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A B S T R A C T

This work is devoted to a class of stochastic infectious disease models, namely, stochastic SIRS
models under imperfect vaccination. Because of the inclusion of the vaccination, the underlying
models are more difficult to analyze than that of the previously considered in the literature. Our
main effort is devoted to overcoming the difficulties and deriving a complete characterization
of longtime behavior of systems. Numerical examples are provided to present computational
evidence. These examples also provide insight that the discrete event process (the random
switching) can reverse persistence to extinction, and vice versa.

1. Introduction

Motivations. Because of the importance, in the past decades, much attention has been devoted to modeling epidemic systems,
analyzing their dynamic behaviors, and predicting the future. In the human history, infectious diseases have been making significant
impacts on the health, economics, and social life of the population. At the forefront of scientific research, the compartment-type
models introduced by Kermack and McKendrick [1,2] have received much attention. These models have been developed substantially
and used widely for epidemic systems in recent years. The rational is that the population will be divided into several non-overlapping
classes. For example, the so-called SIR epidemic model divides population into susceptible, infected, and recovered classes, which is
suitable for diseases with permanent immunity such as rubella, whooping cough, measles, smallpox, etc. However, for some diseases
such as common colds, influenza, etc., an infected individual can be reinfected again after recovery (that is, the individual returns to
the susceptible class after recovery). This leads to the so-called SIRS model, in which the term SIRS refers for the cycle ‘‘susceptible
(S) → infected (I) → recovered (R) → susceptible (S) again’’ in the dynamics. SIRS-type model has been recognized as one of the
most important models in epidemiology and mathematical biology; see [3–8] and the references therein.

To control the spread of diseases, it is important to develop vaccines and investigate the efficiency of the vaccinations. In recent
years, there is a resurgent effort in the study of epidemic models with vaccination; see [9–14] and the references therein. From
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a different angle, it has also been well-recognized that the so-called hybrid systems are more versatile and more appropriate for
describing dynamic systems. Such systems feature the coexistence of continuous dynamics and discrete events and their interactions.
They may be considered as a two component processes. One of the components describes the continuous dynamics and the other
component depicts the discrete events. This added discrete component can be used to model factors such as the changes due to
seasons, infection status with other diseases, health history, etc. A class of models that has become popular is the so-called regime-
switching diffusion models, in which the continuous dynamics are given by diffusion processes whereas the discrete events are pure
random jump processes. Suppose that the discrete environment (the switching process) has a finite number of configurations or
regimes. Denote the totality of the discrete configurations by  = {1,… , 𝑚0}. At any given instance, the system resides in one of
the states 𝜄 ∈ . The corresponding continuous component is a diffusion with drift and diffusion coefficients depending on 𝜄. Then
a random event trigged a jump from 𝜄 to 𝓁 ≠ 𝜄. The corresponding continuous component follows another diffusion with drift and
diffusion coefficients depending on 𝓁. A description of such a behavior can be found in [15, Chapter 1.3, pp. 4–5]; see also the
applications [16,17] and references therein. Taking these factors into consideration, we study the following SIRS with vaccination,
termed regime-switching SVIRS epidemic model:
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𝑑𝑆(𝑡) =
[

(

1 − 𝑞(𝜉(𝑡))
)

𝐴(𝜉(𝑡)) − 𝐼(𝑡)𝑔(𝑆(𝑡) + 𝛽𝑉 (𝑡), 𝐼(𝑡), 𝜉(𝑡)) −
(

𝛼0(𝜉(𝑡)) + 𝑝(𝜉(𝑡))
)

𝑆(𝑡)

+ 𝛼2(𝜉(𝑡))𝑅(𝑡) + 𝛾(𝜉(𝑡))𝑉 (𝑡)
]

𝑑𝑡 + 𝜎1(𝜉(𝑡))𝑆(𝑡)𝑑𝑊1(𝑡),

𝑑𝑉 (𝑡) =
[

𝑞(𝜉(𝑡))𝐴(𝜉(𝑡)) + 𝑝(𝜉(𝑡))𝑆(𝑡) −
(

𝛼0(𝜉(𝑡)) + 𝛾(𝜉(𝑡))
)

𝑉 (𝑡)
]

𝑑𝑡
+ 𝜎2(𝜉(𝑡))𝑉 (𝑡)𝑑𝑊2(𝑡),

𝑑𝐼(𝑡) =
[

𝐼(𝑡)𝑔(𝑆(𝑡) + 𝛽𝑉 (𝑡), 𝐼(𝑡), 𝜉(𝑡)) −
(

𝛼0(𝜉(𝑡)) + 𝛼1(𝜉(𝑡)) + 𝛼3(𝜉(𝑡))
)

𝐼(𝑡)
]

𝑑𝑡
+ 𝜎3(𝜉(𝑡))𝐼(𝑡)𝑑𝑊3(𝑡),

𝑑𝑅(𝑡) =
[

𝛼3(𝜉(𝑡))𝐼(𝑡) −
(

𝛼0(𝜉(𝑡)) + 𝛼2(𝜉(𝑡))
)

𝑅(𝑡)
]

𝑑𝑡 + 𝜎4(𝜉(𝑡))𝑅(𝑡)𝑑𝑊4(𝑡),
𝑆(0) = 𝑠 ≥ 0, 𝐼(0) = 𝑖 ≥ 0, 𝑉 (0) = 𝑣 ≥ 0, 𝑅(𝑡) = 𝑟 ≥ 0, 𝜉(0) = 𝑘 ∈ ,

(1.1)

In the above, 𝑆(𝑡) denotes the number of susceptible individuals who are infection-prone, 𝐼(𝑡) denotes the number of the infected
individuals who have already contracted the disease, 𝑉 (𝑡) is the number of the individuals who are vaccinated, 𝑅(𝑡) denotes the
number of individuals recovering from infection, {𝑊𝑖(𝑡)}, 𝑖 = 1,… , 4, are independent standard Brownian motions representing the
white noise, 𝜉(𝑡) is a finite-state continuous-time Markov chain that is independent of the Brownian motions 𝑊𝑖(𝑡) and that has
state space  = {1,… , 𝑚0}. In the model, there are a number of parameters: 𝑞 is a fraction of vaccinated newborns; 𝐴 is an input
of new members into the population; 1 − 𝛽 is the efficiency of vaccination (i.e., 𝛽 is the proportion of vaccinated individuals for
who the vaccination fails to protect); 𝑝 is the proportional coefficient of vaccinated for the susceptible; 𝛾 is the rate for immunity
loss of vaccines after some time; 𝛼0 is the nature death rate of the population; 𝛼1 is the disease-related death rate; 𝛼2 is the rate of
recovered individual becoming susceptible again; 𝛼3 is the rate of recovery from infection; 𝜎𝑖, 𝑖 = 1, 2, 3, 4 are intensities of the noise.
All these constants are assumed to be positive and depend on 𝜉(𝑡). The rate (in time) of how many individuals in susceptible group
get infected is represented by a function named ‘‘incidence rate function’’. Numerous types of incidence rates have been modeled
and considered in the literature such as the bilinear functional response 𝑘0𝑆𝐼 (see [18]), the nonlinear functional response

𝑘0𝑆𝐼 𝑙

1+𝑘1𝐼ℎ

(see [19,20]), and the Beddington–DeAngelis functional response 𝑘0𝑆𝐼
1+𝑘1𝑆+𝑘2𝐼

(see [21,22]), etc. It is clear that if there is no infection

in the population, then there is no disease transmission and then, the incidence rate function will be 0. As a result, the incidence
rate in general can also be factorized by 𝐼(𝑡). Because of this, and also for the convenience of stating results later, we will write the
incidence rate function in the form 𝐼𝑔 for some function 𝑔(⋅, ⋅, ⋅).

Our goal in this paper is to provide a complete characterization of longtime behavior of (1.1) so as to answer one of the most
important questions: What is the sufficient and necessary condition that guarantee the infected class of individuals to be extinct
eventually. To answer this question, we introduce a real-valued threshold 𝜆, and prove that if 𝜆 is negative, the disease will die out
together with the extinction rate of the disease. On the other hand, if 𝜆 is positive, the disease becomes endemic. We shall show that
the system has an invariant probability measure, and the transition probability of the solution process converges to the invariant
measure. Our method to determine the thresholds is from a dynamical system theory point of view, which is interesting in its own
right. This methods can be generalized to deal with many other models. The algebraic representations of the thresholds are given
that is easily computable. In addition, simulation studies and numerical examples are given to illustrate our results.

Our contributions. The contributions and novelties in this work can be summarized as follows.

• In the literature, much effort has been devoted to the study of SIR epidemic models with vaccination, namely, SVIR, which
are suitable for disease with permanent immunity after recovery from infection. However, the study of SIRS models with
vaccination, which are valid for disease without permanent immunity, is relatively scarce. It is worth noting that the model
of SIRS-type models are more difficult and require more effort than that of SIR-type models. For many dynamical systems,
to establish a complete picture of longtime behavior, the higher dimensional problems require much more efforts. Even in
some cases, from two-dimensional problems to there-dimensional problems, there is a big gap; see [23] for the difference in
competitive-type models in mathematical biology. Some of the reasons are that the comparisons of solutions are not generally
extendable to higher dimensional systems, and that the behaviors of solution and ergodic measures are much richer. More
importantly, to date, there is no complete characterization of SVIRS models, not to mention the associated regime-switching
models. In this paper, we provide a satisfactory answer to the open question.
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• We also use novel and systematic approaches. Our methodology (using the Lyapunov exponents from dynamical systems theory
to define the thresholds) is general and systematic that can be generalized for other models. Although a similar approach has
been developed in [24] for stochastic systems with switching, those results are not applicable because we are considering
higher dimensional problems. In addition, the returning to susceptible group from recovered individuals, and the effects of
vaccination component 𝑉 (𝑡) make the dynamics of the underlying SVIRS system is much different from the existing works. As
a result, new methods and techniques are required. From a dynamic system point of view, we take advantage of examining the
boundary behavior of systems to facilitate the study Lyapunov exponents. In [24], and many other works in the literature, the
boundary behavior can be handled by considering an one-dimensional stochastic equation. However, for the SVIRS problem
considered in this work, one needs to examine a two-dimensional problem. As a result, the study of stationary distribution and
how the systems interact (be attracted or repelled) with these distributions are much more difficult. In addition, SVIRS-type
equations are highly coupled introducing additional difficulties. The complexity leads to significant challenges in understanding
when the extinction happens. To overcome the difficulty, we consider auxiliary perturbed systems to understand how small
changes in infected groups affect to the whole systems.

Organization of the paper. The rest of the paper is organized as follows. Section 2 presents our main result. Specifically, Section 2.1
establishes preliminary results for system (1.1), Section 2.2 introduces the ideas and states main results, and Sections 2.3 and 2.4
re devoted to the proofs. Section 3 gives numerical examples. Finally, Section 4 provides additional discussion and interpretation.

2. Main results

2.1. Preliminary results for (1.1)

Let (𝛺, , {𝑡}𝑡≥0,P) be a complete filtered probability space. 𝑊1(𝑡), 𝑊2(𝑡), 𝑊3(𝑡), and 𝑊4(𝑡) are independent standard Brownian
motions, and 𝜉(𝑡) is a finite-state continuous-time Markov chain that is independent of the Brownian motions 𝑊𝑖(𝑡), 𝑖 = 1,… , 4 and
that has a finite state space  = {1,… , 𝑚0}. Assume that the generator 𝑄 = (𝑞𝑘𝑙)𝑚0×𝑚0

of 𝜉(𝑡) is irreducible; see e.g., [15]. As a
result, it has a unique invariant probability measure 𝜋. Note that by definition,

P{𝜉(𝑡 + 𝛥) = 𝑗|𝜉(𝑡) = 𝑖, 𝜉(𝑢), 𝑢 ≤ 𝑡} = 𝑞𝑖𝑗𝛥 + 𝑜(𝛥) if 𝑖 ≠ 𝑗 and
P{𝜉(𝑡 + 𝛥) = 𝑖|𝜉(𝑡) = 𝑖, 𝜉(𝑢), 𝑢 ≤ 𝑡} = 1 + 𝑞𝑖𝑖𝛥 + 𝑜(𝛥).

