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Abstract

This paper focuses on a class of regime-switching functional diffusion processes with infinite delay
nd develops a central limit theorem (CLT) for additive functionals under uniform mixing conditions.
n addition, a law of iterated logarithm (LIL) for the additive functionals is also established by using
he square integrable martingale difference sequences. Finally, two examples are given to illustrate our
esults.
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1. Introduction

Switching diffusions also known as regime-switching diffusions have drawn much attention
rom researchers and practitioners lately. This is largely because of their wide range of appli-
ations and potential applications. The use of switching random processes much extended the
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pplicability of diffusion processes, which is used conveniently to depict random environment
hat cannot be formulated as usual in typical diffusion systems; see [19,32] and references
herein. Continuing on the lines of works, switching diffusions in which the generator of
he switching process depends on the past and takes values in a countable state space was
onsidered in [20]. In recent years, we have seen success in using switching diffusions for
ontrol and optimization of stochastic systems, financial engineering, biological and ecolog-
cal systems, multi-agent systems, queueing theory, networked systems, and social network
odeling, among other. The vast applications demand that we have deeper understanding of

uch systems. A distinct feature of such processes is the coexistence of continuous dynamics
nd discrete events, which much extended the applicability of diffusion processes. This feature
acilitates the flexibility and versatility of the models, but it also brings up new challenges and
ifficulties. For example, even two linear systems being both stable, joined together by use of
modulating random switching process may lead to instability of the system with switching.
e refer the reader to the observation in [27] and the analysis in [31, pp. 229–233]; likewise

or similar behavior of recurrence for switching diffusions [22].
This work continues our quest on regime-switching diffusions. In contrast to the existing

ork, this paper focuses on regime-switching functional stochastic differential equations. Our
ain effort is devoted to obtaining CLTs and LILs. For a fixed but otherwise arbitrary r > 0,

onsider

Cr =

{
φ ∈ C((−∞, 0];Rd ) : lim

θ→−∞

erθφ(θ ) exists in Rd
}

with the norm ∥φ∥r = sup−∞<θ≤0 erθ
|φ(θ )| for r > 0, and S = {1, 2, . . . , N }, 1 < N < ∞.

This paper is concerned with the regime-switching diffusion processes with infinite delay
described by the following stochastic functional differential equations with infinite delay and
Markovian switching

d X (t) = b(X t , α(t))dt + σ (X t , α(t))dW (t) (1.1)

ith initial data (X0, α(0)) = (φ, i) ∈ Cr ×S, where b : Cr ×S ↦→ Rd and σ : Cr ×S ↦→ Rd×m are
continuous functionals, W (t) is an m-dimensional Brownian motion, α(t) is a continuous-time
Markovian chain on S with the transition rate satisfying

P
{
α(t + ∆) = j

⏐⏐α(t) = i
}

=

{
qi j∆ + o(∆), j ̸= i
1 + qi i∆ + o(∆), j = i,

(1.2)

provided ∆ ↓ 0. In this paper, α(t) is assumed to be independent of W (t) and the Q-matrix
Q = (qi j ) is assumed to be irreducible and conservative, this is, qkk = −

∑
j ̸=k qk j . Note that

in (1.1), X (t) the solution process belonging to Rd , where X t ∈ Cr is called segment process
or solution map, which is a function process. The solution process X (t) and even the pair
(X (t), α(t)) are not Markov processes because of the time delay involved, but (X t , α(t)) is.

In our recent work [23], we showed that the Markovian process (X t , α(t)) determined by
(1.1) and (1.2) is exponentially ergodic with a unique invariant probability measure. Based
on the exponential ergodicity, the current paper examines further asymptotic behaviors of the
functional

∫ t
0 f (Xs, α(s))ds as t → ∞, for f : Cr × S → R in a class of reference Borel

measurable functionals. More precisely, this paper will establish the CLT and the LIL for
additive functionals of the regime-switching functional diffusion system determined by (1.1)
and (1.2).

The central limit theorem for additive functionals of Markovian processes is a fundamental

concept in classical probability theory. It can be traced back to Doeblin’s seminal work [10]
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n 1938, in which the strong law of large numbers and the central limit theorem were
stablished for discrete time Markov chains with countable state spaces. Since then, CLTs
or additive functionals of Markovian processes have been extensively studied in the literature
nder different settings; see, for example, [13] for stationary reversible ergodic Markovian
hains, [7,12] for ergodic Markovian processes in total variational metric, [2,9,15,17,24,26,28]
or ergodic Markovian processes in a Wasserstein distance, and the references therein. For
egime-switching diffusions, [21] discussed the CLT of scaled regime-switching diffusions,
nd [4] established the CLT for additive functionals of regime-switching diffusions. These
wo papers only considered the regime-switching diffusions without delay and their proofs
epend on the infinitesimal generator of corresponding Markovian processes (diffusions). These
ethods cannot be used to examine the present process described by (1.1) and (1.2) since

he infinitesimal generator is not available for the diffusion with delay. Motivated by these
bservations, this paper aims to establish the CLT for additive functionals of regime-switching
iffusions with infinite delay.

Moreover, this paper also investigates laws of iterated logarithms for additive functionals
f regime-switching diffusions with infinite delay. Classical strong law of invariance principle
as first established for a sequence of independent and identically distributed random variables
y V. Strassen [25], which is also referred to as the Strassen invariance principle. Also please
efer to [2,4–6,8,11,14,16,28,29] and the references therein for the LIL under different settings.
n particular, [4] considered the LIL for regime-switching diffusions without delay. [2,28]
stablished the LIL for stochastic functional differential equations with finite and infinite delay
n different assumptions, respectively. This paper aims to further this line of research by
tudying the LIL for additive functionals of regime-switching diffusion processes with infinite
elay.

Note that neither the CLT nor the LIL for additive functionals of regime-switching diffusions
ith infinite delay can be obtained from existing methods. The main difficulties stem from the

nfinite delay and Markovian chain in these systems. Since the Markovian process (X t , α(t))
s only right continuous, to obtain the CLT, the method developed in [24] cannot be used
irectly. Some new estimations (see, for example, Lemma 3.6), and more analyses in the proof
f Theorem 3.2 are needed. Compared with our previous result in [28, Theorem 3.1], this paper
emoves the non-degeneracy requirement on diffusion term and uses the “averaging” dissipative
ondition (see, Remark 2.2) to obtain ergodicity. For the LIL, we present a continuous-time
ersion and our conditions allow some subsystems to be non-dissipative. This also generalizes
ur previous results in [28].

This paper is organized as follows. Section 2 begins with the formulation, notation, and
efinitions. Also included are preliminary results from [23]. The CLT and the LIL for additive
unctionals of the regime-switching functional diffusions determined by (1.1) and (1.2) are
resented in Sections 3 and 4, respectively. Finally, two examples are given to illustrate our
esults.

. Notation and preliminaries

To facilitate presentation to follow, we introduce some notation and definitions. Denote by
d the d-dimensional Euclidean space and | · | the Euclidean norm. Let ∥ · ∥HS be the Hilbert–
chmidt norm, that is, ∥σ∥

2
HS

=
∑d

k=1
∑m

l=1 σ
2
kl for any matrix σ = (σkl) ∈ Rd×m , 1G be the

ndicator function of the set G, and (Ω ,F ,P, (Ft )t≥0) be a complete filtered probability space.
or κ, q > 0, define

d
(
(ξ, i), (η, j)

)
=
(
∥ξ − η∥κ ∧ 1 + 1

)√
1 + ∥ξ∥

2q
+ ∥η∥

2q
, ξ, η ∈ C , i, j ∈ S.
κ,q r {i ̸= j} r r r

3
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ote that dκ,q
(
(ξ, i), (η, j)

)
is a quasi-metric (or a distance-like function), that is, it is

ymmetric, lower semi-continuous and dκ,q
(
(ξ, i), (η, j)

)
= 0 if and only if (ξ, i) = (η, j), but

he triangle inequality may not hold. Denote E = Cr × S and Cκ,q (E) the family of continuous
unctionals on E such that

∥ f ∥κ,q := sup
(ξ,i)∈E

| f (ξ, i)|
1 + ∥ξ∥

q
r

+ sup
(ξ,i)̸=(η, j)

| f (ξ, i) − f (η, j)|
dκ,q

(
(ξ, i), (η, j)

) < ∞.

enote by P(E) the set of probability measures on E. Let Pκ,q (E) be the family of probability
easures µ on E with (µ × µ)(dκ,q (·, ·)) < ∞. The C (µ, ν) denotes the collection of all

ouplings of µ and ν. For the quasi-metric dκ,q , the associated Wasserstein (or Kantorovich)
istance between two probability measures µ, ν ∈ Pκ,q (E) is defined as follows:

Wκ,q (µ, ν) = inf
Π∈C (µ,ν)

∫
E×E

dκ,q (x, y)Π (dx, dy).

enote by M0 the set of probability measures on (−∞, 0]. For any k > 0, let us further define
k , the subset of M0, by

Mk =

{
µ ∈ M0 : µ(k)

:=

∫ 0

−∞

e−kθµ(dθ ) < ∞

}
.

To ensure the existence and uniqueness of the solution and establish limit theorems for
dditive functionals of regime-switching functional diffusion processes determined by (1.1)
nd (1.2), let us impose the following assumptions.

ssumption 2.1. For any i ∈ S, b(·, i) is bounded on bounded subset of Cr . There exist a
robability measure µ1 ∈ M2r and a positive constant K > 0 such that for any φ,ψ ∈ Cr ,

2
⟨
φ(0) − ψ(0), b(φ, i) − b(ψ, i)

⟩
+

+ ∥σ (φ, i) − σ (ψ, i)∥2
HS

≤ K |φ(0) − ψ(0)|2 + K
∫ 0

−∞

|φ(θ ) − ψ(θ )|2µ1(dθ ), (2.1)

here a+ := max{0, a} for any a ∈ R.

emark 2.1. To highlight the dependence on the initial data for the regime-switching functional
iffusions given by (1.1) and (1.2), we write Xφ,i (t), Xφ,i

t , and αi (t), respectively, with
X0, α(0)) = (φ, i) ∈ E in this paper. It follows from Assumption 2.1 that the system given by
1.1) and (1.2) has a unique strong solution X (t) and (X t , α(t)) is a strong Markovian process
see, for example, [18]). Moreover, for any T > 0, there exist a constant Cφ > 0 and an
ncreasing function A(t) : R+ → R+ such that

E sup
0≤t≤T

∥Xφ,i
t ∥

2
r ≤ Cφ A(T ). (2.2)

Let C2 be the family of twice continuously differentiable functions on Rd . For any i ∈ S
nd V ∈ C2, define Li V the mapping from Cr to R by

Li V (φ) = ⟨Vx (φ(0)), b(φ, i)⟩ +
1

trace{σ⊤(φ, i)Vxx (φ(0))σ (φ, i)}, φ ∈ Cr ,
2
4
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nd for U ∈ C2 define also LiU the mapping from Cr × Cr to R by

LiU (φ,ψ) = ⟨Ux (φ(0) − ψ(0)), b(φ, i) − b(ψ, i)⟩

+
1
2

trace{(σ⊤(φ, i) − σ⊤(ψ, i))Uxx (φ(0)

−ψ(0))(σ (φ, i) − σ (ψ, i))}, φ, ψ ∈ Cr .

