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Abstract

This paper focuses on a class of regime-switching functional diffusion processes with infinite delay
and develops a central limit theorem (CLT) for additive functionals under uniform mixing conditions.
In addition, a law of iterated logarithm (LIL) for the additive functionals is also established by using
the square integrable martingale difference sequences. Finally, two examples are given to illustrate our
results.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Switching diffusions also known as regime-switching diffusions have drawn much attention
from researchers and practitioners lately. This is largely because of their wide range of appli-
cations and potential applications. The use of switching random processes much extended the
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applicability of diffusion processes, which is used conveniently to depict random environment
that cannot be formulated as usual in typical diffusion systems; see [19,32] and references
therein. Continuing on the lines of works, switching diffusions in which the generator of
the switching process depends on the past and takes values in a countable state space was
considered in [20]. In recent years, we have seen success in using switching diffusions for
control and optimization of stochastic systems, financial engineering, biological and ecolog-
ical systems, multi-agent systems, queueing theory, networked systems, and social network
modeling, among other. The vast applications demand that we have deeper understanding of
such systems. A distinct feature of such processes is the coexistence of continuous dynamics
and discrete events, which much extended the applicability of diffusion processes. This feature
facilitates the flexibility and versatility of the models, but it also brings up new challenges and
difficulties. For example, even two linear systems being both stable, joined together by use of
a modulating random switching process may lead to instability of the system with switching.
We refer the reader to the observation in [27] and the analysis in [31, pp. 229-233]; likewise
for similar behavior of recurrence for switching diffusions [22].

This work continues our quest on regime-switching diffusions. In contrast to the existing
work, this paper focuses on regime-switching functional stochastic differential equations. Our
main effort is devoted to obtaining CLTs and LILs. For a fixed but otherwise arbitrary r > 0,
consider

C = [¢> € C((—00, 01 RY) : lim_"*¢(6) exists in Rd}

with the norm ||@||, = SUp_ g« e?1p@)] forr > 0,and S ={1,2,...,N}, 1 < N < oo.
This paper is concerned with the regime-switching diffusion processes with infinite delay
described by the following stochastic functional differential equations with infinite delay and
Markovian switching

dX(t) = b(X,, a(t))dt + o(X,, a(t)dW(t) (1.1)

with initial data (Xo, «(0)) = (¢, i) € C, xS, where b : C, xS — R? and o : C, xS — R¥*" are
continuous functionals, W(¢) is an m-dimensional Brownian motion, «(¢) is a continuous-time
Markovian chain on S with the transition rate satisfying

qij A+ o(4), JFE

Plot+ D =jle®=i} =" L ), o

1.2)
provided A | 0. In this paper, a(t) is assumed to be independent of W(¢) and the Q-matrix
0O = (gi;) is assumed to be irreducible and conservative, this is, g = — ) ok k- Note that
in (1.1), X(z) the solution process belonging to R¢, where X, € C, is called segment process
or solution map, which is a function process. The solution process X(#) and even the pair
(X(2), x(r)) are not Markov processes because of the time delay involved, but (X, a(t)) is.

In our recent work [23], we showed that the Markovian process (X, «(¢)) determined by
(1.1) and (1.2) is exponentially ergodic with a unique invariant probability measure. Based
on the exponential ergodicity, the current paper examines further asymptotic behaviors of the
functional fol f(Xs,a(s))ds as t — oo, for f : C, x S — R in a class of reference Borel
measurable functionals. More precisely, this paper will establish the CLT and the LIL for
additive functionals of the regime-switching functional diffusion system determined by (1.1)
and (1.2).

The central limit theorem for additive functionals of Markovian processes is a fundamental
concept in classical probability theory. It can be traced back to Doeblin’s seminal work [10]
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in 1938, in which the strong law of large numbers and the central limit theorem were
established for discrete time Markov chains with countable state spaces. Since then, CLTs
for additive functionals of Markovian processes have been extensively studied in the literature
under different settings; see, for example, [13] for stationary reversible ergodic Markovian
chains, [7,12] for ergodic Markovian processes in total variational metric, [2,9,15,17,24,26,28]
for ergodic Markovian processes in a Wasserstein distance, and the references therein. For
regime-switching diffusions, [21] discussed the CLT of scaled regime-switching diffusions,
and [4] established the CLT for additive functionals of regime-switching diffusions. These
two papers only considered the regime-switching diffusions without delay and their proofs
depend on the infinitesimal generator of corresponding Markovian processes (diffusions). These
methods cannot be used to examine the present process described by (1.1) and (1.2) since
the infinitesimal generator is not available for the diffusion with delay. Motivated by these
observations, this paper aims to establish the CLT for additive functionals of regime-switching
diffusions with infinite delay.

Moreover, this paper also investigates laws of iterated logarithms for additive functionals
of regime-switching diffusions with infinite delay. Classical strong law of invariance principle
was first established for a sequence of independent and identically distributed random variables
by V. Strassen [25], which is also referred to as the Strassen invariance principle. Also please
refer to [2,4-6,8,11,14,16,28,29] and the references therein for the LIL under different settings.
In particular, [4] considered the LIL for regime-switching diffusions without delay. [2,28]
established the LIL for stochastic functional differential equations with finite and infinite delay
in different assumptions, respectively. This paper aims to further this line of research by
studying the LIL for additive functionals of regime-switching diffusion processes with infinite
delay.

Note that neither the CLT nor the LIL for additive functionals of regime-switching diffusions
with infinite delay can be obtained from existing methods. The main difficulties stem from the
infinite delay and Markovian chain in these systems. Since the Markovian process (X;, «(t))
is only right continuous, to obtain the CLT, the method developed in [24] cannot be used
directly. Some new estimations (see, for example, Lemma 3.6), and more analyses in the proof
of Theorem 3.2 are needed. Compared with our previous result in [28, Theorem 3.1], this paper
removes the non-degeneracy requirement on diffusion term and uses the “averaging” dissipative
condition (see, Remark 2.2) to obtain ergodicity. For the LIL, we present a continuous-time
version and our conditions allow some subsystems to be non-dissipative. This also generalizes
our previous results in [28].

This paper is organized as follows. Section 2 begins with the formulation, notation, and
definitions. Also included are preliminary results from [23]. The CLT and the LIL for additive
functionals of the regime-switching functional diffusions determined by (1.1) and (1.2) are
presented in Sections 3 and 4, respectively. Finally, two examples are given to illustrate our
results.

2. Notation and preliminaries

To facilitate presentation to follow, we introduce some notation and definitions. Denote by
R? the d-dimensional Euclidean space and | - | the Euclidean norm. Let | - ||gs be the Hilbert—
Schmidt norm, that is, ||a||iS = ZZ:I YL, of for any matrix o = (o) € RY*™, 15 be the
indicator function of the set G, and ({2, F, P, (F;);>0) be a complete filtered probability space.
For k, g > 0, define

deq(E.0), (0. ) = (I1E = nllE AT+ 1(,-#})\/1 +IEN + I, EneC. i jeS.
3
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Note that d, ((E ,i0),(m, )) is a quasi-metric (or a distance-like function), that is, it is
symmetric, lower semi-continuous and d, 4 ((é ,0),(m, j )) = 0 if and only if (§,i) = (5, j), but
the triangle inequality may not hold. Denote E = C, x S and C, ,(E) the family of continuous
functionals on E such that

Ul = sup HEDL o 1ED = [0 ))]
ST e her LHEN! T ezon deq (€ 1), (0, )

Denote by P(E) the set of probability measures on E. Let P, ,(E) be the family of probability
measures u on E with (u x @)(dc4(-,-)) < oo. The €(u, v) denotes the collection of all
couplings of u and v. For the quasi-metric d, 4, the associated Wasserstein (or Kantorovich)
distance between two probability measures i, v € P, 4(E) is defined as follows:

W, ,V)= inf d..(x, Y)II(dx, dy).
o= nf /E g6 DT, dy)

Denote by M the set of probability measures on (—oo, 0]. For any & > 0, let us further define
My, the subset of My, by

0
M = {u e My: u® = / e u(do) < oo}.

—00
To ensure the existence and uniqueness of the solution and establish limit theorems for
additive functionals of regime-switching functional diffusion processes determined by (1.1)
and (1.2), let us impose the following assumptions.

