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Abstract

This work introduces an efficient and numerically accurate procedure to calculate
the Fukui function from fractional orbital occupation differences. The energy- and
density-linearity conditions are investigated in the context of using optimally tuned (OT)
range-separated hybrid (RSH) functionals for the calculation of the Fukui function. The
methodology is then used to study the reactivity of organic radicals exhibiting energetic
inversion between the singly occupied molecular orbital (SOMO) and the highest occu-
piedmolecular orbital (HOMO), that is, SOMO-HOMO inversion (SHI). The Fukui func-
tion correctly identifies the reactive sites of the molecules investigated, but additional
computed quantities, such as radical reaction energies and vertical ionization potentials,
are needed to distinguish SHI systems from conventional radicals.

1 Introduction

Density functional theory (DFT) in the Kohn–Sham (KS) formulation1 is often considered
the ‘workhorse’ among the first-principles quantum theoretical approaches aimed at under-
standing and predicting the reactivity of atoms and molecules from an energy perspective.
Within the KS framework, conceptual density functional theory (C-DFT)2 emerged as an al-
ternative, by shifting the focus from the energy of a reaction to the analysis of the electron
density and its derivatives. The most popular indicators used in C-DFT are the electronega-
tivy,3 the chemical hardness and softness,4 and other response properties that describe how
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the system reacts to changes. Among the latter, the Fukui function can be used to rationalize
and predict the reactivity of a molecule,5, 6 and therefore it has received a lot of attention.

The Fukui function can be defined as the derivative of the electron density 𝜌(𝒓) with re-
spect to the electron number 𝑁 (treated as a continuous variable), with the derivative taken
at a fixed external potential 𝑣(𝒓). The Fukui function inherits many of the properties of the
electron density. For instance, it satisfies a cusp condition,7 it exhibits exponential asymp-
totic decay,8 and it is normalized.5 However, the derivative is discontinuous at integer 𝑁.9, 10

Accordingly, the notation 𝑓+(𝒓) and 𝑓−(𝒓) indicates the derivative when approaching an in-
teger 𝑁 from above and below, respectively. Function 𝑓+∕−(𝒓) describes phenomena asso-
ciated with an increase/decrease of the number of electrons.5 The two functions have also
been interpreted as the tendency of amolecule—or a functional groupwithin amolecule—to
undergo, respectively, nucleophilic or electrophilic attack.8, 11, 12 An additional function 𝑓0(𝒓)
is defined as the average of 𝑓+ and 𝑓−,13 and it is typically used to understand the reactivity
of a molecule towards radical (or ‘neutral’) attack.5 Hence, the family of Fukui functions is
defined via

𝑓(𝒓)+∕−∕0 = (
𝜕𝜌(𝒓)
𝜕𝑁

)
+∕−∕0

𝑣

(1)

with ‘0’ to be understood as the aforementioned𝑓+∕− average. In KS-DFT, assuming the exact
KS functional, the energy and electron density of a system with fractional electron number
𝑁 + 𝛿, with integer 𝑁 and 0 ≤ 𝛿 ≤ 1, should behave as follows:9

𝑋(𝑁 + 𝛿) = (1 − 𝛿) 𝑋(𝑁) + 𝛿 𝑋(𝑁 + 1) ; 𝑋 = 𝐸 or 𝜌 (2)

These linearity conditions for 𝐸 and 𝜌 assume a fixed external potential 𝑣; in other words, 𝑣(𝒓)
does not change with𝑁 or 𝛿. The requirement of fixed 𝑣 in Equations (1) and (2) implies that
the same nuclear framework (charges, positions) must be used in all calculations for a given
molecule. Practical calculations of the derivatives in Equation (1) usually use a finite differ-
ence approximation (FDA). Specifically, 𝜕𝜌∕𝜕𝑁 taken at integer 𝑁 is in the FDA replaced
by [𝜌(𝑁 + 𝛿) − 𝜌(𝑁)]∕𝛿. Instead of trying to approach the limit 𝛿 → 0± numerically, the
FDA derivative can be taken with 𝛿 = ±1 if the linearity condition for the density holds. This
eliminates the requirement for explicit calculationswith fractional electron numbers. Conse-
quently, this constitutes the most common approach for calculating the Fukui function.14–24

Whether the FDA with 𝛿 = ±1 is in fact a suitable strategy for practical approximate KS
DFT calculations, where the linearity conditions do not usually hold, is an open question
and among the topics of the present study.

Apart from the question whether the density linearity condition holds in approximate
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KS calculations, a noted shortcoming of using the FDA is the difficulty of performing com-
putations on anionic species.8 Under the approximation that the KS orbitals do not change
upon variations in the electron number, i.e., a frozen-orbital approximation (FOA),25 (‘frozen
core’, in the words of Parr and Yang)5 and assuming the density linearity condition, the Fukui
functions are given as

𝑓+FOA ≃ 𝜌LUMO ; 𝑓−FOA ≃ 𝜌HOMO ; 𝑓0FOA ≃ [𝜌HOMO + 𝜌LUMO]∕2 (3)

In the previous equation, LUMO stands for lowest unoccupied molecular orbital, HOMO is
the highest occupied molecular orbital, and 𝜌 is the corresponding density obtained from
taking the absolute square (modulus) of the respective MO.5, 26 Therefore, there is a direct,
albeit approximate, relationship between the Fukui functions and frontier MO concepts, and
when using Equation (3), only one calculation of the 𝑁-electron system is needed. Fukui
functions are often ‘condensed’ to atoms.27–29 Typically, this is doneusing population analyses
(Mulliken30 or Hirshfeld charges31 are the most common), and therefore noticeably basis set-
dependent. Alternatives that do not rely on population analyses have also been presented.32, 33

Descriptors obtained with the frozen-orbital approximation are not generally accurate for
molecules16, 34, 35 and will therefore not be considered further herein.

The linearity condition for the energy has been probed extensively. 𝐸(𝑁) should be a
series of straight line segments with derivative discontinuities at integer 𝑁. However, com-
monly used non-hybrid and global hybrid approximations such as PBE36 or B3LYP37–39 give a
smooth 𝐸(𝑁)with positive curvature. Hartree–Fock (HF) calculations typically give negative
curvature between integer-𝑁 points. Among many examples of this behavior shown in the
literature, see References 40–43 and Figure 3 in the present article. The 𝐸(𝑁) curvature is in-
timately tied to the KS delocalization error (DE), which itself has a close relationship with the
self-interaction error (SIE) in approximate DFT.44 In comparison, the density (non)linearity
has not received as much attention, despite the implications for the Fukui function.