ssumption 2.2. Let U : Rd
↦→ R+ be a C2 function satisfying c1|x |

2
≤ U (x) ≤ c2|x |

2 for
ome constants c2 ≥ c1 > 0. For any φ,ψ ∈ Cr and i ∈ S, there exist constants a(i) ∈ R
nd b(i) ∈ R+ with γ := mini∈S{a(i) + b(i)} < 0 and γ0 < γ , and a probability measure
2 ∈ M(2r )∨(−γ0) such that

LiU (φ,ψ) ≤ a(i)U (φ(0) − ψ(0)) + b(i)
∫ 0

−∞

U (φ(θ ) − ψ(θ ))µ2(dθ ). (2.3)

ssumption 2.3. Let V : Rd
↦→ R+ be a C2 function satisfying c3|x |

2
≤ V (x) ≤ c4|x |

2 for
ome constants c4 ≥ c3 > 0. For any φ,ψ ∈ Cr and i ∈ S, there exist constants L > 0,
(i) ∈ R, b̃(i) ∈ R+, and a probability measure µ3 ∈ M2r such that

Li V (φ) ≤ L + ã(i)V (φ(0)) + b̃(i)
∫ 0

−∞

V (φ(θ ))µ3(dθ ). (2.4)

For a(i), ã(i), b(i), and b̃(i) given in Assumptions 2.2 and 2.3, set

ã∗
= max

i∈S
ã(i), ã∗ = min

i∈S
ã(i), b̃∗

= max
i∈S

b̃(i), b̃∗ = min
i∈S

b̃(i),

γ̃∗ = min
i∈S

{̃a(i) + b̃(i)}, γ̃ ∗
= max

i∈S
{̃a(i) + b̃(i)}, ϵ = (̃b∗)−1b̃∗

∫ 0

−∞

eγ̃
∗θµ3(dθ ),

Q p = Q + pdiag
(

a(1) + b(1)
∫ 0

−∞

eγ θµ2(dθ ), . . . , a(N ) + b(N )
∫ 0

−∞

eγ θµ2(dθ )
)
,

Q̃ = Q + diag
(̃

a(1) + (1 − ϵ ∧ 1)̃b(1) + b̃(1)
∫ 0

−∞

eγ̃∗θµ3(dθ ), . . . ,

ã(N ) + (1 − ϵ ∧ 1)̃b(N ) + b̃(N )
∫ 0

−∞

eγ̃∗θµ3(dθ )
)
,

Q̂ = Q + diag
(̃

a(1) + b̃(1)
∫ 0

−∞

eã∗θµ3(dθ ), . . . , ã(N ) + b̃(N )
∫ 0

−∞

eã∗θµ3(dθ)
)
,

ηp = − max
λ∈Spec(Q p)

Re(λ), η̃1 = − max
λ∈Spec(Q̃)

Re(λ), η̂1 = − max
λ∈Spec(Q̂)

Re(λ),

here Spec(Q p), Spec(Q̃), and Spec(Q̂) denote the spectrum of matrices Q p, Q̃, and Q̂,
espectively, and Re(λ) denotes the real part of λ.

emark 2.2. Let π = (π1, π2, . . . , πN ) be the stationary distribution of the Markovian chain
α(t)}t≥0, and ā(i), b̄(i), γ introduced in Assumption 2.2. If

N∑
πi

(
ā(i) + b̄(i)

∫ 0

eγ θµ2(dθ )
)
< 0, (2.5)
i=1 −∞

5
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hen [3, Proposition 4.2] shows that there exists ηp > 0 for some p ∈ (0, 1). And the regime-
witching functional diffusion system determined by (1.1) and (1.2) is said to be dissipative “in
verage” if (2.5) holds. This also shows that ηp > 0 does not need ā(i)+ b̄(i)

∫ 0
−∞

eγ θµ2(dθ ) <
for all i ∈ S, which implies that some subsystems may be non-dissipative.

Let us first present some preliminary results given in [23].

emma 2.3 (Lemma 3.1 in [23]). Let Assumptions 2.1 and 2.2 hold, and ηp > 0 for some
p ∈ (0, 1]. Then there exist constants C1 > 0 and ηε ∈ (0, ηp) such that for any (φ, i) ∈ E
nd t ≥ 0,

E∥Xφ,i
t − Xψ,i

t ∥
2p

≤ C1∥φ − ψ∥
2p
r e−ηε t , (2.6)

emma 2.4 (Lemma 3.2 in [23]). Let Assumptions 2.1 and 2.3 hold. For some ε̄ > 0, if one
f the following two conditions holds:

(i) η̃1 > 0, γ̃∗ < 0, µ3 ∈ M(2r )∨(−γ̃∗+ε̄),
(ii) η̂1 > 0, ã∗ < 0, µ3 ∈ M(2r )∨(−ã∗+ε̄),

hen there exist constants C2 > 0 and ρ > 0 such that for any (φ, i) ∈ E

E∥Xφ,i
t ∥

2
r ≤ C2

(
1 + e−ρt

∥φ∥
2
r

)
, t ≥ 0. (2.7)

With these two lemmas at hand, it is readily seen that the Markovian semigroup associated
ith Markovian processes (X t , α(t)) determined by (1.1) and (1.2) admits a unique ergodic

nvariant probability measure with the use of a Wasserstein distance; see, [23, Theorem 2.2].
ased on this ergodicity, we further obtain CLT and LIL for additive functional in this paper.

. Central limit theorem

To establish the CLT, a stronger result on moment estimation is needed, which together
ith Lemma 2.3, implies an improved ergodicity compared with [23]. The result is stated in

he following proposition.

roposition 3.1. Let Assumptions 2.1–2.3 hold with V (x) = |x |
2. Let ηp > 0 for some

p ∈ (0, 1] and ã∗
+ b̃∗ < 0, and ∥σ∥∞ := sup(φ,i)∈E ∥σ (φ, i)∥HS < ∞. Then for any q > 0,

here exist constants C3 and ρ̄ > 0 such that for any (φ, i) ∈ E and t ≥ 0,

E∥Xφ,i
t ∥

q
r ≤ C3(1 + e−ρ̄t

∥φ∥
q
r ). (3.1)

oreover, for any µ, ν ∈ Pp,q (E), there exist constants C and ϱ > 0 such that t ≥ 0,

Wp,q (µPt , νPt ) ≤ Ce−ϱtWp,q (µ, ν), ∀q > 0. (3.2)

urthermore, Pt has a unique invariant probability measure µ∗ satisfying µ∗(∥ · ∥
q
r ) < ∞ and

Wp,q (µPt , µ∗) ≤ Ce−ϱtWp,q (µ,µ∗), ∀q > 0, t ≥ 0. (3.3)

roof. We first prove (3.1). For any λ ∈ (0, r ), the Itô formula, Assumption 2.3, and
V (x) = |x |

2 yield that
6
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B

R
t

T

w

e2λt
|Xφ,i (t)|

2
≤ |φ(0)|2 +

∫ t

0
e2λs(L + (2λ+ ã∗)|Xφ,i (s)|

2)
ds

+ b̃∗

∫ t

0
e2λs

∫ 0

−∞

|Xφ,i (s + θ )|
2
µ3(dθ )ds

+ 2
∫ t

0
e2λs

⟨Xφ,i , σ (Xφ,i (s), αi (s))dW (s)⟩. (3.4)

y using the Tonelli theorem and a substitution technique, we get

b̃∗

∫ t

0
e2λs

∫ 0

−∞

|Xφ,i (s + θ )|
2
µ3(dθ )ds

≤ b̃∗

∫ t

0
e2λs

∫
−s

−∞

|Xφ,i (s + θ )|
2
µ3(dθ )ds + b̃∗

∫ t

0
e2λs

∫ 0

−s
|Xφ,i (s + θ )|

2
µ3(dθ )ds

≤
1

2(r − λ)
b̃∗µ

(2r )
3 ∥φ∥

2
r + b̃∗µ

(2λ)
3

∫ t

0
e2λs

|Xφ,i (s)|ds. (3.5)

ecalling that ã∗
+ b̃∗ < 0 and limλ→0 µ

(λ)
3 = 1, we can choose λ ∈ (0, r ) small enough such

hat 2λ+ ã∗
+ b̃∗µ

(2λ)
3 ≤ 0. Then substituting (3.5) into (3.4) yields that

e2λt
|Xφ,i (t)|

2
≤

(
1 +

1
2(r − λ)

b̃∗µ
(2r )
3

)
∥φ∥

2
r

+
L
2λ

e2λt
+ 2

∫ t

0
e2λs

⟨Xφ,i , σ (Xφ,i (s), αi (s))dW (s)⟩.

By using the Burkholder–Davis–Gundy inequality, and the Young inequality, there exists a
constant C4 > 0 such that

E sup
0≤s≤t∧τn

eqλs
|Xφ,i (s)|

q

≤ C4∥φ∥
q
r + C4eqλ(t∧τn )

+ C4E
(∫ t∧τn

0
e4λs

|Xφ,i (s)|
2
∥σ (Xφ,i

s , α(s)i )∥2
HS

ds
)q/4

≤ C4∥φ∥
q
r + C4eqλ(t∧τn )

+ C4E
(

sup
0≤s≤t∧τn

e2λs
|Xφ,i (s)|

2
∫ t∧τn

0
e2λs

∥σ∥
2
∞

ds
)q/4

≤ C4∥φ∥
q
r + C4eqλ(t∧τn )

+
1
2
E sup

0≤s≤t∧τn
eqλs

|Xφ,i (s)|
q

+
C2

4

2

( 1
2λ

)q/2
∥σ∥

q
∞

eqλ(t∧τn ),

where τn := inf{t ≥ 0 : ∥Xφ,i
t ∥r ≥ n} for n ≥ ∥φ∥r . Note that τn → ∞ as n → ∞. Then by

Fatou’s lemma, we arrive at

E sup
0≤s≤t

eqλs
|Xφ,i (s)|

q
≤ 2C4∥φ∥

q
r + C4

(
2 +

( 1
2λ

)q/2
∥σ∥

q
∞

)
eqλt .

Since λ < r , from the definition of the norm ∥ · ∥r , it follows that

∥Xφ,i
t ∥r ≤ e−λt

(
∥φ∥r ∨ sup

0≤s≤t
eλs

|Xφ,i (s)|
)
.

hen we have

E∥Xφ,i
t ∥

q
r ≤ (1 + 2C4)∥φ∥

q
r e−qλt

+ C4

(
2 +

( 1
2λ

)q/2
∥σ∥

q
∞

)
,

hich implies that (3.1) holds for C3 = (1 + 2C4) ∨ C4

(
2 +

(
1
)q/2

∥σ∥
q
∞

)
and ρ̄ = qλ.
2λ

7
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a
µ

I

With the help of (3.1) and (2.6), by using a similar argument as in the proof of [23, Theorem
.2], (3.2) and (3.3) hold for any q > 0. The proof is complete. □

To proceed, for f ∈ C p,q (E) with µ∗( f ) = 0, define

R f (φ, i) =

∫
∞

0
Pt f (φ, i)dt and Φ f (φ, i)

= E
⏐⏐⏐ ∫ 1

0
f (Xφ,i

s , αi (s))ds + R f (Xφ,i
1 , αi (1)) − R f (φ, i)

⏐⏐⏐2.
For any Σ ∈ (0,∞), let FΣ (·) be the normal distribution function with mean zero and variance
Σ 2. Also denote F0(x) := 1[0,∞)(x).