(2.1)

Throughout the paper, we denote R2
+ = {(𝑠, 𝑣) ∈ R2 ∶ 𝑠 ≥ 0, 𝑣 ≥ 0} with interior R2,◦

+ = {(𝑠, 𝑣) ∈ R2 ∶ 𝑠 > 0, 𝑖 > 0},
R4
+ = {(𝑠, 𝑣, 𝑖, 𝑟) ∈ R4 ∶ 𝑠 ≥ 0, 𝑖 ≥ 0, 𝑣 ≥ 0, 𝑟 ≥ 0} with interior R4,◦

+ = {(𝑠, 𝑣, 𝑖, 𝑟) ∈ R4 ∶ 𝑠 > 0, 𝑖 > 0, 𝑣 > 0, 𝑟 > 0},
R4,∗
+ = {(𝑠, 𝑣, 𝑖, 𝑟) ∈ R4

+ ∶ 𝑖 > 0}. Moreover, to simplify notation, we denote 𝐳 ∶= (𝑠, 𝑣, 𝑖, 𝑟) and 𝐙(⋅) = (𝑆(⋅), 𝑉 (⋅), 𝐼(⋅), 𝑅(⋅)). We
will denote P𝐳,𝑘 and E𝐳,𝑘 the probability and expectation corresponding to the initial condition 𝑆(0) = 𝑠, 𝐼(0) = 𝑖, 𝑉 (0) = 𝑣, 𝑅(0) = 𝑟,
𝜉(0) = 𝑘, respectively.

Assumption 2.1. We impose the following assumption through out the paper.

• 𝑔(𝑢, 𝑖, 𝑘) is locally Lipschitz and bounded by 𝐶(1 + 𝑢) for some constant 𝐶 > 0 on R2
+ ×.

• 𝑔(𝑢, 𝑖, 𝑘) is continuous at 𝑖 = 0 uniformly in (𝑢, 𝑘), that is

lim
𝑖→0+

sup
𝑢≥0,𝑘∈

{|𝑔(𝑢, 𝑖, 𝑘) − 𝑔(𝑢, 0, 𝑘)|} = 0.

• 𝑔(𝑢, 0, 𝑘) is increasing in 𝑢 ∈ [0,∞) for each 𝑘 ∈ .

Remark 2.1. We note that almost all of the incidence rate functions used in the literature as mentioned in the introduction (such
as the bilinear incidence rate, the Beddington–DeAngelis incidence rate, the Holling type II functional response, etc.) satisfy these
conditions. Recall that the incidence rate in our setting is 𝐼𝑔 rather than 𝑔.

To proceed, we first establish the existence, uniqueness, and basic properties of the solution process of (1.1).

Theorem 2.1. For any initial value (𝐳, 𝑘) ∈ R4
+×, there exists a global solution (𝐙(𝑡), 𝜉(𝑡)) to (1.1) such that P𝐳,𝑘{𝐙(𝑡) ∈ R4

+, ∀𝑡 ≥ 0} = 1.
Moreover, for all 𝐳 = (𝑠, 𝑣, 𝑖, 𝑟) with 𝑖 = 0 and 𝑠, 𝑣, 𝑟 ≥ 0,

P𝐳,𝑘{𝐼(𝑡) = 0, ∀𝑡 ≥ 0} = P𝐳,𝑘{𝑆(𝑡) > 0, 𝑉 (𝑡) > 0, 𝑅(𝑡) > 0, ∀𝑡 ≥ 0} = 1,

and for all 𝐳 = (𝑠, 𝑣, 𝑖, 𝑟) with 𝑖 > 0, 𝑠 ≥ 0, 𝑣 ≥ 0, 𝑟 ≥ 0,

P𝐳,𝑘{𝐙(𝑡) ∈ R4,◦
+ , ∀𝑡 > 0} = 1,

We also have that the joint-process (𝐙(𝑡), 𝜉(𝑡)) is a Markov–Feller process on R4
+ ×.

Remark 2.2. Together with well-posedness property of the underlying equation, the results show the positivity property of the
solution. That is, all components are always non-negative provided if they start from non-negative initial conditions. Moreover,
1286
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Proof. The proof is rather standard and therefore is omitted here. We can refer to [25, Theorem 2.1], or [26, Theorem 1] for similar
proofs. □

Next, we establish the boundedness in probability and boundedness in moment of the solution process.

emma 2.1. For any 𝑞 > 0 sufficiently small, there exist 𝐶𝑞 > 0 and 𝐷𝑞 > 0 such that

E𝐳,𝑘 (𝑆(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡) + 𝑅(𝑡))1+𝑞 ≤ (1 + 𝑠 + 𝑖 + 𝑣 + 𝑟)1+𝑞

𝑒𝐷𝑞 𝑡
+

𝐶𝑞

𝐷𝑞
, ∀𝑡 ≥ 0. (2.2)

s a result, for any 𝐻 > 0, 𝜀 > 0, 𝑇 > 0, there is a constant 𝑀𝐻,𝜀,𝑇 > 0 such that

P𝐳,𝑘

{

sup
𝑡∈[0,𝑇 ]

{𝑆(𝑡) + 𝑉 (𝑡) + 𝐼(𝑡) + 𝑅(𝑡)} ≤ 𝑀𝐻,𝜀,𝑇

}

≥ 1 − 𝜀, ∀(𝐳, 𝑘) ∈ [0,𝐻]4 ×. (2.3)

roof. Denote by  the operator associated with the solution process of (1.1). It is well-known that for a function 𝑈 of (𝐳, 𝑘) that
s twice differentiable with respect to 𝐳 = (𝑠, 𝑣, 𝑖, 𝑟), we have

𝑈 (𝐳, 𝑘) =𝑈𝑠(𝐳, 𝑘)
(

(1 − 𝑞(𝑘))𝐴 − 𝑖𝑔(𝑠 + 𝛽𝑣, 𝑖, 𝑘) − (𝛼0(𝑘) + 𝑝(𝑘))𝑠 + 𝛼2(𝑘)𝑟 + 𝛾(𝑘)𝑣
)

+ 𝑈𝑖(𝐳)
(

𝑖𝑔(𝑠 + 𝛽𝑣, 𝑖, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘))𝑖
)

+ 𝑈𝑣(𝐳, 𝑘)
(

𝑞(𝑘)𝐴(𝑘) + 𝑝(𝑘)𝑠 − (𝛼0(𝑘) + 𝛾(𝑘))𝑣
)

+ 𝑈𝑟(𝐳, 𝑘)
(

𝛼3(𝑘)𝑖 − 𝛼0(𝑘)𝑟 − 𝛼2(𝑘)𝑟
)

+ 1
2
𝑈𝑠𝑠(𝐳, 𝑘)𝜎21 (𝑘)𝑠

2 + 1
2
𝑈𝑣𝑣(𝐳, 𝑘)𝜎22 (𝑘)𝑣

2 + 1
2
𝑈𝑖𝑖(𝐳, 𝑘)𝜎23 (𝑘)𝑖

2 + 1
2
𝑈𝑟𝑟(𝐳, 𝑘)𝜎24 (𝑘)𝑟

2

+
∑

𝑙∈
𝑞𝑘𝑙𝑈 (𝐳, 𝑙).

herefore, by direct computations for 𝑈 = (1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)1+𝑞 , we have

(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)1+𝑞

=(1 + 𝑞)(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞
(

(1 − 𝑞(𝑘))𝐴 − 𝑖𝑔(𝑠 + 𝛽𝑣, 𝑖, 𝑘) − (𝛼0(𝑘) + 𝑝(𝑘))𝑠 + 𝛼2(𝑘)𝑟 + 𝛾(𝑘)𝑣
)

+ (1 + 𝑞)(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞
(

𝑖𝑔(𝑠 + 𝛽𝑣, 𝑖, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘))𝑖
)

+ (1 + 𝑞)(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞
(

𝑞(𝑘)𝐴(𝑘) + 𝑝(𝑘)𝑠 − (𝛼0(𝑘) + 𝛾(𝑘))𝑣
)

+ (1 + 𝑞)(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞
(

𝛼3(𝑘)𝑖 − 𝛼0(𝑘)𝑟 − 𝛼2(𝑘)𝑟
)

+
𝑞(1 + 𝑞)

2
(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞−1

(

𝜎21 (𝑘)𝑠
2 + 𝜎22 (𝑘)𝑣

2 + 𝜎23 (𝑘)𝑖
2 + 𝜎24 (𝑘)𝑟

2
)

=(1 + 𝑞)(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞
(

𝐴 − 𝛼0(𝑘)𝑠 − 𝛼0(𝑘)𝑣 − (𝛼0(𝑘) + 𝛼1(𝑘))𝑖 − 𝛼0(𝑟)
)

+
𝑞(1 + 𝑞)

2
(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞−1

(

𝜎21 (𝑘)𝑠
2 + 𝜎22 (𝑘)𝑣

2 + 𝜎23 (𝑘)𝑖
2 + 𝜎24 (𝑘)𝑟

2
)

≤(1 + 𝑞)(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞
(

2𝐴 − 𝛼̌(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟) + 𝑞𝜎(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)
)

,

where 𝛼̌ ∶= min𝑘∈{𝐴, 𝛼0(𝑘), 𝛼1(𝑘)} > 0, and 𝜎 ∶= 1
2 max𝑘∈,𝑖=1,2,3,4{𝜎2𝑖 (𝑘)} < ∞. Now, for any 𝑞, 0 < 𝑞 < 𝛼̌

2𝜎 , we have

(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)1+𝑞 ≤ 𝐶𝑞 −𝐷𝑞(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)1+𝑞 ,

for 𝐷𝑞 =
(1+𝑞)𝛼̌

4 , and

𝐶𝑞 = sup
𝑠,𝑣,𝑖,𝑟≥0

{

(1 + 𝑞)(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)𝑞
(

2𝐴 − 𝛼̌
4
(1 + 𝑠 + 𝑣 + 𝑖 + 𝑟)

)}

< ∞.

Therefore, as an application of Itô’s formula, one can obtain (2.2) and (2.3); see [27] or [28] for this well-known argument. □

.2. A complete characterization of longtime behavior

In this section, a threshold 𝜆 will be introduced. This 𝜆 will completely characterize the longtime property of system (1.1). The
hreshold 𝜆 will be determined from the dynamics of the system on the boundary, that is, when 𝐼(𝑡) = 𝑅(𝑡) = 0, in which, (𝑆(𝑡), 𝑉 (𝑡))
follows the system

⎧

⎪

⎪

⎨

⎪

⎪

𝑑𝑆(𝑡) =
[

(

1 − 𝑞(𝜉(𝑡))
)

𝐴(𝜉(𝑡)) −
(

𝛼0(𝜉(𝑡)) + 𝑝(𝜉(𝑡))
)

𝑆(𝑡)

+ 𝛾(𝜉(𝑡)𝑉 (𝑡))
]

𝑑𝑡 + 𝜎1(𝜉(𝑡))𝑆(𝑡)𝑑𝑊1(𝑡),

𝑑𝑉 (𝑡) =
[

𝑞(𝜉(𝑡))𝐴(𝜉(𝑡)) + 𝑝(𝜉(𝑡))𝑆(𝑡) −
(

𝛼0(𝜉(𝑡)) + 𝛾(𝜉(𝑡))
)

𝑉 (𝑡)
]

𝑑𝑡
(2.4)
1287

⎩ + 𝜎2(𝜉(𝑡))𝑉 (𝑡)𝑑𝑊2(𝑡).
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As alluded to in the introduction, to examine the boundary behavior, we need to look at 2-dimensional problems, which presents
an added difficult. The returning to susceptible group from recovered and vaccinated individuals is also another challenge. To ease
the difficulty, we consider a perturbed system of (2.4). For each 𝜃 ∈ [−1, 1], let (𝑆𝜃(𝑡), 𝑉 𝜃(𝑡)) be solution to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑆𝜃(𝑡) =
[

(

1 − 𝑞(𝜉(𝑡))
)

𝐴(𝜉(𝑡)) −
(

𝛼0(𝜉(𝑡)) + 𝑝(𝜉(𝑡))
)

𝑆𝜃(𝑡)

+ 𝛾(𝜉(𝑡))𝑉 𝜃(𝑡)
]

𝑑𝑡 + 𝜃𝛼2(𝜉(𝑡))𝑑𝑡 + 𝜎1(𝜉(𝑡))𝑆𝜃(𝑡)𝑑𝑊1(𝑡),

𝑑𝑉 𝜃(𝑡) =
[

𝑞(𝜉(𝑡))𝐴(𝜉(𝑡)) + 𝑝(𝜉(𝑡))𝑆𝜃(𝑡) −
(

𝛼0(𝜉(𝑡)) + 𝛾(𝜉(𝑡))
)

𝑉 𝜃(𝑡)
]

𝑑𝑡

+ 𝜎2(𝜉(𝑡))𝑉 𝜃(𝑡)𝑑𝑊2(𝑡).