When approximations to the exact functional are used, which is in all practical applica-
tions of KS-DFT, the Fukui function is (in the words of P. Ayers) ‘accurate but not exact’.8, 45, 46

The statement relates to two separate issues. One issue is that when the functional is approx-
imate, so is the Fukui function calculated from Equation (1). The other issue is that the
linearity conditions do not hold for approximate functionals. Non-linearity of 𝜌(𝑁) impacts
the calculation of the Fukui function, such that errors arise, for instance, when using the
FDA with 𝛿 = ±1.45, 47, 48

Yang et al. previously computed analytical Fukui functions for the helium and beryllium
atoms and the formaldehyde molecule with a local density approximation (LDA).47 Good
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agreement between the analytical resultswas obtained by FDAwith 𝛿 = ±0.01, whereas large
deviationswere obtainedwhen adding or subtracting a full electron. The reason of this failure
was attributed to the DE, and usage of such a small 𝛿 was recommended to avoid shortcom-
ings. The issue of DE/SIE plagues essentially all modern functional approximations41 unless
specific measures to remove it are adopted.49, 50 It is known that a non-empirically optimally
tuned43, 50, 51 range-separated hybrid (OT-RSH) functional produces close to piece-wise linear-
ity of the energy, and there are indications that it also restores the density linearity condition.
‘Two-dimensional’ tuning further improves over standard OT-RSH by specifically optimizing
piece-wise linearity of 𝐸(𝑁).51, 52 This means that OT-RSHs offer potentially significant im-
provements for calculations of the Fukui function. To calculate a Fukui function free from
DE, Tozer and coworkers explored an OT-RSH for the carbon atom, its singly-charged anion,
and its cations with charge up to +5, and tested their conclusions on the helium and beryl-
lium atoms and on H2CO.40 Potential improvements from OT-RSHs were noted. A related
analysis performed on the lithium, carbon, and fluorine atoms by Gould using 37 ‘conven-
tional’ functionals showed that most of them produce Fukui functions similar to those ob-
tained with Quantum Monte Carlo calculations53 without further modification, potentially
because of favorable error cancellation among the electron densities.23

This work aims at exploring numerical procedures to calculate the Fukui functions 𝑓+,
𝑓− and 𝑓0 accurately from fractional-𝑁 KS DFT calculations. The study is motivated in part
by the scarcity of investigations of the density linearity condition in this context. Another
motivation comes from recent reports of an unusually low reactivity, and therefore unusu-
ally high stability (in some cases postulated rather than observed), of organic radicals with
energetic inversion of the HOMO and the singly occupied MO (SOMO).54, 55 These reports
raise the question whether SOMO-HOMO-inversion (SHI) radicals display Fukui functions
that reflect reduced reactivity compared to non-SHI analogs. In Section 3, the computational
approach is validated against the analytical data of Yang et al., and a suitable 𝛿 is identified. In
Section 4, OT-RSH calculations are explored in the context of the density linearity condition,
significantly expanding upon Reference 40. Additional applications are then reported in Sec-
tion 5, focusing on radical systems. Specifically, it is investigated whether information from
the Fukui function about the electronic structure of SHI systems is able to complement the
orbital-based analyses used so far. It is found that the 𝑓0 Fukui function correctly identifies
the most reactive species, and that SHI does not necessarily translate into reduced reactivity.
The comparison between the Fukui function-based prediction of reactivity and quantitative
information in the form of computed bond dissociation energies further confirms the relia-
bility of this indicator to obtain qualitative chemical information for SHI systems.
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2 Theoretical and Computational Details

All calculations employed KS DFT. Geometry optimizations and frequency calculations
were performed with the Gaussian 16 program, version A.03 (G16).56 Molecular structures
were characterized as minima based on harmonic vibrational frequency calculations. The
NWChem program, version 7.0,57 was used for the calculations involving fractional occu-
pation numbers of orbitals, using the FON keyword implemented by one of us (JA) previ-
ously.43, 58 The dplot run type of NWChemwas used to generate cube format density data us-
ing one-, two-, and three-dimensional grids. Further manipulations of the cube data files, for
example to generate the FDA Fukui functions, were carried out using the manipulatecube
software developed in-house. Mathematica v. 13 notebooks59 were used for visualizations.
Mathematica notebooks for cube file visualizations and the manipulatecube source code are
available free of charge at JA’s GitHub page.60

Data for analytical Fukui functions of helium, beryllium, and formaldehyde (H2CO)were
digitized from Reference 47 using the WebPlotDigitizer61 program and were used to test the
numerical convergence of the FDA Fukui function calculations. The structure of H2CO was
optimized using the LDA functional SVWN562, 63 and the cc-pVQZ basis set64 without f and
g functions, here indicated as cc-pVQZ′, to reproduce the calculations of Reference 47. All
other molecules were optimized and characterized with the B3LYP-D3(BJ) functional37–39, 65

and the def2-TZVP basis set.66 This level of theory is known to produce high-quality molec-
ular structures.67–72

Convergence of the Fukui function of theH2COmolecule with respect to the basis set was
tested using the Weigend-Ahlrichs66 and Dunning64 families of basis sets with the SVWN5
functional. Basis sets ranging from double-𝜁 to augmented quadruple-𝜁 were tested, namely
def2-XVP(D) (X = S, TZ, QZ) and (aug-)cc-pVnZ (n = D, T, Q). The Fukui functions were
found to be converged at the triple-𝜁 level, and the def2-TZVP basis set was employed for
the remainder of the calculations. Numerical tests using thresholds of 10−6, 10−8, and 10−10

au for the SCF convergence revealed no substantial impact on the calculation of the Fukui
functions. The intermediate value of 10−8 au was therefore used. To minimize numerical
errors arising from the integration grid,73, 74 the xfine/ultrafine grid specifications were
chosen for all NWChem/G16 calculations. Selected benchmark data are reported in Section
S1 of the Supporting Information (SI). For a subset of the studied systems, condensed Fukui
functions were computed using the FDA approach with 𝛿 = 0.10 and the Mulliken density
partitioning.27, 30 This partitioning, while being common, is not without shortcomings,29, 75–78

and for this reason we use the condensed values only as qualitative descriptors. Additional
details are given in Section S2 of the SI. Numerical differences in the electron densities and
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Fukui functions shown in Figures 4–7 are quantified using a root-mean-square integrated
deviation 𝜎𝑍 (𝑍 = 𝜌 or 𝑓), calculated from the corresponding volume data as described in
Section S3 of the SI.