Theorem 3.2. Let Assumptions 2.1–2.3 hold with V (x) = |x |
2. Let ηp > 0 for some p ∈ (0, 1]

nd ã∗
+ b̃∗ < 0, and ∥σ∥∞ := sup(φ,i)∈E ∥σ (φ, i)∥HS < ∞. For any q > 0, f ∈ C p,q (E) with

∗( f ) = 0,

Σ 2
f := lim

t→∞

∑
i∈S

∫
Cr

E
[
t−

1
2 A f

t (φ, i)
]2
µ∗(dφ, i) = µ∗(Φ f ) < ∞, (3.6)

where

A f
t (φ, i) :=

∫ t

0
f
(
Xφ,i

s , αi (s)
)
ds. (3.7)

n addition, the following two assertions hold:

(i) When Σ f > 0, for any ε ∈ (0, 1/4), there exists an increasing continuous function
hε : R+ × R+ → R+ such that for any φ ∈ Cr , i ∈ S,

sup
x∈R

⏐⏐⏐P(t−
1
2 A f

t (φ, i) ≤ x
)
− FΣ f (x)

⏐⏐⏐ ≤ hε(∥φ∥r , ∥ f ∥p,q )t−
1
4 +ε, t ≥ 1. (3.8)

(ii) When Σ f = 0, there exists a continuous increasing function h : R+ × R+ → R+ such
that for any φ ∈ Cr , i ∈ S,

sup
x∈R

{
(1 ∧ |x |)

⏐⏐⏐P(t−
1
2 A f

t (φ, i) ≤ x
)
− FΣ f (x)

⏐⏐⏐} ≤ h(∥φ∥r , ∥ f ∥p,q )t−
1
4 , t ≥ 1.

Remark 3.3. Compared with our previous result [28, Theorem 3.1], the non-degenerated
assumption on the diffusion coefficient is removed in Theorem 3.2. We provide an example to
illustrate this result; see Example 5.1 in what follows.

To prove Theorem 3.2, we first derive the following three crucial lemmas.

Lemma 3.4. Let assumptions of Theorem 3.2 hold. Then there exist constants δ and c > 0
such that for any k ≥ 0 and (φ, i) ∈ E

E
(

sup
t∈[k,k+1]

eδ∥Xφ,it ∥
2
r
)

≤ ec(1+∥φ∥
2
r ). (3.9)

Proof. Noting that supt∈[k,k+1] ∥Xφ,i
t ∥r ≤ er

∥Xφ,i
k+1∥r due to the definition of norm ∥ · ∥r , we

have

E
(

sup eδ∥Xφ,it ∥
2
r
)

≤ Eee2r δ∥Xφ,ik+1∥
2
r .
t∈[k,k+1]

8
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H

f

B

D
α

w
P
a

ence, in order to prove (3.9), it suffices to show that there exist positive constants δ0 and c0

such that

Eeδ0∥Xφ,it ∥
2
r ≤ ec0(1+∥φ∥

2
r ). (3.10)

To this end, let us consider the following regime-switching diffusions with infinite delay

d Xn(t) = b(Xn
t , α

i (t))1[0,τn ](t)dt +
1
2

ã(αi (t))Xn(t)1(τn ,∞)dt +σ (Xn
t , α

i (t))dW (t), (3.11)

with initial data Xn
0 = φ ∈ Cr , α

i (0) = i ∈ S, where τn = inf{t ≥ 0 : ∥Xφ,i
t ∥r ≥ n} for

n ≥ ∥φ∥r , and ã(·) comes from Assumption 2.3. Note that the regime-switching functional
diffusion processes determined by (1.2) and (3.11) have a unique solution and Xn(t) = Xφ,i (t)
or t ≤ τn . Since τn → ∞ as n → ∞, for any t > 0,

lim
n→∞

∥Xn
t − Xφ,i

t ∥r = 0, P-a.s. (3.12)

y virtue of Assumption 2.3 and the boundedness of σ (·), we obtain

2
⟨
Xn(t), b(Xn

t , α
i (t))1[0,τn ] +

1
2

ã(αi (t))Xn(t)1(τn ,∞)
⟩
+ ∥σ (Xn

t , α
i (t))∥HS

≤ L + ã(αi (t))|Xn(t)|2 + b̃(αi (t))
∫ 0

−∞

|Xn(t + θ )|2µ3(dθ )1[0,τn ] + ∥σ∥∞

≤ L(n) + ã(αi (t))|Xn(t)|2,

where L(n) := L + b̃∗n2
+ ∥σ∥∞. Then applying Itô’s formula gives

|Xn(t)|2 ≤ |φ(0)|2 +

∫ t

0
L(n) + ã(αi (s))|Xn(s)|2ds + 2

∫ t

0

⟨
Xn(s), σ (Xn

s , α
i (s))dW (s)

⟩
.

(3.13)

efine τ̃m = inf{t ≥ 0 : |Xn(t)| ≥ m} for m ≥ ∥φ∥r . Clearly, τ̃m → ∞ as m → ∞. Letting
= (̃a∗)2/8∥σ∥

2
∞

. Noting that ã∗ < 0, then from (3.13),

E exp
{
α

∫ t∧τ̃m

0
|Xn(s)|2ds

}
≤ exp

{
α

−ã∗
(|φ(0)|2 + L(n)t)

}
E exp

{
2α
−ã∗

∫ t∧τ̃m

0

⟨
Xn(s), σ (Xn

s , α
i (s))dW (s)

⟩}
≤ exp

{
α

−ã∗
(|φ(0)|2 + L(n)t)

}(
E exp

{
8α2

∥σ∥
2
∞

(̃a∗)2

∫ t∧τ̃m

0
|Xn(s)|2ds

})1/2

,

here the last inequality follows from the inequality EeN (s)
≤
(
Ee2⟨N ⟩s

)1/2, where N (s) is a
-martingale and ⟨N ⟩s denotes its quadratic variation. This, together with α = (̃a∗)2/8∥σ∥

2
∞

nd Fatou’s lemma, implies that for any fixed n > 0 and t > 0

E exp
{
α

∫ t

|Xn(s)|2ds
}

≤ exp
{

2α
−ã∗

(
|φ(0)|2 + L(n)t

)}
< ∞. (3.14)
0

9
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T

w
s
a

B

w

N
s

ake β = −ã∗/8∥σ∥
2
∞

=
√
α/2

√
2∥σ∥∞. Then it follows from (3.13) and (3.14) that

E sup
0≤s≤t

exp
{
β|Xn(s)|2

}
≤ exp

{
β|φ(0)|2 + βL(n)t

}
E sup

0≤s≤t
exp

{
2β
∫ s

0

⟨
Xn(u), σ (Xn

u , α
i (u))dW (u)

⟩}
≤ exp

{
β|φ(0)|2 + βL(n)t

}
eE exp

{
2β
∫ t

0

⟨
Xn(u), σ (Xn

u , α
i (u))dW (u)

⟩}
≤ exp

{
β|φ(0)|2 + βL(n)t + 1

}(
E exp

{
8β2

∥σ∥
2
∞

∫ t

0
|Xn(s)|2ds

})1/2

≤ exp
{(
β +

α

−ã∗

)
(|φ(0)|2 + L(n)t) + 1

}
, (3.15)

here in the second step, we have used the fact that E sup0≤s≤t eN (s)
≤ eEeN (t) for a P-

ubmartingale N (t). Recalling the definition of norm ∥ · ∥r , for ∀ n ≥ 1, t ≥ 0, we arrive
t

E exp
{
β∥Xn

t ∥
2
r

}
≤ E exp

{
β
(
∥φ∥

2
r + sup

0≤s≤t
|Xn(s)|2

)}
≤ exp

{(
2β +

α

−ã∗

)
(|φ(0)|2 + L(n)t) + 1

}
< ∞. (3.16)

y Assumption 2.3 with V (x) = |x |
2 and Itô’s formula, for any λ ∈ (0, 2r ), we get

eλt
|Xn(t)|2 ≤ |φ(0)|2 +

∫ t

0
eλs
(

L + (λ+ ã(αi (s)))|Xn(s)|2
)

ds

+

∫ t

0

∫ 0

−∞

eλs b̃(αi (s))|Xn(s + θ)|2µ3(dθ )ds + M(t), (3.17)

here M(t) := 2
∫ t

0 eλs
⟨
Xn(s), σ (Xn

s , α
i (s))dW (s)

⟩
. Similar to (3.5),∫ t

0

∫ 0

−∞

eλs b̃(αi (s))|Xn(s + θ)|2µ3(dθ )ds

≤
1

2r − λ
∥φ∥

2
r b̃∗µ

(2r )
3 + b̃∗µ

(λ)
3

∫ t

0
eλs

|Xn(s)|2ds. (3.18)

oting that ã∗
+ b̃∗ < 0 and limλ→0 µ

(λ)
3 = 1, there exists a constant λ < 2r small enough

uch that λ+ ã∗
+ b̃∗µ

(λ)
3 ≤ 0. Then substituting (3.18) into (3.17) gives

eλt
|Xn(t)|2 ≤

(
1 +

1
2r − λ

b̃∗µ
(2r )
3

)
∥φ∥

2
r

+

∫ t

0
eλs
(

L +
(
λ+ ã∗

+ b̃∗µ
(λ)
3

)
|Xn(s)|2

)
ds + M(t)

≤

(
1 +

1
2r − λ

b̃∗µ
(2r )
3

)
∥φ∥

2
r +

1
λ

Leλt
+ M(t). (3.19)
10
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F

C

T

w

U

or some δ0 > 0 to be determined later, by using a similar argument to derive (3.15), we have

E exp
{
δ0e−λt sup

0≤s≤t
M(s)

}
≤ eE exp

{
δ0e−λt M(t)

}
≤ e

(
E exp

{
8δ2

0∥σ∥
2
∞

∫ t

0
e−2λ(t−s)

|Xn(s)|2ds
})1/2

. (3.20)

onsider the following probability measure ν on [−1, t]

ν(ds) =
2λ

1 − e−2λ(t+1) e−2λ(t−s)ds.

hen by (3.20) and Jensen’s inequality, we obtain

E exp

{
δ0e−λt sup

0≤s≤t
M(s)

}
≤ e

(
E exp

{
8δ2

0∥σ∥
2
∞

∫ t

0
e−2λ(t−s)

|Xn(s)|2ds
})1/2

≤ e
(
E exp

{
8δ2

0∥σ∥
2
∞

1 − e−2λ(t+1)

2λ

∫ t

−1
|Xn(s)|2ν(ds)

})1/2

≤ e
(
E
∫ t

−1
exp

{
4δ2

0∥σ∥
2
∞

λ
|Xn(s)|2

}
2λ

1 − e−2λ(t+1) e−2λ(t−s)ds
)1/2

≤ e +
2λe

1 − e−2λE
∫ t

−1
exp

{
4δ2

0∥σ∥
2
∞

λ
|Xn(s)|2

}
e−2λ(t−s)ds.

