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ABSTRACT. This work is devoted to studying a class of biological control prob-
lems in a stochastic environment. Specifically, it focuses on stochastic Lotka-
Voltera systems. Our effort is on treating average cost per unit time controlled
diffusions. It is natural to use a vanishing discount argument. However, in
contrast to the existing literature, neither the “near-monotone” nor the “sta-
ble” condition is satisfied in the current set up. In reference to one of our
recent works, we divide the domain into two parts. In one sub-domain, the
“near-monotone” condition is satisfied, whereas in the other sub-domain, the
“stable” condition is satisfied. We then carefully work out the analysis in the
two domains so as to obtain the desired optimal control.

1. Controlled stochastic Predator-Prey model. Stochastic Lotka-Volterra sys-
tems have been widely used in a wide variety of applications. Not only are they
used in biological systems and ecological systems, but also they are applicable to
the study of particle systems (see [5]). In addition, more recently, such systems have
been used in social network modeling and related applications. This paper stems
from mathematical models using Lotka-Volterra equations, but mainly concentrates
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on the study of optimal controls of such systems. In fact, we focus on a class of such
systems and our primary concern is the optimal controls under a longrun average
cost criterion.

In particular, our study is motivated by a class of biological control problems from
the angle of biodiversity. Biodiversity or biological diversity is a term that refers to
the variety of life on Earth, in all its forms and all its interactions, including genes,
traits, species, and ecosystems. The popular abbreviation biodiversity came about
in the mid-1980s by a symposium in 1986.

We value biodiversity both for what it provides to humans, and for the value
it has in its own right. In short, biodiversity is the volume of life on Earth as
well as how different species interact with each other and with the physical world
around them. Specifically, in this paper, we are interested in the following aspects.
It is well known that chemicals have been used widely for pest controls. However,
they have many deleterious effects to the environment, human, and biodiversity; see
[11, 14, 18, 19]. Resistance to pesticides also erodes their effectiveness and makes
chemical control not cost-effective in the longrun; see [15, 7, 10]. Biological control is
any alternative to chemical control where natural enemies are used to control insects,
weed, and disease. Biological control has many benefits that chemical control does
not offer. It is more environment-friendly, non-toxic, and it can even be more cost
effective in a long run; see [3, 4, 9]. In this paper, we consider a control problem in
a stochastic environment. Suppose we wish to control the population of a species X
using its predator Y. The interaction of X and Y is assumed to follow a stochastic
Lotka-Voltera system of the form

{ dX(t) = X(t) [(&1 — b11X(t) — me(t))dt + O'1dW1 (t)]

(1.1)
AY () = Y(t) [(—az + bor X (£))dt + o2dWa(t)] .

However, we will control the density of Y () by adding u(t) x A to its density in
a small interval [t, ¢ + A). Then, we have the following controlled system

{ dX(t) = X(t)[(a1 — bu X () — bi2Y (£))dt + o1 dWi ()] 12

AY (t) = u(t)dt + Y (1) [(—az + by X (£))dt + oodWa(t)] .

Denote by F; the o-algebra generated by {X(s),Y(s) : 0 < s <t}. We use the
predator Y as a natural control of the prey population, and assume the control
u(t) takes values in a compact interval [0, M] for some M > 0. Our objective is to
minimize

li ! EY ' X(t)dt

im sup 7 xy/o (t)dt,
where Ej  denotes the expectation with initial data X(0) = z, Y(0) = y, and
control u used over the class of admissible controls u(t), where u(t) is Fi-adapted.
That is, we aim to minimize the amount of substrate over the infinite horizon. The
cost criterion is in the sense of an average cost per unit time (or longrun average
cost). Note that we consider the case where the cost function does not depend on w.
The main reason is for the bio-control problem that we are considering, our priority
is on controlling X (t). Moreover, our problem is constrained. The constraint on
the economic aspect is imposed by limiting the input w(¢) so that u(t) < M.

We will assume throughout the paper that
2 a9 0‘%

o
al—?1>0anda1—b12M—7>O (1.3)
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2
to exclude trivial cases. If a; — 0—21 <0, it is easily seen that

lim SUp 7 IE / X(t)dt = 0 w.p.1 for any control.

T—o0

Moreover, if a; — b2$2 — % < 0 with control u(t) = M, X(t) satisfies that
limy 00 X (¢ ) =0 then the optimal control problem is trivial.

We proceed to obtain the Hamilton-Jacobi-Bellman (HJB) equation for the op-
timal control and prove the existence and uniqueness of the solution to the HJB
equation. We follow a “vanishing discount” argument using some ideas from the
work [1], in which the HJB equation was obtained under either “near-monotone”
or “stable” conditions. Nevertheless, we note that in our current setup, our system
satisfies neither of these conditions. Thus, we need some new method to carry out
the technical analysis of the limit of the value functions for discount control prob-
lems. In particular, for our models, we can divide the underlying region into two
domains so that in one of the domains, the “near-monotone” condition is satisfied
while the “stable” condition holds for the other domain. Difficulty arises when we
examine how solutions switch back and forth between the two domains and how
the movement causes changes in the value function. Although the idea is similar to
that of [16], the model under consideration in this paper is more complicated. New
techniques are needed to treat the problem and overcome the difficulty.

