

• Denote the set of Markov controls and relaxed Markov controls by ΠM an
ΠRM , respectively. With a relaxed Markov control, (X(t), Y (t)) is a Markov

process that has the strong Feller property in R2,◦
+ ; see [1, Theorem 2.2.12].

• Because of the nondegeneracy, any invariant probability measure in R2,◦
+ of

(X(t), Y (t)) is unique if it exits. In this case, the control v is said to be stable.
Denote by ΠSRM the set of stable relaxed Markov controls.

• Let P(X ) be the space of probability measures on a metric space X . For any
stable relaxed Markov control v, define

πv(dz × du) = [v(z)(du)]× ηv(dz) ∈ P(R2,◦
+ × [0,M ]),

and

G = {πv : v is a stable relaxed Markov control } ⊂ P(R2,◦
+ × [0,M ]),

where ηv is the invariant probability measure of (X(t), Y (t)) on R2,◦
+ .

Lemma 2.2. For any (x, y) ≥ 0, and any admissible control m(t), there exists a
unique solution to (2.1) satisfying (X(t), Y (t)) ∈ R2

+, t ≥ 0. If (x, y) ∈ R2,◦+ then

(X(t), Y (t)) ∈ R2,◦
+ , t ≥ 0 and if x = 0, y ≥ 0 then X(t) = 0, t ≥ 0.

Pick out p0 =
σ2
1∨σ2

2

2a2
. There exists positive constants K1, K2, and K3 such that

Lm(b21x+ b12y)
1+p0 ≤ K1 −K2(2κ0s+ x)1+p0 −K2(2κ0s+ x)p0xf1(x, y), (2.2)
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Consequently, it holds for any admissible relaxed control m(·) that

Em
x,y

(
b21X(t)+b12Y (t)

)1+p0 ≤ (b21x+b12y)
1+p0e−K2t+

K2

K1
for s > 0, x ≥ 0, (2.3)

As a corollary, for any stable relaxed Markov control v, we have∫
R2,◦

+

(b21x+ b12y)
1+p0ηv(ds, dx) ≤

K2

K1
. (2.4)

where ηv is the invariant probability measure of (X(t), Y (t)) on R2,◦
+ under control

v.

Proof. The existence and uniqueness of positive solutions are standard, which are
thus omitted here. With

Up(x, y) = [b21x+ b12y]
1+p0 ,

we have

LmUp0
(x, y) =(1 + p0)[b21x+ b12y]

p0
(
b21a1x− b21b11x

2 −mt − b12a2y
)

+ p0(1 + p0)[b21x+ b12y]
p0−1(b221σ

2
1x

2 + b212σ
2
2y

2)

≤k1p0
− (1 + p0)(b21x+ b12y)

p0(b12a2y + b21a2x)

+ p0(1 + p0)(σ
2
1 ∨ σ2

2)(b21x+ b12y)
1+p0

≤k1p0
− [a2 − p0(σ

2
1 ∨ σ2

2)](1 + p0)Up0
(x, y)

where k1p0
is a constant independent of (x, y). (2.2) therefore holds. Apply-

ing Dynkin’s formula to the function eK2tU0(x, y) we can obtain easily (2.3)
using (2.2).

Lemma 2.3. With the control u(t) ≡ M , there exist a unique invariant measure
of (X(t), Y (t)) on R2,◦+ and

lim
T→∞

1

T

∫ T

0

Eu
x,yX(t)dt <

2a1 − σ2
1

b11
.

Proof. Under condition (1.3), it was proved in [20] (see also [17] for a similar model)
that the solution (X(t), Y (t)) to{

dX(t) = X(t) [(a1 − b11X(t)− b12Y (t))dt+ σ1dW1(t)]

dY (t) = M + Y (t) [(−a2 + b21X(t))dt+ σ2dW2(t)]
(2.5)

has a unique invariant probability measure on R2,◦
+ and the transition probability

of (X(t), Y (t)) converges weakly to π. The weak convergence and the uniform
boundedness of E(X(t) + Y (t))1+p0 in (2.3) implies that

lim
t→∞

Eu
x,yX(t) =

∫
R2,◦

+

xπ(dxdy) > 0 and

lim
t→∞

Eu
x,yY (t) =

∫
R2,◦

+

yπ(dxdy) > 0.

On the other hand, we have from Itô’s formula that

Eu
x,y lnX(t)− lnx = (a1 −

σ2
1

2
)t+

∫ t

0

Eu
x,yb11X(s)ds+

∫ t

0

Eu
x,yb12Y (s)ds.
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Since supt≥0 Eu
x,y lnX(t) ≤ supt≥0 lnEu

x,yX(t) < ∞, we have

lim sup
T→∞

1

T

(
Eu
x,y lnX(t)− lnx

)
≤ 0,

which leads to

a1 − b11

∫
R2,◦

+

xπ(dxdy)− b12

∫
R2,◦

+

yπ(dxdy)

= a1 −
σ2
1

2
− lim

T→∞

1

T

∫ T

0

Eu
x,y(b11X(s) + b12Y (s))dsdt ≤ 0.

As a result,

lim
t→∞

Eu
x,yX(t) =

∫
R2,◦

+

xπ(dxdy)

≤ 1

b11

(
a1 −

σ2
1

2
− b12

∫
R2,◦

+

yπ(dxdy)

)
<

2a1 − σ2
1

b11
.

The following lemma enables us to find the optimal control in the class ΠSRM .

Lemma 2.4. For any admissible relaxed control m,

lim inf
T→∞

1

T
Em
x,y

∫ T

0

X(t)dt ≥ ρ∗

:= inf

{∫
R2,◦

+ ×[0,M ]

xπv(dx× dy × du), v ∈ ΠSRM

}
.

(2.6)

Proof of Lemma 2.4. We define G1 as the class of πv,0 = [v(z)(du)]×ηv,1(du) where
v is a relaxed Markov control and ηv,1 is the invariant probability measure of the
solution (X(t), Y (t)) to (2.1) with X(0) = 0, Y (0) ≥ 0, and mt = v(X(t), Y (t)).
Similarly, we define G2 as the class of πv,2 = [v(z)(du)] × ηv,0(du), where v is a
relaxed Markov control and ηv,2 is the invariant probability measure of the solution
(X(t), Y (t)) to (2.1) with X(0) > 0, Y (0) ≥ 0, mt = v(X(t), Y (t)). Because of
the tightness due to (2.3) and the invariance of the two sets (0,∞) × [0,∞) and
{0} × [0,∞), the existence of ηv,1 and ηv,2 is straightforward. We also have

G1 ⊂ P({0} × [0,∞)× [0,M ]),G2 ⊂ P((0,∞)× [0,∞)× [0,M ]).