This, together with (3.19), means that

E exp
{
δ0 sup

0≤s≤t
e−λ(t−s)

|Xn(s)|2
}

≤ exp
{
δ0

((
1 +

1
2r − λ

b̃∗µ
(2r )
3

)
∥φ∥

2
r + Lλ−1

)}
E exp

{
δ0e−λt sup

0≤s≤t
M(s)

}
≤ A1 +

2A1λ

1 − e−2λE
∫ t

−1
exp

{
4δ2

0∥σ∥
2
∞

λ
|Xn(s)|2

}
e−2λ(t−s)ds, (3.21)

here A1 := exp
{
δ0
(
(1+ (2r −λ)−1b̃∗µ

(2r )
3 )∥φ∥

2
r + Lλ−1

)
+1
}
. Then by the Cauchy inequality,

E exp
{
δ0∥Xn

t ∥
2
r

}
≤ E exp

{
δ0∥φ∥

2
r + δ0 sup

0≤s≤t
e−λ(t−s)

|Xn(s)|2
}

≤ A2
1 +

2A2
1λ

1 − e−2λE
∫ t

−1
exp

{
4δ2

0∥σ∥
2
∞

λ
|Xn(s)|2

}
e−2λ(t−s)ds

≤ A2
1 +

A4
1λ

(1 − e−2λ)2

∫ t

−1
e−2λ(t−s)ds + λ

∫ t

−1
E exp

{
8δ2

0∥σ∥
2
∞

λ
|Xn(s)|2

}
e−2λ(t−s)ds

≤ A2
1 +

A4
1

(1 − e−2λ)2 + λ

∫ t

−1
E exp

{
8δ2

0∥σ∥
2
∞

λ
|Xn(s)|2

}
e−2λ(t−s)ds. (3.22)

sing β = −ã∗/8∥σ∥
2
∞

, take δ0 ≤
(
(−ã∗) ∧ λ

)
/8∥σ∥

2
∞

≤ β. Then from (3.22) we see that

E exp
{
δ0∥Xn

t ∥
2
r

}
≤ A2

1 +
A4

1
−2λ 2 + λ

∫ t

E exp
{
δ0∥Xn

s ∥
2
r

}
e−2λ(t−s)ds.
(1 − e ) −1

11



Y. Wang, F. Wu and G. Yin Stochastic Processes and their Applications 167 (2023) 104215

B

N
u
(

L
w

t

P

t
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w
(

w

y using the Gronwall inequality,

E exp
{
δ0∥Xn

t ∥
2
r

}
≤ A2

1 +
A4

1

(1 − e−2λ)2 +

(
A2

1 +
A4

1

(1 − e−2λ)2

)
λ

∫ t

−1
e−λ(t−s)ds

≤ 2
(

A2
1 +

A4
1

(1 − e−2λ)2

)
. (3.23)

ote that A1 := exp
{
δ0
(
(1 + (2r − λ)−1b̃∗µ

(2r )
3 )∥φ∥

2
r + Lλ−1

)
+ 1

}
is independent of n. By

sing the Fatou Lemma, it follows from (3.12) and (3.23) that (3.10) holds. This further implies
3.9), which completes the proof. □

emma 3.5. Let assumptions of Theorem 3.2 hold. Then for any q > 0 and f ∈ C p,q (E)
ith µ∗( f ) = 0, there exists a constant C0 > 0 such that

∥Φ f ∥p,2q ≤ C0∥ f ∥
2
p,q < ∞, (3.24)

hat is, Φ f ∈ C p,2q (E), and

0 ≤ µ∗(Φ f ) = 2µ∗( f R f ) < ∞. (3.25)

roof. For any f ∈ C p,q (E), in light of (3.3), applying a standard argument gives that

|Pt f (φ, i) − µ∗( f )| ≤ inf
π∈C (Pt (φ,i;·,·),µ∗)

∫
E×E

dp,q ((ψ, j), (ζ, k))∥ f ∥p,qπ (dψ, j; dζ, k)

≤ 2C(1 + µ∗(∥ · ∥
q
r ))∥ f ∥p,q (1 + ∥φ∥

q
r )e−ϱt , (3.26)

hat is, the Markov process (Xφ,i
t , αi (t)) is uniformly mixing for the class C p,q (E), (see, [24,

efinition 2.5]). Then for any f ∈ C p,q (E) with µ∗( f ) = 0, we obtain⏐⏐R f (φ, i)
⏐⏐ =

⏐⏐⏐ ∫ ∞

0

[
Pt f (φ, i) − µ∗( f )

]
dt
⏐⏐⏐

≤

⏐⏐⏐ ∫ ∞

0
2C(1 + µ∗(∥ · ∥

q
r ))∥ f ∥p,q (1 + ∥φ∥

q
r )e−ϱt dt

⏐⏐⏐
≤ 2Cϱ−1(1 + µ∗(∥ · ∥

q
r ))∥ f ∥p,q (1 + ∥φ∥

q
r ), ∀ q > 0, (3.27)

hich implies that R f (φ, i) is well defined for all f ∈ C p,q (E). The Markovian property of
Xφ,i

t , αi (t)) shows

Pt R f (φ, i) = R f (φ, i) −

∫ t

0
Ps f (φ, i)ds, t ≥ 0, (3.28)

hich further implies that∫ 1

0
E
[

f (Xφ,i
s , αi (s))R f (Xφ,i

1 , αi (1))
]
ds =

∫ 1

0
Ps( f P1−s R f )(φ, i)ds

=

∫ 1

Ps( f R f )(φ, i)ds −

∫ 1 ∫ 1−s

Ps( f Pt f )(φ, i)dtds. (3.29)

0 0 0

12
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f

L
t

y using the property of conditional expectation and a substitution technique, one has

E
(∫ 1

0
f (Xφ,i

t , αi (t))dt
)2

= 2E
∫ 1

0

∫ 1

s
f (Xφ,i

s , αi (s)) f (Xφ,i
t , αi (t))dtds

= 2
∫ 1

0

∫ 1

s
Ps( f Pt−s f )(φ, i)dtds

= 2
∫ 1

0

∫ 1−s

0
Ps( f Pt f )(φ, i)dtds. (3.30)

hen according to the definition of Φ f , it follows from (3.28)–(3.30) that

Φ f (φ, i) = E
(∫ 1

0
f (Xφ,i

t , αi (t))dt
)2

+ ER2
f (Xφ,i

1 , αi (1)) + R2
f (φ, i)

+ 2
∫ 1

0
E
[

f (Xφ,i
t , αi (t))R f (Xφ,i

1 , αi (1))
]
dt − 2R f (φ, i)ER f (Xφ,i

1 , αi (1))

− 2R f (φ, i)
∫ 1

0
E f (Xφ,i

t , αi (t))dt

= P1(R2
f )(φ, i) − R2

f (φ, i) + 2
∫ 1

0
Ps( f R f )(φ, i)ds. (3.31)

Hence, in order to prove (3.24), with Lemmas 2.3 and 3.4 at hand, it suffices to show that
R2

f (·), ( f R f )(·) ∈ C p,2q (E) for any f ∈ C p,q (E) with µ∗( f ) = 0. To this end, applying (3.2)
ith µ = δ(φ,i) and ν = δ(ψ, j) yields

|Pt f (φ, i) − Pt f (ψ, j)| ≤ C∥ f ∥p,qdp,q
(
(φ, i), (ψ, j)

)
e−ϱt , (3.32)

hich, together with the definition of R f , yields⏐⏐R f (φ, i) − R f (ψ, j)
⏐⏐

≤

∫
∞

0
|Pt f (φ, i) − Pt f (ψ, j)|dt ≤ Cϱ−1

∥ f ∥p,qdp,q
(
(φ, i), (ψ, j)

)
. (3.33)

ombining this with (3.27), there exists a constant C(ϱ) > 0 such that

|R2
f (φ, i) − R2

f (ψ, j)| = |R f (φ, i) + R f (ψ, j)||R f (φ, i) − R f (ψ, j)|

≤ C(ϱ)(1 + µ∗(∥ · ∥
q
r ))∥ f ∥

2
p,qdp,2q

(
(φ, i), (ψ, j)

)
, (3.34)

hich, together with (3.27), implies that R2
f (·) ∈ C p,2q (E). Similarly, it is easy to verify that

f R f )(·) ∈ C p,2q (E). Then (3.24) follows. Noting that µ∗ is invariant and µ∗(∥ · ∥
2q
r ) < ∞, it

ollows from (3.31) that µ∗(Φ f ) = 2µ∗( f R f ), that is, (3.25) holds. This proof is complete. □

emma 3.6. Under assumptions of Theorem 3.2, for any n ∈ Z+, q > 0 and f ∈ C p,q (E),
here exists a continuous increasing function h0(·) such that

E

⏐⏐⏐⏐⏐ 1
m

m−1∑
f (Xφ,i

k , αi (k)) − µ∗( f )

⏐⏐⏐⏐⏐
2n

≤ h0(∥φ∥r )∥ f ∥
2n
p,qm−n. (3.35)
k=0

13



Y. Wang, F. Wu and G. Yin Stochastic Processes and their Applications 167 (2023) 104215

P
µ

w

I

S
c

µ

F
f
b

roof. Fix an arbitrary functional f ∈ C p,q (E). Without loss of generality, assume that
∗( f ) = 0. Then by the Hölder inequality, we have

E

⏐⏐⏐⏐⏐ 1
m

m−1∑
k=0

f (Xφ,i
k , αi (k))

⏐⏐⏐⏐⏐
2n

=
1

m2n
E

2n∏
j=1

[m−1∑
k j =0

f (Xφ,i
k j
, αi (k j ))

]

≤
(2n)!
m2n

E
[m−1∑

k1=0

k1∑
k2=0

· · ·

k2n−1∑
k2n=0

f (Xφ,i
k1
, αi (k1)) f (Xφ,i

k2
, αi (k2)) . . . f (Xφ,i

k2n
, αi (k2n))

]

=
(2n)!
m2n

m−1∑
k1=0

k1∑
k2=0

E
[( k2∑

k3=0

· · ·

k2n−1∑
k2n=0

f (Xφ,i
k3
, αi (k3)) · · · f (Xφ,i

k2n
, αi (k2n))

)
g(k1, k2)

]

≤
(2n)!
m2n

m−1∑
k1=0

k1∑
k2=0

E
[⏐⏐⏐⏐ m−1∑

k=0

f (Xφ,i
k , αi (k))

⏐⏐⏐⏐2n−2

g(k1, k2)
]

≤

(
E
⏐⏐⏐⏐ 1
m

m−1∑
k=0

f (Xφ,i
k , αi (k))

⏐⏐⏐⏐2n
) n−1

n
(2n)!
m2

m−1∑
k1=0

k1∑
k2=0

(
Egn(k1, k2)

) 1
n
, (3.36)

here g(k1, k2) := f (Xφ,i
k2
, αi (k2))E

[
f (Xφ,i

k1
, αi (k1))

⏐⏐Fk2

]
. This implies that

E
⏐⏐⏐⏐ 1
m

m−1∑
k=0

f (Xφ,i
k , αi (k))

⏐⏐⏐⏐2n

≤
[(2n)!]n

m2n

(m−1∑
k1=0

k1∑
k2=0

(
Egn(k1, k2)

) 1
n
)n

. (3.37)

n light of (3.1) and (3.26), there exists a continuous increasing function h1(·) such that(
Egn(k1, k2)

) 1
n

≤ C∥ f ∥
2
p,q

(
E(1 + ∥Xφ,i

k2
∥

q )2ne−nϱ(k1−k2)
) 1

n

≤ h1(∥φ∥r )∥ f ∥
2
p,qe−ϱ(k1−k2).

ubstituting this inequality into (3.37) yields the desired result (3.35). The proof is
omplete. □

To derive the functional CLT, we first introduce some notation. For f ∈ C p,q (E) with
∗( f ) = 0 and (φ, i) ∈ E,