The rest of the paper is organized as follows. In Section 2, we recall the notion
of stochastic ergodic control. It will be demonstrated that we can find an optimal
control in the class of Markov controls. Then we state the main theorem on the
existence and uniqueness of solution to the HJB equation, which characterizes the
optimal control. Section 3 is devoted to the proof of the main theorem using some
novel technical analysis.

2. Main results. Let (Q,F,{F;}1>0,P) be a complete filtered probability space
with the filtration {F;},>0 satisfying the usual condition, i.e., it is increasing and
right continuous while Fy contains all P-null sets, and (W7 (t), Wa(t)) is a standard
Fi-adapted two-dimensional Brownian motion such that (Wi (t) — Wl( ), Wa(t) —
Was(s)) and F, are independent for all ¢ > s > 0. Denote by R+ ,R% the sets
(0,00)2 and [0, 00)?, respectively. To proceed, we recall some definitions introduced
n [1, 12]. Denote by M (o) the family of measures {m(-)} on the Borel subsets of
[0, 00) x [0, M] satisfying m([0,¢] x [0, M]) =t for all ¢ > 0. We say m,(-) converges
weakly to m(+) in M (c0), if

nl;ngo f(s,)my,(ds x da)) = /f(&a)m(ds x da)
for any continuous function f(-) : [0,00) x [0, M] — R with compact support. An
M ( ) valued random measure m(-) is an admissible relaxed control for (1.2) if
fo fo m(ds x du) is independent of {W;(t + s) — W;(t),s > 0,7 = 1,2} for
each bounded and continuous function f(-). With a relaxed control m(-), (1.2)
become

{ dX(t) = X(t)[(a1 — by X (£) — bi2Y (£))dt + o1 dWi ()] 21

dY(t)= m+Y(t) [(—ag + b1 X (t))dt + UdeQ(t)] ,



4 DANG H. NGUYEN, KY Q. TRAN, TRAN D. TUONG AND GEORGE YIN

where m; = fOM umy(du) and the “derivative” m; is defined as the measure-valued
function of (w,t) such that for any smooth and bounded function f, we have

/fsu (ds x du) /ds/fsumsdu)

The (t-dependent) operator associated with the controlled diffusion process (2.1),
is given by

£70(r.3) =220 fafa — s = b)) + P2ty + )
+; (013 2(90221) 22 + 53 %(902 y)y2>.

Definition 2.1. We have the following definitions and notation.

e Denote by P(M(c0)) the space of probability measures on M (c0). A relaxed
control m(-) for (2.1) is said to be Markov if there exists a measurable function
v : RY — P(M(c0)) such that m; = v(X(¢),Y(t)),t > 0. Under a relaxed
Markov control v(X (¢),Y (t)), (2.1) generates a Markov process (X (t),Y (t))
with generator

OP(x,
£U¢($»Z/) = qb(a%y) [ﬁ(al —bix — b12y)]
0
+ ¢8’Z ) (2, y) + y(—az + barz)]
1( ,0%¢(z,y) 0*¢(z,y)
+2(U% o2 T BTy V)
where v(z, y) fo )](du), the expectation of a random variable with

distribution v(z,y).

e A Markov control v is a relaxed control satisfying that v(z) is a Dirac measure
on [0, M] for each z € R%.

e Denote the set of Markov controls and relaxed Markov controls by Ilj; an
IIg s, respectively. With a relaxed Markov control (X(t),Y(t)) is a Markov
process that has the strong Feller property in R* 1% see [1, Theorem 2.2.12].

e Because of the nondegeneracy, any invariant probability measure in ]Rf_’o of
(X (t),Y(¢)) is unique if it exits. In this case, the control v is said to be stable.
Denote by IIggras the set of stable relaxed Markov controls.

e Let P(X) be the space of probability measures on a metric space X. For any
stable relaxed Markov control v, define

To(dz x du) = [v(2)(du)] x 1,(dz) € P(RY® x [0, M]),
and
G = {m, : v is a stable relaxed Markov control } € P(R>° x [0, M]),
where 7, is the invariant probability measure of (X (¢),Y (¢)) on Ri’o.

Lemma 2.2. For any (x,y) > 0, and any admissible control m(t), there exists a
unique solution to (2.1) satisfying (X(t),Y (t)) € R2,t > 0. If (x,y) € R>°+ then
(X(t),Y(t)) €RY°,t >0 and if x = 0,y > 0 then X (t) = 0,t > 0.

2 2
‘7122202. There exists positive constants K1, Ko, and K3 such that

Pick out pg =
[,m(bgll' + b12y>1+p0 < K; - KQ(QKJ()S + $)1+p0 — K2(2K/()S + x)po.’ﬂfl (.’17, y), (2.2)
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Consequently, it holds for any admissible relazed control m(-) that
EZ, (bng(t)—i-bng(t))Hpo < (bglx—&—blgy)Hpoe*Kﬁ—&—% for s >0,z >0, (2.3)
As a corollary, for any stable relaxed Markov control v, we have
/ (b1 + broy) PO, (ds, dz) < & (2.4)
R2° K4

where 1, is the invariant probability measure of (X (t),Y (t)) on Ri’o under control
v.