System-specific OT-RSH parametrizations were determined as detailed in References 43
and 50, based on the LC-PBE functional36, 79 and are indicated herein as 𝛾∗-LC-PBE. Regard-
ing the need for a full long-range correction (LC) in the OT-RSH framework, see the dis-
cussion in Section 3.2 of Reference 58. For comparison with data from Reference 47, the
cc-pVQZ′ basis was used in the tuning of formaldehyde. The def2-TZVP basis was employed
otherwise. The tuning procedure resulted in the determination of an optimal error-function
range-separation parameter 𝛾 for each molecule. In a nutshell, for a parent system with 𝑁
electrons, the range-separation parameter was determined so that the exact KS condition

𝜀HOMO(𝑥) + IP(𝑥) = 0 (4)

was satisfied as best as possible, with IP being the vertical ionization potential and 𝑥 = 𝑁
or 𝑁 + 1. The 𝛾 parameters obtained in this way were used in the calculation of the 𝑓−

and 𝑓+ Fukui functions of formaldehyde. The parameter 𝛾 employed for 𝑓0 calculations
was obtained80 from adding the square of the left-hand side of Equation (4) for 𝑥 = 𝑁 and
𝑥 = 𝑁+1, followed byminimizationwith respect to 𝛾. The full list of 𝛾 parameters is reported
in Table S15 of the SI.

The energetic disposition for reactivity predicted by 𝛾∗-LC-PBE was compared to the re-
sults of many additional functionals. These functionals belong to various rungs of what
Perdew has referred to as Jacob’s ladder of functional approximations,81 with one general-
ized gradient approximation (GGA) [PBE-D3(BJ)36, 65], five meta-GGAs [B97M-V,82, 83 M06-
L,84 M11-L,85 MN15-L,86 TPSS-D3(BJ)65, 87], two global hybrid GGAs [B3LYP-D3(BJ)37–39, 65

and PBE0-D3(BJ)65, 88, 89], three global hybrid meta-GGAs [M06-2X,90 MN15,91 and TPSSh-
D3(BJ)92, 93], four range-separated hybrid GGAs (𝜔B97X-D,94 CAM-B3LYP95 and the two ver-
sions of LC-PBE), and two RSH meta-GGAs (M1196 and 𝜔B97M-V83, 97). We note that the
present study is not primarily a comparative benchmark of approximate functionals. The list
of tested functional approximations covers many application scenarios, and the functionals
have been subject to a variety of recent benchmark studies.93, 98–100

3 Validation of the Finite Difference Protocol

Published47 analytical Fukui functions are used here to gauge the performance of the present
FDA approach. In the case of the helium and beryllium atoms, the radial distribution of 𝑓−,

6



A B

C D

𝑟2
[ 𝑓

− FD
A
(𝑟
)]

𝑟, a.u.

𝑟2
[ 𝑓

− FD
A
(𝑟
)]

𝑟, a.u.

𝑓− FD
A
(𝑥
)

𝑥, Å

𝑓+ FD
A
(𝑥
)

𝑥, Å

C O C O

Analytical
𝛿 = 0.01
𝛿 = 0.10
𝛿 = 1.00

Analytical
𝛿 = 0.01
𝛿 = 0.10
𝛿 = 1.00

Analytical
𝛿 = 0.01
𝛿 = 0.10
𝛿 = 1.00

Analytical
𝛿 = 0.01
𝛿 = 0.10
𝛿 = 1.00

Figure 1: Top: Atomic Fukui functions. 𝑟2 [𝑓−(𝑟)] for the hydrogen and beryllium atoms
(panels A and B). Bottom: Fukui functions for H2CO. 𝑓−(𝑥) and 𝑓+(𝑥) (panels C and D) with
𝑥 along the C–O axis. Present FDA results with different 𝛿 as indicated, vs. the analytical
results digitized from Yang et al.47 (blue dots).

that is, 𝑟2 [𝑓−(𝑟)] as a function of the electron-nucleus distance 𝑟 is considered. In the case of
formaldehyde, the functions 𝑓+ and 𝑓− were calculated along the axis containing the C O
bond (𝑥, in the chosen coordinate system), indicated as 𝑓+FDA(𝑥) in Figure 1.

The FDA results obtained with 𝛿 = 1.00 are noticeably different from the analytical func-
tions presented in Figure 1. Despite the fact that the addition and subtraction of a full elec-
tron is discouraged,47 this is still the most commonly used approach for calculating Fukui
functions, especially in conjunction with the frozen orbital approximation, because it is very
easy to set up these calculations. Fractional electron number calculations are not as widely
supported by electronic structure programs, but Figure 1 shows that 𝛿 = ±1 may lead to
significant errors, whereas the analytic results and FDA with 𝛿 = 0.10 or 0.01 are virtu-
ally indistinguishable. In the present calculations with NWChem, using 𝛿 = 0.01 as recom-
mended in Reference 47, or slightly larger values, appears to create numerical noise in some
regions, especially for H2CO close to the atomic nuclei. We confirmed that the commonly
used technique of numerical grid-pruning is not responsible for the noise. Potentially, this
happens because of other kinds of numerical cut-offs used to speed up the calculations. The
Fukui functions obtained with 𝛿 = 0.10 are practically indistinguishable from the analytical
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𝑓−(r)
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𝛿 = 0.01 𝛿 = 0.10 𝛿 = 1.00
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D E F

Figure 2: Isosurfaces (±0.03 au) and contour maps (±0.003 ⋅ 2𝑛 au with 𝑛 = 0, 1, 2… up to
7) for the Fukui functions of formaldehyde calculated with SVWN5/cc-pVQZ′. Top row: 𝑓−
viewed in the molecular plane (𝑥𝑦, 𝑧 = 0) with different 𝛿. Bottom row: 𝑓+ viewed in the 𝑥𝑧
plane (𝑦 = 0).

functions, and therefore this value offers an excellent balance between numerical accuracy,
stability, and efficiency in the FDA calculations.