M f,φ,i
t :=

∫
∞

0

[
E
(

f (Xφ,i
s , αi (s))|Ft

)
− Ps f (φ, i)

]
ds

=

∫ t

0
f (Xφ,i

s , αi (s))ds +

∫
∞

t
Ps−t f (Xφ,i

t , αi (t))ds −

∫
∞

0
Ps f (φ, i)ds

=

∫ t

0
f (Xφ,i

s , αi (s))ds + R f (Xφ,i
t , αi (t)) − R f (φ, i). (3.38)

or any fixed (φ, i) ∈ E and f ∈ C p,q (E) with µ∗( f ) = 0, the stochastic process {M f,φ,i
t }t≥0

orms a well-defined zero-mean martingale. Define a conditional variance for M f,φ,i
m ,m ∈ Z+

y the following formula

⟨M f,φ,i
⟩m =

m∑
E
[(

M f,φ,i
k − M f,φ,i

k−1

)2
⏐⏐⏐⏐Fk−1

]
.

k=1

14
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ecalling the definitions of M f,φ,i
t and R f (φ, i), it can be observed that

M f,φ,i
k = M f,φ,i

k−1 +

∫ k

k−1
f (Xφ,i

s , αi (s))ds + R f (Xφ,i
k , αi (k))− R f (Xφ,i

k−1, α
i (k −1)). (3.39)

Then the Markovian property of (Xφ,i
t , αi (t)) implies

E
[(

M f,φ,i
k − M f,φ,i

k−1

)2
⏐⏐⏐⏐Fk−1

]
= Φ f (Xφ,i

k−1, α
i (k − 1)),

and hence

⟨M f,φ,i
⟩m =

m−1∑
k=0

Φ f (Xφ,i
k , αi (k)), m ∈ Z+. (3.40)

Proof of Theorem 3.2. This proof is divided into three steps.

Step 1: Proof of (3.6). By virtue of the invariance of µ∗, applying the techniques similar to
that used in (3.30) yields∑

i∈S

∫
Cr

E
[
t−

1
2 A f

t (φ, i)
]2
µ∗(dφ, i)

=
2
t

∫ t

0

∫ t−u

0

(∑
i∈S

∫
Cr

Pu( f Ps f )(φ, i)µ∗(dφ, i)
)

dsdu

= 2
∑
i∈S

∫
Cr

∫ t

0
f (φ, i)Ps f (φ, i)dsµ∗(dφ, i)

−
2
t

∑
i∈S

∫
Cr

∫ t

0
s f (φ, i)Ps f (φ, i)dsµ∗(dφ, i). (3.41)

ote that µ∗(∥ · ∥
q
r ) < ∞ for ∀q > 0. For f ∈ C p,q (E) with µ∗( f ) = 0, by virtue of (3.26),

e obtain

lim
t→∞

⏐⏐⏐⏐2t ∑
i∈S

∫
Cr

∫ t

0
s f (φ, i)Ps f (φ, i)dsµ∗(dφ, i)

⏐⏐⏐⏐
≤ lim

t→∞

2
t

∫ t

0
s
∑
i∈S

∫
Cr

⏐⏐ f (φ, i)Ps f (φ, i)
⏐⏐µ∗(dφ, i)ds

≤ lim
t→∞

8C∥ f ∥
2
p,q

(
1 + µ∗(∥ · ∥

2q
r )
)2

t

∫ t

0
se−ϱsds = 0,

hich, together with (3.41) and (3.25), implies that

Σ 2
f = lim

t→∞

∑
i∈S

∫
Cr

E
[
t−

1
2 A f

t (φ, i)
]2
µ∗(dφ, i)

= 2
∑
i∈S

∫
Cr

∫
∞

0
f (φ, i)Ps f (φ, i)dsµ∗(dφ, i)
= 2µ∗( f R f ) = µ∗(Φ f ).

15
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tep 2: Proof of (i). Let f ∈ C p,q (E) with µ∗( f ) = 0 and Σ f > 0. By using [24, Lemma 2.9]
or ε = t−

1
4 ,

sup
x∈R

⏐⏐⏐P{t−
1
2 A f

t (φ, i) ≤ x
}

− FΣ f (x)
⏐⏐⏐

≤
1

Σ f
√

2π
t−

1
4 + sup

x∈R

⏐⏐⏐P{⌊t⌋−
1
2 M f,φ,i

⌊t⌋ ≤ x
}

− FΣ f (x)
⏐⏐⏐

+ P
{⏐⏐t−

1
2 A f

t (φ, i) − ⌊t⌋−
1
2 M f,φ,i

⌊t⌋

⏐⏐ > t−
1
4

}
=:

1

Σ f
√

2π
t−

1
4 + Γ1(t) + Γ2(t), (3.42)

here ⌊t⌋ denotes the integer part of t . According to definitions of A f
t (φ, i) and M f,φ,i

t , it
ollows from [23, Lemma 4.1], (3.1) and (3.27) that there exists a constant A2 > 0 such that

E
⏐⏐⏐t−

1
2 A f

t (φ, i) − ⌊t⌋−
1
2 M f,φ,i

⌊t⌋

⏐⏐⏐ ≤ (⌊t⌋)−
1
2 E
⏐⏐⏐A f

t (φ, i)
⏐⏐⏐+ ⌊t⌋−

1
2

∫ t

⌊t⌋
E
⏐⏐⏐ f (Xφ,i

s , αi (s))
⏐⏐⏐ds

+ ⌊t⌋−
1
2 E
⏐⏐⏐R f (Xφ,i

⌊t⌋ , α
i (⌊t⌋)) − R f (φ, i)

⏐⏐⏐
≤ A2∥ f ∥p,q (1 + ∥φ∥

q
r )⌊t⌋−

1
2

≤ 2A2∥ f ∥p,q (1 + ∥φ∥
q
r )t−

1
2 , (3.43)

here t ≥ 1. This, together with the Chebyshev inequality, gives

Γ2(t) ≤ 2A2∥ f ∥p,q (1 + ∥φ∥
q
r )t−

1
4 . (3.44)

ow let us estimate Γ1(t). By virtue of (3.27), (3.39) and Lemma 3.4, there exists a positive
constant A3 such that⏐⏐⏐M f,φ,i

k − M f,φ,i
k−1

⏐⏐⏐ =

⏐⏐⏐⏐∫ k

k−1
f (Xφ,i

s , αi (s))ds + R f (Xφ,i
k , αi (k)) − R f (Xφ,i

k−1, α
i (k − 1))

⏐⏐⏐⏐
≤ A3∥ f ∥p,q

(
1 + sup

s∈[k−1,k]
δ

q
2 ∥Xφ,i

s ∥
q
r

)
,

whence it follows that

E exp
{⏐⏐⏐M f,φ,i

k − M f,φ,i
k−1

⏐⏐⏐ 1
q
}

≤ exp
{

1 + 4( 1
q −1)∨0 A

2
q
3 ∥ f ∥

2
q
p,q

}
E sup

s∈[k−1,k]
eδ∥Xφ,is ∥

2
r

≤ exp
{

1 + 4( 1
q −1)∨0 A

2
q
3 ∥ f ∥

2
q
p,q + c(1 + ∥φ∥

2
r )
}
.

hen it follows from [24, Proposition 2.10], (3.40), (3.6), (3.35), and (3.24) that for any
∈ (0, 1/4) and κ > 0 there exists a positive constant Aε(Σ f ) such that

Γ1(t) ≤ Aε(Σ f )⌊t⌋−
1
4 +ε

+ Σ−4κ
f ⌊t⌋κ(1−4ε)E

⏐⏐⏐⌊t⌋−1
⟨M f,φ,i

⟩⌊t⌋ − Σ 2
f

⏐⏐⏐2κ
≤ Aε(Σ f )⌊t⌋−

1
4 +ε

+ Σ−4κ
f ⌊t⌋κ(1−4ε)E

⏐⏐⏐⏐⌊t⌋−1
⌊t⌋−1∑
k=0

Φ f (Xφ,i
k , αi (k)) − µ∗(Φ f )

⏐⏐⏐⏐2κ
≤ A (Σ )⌊t⌋−

1
4 +ε

+ 2C h (∥φ∥ )∥ f ∥
4κ Σ−4κ

⌊t⌋−4κε. (3.45)
ε f 0 0 r p,q f

16
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or any given ε ∈ (0, 1/4), take κ > 0 such that 16κε ≥ 1. Then substituting (3.44) and (3.45)
nto (3.42) leads to the desired estimation (3.8).

tep 3: Proof of (ii). Let f ∈ C p,q (E) with µ∗( f ) = 0 and Σ f = 0. Then we have

sup
x∈R

{
(1 ∧ |x |)

⏐⏐⏐P{m−
1
2 M f,φ,i

m ≤ x
}

− F0(x)
⏐⏐⏐}

= sup
x∈R

{
(1 ∧ |x |)

(
P
{

m−
1
2 M f,φ,i

m ≤ x
}

1{x<0} + P
{

m−
1
2 M f,φ,i

m > x
}

1{x≥0}

)}
≤ sup

x>0

{
(1 ∧ x)P

{⏐⏐⏐m−
1
2 M f,φ,i

m

⏐⏐⏐ ≥ x
}}
. (3.46)

ccording to the martingale property of M f,φ,i
t , we have E

(
M f,φ,i

m
)2

= E⟨M f,φ,i
⟩m . Then for

any x > 0, by using the Chebyshev inequality, it follows from (3.40), (3.35) and (3.24) that

P
{⏐⏐⏐m−

1
2 M f,φ,i

m

⏐⏐⏐ ≥ x
}

≤ x−1m−
1
2 E
⏐⏐⏐M f,φ,i

m

⏐⏐⏐ ≤ x−1m−
1
2
(
E⟨M f,φ,i

⟩m
) 1

2

= x−1
(
E
[

1
m

m−1∑
k=0

Φ f (Xφ,i
k , αi (k))

]) 1
2

≤ 2C0x−1h0(∥φ∥r )∥ f ∥p,qm−
1
4 .

ombining this with (3.46) gives

sup
x∈R

{
(1 ∧ |x |)

⏐⏐⏐P{m−
1
2 M f,φ,i

m ≤ x
}

− F0(x)
⏐⏐⏐} ≤ 2C0h0(∥φ∥r )∥ f ∥p,qm−

1
4 .

hen by using [24, Lemma 2.9] for σ = 0, the desired assertion follows. □

. Law of iterated logarithm

This section establishes an LIL for additive functional of the regime-switching diffusion
rocess with infinite delay described by (1.1) and (1.2). To proceed, we need some necessary

notation. When Σ f > 0, for any (φ, i) ∈ E and n > e, define a sequence of C([0, 1];R)-valued
andom variable as follows:

H f,φ,i
n (t) =

1

Σ f
√

2n log log n

∫ nt

0
f (Xφ,i

s , αi (s))ds, t ∈ [0, 1].

Let ẋ denote the derivative of x and

H =

{
x ∈ C([0, 1];R) : x is absolutely continuous such that x(0) = 0

and
∫ 1

0
|ẋ(s)|2ds ≤ 1

}
.