(2.5)

Denote by 𝜃 the operator associated with the solution process of (2.5), i.e., for twice differentiable function 𝑈 ((𝑠, 𝑣), 𝑘) (with respect
to (𝑠, 𝑣))

𝜃𝑈 ((𝑠, 𝑣), 𝑘) =𝑈𝑠((𝑠, 𝑣), 𝑘)
(

(1 − 𝑞(𝑘))𝐴 − (𝛼0(𝑘) + 𝑝(𝑘))𝑠 + 𝛼2(𝑘)𝑟 + 𝛾(𝑘)𝑣 + 𝜃𝛼2(𝑘)
)

+ 𝑈𝑣((𝑠, 𝑣), 𝑘)
(

𝑞(𝑘)𝐴(𝑘) + 𝑝(𝑘)𝑠 − (𝛼0(𝑘) + 𝛾(𝑘))𝑣
)

+ 1
2
𝑈𝑠𝑠((𝑠, 𝑣), 𝑘)𝜎21 (𝑘)𝑠

2 + 1
2
𝑈𝑣𝑣((𝑠, 𝑣), 𝑘)𝜎22 (𝑘)𝑣

2 +
∑

𝑙∈
𝑞𝑘𝑙𝑈 ((𝑠, 𝑣), 𝑘).

Analogous to Theorem 2.1 and Lemma 2.1, we can easily show that for each initial value ((𝑠, 𝑣), 𝑘) ∈ R2
+ × , there exists a

lobal solution (𝑆𝜃(𝑡), 𝑉 𝜃(𝑡)) to (2.5) and that (𝑆𝜃(𝑡), 𝑉 𝜃(𝑡)) ∈ R2,◦
+ for all 𝑡 > 0 almost surely and that

E(𝑠,𝑣),𝑘

(

𝑆𝜃(𝑡) + 𝑉 𝜃(𝑡)
)1+𝑞

≤ (1 + 𝑠 + 𝑣)1+𝑞

𝑒𝐷̃𝑞 𝑡
+

𝐶𝑞

𝐷̃𝑞
, ∀𝑡 ≥ 0, (2.6)

or some small 𝑞 > 0, and constants 𝐶𝑞 , 𝐷̃𝑞 > 0, which can be taken uniformly for any 𝜃 ∈ [−1, 1].
Since the diffusion in (2.5) is nondegenerate on R2,◦

+ × , there exists uniquely an invariant probability distribution 𝝂𝜃 of
(𝑆𝜃(𝑡), 𝑉 𝜃(𝑡)), 𝜉(𝑡)) on R2,◦

+ ×. Due to (2.6) and [29, Lemma 3.4], we have

∑

𝑘∈
∫R2

+

(𝑠 + 𝑣)1+𝑞𝝂𝜃(𝑑𝑠, 𝑑𝑣, 𝑘) ≤
𝐶𝑞

𝐷̃𝑞
< ∞.

Thus, we can define the following 𝜆𝜃 which is a ‘‘perturbed’’ growth rate of 𝐼(𝑡) as its density is small:

𝜆𝜃 ∶=
∑

𝑘∈
∫R2

+

(

𝑔(𝑠, 0, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎23 (𝑘)
2

)

𝝂𝜃(𝑑𝑠, 𝑑𝑣, 𝑘)

=
∑

𝑘∈
∫R2

+

𝑔(𝑠 + 𝛽𝑣, 0, 𝑘)𝝂𝜃(𝑑𝑠, 𝑑𝑣, 𝑘) −
∑

𝑘∈

(

𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘) +
𝜎23 (𝑘)
2

)

𝜋𝑘.

he equality above follows from the fact that 𝜋 is the marginal distribution of the third component in 𝝂𝜃 , which is because 𝜋 is the
nique invariant measure of 𝜉(𝑡). In particular, when 𝜃 = 0, we denote

𝜆 ∶= 𝜆0 =
∑

𝑘∈
∫R2

+

(

𝑔(𝑠 + 𝛽𝑣, 0, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎23 (𝑘)
2

)

𝝂0(𝑑𝑠, 𝑑𝑣, 𝑘). (2.7)

his 𝜆 will be shown to be the threshold that characterizes the longtime behavior of the disease. Note that, when 𝜃 = 0, (2.5) is the
olution to (2.4). Thus, we can consider 𝝂0 as the unique invariant measure of ((𝑆(𝑡), 𝑉 (𝑡), 𝐼(𝑡), 𝑅(𝑡)), 𝜉(𝑡)) on the boundary R4,∗

+ ×
by embedding R2

+ × to R4,∗
+ ×).

emma 2.2.

lim
𝜃→0

𝜆𝜃 = 𝜆0 = 𝜆.

roof. Owing to (2.6), the family {𝝂𝜃 , 𝜃 ∈ [−1, 1]} is tight. As a result, for any sequence 𝜃𝑛 that converges to 0 as 𝑛 goes to ∞, we
an find a subsequence, still denoted by {𝜃𝑛}∞𝑛=1 for simplicity such that 𝝂𝜃𝑛 converges weakly to a probability measure, denoted by
𝝂, as 𝑛 goes to ∞.

On the other hand, because 𝝂𝜃 is the unique invariant measure of (2.5), for any (𝑠, 𝑣)-twice differentiable function 𝑈 ((𝑠, 𝑣), 𝑘)
ith compact support, we have

∑

𝑘∈
∫R2

+

𝜃𝑈 ((𝑠, 𝑣), 𝑘)𝝂𝜃(𝑑𝑠, 𝑑𝑣, 𝑘) = 0.

ecause of the weak convergence of {𝝂𝜃𝑛}
∞
𝑛=1 to 𝝂, we have

lim
𝑛→∞

∑

∫ 𝜃𝑛𝑈 ((𝑠, 𝑣), 𝑘)𝝂𝜃𝑛 (𝑑𝑠, 𝑑𝑣, 𝑘) = 0, (2.8)
1288
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for any (𝑠, 𝑣)-twice differentiable function 𝑈 ((𝑠, 𝑣), 𝑘) with compact support.
Note that 𝜃𝑛𝑈 ((𝑠, 𝑣), 𝑘) = 𝑈 ((𝑠, 𝑣), 𝑘) + 𝜃𝑛𝛼2(𝑘)𝑈𝑠((𝑠, 𝑣), 𝑘) which implies

∑

𝑘∈
∫R2

+

𝑈 ((𝑠, 𝑣), 𝑘)𝝂(𝑑𝑠, 𝑑𝑣, 𝑘)

= lim
𝑛→∞

∑

𝑘∈
∫R2

+

𝑈 ((𝑠, 𝑣), 𝑘)𝝂𝜃𝑛 (𝑑𝑠, 𝑑𝑣, 𝑘)

= lim
𝑛→∞

∑

𝑘∈
∫R2

+

𝜃𝑛𝑈 ((𝑠, 𝑣), 𝑘)𝝂𝜃𝑛 (𝑑𝑠, 𝑑𝑣, 𝑘)

− lim
𝑛→∞

∑

𝑘∈
∫R2

+

𝜃𝑛𝛼2(𝑘)𝑈𝑠((𝑠, 𝑣), 𝑘)𝝂𝜃𝑛 (𝑑𝑠, 𝑑𝑣, 𝑘)

=0.

(2.9)

The last equality is due to (2.8), the boundedness of 𝑈𝑠(𝑠, 𝑣, 𝑘) and the fact that lim𝑛→∞ 𝜃𝑛 = 0.
Because

∑

𝑘∈
∫R2

+

𝑈 ((𝑠, 𝑣), 𝑘)𝝂(𝑑𝑠, 𝑑𝑣, 𝑘) = 0

or any (𝑠, 𝑣)-twice differentiable function 𝑈 ((𝑠, 𝑣), 𝑘) with compact support, 𝝂 must be an invariant measure of (2.4). Due to the
niqueness, 𝝂 is identical to 𝝂. Therefore, we have showed that any weak limit of 𝝂𝜃 as 𝜃 → 0 must be 𝝂. This and the tightness
of {𝝂𝜃 , 𝜃 ∈ [−1, 1]} implies that 𝝂𝜃 converges weakly to 𝝂 as 𝜃 → 0. As an application of [29, Lemma 3.4], the desired result
‘lim𝜃→0 𝜆𝜃 = 𝜆’’ follows directly from this convergence together with (2.6) and the linear growth rate of 𝑔(𝑠 + 𝛽𝑣, 0, 𝑘). □

Now, we state our main results.

heorem 2.2. If 𝜆 > 0, there exists a unique invariant measure 𝝂∗ of (𝐙(𝑡), 𝜉(𝑡)) on R4,◦
+ × . In addition, the transition probability

onverges to the unique invariant measure exponentially fast. That is, there is a constant 𝑚 > 0 such that

lim
𝑡→∞

𝑒𝑚𝑡‖𝑃 (𝑡, (𝐳, 𝑘), ⋅) − 𝝂∗(⋅)‖𝑇𝑉 = 0, ∀ (𝐳, 𝑘) ∈ R4,∗
+ ×,

here 𝑃 (𝑡, (𝐳, 𝑘), ⋅) is the transition probability of the joint-process (𝐙(𝑡), 𝜉(𝑡)).

heorem 2.3. If 𝜆 < 0, 𝐼(𝑡) converges to 0 exponentially fast and 𝑅(𝑡) converges to 0 almost surely. More precisely,

P𝐳,𝑘

{

lim
𝑡→∞

ln 𝐼(𝑡)
𝑡

= 𝜆, and lim
𝑡→∞

𝑅(𝑡) = 0
}

= 1. (2.10)

n addition, (𝑆(𝑡), 𝑉 (𝑡)) converges (weakly) to the solution of (2.4).

lgebraic representation of 𝜆. Before proving the main results, let us provide some computable representation of the threshold 𝜆.
hen 𝑔(𝑠 + 𝛽𝑣, 0, 𝑘) is a linear function, that is, 𝑔(𝑠 + 𝛽𝑣, 0, 𝑘) = 𝑏(𝑘)(𝑠 + 𝛽𝑣) with 𝑏(⋅) ∶  → (0,∞), we will construct an algebraic

representation for 𝜆. This representation is very useful from a computational point of view since we can compute 𝜆 by solving a
system of linear equations.

Lemma 2.3. Assume function 𝑔 is a linear function, i.e., 𝑔(𝑠 + 𝛽𝑣, 0, 𝑘) = 𝑏(𝑘)(𝑠 + 𝛽𝑣). Let 𝐶 ∶=
(

𝑐1(1), 𝑐1(2),… , 𝑐1(𝑚0), 𝑐2(1), 𝑐2(2),… ,
𝑐2(𝑚0)

)⊤ be the unique solution to the linear system:

⎧

⎪

⎨

⎪

⎩

𝑏(𝑘) −
(

𝛼0(𝑘) + 𝑝(𝑘)
)

𝑐1(𝑘) + 𝑝(𝑘)𝑐2(𝑘) +
∑

𝑙∈
𝛾𝑘𝑙𝑐1(𝑙) = 0,

𝛽𝑏(𝑘) + 𝛾(𝑘)𝑐1(𝑘) −
(

𝛼0(𝑘) + 𝛾(𝑘)
)

𝑐2(𝑘) +
∑

𝑙∈
𝛾𝑘𝑙𝑐2(𝑙) = 0, 𝑘 = 1, 2,… , 𝑚0.

(2.11)

We have:

𝜆 =
∑

𝑘∈

[

𝑐1(𝑘)(1 − 𝑞(𝑘))𝐴(𝑘) −

(

𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘) +
𝜎23 (𝑘)
2

)]

𝜋𝑘.