Assumption 2.1. For any i € S, b(-,i) is bounded on bounded subset of C,. There exist a
probability measure p; € M,, and a positive constant K > 0 such that for any ¢, ¢ € C,,

2¢0) = ¥ (0), b, i) = bW, D)), + llo(@, ) — o, DI
0
< K|p(0) — y(0)]* + K/ |6(0) — ¥ (O] 11(dD), 2.1

where a; := max{0, a} for any a € R.

Remark 2.1. To highlight the dependence on the initial data for the regime-switching functional
diffusions given by (1.1) and (1.2), we write X®i(r), X%, and «i(¢), respectively, with
(X0, ¢(0)) = (¢, i) € E in this paper. It follows from Assumption 2.1 that the system given by
(1.1) and (1.2) has a unique strong solution X(¢) and (X;, «(¢)) is a strong Markovian process
(see, for example, [18]). Moreover, for any 7 > 0, there exist a constant Cy > 0 and an
increasing function A(¢) : Ry — R, such that

E sup | X{7)? < CoAT). 2.2)

0<t<T

Let C? be the family of twice continuously differentiable functions on R?. For any i € S
and V € C?, define £;V the mapping from C, to R by

1
LiV(g) = (Vi(9(0)), b(e, 1)) + Etrace{UT(Q DVix(@O)o (¢, D)}, ¢ €C,,

4



Y. Wang, F. Wu and G. Yin Stochastic Processes and their Applications 167 (2023) 104215

and for U € C? define also I;U the mapping from C, x C, to R by
LiU(¢. ) = (Ux(¢(0) — ¥(0)), b(@, i) — b(¥, D))
+ %trace{(ow, i) = o (Y, )U.((0)
—yO)(o(p, D) —o(W, )}, ¢, ¥ €Cr.
Assumption 2.2. Let U : R? — R, be a C? function satisfying c;|x|*> < U(x) < c|x|* for
some constants ¢; > ¢; > 0. For any ¢, ¢ € C, and i € S, there exist constants a(i) € R

and b(i) € R, with y = min;cs{a(i) + b(i)} < 0 and ) < y, and a probability measure
no2 € M(zr)v(,yo) such that

0
LiU(¢. ¥) < a()U(@0) — ¢ (0) + E(i)/ U(p(0) — ¥ (0)u2(db). 2.3)

Assumption 2.3. Let V : RY > R, be a C? function satisfying c3|x|*> < V(x) < c4|x|* for
some constants ¢4 > ¢3 > 0. For any ¢, ¥ € C, and i € S, there exist constants L > 0,
a(i) € R, b(i) € R, and a probability measure p3 € My, such that

- 0
LiV(¢p) < L+a@i)V(p0) + b(i)/ V(@(0)u3(db). (2.4)

For a(i), a(i), b(i), and Z(i) given in Assumptions 2.2 and 2.3, set
* = maxd(i), d,=mind(i), b*=maxb(i), b, = minb(i),
ieS ieS ieS ieS
0
7. = min(@() + b)), 7 = max(@@) + 50}, e =G5, / 7" u3(do),
IS 1€

—00

0 0
0,=0 +pdiag(a(1) +E(1)/ " 115(d0), . .., @N) +E(N)/ eVopLz(dG)),

0
0=0+ diag(E(l) +(1—e A Db+ Z(l)f e"? 15(do), . . .,

0
AN) + (1 — € A DBN) + BN) / ).

0 0
0= Q+diag(a(1)+5(1)f &0 113(d0), ...,a(N)+Z(N)/ eﬁ’*%(de)),

n,=— max Re(k), 71 =— max_Re(k), 7 =— max_Re(}),
reSpec(Qp) reSpec(Q) reSpec(Q)

where Spec(Q,), Spec(@), and Spec(@) denote the spectrum of matrices Q,, @, and Q,
respectively, and Re(A) denotes the real part of A.

Remark 2.2. Let 7 = (7, 72, ..., 7y) be the stationary distribution of the Markovian chain
{a(t)}i>0, and a(i), b(i), y introduced in Assumption 2.2. If
N 0
> <zz(i) + b(i) / eygug(dé)) <0, (2.5)
i=1 -
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then [3, Proposition 4.2] shows that there exists 1, > 0 for some p € (0, 1). And the regime-
switching functional diffusion system determined by (1.1) and (1.2) is said to be dissipative “in
average” if (2.5) holds. This also shows that n, > 0 does not need a(i)+b@) fi)oo e”? 1y (do) <
0 for all i € S, which implies that some subsystems may be non-dissipative.

Let us first present some preliminary results given in [23].

Lemma 2.3 (Lemma 3.1 in [23]). Let Assumptions 2.1 and 2.2 hold, and n, > 0 for some
p € (0, 1]. Then there exist constants C; > 0 and n, € (0, n,) such that for any (¢,i) € E
and t > 0,

EIXP = X < Cilig — yllPe™™, 2.6)
Lemma 2.4 (Lemma 3.2 in [23]). Let Assumptions 2.1 and 2.3 hold. For some & > 0, if one
of the following two conditions holds:

i) m >0, ¥ <0, u3 € Marv-s.+o)»
(i) 71 >0, d, <0, us € M ryv(=a,+8)

then there exist constants C, > 0 and p > 0 such that for any (¢,i) € E
EIX{? < o1+ 1912). 120, @7

With these two lemmas at hand, it is readily seen that the Markovian semigroup associated
with Markovian processes (X;, a(t)) determined by (1.1) and (1.2) admits a unique ergodic
invariant probability measure with the use of a Wasserstein distance; see, [23, Theorem 2.2].
Based on this ergodicity, we further obtain CLT and LIL for additive functional in this paper.

3. Central limit theorem

To establish the CLT, a stronger result on moment estimation is needed, which together
with Lemma 2.3, implies an improved ergodicity compared with [23]. The result is stated in
the following proposition.

Proposition 3.1.  Let Assumptions 2.1-2.3 hold with V(x) = |x|>. Let np > 0 for some
p €(0,11 and a* + b* < 0, and |0 ||sc = Sup iyek 10(@, Dllys < 0o. Then for any g > 0,
there exist constants Cz and p > 0 such that for any (¢,i) e E and t > 0,

EIX{ 19 < C3(1+ e (|g]I9). 3.
Moreover, for any u,v € P, ,(E), there exist constants C and ¢ > 0 such that t > 0,

W, (P, vP) < Ce ™ @W, ,(u,v), Vg >0. (3.2)
Furthermore, P, has a unique invariant probability measure [, satisfying (|| - |1) < oo and

Wy q(WPr, i) < Ce™ W) 4 (1t i), ¥g >0, t > 0. 3.3)

Proof. We first prove (3.1). For any A € (0,r), the Itd formula, Assumption 2.3, and
V(x) = |x|? yield that
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XD < 19O + f (L + (204X () )ds
0
t 0
+b / "m/ IX?(s + 0) u3(d6)ds
0 —00
+2/ (XD o (XD (s), & (5))dW(s)). (3.4)
0

By using the Tonelli theorem and a substitution technique, we get
' 0
b*/ - / X2 (s + 0)" 3(d6)ds
0 —00

t —s ! 0
< 5*/ em/ IX% (s + 0) us(d6)ds + B*/ e | 1X% (s + 0)) ua(d)ds
0 —o0 0

)

t
o e 4 (2x)/ 205 0 ()1 ds. 3s
< st I+ B [ e ixt s (3.5)

Recalling that a* + b* < 0 and lim; ¢ ,u(;) = 1, we can choose A € (0, r) small enough such
that 2 + @* + b*u?” < 0. Then substituting (3.5) into (3.4) yields that

T 2
S 1912

20| v D f o2
X' < (1
HXOF = (1+ 50—

4 %ew Py /0 S (X g (XP (), o (s)dW ().