Theorem 4.1. Let Assumptions 2.1–2.3 hold, and ηp > 0 for some p ∈ (0, 1]. For some
ε̄ > 0, if one of the following two conditions holds:

(i) η̃1 > 0, γ̃∗ < 0, µ3 ∈ M(2r )∨(−γ̃∗+ε̄),
(ii) η̂1 > 0, ã∗ < 0, µ3 ∈ M(2r )∨(−ã∗+ε̄),

then for any q ∈ (0, 1/2), (φ, i) ∈ E, f ∈ C p,q (E) with µ∗( f ) = 0 and Σ f > 0,
f,φ,i
{Hn (·), n > e} is almost surely relatively compact in C([0, 1];R) and the set of its limit

17
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oints coincides with H. Consequently, P-a.s.

lim sup
t→∞

∫ t
0 f (Xφ,i

s , αi (s))ds√
2t log log t

= Σ f , lim inf
t→∞

∫ t
0 f (Xφ,i

s , αi (s))ds√
2t log log t

= −Σ f . (4.1)

Remark 4.2. Under assumptions of Theorem 4.1, (3.2) and (3.3) hold for q ∈ (0, 2], that
is, Theorem 2.2 in [23] holds (in [23, Theorem 2.2], we wrote it as q ∈ (0, 1], which
is a typographical error). In addition, to prove the LIL, we further assume q ∈ (0, 1/2)
in Theorem 4.1. This implies we can use Lemma 3.5 and some estimates in its proof for

∈ (0, 1/2) in what follows.

emark 4.3. Compared with [2, Theorem 1.3] and our previous result [28, Theorem 4.3],
his paper considers a Markovian process (Xφ,i

t , αi (t)) determined by (1.1) and (1.2). It
resents a continuous-time version LIL for additive functionals. To this end, we modify the
eference function sequence H f,φ,i

n (t). In addition, our assumptions in Theorem 4.1 allow
some subsystems to be fully non-dissipative (see Example 5.2 in what follows), and this paper
removes the boundedness assumption on the diffusion and its inverse in [2]. Theorem 3.4 in [6]
and Theorem 4.1.5 in [16] consider the LIL for additive functionals for the Markov chain and
the stationary Markov processes, respectively. They cannot be directly used to deal with the
present non-stationary setting since (Xφ,i

t , αi (t)) is a non-stationary Markovian process in the
Polish space Cr × S.

Remark 4.4. Under some additional growth conditions on the drift to ensure the solution to
be locally Hölder continuous, if f ̸≡ 0 on the support of the invariant probability measure µ∗

(supp(µ∗)), then Σ f > 0. Assume, by contradiction, that Σ f = 0. Applying a similar approach
to derive Σ 2

f = µ∗(Φ f ) yields that Σ 2
f = T −1µ∗(Φ̃ f,T ) for any T > 0, where

Φ̃ f,T (φ, i) := E
⏐⏐⏐ ∫ T

0
f (Xφ,i

s , αi (s))ds + R f (Xφ,i
T , αi (T )) − R f (φ, i)

⏐⏐⏐2.
Then Σ f = 0 implies that µ∗(Φ̃ f,T ) = 0, which, in turn, implies∫ T

0
f (Xφ,i

s , αi (s))ds + R f (Xφ,i
T , αi (T )) − R f (φ, i) = 0, Pµ∗

-a.s. (4.2)

Under Pµ∗
, (X t , α(t)) is a stationary strong Markovian process with initial distribution µ∗.

Recalling that f ∈ C p,q (E), f ̸≡ 0 on supp(µ∗) and µ∗( f ) = 0, there exist bounded measurable
subsets B0 ⊂ B of Cr with µ∗(B0 × S) > 0 and ε > 0 such that f (ξ, i) ≥ ε (or − f (ξ, i) ≥

ε),∀ξ ∈ B, i ∈ S and dist(B0, ∂B) := infξ∈B0,η∈∂B ∥ξ − η∥r > ε0 for some ε0 > 0. In addition,
there exists a compact set Kc ⊂ Cr such that Pµ∗

{(Xφ,i
s , αi (s)) ∈ Kc × S} = µ∗(Kc × S) >

1 −µ∗(B0 × S)/2 for any s ≥ 0 since µ∗ is invariant and tight. Hence µ∗((Kc ∩ B0) × S) > 0.
Under appropriate growth conditions, it is easy to see that the solution process is locally

Hölder continuous, that is,

Pµ∗

{
ω : sup

0<t−s<h(ω),s,t∈[0,T0]

|Xφ,i (t, ω) − Xφ,i (s, ω)|
|t − s|γ

< δ

}
= 1,

here T0, γ, δ > 0 are constants and h(ω) > 0,Pµ∗
-a.e. Then by the definition of the norm ∥·∥r ,

here exists t0 > 0 small enough such that sup0<t−s≤t0,s,t∈[0,T0] |X
φ,i (t, ω) − Xφ,i (s, ω)| ≤ ε0/4

on the event {h(ω) ≥ t }, and sup ∥Xφ,i
− Xφ,i

∥ ≤ ε /2 on {Xφ,i
∈ K ∩ B̄ , h(ω) ≥ t }
0 0≤s≤t0 s 0 r 0 0 c 0 0

18
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here B̄0 is the closure of B0. In addition, noting that Pµ∗
{h(ω) ≥ t0} → 1 as t0 → 0. Hence we

an take t0 > 0 small enough such that for any s ≥ 0, Pµ∗
{(Xφ,i

s , αi (s)) ∈ (Kc ∩B0)×S, h(ω) ≥

0} > 0 due to Pµ∗
{(Xφ,i

s , αi (s)) ∈ (Kc ∩ B0) × S} = µ∗((Kc ∩ B0) × S) > 0. Then we arrive at

Pµ∗

{
(Xφ,i

s , αi (s)) ∈ B × S,∀s ∈ [0, t0]
}

≥ Pµ∗

{
(Xφ,i

0 , αi (0)) ∈ (Kc ∩ B0) × S, h(ω) ≥ t0
}
> 0.

urthermore, by the Markovian property and stationarity of (Xφ,i
s , αi (s)) under Pµ∗

, we have

Pµ∗

{
(Xφ,i

s , αi (s)) ∈ B × S,∀s ∈ [0, T ]
}
> 0, ∀T > 0.

hen we have

Pµ∗

{∫ T

0
f (Xφ,i

s , αi (s))ds ≥ T ε
}

≥ Pµ∗
{(Xφ,i

s , αi (s)) ∈ B × S, s ∈ [0, T ]} > 0. (4.3)

n addition, since R f (·, ·) is bounded on bounded set of Cr × S (see (3.27)), then we have
R f (ξ, i)| < Kb,∀ξ ∈ B, i ∈ S for some Kb > 0. Hence,

Pµ∗
{|R f (Xφ,i

T , i) − R f (φ, i)| < 2Kb} ≥ Pµ∗
{Xφ,i

T , Xφ,i
0 ∈ B} > 0.

hoosing T > 0 large enough such that T ε > 2Kb, this, together with (4.3), implies that (4.2)
annot hold with probability one. This is a contradiction. Hence, Σ f > 0 if f ̸≡ 0 on supp(µ∗)
nd the solution process is locally Hölder continuous. As for Examples in this paper, it is easy
o verify that their solution processes are locally Hölder continuous

However, it is not clear to us how to determine the support of the invariant probability mea-
ure µ∗. Note that (Xφ,i

t , αi (t)) is a highly degenerate Markovian process, that is, (Xφ,i
t , αi (t))

s an infinite-dimensional Markovian process with finite-dimensional noises W (t). Therefore,
ven though the diffusion coefficient is non-degenerate, the support of the invariant probability
easure µ∗ cannot be the whole space Cr × S. We only know that supp(µ∗) ⊆ C0

r × S, where
0
r = {φ ∈ Cr : limθ→−∞ erθφ(θ ) = 0}, which follows from our previous work [30, Remark
.6].

To prove this theorem, let us first present a crucial lemma.

emma 4.5. Under assumptions of Theorem 4.1,

lim
n→∞

1
n

n∑
k=1

Z2
k (φ, i) = Σ 2

f , P-a.s.,

here Zk(φ, i) := M f,φ,i
k − M f,φ,i

k−1 and M f,φ,i
k is given by (3.39).

roof. As observed in the proof of [14, Proposition 3.1], to obtain the desired result, it is
ufficient to prove the continuity of the two maps

Ψ1(φ, i) := E
(⏐⏐⏐⏐ lim sup

n→∞

(
1
n

n∑
k=1

Z2
k (φ, i)

)
− Σ 2

f

⏐⏐⏐⏐ ∧ 1
)
,

Ψ2(φ, i) := E
(⏐⏐⏐⏐ lim inf

n→∞

(
1
n

n∑
k=1

Z2
k (φ, i)

)
− Σ 2

f

⏐⏐⏐⏐ ∧ 1
)
,

with respect to (φ, i) ∈ E. Because S is a finite set with discrete metric, it is enough to show
that Ψ (φ, i), j = 1, 2 is continuous with respect to φ ∈ C . We first show the continuity of
j r
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1(φ, i) with respect to φ. Note that for any n, K0 ∈ Z+ with n ≥ K0 ≥ 1

1
n

n∑
k=K0

Z2
k (φ, i) =

1
n

n∑
k=1

Z2
k (φ, i) −

1
n

K0−1∑
k=1

Z2
k (φ, i).

ecalling the definition of M f,φ,i
t and Zk(φ, i), (2.7) implies E|Zk(φ, i)|2 < ∞. This in turn

implies Z2
k (φ, i) < ∞, P-a.s.. Then we have

lim sup
n→∞

1
n

n∑
k=K0

Z2
k (φ, i) = lim sup

n→∞

1
n

n∑
k=1

Z2
k (φ, i), P-a.s.

Therefore, for fixed K0 ∈ Z+ and K0 > 1, we arrive at

Ψ1(φ, i) = E
(⏐⏐⏐⏐ lim sup

n→∞

(
1
n

n∑
k=K0

Z2
k (φ, i)

)
− Σ 2

f

⏐⏐⏐⏐ ∧ 1
)

= lim
n→∞

E
(⏐⏐⏐⏐ sup

m≥n

(
1
m

m∑
k=K0

Z2
k (φ, i)

)
− Σ 2

f

⏐⏐⏐⏐ ∧ 1
)

= lim
n→∞

lim
N→∞

E
(⏐⏐⏐⏐ sup

m∈{n,n+1,...,n+N }

(
1
m

m∑
k=K0

Z2
k (φ, i)

)
− Σ 2

f

⏐⏐⏐⏐ ∧ 1
)

= lim
n→∞

lim
N→∞

E
(⏐⏐⏐⏐ sup

m∈{n,n+1,...,n+N }

(
1
m

m∑
k=K0

Z2
k (φ, i)

)
∧

(
1 + Σ 2

f

)
− Σ 2

f

⏐⏐⏐⏐ ∧ 1
)

=: lim
n→∞

lim
N→∞

Ψn,N (φ, i). (4.4)

hen, for any (φ, i), (ψ, i) ∈ E and n ≥ K0 > 1, we have⏐⏐Ψn,N (φ, i) − Ψn,N (ψ, i)
⏐⏐

=

⏐⏐⏐⏐E(⏐⏐⏐⏐ sup
m∈{n,n+1,...,n+N }

(
1
m

m∑
k=K0

Z2
k (φ, i)

)
∧

(
1 + Σ 2

f

)
− Σ 2

f

⏐⏐⏐⏐ ∧ 1
)

−E
(⏐⏐⏐⏐ sup

m∈{n,n+1,...,n+N }

(
1
m

m∑
k=K0

Z2
k (ψ, i)