Proof. The system (2.11) can be written in the following form
1289
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where 𝐵 =
(

𝑏(1), 𝑏(2),… , 𝑏(𝑚0), 𝛽𝑏(1), 𝛽𝑏(2)… , 𝛽𝑏(𝑚0)
)⊤, and

𝐀 =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼0(1) + 𝑝(1) − 𝛾11 … −𝛾1𝑚0
−𝑝(1) … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
−𝛾𝑚01 … 𝛼0(𝑚0) + 𝑝(𝑚0) − 𝛾𝑚0𝑚0

0 … −𝑝(𝑚0)
−𝛾(1) … 0 𝛼0(1) + 𝛾(1) − 𝛾11 … −𝛾1𝑚0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 … −𝛾(𝑚0) −𝛾𝑚01 … 𝛼0(𝑚0) + 𝛾(𝑚0) − 𝛾𝑚0𝑚0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
(2.13)

ince −𝛾𝑖𝑖 =
∑

𝑗≠𝑖 𝛾𝑖𝑗 , it is obvious that matrix 𝐀 = [𝑎𝑖𝑗 ]2𝑚0×2𝑚0
is diagonally dominant, i.e., |𝑎𝑖𝑖| ≥

∑2𝑚0
𝑗≠𝑖,𝑗=1 |𝑎𝑖𝑗 | for any 𝑖 = 1,… , 𝑚0.

t is well-known that a diagonally dominant matrix is non-singular. Thus, there exists a unique solution 𝐶 to (2.12).
Denote by 0 the operator associated with the solution process of (2.4) and (𝑆0, 𝑉 0) be the solution to (2.4). It is readily seen

hat if we let 𝑈 ((𝑠, 𝑣), 𝑘) = 𝑐1(𝑘)𝑠 + 𝑐2(𝑘)𝑣 then

0𝑈 ((𝑠, 𝑣), 𝑘) =𝑐1(𝑘)
[

(1 − 𝑞(𝑘))𝐴(𝑘) + 𝛼3(𝑘)𝜃 −
(

𝛼0(𝑘) + 𝑝(𝑘)
)

𝑠 + 𝛾(𝑘)𝑣
]

+ 𝑐2(𝑘)
[

𝑞(𝑘)𝐴(𝑘) + 𝑝(𝑘)𝑠 −
(

𝛼0(𝑘) + 𝛾(𝑘)
)

𝑣
]

+
(

∑

𝑙
𝛾𝑘𝑙𝑐1(𝑙)

)

𝑠 +
(

∑

𝑙
𝛾𝑘𝑙𝑐2(𝑙)

)

𝑣

=𝑐1(𝑘)
[

(1 − 𝑞(𝑘))𝐴(𝑘)
]

− 𝑏(𝑘)𝑠 − 𝛽𝑏(𝑘)𝑣.

hen, by Dynkin’s formula [30], we have

E(𝑠,𝑣),𝑘 𝑈 ((𝑆0(𝑡), 𝑉 0(𝑡)), 𝜉(𝑡)) − 𝑈 ((𝑆0(0), 𝑉 0(0)), 𝜉(0))

= E(𝑠,𝑣),𝑘 ∫

𝑡

0
0𝑈 ((𝑆0(𝑢), 𝑉 0(𝑢)), 𝜉(𝑢))𝑑𝑢

= E(𝑠,𝑣),𝑘 ∫

𝑡

0
𝑐1(𝜉(𝑢))

[

(1 − 𝑞(𝜉(𝑢)))𝐴(𝜉(𝑢))
]

𝑑𝑢 − E(𝑠,𝑣),𝑘 ∫

𝑡

0
𝑏(𝜉(𝑢))

(

𝑆0(𝑢) + 𝛽𝑉 0(𝑢)
)

𝑑𝑢.

(2.14)

Moreover, one has

lim
𝑡→∞

1
𝑡
E(𝑠,𝑣),𝑘 ∫

𝑡

0
𝑐1(𝜉(𝑢))

[

(1 − 𝑞(𝜉(𝑢)))𝐴(𝜉(𝑢))
]

𝑑𝑢 =
∑

𝑘∈
𝑐1(𝑘)(1 − 𝑞(𝑘))𝐴(𝑘)𝜋𝑘, (2.15)

lim
𝑡→∞

1
𝑡
E(𝑠,𝑣),𝑘 ∫

𝑡

0
𝑏(𝜉(𝑢))

(

𝑆0(𝑢) + 𝛽𝑉 0(𝑢)
)

𝑑𝑢 =
∑

𝑘∈
∫R2

+

𝑏(𝑘)(𝑠 + 𝛽𝑣)𝜈(𝑑𝑠, 𝑑𝑣), (2.16)

lim
𝑡→∞

E(𝑠,𝑣),𝑘𝑈 (𝑆0(𝑡), 𝑉 0(𝑡), 𝜉(𝑡)) − 𝑈 (𝑆0(0), 𝑉 0(0), 𝜉(0))
𝑡

= 0. (2.17)

lugging (2.15), (2.16), and (2.17) in (2.14), we have
∑

𝑘∈
𝑐1(𝑘)(1 − 𝑞(𝑘))𝐴(𝑘)𝜋𝑘 =

∑

𝑘∈
∫R2

+

𝑏(𝑘)(𝑠 + 𝛽𝑣)𝝂0(𝑑𝑠, 𝑑𝑣, 𝑘),

hich and the formula (2.7) of 𝜆 imply

𝜆 = 𝜆0 =
∑

𝑘∈
𝑐1(𝑘)(1 − 𝑞(𝑘))𝐴(𝑘)𝜋𝑘 −

∑

𝑘∈

(

𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘) +
𝜎23 (𝑘)
2

)

𝜋𝑘.

The proof is complete. □

2.3. Proof of Theorem 2.2

Since 𝑔(𝑢, 𝑖, 𝑘) is continuous at 𝑖 = 0 uniformly in 𝑢, there exists 𝛿1 > 0 such that

sup
𝑢≥0,𝑘∈,0≤𝑖≤𝛿1

|𝑔(𝑢, 𝑖, 𝑘) − 𝑔(𝑢, 0, 𝑘)| < 1
4
𝜆. (2.18)

ince the function 𝑔(𝑢, 0, 𝑘) is increasing in 𝑢, and

∑

𝑘∈
∫R2

+

(

𝑔(𝑠 + 𝛽𝑣, 0, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎22 (𝑘)
2

)

𝝂(𝑑𝑠, 𝑑𝑣, 𝑘) = 𝜆,

there exists 𝐻1 > 0 such that

∑

𝑘∈
𝜋𝑘

(

𝑔(𝐻1, 0, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎23 (𝑘)
2

)

= inf
𝑢≥𝐻

∑

𝜋𝑘

(

𝑔(𝑢, 0, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎23 (𝑘)

)

> 3𝜆.

(2.19)
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In view of (2.18) and (2.19), we have
∑

𝑘∈
ℎ̂𝑘𝜋𝑘 ≥ 1

2
𝜆 where ℎ̂𝑘 ∶= inf

𝑢≥𝐻1 ,0≤𝑖≤𝛿1

(

𝑔(𝑢, 𝑖, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎23 (𝑘)
2

)

. (2.20)

et

𝜆1 ∶=
1
3

∑

𝑘∈
ℎ̂𝑘𝜋𝑘. (2.21)

ecause ∑

𝑘∈(3𝜆1 − ℎ̂𝑘)𝜋𝑘 = 0, we deduce from the Fredholm alternative that there exist 𝑐𝑘 ≥ 0, 𝑘 ∈  such that
∑

𝓁∈
𝑞𝑘𝓁𝑐𝓁 = 3𝜆1 − ℎ̂𝑘. (2.22)

We have the following lemma.

emma 2.4. For any 𝜌1 ∈ (0, 1) satisfying

𝜌1

(

𝜎23 (𝑘)
2

(1 − 𝜌1𝑐𝑘) + (−3𝜆1 + ℎ̂𝑘)

)

< 1 and 1
2
≤ 1 − 𝜌1𝑐𝑘, for all 𝑘 ∈ , (2.23)

efine

𝑉1(𝑖, 𝑘) = (1 − 𝜌1𝑐𝑘)𝑖−𝜌1 .

e have the following conclusions.

• [𝑉1](𝐳, 𝑘) ≤ −𝜌1𝜆1𝑉1(𝑖, 𝑘) for any 𝐳 = (𝑠, 𝑣, 𝑖, 𝑟) with 𝑠 ≥ 𝐻1, 𝑖 ≤ 𝛿1.

• Let 𝑐1 ∶= max𝑘∈

{

𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘) +
𝜎23 (𝑘)
2 + 2

∑

𝓁∈ |𝑞𝑘𝓁|
}

, then [𝑉1](𝐳, 𝑘) ≤ 𝜌1𝑐1𝑉1(𝑖, 𝑘) for any (𝐳, 𝑘) ∈ R4,∗
+ × . As a

result, E𝐳,𝑘𝑉1(𝐼(𝜏), 𝜉(𝜏))𝑒−𝜌1𝑐1𝜏 ≤ 𝑉1(𝑖, 𝑘) for any initial condition (𝐳, 𝑘) ∈ R4,∗
+ × and any bounded stopping time 𝜏.

roof. We have the following estimate:

(𝑉1)(𝐳, 𝑘) = − 𝜌1𝑉1(𝑖, 𝑘)

(

𝑔(𝑠 + 𝛽𝑣, 𝑖, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎23 (𝑘)
2

)

+ 𝜌21
𝜎23 (𝑘)
2

𝑉1(𝑖, 𝑘) +
∑

𝓁∈
𝑞𝑘𝓁𝑉1(𝑖,𝓁)

≤ − 𝜌1𝑉1(𝑖, 𝑘)ℎ̂𝑘 + 𝜌21
𝜎23 (𝑘)
2

𝑉1(𝑖, 𝑘) +
∑

𝓁∈
𝑞𝑘𝓁𝑉1(𝑖,𝓁),

(2.24)

where ℎ̂𝑘 is defined as in (2.20). Note that
∑

𝓁∈
𝑞𝑘𝓁𝑉1(𝑖,𝓁) =

∑

𝓁∈
𝑞𝑘𝓁(1 − 𝜌1𝑐𝓁)𝑖−𝜌1

= − 𝜌1𝑖
−𝜌1

∑

𝓁∈
𝑞𝑘𝓁𝑐𝓁

=(−3𝜆1 + ℎ̂𝑘)𝜌1𝑖−𝜌1

=(−3𝜆1 + ℎ̂𝑘)𝜌1𝑉1(𝑖, 𝑘) + (−3𝜆1 + ℎ̂𝑘)𝜌21𝑖
−𝜌1 .

(2.25)

Plugging (2.25) into (2.24) and applying (2.23), we get

(𝑉1)(𝐳, 𝑘) ≤ 𝜌21

(

𝜎23 (𝑘)
2

(1 − 𝜌1𝑐𝑘) + (−3𝜆1 + ℎ̂𝑘)

)

𝑖−𝜌1 − 3𝜆1𝜌1𝑉1(𝑖, 𝑘)

≤ 𝜆1𝜌1𝑖
−𝜌1 − 3𝜌1𝜆1𝑉1(𝑖, 𝑘)

≤ 𝜆1𝜌1(
1

1 − 𝜌1𝑐𝑘
− 3)𝑉1(𝑖, 𝑘)

≤ −𝜌1𝜆1𝑉1(𝑖, 𝑘) for any 𝐳 = (𝑠, 𝑖, 𝑣, 𝑟) with 𝑠 ≥ 𝐻1, 𝑖 ≤ 𝛿1.

(2.26)

herefore, the first assertion is proved.
On the other hand, because

∑

𝓁∈
𝑞𝑘𝓁𝑉1(𝑖,𝓁) =

∑

𝓁∈
𝑞𝑘𝓁

1 − 𝜌1𝑐𝑘
1 − 𝜌1𝑐𝓁

𝑉1(𝑖, 𝑘) ≤ 2
∑

𝓁∈
|𝑞𝑘𝓁|𝑉1(𝑖, 𝑘),

it follows from (2.24) that

[𝑉 ](𝐳, 𝑘) ≤ 𝜌 𝑐 𝑉 (𝑖, 𝑘) for any (𝐳, 𝑘) ∈ R4,∗ ×. (2.27)
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We deduce from (2.27) and Dynkin’s formula that

E𝐳,𝑘𝑉1(𝐼(𝜏), 𝜉(𝜏))𝑒−𝜌1𝑐1𝜏 ≤ 𝑉1(𝑖, 𝑘) for any (𝐳, 𝑘) ∈ R4,∗
+ × and any bounded stopping time 𝜏. (2.28)

The proof is complete. □

Let 𝑛∗ > 0 be such that 𝑐1 − (𝑛∗ − 1)𝜆1 < 0, where 𝑐1 is as in Lemma 2.4 and 𝜆1 is defined in (2.21).

emma 2.5. For any 𝐻 > 0, the set 𝐵𝐻 ∶= [0,𝐻]2 × [𝐻−1,𝐻] × [0,𝐻] ×  is petite with respect to the Markov chain
(𝐙(𝑛𝑛∗𝑇 ∗), 𝜉(𝑛𝑛∗𝑇 ∗)), 𝑛 ∈ Z+}. That is, there exists a nontrivial measure 𝜇 on R4,∗ × and a nonnegative sequence {𝑎𝑛}∞𝑛=1 such that

∞
∑

𝑛=1
𝑎𝑛 = 1 and

∞
∑

𝑛=1
𝑎𝑛P𝐳,𝑘

{

(𝐙(𝑛𝑛∗𝑇 ∗), 𝜉(𝑛𝑛∗𝑇 ∗)) ∈ 𝐴
}

≥ 𝜇(𝐴),

or any Borel set 𝐴 ⊂ R4,∗
+ × and (𝐳, 𝑘) ∈ 𝐵𝐻 .

roof. The proof is omitted because it is very similar to the proof of [31, Lemma 5.4]. □

emma 2.6. There are 𝑇 ∗ > max𝑘∈
8𝑐𝑘
𝜆 sufficiently large and 𝜌1 > 0, 𝛿2 > 0 sufficiently small such that for any 𝐳 = (𝑠, 𝑣, 𝑖, 𝑟) ∈ R4

+
with 0 ≤ 𝑖 ≤ 𝛿2, 0 ≤ 𝑠 + 𝛽𝑣 ≤ 𝐻1,

E𝐳,𝑘𝑉1(𝐼(𝑇 ), 𝜉(𝑇 )) ≤ 𝑒−
1
8 𝜌1𝜆𝑇 𝑉1(𝑖, 𝑘), ∀𝑇 ∈ [𝑇 ∗, 𝑛∗𝑇 ∗];

where 𝑉1 is defined as in Lemma 2.4.