By using the Burkholder—-Davis—Gundy inequality, and the Young inequality, there exists a
constant C4 > 0 such that

E sup e |X%(s)|?

0<s<tATy

ATy ) ) ) q/4
< Callgllf + Cae™ "™ + c41E( / X () o (X2, a(s)')|list)
0

0<s<tATy

AT, q/4
sc4||¢||3+C4e“<f“n)+c4E( sup e |X% (5| / emuoniods)
0
1 , ‘ C?% /1 \4/2
< Cullgllf + Cae™ "™ 4 ZE sup x4 22 (55) " o lige ),
0<s<tAT, 2 2A

where 7, := inf{t > 0 : ||Xf§’[||, > n} for n > ||¢||,. Note that t, — oo as n — oco. Then by
Fatou’s lemma, we arrive at

. 1 \a/2
E sup e X% ()] < 2C4[1p]1¢ + C4<2+ (—) ||a||go)e4“.

0<s<t 2)
Since A < r, from the definition of the norm || - ||,, it follows that
1240, < e (Il v sup e 1X*4(s)]).

O<s<t

Then we have

i _ 1 \4/2
EIXPE < (14260190 + Co(24 (55) " oL ).

2
which implies that (3.1) holds for Cs = (1 4+ 2Cy) v c4(2 + (%)q ||a||‘go) and § = gh.
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With the help of (3.1) and (2.6), by using a similar argument as in the proof of [23, Theorem
2.2], (3.2) and (3.3) hold for any ¢ > 0. The proof is complete. [

To proceed, for f € C, 4(E) with u.(f) = 0, define
Re(g,i) = / P f(¢,i)dt and D(¢, i)

_E)/ FXO ol (s)ds + Rp(XP', al (1)) — Ry (9, z)

For any Y’ € (0, 00), let Fx(-) be the normal distribution function with mean zero and variance
X2, Also denote Fy(x) := 10,00)(x).

Theorem 3.2. Let Assumptions 2.1-2.3 hold with V (x) = |x|%. Let np > 0 for some p € (0, 1]
and a* +b* <0, and ||o|leo = SUP 4 j)cg 0 (@, Dy < 00. For any g > 0, f € Cp 4(E) with

ws(f) =

zy—ggE:/ (17247 @, D) ma(de, i) = (@) < o0, (3.6)
ieS
where
Al @, i) = / F(X®1, &l (5))ds. (3.7)
0

In addition, the following two assertions hold:

(1) When Xy > O, for any ¢ € (0,1/4), there exists an increasing continuous function
he : Ry x Ry — Ry such that for any ¢ € C,,i €8,

1 1
s$M7Mmuw—mmkmwmwMﬂﬂzzL (3.8)
xXe

(ii) When Xy = 0, there exists a continuous increasing function h : R x Ry — R, such
that for any ¢ € C,,i €S,

%kAMW@Mmmmﬂ—&wﬂsmwmmwnhtzL

Remark 3.3. Compared with our previous result [28, Theorem 3.1], the non-degenerated
assumption on the diffusion coefficient is removed in Theorem 3.2. We provide an example to
illustrate this result; see Example 5.1 in what follows.

To prove Theorem 3.2, we first derive the following three crucial lemmas.

Lemma 3.4. Let assumptions of Theorem 3.2 hold. Then there exist constants 6 and ¢ > 0
such that for any k > 0 and (¢,1) € E

E( sup eanx;”*"n%) < pU+IgID) 3.9)
relk,k+1]
Proof. Noting that sup, . ;41 1X20, < e ||XkJrl |, due to the definition of norm || - ||, we

have

2r 2
E( sup X7 ||,)<Ee SIXPY I?
telk,k+1]
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Hence, in order to prove (3.9), it suffices to show that there exist positive constants 8y and cg
such that

EeIX I < peoi+lel?) (3.10)
To this end, let us consider the following regime-switching diffusions with infinite delay
‘ 1. . ‘
dX"(t) = b(X}, &' ()1 1,1 ()dt + Ea(oz’(t))X”(t)l(%oo)dt +o (X}, o' ()dW(t), (3.11)

with initial data X = ¢ € C,,&'(0) = i € S, where 7, = inf{r > 0 : |X/|, > n} for

n > |¢ll,, and a@(-) comes from Assumption 2.3. Note that the regime-switching functional
diffusion processes determined by (1.2) and (3.11) have a unique solution and X" () = X% (t)
for t < 7,. Since 1, — o0 as n — oo, for any ¢ > 0,

lim | X' — X", =0, P-as. (3.12)
By virtue of Assumption 2.3 and the boundedness of o(-), we obtain
A 1. . A
2(X" (1), b(X], &' ()1{0.5,1 + Ea(al(t))xn(t)l(rn,oo)) + llo (X7, o' (1))l
0
< L+ae ) X" + b (1)) / X"t + 0)* 13(d0) 0,1, + |0 l|oo
—00
< L(n) + @' )| X" (1),
where L(n) := L + b*n? + lo]lco- Then applying It6’s formula gives
2 ' ' 2 ' '
IX" (@) < [p0) +/ L(n) +a(a' ()| X"(s)"ds +2/ (X"(s), o (X}, & (s))dW(s)).
0 0
(3.13)

Define T,, = inf{t > 0 : |X"(¢)| > m} for m > ||¢|,. Clearly, T,, — 00 as m — oo. Letting
o = (@*)*/8||o||% . Noting that @* < 0, then from (3.13),

AT,
Eexp {a/ |X"(s)|2ds}
0

o

sexp{ *<|¢<0>|2+L(n>r>}Eexp{_2—; /0 m(X"(s>,a(X;ﬂa%s»dW(s))}

—a

2 2 AT 1/2
< exp {%(kﬁ(o)l2 + L(n)t)} (EGXp {San—a”‘” / |X"(s)|2ds}> ,
- 0

(@)?

where the last inequality follows from the inequality EeV® < (Ee*™V “)1/ ® where N(s) is a
P-martingale and (N), denotes its quadratic variation. This, together with a = (a*)?/ 8||a||§o
and Fatou’s lemma, implies that for any fixed n > 0 and ¢t > 0

200

Eexp {a [l |X"(s)|2ds} < exp{ = (|¢(0)|2 + L(n)t)} < 00. (3.14)
0 _

9
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Take B = —~*/8||a||go = ﬁ/Z«/ﬁHon Then it follows from (3.13) and (3.14) that

E sup exp {B1X"(5)”}

O<s<t

< exp{Bl$(0)* + BL()t}E sup exp {2,3 /0 (X"(u),a(Xg,a"(u))dW(u))}

0<s<t

< exp{,B|¢)(0)|2 + ﬁL(n)t}e]E exp {2,3 /0 (X”(u), o (X}, ai(u))dW(u))}

t 1/2
< exp{Blp(0)|* + BL(n)t + 1}(Eexp {8ﬂ2||a||%,o f |X"<s)|2ds})
0

o
<exp { (/3 + _5*)(|<75(0)|2 + L(n)t) + 1} ) (3.15)
where in the second step, we have used the fact that Esup,.,., eV < eEeM® for a P-
submartingale N(¢). Recalling the definition of norm || - ||, for Vn > 1, ¢t > 0, we arrive
at
Eexp{BlIX/II}} < Eexp{ﬁ(n¢n%+ sup |X”<s>|2)}
0<s<t
o
< exp { (2,3 n _—5*)(|¢(0)|2 + L(n)) + 1} < 0. (3.16)

By Assumption 2.3 with V(x) = |x|? and It&’s formula, for any A € (0, 2r), we get
t
SR < WOF + [ (Lt 6ot 3@ ONX ) )ds
0
t 0
+ / f b’ (s))| X" (s + 9)|2/L3(d0)ds + M), (3.17)
0 J—o0

where M(1) = 2 [; &*(X"(s), o(X", &' (s))d W (s)). Similar to (3.5),

t 0
/ / Bl ()| X" (s + 0)P s(d)ds
0 —00

1
2r — A

t
< IpI7B* 1S + B* / X" (s)|ds. (3.18)
0

Noting that a* + b* < 0 and lim; ¢ M(;) = 1, there exists a constant A < 2r small enough
such that A +a* + b*ug)\) < 0. Then substituting (3.18) into (3.17) gives