Now, for any admissible relaxed control m, define an empirical measure ζmT as a

P(R2,◦
+ × [0,M ])-valued process satisfying that∫

R2,◦
+ ×[0,M ]

fdζmT = Em
x,y

1

T

∫ T

0

(∫ M

0

f(X(t), Y (t), u)mt(du)

)
dt.

In view of Lemma 2.2, the family {ζmT , T > 0} is tight on P(R2
+ × [0,M ]). As a

result, we can decompose any limit point ζ̂ ∈ P(R2
+ × [0,M ]) as

ζ̂ = p1ζ1 + p2ζ2,

with ζ1 ∈ P({0} × [0,∞)× [0,M ]), and ζ2 ∈ P((0,∞)× [0,∞)× [0,M ]).
Because (0,∞)× [0,∞) and {0} × [0,∞) are two invariant sets for (X(t), Y (t))

for any control m(t), we can show that ζ1 ∈ G1 and ζ2 ∈ G2; see [1, Lemma 3.4.6].
For any Markov control v, we have

Y (t) ≤ Ỹ (t) given X(t) = 0, Y (0) ≤ Ỹ (0)
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where Ỹ (t) be the solution to

dỸ (t) = (M − a2Ỹ (t))dt+ σ2Ỹ (t)dW2(t)

As a result, we have that∫
R2

+×[0,M ]

yζ1(dx, dy, u) ≤ lim sup
t→0

1

t

∫ t

0

EY (s)ds

≤ lim
t→0

1

t

∫ t

0

EỸ (s)ds =
M

a2
,

(2.7)

where the last equality is proved in [16]. We have from (2.7) and (1.3) that∫
R2

+×[0,M ]

(
a1 − b11x− b12y −

σ2
1

2

)
ζ1(dx, dy, du) ≥ a1 −

Mb12
a2

− σ2
1

2
> 0. (2.8)

For a control v, let ηev,2 be an ergodic probability measure of (Xv(t), Y v(t)), the
stationary solution to (2.1) under control v with distribution ηev,2 on (0,∞)× [0,∞).
We have from the strong law of large numbers that

lim
t→∞

lnXv(t)

t
= lim

t→∞

1

t

∫ t

0

(a1 − b11X
v(s)− b12Y

v(s)) ds+
σ2W (t)

t

=

∫
(0,∞)×[0,∞)]

(
a1 − b11x

′ − b12y
′ − σ2

1

2

)
ηev,2(dx

′, dy′)

:=e0

(2.9)

If e0 ̸= 0, it would lead to either limt→∞ X(t) = 0 or limt→∞ Xv(t) = ∞,
both contradicts the assumption that (Xv(t), Y v(t)) is a stationary process with
distribution ηev,2 on (0,∞)× [0,∞). As a result, for any control v and any invariant
probability measure ηv,2 on (0,∞)× [0,∞) of the solution to (2.1) under control v,
we have e0 = 0, which yields∫

R2
+×[0,M ]

(
a1 − b11x

′ − b12y
′ − σ2

1

2

)
ξ2(dx

′, dy′, du) = 0. (2.10)

Let {tk} be a sequence increasing to infinity such that ζmtk converges to ζ̂ as
k → ∞. We have

lim
tk→∞

Em
x,y lnX(t)

tk
= lim

t→∞

1

tk

∫ tk

0

Em
x,y (a1 − b11X

v(s)− b12Y
v(s)) ds

=

∫
R2

+×[0,M ]

(
a1 − b11x

′ − b12y
′ − σ2

1

2

)
ζ̂(dx′, dy′, du)

=p1

∫
R2

+×[0,M ]

(
a1 − b11x

′ − b12y
′ − σ2

1

2

)
ζ1(dx

′, dy′, du).

(2.11)
In view of (2.3),

lim
tk→∞

Em
x,y lnX(t)

tk
≤ 0. (2.12)

From (2.11), (2.12), and (2.8), we must have p1 = 0 or ζ̂ = ζ2. Now, we can
decompose ζ2 into:

ζ̂ = ζ2 = p3ζ3 + p4ζ4

where ζ3 ∈ P(R2,◦
+ × [0,M ]) and ζ4 satisfying ζ4((0,∞)× {0} × [0,M ]) = 1.
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Since ζ3 is in G, Similar to (2.10), we also have∫
R2

+×[0,M ]

(
a1 − b11x

′ − b12y
′ − σ2

1

2

)
ζ3(dx

′, dy′, du) = 0, (2.13)

which together with (2.10) implies that∫
R2

+×[0,M ]

(
a1 − b11x

′ − b12y
′ − σ2

1

2

)
ζ4(dx

′, dy′, du) = 0. (2.14)

Since
∫
R2

+×[0,M ]
y′ζ4(dx

′, dy′, du) = 0, we deduce from (2.14) that∫
R2

+×[0,M ]

(
a1 − b11x

′ − σ2
1

2

)
ζ4(dx

′, dy′, du) = 0

or ∫
R2

+×[0,M ]

x′ζ4(dx
′, dy′, du) =

a1 − σ2
1

2

b11
. (2.15)

By the weak convergence, the uniform boundedness of

Em
x,y(b21X(t) + b12Y (t))1+p0

in (2.3), and using (2.15), we have that

lim
n→∞

1

tn
Em
x,y

∫ tk

0

X(t)dt

= p3

∫
R2

+×[0,M ]

x′ζ3(dx
′, dy′, du) + p4

∫
R2

+×[0,M ]

x′ζ4(dx
′, dy′, du)

≥ p3ρ
∗ +

a1 − σ2
1

2

b11
p4 ≥ ρ∗,

since

ρ∗ <
a1 − σ2

1

2

b11
,

because of Lemma 2.3. The proof is complete.