Proof. To simply notation, let

ℎ(𝑠 + 𝛽𝑣, 0, 𝑘) ∶= 𝑔(𝑠 + 𝛽𝑣, 0, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎23 (𝑘)
2

, (2.29)

ecause of

𝜆 =
∑

𝑘∈
∫R2

+

ℎ(𝑠 + 𝛽𝑣, 0, 𝑘)𝝂0(𝑑𝑠, 𝑑𝑣, 𝑘),

here exists 𝐻2 > 0 such that
∑

𝑘∈
∫R2

+

ℎ̂2(𝑠 + 𝛽𝑣, 0, 𝑘)𝝂0(𝑑𝑠, 𝑑𝑣, 𝑘) >
3
4
𝜆, (2.30)

here

ℎ̂2(𝑠 + 𝛽𝑣, 𝑖, 𝑘) ∶= 𝐻2 ∧ ℎ(𝑠 + 𝛽𝑣, 𝑖, 𝑘).

efine the occupation measure in R4
+ ×

𝛱 𝑡
𝐳,𝑘(⋅) ∶=

1
𝑡
E𝐳,𝑘 ∫

𝑡

0
𝟏{(𝐙(𝑠),𝜉(𝑠))∈⋅}𝑑𝑠, (2.31)

hen [29, Lemma 3.4] claims that for a bounded sequence {𝐳𝑛} ⊂ R4
+, and sequence {𝑘𝑛} ⊂  and an increasing unbounded sequence

𝑡𝑛}, we have that any weak limit of {𝛱
𝑡𝑛
𝐳𝑛 ,𝑘𝑛

} as 𝑛 → ∞ must be an invariant probability measure of {(𝐙(𝑡), 𝜉(𝑡))}. Then, from (2.30),
y a simple contradiction argument (e.g., see the details in [29, Lemma 4.1]), we can find 𝑇 ∗ = 𝑇 ∗(𝐻) > max𝑘∈

8𝑐𝑘
𝜆 such that for

any 𝑇 ≥ 𝑇 ∗, we have that for any 𝐳 ∈ R4
+ with 0 ≤ 𝑠 + 𝛽𝑣 ≤ 𝐻1, 𝑖 = 0, and 𝑘 ∈ ,

E𝐳,𝑘
1
𝑇 ∫

𝑇

0
ℎ̂2(𝑆(𝑡) + 𝛽𝑉 (𝑡), 𝐼(𝑡), 𝜉(𝑡))𝑑𝑡 ≥ 1

2
𝜆.

ecause the process {(𝐙(𝑡), 𝜉(𝑡))} is a Markov–Feller process on R4
+ × , we can find 𝛿2 ∈ (0, 𝛿1) such that for any 𝐳 ∈ R4

+ with
≤ 𝑠 + 𝛽𝑣 ≤ 𝐻1, 0 < 𝑖 < 𝛿2, 𝑘 ∈ , and 𝑇 ∈ [𝑇 ∗, 𝑛∗𝑇 ∗],

E𝐳,𝑘
1
𝑇 ∫

𝑇

0
ℎ̂2(𝑆(𝑡) + 𝛽𝑉 (𝑡), 𝐼(𝑡), 𝜉(𝑡))𝑑𝑡 ≥ 𝜆

4
. (2.32)

Consider 𝑌 (𝑇 ) ∶= − ∫ 𝑇
0 ℎ̂2(𝑆(𝑡) + 𝛽𝑉 (𝑡), 𝐼(𝑡), 𝜉(𝑡))𝑑𝑡 − ∫ 𝑇

0 𝜎3(𝜉(𝑡))𝑑𝑊3(𝑡). We have

E𝐳,𝑘𝑌 (𝑇 ) ≤ −1
4
𝜆𝑇 for any 0 ≤ 𝑠, 𝑣 ≤ 𝐻, 0 < 𝑖 < 𝛿2, 𝑘 ∈ , 𝑇 ∈ [𝑇 ∗, 𝑛∗𝑇 ∗]. (2.33)

ince the function ℎ̂2 is bounded, we have from a property of the Laplace’s transform ([29, Lemma 3.5]) that

𝑑 lnE𝐳,𝑘𝑒𝜌𝑌 (𝑇 ) = E𝐳,𝑘𝑌 (𝑇 ) ≤ −1𝜆𝑇 and 0 ≤
𝑑2 lnE𝐳,𝑘𝑒𝜌𝑌 (𝑇 ) ≤ 𝐾2,𝜌,
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for some constant 𝐾2,𝜌 uniformly in 𝐳 with 0 ≤ 𝑠 + 𝛽𝑣 ≤ 𝐻 , 0 < 𝑖 < 𝛿2, 𝑘 ∈ , and 𝑇 ∈ [𝑇 ∗, 𝑛∗𝑇 ∗]. By Taylor’s expansion, we have
that for all 𝐳 ∈ R4

+ with 0 ≤ 𝑠 + 𝛽𝑣 ≤ 𝐻1, 0 < 𝑖 < 𝛿2, 𝑘 ∈ , and 𝑇 ∈ [𝑇 ∗, 𝑛∗𝑇 ∗]

lnE𝐳,𝑘𝑒
𝜌𝑌 (𝑇 ) ≤ 0 − 3

8
𝜆𝑇 𝜌 +𝐾2,𝜌𝜌

2 ≤ −1
4
𝜆𝑇 𝜌, (2.34)

henever 𝜌 ≤ 𝜆
8𝐾2,𝜌𝑛∗𝑇 ∗ .

Now, pick out a 𝜌1 > 0 satisfying (2.23) and

𝜌1 ≤
𝜆

8𝐾2,𝜌𝑛∗𝑇 ∗ .

e have from (2.34) that for all 𝐳 ∈ R4
+ with 0 ≤ 𝑠 + 𝛽𝑣 ≤ 𝐻1, 0 < 𝑖 < 𝛿2, 𝑘 ∈ , and 𝑇 ∈ [𝑇 ∗, 𝑛∗𝑇 ∗]

E𝐳,𝑘𝑒
𝜌1𝑌 (𝑇 ) ≤ exp{−1

4
𝜆𝑇 𝜌1}.

ubsequently, one has

E𝐳,𝑘
𝐼−𝜌1 (𝑇 )
𝑖−𝜌1

=E𝐳,𝑘𝑒
𝜌1

(

− ∫ 𝑇
0 ℎ(𝑆(𝑢)+𝛽𝑉 (𝑢),𝐼(𝑢),𝜉(𝑢))𝑑𝑢−∫ 𝑇

0 𝜎3(𝜉(𝑢))𝑑𝑊3(𝑢)
)

≤E𝐳,𝑘𝑒
𝜌1𝑌 (𝑇 ) ≤ exp{−

𝜆𝜌1𝑇
4

}.

n the other hand, we have

(1 − 𝜌1𝑐𝑘) ≥ 𝑒−
𝜌1𝜆𝑇
8 if 𝜆𝑇

8
≥ 𝑐𝑘.

Therefore, we deduce that

E𝐳,𝑘𝑉1(𝐼(𝑇 ), 𝜉(𝑇 )) ≤E𝐳,𝑘𝐼
−𝜌1 (𝑇 ) ≤ 𝑖−𝜌1 exp{−

𝜆𝜌1𝑇
4

}

≤(1 − 𝜌1𝑐𝑘)𝑖−𝜌1 exp{−
𝜆𝜌1𝑇
8

} = 𝑉1(𝑖, 𝑘) exp{−
𝜆𝜌1𝑇
8

},
(2.35)

or all 𝐳 ∈ R4
+ with 0 ≤ 𝑠 + 𝛽𝑣 ≤ 𝐻1, 0 < 𝑖 < 𝛿2, 𝑘 ∈ , and 𝑇 ∈ [𝑇 ∗, 𝑛∗𝑇 ∗]. The proof is complete. □

Now, we are ready to prove Theorem 2.2.

roof of Theorem 2.2. Define 𝜂1 = inf{𝑡 ≥ 0 ∶ 𝑆(𝑡) + 𝛽𝑉 (𝑡) ≤ 𝐻1} ∧ 𝑛∗𝑇 ∗ and 𝜂2 = inf{𝑡 ≥ 0 ∶ 𝐼(𝑡) ≥ 𝛿2} ∧ 𝑛∗𝑇 ∗.
Let 𝜌1 and 𝑉1 be as in Lemma 2.6. By the Markov–Feller property of {(𝐙(𝑡), 𝜉(𝑡))} and Lemma 2.6, we have the following estimates.

irst,

E𝐳,𝑘𝟏{𝜂1≤𝜂2∧(𝑛∗−1)𝑇 ∗}𝑉1(𝐼(𝑛∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗))

≤E𝐳,𝑘

[

exp
{

−
𝜆𝜌1
8

(𝑛∗𝑇 ∗ − 𝜂1)
}

𝟏{𝜂1≤𝑇 ∗}𝑉1(𝐼(𝜂1), 𝜉(𝜂1))
]

≤ exp
{

−
𝜆𝜌1
8

𝑇 ∗
}

E𝐳,𝑘

[

𝟏{𝜂1≤𝜂2∧(𝑛∗−1)𝑇 ∗}𝑉1(𝐼(𝜂1), 𝜉(𝜂1))
]

≤ exp
{

−
𝜆𝜌1
8

𝑇 ∗
}

E𝐳,𝑘

[

𝟏{𝜂1≤𝜂2∧(𝑛∗−1)𝑇 ∗}𝑉1(𝐼(𝜂1), 𝜉(𝜂1))
]

≤ exp
{

−
𝜆𝜌1
8

𝑇 ∗
}

E𝐳,𝑘

[

exp
{

𝜌1𝜆1(𝜂1 ∧ 𝜂2)
}

𝟏{𝜂1≤𝜂2∧(𝑛∗−1)𝑇 ∗}𝑉1(𝐼(𝜂1), 𝜉(𝜂1))
]

.

(2.36)

econd, due to the strong Markov property of 𝐙(𝑡)

E𝐳,𝑘𝟏{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 }𝑉1(𝐼(𝑛
∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗))

=E𝐳,𝑘

[

𝟏{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 }E(𝐙(𝜂1∧𝜂2),𝜉(𝜂1∧𝜂2))[𝑉1(𝐼(𝑛
∗𝑇 ∗ − 𝜂1 ∧ 𝜂2), 𝜉(𝑛∗𝑇 ∗ − 𝜂1 ∧ 𝜂2))]

]

;

nd due to (2.27) and as a consequence of Dynkin’s formula

E𝐳,𝑘

[

𝟏{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 }E(𝐙(𝜂1∧𝜂2),𝜉(𝜂1∧𝜂2))[𝑉1(𝐼(𝑛
∗𝑇 ∗ − 𝜂1 ∧ 𝜂2), 𝜉(𝑛∗𝑇 ∗ − 𝜂1 ∧ 𝜂2))]

]

≤E𝐳,𝑘

[

exp
{

𝜌1𝑐1(𝑛∗𝑇 ∗ − 𝜂1 ∧ 𝜂2)
}

𝟏{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 }𝑉1(𝐼(𝜂1 ∧ 𝜂2), 𝜉(𝜂1 ∧ 𝜂2))
]

≤ exp
{

𝜌1𝑐1𝑇
∗}E𝐳,𝑘

[

1{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 }𝑉1(𝐼(𝜂1 ∧ 𝜂2), 𝜉(𝜂1 ∧ 𝜂2))
]

≤ exp
{

(𝑐1 − (𝑛∗ − 1)𝜆1)𝜌1𝑇 ∗
}

E𝐳,𝑘

[

1{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 }𝑒
𝜌1𝜆1𝜂1∧𝜂2𝑉1(𝐼(𝜂1 ∧ 𝜂2), 𝜉(𝜂1 ∧ 𝜂2))

]

.