A yn 2 % (2r) 2
X < (14 =5 )
HMXOF = (1+ 551”1l

t
| e (L + (T + bm;”)|xn(s)|2)ds + M)
0
1~ 1 _
<(1+ —p <2’>) 2L 2L £ M), 3.19
< (14 5508”1817 + L + M) (3.19)

10
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For some §p > 0 to be determined later, by using a similar argument to derive (3.15), we have

Eexp {SOe_“ sup M(s)} < eEexp {8oe " M(1)}

0<s<t
t 1/2
e<Eexp{85§||o||§o f e‘zx('_‘y)|X"(s)|2ds}> . (3.20)
0

Consider the following probability measure v on [—1, 7]

2\
1 — e—2A(+1)

IA

v(ds) = e M=y,

Then by (3.20) and Jensen’s inequality, we obtain

! 172
e(Eexp{sagnangO/ e—z*<’—s>|xﬂ(s)|2ds}>
0

) 5 1 — e 20t+D)  pt ) 1/2
e<IEexp{860||<7||00T/1 1X"(s)| v(ds)})

' 4520 |12 22 12
0 0 | yn 2 —2X(t—s)
e<E/,| exp H — [ X" (s)]| T2 e—2f\(t+1)e ds)

2A 4 4820 ||%
<e+ 7672;1@/ exp {0””00|X"(s)|2 e P ds.
1—e —1 A

IA

Eexp {SOe_M sup M(s)}

0<s<t

IA

IA

This, together with (3.19), means that

E exp {80 sup e"\(’_s)|X"(s)|2}

0<s<t
< exp{8o ((1 + o b* <2’)> ||¢||3+Lr‘>}Eexp{aoe—“ sup M(s)}
0<s<t
2A,A ! 4 2
<A1+—1E/ exp Mp{”(mz e M=y, (3.21)
1 672)" 1 A

where A = exp|8o((1+Q2r —0)'5*uS")1$112 +Lr~") +1}. Then by the Cauchy inequality,
Eexp{8oll X712}

<Eexp {aond)u% + 8o sup e*<”>|X"(s>|2}

0<s<t
2420 ! 48510130 | s
SA%H_—;_ME/lexp{ |X(>|}e2“f ds
A4 ' ' 8820 |2
2 1 —2x(t—s) 0 0 n 2 —2A(t—s)
§A1+m[1e ds+)»/1]Eexp{T|X (s)|}e ds
A? ! 882|012
2 1 0 o) n 2 —2X1(t—s)
< AT+ ey +A/_1Eexp {—/\ [X"(s)] }e Ods. (3.22)

Using B = —a,/8|lo ||%,, take 8 < ((—a:) A A)/8llo||%, < B. Then from (3.22) we see that

4

A 1
Eexp {80l1X] 17} < A} + m +2 / Eexp{aonxz||%}e*”<'ﬂ>ds.
- 1

11
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By using the Gronwall inequality,

A4 A4 t
Eexp{dollX/ 12} = A7 + ——L5— + (A + —L =) / eH1=ds
-1

- (l — 672)\)2 (1 _ e—zx)z
A4
2 1
< 2(A1 + —(1 — 6_2/\)2). (3.23)

Note that Ay = exp{o((1 + (2r — MBS gl + LA~") + 1} is independent of n. By
using the Fatou Lemma, it follows from (3.12) and (3.23) that (3.10) holds. This further implies
(3.9), which completes the proof. [J

Lemma 3.5. Let assumptions of Theorem 3.2 hold. Then for any q > 0 and f € Cp 4(E)
with w.(f) =0, there exists a constant Cy > 0 such that

184112 < Coll FII%,, < o0, (3.24)
that is, &5 € Cp24(E), and

0 < 11(Br) = 2uu(fRy) < 0. (3.25)
Proof. For any f € C, ,(E), in light of (3.3), applying a standard argument gives that

[P f(@, 1) — pa(f)]

IA

inf / dpg((f, 1), G NN Il p.gre(dir, i dE, k)
ExE

TEC (P (i, ) 1ie)
20+ palll - IEDIF g (1 + NIIEDe ™, (3.26)

IA

that is, the Markov process (X?’i, a'(t)) is uniformly mixing for the class C p.q(E), (see, [24,
Definition 2.5]). Then for any f € C, ,(E) with u.(f) = 0, we obtain

Ry (@, 0)] = \/O [P £ (@, 1) = ()]t

< ‘/O 20+ pall - WD f g (L + N@lDe " dt
< 2Co7 (4 (- IS Mg (1 + NPT,V g >0, (3.27)

which implies that Ry(¢, i) is well defined for all f € C, ,(E). The Markovian property of
(X?', oi(1)) shows

PrR.f'(¢7i)=R.f'(¢»i)—/ P f(¢,i)ds, t=>0, (3.28)
0

which further implies that
1 o 1
f E[f(X, o/ ()R (XT", o' (1))]ds = / Ps(fP—sRy)(@, D)ds
0 0

1 1 1—s
=/0 Ps(fRf)(¢,i)dS—/O /O Ps(f P f)(&.i)drds. (3.29)

12
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By using the property of conditional expectation and a substitution technique, one has
1 o 2 1 pl o o
E( / fxP a’(t))dt) =2E / / FXP @l () XD, o (1))dtds
0 0 Js
1 el
=2 [ [ Prpep@.ivdnas
0 Js

1 1—s
=2 / / P.(f P, f), i)dtds. (3.30)
0 Jo

Then according to the definition of &y, it follows from (3.28)—(3.30) that
Dp(p, i) = E( fo e oﬂm)dr)z +ERF(XT, o (1)) + R} (@, 1)
+ 2/01 E[£(XP", &' ()R (X", o' (1)]dr — 2R (¢, HER (X7, &' (1)
—2R (¢, 1) /01 Ef (x>, ol (t))dt

1
= PIR)(@. 1) — R3($.i)+2 /0 P.(fRy)(. D)ds. (3.31)

Hence, in order to prove (3.24), with Lemmas 2.3 and 3.4 at hand, it suffices to show that
R§(~), (fRf)() € Cpoy(E) for any f € C, ,(E) with pu,(f) = 0. To this end, applying (3.2)
with m = 8@’,‘) and v = (S(,/,,j) ylelds

\Pf@, i) = P fW, DI < Cllfllpgdp.q (9, 0), (4, ))e™, (3.32)

which, together with the definition of R, yields
[Ry(¢.0) = Rp(¥. )
< /Ooo P f(¢, 1) = P f@, DIdt < Co™ I fllp.gdp.q (8, D), (W, ). (3.33)
Combining this with (3.27), there exists a constant C(g) > 0 such that

|R3(p. i) — R3(W, )| = |Ry(@. i)+ Ry(W, DR (¢, 1) — Ry(p, )
< C@A + il - IS5y dp2g (@, D), (W, 1)), (3.34)

which, together with (3.27), implies that R;(-) € C)2(E). Similarly, it is easy to verify that
(fRy)(-) € Cpoq(E). Then (3.24) follows. Noting that , is invariant and (| - 17) < oo, it
follows from (3.31) that p.(®r) = 2u.(f Ry), that is, (3.25) holds. This proof is complete. []

Lemma 3.6. Under assumptions of Theorem 3.2, for any n € Zy, q > 0 and f € C, 4(E),
there exists a continuous increasing function ho(-) such that

m—1 2n

1 o
Bl Y fOE @ (0) = il )] = ho DI FI2gm ™" (3.35)
k=0
13
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Proof. Fix an arbitrary functional f e C,,(E). Without loss of generality, assume that
ws(f) = 0. Then by the Holder inequality, we have

2n rm—1 ) .
[Z S a’(km]
=1 kj:O

2n
1 m—1 . '
E|— > FOXP o)
k=0

2 | m—1 kl k2n 1 ) ) ) ) )
<2 [Z I a’(h))f(x,‘f;,a'(kz))...f(X,fz';,a%an»}
=0ky=0  kop=0
(2}’1)' m—1 ky kop—1 ) )
= Z Z [(Z Z X o (k3)) - f(X,fz;’l,a%kzn)))g(kl,kz)}
0](2 k3=0 kz =
@) 'R ¢ " n
< ZZ [ Zf(x ! g(kl,kzﬁ
=0kp=0 k=0
1ml o n%(zn)ml k1
‘ Zf(Xk : ’(k»‘ ZZ(Eg <k1,k2)) (3.36)
=0kp=0

where g(ki, ko) = f(X0' o' (k))E[ f(X{", & (k1))| Fi, ] This implies that

LS ot ain] < lenr (S
E‘ZZf(Xk’ ,a’(k»‘ (Z Z(Eg ki k)" ) (337)
k=0

=0ky=0

In light of (3.1) and (3.26), there exists a continuous increasing function %;(-) such that

1 ' 1
(Eg" 1. k)" = CILFIR,, (B + X [1y2emeti=t)
< (IBINFI 7.