Similar conclusions can be drawn based on comparisons in two (2D, in the form of con-
tour line plots) and three dimensions (3D, in the form of iso-surfaces). For the 2D plots, we
obtain FDA results with NWChem that are equivalent to those reported by Yang et al.14, 47

Figure 2 shows the variations among the Fukui functions calculated with different values of
𝛿. With 𝛿 = 1.00, the Fukui functions are essentially free from numerical noise, but they also
noticeably differ from those obtained with smaller 𝛿. This reinforces the finding that such
a large 𝛿 = 1.00 is not generally suitable for quantitative evaluations. However, most of the
differences between the Fukui functions obtained with large vs. small 𝛿 appear in the atomic
cores.

To conclude this part of the investigation, the data show that |𝛿| = 0.10 will suffice for
most practical applications of the fractional-electron FDA approach, producing essentially
the same chemical information as FDA with |𝛿| ≤ 0.01 or analytical approaches, and with-
out incurring unwanted numerical noise. Calculations with 𝛿 = ±1.00, or the even cruder
frozen-orbital approach invoking the HOMO and LUMO of a molecule, should probably be
avoided. Yang et al. wrote in Reference 47 that the agreement between the FDAwith reason-
ably small 𝛿 and the analytic results ‘illustrates the validity of the analytic expressions’. One
may also turn around the argument: The good agreement between analytic and FDA ap-
proaches validates the use of the latter in practical applications. The FDA has the advantage
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Figure 3: Total energy of formaldehyde, relative to the neutral molecule, as a function of the
electron number𝑁. Different functionals are indicated in the plot legend. The inset amplifies
part of the plot. cc-pVQZ′ basis set.

that it works the same when using non-hybrid or hybrid or RSH functionals, whereas the an-
alytic implementation becomes more involved for functional approximations that have more
‘ingredients’.

4 Density Linearity and OT-RSH Calculations

Empirically, it has been found that OT-RSHs cause the energy to follow the expected piece-
wise linear behavior quite closely, and the linearity itself can be a target of ‘two-dimensional’
tuning,52 as alreadymentioned. It remains to be seen whether the density linearity condition
is also recovered by an OT-RSH. Figure 3 demonstrates that for the formaldehyde example,
simple IP-based tuning produces the desired piece-wise linearity of 𝐸(𝑁) (𝛾∗-LC-PBE data).
The conventional functionals PBE, PBE0, and SVWN5 have a positive curvature, more so for
the non-hybrid functionals, whereas HF gives negative curvature. This is an expected result,
based on the previously cited literature on the topic.

To test the density linearity condition, the points with 𝛿 = ±0.5 were selected, because
there the deviations in the relative energies due to the curvature are most pronounced. This
is even more evident in Figure S4 in the SI, which shows that the largest deviation from
linearity is observed for SVWN5, closely followed by PBE. The deviation for PBE0 and HF
is less pronounced, and it becomes vanishingly small for 𝛾∗-LC-PBE. For the two fractional
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4.7 4.7 4.5 10.

SVWN5 PBE 𝛾∗-LC-PBE HF

SCF Density

Density from
Equation (2)

𝜌SCF − 𝜌lin.

𝜎𝜌 (× 103)

Figure 4: SCF densities (top row), densities obtained from the linearity condition [Equation
(2), middle row], and the difference 𝜌SCF − 𝜌lin. (bottom row) calculated for the H2CO+0.5

fractionally charged ion with different functionals. In the difference plots, blue/red contours
represent a difference ≷ 0. Contour lines: ±0.003 ⋅ 2𝑛 au with 𝑛 = 0, 1, 2… up to 11 for
the densities, up to 3 for the differences. The 𝜎𝜌 values quantify the density differences (see
Section S3 in the SI for details).

ions H2CO+0.5 and H2CO–0.5, the linearized (lin.) electron densities expected from Equation
(2) are compared with the corresponding self-consistent (SC) densities in Figures 4 and 5 for
the different functionals. Visual differences are hardly noticeable by comparing the contour
line plots of the densities. We focus the discussion on the plots of 𝜌SCF − 𝜌lin. aided by the
𝜎𝜌 indicators that quantify the differences between them. Even with contours going down to
±0.003, there is hardly any difference in the SCF versus linearized densities. It appears that
adding (a fraction of) an electron causes less of a deviation from linearity than subtracting it,
as shown by the plots for 𝛿 = ±0.5 and by Figure S4 in the SI. HF performs the least well in
regard to the density linearity, resulting in higher calculated 𝜎𝜌 values. There is no dramatic
improvement from using an OT-RSH, although the latter does perform the best for 𝛿 = −0.5.
These findings came as a surprise, because the approximate functionals (other thanOT-RSH)
violate the energy linearity condition quite noticeably. It is visible from the plots for 𝛿 = +0.5
that the differences in the sign of the 𝐸(𝑁) curvature betweenHF and the density functionals
goes alongwith a change in the sign of 𝜌SCF−𝜌lin.. In addition, the appearance of an increasing
number of contour lines in the density difference plots is reflected in a larger magnitude of
𝜎𝜌. It remains to be seen whether this correlation between the density and energy error is a
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7.0 7.2 2.1 9.3

SVWN5 PBE 𝛾∗-LC-PBE HF

SCF Density

Density from
Equation (2)

𝜌SCF − 𝜌lin.

𝜎𝜌 (× 103)

Figure 5: SCF densities (top row), densities obtained from the linearity condition [Equation
(2), middle row], and density difference 𝜌SCF−𝜌linear (bottom row) calculated for the H2CO–0.5

fractionally charged ion with different functionals. In the difference plots, blue/red contours
represent a difference ≷ 0. Contour lines: ±0.003 ⋅ 2𝑛 au with 𝑛 = 0, 1, 2… up to 11 for the
densities, up to 3 for the differences. The 𝜎𝜌 values quantify the density differences.

general feature or specific to the system studied here.
Presumably, the densities that are averaged together according to Equation (2) are rea-

sonable references at integer 𝑁. This assumption is based on the energetic performance of
approximate functionals, other thanHF,which is generally not bad for the IP and the electron
affinity (EA) of many compounds when calculated from total energy differences93, 98 rather
than orbital energies. This can be seen, for example, by the close agreement of the endpoints
of the curves other than HF in Figure 3. With approximate functionals, Equation (2) is of
course not fully satisfied for the densities, but as Gould pointed out,23 it is possible that er-
ror cancellation in the density favorably affects the Fukui functions. In other words, small
errors in the density may translate into significant errors in the energy, resulting—among
other issues—in non-zero curvature of 𝐸(𝑁), but for qualitative applications such as visual
assessments of Fukui functions these errors may not be particularly significant.