)
∧

(
1 + Σ 2

f

)
− Σ 2

f

⏐⏐⏐⏐ ∧ 1
)⏐⏐⏐⏐

≤ E
⏐⏐⏐⏐ sup

m∈{n,n+1,...,n+N }

(
1
m

m∑
k=K0

Z2
k (φ, i)

)
∧

(
1 + Σ 2

f

)

− sup
m∈{n,n+1,...,n+N }

(
1
m

m∑
k=K0

Z2
k (ψ, i)

)
∧

(
1 + Σ 2

f

)⏐⏐⏐⏐
≤ E

⏐⏐⏐⏐ sup
m∈{n,n+1,...,n+N }

1
m

( m∑(
Z2

k (φ, i) ∧ m
(

1 + Σ 2
f

))
∧ m

(
1 + Σ 2

f

))

k=K0

20



Y. Wang, F. Wu and G. Yin Stochastic Processes and their Applications 167 (2023) 104215
− sup
m∈{n,n+1,...,n+N }

1
m

( m∑
k=K0

(
Z2

k (ψ, i) ∧ m
(

1 + Σ 2
f

))
∧ m

(
1 + Σ 2

f

))⏐⏐⏐⏐
≤ E

⏐⏐⏐⏐ sup
m∈{n,n+1,...,n+N }

1
m

m∑
k=K0

(
Z2

k (φ, i) ∧ m
(

1 + Σ 2
f

)
− Z2

k (ψ, i) ∧ m
(

1 + Σ 2
f

))⏐⏐⏐⏐
≤E sup

m∈{n,n+1,...,n+N }

2
√

m(1 + Σ 2
f )

m

m∑
k=K0

|Zk(φ, i) − Zk(ψ, i)|. (4.5)

Then it follows from (4.4) and (4.5) that

|Ψ1(φ, i) − Ψ1(ψ, i)| = lim
n→∞

lim
N→∞

|Ψn,N (φ, i) − Ψn,N (ψ, i)|

≤ 2(1 + Σ 2
f )

∞∑
k=K0

E|Zk(φ, i) − Zk(ψ, i)|. (4.6)

Recalling the definition of Zk(φ, i), by virtue of (3.39) and (3.33), we derive

|Zk(φ, i) − Zk(ψ, i)| ≤

⏐⏐⏐⏐ ∫ k

k−1

[
f (Xφ,i

s , αi (s)) − f (Xψ,i
s , αi (s))

]
ds
⏐⏐⏐⏐

+
⏐⏐R f (Xφ,i

k , αi (k)) − R f (Xψ,i
k , αi (k))

⏐⏐
+
⏐⏐R f (Xφ,i

k−1, α
i (k − 1)) − R f (Xψ,i

k−1, α
i (k − 1))

⏐⏐
≤

∫ k

k−1
∥ f ∥p,q∥Xφ,i

s − Xψ,i
s ∥

p
r

√
1 + ∥Xφ,i

s ∥
2q
r + ∥Xψ,i

s ∥
2q
r ds

+ Cϱ−1
∥ f ∥p,q∥Xφ,i

k − Xψ,i
k ∥

p
r

√
1 + ∥Xφ,i

k ∥
2q
r + ∥Xψ,i

k ∥
2q
r

+ Cϱ−1
∥ f ∥p,q∥Xφ,i

k−1 − Xψ,i
k−1∥

p
r

√
1 + ∥Xφ,i

k−1∥
2q
r + ∥Xψ,i

k−1∥
2q
r .

Then by using Hölder’s inequality and Lemma 2.3, there exists a positive constant A4 such
that

E|Zk(φ, i) − Zk(ψ, i)| ≤ ∥ f ∥p,q

∫ k

k−1

(
E∥Xφ,i

s − Xψ,i
s ∥

2p
r

) 1
2

×

√
1 + E∥Xφ,i

s ∥
2q
r + E∥Xψ,i

s ∥
2q
r ds

+ Cϱ−1
∥ f ∥p,q

(
E∥Xφ,i

k − Xψ,i
k ∥

2p
r

) 1
2

×

√
1 + E∥Xφ,i

k ∥
2q
r + E∥Xψ,i

k ∥
2q
r

+ Cϱ−1
∥ f ∥p,q

(
E∥Xφ,i

k−1 − Xψ,i
k−1∥

2p
r

) 1
2

×

√
1 + E∥Xφ,i

k−1∥
2q
r + E∥Xψ,i

k−1∥
2q
r

≤ A4∥ f ∥p,q∥φ − ψ∥
p
r e−

1
2 ηε(k−1).

Substituting this into (4.6) yields⏐⏐⏐Ψ1(φ, i) − Ψ1(ψ, i)
⏐⏐⏐ ≤ 2(1 + Σ 2

f )A4∥ f ∥p,q

∞∑
e−

1
2 ηε(k−1)

∥φ − ψ∥
p
r .
k=K0
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ince K0 is arbitrary, this implies Ψ1(φ, i) is a constant and in particular continuous with
espect to φ. Similarly, we can show the continuity of Ψ2(·, ·). Hence this proof is complete. □

roof of Theorem 4.1. Noting that Φ f ∈ C p,2q (E) and Σ 2
f = µ∗(Φ f ), by using a similar

rgument to (3.26), there exists a constant A5 > 0 such that

|PkΦ f (ξ ) − Σ 2
f | = |PkΦ f (ξ ) − µ∗(Φ f )| ≤ A5e−ϱk, ∀ k ≥ 0.

et S2
n ( f, φ, i) = E|M f,φ,i

n |
2
. Then it follows from (3.40) that

lim
n→∞

⏐⏐⏐⏐ S2
n ( f, φ, i)

n
− Σ 2

f

⏐⏐⏐⏐ = lim
n→∞

⏐⏐⏐⏐E|M f,φ,i
n |

2

n
− Σ 2

f

⏐⏐⏐⏐
= lim

n→∞

⏐⏐⏐⏐E⟨M f,φ,i
⟩n

n
− Σ 2

f

⏐⏐⏐⏐
= lim

n→∞

⏐⏐⏐⏐1n
n−1∑
k=0

PkΦ f (φ, i) − Σ 2
f

⏐⏐⏐⏐
= lim

n→∞

⏐⏐⏐⏐1n
n−1∑
k=0

(PkΦ f (φ, i) − Σ 2
f )
⏐⏐⏐⏐

≤ lim
n→∞

A5

n

n−1∑
k=0

e−ϱk
= 0. (4.7)

his implies S2
n ( f, φ, i) = O(n). Recalling q ∈ (0, 1/2) and the definition of Zn(φ, i), it follows

rom (2.7), (3.27) and (3.39) that there is a constant A6 > 0 independent of n such that

E
⏐⏐Zn(φ, i)

⏐⏐4 ≤ 27E
∫ n

n−1

⏐⏐ f (Xφ,i
s , αi (s))

⏐⏐4ds + 27E
⏐⏐R f (Xφ,i

n , αi (n))
⏐⏐4

+27E
⏐⏐R f (Xφ,i

n−1, α
i (n − 1))

⏐⏐4
≤ A6∥ f ∥p,q (1 + ∥φ∥

4q
r ),

which, together with the fact that S2
n ( f, φ, i) = O(n), yields

∞∑
n=1

S−4
n ( f, φ, i)E

⏐⏐Zn(φ, i)
⏐⏐4 ≤ A6∥ f ∥p,q (1 + ∥φ∥

4q
r )

∞∑
n=1

S−4
n ( f, φ, i) < ∞. (4.8)

Then it follows from Lemma 4.5 and (4.7) that

lim
n→∞

1
S2

n ( f, φ, i)

n∑
k=1

Z2
k (ξ ) = lim

n→∞

n
S2

n ( f, φ, i)

(
1
n

n∑
k=1

Z2
k (ξ )

)
= 1 (4.9)

and

lim
n→∞

√
2S2

n ( f, φ, i) log log S2
n ( f, φ, i)

Σ f
√

2n log log n
= 1. (4.10)

hen in light of (4.8)–(4.10) and the fact that S2
n ( f, φ, i) = O(n), it follows from [11, Corollary

1] that the sequence of real random functions {Ĥ f,φ,i
n (·), n > e} on [0, 1] is almost surely

relatively compact in C([0, 1];R) and the set of its limit points coincides with H, where

Ĥ f,φ,i
n (t) :=

M f,φ,i
k + (S2

n ( f, φ, i)t − S2
k ( f, φ, i))(S2

k+1( f, φ, i) − S2
k ( f, φ, i))−1 Zk+1(φ, i)√
Σ f 2n log log n
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for t ∈ (0, 1], S2
k ( f, φ, i) ≤ S2

n ( f, φ, i)t ≤ S2
k+1( f, φ, i), k = 0, 1, . . . , n − 1,

Ĥ f,φ,i
n (t) := 0, for t = 0.

Furthermore, applying a similar argument as in the proof of [6, Theorem 1] (see also [8,
Theorem 3.7]) gives that the sequence of real random functions {H̃ f,φ,i

n (·), n > e} on [0, 1]
s almost surely relatively compact in C([0, 1];R) and the set of its limit points coincides with

, where

H̃ f,φ,i
n (t) :=

M f,φ,i
k + (nt − k)Zk+1(φ, i)

Σ f
√

2n log log n
for t ∈ (0, 1], k ≤ nt ≤ k + 1, k = 0, 1, . . . , n − 1,

H̃ f,φ,i
n (t) := 0 for t = 0.

hen by the Chebyshev inequality, (2.7), and the Borel–Cantelli lemma, for any l ∈ (q/2, 1/2)
here exists a Z+-value random variable τ (φ, i) such that for almost sure ω ∈ Ω ,

sup
t∈[k,k+1]

∥Xφ,i
t (ω)∥q

r ≤ kl
− 1 for k ≥ τ (φ, i)(ω),

hich, together with (2.2), implies that for any fixed k

lim
n→∞

sups∈[k,k+1] ∥Xφ,i
s ∥

q
r

Σ f
√

2n log log n
= 0, P-a.s.

ombining this with (3.39) and (3.27) yields that

lim
n→∞

1

Σ f
√

2n log log n

[∫ k+1

k

⏐⏐ f (Xφ,i
s , αi (s))

⏐⏐ds +
⏐⏐R f (Xφ,i

k , αi (k))
⏐⏐] = 0, P-a.s.

(4.11)

Hence, this, together with (3.38), gives

lim
n→∞

sup
t∈[0,1]

⏐⏐H f,φ,i
n (t) − H̃ f,φ,i

n (t)
⏐⏐ = 0, P-a.s.,

which implies that the sequence of real random functions {H f,φ,i
n (·), n > e} on [0, 1] is also

almost surely relatively compact in C([0, 1];R) and the set of its limit points coincides with
H.