Substituting this inequality into (3.37) yields the desired result (3.35). The proof is
complete. [

To derive the functional CLT, we first introduce some notation. For f € C,,(E) with
p«(f)=0and (¢,7) € E,

Mt = / [E(f(XP, o (DIF) = P, f($.D)]ds
0
_ / FOXP o (s))ds + / P F O s - f TP ivds
0 ! 0
= / FXO i (s)ds + Rp(XP', o' (1) — Rp(, ). (3.38)

For any fixed (¢,7) € E and f € C, ,(E) with u,(f) = 0, the stochastic process {Mf A}tzo
forms a well-defined zero-mean martingale. Define a conditional variance for M m e ./
by the following formula
2
7]

(MFoiy Z]E[<Mf¢z M}.{fﬁi)
14




Y. Wang, F. Wu and G. Yin Stochastic Processes and their Applications 167 (2023) 104215

Recalling the definitions of Mtf " and R(¢, i), it can be observed that

M =l [ PO a6+ R ) = R 0= ). (339)

Then the Markovian property of (X;P’i, a'(t)) implies

. N 2
s (e = %)

fk_l} = Op(XP' |, o (k — 1)),

and hence

§

(MFP,, = @f(x¢ Lolk), melZ,. (3.40)
k

Il
=}

Proof of Theorem 3.2. This proof is divided into three steps.

Step 1: Proof of (3.6). By virtue of the invariance of ., applying the techniques similar to
that used in (3.30) yields

Z/ f 34l @, z)] wi(de, i)
ieS
/ f (Z f Pu(f P ). Dips(d, l))dsdu

ieS

—2Zf / F@.DPf(§.i)dsp(dg. i)

ieS
2y / f SF@. P, DMdspi(dg, i), (3.41)
ieS

Note that u.(]| - |!) < oo for Vg > 0. For f € CpqE) with p.(f) = 0, by virtue of (3.26),
we obtain

2 t
im |73 / [ st@.ivps@.asu.as.

t—oo |t

< lim / Z/ £, P, £, D], Dds

t—oo t pr
i

8C + * : rq !
i SIS (T4 - )’ /se—@s s,
0

Tt t

which, together with (3.41) and (3.25), implies that

2 _1%2/ (2l 60, z)] 1(dep, i)

ieS

—2)" / [ s s idsias.

ieS
=2u(fRy) = M*(st)-
15
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Step 2: Proof of (i). Let f € C,, ,(E) with u.(f) = 0 and X'y > 0. By using [24, Lemma 2.9]
1
fore =174,

sup [P{r24/ @, 1) = x} — F, )

_1 Lo f.i
< =% + sup P{m bm §x}—F2 (x)‘
Ef\/ZJT xeR Ll !

+ P{”—%Atf(qb, i)— L;J—%Mﬁ,i} - t‘%}

75 4 Ty(t) + Da(d), (3.42)

1
RNz
where |7]| denotes the integer part of . According to definitions of A,f(qb, i) and M,f"p’i, it
follows from [23, Lemma 4.1], (3.1) and (3.27) that there exists a constant A, > 0 such that

Bt 4l @, i) — o) Ml

i) ds

< (L) E[A] . 1)

+ 1172 f E|fX2, o/ (5))
L]

+ )2 E| R (X o (1)) = Ry (@, )
< Aol fllpg(1+ IBIDL] 2

1

= 2401 fllp.q(L + lI@l1 2, (3.43)

where ¢ > 1. This, together with the Chebyshev inequality, gives
_1
L) <240 fllpg(1+ ll@le 3. (3.44)
Now let us estimate ['(¢). By virtue of (3.27), (3.39) and Lemma 3.4, there exists a positive
constant Az such that

FXP i (s)ds + Rp(XD', o (k) — Rp(XP|, o (k — 1))
k—1

g i
< A3||f||p,q<1 + sup s2)1x% ||;1),
selk—1,k]

s

whence it follows that

T , ;2 Ny
e e L L

selk—1,k]
1 2 2
< exp {1 + 4G FlIE el + ||¢>||3>} :

Then it follows from [24, Proposition 2.10], (3.40), (3.6), (3.35), and (3.24) that for any
¢ €(0,1/4) and « > 0O there exists a positive constant A.(2;) such that

1 . 2k
Ti(t) < AdZLe) 74 4 SO 1) 7 My - 3|

lr]—1 2k
< A EPL) T 4 P OR[N @D o (k) — ()
k=0
< AdZPLE] T 4 2Coho(I I FI1%, Z74 1] 4. (3.45)

16
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For any given ¢ € (0, 1/4), take x > 0 such that 16«xe > 1. Then substituting (3.44) and (3.45)
into (3.42) leads to the desired estimation (3.8).

Step 3: Proof of (ii). Let f € C,, ,(E) with u,(f) =0 and Xy = 0. Then we have

sup{(l A |x|)‘P{m*%M,{,"<""' < x} - Fo(x)H

xeR

= sup{(1 A le(Bm= i < cf 1oy + B{m il = xh1g) )
xeR

<supla Ax)]P”m*%M,{%" > x}} (3.46)
x>0

According to the martingale property of M;"*, we have E(M,{:’“”i)z = E(M/%),.. Then for
any x > 0, by using the Chebyshev inequality, it follows from (3.40), (3.35) and (3.24) that

< xlm (B(MIPY,)?

IA

Bl -t

1 .
x_]m_iE‘M/;’W

- )

m—1 1

! (E[% > P a“(k))])2
k=0

2Cox " ho(l @I £ 1l p.gm ™.
Combining this with (3.46) gives

IA

sup{(1 A LxD[B{m ™M < x} = Fo(| | = 2Cono(Ig 1N pgm ™.
xe

Then by using [24, Lemma 2.9] for o = 0, the desired assertion follows. [

4. Law of iterated logarithm

This section establishes an LIL for additive functional of the regime-switching diffusion
process with infinite delay described by (1.1) and (1.2). To proceed, we need some necessary
notation. When Xy > 0, for any (¢,7) € E and n > e, define a sequence of C([0, 1]; R)-valued
random variable as follows:

1
Xry/2nloglogn

Let x denote the derivative of x and

HI (1) = / FX& i (s))ds, tel0,1].
0

H ={ x € C([0, 1]; R) : x is absolutely continuous such that x(0) = 0

1
and / |%(s)%ds < 1 } )
0

Theorem 4.1.  Let Assumptions 2.1-2.3 hold, and n, > 0 for some p € (0,1]. For some
g > 0, if one of the following two conditions holds:

i) m >0, ¥ <0, u3 € Marv-5.+o)»
(i) 71 > 0, ax <0, uz € M-+
then fqr any g € (0,1/2), (¢,i) € E, f € C,,E) with u(f) = 0 and Xy > 0,
{an"b‘l(), n > e} is almost surely relatively compact in C([0, 1]; R) and the set of its limit
17
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points coincides with H. Consequently, P-a.s.
! @i i t &.i i
XS ) d . . Xs , d
limsup S CEL AWM Lo Ol ds

100 /2tloglogt =0 /2t loglogt

Remark 4.2. Under assumptions of Theorem 4.1, (3.2) and (3.3) hold for ¢ € (0, 2], that
is, Theorem 2.2 in [23] holds (in [23, Theorem 2.2], we wrote it as ¢ € (0, 1], which
is a typographical error). In addition, to prove the LIL, we further assume ¢ € (0,1/2)
in Theorem 4.1. This implies we can use Lemma 3.5 and some estimates in its proof for
q € (0, 1/2) in what follows.