The benefits of functional tuning becomemore evident in Figures 6 and 7, showing Fukui
functions calculatedwith different values of 𝛿 in comparison to reference data calculatedwith
𝛿 = 0.10. As detailed in Section 3, the FDA with 𝛿 = 0.10 gives results that are deemed very
close to the analytic Fukui functions, for the purpose of the present study. TheOT-RSH is seen
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SVWN5 PBE 𝛾∗-LC-PBE

𝑓−0.25 − 𝑓−0.10

𝜎𝑓 (× 103)

𝑓−0.50 − 𝑓−0.10

𝜎𝑓 (× 103)

𝑓−0.75 − 𝑓−0.10

𝜎𝑓 (× 103)

𝑓−1.0 − 𝑓−0.10

𝜎𝑓 (× 103)

Figure 6: Differences in the FDA 𝑓− functions in the molecular plane of formaldehyde, using
𝛿 = 0.1 as reference. cc-pVQZ′ basis set. Red/blue contour lines indicate negative/positive
function values. Contour lines values are ±0.003 ⋅ 2𝑛 au with 𝑛 = 0, 1, 2… up to 3. The 𝜎𝑓
values quantify the Fukui function differences (see Section S3 in the SI for details).

to yield a consistent𝑓+, whereas the non-hybrid functionals produce anoticeable dependence
on the value chosen for 𝛿, especially for 𝛿 ≥ 0.50, where the errors are particularly significant
(𝜎𝑓 larger than 10−2). In the case of 𝑓−, the differences in the calculated densities shown in
Figure 4 are reflected in the Fukui function, suggesting that error cancellation—if present—is
not as effective as for 𝑓+. As seen for the density differences, the magnitude of 𝜎𝑓 goes along
with an increasing number of contour lines appearing in the 𝑓+∕− difference plots, suggesting
that visual examination of 𝑓+ and 𝑓− is sufficient to rationalize the qualitative aspects of the
Fukui functions.

In addition to H2CO, 𝛾∗-LC-PBE also gives noticeable differences for values 𝛿 ≥ 0.50 of
the 𝑓− of two atoms, helium and beryllium (additional comments can be found in Section S6
of the SI). Good agreement between the functions obtained with 𝛿 = 0.10 and 𝛿 = 1.00
is found for beryllium (Figure S8). For helium, however, OT functionals do not improve
upon conventional approximations much, mirroring the observed behavior for 𝑓+ and 𝑓−

of formaldehyde. This shows that the energy linearity does not necessarily translate into
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Figure 7: Differences in the 𝑓+ functions calculated on the 𝑥𝑧 plane using 𝛿 = 0.1 as ref-
erence. The functionals used were SVWN5, PBE, 𝛾∗-LC-PBE with the cc-pVQZ′ basis set.
Red/blue contour lines indicate negative/positive function values. In all cases, contour lines
values are±0.003 ⋅2𝑛 au with 𝑛 = 0, 1, 2… up to 4. The 𝜎𝑓 values quantify the Fukui function
differences.

density linearity. Reference 40 stated that the “energy-tuned parameter is applicable for the
analogous density [linearity] condition”. While OT does appear to lead to improvements with
respect to the density linearity condition, however, our data show that it is still advisable to
use small values of 𝛿 in FDA Fukui function calculations, even when using OT-RSHs.

5 Understanding the Reactivity of SHI Radicals

SHI radicals are characterized in spin-unrestricted calculations by a SOMO that is lower in
energy than the 𝛼-𝛽-pair of spin orbitals constituting the doubly occupied HOMO level. See
References 54, 55, 101, 102 for details and examples. The unoccupied opposite-spin counter-
part of the SOMO is labeled SUMO here and in related studies by us. The acronym stands for
‘single unoccupiedMO’, to indicate that it has no corresponding opposite-spin counterpart in
the unoccupied orbital space. It is alsoworth noting that the SOMOcounterpart of the SUMO
may have to be generated via a linear combination of several occupied same-spin MOs.102 In
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other words, a clear match between SOMO and SUMO may not be obtained straight from a
self-consistent spin-unrestricted DFT calculation. This is not a restriction affecting the SHI
classification, because linear combinations of same-spin occupied MOs can always be taken
in spin-unrestricted KS DFT calculations, without loss of generality. In previous cases where
linear combinations were necessary to bring about the SOMO-SUMO match, we found that
the 𝛽-spin ‘hole’ in the spin density, for a calculation of a radical with𝑀𝑆 = +1∕2, was well-
reflected by the density of the SUMO.102

SHI does not occur in conventional radicals such as CH3 , where the highest occupied
spin orbital is the SOMO, but SHImay bemuchmore common than previously thought.102 It
has been postulated that SHI goes along with increased radical stability and desirable photo-
physical behavior. However, it is so far unclear whether there is a correlation between SHI
and the desired radical stability or properties.55 What is clear is that if the SHI gap (the SOMO-
HOMO energy difference) is sufficiently large, then ionization of an SHI radical will result in
an open-shell bi-radical rather than a closed-shell system. ‘Sufficiently large’ is a deliberately
vague term. It ismeant to indicate that SHI should be predicted consistentlywith awide range
of approximate functionals, such that it reflects in some way a real feature in the electronic
structure, and that in a molecular orbital description of the system ionization occurs—as it
should—from the HOMO.

Given the lack of understanding of SHI radicals, and the increasing interest in such sys-
tems, we thought it timely and important to assess whether the postulated stability of SHI
radicals is reflected in the Fukui reactivity functions. The species selected for the analysis
are the family of linear peroxyl radical anions –OOC (CH2)n O2 , with n = 1 to 4, previ-
ously investigated in Reference 103, and the radical cation of 1-methylcytosine,104 a deriva-
tive of one of the four constituents of DNA. Their reactivity is compared to closely related
compounds that either exhibit partial or no SHI. The energetic aspect is tested using the (ho-
molytic) X CH3 bond dissociation energies (BDEs, with X being an atom in the molecules),
following a similar approach as was adopted in Reference 103, and calculated vertical IPs
(reported and briefly discussed in Section S7 of the SI).