Now it remains to prove (4.1). Note that for any x ∈ H, x(1) ≤ 1. According to the definition
f H f,φ,i

n (·),

lim sup
n→∞

|H f,φ,i
n (1)| = lim sup

n→∞

∫ n
0 f (Xφ,i

s , αi (s))ds

Σ f
√

2n log log n
≤ 1. (4.12)

n addition, since the set of limit points of {H f,φ,i
n (·), n ≥ 0} in C([0, 1];R) coincides with H,

hen for x(s) := s, s ∈ [0, 1] (x(·) ∈ H) and any fixed ω ∈ Ω (there may be another Ω̃ with
(Ω̃ ) = 1, but we still write it as Ω here without loss of generality), there exists a subsequence
k → ∞ as k → ∞ such that

lim
k→∞

sup
s∈[0,1]

|H f,φ,i
nk

(s) − x(s)| = 0.

hen for the fixed ω ∈ Ω above, we obtain

lim

∫ nk
0 f (Xφ,i

s , αi (s))ds√ = lim H f,φ,i
nk

(1) = 1,

k→∞ Σ f 2nk log log nk k→∞
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hich together with (4.12) gives

lim sup
n→∞

∫ n
0 f (Xφ,i

s , αi (s))ds√
2n log log n

= Σ f , P-a.s. (4.13)

ote that Σ f = Σ− f . Hence, applying a similar argument for − f yields

lim inf
n→∞

∫ n
0 f (Xφ,i

s , αi (s))ds√
2n log log n

= −Σ f , P-a.s. (4.14)

pplying a similar argument to derive (4.11), we arrive at

lim
t→∞

1√
2t log log t

∫ t

[t]

⏐⏐ f (Xφ,i
s , αi (s))

⏐⏐ds = 0, P-a.s.,

where [t] denotes the integer part of t . This, together with (4.13), (4.14) and the fact that

lim
t→∞

√
2[t] log log[t]

2t log log t
= 1,

ives the desired results (4.1). The proof is thus complete. □

If σ (φ, i) is bounded, one can prove that the assertions in Theorem 4.1 hold for any q > 0
nstead of q ∈ (0, 1/2).

orollary 4.6. Let Assumptions 2.1–2.3 hold with V (x) = |x |
2. Let ηp > 0 for some p ∈ (0, 1]

nd ã∗
+ b̃∗ < 0, and ∥σ∥∞ := sup(φ,i)∈E ∥σ (φ, i)∥HS < ∞. Then for any q > 0, (φ, i) ∈ E,

f ∈ C p,q (E) with µ∗( f ) = 0 and Σ f > 0, the assertions in Theorem 4.1 hold.

roof. A slightly modifying proof of Theorem 4.1 gives the desired assertions with the help
f Proposition 3.1. □

. Examples

In this section, two examples are given to illustrate our results.

xample 5.1. Let d = 2, m = r = 1, and (α(t))t≥0 be a Markovian chain taking values in
= {1, 2} with generator

Q =

(
−1 1
A −A

)
, (5.1)

here A is a constant. In this example, we choose A > 14/5 + 8
√

3/5. For a scalar Brownian
otion W (t) independent of α(t), consider the following regime-switching diffusion systems
ith infinite delay:

d X (t) = b(X t , α(t))dt + σ (X t , α(t))dW (t), t ≥ 0, (5.2)

ith

b(φ, 1) =

⎛⎝ −φ1(0) +
1
2

∫ 0

−∞

φ2(θ )µ(dθ )
⎞⎠ , σ (φ, 1) =

(
0
1

)

−φ2(0)
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H

b(φ, 2) =

⎛⎝ 1 − φ3
1 (0)

φ1(0) − φ3
2 (0) +

∫ 0

−∞

φ2(θ )µ(dθ )

⎞⎠ , σ (φ, 2) =

∫ 0

−∞

g(φ(θ ))µ(dθ ),

here φ = (φ1, φ2) ∈ Cr , µ(dθ ) = 4e4θdθ ∈ M2, and g : R2
→ R2 is a bounded Lipschitz

function with Lipschitz constant 1. It is obvious that the diffusion coefficient of Eq. (5.2) is
degenerated when α(t) = 1. Let us check the conditions of Theorem 3.2 and Corollary 4.6.

Clearly, Assumption 2.1 holds and σ (φ, i) is bounded. Let U (x) = |x |
2. Then we obtain

L1U (φ − ψ) = 2
⟨
φ(0) − ψ(0), b(φ, 1) − b(ψ, 1)

⟩
+ ∥σ (φ, 1) − σ (ψ, 1)∥2

HS

≤ −
3
2
|φ(0) − ψ(0)|2 +

1
2

∫ 0

−∞

|φ(θ ) − ψ(θ )|2µ(dθ ),

L2U (φ − ψ) = 2
⟨
φ(0) − ψ(0), b(φ, 2) − b(ψ, 2)

⟩
+ ∥σ (φ, 2) − σ (ψ, 2)∥2

HS

≤ (1 + ε)|φ(0) − ψ(0)|2 +

(
1 +

1
ε

) ∫ 0

−∞

|φ(θ ) − ψ(θ )|2µ(dθ ),

here ε > 0 is a constant. Hence Assumption 2.2 holds and

a(1) = −
3
2
, b(1) =

1
2
, a(2) = 1 + ε, b(2) = 1 +

1
ε
, γ = −1.

he invariant probability measure of α(t) is

π = (π1, π2) =

(
A

1 + A
,

1
1 + A

)
.

e compute

Σ (ε) := π1

(
a(1) + b(1)

∫ 0

−∞

eγ θµ(dθ )
)

+ π2

(
a(2) + b(2)

∫ 0

−∞

eγ θµ(dθ )
)

=
1

1 + A

(
−

5
6

A +
7
3

+ ε +
4
3ε

)
.

Recalling A > 14/5 + 8
√

3/5, there exists a ε0 > 0 such that Σ (ε0) < 0. Then, it follows
rom [3, Proposition 4.2] that there exists a p ∈ (0, 1] such that ηp > 0. On the other hand,
et V (x) = |x |

2. Then it follows that

L1V (φ) = 2
⟨
φ(0), b(φ.1)

⟩
+ ∥σ (φ, 1)∥2

HS
≤ 1 −

3
2
|φ(0)|2 +

1
2

∫ 0

−∞

|φ(θ )|2µ(dθ ),

L2V (φ) = 2
⟨
φ(0), b(φ.2)

⟩
+ ∥σ (φ, 2)∥2

HS
≤ L − |φ(0)|2 +

1
2

∫ 0

−∞

|φ(θ )|2µ(dθ),

here

L := sup
x∈R2

{
−2|x |

4
+ |x |

2
+ 2x1x2 + 2|x2|

2
+ 2x1 + |g(x)|2

}
.

hen

ã(1) = −
3
2
, b̃(1) =

1
2
, ã(2) = −1, b̃(2) =

1
2
, ã∗

= −1, b̃∗
=

1
2
.

ence, ã∗
+ b̃∗

= −1/2 < 0, and all the conditions in Theorem 3.2 and Corollary 4.6 hold.
ence the results in Theorem 3.2 and Corollary 4.6 hold.
25
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xample 5.2. Let r = 1, h > 0, and α(t) be the Markovian chain defined by (5.1). The
following d-dimensional regime-switching diffusion system with infinite delay is a modification
of [1, Example 1.2]:

d X (t) =

{
aα(t) X (t) + cα(t)|X (t)|h X (t) + bα(t)

∫ 0

−∞

X (t + θ )µ(dθ )
}

dt + σ (X t , α(t))dW (t), (5.3)

where a1 = b1 = 1/10, b2 = 1, a2 = −2, c1 = 0, c2 = −1, µ(dθ ) = 4e4θdθ ∈ M2, and
σ : Cr × S ↦→ Rd×m satisfies

∥σ (φ, i) − σ (ψ, i)∥2
HS

≤
1

10

∫ 0

−∞

|φ(θ ) − ψ(θ )|2µ(dθ ), i = 1, 2,

nd W (t) is an m-dimensional Brownian motion independent of α(t). For a1 = b1 = 1/10 and
1 = 0, it is obvious that the subsystem with coefficients b(φ, 1) and σ (φ, 1) is non-dissipative.
or A ∈ (0, 594/1955), let us check the conditions in Theorem 4.1 for (Xφ,i

t , αi (t)) determined
y (5.1) and (5.3).

For i = 1, 2 and φ ∈ Cr , let

b(φ, i) = aiφ(0) + ci |φ(0)|hφ(0) + bi

∫ 0

−∞

φ(θ )µ(dθ ).

et f = |x |
h x for x ∈ Rd . As [1, Example 1.2], it is easy to verify that for any x, y ∈ Rd ,

⟨x − y, f (x) − f (y)⟩ ≥ 0.

Recalling that c1 = 0 and c1 = −1, for U (x) = |x |
2, we have

LiU (φ − ψ) = 2
⟨
φ(0) − ψ(0), b(φ, i) − b(ψ, i)

⟩
+ ∥σ (φ, i) − σ (ψ, i)∥2

HS

≤ (2ai + bi )|φ(0) − ψ(0)|2 +

(
bi +

1
10

) ∫ 0

−∞

|φ(θ ) − ψ(θ )|2µ(dθ).

ence

ā(1) =
3

10
, ā(2) = −3, b̄(1) =

1
5
, b̄2 =

11
10
, γ = −

19
10

in Assumptions 2.2, 2.1, and 2.2 hold. Furthermore, a direct calculation gives

Σ (ε) := π1

(
a(1) + b(1)

∫ 0

−∞

eγ θµ(dθ )
)

+ π2

(
a(2) + b(2)

∫ 0

−∞

eγ θµ(dθ )
)

=
1

1 + A

(143
210

A −
19
21

)
,

hich, together with A ∈ (0, 594/1955) and [3, Proposition 4.2], implies that there exists a
p ∈ (0, 1] such that ηp > 0. In addition, let V (x) = |x |

2. Then we arrive at

L1V (φ) = 2
⟨
φ(0), b(φ.1)

⟩
+ ∥σ (φ, 1)∥2

HS
≤ L1 +

3
10

|φ(0)|2 +
3
10

∫ 0

−∞

|φ(θ )|2µ(dθ),

L2V (φ) = 2
⟨
φ(0), b(φ.2)

⟩
+ ∥σ (φ, 2)∥2

HS
≤ L2 −

13
10

|φ(0)|2 +
3
10

∫ 0

−∞

|φ(θ )|2µ(dθ),

here

L1 := 2∥σ (0, 1)∥2
HS
, L2 := sup

{
−2|x |

2+h
+

73
|x |

2
+ 2∥σ (0, 2)∥2

HS

}
.

x∈R2 10
26
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T

a

H

T

R

T
T

D

r

R

hen Assumption 2.3 holds and

ã(1) = b̃(1) =
3

10
, ã(2) = −

13
10
, b̃(2) =

3
10
, γ̃∗ = −1, γ̃ ∗

=
3
5
, b̃∗

= b̃∗ =
3

10
,

nd

ϵ :=
b̃∗

b̃∗

∫ 0

−∞

eγ̃
∗θµ(dθ ) =

20
23
.

ence,

ã(1) + (1 − ϵ ∧ 1)̃b(1) + b̃(1)
∫ 0

−∞

eγ̃∗θµ(dθ ) =
17
23
,

ã(2) + (1 − ϵ ∧ 1)̃b(2) + b̃(2)
∫ 0

−∞

eγ̃∗θµ(dθ ) = −
99

115
.

Then we have

Q̃ = Q + diag
{17

23
,−

171
200

}
=

(
−

6
23 1

A −A −
99
115

)
.

he determinant of Q̃ − λIn×n is given by

|Q̃ − λIn×n| = λ2
+

(
A +

258
230

)
λ−

17
23

A +
594

2645
.

ecalling A ∈ (0, 513/1700), we obtain

η̃1 = − max
λ∈Spec(Q̃)

Re(λ) =

(
A +

258
230

)
−

√(
A +

258
230

)2
+

68
23 A −

2376
2645

2
> 0.

hese show that all the conditions in Theorem 4.1 are satisfied. Hence the results in
heorem 4.1 hold.
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