Proof. The existence and uniqueness of positive solutions are standard, which are
thus omitted here. With

Upla,y) = [barz + bizy] 7,
we have
LUy (z,y) =(1 + po) (b1 + b1oy]P° (b2lal$ — bo1by12? — Ty — b12(l2y)
+po(1 4 po)[bara + biay]? ™! (b3, 070 + biy05y”)
<kip, — (1 4+ po)(barx + b12y)P° (b12azy + borasx)
+po(1+po)(0f V 03)(barz + bray) ' 7
<kip, — [az = po(oF V 03)](1 + po)Up, (2, y)
where k1p, is a constant independent of (z,y). (2.2) therefore holds. Apply-

ing Dynkin’s formula to the function eX2!Uy(z,y) we can obtain easily (2.3)
using (2.2). O

Lemma 2.3. With the control u(t) = M, there exist a unique invariant measure
of (X(t),Y(t)) on R*°+ and

1

T 2
. w 2@1 — 07
lim f/o EY, X (t)dt < =L,

b11

T—o0

Proof. Under condition (1.3), it was proved in [20] (see also [17] for a similar model)
that the solution (X (t),Y (¢)) to

{ dX(t) = X(t)[(a1 — b11X (t) — bi2Y (£))dt + o1dWy ()] 25)

dY(t) = M + Y(t) [(—CLQ + b21X(t))dt + O'QdWQ(t)]
has a unique invariant probability measure on Rio and the transition probability

of (X(¢),Y(t)) converges weakly to m. The weak convergence and the uniform
boundedness of E(X (t) + Y (¢))!TP0 in (2.3) implies that

R _
tl;r(r)lo Eg ,X(t) = - zm(dzdy) > 0 and
tliglo E, Y ()= /]Ri’° ym(dxdy) > 0.

On the other hand, we have from It6’s formula that

2 t

t
Eg,y In X(t) —Inx = (a1 — %)t +/ E;,yqu(S)dS +/ Ez7yb12Y(8)d8.
0 0
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Since sup;»q By , In X (t) < sup,5¢InEY X (t) < oo, we have
1
limsup — (E¥ , In X(t) —Inz) <0,

T—o0 T
which leads to

ar—biy / wm(dady) — bia / yr(dady)
RZ.O Rz,o

+ +
o? . 1 [T
=ay; — 71 — Th—l;noo f /0 Eg,y(bllX(S) + b12Y(8))det S 0.
As a result,
tlggo E: , X () = /R“ am(dzdy)
+

1 2 2a1 — 02
<—|a - a_ b12/ ym(dzdy) | < et Sl
b1 2 R%° b1

The following lemma enables us to find the optimal control in the class IIggas.

O

Lemma 2.4. For any admissible relaxed control m,

hmlnf Emy/ X (t)dt > p*

= inf / xmy(de X dy x du),v € Hggp ¢ -
R%° x[0,M]

Proof of Lemma 2.4. We define G as the class of m, 0 = [v(z)(du)] X 1,1 (du) where
v is a relaxed Markov control and 7, ; is the invariant probability measure of the
solution (X (t),Y(t)) to (2.1) with X(0) = 0, Y(0) > 0, and m; = v(X(¢),Y(¢)).
Similarly, we define G2 as the class of m, 2 = [v(2)(du)] X 1y0(du), where v is a
relaxed Markov control and 7, 2 is the invariant probability measure of the solution
(X(t),Y(t)) to (2.1) with X(0) > 0,Y(0) > 0, m; = v(X(¢),Y(¢)). Because of
the tightness due to (2.3) and the invariance of the two sets (0,00) X [0,00) and
{0} x [0, 0), the existence of 7, 1 and 7, 2 is straightforward. We also have
G1 C P({0} x [0,00) x [0, M]), G2 C P((0,00) x [0,00) x [0, M]).

Now, for any admissible relaxed control m, define an empirical measure (7' as a

P(Ri’o x [0, M])-valued process satisfying that

Lo g 16 =7 L[ </ P, () )mt(du)>dt.

In view of Lemma 2.2, the family {¢/*,T > 0} is tight on P(R% x [0, M]). As a
result, we can decompose any limit point ¢ € P(R% x [0, M]) as

C=piGi +p2to,
with ¢; € P({0} x [0,00) x [0, M]), and (2 € P((0,0) x [0,00) x [0, M]).
Because (0,00) x [0,00) and {0} x [0,00) are two invariant sets for (X (t),Y(¢))
for any control m(t), we can show that (1 € G and {2 € Go; see [1, Lemma 3.4.6].
For any Markov control v, we have

(2.6)

Y (t) < Y (t) given X(t) = 0,Y(0) < Y(0)
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where Y (t) be the solution to
dY (t) = (M — a2V (£))dt 4 o2 Y (£)dWa(t)

As a result, we have that

1/t
/ yCi(dx, dy,u) < limsupf/ EY (s)ds
R2 x[0,M] tJo

t—0

Lo o (2.7)
<lim - [ EY(s)ds = —,
t—0 t 0 as
where the last equality is proved in [16]. We have from (2.7) and (1.3) that

2 Mb 2
/ (a1 — b1z — bioy — 021) G (dz,dy,du) > a; — 12 _ % >0. (2.8)
R2 x[0,M] az

For a control v, let 75 5 be an ergodic probability measure of (X (), Y*(t)), the
stationary solution to (2.1) under control v with distribution 7 , on (0, 00) x [0, 00).
We have from the strong law of large numbers that