Let C1+p be the class of functions V : R2,◦
+ 7→ R such that

|V (x, y)| ≤ cV (1 + x+ y)1+p, (x, y) ∈ R2,◦
+ for some cV > 0 and p ∈ (0, p0).

To proceed, we state the main result of this paper. The proof of Theorem 2.5 is
relegated to the next section.

Theorem 2.5. There is a unique pair (V, ρ), where V ∈ C2(R2,◦
+ )∩C1+p and ρ ∈ R

satisfying the equation

min
u∈[0,M ]

{LuV (x, y) + x} = ρ.

Moreover, we have ρ = ρ∗ and v∗ ∈ ΠRM is an optimal control if and only if it
is a measurable selector from the minimizer

min
u∈[0,M ]

{LuV (x, y) + x} .

In fact, we can choose

v∗(x, y) =

 0 if
∂V (x, y)

∂x
≥ 0,

M otherwise.
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3. Technical lemmas and proofs of main results. As mentioned in the in-
troduction, we use the vanishing discount argument. Thus, we need to analyze
Vγ(x, y), the optimal γ-discounted cost, that is

Vγ(x, y) = inf

{
Ev
x,y

∫ ∞

0

e−γtX(t)dt : v ∈ ΠRM

}
, (x, y) ∈ R2,◦

+ .

We deduce from [1, Theorem 3.5.6 & Remark 3.5.8] that Vγ(x, y) ∈ C2(R2,◦
+ ) ∪

Cb(R2,◦
+ ) satisfies

min
u∈[0,M ]

{LuVγ(x, y) + x} = γVγ(x, y). (3.1)

and the optimal Markov control vγ is a selector of minu∈[0,M ] {LuVγ(x, y) + s}. The
following lemma is from [1, Lemma 3.7.8].

Lemma 3.1. Fix (x∗, y∗) ∈ R2,◦
+ . For any sequence γn ↓ 0, there exists a subse-

quence, γkn , a function V ∈ C(R2,◦
+ ), and a constant ρ such that as kn → ∞,

γkn
Vγkn

(x∗, y∗) → ρ and
V γkn

(x, y) := Vγkn
(x, y)− Vγkn

(x∗, y∗) → V (x, y)
(3.2)

uniformly on each compact subset of R2,◦
+ . Moreover, we have

min
u∈[0,M ]

{LuV (x, y) + x} = ρ ≤ ρ∗, (x, y) ∈ R2,◦
+ .

To prove Theorem 2.5, our goal is to show that a limit function V in Lemma 3.1
lies in the family C1+p. To enhance readability, we offer a road map of the proof
outlined below. Using a Lyapunov function defined in (3.3), we adopt the idea in
[6, 17] to show in Proposition 3.3 that the time (X(t), Y (t)) reaches a set H of the
form {x+x−1+y < H} has bounded 1+p-th moment for some p > 0. The proof of

Proposition 3.3 relies on an estimate for the long-run average of LvṼ (X(t), Y (t)),
provided in Lemma 3.2. Second, we show that V (x, y), the limit in (3.2), is bounded

in H. Since H is noncompact in R2,◦
+ , we break H into two sets Hγ

1 and Hγ
2 in

Proposition 3.5 determined by the average of Y (t) on a time interval [0, T ∗] under a
γ-discounted optimal control. Because H is noncompact, it is important to estimate
the probability where (X(t), Y (t)) stays in a compact set of R2,◦

+ , which is given
in Lemma 3.4. That estimate helps us to show that V (x, y) is bounded in H by
analyzing the dynamics of (X(t), Y (t)) in several cases.

Pick b0 > 0 such that

Ṽ (x, y) =
2

a2
(b21x+ b12y)− lnx+ b0 ≥ 0 for all x, y > 0.

LvṼ (x, y) =LvṼ1(x, y) + LvṼ2(x, y)

=
2

a2
(b21x(a1 − b11x) + b12(v(x, y)− a2y))− (a1 − b11x− b12y) +

σ2
1

2

≤ 2

a2
(b21x(a1 − b11x) + b12M) + b11x− b12y +

σ2
1

2
.

(3.3)
It is easy to see that there exists H > 0 such that

LvṼ (x, y) ≤ −1 if (x, y) ∈ R2,◦
+ , x+ y ≥ H. (3.4)
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Lemma 3.2. Let

∆ :=
1

5

(
a1 − b12

a2
M

− σ2
1

2

)
> 0.

There exists T1 > 0 such that for any T2 > 0, we can find δ2 = δ2(T2, H) > 0
satisfying that

1

T2

∫ T2

0

Ev
x,yLvV (X(t), Y (t))dt ≤ −∆ < 0 if (x, y) ∈ R2,◦

+ , x ≤ δ2, x+ y ≤ H.

Proof. Noting that

dX(t) ≤ a1X(t)dt+ σ1X(t)dW1(t),

we can easily obtain by using Dynkin’s formula, Gronwall’s inequality, and the
Burkholder-Davis-Gundy inequality (see for e.g., [13, Theorem 2.4.4], that

E sup
t∈[0,T ]

[X(t)]2 ≤ x2
0e

2a3T if X(0) = x0, (3.5)

where a3 = a1 + 2σ2
1 . Let Y (t) be the solution to

dY (t) = M − (a2 − δ1)Y (t))dt+ σ2Y (t)dt.

We have the following properties of Y (t), which have been proved in [17] (see
also [6]).

(C1)

EyY (t)1+p0 ≤ (1 + y)1+p0e−c0t + c1.

(C2) There exists a unique invariant probability measure µ of Y (t) on (0,∞) and

EµY =
a2 − δ1

M
.

(C3) For any H > 0,∆ > 0, there exists a T1 > 0 such that

1

T

∫ T

0

EyY (t)dt ≤ a2 − δ1
M

+
∆

b12
, T ≥ T1.

Note that

1

T
(Ex,y(b21X(T ) + b12Y (T ))− (b21x+ b12y)) =

∫ T

0

Ev
x,yLvV1(X(t), Y (t))dt.