Therefore,

E𝐳,𝑘𝟏{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 }𝑉1(𝐼(𝑛
∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗))

≤ exp
{

(𝑐 − (𝑛∗ − 1)𝜆 )𝜌 𝑇 ∗
}

E
[

1 ∗ 𝑒𝜌1𝜆1𝜂1∧𝜂2𝑉 (𝐼(𝜂 ∧ 𝜂 ), 𝜉(𝜂 ∧ 𝜂 ))
]

.
(2.37)
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Third, we have

E𝐳,𝑘𝟏{𝜂2≤(𝑛∗−1)𝑇 ∗}𝑉1(𝐼(𝑛∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗))

≤E𝐳,𝑘𝟏{𝜂2≤(𝑛∗−1)𝑇 ∗} exp
{

𝑛∗𝑇 ∗ − 𝜂2
}

𝑉1(𝐼(𝜂2), 𝜉(𝜂2)) ≤ exp{𝑛∗𝑇 ∗}𝛿𝜌12 .
(2.38)

n the other hand, we have

E𝐳,𝑘

[(

𝟏{𝜂1≤𝜂2∧(𝑛∗−1)𝑇 ∗} + 𝟏{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 ∗}

)

exp
{

𝜌1𝜆1(𝜂1 ∧ 𝜂2)
}

𝑉1(𝐼(𝜂1 ∧ 𝜂2), 𝜉(𝜂1 ∧ 𝜂2))
]

≤E𝐳,𝑘

[

exp
{

𝜌1𝜆1(𝜂1 ∧ 𝜂2)
}

𝑉1(𝐼(𝜂1 ∧ 𝜂2), 𝜉(𝜂1 ∧ 𝜂2))
]

≤ 𝑉1(𝑖, 𝑘),
(2.39)

here the last inequality is due to (2.26) and an application of Dynkin’s formula. Since 𝛺 = {𝜂1 ≤ 𝜂2 ∧ (𝑛∗ − 1)𝑇 ∗} ∪ {𝜂1 ∧ 𝜂2 ≥
𝑛∗ − 1)𝑇 } ∪ {𝜂2 ≤ (𝑛∗ − 1)𝑇 ∗}, putting

𝜅 = max
{

exp
{

−
𝜆𝜌
8
𝑇 ∗

}

, exp
{

(𝑐1 − (𝑛∗ − 1)𝜆1)𝜌1𝑇 ∗
}

}

< 1,

e have from (2.36), (2.37), (2.38) and (2.39) that

E𝐳,𝑘𝑉1(𝐼(𝑛∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗)) =E𝐳,𝑘𝟏{𝜂1≤𝜂2∧(𝑛∗−1)𝑇 }𝑉1(𝐼(𝑛
∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗))

+ E𝐳,𝑘𝟏{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 }𝑉1(𝐼(𝑛
∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗))

+ E𝐳,𝑘𝟏{𝜂2≤(𝑛∗−1)𝑇 ∗}𝑉1(𝐼(𝑛∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗))

≤𝜅E𝐳,𝑘

[

𝟏{𝜂1≤𝜂2∧(𝑛∗−1)𝑇 ∗} exp
{

𝜌1𝜆1(𝜂1 ∧ 𝜂2)
}

𝑉1(𝐼(𝜂1 ∧ 𝜂2), 𝜉(𝜂1 ∧ 𝜂2))
]

+ 𝜅E𝐳,𝑘

[

𝟏{𝜂1∧𝜂2≥(𝑛∗−1)𝑇 ∗} exp
{

𝜌1𝜆1(𝜂1 ∧ 𝜂2)
}

𝑉1(𝐼(𝜂1 ∧ 𝜂2), 𝜉(𝜂1 ∧ 𝜂2))
]

+ E𝐳,𝑘𝟏{𝜂2≤(𝑛∗−1)𝑇 ∗}𝑉1(𝐼(𝑛∗𝑇 ∗), 𝜉(𝑛∗𝑇 ∗))

≤𝜅𝑉1(𝑖, 𝑘) + exp{𝑛∗𝑇 ∗}𝛿𝜌12 .

(2.40)

he Lyapunov-type inequality (2.40) together with Lemma 2.5 will imply the desired result. Similar arguments to obtain the
xponential convergence in total variation can be found in the proof of [29, Theorem 4.1]. □

.4. Proof of Theorem 2.3

By Lemma 2.3, it is readily seen that 𝜆𝜃 is continuous in 𝜃. Therefore, there exists 𝜃0 > 0 such that

𝜆𝜃0 <
𝜆0
2

= 𝜆
2
. (2.41)

t is noted that we are considering the case 𝜆 < 0, so 𝜆𝜃0 < 0.
We will establish the following lemma, which shows that if the solution starts from initial points very close to the boundary,

(𝑡) → 0 (exponentially fast) and 𝑅(𝑡) → 0 with high probability. To keep the flow of presentation, its proof is postponed to Appendix.

emma 2.7. Let 𝜃0 > 0 be as in (2.41). For any 𝜀 > 0, 𝐻 > 0, there is a constant 𝜃2 > 0 such that

P𝐳,𝑘

{

lim
𝑡→∞

ln 𝐼(𝑡)
𝑡

= 𝜆 < 0 and lim
𝑡→∞

𝑅(𝑡) = 0
}

≥ 1 − 𝜀, ∀(𝐳, 𝑘) ∈ [0,𝐻]2 × (0, 𝜃2]
2 ×. (2.42)

roof of Theorem 2.3. Because of Lemma 2.7, the process {(𝐙(𝑡), 𝜉(𝑡))} is transient in R4,◦
+ ×. This fact leads to that the process

has no invariant probability measure in R4,◦
+ × . As a result, 𝝂0 is the unique invariant probability measure of {(𝐙(𝑡), 𝜉(𝑡))} in

[0,∞)2 ×{0}2 ×. Let 𝐻 > 0 be sufficiently large such that 𝝂0({𝑠, 𝑣 ∈ (0,𝐻)}) > 1− 𝜀. On the other hand, the process {(𝐙(𝑡), 𝜉(𝑡))} is
tight (due to (2.2)). Therefore, for any initial condition (𝐳, 𝑘) ∈ R4

+ × the family of occupation measures 𝛱 𝑡
𝐳,𝑘(⋅), which is defined

in (2.31), is tight in R4
+ ×. Since any weak-limit of 𝛱 𝑡

𝐳,𝑘 as 𝑡 → ∞ must be an invariant probability measure of (𝐙(𝑡), 𝜉(𝑡)), we have
that 𝛱 𝑡

𝐳,𝑘 converges weakly to 𝝂0 as 𝑡 → ∞. As a result, for any 𝛿 > 0, there is a constant 𝑇 > 0 satisfying that

𝛱𝑇
𝐳,𝑘((0,𝐻)2 × (0, 𝛿)2 ×) > 1 − 𝜀,

or equivalently,

1
𝑇 ∫

𝑇

0
P𝐳,𝑘{(𝐙(𝑡), 𝜉(𝑡)) ∈ (0,𝐻)2 × (0, 𝛿)2 ×}𝑑𝑡 > 1 − 𝜀.

Therefore,

P𝐳,𝑘{𝜁 ≤ 𝑇 } > 1 − 𝜀,

here

𝜁 = inf{𝑡 ≥ 0 ∶ (𝐙(𝑡), 𝜉(𝑡)) ∈ (0,𝐻)2 × (0, 𝛿)2 ×}.
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𝑞

Fig. 1. Sample paths of 𝐼(𝑡) in Example 3.2. From left to right: in system with 𝜉(𝑡) = 1, in system with 𝜉(𝑡) = 2, and in the switched system, respectively.

We obtain from the strong Markov property and Lemma 2.7 that

P𝐳,𝑘

{

lim
𝑡→∞

ln 𝐼(𝑡)
𝑡

= 𝜆 < 0 and lim
𝑡→∞

𝑅(𝑡) = 0
}

≥ 1 − 𝜀, ∀(𝐳, 𝑘) ∈ R4,∗
+ ×.

Because 𝜀 > 0 is arbitrary, we obtain (2.10). The proof of Theorem 2.3 is complete. □

3. Numerical examples

In this section, we present some numerical examples to illustrate our theoretical results. These examples will also demonstrate
interesting effects of discrete events process 𝜉(𝑡). It will be shown that random switching can reverse persistence to extinction, and
vice versa.

Example 3.1. We examine system (1.1) with two switching states  = {1, 2}. Suppose 𝑔(𝑠 + 𝛽𝑣, 𝑖, 1) = 4(𝑠 + 0.01𝑣) and
𝑔(𝑠 + 𝛽𝑣, 𝑖, 2) = 8(𝑠 + 0.01𝑣). The other parameters are 𝑞(1) = 0.8, 𝑞(2) = 0.4, 𝐴(1) = 2.5, 𝐴(2) = 1, 𝛼0(1) = 1, 𝛼0(2) = 0.5, 𝑝(1) = 1,
𝑝(2) = 0.3, 𝛼1(1) = 0.2, 𝛼1(2) = 3, 𝛼2(1) = 0.1, 𝛼2(2) = 0.2, 𝛾(1) = 0.2, 𝛾(2) = 0.5, 𝜎1(1) = 0.2, 𝜎1(2) = 1, 𝛼3(1) = 0.1, 𝛼3(2) = 3, 𝜎3(1) =
0.2, 𝜎3(2) = 2, 𝜎2(1) = 0.2, 𝜎2(2) = 1, 𝜎4(1) = 𝜎4(2) = 0.1.

In this example, if there is no random switching, the thresholds for the system in state 1 (i.e., 𝜉(𝑡) = 1 for all 𝑡) and in state 2
(i.e., 𝜉(𝑡) = 2 for all 𝑡) are 𝜆1 = 0.5800 and 𝜆2 = 1.4077, respectively. It then follows that without switching, the disease will persist
in either fixed state. However, with switching rates 𝛾12 = 𝛾21 = 20, we have 𝜆 = −0.3087 for system (2.2), which implies that the
disease will eventually disappear. This example shows that the random switching can reverse persistence into extinction, see Fig. 1.

With the algebraic representation of 𝜆, we can view 𝜆 as a function of the parameters. For example, with 𝛾12 = 𝛾21 = 𝑦 and
(̃1) = 𝑞(2) = 𝑥 while the other parameters receive values as above, we have Fig. 2 for 𝜆 as a function of 𝑥, 𝑦 and Fig. 3 for 𝜆 as
a function of 𝑥 or 𝑦 given some fixed values of the other. We will discuss biological interpretation of these relationship later in
Section 4.

Example 3.2. Consider system (1.1) with two random switching states  = {1, 2}. Suppose 𝑔(𝑠 + 𝛽𝑣, 𝑖, 1) = 5(𝑠 + 0.02𝑣) and
𝑔(𝑠+ 𝛽𝑣, 𝑖, 2) = (𝑠+ 0.02𝑣). The other parameters are 𝑞(1) = 0.8, 𝑞(2) = 0.8, 𝐴(1) = 1.2, 𝐴(2) = 5, 𝛼0(1) = 0.8, 𝛼0(2) = 0.8, 𝑝(1) = 0.5, 𝑝(2) =
0.5, 𝛼1(1) = 2, 𝛼1(2) = 2, 𝛾(1) = 0.2, 𝛾(2) = 0.5, 𝛼2(1) = 0.1, 𝛼2(2) = 0.1, 𝛼3(1) = 0.11, 𝛼3(2) = 0.11, 𝜎1(1) = 𝜎1(2) = 𝜎3(1) = 𝜎3(2) = 𝜎2(1) =
𝜎2(2) = 0.1.

In this example, the system in state 1 (i.e., 𝜉(𝑡) = 1 for all 𝑡) and the system in fixed state 2 (i.e., 𝜉(𝑡) = 2 for all 𝑡) are 𝜆1 = −1.0010
and 𝜆2 = −0.5442. Thus, when switching is not involved, the disease will die out in each of the two fixed states. However, with
switching rates 𝛾12 = 𝛾21 = 20, we have 𝜆 = 1.0261, which implies the disease persists; see Fig. 4.

With 𝛾12 = 𝛾21 = 𝑦 and 𝑞(1) = 𝑞(2) = 𝑥 while the other parameters taking values as above, we have Fig. 5 for 𝜆 as a function of
𝑥, 𝑦 and Fig. 6 for 𝜆 as a function of 𝑥 or 𝑦 given some fixed values of the other.