. Imxv@) 1 [t Y " oW (t)
tlirgoi 7tlggo E/o (a1 — b11 XY (s) — b12Y"(s)) ds + .
o? 2.9
:/ <a1 — bz’ — by — 21> 5 o(da’, dy') (29)
(0,00)x[0,00)]
=€

If eg # 0, it would lead to either lim; oo X(¢) = 0 or lim;, o XV(t) = oo,
both contradicts the assumption that (X (¢),Y"(t)) is a stationary process with
distribution 7§ 5 on (0, 00) x [0,00). As a result, for any control v and any invariant
probability measure 7, 2 on (0, 00) x [0, 00) of the solution to (2.1) under control v,
we have ey = 0, which yields

o2
/ (a1 — bz’ —bioy’ — 1) &a(da’, dy’, du) = 0. (2.10)
R2 x[0,M] 2

Let {tx} be a sequence increasing to infinity such that (;?' converges to E as
k — co. We have

tim 2O LM g b X () — by (s)d
i, ST S ) R X0 by )
_ / / O'% =g /
= ap — bz’ — by — —- ) ((da’, dy’, du)
R2 x[0,M] 2
_ ’ ’ 0% rog
—p1/ <a1 — bz’ — by — ) Ci(da’, dy’, du).
R2 x[0,M] 2
(2.11)
In view of (2.3),
E™ In X (¢
lim By X() <0. (2.12)
t—ro0 tk

From (2.11), (2.12), and (2.8), we must have p; = 0 or E: (2. Now, we can
decompose (o into:
¢ = (2 = p3C3 + pala
where (3 € P(R%° x [0, M]) and (4 satisfying ¢4((0,00) x {0} x [0, M]) = 1.
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Since (3 is in G, Similar to (2.10), we also have

/ <a1 — blll‘ — b12y — ) <3(d1‘ dy du) = 0 (213)
R3 x[0,M]
which together with (2.10) implies that
/ (a1 — blll‘ — b12y — ) C4(dl‘ dy du) =0. (214)
R3 x[0,M]

Since ijx[o,M] y'Ca(da’, dy’, du) = 0, we deduce from (2.14) that

/ <a1 — by’ — ) Ca(da!, dy', du) =0
R2 x[0,M]

2
_ %9
/ 'y (d2’, dy', du) = S (2.15)
R2 [0, M] b1
By the weak convergence, the uniform boundedness of
E (bar X (1) + biaY (1)) 70

n (2.3), and using (2.15), we have that

or

1 b
lim —E", X (t)dt
n—oo t, 0
= p3 2’ (3(dx’, dy’, du) +p4/ ' Gy (da’, dy | du)
R2 x[0,M] R2 x[0,M]
* ap — % *
> p3p + Pazp,
b11
since
ot
G-
< )
P b1
because of Lemma 2.3. The proof is complete. O

Let Ci4p be the class of functions V : Ri_’o — R such that

V(z,y)| < ev(l+z+y)*P, (z,y) € R2® for some cy > 0 and p € (0, pp).

To proceed, we state the main result of this paper. The proof of Theorem 2.5 is
relegated to the next section.

Theorem 2.5. There is a unique pair (V,p), where V € Cz(Ri_’o) NCiyp and p € R
satisfying the equation

ug[lcf% {L£V(z,y) +a} = p.

Moreover, we have p = p* and v* € llgps is an optimal control if and only if it
is a measurable selector from the minimizer
min {E V(z,y)+x}.
u€l0,M
In fact, we can choose
oV (x

v (x,y) = or —
M otherwise.
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3. Technical lemmas and proofs of main results. As mentioned in the in-
troduction, we use the vanishing discount argument. Thus, we need to analyze
V,(z,y), the optimal y-discounted cost, that is

V,(z,y) = inf {E;y/ e "X (t)dt v € HRM} , (z,y) € Ri’o.
0

We deduce from [1, Theorem 3.5.6 & Remark 3.5.8] that V. (z,y) € Cz(Ri’o) U
Cy(R%°) satisfies

Jmin LV () o) = Vs (). (3.1)
and the optimal Markov control v, is a selector of min, e, a) {£L*V5 (2, y) + s}. The
following lemma is from [1, Lemma 3.7.8].

Lemma 3.1. Fix (z.,y.) € Rio. For any sequence vy, | 0, there exists a subse-
quence, i, , o function V € C(Ri_’o), and a constant p such that as k, — oo,

Veer, Van (T+,y+) = p and

3.2
Vo (@y) =V, (2,y) = Vo (Ts,9) = V(z,y) (3:2)

. 2
uniformly on each compact subset of R.°. Moreover, we have

. u * 2,0
ug[lol’%] {‘C V(x,y) +l‘} =p < P (x,y) € RJr :

To prove Theorem 2.5, our goal is to show that a limit function V in Lemma 3.1
lies in the family Ci14,. To enhance readability, we offer a road map of the proof
outlined below. Using a Lyapunov function defined in (3.3), we adopt the idea in
[6, 17] to show in Proposition 3.3 that the time (X (¢), Y (t)) reaches a set H of the
form {z+2~!+y < H} has bounded 1+ p-th moment for some p > 0. The proof of
Proposition 3.3 relies on an estimate for the long-run average of L'V (X (t),Y (1)),
provided in Lemma 3.2. Second, we show that V' (z,y), the limit in (3.2), is bounded
in H. Since H is noncompact in Ri’o, we break H into two sets H] and Hg in
Proposition 3.5 determined by the average of Y (¢) on a time interval [0, 7*] under a
~v-discounted optimal control. Because H is noncompact, it is important to estimate
the probability where (X (¢),Y(t)) stays in a compact set of Rio, which is given
in Lemma 3.4. That estimate helps us to show that V(z,y) is bounded in H by
analyzing the dynamics of (X (¢),Y (¢)) in several cases.