(3.6)
We have from (2.3) and (3.6) that

1

T

∫ T

0

Ev
x,yLvV1(X(t), Y (t))dt ≤ K3(1 + x+ y)

T
, T > 1. (3.7)

for some constant K3 > 0 independent of T, x, y. Let δ2 > 0 to be determined.
Define

ξδ1 = inf{t ≥ 0 : X(t) ≥ δ1}.
By a comparison theorem, we have Y (t) ≤ Y (t) for 0 ≤ t ≤ ξδ1 . As a result, for

T2 ≥ T1, we have

1

T2
Ev
x,y

∫ T2

0

1{ξδ1>T2}Y (t)dt ≤ Ey
1

T2

∫ T2

0

1{ξδ1>T2}Y (t)dt

≤ 1

T2
Ey

∫ T2

0

Y (t)dt ≤ a2 − δ1
M

+
∆

b12
.

(3.8)
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On the other hand, we have from Holder’s inequality that

1

T2

∫ T2

0

Ev
x,y1{ξδ1≤T2}Y (t)dt ≤ 1

T2

∫ T2

0

(
[Py{ξδ1 ≤ T2}]

p0
1+p0 Ev

x,y

(
Y (t)1+p0

) 1
1+p0

)
dt

≤
[
Pv
x,y{ξδ1 ≤ T2}

] p0
1+p0 K4(H + 1)1+p0

≤[
xea3T2

δ1
]

p0
1+p0 K4(H + 1)1+p0 if x+ y ≤ H,

(3.9)
where K4 is independent of x, y, T1, T2 and the last inequality is due to an applica-
tion of Markov’s inequality to (3.5). Let δ2 = δ2(δ1, T2, H) > 0 such that

[
δ2e

a3T2

δ1
]

p0
1+p0 K4(H + 1)1+p0 ≤ ∆

b12
and

b11δ2
a3T2

ea3T2 ≤ ∆. (3.10)

Adding (3.8) and (3.9), we have

1

T2

∫ T2

0

Ev
x,yY (t)dt ≤a2 − δ1

M
+

∆

b12
+ [

xea3T2

δ1
]

p0
1+p0 K4(H + 1)1+p0

≤a2 − δ1
M

+
2∆

b12
if x+ y ≤ H and x ≤ δ2.

(3.11)

If x ≤ δ2, we have from (3.5) that

1

T2
Ev
x,y

∫ T2

0

b11X(t)dt = b11
1

T2

∫ T2

0

xea2tdt ≤ b11δ2
a3T2

ea3T2 ≤ ∆. (3.12)

From (3.7), (3.11), and (3.12), if T1 ≥ K3(1+H)
∆ we have for any T2 ≥ T1 and δ2

satisfying (3.10) that

1

T2

∫ T2

0

Ev
x,yLvṼ (X(t), Y (t))dt =

1

T2
Ev
x,y

∫ T2

0

LvṼ1(X(t), Y (t))dt

− a1 +
σ2
1

2
+ b11

1

T2
Ev
x,yX(t)dt+ b12

1

T2
Ev
x,yY (t)dt

≤− a1 +
σ2
1

2
+ b12

a2 − δ1
M

+ 3∆ ≤ −∆

(3.13)

for any (x, y) ∈ R2,◦
+ , x+ y ≤ H,x ≥ δ2.

Proposition 3.3. Pick 0 < p < p0. There exists A, cU1 , T2 > 0 such that

U(x, y) = A(b21x+ b12y)
1+p + Ṽ 1+p(x, y)

satisfies

1.

Ev
x,yU(X(τ), Y (τ)) ≤ U(x, y) + cU1 Ev

x,yτ

for any stopping time τ with bounded expectation,
2.

Ev
x,yU(X(t), Y (t)) ≤ max{(C∗/κ∗)

p+1
p , U(x, y)}+ cU1 T2, t ≥ 0,

3. for any B sufficiently large, there exists cB > 0 such that

Ev
x,y(τ

∗
B)

1+p ≤ cBU(x, y), (x, y) ∈ R2,◦
+ , v ∈ ΠRM

where τ∗B = inf{t ≥ 0 : U(X(t), Y (t)) ≤ B}.
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Proof. Because

1

T2

∫ T2

0

Ev
x,yLvṼ (X(t), Y (t))dt ≤ −∆ < 0 if x ≤ δ2, x+ y ≤ H,

and LvV (x, y) ≤ −1 if x + y ≥ H, and because of (2.2), (2.2), we can verbatim
follow the proof of [2, Proposition 4.9] to show that

Ev
x,yU(X(T2), Y (T2)) ≤ U(x, y)− κ∗U

p
p+1 (x, y) + C∗ (3.14)

where

U(x, y) = A(b21x+ b12y)
1+p + V 1+p(x, y)

for a sufficiently large A > 0 and 0 < p < p0, κ∗, C∗, T2 are positive numbers
independent of x, y. It is easy to check that when A is sufficiently large, we have

LU(x, y) ≤ cU1 for any (x, y) ∈ R2,◦
+ . (3.15)

As a consequence of (3.14), we have from (37) of [8, Theorem 3.6] that

Ev
x,y(τ

∗
B)

1+p ≤ C

1 + Ev
x,y

τ∗
B−1∑
k=0

(k + 1)p

 ≤ CBU(x, y) (3.16)

where τ∗B = inf{n ≥ 0 : U(X(nT2), Y (nT2)) ≤ B} for any B > (C∗/κ∗)
p+1
p . The

proof of part (3) is complete.
We also have from (3.15) and Dynkin’s formula that

Ev
x,yU(X(τ ∧ ξR), Y (τ ∧ ξR)) ≤ U(x, y) + cU2 Ev

x,yτ ∧ ξR ≤ U(x, y) + cU2 Ev
x,yτ

where ξR = inf{t ≥ 0 : X(t) ∨ Y (t) ≥ R}. Letting R → ∞ and applying Fatou’s
lemma we obtain part (1) of the proposition When τ = T2, we have

Ev
x,yU(X(t), Y (t)) ≤ U(x, y) + cU1 T2, t ∈ [0, T2]. (3.17)

On the other hand, it is easy to deduce from (3.14) that

Ev
x,yU(X(kT2), Y (kT2)) ≤ max{(C∗/κ∗)

p+1
p , U(x, y)}, k ∈ Z+. (3.18)

In view of (3.18) and (3.17) and the Markov property of (X(t), Y (t)) we have
that

Ev
x,yU(X(t), Y (t)) ≤ max{(C∗/κ∗)

p+1
p , U(x, y)}+ cU1 T2 if nT2 ≤ (n+ 1)T2.