=5 “.1)

Remark 4.3. Compared with [2, Theorem 1 3] and our previous result [28, Theorem 4.3],
this paper considers a Markovian process (X ,a'(t)) determined by (1.1) and (1.2). It
presents a continuous-time version LIL for add1t1ve functionals. To this end, we modify the
reference function sequence an ’¢"(t). In addition, our assumptions in Theorem 4.1 allow
some subsystems to be fully non-dissipative (see Example 5.2 in what follows), and this paper
removes the boundedness assumption on the diffusion and its inverse in [2]. Theorem 3.4 in [6]
and Theorem 4.1.5 in [16] consider the LIL for additive functionals for the Markov chain and
the stationary Markov processes, respectlvely They cannot be directly used to deal with the
present non-stationary setting since (X ,a'(t)) is a non-stationary Markovian process in the
Polish space C, x S.

Remark 4.4. Under some additional growth conditions on the drift to ensure the solution to
be locally Holder continuous, if f # 0 on the support of the invariant probability measure /i,
(supp(u+)), then Xy > 0. Assume, by contradiction, that X'y = 0. Applying a similar approach
to derive ZJ% = u«(Py) yields that Z’% = T’I/L*(tﬁfj) for any T > 0, where

- T o P 2
Drr(p,i) = E‘ f FXPE, o' (s)ds + R_f(X¢’ o' (T)) — Ry(9, )| .
0
Then X'y = 0 implies that N«*(é_f,T) = 0, which, in turn, implies

T . )
/ FXPT &l (s))ds + Rp(X', o/ (T) — Ryp(¢,i) =0, P, -a.s. (4.2)
0

Under P,,, (X;, a(?)) is a stationary strong Markovian process with initial distribution ft..
Recalling that f € C,, ,(E), f # 0 on supp(u,) and u.(f) = 0, there exist bounded measurable
subsets By C B of C, with u,(By x S) > 0 and & > O such that f(&,i) > ¢ (or — f(&,i) >
€),Vé € B,i € S and dist(By, 0B) = infeep, yean 1§ — nll, > o for some &9 > 0. In addition,
there exists a compact set K. C C, such that ]IDM*{(Xf’i, al(s) € Ko x S} = (Ko x S) >
1 — wi(By x S)/2 for any s > 0 since u, is invariant and tight. Hence w.((K. N By) x S) > 0.

Under appropriate growth conditions, it is easy to see that the solution process is locally
Holder continuous, that is,

X2, w) — X (s, w)|

P, jow: sup <dp =1,
* O<t—s<h(w).s,1€[0,Tp] |t —s[”

where Ty, y, 6 > 0 are constants and h(w) > 0, P, -a.e. Then by the definition of‘the norm ||-||,,
there exists #p > 0 small enough such that sup,_,_ $<10.5,1€10.Tp] [XPi(t, w) — XP(s, w)| < &0/4

on the event {h(®) > fo}, and supg_,,, |1 X¢" — X3 ||, < £0/2 on (X" € K.N By, h(w) = 1o}
18
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where By is the closure of By. In addition, noting that P, {h(w) > fo} — 1 as ) — 0. Hence we
can take fp > 0 small enough such that for any s > 0, ]P’H*{(Xf", a'(s)) € (K.NBy) xS, h(w) >
to} > 0 due to IP’,L*{(X?", a'(s)) € (K. N By) x S} = (K. N By) x S) > 0. Then we arrive at

P, (X7, a'(s)) € B x S, Vs € [0, 0]}
> P, {(X§", &' (0) € (K. N By) x S, h(w) = 10} > 0.

Furthermore, by the Markovian property and stationarity of (Xf’i, a'(s)) under P,,,, we have
P, (X", a'(s) € BxS,Vs €[0,T]} >0, VT >0.

Then we have
T
IP’M*{/ FX& al(s))ds > Ts} > P, (X", a'(s) e BxS,s€[0,T]} >0. (4.3)
0

In addition, since R(-,-) is bounded on bounded set of C, x S (see (3.27)), then we have
|Rf(&,1)| < Kp, V€ € B,i €8 for some K, > 0. Hence,

P IR (X' i) — R(¢, i) < 2Ky} = P, (XD, X0 € B} > 0.

Choosing 7' > 0 large enough such that T¢ > 2K}, this, together with (4.3), implies that (4.2)
cannot hold with probability one. This is a contradiction. Hence, Xy > 0 if f # 0 on supp(ui+)
and the solution process is locally Holder continuous. As for Examples in this paper, it is easy
to verify that their solution processes are locally Holder continuous

However, it is not clear to us how to determine the support of the invariant probability mea-
sure .. Note that (X?', a(r)) is a highly degenerate Markovian process, that is, (X', o (1))
is an infinite-dimensional Markovian process with finite-dimensional noises W(¢). Therefore,
even though the diffusion coefficient is non-degenerate, the support of the invariant probability
measure /i, cannot be the whole space C, x S. We only know that supp(i1,) € C° x S, where
C? = {¢ € C, : limy_, _o, e"?p(8) = 0}, which follows from our previous work [30, Remark
3.6].

To prove this theorem, let us first present a crucial lemma.

Lemma 4.5. Under assumptions of Theorem 4.1,
1y 2 . 2
Jim -~ l;:zk(qs, =% Pas.,
where Zi(¢,i) = M{“P’i - M,‘{ffpl’i and M,‘(f"z”i is given by (3.39).

Proof. As observed in the proof of [14, Proposition 3.1], to obtain the desired result, it is
sufficient to prove the continuity of the two maps
A 1),

1 n
lim sup(; Z Z,%(q), i)) — E}
k=1
A 1),

n—oo
YA I 2
hnn_l)long(; Z Z.(¢9, l)) -7
k=1
with respect to (¢, i) € E. Because S is a finite set with discrete metric, it is enough to show
that ¥;(¢,i), j = 1,2 is continuous with respect to ¢ € C,. We first show the continuity of

Uy(p, i) = E(

Us(p, i) = E(

19
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¥1(¢, i) with respect to ¢. Note that for any n, Ky € Z4 withn > Ky > 1

Kol

= Z Zi$, i) =~ sz@ )—— Z 7X@, D).

kK()

Recalling the definition of Mtf"b’i and Zy(¢, 1), (2.7) implies E|Z; (¢, i)|2 < 00. This in turn
implies Z7(¢,i) < oo, P-a.s.. Then we have

11msup— Z Z}(¢, i) = limsup — ZZZ(QS i), P-a.s.

n—oo ]( KO n—oo -1

Therefore, for fixed Ky € Z; and Ky > 1, we arrive at

1 n
Uy (p,i) = E( limsup(— > Z,%(zb,i)) — 23 A 1)
n—oo \ N A=K ’
=R/
m
_ o 2
= (|l 3 00) =] 1)
= lim lim E( 2 /\1>
n—>00 N—o00 me{n,n+1,...,n+N}