Pick by > 0 such that

V(z,y) = —(bo1x + b12y) — Inx + by > 0 for all z,y > 0.

2
az
LUV (2,y) =L°Vi(z,y) + LoVa(z,y)

2 o2
o (ba1x(ar — buix) + bi2(v(x,y) — azy)) — (a1 — b1z — biay) + 71
2

2 o
Sa: (ba1z(ar — biiz) + biaM) + b1z — biay + 71

(3.3)
It is easy to see that there exists H > 0 such that

L0V (z,y) < —1if (z,y) € R°,z 4y > H. (3.4)
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Lemma 3.2. Let

1 ay o}
A= (a —bp2 2L .
5<a1 R2r 2>>0

There exists Ty > 0 such that for any To > 0, we can find § = 02(To, H) > 0
satisfying that

IR

Ty
Proof. Noting that

EY LUV (X (1), Y (t)dt < —A <0 if (v,y) € RY°, 2 < da, 2 +y < H.

AX () < a1 X (H)dt + o1 X (£)dAW (t),

we can easily obtain by using Dynkin’s formula, Gronwall’s inequality, and the
Burkholder-Davis-Gundy inequality (see for e.g., [13, Theorem 2.4.4], that

E sup [X (1)) < z2e?®T if X(0) = o, (3.5)
t€[0,T]

where a3 = a; + 207. Let Y (t) be the solution to
dY (t) = M — (ag — 61)Y (t))dt + o2 Y (t)dt.

We have the following properties of Y (¢), which have been proved in [17] (see
also [6]).
(C1)
E, Y ()P < (14 y)'tPoe=%f 4 ¢y,
(C2) There exists a unique invariant probability measure & of Y (¢) on (0, 00) and
E,Y = L_dl.

(C3) For any H > 0,A > 0, there exists a 77 > 0 such that

I ) A
T/ E,Y(t)dt < 22— L T>Th.
0

Note that
1 T
T (Eg,y(b21 X(T) + b12Y (T)) — (b1 + b12y)) = / E, ,LOVI(X (1), Y (t))dL.
0
(3.6)
We have from (2.3) and (3.6) that
Ks(1
f/ EY, LOVI(X (), Y (£))dt < W,T> 1. (3.7)

for some constant K3 > 0 independent of T, x,y. Let do > 0 to be determined.
Define
&, =inf{t >0: X(t) > 1}
By a comparison theorem, we have Y (t) < Y (t) for 0 <t < &;,. As a result, for
T > Ty, we have

1 1 [T

Ts
—EY 1 Y(t)dt <E,— 1 Y (t)dt
T, o:,y/o {&5,>T2} () = Z/T2 0 {&5,>T2} ()

1 TQ— 0,2—51 A
< —E Y (t)dt < il
SB[ Var<

(3.8)
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On the other hand, we have from Holder’s inequality that

I = 1 [T _po_ 1
E/o By e, <my Y (D)dt S?/O ([Py{§61 < T}|wEy, (Y(t)Hp")””o)dt

2

v _Po 1+
< [Px,y{ftﬁ < TQ}] tro K4(H + 1) bo

a3T2
<[ Ky (H 4+ ) iy < O,
1
(3.9)
where K, is independent of x,y, T}, T> and the last inequality is due to an applica-

tion of Markov’s inequality to (3.5). Let dy = d2(d1, T2, H) > 0 such that

S2e23T2 o A b116
(25 )0 Ky (H + 1)1 < = and 212emT < A (3.10)
1 12 a3l
Adding (3.8) and (3.9), we have
1 [T -0 A asTs  py
— | By Y(hd <P 2 (T K (H 4 1)
O M bia 01 (3.11)
a2 =01 28 <Handz<9$
— 1 1
ST T, Y r=02
If x < §3, we have from (3.5) that
Lo [ T bi1d2 ,
EE”’/O by X (t)dt = bu—/ ze®'dt < ——= wiTs sTe <A (3.12)

From (3.7), (3.11), and (3.12), if T} > w we have for any 75 > 17 and Jy
satisfying (3.10) that

1 [T ~ 1 LSS
— EY  LPV(X(t),Y(t))dt ==—E2 LVI(X(t), Y (¢))dt
T, Y T, Y 0
o? 1
—a1+7+b11*E ()dt-l—blz E Y( )d
2 Ts
o? as — 01
S—a1+7+b12 i +3A < -A
(3.13)
for any (x,y)eRi’ow—l—ng,mZég. O