Thus, part (2) is proved.

In what follows, we pick B > (C∗/κ∗)p+1p. We let H = {(x, y) ∈ R2,◦
+ : U(x, y) ≤

B} and τH := τ∗B .

Lemma 3.4. For any H > 1 and ε > 0, there exists a δ = δ(H, ε) > 0 such that

Pv
x,ε{Y (τH) ≥ δ} ≥ 1

2
, for any H−1 ≤ x ≤ H, v ∈ ΠRM . (3.19)

Proof. In view of Itô’s formula, we have

lnY (τH) ≥ lnY (0) +

(
−a1 −

σ2
2

2

)
τH +

∫ τH

0

X(s)ds+ σ2W2(τH)

≥ lnY (0)−
(
a1 +

σ2
2

2

)
τH + σ2W2(τH).
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Note that Ex,ετH ≤ CH,ε < 0 due to part (3) of Proposition 3.3. Further-
more, we have from the Burkholder-Davis-Gundy inequality that Ev

x,εσ2|W2(τH)| ≤
2Ev

x,ετH ≤ 2CH,ε As a result, we have from Markov’s inequality that

Pv
x,ε

{
lnY (τH) ≤ ln ε− 2(a1 +

σ2
2

2
+ 2)CH,ε

}
≤Pv

x,ε

{(
a1 +

σ2
2

2

)
τH + σ2|W2(τh)| ≥ 2(a1 +

σ2
2

2
+ 2)CH,ε

}
≤ 1

2(a1 +
σ2
2

2 + 2)CH,ε

((
a1 +

σ2
2

2

)
Ev
x,ετH + σ2Ev

x,ε|W2(τh)|
)

≤1

2
,

which leads to

Pv
x,ε

(
Y (τH) ≥ ε exp

(
−2(a1 +

σ2
2

2
+ 2)CH,ε

))
≥ 1

2
.

The proof is complete.

Proposition 3.5. Let V (x, y) be a limit in (3.2). We have

sup
(x,y)∈H

|V (x, y)| < ∞.

Proof. Let vγ be the optimal Markov control of the γ-discounted control problem.

Let ε∗ = 1
5

(
a1−

σ2
1
2

b11
− ρ∗

)
, and ρ = ρ∗ + ε∗ =

a1−
σ2
1
2

b11
− 4ε∗. In view of (2.3), there

is CH > 0 such that

Ev
x,yX(t) ≤ CH and CB max{(C∗/κ∗)

p+1
p , U(x, y)}+ CBc

U
1 T2 ≤ CH

for any (x, y) ∈ H, t ≥ 0. Thus, we can pick T ∗ >
ρCH + 1

ε∗
such that

Ev
x,y lnX(t)− lnx

t
≤

Ev
x,yX(t)− lnx

t
≤ ε∗ for any t ≥ T ∗, (x, y) ∈ H. (3.20)

By virtue of (3.2), there is a γ∗ sufficiently small such that

γVγ(x∗, y∗) ≤ ρ, for γ < γ∗. (3.21)

We can also assume γ∗ satisfies

(1− e−γ∗T
∗
)CH ≤ ε∗. (3.22)

Now for each γ < γ∗, we split H into two disjoint subsets (one of which is
probably empty):

Hγ
1 =

{
(x, y) ∈ H : b12

1

T ∗

∫ T∗

0

Evγ
x,yY (s)ds ≤ b11ε

∗

}
and Hγ

2 = H \Hγ
1 .

In view of Itô’s formula, we have

Ev
x,y lnX(t)− lnx

t
= a1 −

σ2
1

2
− b11

1

t

∫ t

0

Ev
x,yX(s)ds− b12

1

t

∫ t

0

Ev
x,yY (s)ds

which together with (3.20) implies

1

T ∗

∫ T∗

0

Evγ
x,yX(s)ds ≥

a1 − σ2
1

2

b11
− 2ε∗ if (x, y) ∈ Hγ

1 . (3.23)
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Combining (3.22) and (3.23) yields

Evγ
x,y

∫ T∗

0

e−γtX(t)dt =Evγ
x,y

∫ T∗

0

X(t)dt− Evγ
x,y

∫ T∗

0

(1− e−γt)X(t)dt

≥Evγ
x,y

∫ T∗

0

X(t)dt− CH

∫ T∗

0

(1− e−γt)dt

≥Evγ
x,y

∫ T∗

0

X(t)dt− ε∗T
∗

≥(
a1 − σ2

1

2

b11
− 2ε∗)T

∗ − ε∗T
∗ ≥ (ρ∗ + 2ε∗)T

∗,

for (x, y) ∈ Hγ
1 , γ < γ∗.

(3.24)

By (3.21), we deduce that

0 ≤ inf
(x,y)∈H

Vγ(x, y) ≤
ρ

γ
< ∞ for γ ≤ γ∗. (3.25)

Since (X(t), Y (t)) is a strong Markov process under a Markov control, we have
from (3.25) that

Vγ(x, y) =Evγ
x,y

∫ τT∗
H

0

e−γtX(t)dt+ Evγ
x,y

[
e−γτT∗

H Vγ

(
X(τT

∗

H ), Y (τT
∗

H )
)]

≥Evγ
x,y

∫ τT∗
H

0

e−γtX(t)dt+

(
inf

(x,y)∈H
Vγ(x, y)

)
Evγ
x,ye

−γτT∗
H

≥Evγ
x,y

∫ τT∗
H

0

e−γtX(t)dt+ inf
(x,y)∈H

Vγ(x, y)−
ρ

γ
Evγ
x,y(1− e−γτT∗

H )

for (x, y) ∈ R2,◦
+ ,

(3.26)
where τT

∗

H = inf{t ≥ T ∗ : (X(t), Y (t)) ∈ H}. By the Markov property of (X(t), Y (t))
and Proposition 3.3, we have

1

γ
Evγ
x,y(1− e−γτT∗

H ) ≤Evγ
x,yτ

T∗

H ≤ T ∗ + Evγ
x,y(τ

T∗

H − T ∗)

=T ∗ + Evγ
x,yE

vγ

X(T∗),Y (T∗)τH

≤T ∗ + Evγ
x,yCBU(X(T ∗), Y (T ∗))

≤T ∗ + CB max{(C∗/κ∗)
p+1
p , U(x, y)}+ CBc

U
1 T2 ≤ T ∗ + CH.