5.1 The Peroxyl Radical Family: Reactivity Towards CH3

The reactivity of peroxyl radicals was extensively studied by Gryn’ova et al.,103 who estab-
lished that the –OOC (CH2)n O2 compounds exhibit SHI, and are less reactive than their
protonated analogs, HOOC (CH2)n O2 . We extend the investigation to include the two
shortest-chain members of the series, namely –OOC CH2 O2 and –OOC CH2 CH2 O2 ,
and their protonated analogs HOOC CH2 O2 andHOOC CH2 CH2 O2 . For all radicals,
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Figure 8: Isosurfaces (±0.03 au) of the 𝑓0 function (FDA with 𝛿 = 0.10) of the SHI peroxyl
radical anions (left) and their protonated analogs (right). 𝛾∗-LC-PBE/def2-TZVP calculations
with different values of 𝛾∗ depending on n (the numerical values are reported in Section S4
of the SI). The condensed Fukui functions are reported for selected atoms only.

the orbitals and the corresponding energies are reported in Figures S9–S20 in the SI.
The HOMO of the peroxyl radical anions is mostly localized on the carboxylate group,

COO–. The SOMO (and the corresponding SUMO) are localized on the superoxide group
(O2 ) instead. These systems are designed as donor-radical pairs, with the carboxylate group
being the donor and the superoxide being the radical, and the MOs reflect this property. The
𝛼- and 𝛽-HOMOs of the peroxyl radical anions are degenerate for practical purposes, with
differences in the order of 0.01 eV (calculated with B3LYP, PBE0, and 𝛾∗-LC-PBE, see SI).
The SOMO-HOMO gap for the unprotonated radicals is rather large, 3 to 4 eV.
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The SOMO of the protonated radicals is localized on the superoxo group, and it matches
the SUMO. TheHOMO is instead delocalized over the carboxylate and superoxo groups. Spa-
tial separation from the SOMO is obtained only from the linear combination of HOMO and
HOMO-2 (or HOMO-1 for the 𝛽 spin-orbitals). The 𝛽-spin SUMO corresponds closely to the
calculated 𝛼-spin density, as shown in the SI, Figure S21. The 𝛼-HOMO and SOMO are ener-
getically quasi-degenerate, and they are lower than the 𝛽-HOMO by 0.4/0.5 eV. According to
Reference 55, this orbital configuration, with the 𝛼 and 𝛽 spin HOMO noticeably differing in
energy, classifies as partial SHI. Ionization of all the peroxyl radicals –OOC (CH2)n O2 and
HOOC (CH2)n O2 yields a triplet diradical (Tables S18 and S19 in the SI).

The 𝑓0 Fukui functions calculated with 𝛿 = 0.10 are shown in Figure 8. The functions
calculated with 𝛿 = 1.00 (Figure S22 in the SI) exhibit large values of 𝜎𝑓 for n = 1 and n =
3. Visual examination shows that this difference is only qualitative, as it is due to the way
the Fukui function is localized on the carboxylate moiety. For 𝛿 = 0.10, 𝑓0 is localized on
one oxygen atom, while for 𝛿 = 1.00, the Fukui function is localized on the other oxygen.
The two atoms are chemically identical, and the interpretation of the numerical indicator
without prior visual examination of the Fukui functions is misleading, as the indicator does
not account for chemical equivalence. For n = 2 and n = 4, the plots appear more similar
instead. This observation further underlines the complementary relationship between visual
examination of the Fukui function and numerical quantifications using 𝜎𝑓 or some other
suitable indicators, and it highlights once more the need for a small 𝛿 in FDA calculations.
The 𝑓0 function of the radical anions is delocalized on both the carboxylate and superoxo
groups, and it reflects the spatial separation of the orbitals. Upon protonation, 𝑓0 becomes
more localized, mirroring the changes observed in the MOs. The Fukui function identifies
the superoxo as the main target for a radical attack, as it should, and its magnitude is larger
for the protonated species, as shown numerically by the condensed values reported for the
peroxo group in Figure 8. Visual comparison of the Fukui functions calculated with 𝛿 = 0.10
and 1.00 for the protonated peroxyl radicals is shown in Figure S23 in the SI. The value of
the 𝜎𝑓 indicator of those species is similar, and no substantial differences due to the choice of
𝛿 emerge. The length of the alkyl chain has no apparent influence on 𝑓0, as expected given
the lack of 𝜋-conjugation between the donor and radical moieties. The condensed values
describe this trend qualitatively, but they appear to be slightly overestimated for the shortest
peroxyl radical anion (top left of Figure 8).

The qualitative features of 𝑓0 are reflected quantitatively in the calculated bond disso-
ciation energies collected in Table 1. Within both series of molecules, the BDEs vary only
little as a function of the alkyl chain length, irrespective of the functional used. Furthermore,
the BDEs calculated for the protonated species are larger than those of the radical anions, by

16



Table 1: Homolytic O CH3 bond dissociation energies (BDEs) of –OOC (CH2)n O2 CH3
[HOOC (CH2)n O2 CH3 in parentheses] for n = 1, 2, 3, 4 calculated with different func-
tionals.