4. Discussion and interpretation

From our analysis, we can explore the effect of vaccination to the disease. Recall that our theoretical results show that threshold
𝜆 given by (2.7) will determine whether or not the pandemic will go away. In fact, we have shown that if 𝜆 < 0 then the pandemic
will end in the future and if 𝜆 > 0 the disease always persists. As an application to real world problems, to control the disease, we
would try to reduce 𝜆 as much as possible. In this section, we will consider the dependence of 𝜆 on parameters in epidemic systems,
e.g., vaccinated rate in newborns and susceptible groups, etc. From these interpretations, we can answer some questions such as
how much vaccination is sufficient to control the disease, and what percentage of newborns should get the vaccine, etc.
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h

𝜆

Fig. 2. 𝜆 as a function of 𝑞(1) = 𝑞(2) = 𝑥 and 𝛾12 = 𝛾21 = 𝑦.

Fig. 3. From left to right: the graphs of 𝜆(𝑥 = 0.1, 𝑦), 𝜆(𝑥 = 0.9, 𝑦), and 𝜆(𝑥, 𝑦 = 1), respectively.

Fig. 4. Sample paths of 𝐼(𝑡). From left to right: in system with 𝜉(𝑡) = 1, in system with 𝜉(𝑡) = 2, and in the switched system, respectively in Example 3.1.

First, to have more concrete discussion, we consider the case that the incidence rate is linear. In this case, by Lemma 2.3 we
ave the following explicit formula for 𝜆

𝜆 =
∑

𝑘∈

[

𝑐1(𝑘)(1 − 𝑞(𝑘))𝐴(𝑘) −

(

𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘) +
𝜎23 (𝑘)
2

)]

𝜋𝑘.

This shows that 𝜆 depends ‘‘linearly’’ on 𝑞, the proportion of vaccinated newborns. Moreover, if 𝑞 = 1, 𝜆 < 0; if 𝑞 is increasing then
is decreasing. This observation coincides with the natural intuition that the more newborns are vaccinated, the higher chance
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(

Fig. 5. 𝜆 as a function of 𝑞(1) = 𝑞(2) = 𝑥 and 𝛾12 = 𝛾21 = 𝑦.

Fig. 6. From left to right: the graphs of 𝜆(𝑦) with 𝑥 = 0.1, 𝜆(𝑦) with 𝑥 = 0.9, and 𝜆(𝑥) with 𝑦 = 1, respectively.

of ending the pandemic we have. If all newborns are vaccinated (i.e., 𝑞 = 1), the disease will eventually disappear in the future.
However, getting 𝑞 = 1 is often impossible because of many reasons such as religion, economics, budgets, etc. One would like to
find the best possible 𝑞 that still guarantees to end the pandemic in the future. From our formula of 𝜆, we can easily to find this
best value for 𝑞. If we assume that there is no random switching, i.e.,  has only one value, then the best 𝑞 making 𝜆 < 0 is

𝑞 > 1 −
𝛼0 + 𝛼3 + 𝛼1 + 𝜎23∕2

𝑐1𝐴
.

It is noted again that 𝜉(𝑡) can be used to represent the changes in discrete event such as season, infection status of other diseases,
etc. The discussion of the effects of such random switching are presented in numerical examples in Section 3.)

The effects of 𝑝, the rate of vaccination of susceptible group is similar to 𝑞, but less straightforward. Note that 𝑝 influences 𝜆
through 𝑐1(𝑘), which is the solution of (2.11). For simplicity of computation, let us assume that there is no switching. In this case,
solving (2.11) gives us

𝑐1 =
𝑏(𝑝𝛽 + 𝛼0 + 𝛾)
𝑝𝛼0 + 𝛼20 + 𝛼0𝛾

.

Therefore, 𝜕𝑐1
𝜕𝑝 = (𝛽−1)𝑏(𝛼20 +𝛼0𝛾)(𝑝𝛼0+𝛼20 +𝛼0𝛾)−2 < 0 due to 𝛽 < 1. That means increasing 𝑝 will decrease 𝑐1, and thus, will decrease

𝜆. As a result, better rate of vaccination for the susceptible community gives us higher chance for ending the disease in the long
future. The dependence of 𝜆 on 𝑝 is illustrated numerically in Figs. 7 and 8.

Example 4.1. We revisit Examples 3.1 and 3.2. Since 𝜆 depends explicitly on 𝑞 through algebraic representation of 𝜆 and that is
also illustrated in Section 3, we will not simulate this relationship. Fig. 7 shows the dependence of 𝜆 on 𝑝 in the case that other
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Fig. 7. From left to right: the graphs of 𝜆(𝑧) with 𝑝(1) = 𝑝(2) = 𝑧; 𝛾12 = 𝛾21 = 20 and 𝛾12 = 𝛾21 = 1 respectively. The other parameters have values in Example 3.1.

Fig. 8. From left to right: the graphs of 𝜆(𝑥) with 𝑝(1) = 𝑝(2) = 𝑥; 𝛾12 = 𝛾21 = 20 and 𝛾12 = 𝛾21 = 1 respectively. The other parameters have values in Example 3.2.

parameters have values as in Example 3.1; and Fig. 8 shows the dependence of 𝜆 on 𝑝 in the case that other parameters have values
s in Example 3.2.

Second, if the incidence rate does not have linear forms, but is a general function, it is difficult to provide a rigorous discussion in
ow 𝑝, 𝑞 influence 𝜆 as we could not provide explicit calculations. We provide some numerical examples about relationship between
and 𝑞, 𝑝 (see Fig. 9).

xample 4.2. In this example, we assume that three is no switching. Suppose 𝑔(𝑠 + 𝛽𝑣, 1) = 𝑠+0.02𝑣
0.5+𝑠+0.02𝑣 . The other parameters are

𝐴 = 2.5, 𝛼0 = 1, 𝛼1 = .2, 𝛼2 = 0.1, 𝛾 = .2, 𝜎1 = .2, 𝛼3 = .1, 𝜎3 = .2, 𝜎2 = 0.2, 𝜎4 = 0.1 Since the incidence rate 𝑔 is not linear, we
o not have an explicit formula for 𝜆. Therefore, we run stochastic simulation to approximate the value 𝜆. The figures below show
pproximately the graph of 𝜆 as a function of 𝑞 and 𝑝. The curves are rough due to the randomness of the approximation.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ppendix. Proof of Lemma 2.7

roof of Lemma 2.7. We obtain from the ergodicity of (𝑆𝜃0 (𝑡), 𝑉 𝜃0 (𝑡), 𝜉(𝑡)) that

lim
𝑡→∞

1
∫

𝑡
ℎ(𝑆𝜃0 (𝑢) + 𝛽𝑉 𝜃0 (𝑢), 0, 𝜉(𝑢))𝑑𝑢 =

∑

∫ ℎ(𝑠 + 𝛽𝑣, 0, 𝑘)𝝂𝜃0 (𝑑𝑠, 𝑑𝑣, 𝑘) = 𝜆𝜃0 a.s. , (A.1)
1298
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Fig. 9. From left to right: the graphs of 𝜆(𝑝) when 𝑞 = 0.8 and 𝜆(𝑞) when 𝑝 = 1 respectively.

where ℎ as in (2.29), and

lim
𝑡→∞

1
𝑡 ∫

𝑡

0

(

𝛼0(𝜉(𝑢)) + 𝛼2(𝜉(𝑢)) +
𝜎24 (𝜉(𝑢))

2

)

𝑑𝑢 =
∑

𝑘∈
(𝛼0(𝑘) + 𝛼2(𝑘) +

𝜎4(𝑘)
2

)𝜋𝑘 =∶ 𝑐2. (A.2)

By the strong law of large numbers for martingales,

lim
𝑡→∞

1
𝑡 ∫

𝑡

0
𝜎𝓁(𝜉(𝑢))𝑑𝑊𝓁(𝑢) = 0 𝓁 = 1, 2, 3, 4. (A.3)

Now, denote

𝜆2 ∶= min{ 1
9
|𝜆𝜃0 |,

1
3
𝑐2}. (A.4)

It follows from (A.1) that for any 𝜀 > 0, there exists a 𝑇1 = 𝑇1(𝐻, 𝜀) > 0 such that P(𝐻,𝐻),𝑘(𝛺1) ≥ 1 − 𝜀
5 , where

𝛺1 =
{

𝜔 ∶ 1
𝑡 ∫

𝑡

0
ℎ(𝑆𝜃0

(𝐻,𝐻),𝑘(𝑢) + 𝛽𝑉 𝜃0
(𝐻,𝐻),𝑘(𝑢), 0, 𝜉(𝑢))𝑑𝑢 ≤ 𝜆𝜃0 + 𝜆2 ≤ −8𝜆2, for all 𝑡 ≥ 𝑇1

}

. (A.5)

In the above, the subscript in P(𝐻,𝐻),𝑘, (𝑆
𝜃0
(𝐻,𝐻),𝑘(𝑡), 𝑉

𝜃0
(𝐻,𝐻),𝑘(𝑡)) shows the initial value of (𝑆

𝜃0 (𝑡), 𝑉 𝜃0 (𝑡), 𝜉(𝑡)).

Because of the comparison theorem [30], we have 𝑆𝐳,𝑘(𝑢) ≤ 𝑆𝜃
(𝐻,𝐻),𝑘(𝑢), 𝑉𝐳,𝑘(𝑢) ≤ 𝑉 𝜃

(𝐻,𝐻),𝑖(𝑢), ∀0 ≤ 𝑢 ≤ 𝜏 almost surely if

𝐳 = (𝑠, 𝑣, 𝑖, 𝑟) satisfies 𝑠 ≤ 𝐻, 𝑣 ≤ 𝐻 . This and (A.2), (A.3) deduce that there exists 𝑇2 = 𝑇2(𝜀) > 0 such that P(𝛺2) ≥ 1 − 𝜀
5 and

(𝛺3) ≥ 1 − 𝜀
5 where

𝛺2 =

{

𝜔 ∈ 𝛺 ∶ 1
𝑡

|

|

|

|

|

∫

𝑡

0
𝜎𝓁(𝜉(𝑢))𝑑𝑊𝓁(𝑢)

|

|

|

|

|

≤ 𝜆2, 𝓁 = 1, 2, 3, 4 for all 𝑡 ≥ 𝑇2

}

, (A.6)

and

𝛺3 =
{

𝜔 ∈ 𝛺 ∶ 𝑐2 − 𝜆2 <
1
𝑡 ∫

𝑡

0

(

𝛼0(𝜉(𝑢) + 𝛼2(𝜉(𝑢))) +
𝜎4(𝜉(𝑢))

2

)

𝑑𝑢 < 𝑐2 + 𝜆2 for all 𝑡 ≥ 𝑇2

}

. (A.7)

Let 𝑇 = max{𝑇1, 𝑇2}. On the finite interval [0, 𝑇 ], thanks to (2.3), we can find a sufficiently large 𝑀 > 0 satisfying that
P(𝛺4) ≥ 1 − 𝜀

5 , if (𝐳, 𝑘) ∈ [0,𝐻]2 × [0, 1]2 × where

𝛺4 =

{

𝜔 ∈ 𝛺 ∶ ∫

𝑇

0
ℎ(𝑆(𝑢) + 𝛽𝑉 (𝑢), 𝐼(𝑢), 𝜉(𝑢))𝑑𝑢 + sup

𝑡∈[0,𝑇 ],𝓁=3,4

|

|

|

|

|

∫

𝑡

0
𝜎𝓁(𝜉(𝑢))𝑊𝓁(𝑢)𝑑𝑢

|

|

|

|

|

< 𝑀

}

. (A.8)

t is noted that 𝛺4 (and other 𝛺𝑖) depends on initial values of the solution, and it would be labeled as 𝛺𝐳,𝑘
4 to indicate the

orresponding initial values. However, to simplify notation, we will remove this superscript. Moreover, Doob’s inequality allows
s to choose 𝑀 sufficiently large such that

P(𝛺5) ≥ 1 − 𝜀
5
, where 𝛺5 =

{

𝜔 ∈ 𝛺 ∶
|

|

|

|

|

∫

𝑡

0
𝜎𝓁(𝜉(𝑢))𝑊𝓁(𝑢)𝑑𝑢

|

|

|

|

|

≤ 𝑀
2
, for all 𝑡 ∈ [0, 𝑇 ] and 𝓁 = 1, 2, 3, 4

}

. (A.9)

Denote

𝛾̌ ∶= max 𝛼 (𝑘) and 𝑐 ∶= max{𝛼 (𝑘) + 𝛼 (𝑘) +
𝜎24 (𝑘) }.
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Since ℎ(𝑢, 𝑖, 𝑘) = 𝑔(𝑢, 𝑖, 𝑘) − (𝛼0(𝑘) + 𝛼3(𝑘) + 𝛼1(𝑘)) −
𝜎23 (𝑘)
2 is continuous at 𝑖 = 0 uniformly in 𝑢, we can pick 𝜃1 ∈

(

0, 𝜃0
𝑀(1+𝛾̌𝑀𝑒𝑐3𝑇+𝑀𝑇 )

)

such that

|ℎ(𝑢, 𝑖, 𝑘) − ℎ(𝑢, 0, 𝑘)| ≤ 𝜆2 whenever 0 ≤ 𝑖 ≤ 𝜃1. (A.10)

Next, we pick 𝜃2 satisfying 0 < 𝜃2 < min

{

𝜃1𝑒−𝑀 , 𝜃0

(

1 + 𝛾̌
𝑐2−4𝜆2

)−1
}

.