(3.27)
Combining (3.27), (3.24), and (3.26), we have

Vγ(x, y) ≥ inf
(x,y)∈H

Vγ(x, y) + (ρ∗ + 2ε∗)T
∗ − ρ(T ∗ + CH)

≥ inf
(x,y)∈H

Vγ(x, y) + ε∗T
∗ − ρCH (since ρ = ρ∗ + ε∗)

> inf
(x,y)∈H

Vγ(x, y) + 1 (since T ∗ >
ρCH + 1

ε∗
),

which is followed by

V γ(x, y) ≥ inf
(x,y)∈H

V γ(x, y) + 1, (x, y) ∈ Hγ
1 , γ ≤ γ∗.



A CLASS OF LONG-RUN AVERAGE CONTROL PROBLEMS 15

As a consequence,

inf
(x,y)∈H

V γ(x, y) = inf
(x,y)∈Hγ

2

V γ(x, y) for γ ≤ γ∗. (3.28)

Now, for (x, y) ∈ Hγ
2 , there exists tx,y ∈ [0, T ∗] such that

Evγ
x,yY (tx,y) ≥ ε∗

b11
b12

.

On the other hand, since Evγ
x,yY 1+p0(tx,y) ≤ CH, we have

Evγ
x,y

[
1{Y (tx,y)≤ε∗

b11
2b12

}Y (tx,y)

]
≤
(
Pvγ
x,y{Y (tx,y) ≥ ε∗

b11
2b12

}
) p0

1+p0 (
Evγ
x,yY

1+p0(t)
) p0

1+p0

≤
(
Pvγ
x,y{Y (tx,y) ≥ ε∗

b11
2b12

}
) p0

1+p0

C
1

1+p0

H .

On the other hand,

Evγ
x,y

[
1{Y (tx,y)≥ε∗

b11
2b12

}Y (tx,y)

]
= Evγ

x,yY (tx,y)− Evγ
x,y

[
1{Y (tx,y)≤ε∗

b11
2b12

}Y (tx,y)

]
≥ ε∗

b11
b12

− ε∗
b11
2b12

= ε∗
b11
2b12

.

Combining the two displayed equations above, we have

Pvγ
x,y{Y (tx,y) ≥ ε̂∗ := ε∗

b11
2b12

} ≥ C
− 1

p0

h

(
ε∗

b11
2b12

) 1+p0
p0

=: 4q.

As a result,

Pvγ
x,y{η ≤ T ∗} ≥ 4q, for (x, y) ∈ Hγ

2 , (3.29)

where

η = inf {t ≥ 0 : Y (t) ≥ ε̂∗} .
Defining

τηH = inf{t ≥ η ∧ T ∗ : (X(t), Y (t)) ∈ H},
we have

Evγ
x,yτ

η
H =Evγ

x,y(η ∧ T ∗) + Evγ
x,y(τ

η
H − (η ∧ T ∗))

≤T ∗ + Evγ
x,y

[
Evγ

X(η∧T∗),Y (η∧T∗)τH

]
≤T ∗ + Evγ

x,y[cBU(X(η ∧ T ∗), Y (η ∧ T ∗))]
1

1+p

≤T ∗ +
(
Evγ
x,y[cBU(X(η ∧ T ∗), Y (η ∧ T ∗))]

) 1
1+p

≤T ∗ + cB(U(x, y) + cUEvγ
x,y(η ∧ T ∗))

1
1+p

≤T ∗ + cB(U(x, y) + cUT
∗)

1
1+p .

(3.30)

Since

Evγ
x,yU(X(η ∧ T ∗), Y (η ∧ T ∗)) ≤ U(x, y) + cU1 T

∗

≤ H1 := sup
(x,y)∈H

{U(x, y)}+ cU1 T
∗, (3.31)
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applying Markov’s inequality and using (3.29), (3.31), we have

Pvγ
x,y

{
η ≤ T ∗ and U(X(η), Y (η)) ≤ H1

2q

}
≥ 2q, for (x, y) ∈ Hγ

2 . (3.32)

In view of Lemma 3.4, there exists a δ∗ > 0 depending only on H1

2q and ε̂∗ such

that

Pvγ
x,y{X(τH) ≥ δ∗} >

1

2
, if U(x, y) ≤ H1

2q
, y ≥ ε̂∗, γ ∈ (0, 1). (3.33)

We can assume without loss of generality that δ∗ < x∗ and define H3 = {(x, y) ∈
H : y ≥ δ∗}. Observe that H3 is a compact subset of R2,◦

+ . Because of the strong
Markov property of (X(t), Y (t)) under the Markov control vγ and because of (3.32)
and (3.33), we can estimate

Pvγ
x,y {(X(τηH), Y (τηH)) ∈ H3}

≥ Evγ
x,y

[
1{η≤T∗ and U(X(η),Y (η))≤H1

2q }1{(X(τη
H),Y (τη

H))∈H3}

]
= Evγ

x,y

[
1{η≤T∗ and U(X(η),Y (η))≤H1

2q }E
vγ

X(η),Y (η)1{X(τH)≥δ∗}

]
≥ 1

2
Evγ
x,y

[
1{η≤T∗ and U(X(η),Y (η))≤H1

2q }
]

≥ q.

(3.34)

Define events A = {(X(τηH), Y (τηH)) ∈ H3} and Ac = Ω\A, we have the estimate

V γ(x, y) =Evγ
x,y

∫ τη
H

0

e−γtX(t)dt+ Evγ
x,y

[
e−γτη

HVγ (X(τηH), Y (τηH))
]
− Vγ(x∗, y∗)

≥Evγ
x,y

[
1Ae

−γτη
H inf

(s′,x′)∈H3

Vγ(x
′, y′)

]
+ Evγ

x,y

[
1Ace−γτη

H inf
(x′,y′)∈H

Vγ(x
′, y′)

]
− Vγ(x∗, y∗)

=Evγ
x,y

[
1A

(
inf

(x′,y′)∈H3

Vγ(x
′, y′)− Vγ(x∗, y∗)

)]
+ Evγ

x,y

[
1Ac

(
inf

(x′,y′)∈H
Vγ(x

′, y′)− Vγ(x∗, y∗)

)]
− Evγ

x,y

[
1A(1− e−γτη

H) inf
(x′,y′)∈H3

Vγ(x
′, y′)

]
− Evγ

x,y

[
1Ac(1− e−γτη

H) inf
(x′,y′)∈H

Vγ(x
′, y′)

]
.