Proposition 3.3. Pick 0 < p < pg. There exists A,c{, Ty > 0 such that
U(z,y) = Albara + bioy) TP + VP (2, y)

satisfies
1.
E; ,U(X(7),Y (7)) <U(z,y) + /E,
for any stopping time T with bounded expectation,
2.
B}, U(X(), Y (1) < max{(C*/w")F Ulw,y)} + { To.t >0,
3. for any B sufficiently large, there exists cg > 0 such that
Ez,y(Tg)ler S CBU(J?,y), ($7y) € Rio7v S HRM

where 75, = inf{t > 0: U(X(¢),Y(t)) < B}.
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Proof. Because
1 [T ~
T E7 LUV (X (1), Y(t))dt < —A < 0ifz < dg,z+y < H,
2Jo
and L'V (z,y) < —1 if x +y > H, and because of (2.2), (2.2), we can verbatim
follow the proof of [2, Proposition 4.9] to show that
EY,U(X(T0),Y (T2)) < Ulz,y) — 5*U7 (,y) + C* (3.14)
where

U(z,y) = A(ba1z + biay) P + VP (2 y)

for a sufficiently large A > 0 and 0 < p < pg, k*,C*, Ty are positive numbers
independent of x,y. It is easy to check that when A is sufficiently large, we have

LU(z,y) < Y for any (z,y) € R>®. (3.15)
As a consequence of (3.14), we have from (37) of [8, Theorem 3.6] that

*
Tp—1

EY,(r5)'"P<C1+E, > (k+ 1P | < CpU(x,y) (3.16)
k=0

ptl

where 75, = inf{n > 0 : U(X(nT2),Y (nTz)) < B} for any B > (C*/k*)% . The
proof of part (3) is complete.
We also have from (3.15) and Dynkin’s formula that

EY U(X (T AER), Y (T AER)) < U(z,y) + G EY 7 Ar < U(x,y) + 5 EY 7

where (g = inf{t > 0: X(¢) VY (t) > R}. Letting R — oo and applying Fatou’s
lemma we obtain part (1) of the proposition When 7 = T, we have

By U(X(1),Y (1) < Ulz,y) + I To, t € 0, T3). (3.17)
On the other hand, it is easy to deduce from (3.14) that
ES JU(X(kT2),Y (kT2)) < max{(C*/ﬁ;*)%, Ulz,y)}, k€ Zy. (3.18)

In view of (3.18) and (3.17) and the Markov property of (X (¢),Y (¢)) we have
that
pt1

E; U(X(1),Y () <max{(C*/k*) 7 ,U(x,y)} + ATy if nTy < (n+1)Ts.

Thus, part (2) is proved. O
In what follows, we pick B > (C*/r*)P*1p. Welet H = {(z,y) € RZ° : U(z,y) <
B} and 1y = 75

Lemma 3.4. For any H > 1 and € > 0, there exists a 6 = §(H, &) > 0 such that
1
Py AY (73) > 0} > 3 forany H' < x < H,v € Tgy. (3.19)

Proof. In view of Itd’s formula, we have
o3 H
InY(ry) >1InY(0)+ (—a1 - 2) TH —I—/ X (s)ds + ooWa(ry)
0
2
> lnY(O) — (al + 022> TH + JQWQ(TH).
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Note that E; .7 < Cu < 0 due to part (3) of Proposition 3.3. Further-

more, we have from the Burkholder-Davis-Gundy inequality that EY _oa|Wa(79)| <
2E; .73 < 2Cp e As a result, we have from Markov’s inequality that

2
IP;E {IHY(TH) <lIlne—2(a; + % + Q)OH,E}

o3 o3
S]P)Z,s a1+7 TH+02|WQ(Th)| 22(a1+—+2)C’H75

2
1 U% v v
< 2 ay + ? EI,STH + 02]E175|W2(Th)|
2(@1 + 72 +2)CH,6
1
<7a
-2

which leads to
o3 1
L (Y0 2 o (<20 + 2 4200 ) ) 2 5.

The proof is complete. O

Proposition 3.5. Let V(x,y) be a limit in (3.2). We have

sup |V(z,y)| < .
(z,y)€EH

Proof. Let vy be the optimal Markov control of the -discounted control problem.

_i _
Let €, = £ (mbnz - p*), and p = p* + ¢, = a1b112 — 4e*. In view of (2.3), there

is Cy > 0 such that
EZ,yX(t) < (Cy and Cp maX{(C*/K/*)pzl

JU(z,y)} + Cpcl Th < Oy

oC 1
for any (z,y) € H,t > 0. Thus, we can pick T™* > % such that
E; ,InX(t) —Inz Ej X(t)—Inz

: ; < — ; <eyforany t >T", (z,y) € H. (3.20)

By virtue of (3.2), there is a 7, sufficiently small such that
YWy, ys) < p, for v <. (3.21)

We can also assume -y, satisfies

(1—e"TH0y <e.. (3.22)

Now for each v < ~,, we split H into two disjoint subsets (one of which is
probably empty):

1
H] = {(l"ay) €EH: b12ﬁ/ E;, Y (s)ds < b11€*} and Hy =H\ H].
0

In view of It6’s formula, we have

v — 2 t ¢
]E:c,y In Xt(t) Inz =a; — % — b11%/0 IE;yX(S)dS — le%/O Ez7yY(S)d8
which together with (3.20) implies
1 T a; — it
E5, X (s)ds > 2 2, if (z,y) € H]. (3.23)

F 0 b11
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Combining (3.22) and (3.23) ylelds
T* T*

]Egjy/ e X (t)dt =E¥ / X(t)dt — B / (1 —e ™)X (t)dt
0

s
>E / X(t dt—CH/ (1—e Mat

3.24
JE“V / X(t)dt — e T ( )
alr — &5
>( —2e)T" —e.T" > (p" +2e,)T7,
bn
for (z,y) € H{, 7y < %
By (3.21), we deduce that
?