Combining the second equation of (1.1), (A.9), and (A.8) implies that for all 𝜔 ∈ 𝛺3, we have

𝐼(𝑡) =𝐼(0) exp

{

∫

𝑡

0
ℎ(𝑆(𝑢) + 𝛽𝑉 (𝑢), 𝐼(𝑢), 𝜉(𝑢))𝑑𝑢 + ∫

𝑡

0
𝜎3(𝜉(𝑢))𝑑𝑊3(𝑢)

}

≤𝐼(0)𝑒𝑀 ≤ 𝜃2𝑒
𝑀 < 𝜃1 for any 𝑡 ∈ [0, 𝑇 ], if 𝐼(0) ≤ 𝜃2.

(A.11)

n the other hand, by a variation of constants formula for linear stochastic differential equations (e.g., [32, Chapter 3]), we have

𝑅(𝑡) = 1
𝛷(𝑡)

(

𝑅(0) + ∫

𝑡

0
𝛼3(𝜉(𝑢))𝛷(𝑢)𝐼(𝑢)𝑑𝑢

)

, (A.12)

where

𝛷(𝑡) = exp

{

∫

𝑡

0

(

𝛼0(𝜉(𝑢)) + 𝛼2(𝜉(𝑢)) +
𝜎24 (𝜉(𝑢))

2

)

𝑑𝑢 − ∫

𝑡

0
𝜎4(𝜉(𝑢))𝑑𝑊4(𝑢)

}

.

Provided (𝐳, 𝑘) ∈ [0,𝐻]2 × [0, 1]2 ×, for 𝑡 ≤ 𝑇 and 𝜔 ∈ 𝛺4, we have from (A.8) that 1
𝛷(𝑡) ≤ 𝑀 (where 𝑀 is defined as in (A.8)) and

(𝑡) ≤ 𝑀𝑒𝑐3𝑡, which in combination with (A.11), (A.12), and the definition of 𝜃1 implies

𝑅(𝑡) ≤ 𝑀
(

𝑟 +𝑀𝑒𝑐3𝑇 𝛾̌ ∫

𝑡

0
𝐼(𝑢)𝑑𝑢

)

≤ 𝑀(𝜃1 +𝑀𝑒𝑐3𝑇 𝛾̌𝑇 𝜃1) < 𝜃0. (A.13)

Define the stopping time

𝜁 ∶= inf
{

𝑡 ≥ 0 ∶ 𝑅(𝑡) ≥ 𝜃0 or 𝐼(𝑡) ≥ 𝜃1
}

. (A.14)

Because of (A.11) and (A.13),

𝜁 > 𝑇 if (𝐳, 𝑘) ∈ [0,𝐻]2 × [0, 𝜃2]2 ×, and 𝜔 ∈ 𝛺4. (A.15)

It is noted again that 𝑆𝐳,𝑘(𝑡) ≤ 𝑆𝜃0
(𝐻,𝐻),𝑘(𝑡), 𝑉𝐳,𝑘(𝑡) ≤ 𝑉 𝜃0

(𝐻,𝐻),𝑘(𝑡) for any 𝑡 ≤ 𝜁 given that 𝐳 = (𝑠, 𝑣, 𝑖, 𝑟) with 𝑠 ≤ 𝐻, 𝑣 ≤ 𝐻 (thanks to the
comparison theorem [30]). Thus, from (A.11), (A.10) and non-decreasing in 𝑢 property of ℎ(𝑢, 𝑥, 𝑘), if 𝑡 ≤ 𝜁 , one has

ℎ(𝑆(𝑡) + 𝛽𝑉 (𝑡), 𝐼(𝑡), 𝜉(𝑡)) ≤ ℎ(𝑆(𝑡) + 𝛽𝑉 (𝑡), 0, 𝜉(𝑡)) + 𝜆2
≤ ℎ(𝑆𝜃0

(𝐻,𝐻),𝑘(𝑡) + 𝛽𝑉 𝜃0
(𝐻,𝐻),𝑘(𝑡), 0, 𝜉(𝑡)) + 𝜆2,

given the initial value of (𝐙(𝑡), 𝜉(𝑡)) is in [0,𝐻]2 × [0, 𝜃2] × [0,∞) ×. As a result,

𝐼(𝑡) ≤𝐼(0) exp

{

∫

𝑡

0

(

ℎ(𝑆𝜃0
(𝐻,𝐻),𝑘(𝑢) + 𝛽𝑉 𝜃0

(𝐻,𝐻),𝑘(𝑢), 0, 𝜉(𝑢))
)

𝑑𝑢 + 𝜆2𝑡 + ∫

𝑡

0
𝜎3(𝜉(𝑢))𝑑𝑊2(𝑢)

}

. (A.16)

Combining (A.5), (A.6), (A.11), (A.15) and (A.16) for 𝜔 ∈
⋂5

𝑗=1 𝛺𝑗 and (𝐳, 𝑘) ∈ [0,𝐻]2 × [0, 𝜃2]2 ×, we have 𝜁 > 𝑇 and that

𝐼(𝑡) ≤ 𝐼(0) exp
{

∫

𝑡

0
𝑔(𝑆𝜃0

(𝐻,𝐻),𝑘(𝑢) + 𝛽𝑉 𝜃0
(𝐻,𝐻),𝑘(𝑢), 0, 𝜉(𝑢))𝑑𝑢 + 𝜆2𝑡 + ∫

𝑡

0
𝜎3(𝜉(𝑢))𝑑𝑊3(𝑢)

}

≤ 𝐼(0) exp
{

−8𝜆2𝑡 + 2𝜆2𝑡
}

≤ 𝐼(0) exp{−6𝜆2𝑡} < 𝜃0, 𝑡 ∈ [𝑇 , 𝜁 ).
(A.17)

e also have that for any 𝑇 < 𝑡 ≤ 𝜁 and 𝜔 ∈
⋂5

𝑗=1 𝛺𝑗 and (𝐳, 𝑘) ∈ [0,𝐻]2 × [0, 𝜃2]2 × that

𝑒(𝑐2−2𝜆2)𝑡 ≤ 𝛷(𝑡) ≤ 𝑒(𝑐2+2𝜆2)𝑡,

hich implies

𝑅(𝑡) = 1
𝛷(𝑡)

(

𝑅(0) + ∫

𝑡

0
𝛼3(𝜉(𝑢))𝛷(𝑢)𝐼(𝑢)𝑑𝑢

)

≤𝑒(−𝑐2+2𝜆)𝑡
(

𝑟 + 𝛾̌ ∫

𝑡

0
𝑒(𝑐2+2𝜆2)𝑢𝑖𝑒−6𝜆2𝑢𝑑𝑢

)

≤𝑒(−𝑐2+2𝜆2)𝑡
(

𝜃2 + 𝜃2
𝛾̌

𝑐2 − 2𝜆2
𝑒(𝑐2−4𝜆2)𝑡

)

≤𝜃2 + 𝜃2
𝛾̌

< 𝜃0.

(A.18)
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Thanks to (A.17) and (A.18), we must have 𝜁 = ∞ for all 𝜔 ∈
⋂5

𝑗=1 𝛺𝑗 , (𝐳, 𝑘) ∈ [0,𝐻]2 × [0, 𝜃2]2 ×. Because of 𝜁 = ∞, we have
from (A.17) and (A.18) again that

𝐼(𝑡) ≤ 𝐼(0)𝑒−6𝜆2 and 𝑅(𝑡) ≤ 𝑒(−𝑐2+2𝜆2)𝑡𝑟 + 𝑖
𝛾̌

𝑐2 − 4𝜆2
𝑒−2𝜆2𝑡, for any 𝑡 ≥ 𝑇 , 𝜔 ∈

5
⋂

𝑗=1
𝛺𝑗 , 𝐼(0) = 𝑖 ≤ 𝜃2.

This clearly implies that lim𝑡→∞ 𝐼(𝑡) = lim𝑡→∞ 𝑅(𝑡) = 0 ∀𝜔 ∈
⋂5

𝑗=1 𝛺𝑗 , provided (𝐳, 𝑘) ∈ [0,𝐻]2 × [0, 𝜃2]2 ×.
Next, we define a randomized occupation measure

𝛱̃ 𝑡
𝐳,𝑘(⋅) ∶=

1
𝑡 ∫

𝑡

0
𝟏{(𝐙(𝑢),𝜉(𝑢))∈⋅}𝑑𝑢, 𝑡 > 0,

in which, the subscript in 𝛱̃ 𝑡
𝐳,𝑘(⋅) indicates the initial condition. As an application of Lemma 2.7 and the comparison 𝑆(𝑡) ≤

̃𝜃0
(𝐻,𝐻),𝑘(𝑡), 𝑉 (𝑡) ≤ 𝑉 𝜃0

(𝐻,𝐻),𝑘(𝑡), 𝑡 ≥ 0, the family of measures {𝛱̃ 𝑡
𝐳,𝑘(⋅;𝜔), 𝑡 > 0, 𝜔 ∈ ∩5

𝑗=1𝛺𝑗} is tight in R4
+ ×  and any weak limit

f 𝛱̃ 𝑡
𝐳,𝑘(⋅) as 𝑡 → ∞ must have a support that is on [0,∞)2 × {0}2 × . On the other hand, with probability 1, any weak-limit of

̃ 𝑡
𝐳,𝑘(⋅) as 𝑡 → ∞ is an invariant probability measure of the process {(𝐙(𝑡), 𝜉(𝑡))} on R4

+ ×; see e.g., [29,33]. Moreover, it is readily
seen that 𝝂0, when regarded as an invariant measure of {(𝐙(𝑡), 𝜉(𝑡))}, is the unique invariant probability measure on [0,∞)2×{0}2×.
Therefore, for almost every 𝜔 ∈ ∩5

𝑗=1𝛺𝑗 , 𝛱̃ 𝑡
𝐳,𝑘(⋅) converges weakly to 𝝂0 as 𝑡 → ∞. As a result, we obtain from the weak convergence

that

lim
𝑡→∞

1
𝑡 ∫

𝑡

0
ℎ(𝑆(𝑢) + 𝛽𝑉 (𝑢), 𝐼(𝑢), 𝜉(𝑢))𝑑𝑢 =

∑

𝑘∈
∫R2

+

ℎ(𝑠 + 𝛽𝑣, 0, 𝑘)𝝂0(𝑑𝑠, 𝑑𝑣, 𝑘) = 𝜆, (A.19)

for almost every 𝜔 ∈ ∩5
𝑗=1𝛺𝑗 . It is noted that the limit (A.19) is valid because of the weak convergence and the uniform integrability

lim sup
𝑡→∞

1
𝑡 ∫

𝑡

0
(𝑆(𝑢) + 𝑉 (𝑢))1+𝑝𝑑𝑢 ≤ lim

𝑡→∞
1
𝑡 ∫

𝑡

0
(𝑆𝜃0 (𝑢) + 𝑉 𝜃0 (𝑢))1+𝑝𝑑𝑢

=
∑

𝑘∈
∫R2

+

(𝑠 + 𝑣)1+𝑝𝝂𝜃0 (𝑑𝑠, 𝑑𝑣, 𝑘) < ∞ for some small 𝑝 > 0;

see e.g., [29, Lemma 5.6]. By (A.11), one has

ln 𝐼(𝑡)
𝑡

=
ln 𝐼(0)

𝑡
+ 1

𝑡 ∫

𝑡

0
ℎ(𝑆(𝑢) + 𝛽𝑉 (𝑢), 0, 𝜉(𝑢))𝑑𝑢 + 1

𝑡 ∫

𝑡

0
𝜎2(𝜉(𝑢))𝑑𝑊2(𝑢). (A.20)

Therefore, letting 𝑡 → ∞ in (A.20) and because of (A.3) and (A.19), we have that for almost every 𝜔 ∈ ∩5
𝑗=1𝛺𝑗 ,

lim
𝑡→∞

ln 𝐼(𝑡)
𝑡

= 𝜆 and lim
𝑡→∞

𝑅(𝑡) = 0.

s a result, by noticing that P(∩5
𝑗=1𝛺𝑗 ) ≥ 1 − 𝜀, the lemma is proved. □
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