I &, .
sup <Z kzXK:O Z (¢, z)> —

1
sup (— Z Z (¢, i)) A (1 + E?) - 27 A 1)
me{n,n+1,..., n+N} m k=K

=: lim hm U, n(@, ). 4.4)

n—o0o N—

Then, for any (¢,i), (¥,i) € E and n > Ky > 1, we have

| W n (@, i) — W n(, i)
iy \m f f

me{n,n+1,..., k=Ko
_ E(

<E

= lim lim E(

n—o00 N—oo

)
S

m

w < Z Z2(y, l)) (1 + 2}) >

mef{n,n+1,...,

1 & ,
2 i 7100) ()

mef{n,n+1,...,

— s ( Zzz(w z)) (1+2})’

me{n,n+1,..., n+N}

1 m
up _<Z (z,?(qb,i)Am(l +2§)> Am(1 +E?>)
me{n,n+l,...n+N} M k=K

20

<E




Y. Wang, F. Wu and G. Yin Stochastic Processes and their Applications 167 (2023) 104215
2 . 2 2
<Zk(1ﬁ, i) A m(l + Zf)> A m(l + Z}))‘

sup %i(zi@:,:’)/\m(l +E]%) —Zi(ilf,i)Am(HE?))'

mefn,n+1,...,n+N} k=Ko

2 /m(1 + 52) m
<E  swp 3 12— Zuwn ). “.5)

me{n,n+1,..., n+N} m k=Ko

NE

1
— sup —
me{n,n+1,...n+N} M k=K,

<E

Then it follows from (4.4) and (4.5) that
W@, i) = (. D) = lim lim | @,y (. 1) = Ty (. D)
<2142 Y EIZu@, i) — Zu(W, ). (4.6)
k=Kg

Recalling the definition of Z;(¢, i), by virtue of (3.39) and (3.33), we derive

|Zi(p. 1) = Zi(¥, D] <

k
/k [F(X7, ol (s)) — F(XV, o' (s))]ds

—1
+|RAXP @ (k) = R(X[, o ()
+ [RpX ol ke — 1) — Rp(X[ ol (ke — 1)

k
i i 02 a2
< / £ g IX2 —X;””Ilf\/ L4+ 1X202 4+ 1 xP 12ds
k—1

) o — —
+CO N f g IXE = X1+ X2+ X

_ N b.i g2 g2
+ O M g IXET, = X171 X 127 4 X,

Then by using Holder’s inequality and Lemma 2.3, there exists a positive constant A4 such
that

k . . 1

BIZ@.1) = 2] < 1f g [ (BNXET = XP)20)

k—1

x \/ L+ EIXS 17 + B X ds
. . 1
+Co M g (BUXD — X17)127)2

2 V2
x|/ 1+EIXE 12+ B Xy
. . 1
+Co7 I fllpg (BIXET, — X 177)2
[T+ EIXE 12+ EIX

_1 _
< Aull fllpqllp — WllPe 270,
Substituting this into (4.6) yields

o0
1
<201+ ZDAdl fllpg Y e Dl — y|12.

k=K

bi(gp, 1) — V(Y. i)

21
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Since K is arbitrary, this implies ¥;(¢, i) is a constant and in particular continuous with
respect to ¢. Similarly, we can show the continuity of ¥,(-, -). Hence this proof is complete. [

Proof of Theorem 4.1. Noting that ¢, € C,»,(E) and EJ% = U«(Py), by using a similar
argument to (3.26), there exists a constant As > 0 such that

|Pe (&) — X7 = |Pdy(€) — jua(D)] < Ase @, V k= 0.

Let S2(f. ¢, i) = EIM{*"|”. Then it follows from (3.40) that

S2f. b D) EMIY
lim | 2= = O = lim | ———— — X}
n—o0o n n—o0o n
E(M/#1),
= lim EMT ), _ 2}
n— 00 n
1 n—1
= lim |- P.®:(¢,i)— 2?2
n%mn;kf((pl) f‘
1 n—1
= lim | = (Pe®s(, 1) = T])
k=0

AS n—1
< lim = —ok =0, 4.7
- nin(}o n ;e ( )

This implies S,%(f, ¢,1i) = O(n). Recalling g € (0, 1/2) and the definition of Z,(¢, i), it follows
from (2.7), (3.27) and (3.39) that there is a constant Ag > O independent of n such that

E|Z,(¢,1)|" < 27IE/ | F (X%, o (s)|*ds + 27E| R (XP, o (n))[*
n—1
+27E|R (X o (n — D)*

< Agll fllp.g (1 + 1.
which, together with the fact that S,%( fi¢,1) = O(n), yields

3 S b DE|Zu(@. D] < Al Fllpg L+ 1912 D 873 ¢.1) < 0. (4.8)
n=1 n=1

Then it follows from Lemma 4.5 and (4.7) that
. 1 N e n I o)
nlingom;z"@) =% S,%(f,dui)(n ;Z"@O ! @9

and

I V2S2(f, ¢, ) loglog S2(f, ¢, i)
1m =
n—>00 Xy/2nloglogn

Then in light of (4.8)—(4.10) and the fact that S,%(f, ¢,1i) = O(n), it follows from [11, Corollary

1] that the sequence of real random functions {ﬁ,{ ’¢’i(~), n > e} on [0, 1] is almost surely
relatively compact in C([0, 1]; R) and the set of its limit points coincides with H, where

MPPT 4 (SEf . it — SEF. ¢, DS (f ¢ 1) — SEF. b, ) Zis1 (¢, )
Xry/2nloglogn

22
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B @) =
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for t € (0,11, Sp(f.b.i) < Sa(fo . D)t < S (fop, i), k=0,1,....n—1,
B/ =0,  forr=0.
Furthermore, applying a similar argument as in the proof of [6, Theorem 1] (see also [8,
Theorem 3.7]) gives that the sequence of real random functions {an ORI e} on [0, 1]

is almost surely relatively compact in C([0, 1]; R) and the set of its limit points coincides with
H, where

Mkf’q}'i + (nt — k) Ziy1(9, 1)

Xry/2nloglogn

A (t)=0 fort=0.

2% @) = forre(0,1], k<nt<k+1, k=0,1,..., n—1,

Then by the Chebyshev inequality, (2.7), and the Borel-Cantelli lemma, for any / € (¢/2, 1/2)
there exists a Z,-value random variable t(¢, i) such that for almost sure w € {2,

sup  |XP(@)l9 <k =1 for k> (6, i)w),
telk,k+1]

which, together with (2.2), implies that for any fixed k

N

¢
. sup 1 X5
lim selk.k+1] 1 Xs

n—oo Y'e\/2nloglogn B

Combining this with (3.39) and (3.27) yields that

0, P-a.s.

1 k+1
lim —|:/
n—>o0 3 r /2nloglogn /i

| F(XF, ol (s))|ds + | Rp(XP", af(k))|] =0, P-as.

4.11)
Hence, this, together with (3.38), gives
lim sup ’an"’”i(t) — ﬁ,{"’”i(t)! =0, P-a.s.,

=09 te0,1]
which implies that the sequence of real random functions {H,f ’¢’i(~), n > e} on [0, 1] is also
almost surely relatively compact in C([0, 1]; R) and the set of its limit points coincides with
H.
Now it remains to prove (4.1). Note that for any x € H, x(1) < 1. According to the definition
of Hi(),

n ¢,l .
i X? ’ al S dS
limsup |H/?(1)| = lim sup = X ($)ds _ |

n—o0 n—00 Ef,/Zn loglogn -

In addition, since the set of limit points of {H,',f ’¢‘i(-), n > 0} in C([0, 1]; R) coincides vyvith H,
then for x(s) == s,s € [0, 1] (x(-) € H) and any fixed @ € {2 (there may be another {2 with
P(£2) = 1, but we still write it as {2 here without loss of generality), there exists a subsequence
n; — oo as k — oo such that

(4.12)

lim sup |H,{;’¢’i(s) —x(s)| = 0.

k=00 5¢[0,1]

Then for the fixed w € {2 above, we obtain

ny @i i
X5, al(s))ds .

lim
k—oo })r /2ni loglogny k=00
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which together with (4.12) gives
" X?’i,ai s))ds
lim sup fo A )

n—o00 V2nloglogn
Note that X'y = X_;. Hence, applying a similar argument for — f yields
n Xg&,i’ i d
liming Jof X5 2 6Nds
n—>00 V2nloglogn

Applying a similar argument to derive (4.11), we arrive at

=2, P-as. (4.13)

=% Pas. (4.14)

1 ! o
lim ——— [ |[f(X?", d'(s)|ds =0, P-as.,

t—>oo /2t loglogt Jin

where [¢] denotes the integer part of ¢. This, together with (4.13), (4.14) and the fact that
. 2[¢]loglog]t]
lim | ———— =1
r—oo\l 2tloglogt
gives the desired results (4.1). The proof is thus complete. [J
If o(¢, i) is bounded, one can prove that the assertions in Theorem 4.1 hold for any ¢ > 0

instead of ¢ € (0, 1/2).