0< inf V. — < oo for v < .. 3.25
oot Y@, y) < 5 Ty (3.25)

Since (X (t),Y (t)) is a strong Markov process under a Markov control, we have
from (3.25) that

T*

TH * * *
Vilo) =B, [ X0+ B, [V, (XER).YER)))
0

(zy)EH

TT* *
ZEij/O b e_'YtX(t)dt—l—( inf V( )) E;ﬁye_'”’?t
I —
>EYY / " etX()dt+ inf Vi (z,y) — PED (1 — e R
— "o (w.y) €M v
for (z,y) € Ri’o,
(3.26)
where 73, = inf{t > T* : (X(t),Y(t)) € H}. By the Markov property of (X (t), Y (t))
and Proposition 3.3, we have

1 . .
;Egjya — e ) <EV Tl < TF BN () —T)
=T + ]Ev EX’—Y(T*) y(T*)TH

<T* +Eg, CpU(X(T™),Y(T™))

<T* + Cpmax{(C* /") ,U(x,y)} + Cpcl Ty < T*+ Cy.
(3.27)

Combining (3.27), (3.24), and (3.26), we have
V. (z,y) > ” ir;f Vy(z,y) + (p" +2e)T" = p(T" + Cx)

>( 1r;f Vy(z,y) + e.T" —pCy (since p = p* +¢4)

pCy +1
>( 1r;f Vy(z,y)+1 (since T* > %
z,y)€E *

)s
which is followed by

Viylzy) > inf Vo(z,y)+1,(z,y) € H],v < .
(z,y)EH
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As a consequence,

inf V.(z,y)= inf V. (z,y) for v < .. 3.28
et Va@y) wint y(x,y) for v <~ (3.28)

Now, for (z,y) € Hj, there exists t,, € [0,7*] such that
by
biz’

On the other hand, since E;,Y1*Po(t, ) < Cy, we have

Y 02,

]EijY(tm,y) > e,

Ezjy |:1{Y(tw,y)§<5*

by
PLIP)

Po

< (B0 (V(to) = e 213 ) 7 (B2, Y 490 (1)) T
= w,y{ (w,y)—g*% ( T,y ())

Po

v bin P
< (ijy{Y(tz,y) 2 5*%12}) G ™

On the other hand,

By {1{Y<tz,y>25* b }Y(tway)]

2b1o

— B2 (1) B2 [y e, gy ¥ (0
b11 b11 b11

D>y — €y = Ep——.

= bio 2b12 2b12

Combining the two displayed equations above, we have

1 v
PU Y (tey) > 6 = g*%} S (5* 2bb1112) .
As a result,
Py {n < T} > 4g, for (z,y) € H3, (3.29)
where
n=inf{t >0:Y(t) >E&.}.
Defining
iy =inf{t > n AT : (X(t),Y(t)) € H},
we have

<T" +Eg, [E?(nAT*),Y(nAT*)TH]

* v * * -
<T* +Ey[ecsU(X(nAT*), Y (n AT™))] e

N (3.30)
<T* + (B lesUX(n AT™),Y (n AT™))]) 7
1
<T* + ep(U(z,y) + coBy, (n A T*)) 7
ST* + CB(U($7y) —+ CUT*)ﬁ.
Since
Ey,U(X(nAT"),Y (g AT") < Ula,y) +c{ T"
<H = suwp {U@y}+dT7, (331

(z,y)eEH
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applying Markov’s inequality and using (3.29), (3.31), we have

H
Py, {17 <T* and U(X(n),Y(n)) < 2—61 } > 2q, for (z,y) € Hj. (3.32)

In view of Lemma 3.4, there exists a J, > 0 depending only on 12% and &, such

that

1 H
Poy{X(mu) 2 0.} > 5, if U(w,y) < Tj,y >&,7€(0,1). (3.33)
’ q

We can assume without loss of generality that §. < x, and define H3 = {(z,y) €
H :y > d.}. Observe that Hs is a compact subset of Ri_’o. Because of the strong
Markov property of (X (¢), Y (t)) under the Markov control v., and because of (3.32)
and (3.33), we can estimate

Py {(X(m3)), Y(73))) € M}

= By [1{1,@« and U(X (), ()< 1 }H(X(r&»ﬂr,’;))e%s}}

<5
=E, [1{ngT* and U(X (n),Y ()< 21 }E?(n),y(n)l{x(m)zé*}] (3.34)

1o,
> 5Er,y {1{,7g* and U(X (1),Y (1)< 5% }

>7.