Functional𝑎 BDE𝑏, n = 1 BDE𝑏, n = 2 BDE𝑏, n = 3 BDE𝑏, n = 4
PBE-D3(BJ) 62.2 (69.7) 61.6 (68.8) 61.7 (68.3) 60.7 (68.1)
B97M-V 63.0 (70.1) 63.5 (68.6) 64.2 (68.9) 63.7 (68.7)
M06-L 60.9 (68.0) 61.0 (66.6) 61.6 (66.7) 61.0 (66.7)
M11-L 65.2 (70.9) 65.6 (69.0) 66.4 (69.8) 66.3 (69.9)
MN15-L 65.6 (72.2) 66.2 (71.0) 67.1 (71.0) 66.9 (71.0)

TPSS-D3(BJ) 58.9 (66.4) 58.8 (65.5) 59.3 (65.0) 58.5 (64.8)
B3LYP-D3(BJ) 59.4 (67.3) 60.5 (66.1) 61.5 (66.0) 62.3 (65.7)
PBE0-D3(BJ) 60.7 (68.5) 62.0 (67.1) 62.8 (67.1) 63.7 (67.0)
M06-2X 65.8 (74.1) 67.4 (72.5) 68.2 (72.7) 69.1 (72.5)
MN15 66.2 (74.0) 67.7 (72.6) 68.5 (72.7) 69.4 (72.6)

TPSSh-D3(BJ) 58.5 (66.1) 59.3 (65.1) 60.4 (64.8) 60.7 (64.6)
𝜔B97X-D 60.9 (68.9) 62.5 (67.7) 63.3 (67.6) 64.2 (67.5)
LC-PBE𝑐 65.0 (73.9) 66.9 (71.9) 67.9 (72.5) 68.8 (72.3)

𝛾∗-LC-PBE𝑑 67.1 (75.8) 69.0 (74.2) 70.0 (74.6) 70.9 (74.4)
CAM-B3LYP 59.5 (68.1) 61.0 (66.4) 61.9 (66.7) 62.8 (66.3)

M11 63.4 (72.0) 65.1 (70.1) 65.8 (70.5) 66.7 (70.1)
𝜔B97M-V 64.0 (72.0) 65.6 (70.7) 66.4 (70.7) 67.2 (70.6)

𝑎def2-TZVP basis set; 𝑏Values in kcal/mol; 𝑐𝛾 = 0.30 au−1;
𝑑Different values of 𝛾∗ depending on n, see SI, Table S15.

around 8 kcal/mol, confirming that protonation renders the radicals more reactive, although
not dramatically so. The overall performance of the different functionals is very consistent,
and the calculations reproduce the trends noted previously byGryn’ova et al.103 These authors
also pointed out that the distonic nature of the peroxyl radicals renders the molecules more
polarizable, and this effect was identified as the origin of the observed radical stability.105

Our results demonstrate, additionally, that the higher reactivity of the protonated radicals is
reflected in the magnitude of 𝑓0 around the peroxo functional group. The increased polar-
izability of the radical anions goes along with a delocalization of the Fukui function on the
peroxo and carboxylate groups. Therefore, the 𝑓0 identifies the reactive site in the molecules,
and the relative reactivity toward radical reactions, thus characterizing these systems quali-
tatively and semi-quantitatively.

5.2 1-Methylcytosine and Analogs: Reactivity Towards CH3

The radical cation of 1-methylcytosine (molecule A in Figure 9) is one of many biologi-
cally relevant radicals that exhibit SHI.104 Five isoelectronic analogs were identified. Three

17



 

N

N

NH2

O

1
2

3
4

5

6

7

 

N

N

N

NH2

O

 

N

N

NH2

O

 

N

NH2

O

 

N

NH2

O

 

N

N

NH2

SHI SHI
C(2)-H→N

SHI
C(2)-H→N
N(6)→C-H

SHI
N(6)→C-H

Not SHI
N(4)→C–

Not SHI
O(7)→CH2

A B C

D E F

Figure 9: 1-methylcytosine (A) and isoelectronic analogs. Molecules B–D exhibit SHI, while
molecules E and F do not. The atoms or groups replaced relative to A are indicated below
each structure. The numbering of the atoms was chosen for convenience, and it does not
follow standard naming rules.

(moleculesB–D) display SHI, whereasmoleculesE andF are conventional radicals, as shown
by their orbitals and orbital energies reported in Section S10 of the SI, and by the calcu-
lated IPs of Table S20 in the SI. Molecule F, obtained by replacing the oxygen atom in po-
sition 7 of 1-methylcytosine with a methylene group (CH2), was chosen for comparison with
1-methylcytosine because it offers the least change in the electronic structure (the other
molecule without SHI, E, is not charged).

The MOs of molecules A and F are very similar to each other. In 1-methylcytosine, the
SOMO is lower in energy than the HOMO by ∼0.5 eV. In molecule F, the SOMO is the high-
est occupied MO, as typical for conventional radicals. In 1-methylcytosine, the frontier MOs
are delocalized on the aromatic ring, with substantial contributions from O(7) and the NH2

group. The spin density for this molecule closely resembles the square of the 𝛽 SUMO, which
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Figure 10: Isosurfaces (±0.01 au) for the 𝑓0 Fukui functions (FDA with 𝛿 = 0.10) of 1-
methylcytosineA (panel A) and analog F (panel B). 𝛾∗-LC-PBE/def2-TZVP calculations with
𝛾 = 0.2888 au−1 for panel A and 0.2647 au−1 for panel B. The condensed Fukui functions are
reported for selected atoms only.

is expected, as explained earlier. Replacing the oxygen with a CH2 group (A→ F) localizes
the MOs on the ring, decreasing the contributions from the substituents, as shown in Fig-
ure S42 in the SI. For molecule F, the 𝛽 spin SUMO also reflects the calculated spin density
(see Figure S42 in the SI). These similarities between molecules A and F are reflected in the
reactivity pattern that emerges from panels A and B of Figure 10. The 𝑓0 Fukui function indi-
cates that different atoms or groups may be possible sites for radical attack, highlighting the
ring nitrogens N(4) and N(6), and the ring carbon C(2) as common reactivity centers for the
two molecules. Additional targets are the NH2 group and oxygen O(7) in 1-methylcytosine
and the CH2 group in molecule F. Similar reactivity patterns emerge from the 𝑓0 Fukui func-
tion of the other molecules, evidencing no substantial differences in their behavior towards
radical attack (see Figure S43 in the SI). The same features are seen in the 𝑓0 calculated with
𝛿 = 1.00 (Figure S44 in the SI), and unlike the peroxyl radical anions, no noticeable differ-
ences emerge from the comparison of the results obtained with the two values of 𝛿. Visual
inspection of the Fukui function of molecule A reveals that the oxygen atom O(7) and the
NH2 group are the most reactive, followed by N(4), N(6), and C(2). For molecule F, the CH2

group is the most reactive, followed by N(4), N(6), and C(2). It appears that the NH2 group
is not reactive. Notably, the condensed Fukui function values do not reflect the extensions
of the lobes of 𝑓0 plotted in Figure 10, but they correctly identify the most reactive atoms
and groups [CH2 in molecule F and O(7)/NH2 in molecule A. This apparent discrepancy is
likely due to the limitations of the used Mulliken partitioning, as described for example in
References 29, 78 and 106]. Overall, molecule A appears to be more reactive than F despite
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methylcytosine (A, X=O) or analog F (X=CH2) considered for the computation of the BDEs
of Tables 2. See Table S21 for additional visuals.