Since V γ(x, y) = Vγ(x, y) − Vγ(x∗, y∗) → V (x, y) as γ → 0 uniformly on each

compact set, there exists an H2 > 0 such that |V γ(x, y)| < H2 for (x, y) ∈ H3 when
γ is sufficiently small. We also have

0 ≤ inf
(x′,y′)∈H

Vγ(x
′, y′) ≤ inf

(x′,y′)∈H3

Vγ(x
′, y′)

≤ Vγ(x∗, y∗) ≤
ρ

γ
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when γ is sufficiently small. This together with (3.30), (3.34), and
inf(x,y)∈H V γ(x, y) ≤ 0 yields that

V γ(x, y) ≥−H2Pvγ
x,y(A) + inf

(x′,y′)∈H
V γ(x

′, y′)Pvγ
x,y(A

c)− ρEvγ
x,y

[
1− e−γτη

H

γ

]
≥−H2Pvγ

x,y(A) + inf
(x′,y′)∈H

V γ(x
′, y′)Pvγ

x,y(A
c)− ρEvγ

x,yτ
η
H

≥−H2 − ρ
(
T ∗ + cB(U(x, y) + cUT

∗)
1

1+p

)
+ inf

(x′,y′)∈H
V γ(x

′, y′)Pvγ
x,y(A

c),

≥−H2 − ρ
(
T ∗ + cB(U(x, y) + cUT

∗)
1

1+p

)
+ inf

(x′,y′)∈H
V γ(x

′, y′)(1− q),

for any (x, y) ∈ Hγ
2 ,

which combined with (3.28) leads to

inf
(x,y)∈H

V γ(x, y) ≥ −H2 − ρ sup
(x,y)∈H

(
T ∗ + cB(U(x, y) + cUT

∗)
1

1+p

)
+ inf

(x,y)∈H
V γ(x, y)(1− q),

or

inf
(x,y)∈H

V γ(x, y) ≥− 1

q

(
H2 + ρ sup

(x,y)∈H

(
T ∗ + cB(U(x, y) + cUT

∗)
1

1+p

))
≥ −H3

(3.35)
for some H3 independent of (x, y).

Let vc ≡ M be the constant control. Similar to the proof of [16, Lemma 4.2], we
can show that

H4 := sup
(x,y)∈H

Evc
x,yτH3

< ∞.

Noting that Ev
x,y|W (τH3

)| ≤ 2Ev
x,yτH3

< ∞, and lnX(τH3
) is bounded, we must

have from

lnX(τH3) = lnX(0) + (a1 −
σ2
1

2
)τH3 −

∫ τH3

0

(b11X(s) + b12Y (s))ds+ σ1W (τH3).

that

b11Ev
x,y

∫ τH3

0

X(s) ≤
∫ τH3

0

(b11X(s) + b12Y (s))ds

≤ lnx− Ev
x,y lnX(τH3

) + (a1 −
σ2
1

2
)Ev

x,yτH3
+ σ1Ev

x,yW (τH3
)

≤ lnx− sup
{(x′,y′)∈H3}

ln(x′) + (a1 −
σ2
1

2
)H4 ≤ H5

(3.36)
where H5 is a constant independent of (x, y) ∈ H.

Using [1, Eq. (3.7.47)], we have

V (x, y) ≤Evc
x,y

[∫ τH3

0

X(t)dt+ V (X(τH3), Y (τH3))

]
≤H5

b11
+ sup

(x′,y′)∈H3

V (x′, y′), (x, y) ∈ H.
(3.37)
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From (3.35) and (3.37), we obtain that

sup
(x,y)∈H

|V (x, y)| < ∞.

The proof of Proposition 3.5 is complete.

Now, we are in a position to prove Theorem 2.5.

Proof of Theorem 2.5. We first show that V ∈ C1. For any (x, y) ∈ R2,◦
+ , we have

V γ(x, y) =Evγ
x,y

∫ τH

0

e−γtX(t)dt+ Evγ
x,y

[
e−γτHVγ

(
X(τH), Y (τTH)

)]
− Vγ(x∗, y∗)

≥Evγ
x,yVγ

(
X(τH), Y (τTH)

)
− Evγ

x,y

[
(1− e−γτH)Vγ

(
X(τH), Y (τTH)

)]
− Vγ(x∗, y∗)

≥ inf
(x′,y′)∈H

Vγ(x
′, y′)− Vγ(x∗, y∗)− Evγ

x,y

ρ

γ
(1− e−γτH)

≥ inf
(s′,x′)∈H

V γ(s
′, x′)− Evγ

x,yτH

≥− (H3 + (cBU(x, y))
1

1+p ) due to (3.35) and Proposition 3.3.

(3.38)
Similar to (3.37), we have

V (x, y) ≤Evc
x,y

[∫ τH

0

X(t)dt+ V (X(τH), Y (τH))

]
≤ sup

(x′,y′)∈H
|V (x′, y′)|+ 1

b11

(
− lnx− sup

(x′,y′)∈H
ln(x′) + (a1 −

σ2
1

2
)Evc

x,yτH

)

≤ sup
(x′,y′)∈H

|V (x′, y′)|+ 1

b11

(
− lnx− sup

(x′,y′)∈H
ln(x′) + a1 (cBU(x, y))

1
1+p

)
.

(3.39)
Combining (3.38), (3.39), Proposition 3.5, and noting that

sup
(x′,y′)∈H

ln(x′) < ∞ and

U(x, y)
1

1+p ≤ C(x+ y − lnx+ 1),

we have V (x, y) ∈ C1+p. This property together with Proposition 3.3 gives condi-
tions needed to verbatim mimic [1, Theorem 3.7.11 and Theorem 3.7.12] to obtain
the desired result.