Define events A = {(X (7;}),Y (7)) € Hs} and A° = Q\ A, we have the estimate

n

‘I',H n
V. (z,y) =E2, / X (Odt + B, e TRV, (X (), Y (7))| = Vi (@)

>SEV [14e7 7™ inf Vo (2, y
= x,y|: A (s’,w’)EHe, 'Y( y)

B [Lee W int V)| - Vi)

[ (L, e - o)

—E%, [14(1—e ™)  inf V. (2, ’}
T,y | A( )(z’,y’)EH;; "/( y)

—EY% |14e(1—e ™) inf Vi (',y)]|.
z,y A ( )(m’,y’)eH ’Y( y)}

Since V4 (z,y) = Vy(z,y) — Vy(zs,ys) = V(z,y) as v — 0 uniformly on each
compact set, there exists an Hy > 0 such that |V, (x,y)| < Hs for (z,y) € Hs when
~ is sufficiently small. We also have

0< inf V,(2',y) < inf V (o,
S il V) = B V)
S V"/ (-'L'*, y*) S

= [
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when v is sufficiently small. This together with (3.30), (3.34), and
inf(, yen V4 (2,y) <0 yields that

Vo(x,y) > — HoPy (A)+  inf V. (a',y )Py, (A°) — DEY, l

1—e
(2',y")EH

v

> — HyP, (A) + Vo (o', y Py, (A%) — PR, 7))

inf
(z'y")eEH
>—Hy—7 (T* +ep(U(z,y) + CUT*)ﬁ) + ot Vo (2!, y )P, (A°),
z'y')€e ’

>_Hy—7 (T* +ep(U(a, y) + cUT*)ﬁ) + inf V(o)1 -7,
(a' )N

for any (z,y) € HJ,
which combined with (3.28) leads to

inf V,(z,y)>—Ha—p sup (T* +ca(U(z,y) +CUT*)ﬁ)

(z,y)eH (z,y)EH
inf V. (z,y)(1-7),
to i +(@y)(1—7)
or
. — 1 _ N oy L
inf V(o) 2= (Hatp sw (T"+cpUe,y) + o)) | = ~Hy
(z,y)eH q (z,y)eEH

(3.35)
for some Hs independent of (z,y).

Let v, = M be the constant control. Similar to the proof of [16, Lemma 4.2], we
can show that
Hy:= sup Ej° 13, < oo.
(z,y)eH
Noting that Ej ,|[W (m3,)| < 2E} 73, < 00, and In X (73, ) is bounded, we must
have from

0.2

In X (73,) =In X(0) + (a1 — ?1)77{3 _ /OTHS (b11X(8) + b12Y (s))ds + o1 W (73,).

that

TH; THS
buEg,y/o X(s) §/0 (011X (8) + b12Y (5))ds

2
<lnz —E; , InX(my,) + (a1 — J—;)]Egyyﬁ.[:; +0o1Ey  W(Tn,)

2
<lnzx— sup In(z)+ (a1 — Q)HAL < H;

{(a ') €M) 2

(3.36)
where Hj is a constant independent of (z,y) € H.
Using [1, Eq. (3.7.47)], we have
THg
Vo) B, | [ X0+ VX))

0 (3.37)

H
<+ sup V(ay),(z,y) € H.
bl]_ (w’,y’)E’Hg
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From (3.35) and (3.37), we obtain that

sup |V (z,y)| < 0.
(z,y)EH

The proof of Proposition 3.5 is complete. O
Now, we are in a position to prove Theorem 2.5.

Proof of Theorem 2.5. We first show that V' € C;. For any (z,y) € Rio, we have

TH
V%%@ZMLL X (1)t + B, [V (X (). Y (7)) — Vi ()

>, Vs (X (), Y (737)) = By [(1 = €777V, (X (700), Y (7))

- Vv(x*ﬂ‘/*)
> inf V. (2',y) — Vo(zs,ys) — B [ 1—e 7
_(w’,y’)E'H ’Y( y) ’Y( Y ) x,y,y( )
> inf V. (s,2')—E% 7
_(s’,m/)E’H 7( ) z,y ' H

>— (Hs + (cBU(x,y))ﬁ) due to (3.35) and Proposition 3.3.
(3.38)
Similar to (3.37), we have

Vi) B, | [ X0+ VOG0, Y ()

1 2
< sup V@, ) +—-Inz— sup In(@)+ (a1 — ZL)EL,
(@5 EH bu (@) e 2° "

1 1
< sup |V(@,y)|+-—|—-Inz— sup In(z')+ai(cgU(x,y)) ™ |
(@) EH buy (@) EH
(3.39)
Combining (3.38), (3.39), Proposition 3.5, and noting that
sup In(z') < oo and
(¢, )eH .
U(z,y)7» <Cz+y—Inx+1),

we have V(z,y) € Ci4p. This property together with Proposition 3.3 gives condi-
tions needed to verbatim mimic [1, Theorem 3.7.11 and Theorem 3.7.12] to obtain
the desired result. O

4. Final remarks. We have developed optimal strategies for a class of longrun av-
erage costs of Lotka-Volterra systems. We established the existence and uniqueness
of optimal controls characterized by the solution to the HJB equation. Because the
predator-prey model is a nonlinear non-monotone system, our conjecture is that the
optimal strategy to control the population of the prey is not always adding maxi-
mum amount of its predator to the system. To prove this conjecture, we need to run
numerical solutions to the optimal control problem. Note that numerical solutions
to ergodic optimal control problems have not been very well understood. Moreover,
we do not have an exponential bound for the returning time. That is, we are not
able to show that E7 , exp{07}} is bounded, where 7} is defined in Proposition 3.3,
thus to show numerical solutions are good approximations are nontrivial and this
will be the next step of our research.
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Moreover, although our primary motivation is from biological controls, as alluded
in the introduction, Lotka-Volterra systems have also been used in particle sys-

tems, and social networks, among others. Thus the optimal controls obtained in
this work have a wider range of applications.
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