the SHI character for the former.
The reactive sites identified by the 𝑓0 Fukui function for molecules A and F were con-

sidered for reaction with a CH3 radical, as shown in Figure 11. The corresponding BDEs
are reported in Table 2. The different functionals predict that any atom in A is more reac-
tive, thermodynamically, than its corresponding analog in molecule F. In fact, the BDEs of
molecule F are lower than those in molecule A by ∼30 kcal/mol. Thus, the BDEs indicating
that SHI systemA ismore reactive than its non-SHI analogF clearly reflect the qualitative be-
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Table 2: Homolytic bond dissociation energies (BDEs) for the methyl group of the
CH3 adducts of A (F in parentheses) calculated with different functionals. See also Figures 9
and 11.

BDE𝑎 BDE𝑎 BDE𝑎 BDE𝑎 BDE𝑎
Functional𝑏 NH2 CH3 C(2) CH3 N(4) CH3 N(6) CH3 O CH3

(CH2 CH3)
PBE-D3(BJ) 77.9 (54.5) 64.6 (32.8) 102.8 (66.5) 72.7 (41.9) 94.3 (87.8)
B97M-V 75.8 (50.0) 61.7 (28.0) 100.9 (61.7) 69.2 (35.7) 94.7 (85.9)
M06-L 74.8 (49.2) 59.5 (25.2) 100.2 (61.9) 67.6 (35.0) 92.3 (86.3)
M11-L 76.8 (50.8) 61.1 (27.7) 100.9 (62.0) 70.7 (37.6) 94.3 (87.7)
MN15-L 75.0 (48.0) 61.3 (27.7) 100.6 (60.2) 69.9 (35.1) 95.1 (85.0)

TPSS-D3(BJ) 72.7 (48.5) 60.6 (28.2) 98.0 (60.6) 68.7 (36.8) 91.4 (82.0)
B3LYP-D3(BJ) 75.6 (49.7) 62.7 (29.4) 101.3 (62.4) 70.4 (37.1) 94.3 (84.1)
PBE0-D3(BJ) 79.2 (52.3) 64.3 (30.4) 105.6 (65.5) 73.9 (39.3) 98.1 (87.8)
M06-2X 83.7 (55.3) 70.6 (36.7) 110.4 (69.3) 79.2 (43.7) 104.5 (90.4)
MN15 80.1 (53.3) 67.2 (35.3) 108.7 (69.2) 75.7 (41.5) 103.5 (88.9)

TPSSh-D3(BJ) 73.7 (48.1) 60.7 (27.6) 99.5 (60.7) 69.5 (36.2) 93.2 (82.6)
𝜔B97X-D 81.1 (52.9) 65.9 (31.8) 106.8 (66.1) 75.3 (39.9) 99.3 (89.2)
LC-PBE𝑐 87.8 (57.3) 70.3 (35.8) 117.2 (73.7) 81.5 (43.8) 109.1 (95.0)

𝛾∗-LC-PBE𝑑 89.4 (61.9) 74.3 (42.0) 118.2 (78.3) 84.6 (50.2) 109.4 (98.7)
CAM-B3LYP 76.5 (48.4) 61.6 (27.2) 103.3 (62.2) 71.4 (36.2) 97.5 (84.8)

M11 83.3 (54.1) 69.4 (35.5) 111.8 (70.0) 78.8 (42.7) 104.0 (90.7)
𝜔B97M-V 83.5 (54.8) 69.2 (35.6) 108.4 (67.7) 77.4 (42.1) 102.2 (90.8)

𝑎Values in kcal/mol; 𝑏def2-TZVP basis set; 𝑐𝛾 = 0.30 au−1;
𝑑𝛾∗ = 0.2888 au−1 (molecule A) or 𝛾∗ = 0.2647 au−1 (molecule F).

havior predicted by the Fukui function 𝑓0. Also, themagnitude of the Fukui function around
the various centers matches the calculated BDEs qualitatively. The BDE calculations iden-
tify N(4) as the most reactive site, contradicting the 𝑓0 prediction, but otherwise follow the
reactivity order based on 𝑓0 [O(7) ∼ NH2 > N(6) > C(2) ]. For molecule F, the CH2 group
shows the largest BDE, and it is the most reactive site in the molecule, as predicted by 𝑓0.
The Fukui function overestimates the reactivity of the NH2 group, but it is qualitatively right
regarding the other centers [N(4) > N(6) > C(2)].

6 Conclusions and Outlook

This work introduced a computationally and numerically practical procedure to calculate
Fukui functions using the finite difference approximation. A finite-difference parameter
value of 𝛿 = 0.10 was identified as a suitable best compromise between accuracy, numer-
ical precision, and computational efficiency.
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The benefits of optimally tuned functionals (OT-RSH)were examined using the formalde-
hyde molecule and two atoms. The tuning procedure restores the linearity conditions of the
energy, but it provides less obvious improvements in the density compared to conventional
approximations. However, there is no harm in studying Fukui functions obtained with OT-
RSHs to predict chemical reactivity.

The FDA methodology was applied to study various compounds exhibiting SOMO-
HOMO inversion (SHI) and to compare them with other radicals exhibiting partial or no
SHI. In particular, we found that 𝑓0 captures qualitative and semi-quantitative aspects of the
reactivity of linear peroxyl radicals, but for 1-methylcytosine and its CH2-substituted analog
the Fukui function only offers a rough qualitative description. Unless the latter systems are
rare outliers, additional computed quantities such as bond dissociation energies and ioniza-
tion potentials should accompany the 𝑓0 Fukui function to obtain a quantitative description
of the chemical reactivity of these systems. 𝑓0 correctly identified 1-methylcytosine as more
reactive than an isoelectronic non-SHI analog. Therefore, at least for this example, SHI is
not in an obvious manner related to radical stability. It remains an open question whether
1-methylcytosine is an exception in this regard, or quite typical. Further research will be
required to provide a definitive answer.
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