Corollary~4.6. Let Assumptions 2.1-2.3 hold with V(x) = |x|2. Letn, > 0 for some p € (0, 1]
and a* 4+ b* < 0, and |0 || = Sup ek 10(@, Dllys < 00. Then for any g > 0, (¢, i) € E,
f € CpqE) with u.(f) =0 and Xy > 0, the assertions in Theorem 4.1 hold.

Proof. A slightly modifying proof of Theorem 4.1 gives the desired assertions with the help
of Proposition 3.1. [
5. Examples

In this section, two examples are given to illustrate our results.

Example 5.1. Let d = 2, m = r = 1, and («(#));>0 be a Markovian chain taking values in
S = {1, 2} with generator

-1 1
Q=(A _A), (5.)

where A is a constant. In this example, we choose A > 14/5 4+ 8+/3/5. For a scalar Brownian
motion W(¢) independent of «(t), consider the following regime-switching diffusion systems
with infinite delay:

dX(t) =b(X;,a(t))dt +o(X;, a(@)dW(t), t=>0, 5.2)
with
. 0
po = [ —nO+1 [ eoman | ( 0 )
~9:0)
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1—¢7(0)
8(#(0))u(do),

0
_ 0 _
PeD =1 40— 30) + f $0)(dd) | “(¢’2)_/,

where ¢ = (¢1, ¢2) € C,, u(df) = 4¢**dh € M,, and g : R> — R? is a bounded Lipschitz
function with Lipschitz constant 1. It is obvious that the diffusion coefficient of Eq. (5.2) is
degenerated when «(t) = 1. Let us check the conditions of Theorem 3.2 and Corollary 4.6.

Clearly, Assumption 2.1 holds and o (¢, i) is bounded. Let U(x) = |x|?. Then we obtain
LU — ¥) = 2(p(0) — ¥ (0), b(¢, 1) — b(y, D) + llo(p, 1) — o (¥, l)lliS

3 1 [0
= =310 - () + 3 / lp(0) — ¥ (0)|*u(dd),

LaU(@ — ¥) = 2($(0) = Y(0). b(@, 2) = b(y, 2)) + (9, 2) = o (¥ D)1
1 0
< (42060 —yOF + (1+3) [ 160) - v@Puto).
where ¢ > 0 is a constant. Hence Assumption 2.2 holds and

R - 1 - 1
al)=—=, b(l)==, a@)=1+¢, bR)=1+—, y =—1.
2 2 )

The invariant probability measure of «(¢) is

( : A 1
T=m,m)=—-—-,—]|.
b2 1A 1+A

We compute

_ 0 _ 0
(e = i (a1) + 51 / ¢ 1u(d9)) + m(a2) + 52) f "' u(d6))

1 ( 5A+7+ +4)
= —I(—= —+e+—).
I+A\ 6 3 3¢

Recalling A > 14/5 + 8\/5/5, there exists a &g > 0 such that Y'(gg) < 0. Then, it follows
from [3, Proposition 4.2] that there exists a p € (0, 1] such that n, > 0. On the other hand,
let V(x) = |x|*. Then it follows that

1 0
= f |6(0)]*11(d0),

3
L1V(9) = 29(0). b(@.D) + o @ Dllpg < 1 = SI6OF + 5 |

1 0
L2V (@) = 2{$(0), b ) + llo (¢, Dl < L~ 1$O)* + 5 f 6(0) 11(d6),

where

L= sup {=20x[* + [x + 220 + 2l +2x) + [0}

xeR2

Ihen
a )_ -, = —, a(Z)— s 2 = —, a = s = —.

Hence, a* + b = —1 /2 < 0, and all the conditions in Theorem 3.2 and Corollary 4.6 hold.
Hence the results in Theorem 3.2 and Corollary 4.6 hold.
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Example 5.2. Letr = 1, h > 0, and «(r) be the Markovian chain defined by (5.1). The
following d-dimensional regime-switching diffusion system with infinite delay is a modification
of [1, Example 1.2]:

0
dX(t) = {aa(z)x(l) + can| X" X (1) +ba(t)/

—00

X+ G)M(dﬁ)} dt +o(X;, a()dW (), (5.3)

where a; = b = 1/10,by = l,a = =2, ¢c; = 0,¢2 = —1, u(df) = 4¢*d6 € M,, and
o :C xS > R¥™ gatisfies

1 0
lo(¢, i) — o@Dz < T |¢(9)— V(O n@o), i=1,2,

and W(¢) is an m-dimensional Brownian motion independent of «(¢). For a; = b = 1/10 and
c; = 0, it is obvious that the subsystem with coefficients b(¢, 1) and o (¢, 1) is non-dissipative.
For A € (0, 594/1955), let us check the conditions in Theorem 4.1 for (X , ! (t)) determined
by (5.1) and (5.3).

Fori =1,2and ¢ € C,, let

0
b($, i) = aip(0) + ci$(0)|"$(0) + bi / $(0)u(d0).

Let f = lx|"x for x € RY. As [1, Example 1.2], it is easy to verify that for any x, y € R,
(x =y, fx)=f() =0.

Recalling that ¢c; =0 and ¢; = —1, for U(x) = |x|2, we have
LU — W) = 2(6(0) = ¥(0), b, D) — by, D)) + o, ) — o DI
1
< Qa; +b)I$(O) = (O + (b + 15) / 1(0) = Y(O) (o).

Hence

A1) 3 72) 3. b 1 5 11 19
a = —, a = —J, = —, = —, e
10 55 27100 YT 10
in Assumptions 2.2, 2.1, and 2.2 hold. Furthermore, a direct calculation gives

_ 0 _ 0
(e = m (a1 + B / ¢ u(d6)) + (@@ + 52) / ey

1 <143A 19>
T 14+ 4\210 21/°

which, together with A € (0, 594/1955) and [3, Proposition 4.2], implies that there exists a
p € (0, 1] such that , > 0. In addition, let V(x) = |x|2. Then we arrive at

3
L1V(9) = 2{p(0), b(@.D) + llo (¢, Dl < L 10 |<15(0)|2 + 1—0/ |6(0)1* 11(d0),

3
LoV () = 2(p(0), b(#.2)) + o (@, 2} < Lo — —|<1>(0)|2 + 1—0/ |6(0)1*11(d6),

where

2+h 73 2 2
Li=200. DI, Lo = sup|=21x/**" + Sl +2]0(0. 1% .
xeR2
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Then Assumption 2.3 holds and

~ ~ 3 - 13 . _ Y § _— i
an=bh =15, AD=-15 b= K=l 7i=5 P=bo=1
and
- 20
= —/ e”"? (de)_ .
Hence,
= e (0 sy 17
a(l)+ (1 —en Db(1)+ b(1) e u(dh) = —,
—oo 23
- -~ ~ 0 99
a2)+ (1 —e A DDQ2) + b(2) eV* w(df) = -

Then we have

17 171 -5 1
kG 3
0 =0+dia {23 200 (A —A—ﬂ)

The determinant of é — A, x, 1S given by

258 17 594
A A+ ——:.
23 2645

O —rlyn| =22+ A+ 2=
13 = Myl +< + 20

Recalling A € (0, 513/1700), we obtain

2
258 258 68 2376
(a+3) (A +m) +oa-
= — max_ Re(}d) =

reSpec(0) 2

> 0.

=

These show that all the conditions in Theorem 4.1 are satisfied. Hence the results in
Theorem 4.1 hold.
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