4. Final remarks. We have developed optimal strategies for a class of longrun av-
erage costs of Lotka-Volterra systems. We established the existence and uniqueness
of optimal controls characterized by the solution to the HJB equation. Because the
predator-prey model is a nonlinear non-monotone system, our conjecture is that the
optimal strategy to control the population of the prey is not always adding maxi-
mum amount of its predator to the system. To prove this conjecture, we need to run
numerical solutions to the optimal control problem. Note that numerical solutions
to ergodic optimal control problems have not been very well understood. Moreover,
we do not have an exponential bound for the returning time. That is, we are not
able to show that Ev

x,y exp{θτ∗B} is bounded, where τ∗B is defined in Proposition 3.3,
thus to show numerical solutions are good approximations are nontrivial and this
will be the next step of our research.
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Moreover, although our primary motivation is from biological controls, as alluded
to in the introduction, Lotka-Volterra systems have also been used in particle sys-
tems, and social networks, among others. Thus the optimal controls obtained in
this work have a wider range of applications.
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[2] M. Benäım, A. Bourquin and D. H. Nguyen, Stochastic persistence in degenerate stochastic

Lotka-Volterra food chains, Discrete Continuous Dyn. Sys. B , 27 (2022), 6841-6863.

[3] B. Barratt, V. C. Moran, F. Bigler and J. C. van Lenteren, The status of biological control
and recommendations for improving uptake for the future, BioControl , 63 (2018), 155-167.

[4] J. S. Bale, J. C. van Lenteren and F. Bigler, Biological control and sustainable food produc-

tion, Philos. Trans. R. Soc. Lond. B Biol. Sci., 363 (2008), 761-776
[5] M.-F. Chen, From Markov Chains to Non-equilibrium Particle Systems , 2nd ed., World Sci-

entific Publishing Co., Inc., River Edge, NJ, 2004.

[6] N. T. Dieu, D. H. Nguyen and N. H. Du, Classification of asymptotic behavior in a stochastic
sir model, SIAM J. Appl. Dyn. Syst., 15 (2016), 1062-1084.

[7] G. P. Georghiou, Pest Resistance to Pesticides , Springer Science & Business Media, 2012.

[8] S. F. Jarner and G. O. Roberts, Polynomial convergence rates of Markov chains, Ann. Appl.
Probab., 12 (2002), 224-247

[9] A. R. Jutsum, Commercial application of biological control: Status and prospects, Trans.
Philosophical Soc. London B, Biol. Sci., 318 (1988), 357-373.

[10] A. L. Knight and G. W. Norton, Economics of agricultural pesticide resistance in arthropods,

Ann. Rev. Entomology , 34 (1989), 293-313.
[11] N. Kumar, A. K. Pathera, P. Saini and M. Kumar, Harmful effects of pesticides on human

health, Ann. Agri-Bio Res., 17 (2012), 125-127.

[12] H. J. Kushner and W. Runggaldier, Nearly optimal state feedback controls for stochastic
systems with wideband noise disturbances, SIAM J. Control Optim., 25 (1987), 298-315.

[13] X. Mao, Stochastic Differential Equations and Applications , Elsevier, 2007.

[14] R. L. Metcalf and W. H. Luckmann, Introduction to Insect Pest Management, J. Wiley Sons,
1994.

[15] National Research Council and Others, Pesticide Resistance: Strategies and Tactics for Man-

agement, 1986.
[16] D. H. Nguyen, N. N. Nguyen and G. Yin General nonlinear stochastic systems motivated by

chemostat models: Complete characterization of long-time behavior, optimal controls, and
applications to wastewater treatment, Stochastoc Process. Appl., 130 (2020), 4608-4642.

[17] D. H. Nguyen, G. Yin and C. Zhu Long-term analysis of a stochastic SIRS model with general

incidence rates, SIAM J. Appl. Math., 80 (2020), 814-838.
[18] M. G. Paoletti and D. Pimentel, Environmental risks of pesticides versus genetic engineering

for agricultural pest control, J. Agricultural Environ. Ethics, 12 (2000), 279-303.
[19] L. Rani, K. Thapa, N. Kanojia, N. Sharma, S. Singh, A. S. Grewal, A. L. Srivastav and J.

Kaushal, An extensive review on the consequences of chemical pesticides on human health

and environment, J. Cleaner Production , 283 (2021), 124657.

[20] T. D. Tuong, N. N. Nguyen and G. Yin, Longtime behavior of a class of stochastic tumor-
immune systems, Sys. Control Lett., 146 (2020), 104806, 8 pp.

Received July 2023; revised October 2023; early access December 2023.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR2884272&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4484035&return=pdf
http://dx.doi.org/10.3934/dcdsb.2022023
http://dx.doi.org/10.3934/dcdsb.2022023
http://dx.doi.org/10.1007/s10526-017-9831-y
http://dx.doi.org/10.1007/s10526-017-9831-y
http://dx.doi.org/10.1098/rstb.2007.2182
http://dx.doi.org/10.1098/rstb.2007.2182
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2091955&return=pdf
http://dx.doi.org/10.1142/9789812562456
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3505304&return=pdf
http://dx.doi.org/10.1137/15M1043315
http://dx.doi.org/10.1137/15M1043315
http://dx.doi.org/10.1007/978-1-4684-4466-7
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1890063&return=pdf
http://dx.doi.org/10.1214/aoap/1015961162
http://dx.doi.org/10.1146/annurev.en.34.010189.001453
http://mathscinet.ams.org/mathscinet-getitem?mr=MR877064&return=pdf
http://dx.doi.org/10.1137/0325018
http://dx.doi.org/10.1137/0325018
http://dx.doi.org/10.1533/9780857099402
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4108465&return=pdf
http://dx.doi.org/10.1016/j.spa.2020.01.010
http://dx.doi.org/10.1016/j.spa.2020.01.010
http://dx.doi.org/10.1016/j.spa.2020.01.010
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4080394&return=pdf
http://dx.doi.org/10.1137/19M1246973
http://dx.doi.org/10.1137/19M1246973
http://dx.doi.org/10.1016/j.jclepro.2020.124657
http://dx.doi.org/10.1016/j.jclepro.2020.124657
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4163220&return=pdf
http://dx.doi.org/10.1016/j.sysconle.2020.104806
http://dx.doi.org/10.1016/j.sysconle.2020.104806

	1. Controlled stochastic Predator-Prey model
	2. Main results
	3. Technical lemmas and proofs of main results
	4. Final remarks
	REFERENCES

